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Distributed Monitoring for Prevention of Cascading Failures
in Operational Power Grids

Martijn Warnier∗1, Stefan Dulman2, Yakup Koç1,3, and Eric Pauwels2

1Systems Engineering, Faculty of Technology, Policy and Management, Delft
University of Technology, Delft

2Intelligent Systems group, Centrum Wiskunde & Informatica (CWI), Amsterdam
3Risk and Information Management, Stedin, Rotterdam

Electrical power grids are vulnerable to cascading failures that can lead to large black-
outs. Detection and prevention of cascading failures in power grids is important.
Currently, grid operators mainly monitor the state (loading level) of individual com-
ponents in power grids. The complex architecture of power grids, with many inter-
dependencies, makes it difficult to aggregate data provided by local components in a
timely manner and meaningful way: monitoring the resilience with respect to cascad-
ing failures of an operational power grid is a challenge.
This paper addresses this challenge. The main ideas behind the paper are that (i) a
robustness metric based on both the topology and the operative state of the power
grid can be used to quantify power grid robustness and (ii) a new proposed a dis-
tributed computation method with self-stabilizing properties can be used to achieving
near real-time monitoring of the robustness of the power grid. Our contributions thus
provide insight into the resilience with respect to cascading failures of a dynamic
operational power grid at runtime, in a scalable and robust way. Computations are
pushed into the network, making the results available at each node, allowing auto-
mated distributed control mechanisms to be implemented on top.

1 Introduction

Power grids are critical infrastructure: all kind of services (basic services, governmental and private) de-
pend on the continuous and reliable delivery of electricity. Power grid outages have a large effect on society,
both in terms of safety and in terms of economic loss. The large-scale introduction of “renewable energy
sources” and the current (centralized) architecture of the power grid make it more likely that large power
outages will become more common. Encouraged by government subsidies and a trend to become more
“green”, consumers are becoming producers of electricity by installing solar panels and wind mills [1].
Part of this produced power will be used locally, but excess power can be sold and fed back into the power
grid. This in turn leads to grid instability [2]: it is more difficult to predict, and hence balance, electricity
production when there is a large amount of small producers spread over a large geographical region, instead
of a couple of large producers. The current power grid architecture does not support the introduction of
renewables at this scale [3].

The current organization of the power grid thus makes larger grid failures more likely to occur: initial local
disruptions can spread to the rest of a power grid evolving into a system-wide outage [4]. In a power grid,
an initial failure, for example, can be caused by an external event such as a storm, and spreads to the rest of
the network in different ways including due to causes such as instability of voltage and frequency, hidden
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failures of protection systems, software or operator errors, and line overloads. For example, in the case of
cascades due to line overloads, an overloaded line is "tripped” by a circuit breaker. At this point electricity
can no longer flow through the line, and the power contained in the line flows to other lines. This might
lead to overloading (part of) these lines causing them to be tripped as well. As this process repeats over and
over again, more lines are shut down, leading to a cascading failure of the power grid [5, 6]. Cascading
effect due to line overloads, and preventing such cascading failures form the main focus of this paper.

In order to detect (and ultimately prevent) cascading failures it is necessary to monitor (and alter) the
current state (power load distribution) of the power grid. The emerging Smart Grid provides exactly this: a
power grid with a communication overlay that connects sensors and effectors. In effect, a Smart Grid is a
large-scale distributed system that enables the monitoring of line loads and that enables changing the state
of the network by tripping and untripping lines. In the remainder of the paper a Smart Grid is assumed.

Given this context of the Smart Grid, this paper addresses two main research questions: What should be
monitored?, i.e., is there a metric that can be used for cascading failure prediction? How to monitor?, i.e.,
how should aggregation be performed and which temporal resolution is required for the monitoring. In
addition, it should be possible to extend the proposed (passive) monitoring scheme to an (active) scheme
that automatically alters the state of the grid in order to prevent cascading failures.

The main contribution of the paper is a new distributed monitoring approach that can be used to monitor
the robustness of the power grid with respect to cascading failures. The monitoring approach is based
on the distributed computation of the robustness metric we introduced in [7, 8]. Our contributions in this
paper include the extension of a distributed gossiping algorithm [9] with self-stabilization mechanisms to
account for network dynamics. The resulting framework allows distributed aggregates to be computed fast
and reliable, which forms the core of the proposed monitoring approach.

Our main results show that we are able to compute the complex robustness metric using simple robust
distributed primitives with results readily made available at each node in the network. This is an important
property as the mechanisms presented in this paper can be seen as a measurement framework to be used
in real-time for the design of distributed control mechanisms. Our approach scales very well with network
size (logarithmic order) in terms of convergence time. The precision of the computations can be fixed by
changing the message sizes and is independent on the network parameters (number of nodes, diameter,
etc.).

The remainder of this paper is organized as follows: Section 2 introduces the metric used to assess the
robustness of the power grid with respect to cascading failures. Section 3 presents the distributed algorithm
for the online computation of the robustness metric. Section 4 discusses the simulation results that show the
applicability the proposed approach. Section 5 presents the current state of the art in power grid monitoring
and cascading failure detection. Section 6 concludes the paper.

2 Robustness Metric

Different topological metrics have been identified in literature that indicate the vulnerability of a power
grid against cascading failures on the basis of which the most critical nodes in a network are identified.
Examples of such topological metrics are average shortest path length, betweenness centrality [10] and
the gap metric [11]. However, next to a topological aspect, power grids also have a physical aspect. In
particular, electrical current in a power grid behaves according to Kirchoff’s laws [12]. A metric that
quantifies the robustness of an operational power grid with respect to cascading failures should take both
these aspects into account. Our robustness metric from [7, 8] does exactly this, and it therefore forms the
starting point for the distributed power grid monitoring algorithm proposed in this paper. The robustness
metric RCF (for Robust against Cascading Failures) assesses the robustness of a given power grid with
respect to cascading failures due to line overloads. The metric relies on two main concepts: electrical
nodal robustness and electrical node significance. Higher values of RCF indicate a more robust, i.e., a
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power grid that is able to resist cascading failures to a larger extent. The remainder of this section provides
a summary from our earlier work on robustness metrics, we refer to [7, 8] for more details.

2.1 Electrical Nodal Robustness

The electrical nodal robustness quantifies the ability of a bus (i.e. a node in a graph representation of a
power grid) to resist the cascade of line overload failures by incorporating both flow dynamics and network
topology. In order to calculate this value for a node, three factors are of importance: (i) the homogeneity
of the load distribution on out-going branches (i.e. links in a graph representation of a power grid); (ii) the
loading level of the out-going links; and (iii) the out-degree of the node.

Entropy is used to capture the first and the last factors described above: the entropy of a load distribution at
a node increases as flows over lines are distributed more homogeneously and the node out-degree increases.
The entropy of a given load distribution at a node i is computed by Equation (1):

Hi = −
d∑

j=1

pij log pij (1)

where d refers to the out-degree of the corresponding node, whereas pij corresponds to normalized flow
values on the out-going links lij , given as:

pij =
fij∑d
j=1 fij

(2)

where fij refers to the flow value in line lij . To model the effect of the loading level of the power grid
the tolerance parameter α is used (see [13]). The tolerance level of a line lij , αij , is the ratio between the
rated limit and the load of the corresponding line lij . α is a commonly deployed modelling parameter used
to deal with the lack of data on the rated limits of components in test systems [14]. The analysis methods
works in such a way that whenever the rated limits of grid components are known, these values can replace
the alpha values in our study.

Combining Equations (1) and (2) with the tolerance parameter α to capture the impact of loading level on
the robustness, the electrical nodal robustness of a node i (i.e. Rn,i), which takes both the flow dynamics
and topology effects on network robustness into account, is then defined as:

Rn,i = −
d∑

j=1

αijpij log pij (3)

In Equation (3), the minus sign (-) is used to compensate the negative electrical nodal robustness value that
occurs due to taking the logarithm of normalized flow values. Note that only the out-degree of the nodes is
considered in our formalization of Electrical nodal robustness. The in-degree relates to the total amount of
power flow that a node can be exposed to, in contrast the out- degree of the same node relates to the ability
of this node to transfer this power to the remainder of the network that has relatively larger rest capacity to
accommodate this (excess) power flow. Therefore, we only consider the out-degree of a node to compute
the Electrical nodal robustness.

2.2 Electrical Node Significance

Not all nodes in a power grid have the same influence on the occurrence of cascading failures. Some nodes
distribute a relatively large amount of the power in the network, while other nodes only distribute a small
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amount of power. When a node (or line to a node) that distributes a relatively large amount of power fails,
the result is more likely to lead to a cascading failure, ultimately resulting in a large grid blackout. In
contrast, if a node that only distributes a small amount of power fails, the resulting redistribution of power
can usually be accommodated by the other parts of the network. Thus, node failures have a different impact
on the context of cascading failure robustness and this impact depends on the amount of power, distributed
by the corresponding node. The impact of a particular node is reflected by the electrical node significance
δ, which is:

δi =
Pi∑N
j=1 Pj

, (4)

where Pi stands for total power distributed by node i while, N refers to number of nodes in the network.
Electrical node significance is a centrality measure that can be used to rank the relative importance (i.e.,
criticality) of nodes in a power grid in the context of cascading failures. Failures of nodes with a higher δ
will typically result in larger cascading failures.

2.3 Network Robustness Metric

The network robustness metric RCF ([7, 8]) is obtained by combining the nodal robustness and node
significance:

RCF =

N∑
i=1

Rn,iδi. (5)

The above metric can be used as a robustness indicator for power grids. This is done as follows: for a
normally operating power grid the robustness metric is calculated, which results in some value v. This
value is used as a base case. During normal operation the robustness metric value will change somewhat,
because different nodes will demand different electricity quantities over time, leading to different loading
levels in the network. However, a larger change in the robustness metric, a drop in particular, indicates that
a cascading failure becomes more likely and grid operators may need to take evasive actions (e.g., adding
reserve capacity to the grid or demand shifting of power). Note that, in the general case, it is complicated to
determine what good safety margins are, or for which values of the robustness metric the exact tipping point
is located (i.e., the point where a small failure will lead to a massive blackout). Ultimately this needs to
be determined by the grid operators. Grid operators need to determine what they find acceptable and what
kind of safety margin needs to be taken into account. We have determined this point experimentally, by
simulation, for a specific power grid: the IEEE 118 Power system (see Section 4.4 ) using the MATCASC
tool [15]. For other grids this point needs to be determined experimentally as well. We refer to [16, 17]
which present a more general and structured investigation of this topic.

3 Decentralized Aggregation

The computation of the robustness metric introduced in the previous section in a centralized manner raises
a number of challenges when applied to large areas (i.e., provinces or even whole countries). Scalability,
single-point-of-failure, real-time results dissemination, fault tolerance, maintenance of dedicated hardware
are just a few examples that hint towards a decentralized approach as a more convenient solution.

The described problem maps onto a geometric random graph (mesh network), where the nodes can commu-
nicate mainly with their direct neighbors. From the perspective of the communication model, we assume
that time is discrete. During one time step each node will pick and communicate with a random neighbor.
Major updates in the network occur just once in a while (for example, in the described scenario, new mea-
surement data is made available once every 15 minutes). We will make use of the concept of time rounds
and ask the nodes to update their local data at the beginning of the rounds. The bootstrap problem and
round-based time models received a lot of attention in literature [18, 19, 20] - in our application scenario
the constraints being very loose allow for an algorithm like the one presented in [21].
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Figure 1: Sum computation during network dynamics (geometric random graph with 1000 nodes initially,
diameter 14, random values, half of the network is disconnected at time 50, nodes change their values at at
time 200).

We make no assumptions with respect to nodes stop-failing or new nodes joining the network. The mech-
anism described below can accommodate these cases and the computation results will adapt themselves to
such changes.

3.1 Solution Outline

Our solution for computing the robustness metric uses a primitive for computing sums in a distributed
network inspired by the gossip-alike mechanism presented in [22] (see Figure 1). The algorithm presented
in [22] computes a sum of values distributed on the nodes of a network by using a property of order statistics
applied to a series of exponential random variables. The algorithm resembles gossiping algorithms [18] but
differs in a number of important points.

Essentially, it trades communication for convergence speed. By relying on the propagation of an extreme
value (the minimum value in this case), locally computable, it achieves the fastest possible convergence in a
distributed network -O(D logN) time steps (D is the diameter of the network andN the number of nodes).
This speed is significant compared to the original gossiping algorithms that converged inO(D2 logN) time
steps [9]. For example, in Figure 1 aN = 1000 nodes network with diameter 14 converges after the first 15
computation steps. The paid price is the increased messages size O(δ−2), where δ is a parameter defining
the precision of the final result. Assuming s as the ground-truth result, the algorithm offers an estimate in
the interval [(1− δ)s, (1 + δ)s] with an error ε = O(1/poly(N)).

We extend the extreme value propagation mechanisms to account for dynamics in the network. Specifically,
we add a time-to-live field to each value - an integer value that decreases with time and marks the age of the
current value. This mechanism takes care of nodes leaving the network, stop-crashing or resetting. In the
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example in Figure 1, after convergence, we removed half of the nodes in the network at time 50. The affect
of expiring time-to-live (set to a maximum of 50 in this example) can be seen around the time step 100.
Furthermore, we extend the time-to-live expiry mechanism to achieve a O(D logN + log T ) time steps
value removal. In other words, if a certain extreme value propagated through the network, we mark it as
“expired” and assure its associated time-to-live value to expire (reach 0) within O(D logN + log T ) time
steps. This is shown in Figure 1 in the interval 200 − 300. At time 200 half of the nodes in the network
changed their values randomly triggering the expiration mechanism.

Our distributed approach solves most of the scaling issues and proves to be highly robust against network
dynamics (e.g., network nodes becoming unavailable due to failures, reconfiguration, new nodes joining the
system, etc.). As we show in the following, our approach is very fast for a typical network, outperforming
by far the speed of centralized approaches. As the protocols rely on anonymous data exchanges, privacy
issues [23] are alleviated, as the identities of the system participants are not needed in the computations.

The downsides of our approach map onto the known properties of this class of epidemic algorithms. Al-
though anonymity is preserved, an authentication system [24] is needed to prevent malicious data corrupt-
ing the computations. Also, a light form of synchronization [21] is needed for coordinating nodes to report
major changes in their local values. The choice for a proper synchronisation mechanism needs to take
security into account [25].

3.2 Self-stabilizing Sum Computation - ComputeSum()

The basic mechanism behind the sum computation algorithm presented below relies on minimum value
propagation via gossiping. Assume that each node holds a positive value xi. At each time step, each node
chooses a random neighbor and they exchange their values, both keeping the smallest value. The smallest
value propagates fast in the network, in O(D logN) time steps, via this push-pull gossiping mechanism
(see [26] Section 3.2.2.4 page 32).

Assume that each node i in the network holds a positive value xi. In order to compute the sum of all n
values in the network

(∑N
i=1 xi

)
, the authors of [22] propose that each node holds a vector v of m values,

initially drawn from a random exponential random distribution with parameter λi = xi. After a gossiping
step between two nodes i and j, the vectors vi and vj become equal and hold the minimum value on each
position of the initial vectors. Thus, given an index k ∈ (1,m), the resulting vectors v′i, v

′
j will have the

property v′i[k] = v′j [k] = min (vi[k],vj [k]). The authors show that, after all vectors converge to some
value v, the sum of xi values in the network may be approximated by:

∑N
i=1 xi = m∑m

k=1 v[k] (see [26]
Section 5.2.5.4 page 75).

We extend the algorithm presented in [22] by adding to each node a new vector τ i holding a time-to-live
counter for each value. This new vector is initialized with a default value T , larger than the convergence
time of the original algorithm (choosing a proper value is explained below). The values in τ i decrease with
1 every time slot, with one exception. The node generating the minimum vi[k] on the position k ∈ (1,m)
sets τ i[k] to T (see Algorithm 2 line 10). In the absence of any other dynamics, all properties proved
in [26] remain unchanged as the output of our approach is identical to the original algorithm.

The main reason for adding the time-to-live field is to account for nodes leaving the network or nodes that
fail-stop. This way, we avoid complicated mechanisms in which nodes need to keep track of neighbors.
Additionally, this mechanism does not make use of node identifiers. The intuition behind this mechanism
is that a node generating the network-wide minimum on position k ∈ (1,m) will always advertise it with
the accompanying time-to-live set to the maximum T . The rest of the nodes will adopt the value v[k]
and have a value τ [k] decreasing with the distance from the original node. T is chosen to be larger than
the maximum number of gossiping steps it takes the minimum to reach any node in the network. In a
gossiping step between two nodes i and j, if vi[k] = vj [k] then the largest of the τ i[k] and τ j [k] will
propagate (Algorithm 1 line 13). This means that τ [k] on all nodes will be strictly positive for as long as
the node is online. If the node that generated the minimum value on the position k goes offline, all the
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ALGORITHM 1: PropagateMinVal(v, τ )

1 /* v, τ - received value and time-to-live /* vlocal, τlocal - local value and
time-to-live */

2 */
3 /* T - maximum time-to-live, constant value */
4 /* C - constant value, default to 0.5 */

5 /* create temporary variables */
6 (vm, vM )← (min(v, vlocal),max(v, vlocal))
7 (τm, τM )← corresponding (τ, τlocal) to (vm, vM )

8 /* update logic */
9 if vm == vM then

10 if vm < 0 then /* equal negative values */
11 τm ← Cτm
12 else /* equal positive values */
13 min(τm, τM )← max(τm, τM )− 1

14 else
15 if vm < 0 then /* at least one negative value */
16 if vm == −vM then
17 (τm, τM )← (T, T )
18 else
19 (τm, τM )← (Cτm, CτM )

20 else /* two different positive values */
21 τM ← τm − 1

22 /* update local variables */
23 (v, vlocal)← (vm, vm)
24 (τ, τlocal)← corresponding (τm, τM )

associated τ [k] values in the network will steadily decrease (Algorithm 2 line 12) until they will reach 0
and the minimum will be replaced by next smallest value in the network (Algorithm 2 lines 13-15). It will
take T time steps for the network to “forget” the value on position k. The graphical affect of this O(T )
mechanism is shown in Figure 1 in the interval 50− 150.

The second self-stabilizing mechanism targets nodes changing their values at runtime. Assume a node
changes its value xi to x′i at some time t. This change will trigger a regeneration of its original samples from
the exponential random variable vi to v′i. Let k be an index with k ∈ (1,m). Let u be the vector containing
the minimum values in the network if the node i would not exist. In order to understand the change
happening when transitioning from xi to x′i we need to look at the relationship between the individual
values vi[k], v′i[k] and u[k]. As shown in Table 1, if u[k] is the smallest of all three values then no change
will propagate in the network. If v′i[k] is the smallest value, then this will propagate fast, in O(D logN)
time steps, with the basic extreme propagation mechanism. If vi[k] is the smallest, then this value will
remain in the network until its associated time-to-live field will expire. As usually T � D we add a
mechanism to speed up the removal of this value from the network.

The removal mechanism is triggered by the node owning the value that needs to be removed (in our case
node i) and works as follows: node i will mark the value vi[k] as “expired” by propagating a negative
value −vi[k]. This change will not affect the extreme value propagation mechanism (see Algorithm 1) nor
the estimation of the sum (notice the use of the absolute value function in Algorithm 2 line 19). If node
i contacts a node also holding the value vi[k] then first, it will propagate the negative sign for the value,
also maximizing its time-to-live field to a large value T . Intuitively, as long as the vi[k] is present in the
network, the −vi[k] will propagate, over-writing it. Considering the large range of unique float or double
numbers versus the number of values in a network at a given time, we can safely assume the values in the
network to be unique.

The time-to-live field of any negative value will halve with each gossiping step (for C = 0.5) if it does
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ALGORITHM 2: ComputeSum (v, τ )

1 /* v0 - original random samples vector on this node */
2 /* v, τ - received value and time-to-live vectors */
3 /* T - maximum time-to-live, constant value */

4 /* update all elements in the data vector */
5 for j = 1 to length(v) do
6 PropagateMinVal(v[j], τ [j])

7 /* time-to-live update - do once every timeslot */
8 for j = 1 to length(v) do
9 if v[j] == v0[j] then /* reinforce a minimum */

10 τ [j]← T
11 else
12 τ [j]← τ [j]− 1 /* decrease time-to-live */
13 if τ [j] <= 0 then /* value expired */
14 v[j]← v0[j]
15 τ [j]← T

16 /* estimate the sum of elements */
17 s← 0
18 for j = 1 to length(v) do
19 s← s+ abs(v[j])

20 return length(v)/s

Propagation Ordering Previous Intermediate Final

none
u[k] < vi[k] < v′i[k] u[k] u[k] u[k]
u[k] < v′i[k] < vi[k] u[k] u[k] u[k]

slow
vi[k] < u[k] < v′i[k] vi[k] vi[k] u[k]
vi[k] < v′i[k] < u[k] vi[k] vi[k] v′i[k]

fast
v′i[k] < u[k] < vi[k] u[k] v′i[k] v′i[k]
v′i[k] < vi[k] < u[k] vi[k] v′i[k] v′i[k]

Table 1: Value propagation.

not meet the vi[k] value (Algorithm 1 lines 11, 19). Intuitively, if a negative value is surrounded by
values other than vi[k], it will propagate while canceling itself at the same time with an exponential rate.
This mechanism resembles somewhat a predator-prey model [27], where prey is represented by the vi[k]
variable and predators by −vi[k]. We designed it such that the populations cancel each-others, targeting
the fixed point at the origin as the solution for the accompanying Lotka-Volterra equations.

Lemma 3.1 Value removal delay

By using the value removal algorithm, the new minimum propagates in the network inO(D logN+log T )
time steps.

Proof In the worst case scenario, the whole network contains the minimum value vi[k] on position k,
with the time-to-live field setup at maximum T .The negative value, being the smallest one in the network,
propagates in O(D logN) in the whole network. Again, in the worst case scenario, we will have a network
with each node having the value −vi[k] on position k with the time-to-live set to the maximum T . From
this moment on, the time-to-live will halve at each gossip step on each node (for C = 0.5), reaching 0, in
the worst case scenario in O(log T ) time steps. This is the worst case because nodes may be contacted by
several neighbors during a time step leading to a much faster cancellation. Overall, the removal mechanism
will be active for at most O(D logN + log T ) time steps. This bound is an upper bound. In reality the
spread and cancellation mechanisms will act in parallel, leading to tighter bounds.

This result gives us the basis for choosing the T constant. Ideally, it should be chosen as small as possible,

8



 0

 0.2

 0.4

 0.6

 0.8

 1

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00

D
e

m
a

n
d

 p
ro

fi
le

Time [hours:min]

Synthetic demand curve 1
Synthetic demand curve 2

Actual demand curve

Figure 2: The actual demand profile from a point in Dutch transmission grid and two synthetically gener-
ated demand profiles.

in line with the diameter of the network. The fact that the removal mechanism is affected only by log T
lets us use an overestimate of T , which can be a few orders of magnitude larger than the diameter of the
network, with little impact on the convergence speed. For example, if the network diameter is between
10−30 and the values refresh each 10000 time steps, we can safely set T anywhere between 1000−10000
(see Section 4.3). This will not affect the convergence of the sum computation mechanism but allow for a
timely account for a node removal.

All the mechanisms presented in this section lead to the sum computation mechanism ComputeSum()
presented in Algorithm 2. It holds the properties of the original algorithm described in [22] and it addition-
ally showcases self-stabilization properties to account for network dynamics in the form of node removal
and nodes changing their values in batches.

3.3 Robustness Metric Computation

The robustness metric (see Section 2) is made up of two terms that can be computed locally (pi in Equa-
tion (2) and Rn,i in Equation (3)) and two that can be computed in a distributed fashion (δi in Equation (4)
and RCF in Equation (5)). Equation (5) can be rewritten as:

RCF =

∑N
i=1Rn,iPi∑N

j=1 Pj

, (6)

leading to a solution with two ComputeSum() algorithms in parallel. The first algorithm will compute∑N
i=1Rn,iPi, while the second one will compute

∑N
j=1 Pj .

Characterizing the convergence time of a composition of distributed algorithms is a difficult task in general.
Fortunately, in our case, the composition of the two ComputeSum() has the convergence time equal to
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each of the two mechanisms, leading to the same O(D logN + log T ) time steps complexity. Assume the
network is stabilized - once the power distributions Pi change both the values

∑N
i=1Rn,iPi and

∑N
j=1 Pj

will stabilize inO(D logN+log T ) in parallel, as they do not require intermediate results from each other.

As the type of gossiping algorithms we use are based on minimum value propagation, all the nodes in the
network will have the same value once the algorithm converged. Stabilization can be easily detected locally
by monitoring the lack of changes in the propagated values for a fixed time threshold.

4 Analysis and Discussion

Our approach of computing the robustness metric is scalable and robust. In this section we will focus on
some of quantitative aspects, analyzing results obtained from simulations based on synthetic and real data.
The computer code implements the approach described above and was implemented in Matlab and C++. In
all simulations, the nodes have been deployed in a square area. Their communication range was varied to
obtain the desired value for the diameter of the network. Networks made up of several independent clusters
were discarded.

4.1 Data Generation

As far as the authors are aware there is no data available in the public domain that describes both the
structure and the change in load over some time period for a power grid. To show the effectiveness of
our approach we have generated this data ourselves, below we explain how this is done and we show the
effectiveness of the proposed distributed algorithm for calculating robustness of an operational grid.
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Figure 4: Convergence of network after a disruption (geometric random graph, half of the nodes change
their values after initial network convergence).

The computation of the system robustness of a power grid requires data describing its topology (i.e., inter-
connection of nodes with lines), the electrical properties of its components (i.e., admittance values of the
transmission lines), information about the nodes (i.e., number and their types), and finally their generation
and load values. The IEEE power test systems [28] provide all of these data, the IEEE 118 power system
provides a realistic representation of a real world power transmission grid consisting of 118 nodes and 141
transmission lines. We use this as a reference power grid.

The IEEE 118 power system gives information about the topology of the power grid. The loading profile
provided with the grid topology [28] gives a representative load for the network, but only for one moment in
time. However, in practice, the topology of a power grid remains generally unchanged over time (except for
the maintenance, failure and extension of the grid) while the generation/loading profile varies over time.
This changing nature of the loading profile (and accordingly the generation profile) results in a varying
robustness of the system over time. Therefore simulating the robustness profile of a power grid for a whole
day requires a demand profile belonging to the whole day.

To obtain a varying robustness for the IEEE 118 power system, we randomly choose 10% of the power
generation nodes of the power system which are then fed with synthetic (generated) demand profiles. The
demand values of other power generation nodes remain unchanged. The demand profiles are generated
based on an actual load profile for a day of the Dutch grid on January 29, 2006. The demand at the
corresponding point in the Dutch grid is sampled per 15 minutes during the whole day. Figure 2 shows the
demand profile. Based on this actual demand profile, additional synthetic demand profiles are generated
by (i) first introducing random noise to the actual demand profile, and (ii) then by smoothing the curve out
with a moving average [29] with a window size of 10. Figure 2 illustrates the actual demand profile and
two other synthetically generated demand curves.
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Figure 5: Influence of T parameter (random geometric graph, 10-hop network, half of the nodes change
their values randomly after initial network convergence).

4.2 Influence of Communication Topology

The underlying communication network for a smart grid can be implemented in a number of ways, map-
ping to different communication topologies. For example, one might choose to use the internet backbone,
allowing any-to-any communication in the network, leading to a fully connected graph. In the first ex-
periment, we have initialized the network with a set of random variables and recorded the time when the
aggregated sum converges to the same value on all nodes. As seen in Figure 3, fully connected networks
lead to the fastest aggregate computation. In a second experiment, once the network stabilized, we intro-
duced a change in the form of half of the nodes in the network changing their value to a different one.
Again, we recorded the time until the network stabilized after this change. As expected, Figure 4 shows
that fully connected networks stabilize the fastest after a disruption.

These results assume the internet backbone to work perfectly and able to route the high level of traffic
generated. A more realistic scenario is considering that the various data collection points obtain data from
the individual consumers via some radio technology (for example GPRS modems) and are themselves con-
nected to the internet backbone. To keep the traffic in the network to a minimum, the data collection points
only communicate with their network-wise first order neighbors, leading to a mesh network deployment
type. As seen in Figure 3 and Figure 4, the diameter of the network clearly has the major impact factor
on the results, confirming the theoretical convergence results. The information needs at least O(D) time
steps to propagate through the network. The constant in the O() notation is influenced on one hand by
the average connectivity in the network (a node can only contact a single neighbor per time step, slowing
information dissemination) and the push-pull communication model on the other (a node may be contacted
by several neighbors during a time step, speeding up information dissemination).
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4.3 Scalability Aspects

One of the main characteristics of our approach is that the algorithm we propose scales very well with
the number of nodes in the network. As seen again Figure 3 and Figure 4, the number of nodes has little
influence in the final results (influencing only as O(logN)). The simulation explored a space in which we
varied the number of nodes over four orders of magnitude and the results hint that tighter boundaries might
exist then the ones we proposed in this paper. We noticed that for a fully connected network, the recovery
time varies with 34% between a network with 1000 nodes and one with 100000 nodes, while the variation
drops to a mere 2.4% for a 20-hop network varying from 1000 nodes to 100000 nodes.

These results are very important for the smart grid application type. As the network will be linked to a
physical space (a country or in general, a region), fully covering it, the diameter of the network is expected
to, at most, decrease with the addition of new nodes. Intuitively, when thinking of nodes as devices with a
fixed transmission range, adding more devices in the same region may lead to shorter paths between various
points. The aggregate computation approach we propose shows on one hand an almost invariance to the
increase in the number of nodes in the network and a linear variation with the diameter. These properties
are essential for any solution that needs to take into account that the number of participants in the grid will
most likely increase over time.

We are also interested in understanding the effects the time-to-live of the negative fields has on the conver-
gence and scalability properties. We have considered a 10-hop network with 1000 to 5000 nodes and varied
the time-to-live for negative values between 500 and 10000. Figure 5 confirms Lemma 3.1 with respect to
the log T term. As the data shows, the convergence time was affected very little by the chosen parameters.
As expected, the diameter of the network has the larger influence in this mechanism.

4.4 Robustness Metric Computation

Figure 6 shows the distributed computation method performing with real data sets, obtained through the
method described in Section 4.1. We plotted the results of two simulation runs versus the ground truth
data, obtained via centralized computation. The length of the value vector was varied from 1000 values
to 10000 values, the results confirming that precision can be set to the desired value, independent of the
network topology and size. When using a vector of 1000 elements, we obtained a mean relative error of 3%
(maximum relative error 11% with a standard deviation of 2.6%). Using a larger vector (10000 elements)
we were able to obtain a mean relative error of 1% (maximum relative error of 4% with a standard deviation
of 0.8%). These figures are very good, taking into account that they result from a combination of distributed
computations with all the fault tolerant mechanisms enabled.

The figure also includes a line (with robustness value 0.67) that illustrates the critical threshold, set by
the grid operator. If the robustness metric drops below this value then a power line failure can lead to
a blackout that affects more then 20% of the power grid. This threshold value was obtained by running
cascading failure simulations on the IEEE 118 power grid system using targeted attacks (i.e., we considered
a worst case scenario). We refer to [17] for a structured methodology for determining such thresholds.

The critical threshold chosen above, that affects more 20% of the power grid, is more or less arbitrary and
mainly chosen for illustration purposes. In practice various other factors have to be taken into account by
grid operators (line capacities, maintenance cycles) to determine realistic threshold values, but this should
illustrate the feasibility of the approach as it clearly shows that the error rate of the distributed algorithm is
much smaller then minimal required drop in robustness value that is needed to meet the threshold.

Besides the quantitative values shown in Figure 6 we would like to point that our approach is different from
traditional approaches that try to capture the global state of the network and then take decisions centrally
(see Section 5). Our approach pushes the computation of the robustness metric in the network, its results
being available at each node as soon as the computations converge. This mechanism can be easily used as
a measurement phase, leading to the possibility of implementing distributed control loops on top of it.
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5 Monitoring and Cascading Failures in Power Grids

Three types of related work on monitoring the state of a power grid can be distinguished: (i) metrics that
aim to quantify the vulnerability of the power grid against cascading failures, (ii) (simulation) models that
aim to predict the impact of node/line outages and (iii) sensor networks that aim to capture the operative
state of the power grid.

There exists a significant body of work on defining metrics that assess the vulnerability of the power grid
against cascading failures. Most studies deploy a purely topological or an extended topological approach
mainly relying on graph theoretical measures such as betweenness [30] or other centrality measures [25].
However, these studies [31, 32, 33, 34] only focus on the topological properties of power grids and fail to
take the operative state of the network into account. In effect this means that such metrics cannot be used to
assess the change in vulnerability of operational power grids. In addition to these topological approaches,
others [14, 35] propose measures relying on simulation models. Although, these metrics incorporate also
the operative state of a power network, it is very challenging to deploy them to quantify the system’s
resilience against cascading failures in (near) real-time because their computation requires full knowledge
of the power grid state in order to simulate cascades. Our earlier work [8, 7] (also see Section 2) forms a
noticeable exception to this, since it defines a metric that considers both the topological and the operative
state of a power grid, while not requiring any computationally expensive tasks such as in [36] (also see
below) or computing the full network state in order to simulate cascades in the network.

Grid operators traditionally assess the network operation by relying on flow based simulation models (i.e.,
N-x contingency analysis [37]). These models take the operational behavior of the power grid into account.
Grid operators can calibrate the model to match the power grid of interest and run various scenarios to
assess the impact of one or two lines failing. There are two problems with such tools: they depend on the
knowledge of the grid operator who determines which failure scenarios to explore. In addition, due to the
computational complexity of the simulation models it is typically not possible to run scenarios where more
than two components fail (N-2 contingency analysis). We refer to [38] for a recent overview of these type
of contingency analysis methods for power grids.

Several schemes have been suggested to improve the limitations of such traditional contingency analysis.
For example, Mittal et al. [36] propose a probabilistic contingency analysis scheme for power grids that
allows contingency analysis up to eight levels deep, i.e., taking failures with up to eight concurrent nodes
failing into account. Others, such as Yan et al. [39] try to tackle these computational challenges by dividing
a large power grid into smaller sub grids (clusters) and run contingency analysis in the smaller grids. By
automatically adapting the clusters over time, based on different threat analysis scenarios and the state of
the grid, they are able to handle more detailed analysis focusing on more realistic threats to the system.
Note that such approaches are better at focusing on more likely threat scenarios at the cost of ignoring less
likely threat scenarios that might still have a large impact on the grid. The monitoring approach proposed
in this paper considers all possible threats to the power grid at the same time, based on the state and the
topology of the grid. This allows us to say when a threat to the power grid is more imminent, without
identifying the most vulnerable nodes. This in a way makes our approach complementary to the above
contingency analysis approaches and it may thus be used to complement current grid operator practices.

There are numerous papers that describe distributed architectures that can be used to monitor the state of the
power grid. However, these typically focus on the issue of data collection [40, 41, 42, 43, 44, 45, 46, 47]
(i.e., loading levels of power lines, phase angles etc.) and do not use any meaningful data aggregation
mechanisms to quantify the resilience with respect to cascading failures of the whole power grid. In
conclusion, as far as the authors are aware, there are no power grid monitoring approaches that assess
the vulnerability, with respect to cascading failures, of an operational power grid in near real-time.
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6 Conclusions

In this paper we introduced a novel distributed computation framework for network aggregates and showed
how it can be used to assess the resilience with respect to cascading failures of an operational power grid in
near real-time. We have enhanced a class of fast gossiping algorithms [9] with self-stabilizing mechanisms
to counter run-time network dynamics. To showcase the capabilities of our approach, we exemplified how
the robustness metric introduced in [7, 8] can be computed fast and reliable in a distributed network - IEEE
118 power grid.

Our contribution has a number of desirable properties such as scalability and robustness. Simulation results
performed with both real and synthetic data show that our approach achieves very fast convergence times,
influenced mainly by the diameter of the network and only logarithmically by the number of nodes in the
network. This property is very important in the context of smart grids, where the number of nodes deployed
over a given area (a region or a country) is expected to increase in the next few decades.

The precision of the computations can be fixed by modifying the size of the messages exchanged in the
network. This is a crucial property for scalability, as the size of the messages is not a function of the number
of nodes in the network. More importantly, the computation error scales as O(1/poly(N)), meaning that
the more nodes a network has, the smaller the final error is. Finally, our scheme preserves the anonymity
of the participants in the network, as it does not rely on unique identifiers for the nodes of the network.

The main message of this paper can be summarized in that we showed that it is possible to compute complex
aggregates of the operational state of the nodes in a network in a fully distributed manner, fast and reliable
at runtime. As automatic control systems always include a measurement phase, we see our contribution as
the perfect candidate for the measurement block for an automated distributed control scheme. While this
paper focused on the measurements of network properties, future work will investigate the actuation part
triggered by the availability of results given by different power grid metrics.
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