
Towards Automated and
Fast Whisker Tracking
in Rodents

Petros Arvanitis

Towards Automated and
Fast Whisker Tracking

in Rodents
by

Petros Arvanitis
to obtain the degree of Master of Science in Embedded Systems

at the Delft University of Technology,
to be defended publicly on Tuesday January 28, 2021 at 01:00 PM.

Student number: 4936736
Project duration: January, 2020 – January, 2021
Thesis committee: Dr. ir. Zaid Al-Ars, CE, TU Delft, Supervisor

Dr. ir. Christos Strydis, Neurocomputing lab, Erasmus MC, Advisor
Dr. ir. Rob Remis, CAS, TU Delft
Dr. Laurens Bosman, Neuroscience, Erasmus MC

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Whisker tracking in rodents is an ongoing research in neuroscience. Neuroscientists have recorded exper-
iments with high-speed cameras in which untrimmed, head-restrained mice are provided with air stim-
uli. These videos required the development of algorithms to reliably track whisker movement. Recently, a
Whisker-Tracking System, WhiskEras, emerged, which is able to detect and track whiskers over the course
of such videos in a more accurate way than pre-existing methods. WhiskEras is slow, processing less than
1 frame per second. Additionally, it involves a great number of parameters which need tuning for differ-
ent experimental setups and recording settings which were used for this experiment. This thesis addresses
these two problems. First, the algorithm was examined and its shortcomings were exposed. A more accurate
whisker-point detection algorithm was suggested and implemented, among a range of alternative solutions
which were studied. Furthermore, its Stitching stage was modified to replace a range of hard-to-tune pa-
rameters with more robust ones. Finally, the improved WhiskEras was accelerated by porting the MATLAB
code to C++ and using advanced parallelization techniques with CUDA and OpenMP to achieve a speedup
of 74.96. Overall, the improvements yielded better tracking results in our benchmarks, while the parameters
were much easier to tune and remained constant under different video setups of whisking experiments.

iii

Acknowledgements

My advisor, Christos Strydis, was instrumental in setting the path of this thesis. The project’s structure and
milestones were defined after consoling with him at every step of this long road. Providing a clear head,
when it mattered, and being comprehensive, when setbacks were encountered, were a few of the qualities he
brought to the project.

My supervisor, Zaid Al-Ars, aided me in finding my thesis topic. His advice and comments about the
project are deeply appreciated.

Jan-Harm Betting was helpful in providing the resources and guidance necessary to complete this project.
His knowledge and explanations often came in handy. Overall, he heavily contributed to setting the right
goals for this thesis.

I would also like to express my gratitude to Dr. Laurens Bosman for his assistance in providing crucial
information on neuroscientific facts which were linked to this project. Talking with him, in particular, helped
me understand more about the purposes of whisker tracking.

Finally, I would like to wholeheartedly thank my family and friends who supported and, at times, tolerated
me during this thesis.

Petros Arvanitis
Delft, January 2021

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Thesis Scope and Contributions . 2

1.2.1 Thesis Objectives . 2
1.2.2 Thesis Contributions. 2

1.3 Thesis Organization. 3

2 Background 5
2.1 Rodent Whisker Movement . 5

2.1.1 Whisking Experimental Setup . 6
2.2 Design Space Exploration . 6
2.3 Computer Vision . 7

2.3.1 Curvilinear Centerline Extraction . 7
2.4 Radon Transform . 8

2.4.1 Radon Transform in Curve Detection . 9
2.5 High Performance Computing and Parallelism . 9

2.5.1 Amdahl’s Law . 9
2.5.2 Heterogeneous Parallel Computing . 10
2.5.3 GPU: Accelerating Image Processing . 10

3 Related work 13
3.1 Y. Ma’s ViSA Implementation . 13
3.2 Janelia Whisk . 15
3.3 WhiskEras: a Whisker-Tracking System . 15
3.4 Curvilinear Centerline Extraction Methods . 15

4 WhiskEras: Algorithm Analysis 17
4.1 Overview . 18
4.2 Analyzing Design Choices. 18

4.2.1 Preprocessing . 19
4.2.2 Centerline Extraction . 20
4.2.3 Local Clustering . 21
4.2.4 Stitching I . 22
4.2.5 Stitching II . 22
4.2.6 Parameter Fitting . 24

4.3 Whisker Detection Limitations . 24
4.4 Regarding Design Space Exploration . 26

5 Improvements 27
5.1 Choosing a Detection Algorithm . 27
5.2 Improved Curve Tracing . 28

5.2.1 Adaptation . 31
5.2.2 Discussion . 32

5.3 Stitching . 34
5.3.1 Stitching I . 34
5.3.2 Stitching II . 36
5.3.3 Discussion . 36

vii

viii Contents

6 Acceleration 39
6.1 Overview . 39

6.1.1 Parallelism . 40
6.1.2 Complexity. 40

6.2 Improved Curve Tracing . 41
6.2.1 Separable Convolution. 41
6.2.2 Sorting on the GPU . 42
6.2.3 Transfering Data Between Host and Device . 42

6.3 Training SVMs . 43
6.4 Other Libraries . 44

6.4.1 OpenCV . 44
6.4.2 Eigen. 44

7 Evaluation 45
7.1 Algorithmic Improvements . 45

7.1.1 Video Selection and Parameter Tuning. 45
7.1.2 Setting up Tracking . 46
7.1.3 Criteria. 47
7.1.4 Discussion . 51

7.2 Algorithm Acceleration . 52
7.2.1 Speedups . 52
7.2.2 Problem Scaling . 54
7.2.3 Real-time Processing. 55

8 Conclusions 57
8.1 Thesis Overview. 57
8.2 Contributions . 58
8.3 Discussion and Future Work . 59

A Selected Parameters for Detection 61

B Tracking Quality - Angle Plots 63

Bibliography 65

List of Figures

Cover Image [3] . i

2.1 Rodent vibrissal groups [17] . 5
2.2 Vibrissal mechanical model . 5
2.3 Whisking experimental setup [8] . 6
2.4 Whisking experiment camera views . 6
2.5 f1 and f2 scores for different design points [38] . 7
2.6 Computer Vision task examples . 7
2.7 Images where curvilinear extraction may provide useful information 8
2.8 Radon Transform of a function f [43] . 8
2.9 Theoretical speedup of the execution time of a program for varying parallel fractions according

to Amdahl’s Law . 9
2.10 How GPU acceleration works [21] . 10
2.11 Image processing using thread blocks on the GPU [34] . 11

3.1 Contour extraction and snout template fitting to detect head [37] 13
3.2 Whisker shaft detection and parametrization [37] . 13
3.3 Acceleration of ViSA algorithm workflow [37] . 14
3.4 Left: retinal image input. Right: manual curvilinear extraction output. [29] 16

4.1 WhiskEras overview . 17
4.2 Results from each substage of the WhiskEras Detection module 19
4.3 User-specified snout line (in white). 19
4.4 Whisker points detection: varying upscaling . 21
4.5 DBSCAN whisker clustering for two sets of parameters . 22
4.6 Steger Clustering . 22
4.7 Stitching II effect . 23
4.8 Stitching II results with varying highestRoot . 24
4.9 Frame in which whiskers have comparable length to hair . 24
4.10 Whisker point detection issues. 25
4.11 Stitching I tuning issue 1 . 25
4.12 Stitching I tuning issue 2 . 26

5.1 Linking of curve points . 28
5.2 Comparison of Steger’s algorithm and Improved Curve Tracing . 29
5.3 Tracing curves that fade . 30
5.4 Tracing re-emergent curves . 31
5.5 Pixel peeking (L = 3) - Current pixel (yellow) is looking for neighbours. 32
5.6 Beam scanning for K = 15 and θ = 152.6◦ . 32
5.7 Radon Transform check effect on Stitching I and Parameter fitting results 35
5.8 Stitching I illustrations of cone condition and distances between clusters 35
5.9 Stitching II cone effect . 36

6.1 Acceleration process of WhiskEras . 39
6.2 Overview of Improved WhiskEras acceleration in each of its each stages and substeps. 40
6.3 Separable convolution of a 5×5 image with a 3×3 kernel . 41
6.4 Pageable data transfer vs Pinned data transfer [26] . 42
6.5 CUB DeviceSelect functionality [1] . 43

7.1 Videos used for evaluation . 46

ix

x List of Figures

7.2 Histogram of detected whiskers per frame in Video A, entire video segment 48
7.3 Histogram of detected whiskers per frame in Video B, frames 5021-30000 48
7.4 Angle tracking in Video A . 50
7.5 Bar diagram of SNR (in dB) of each whisker over video A . 51
7.6 Bar diagram of the accelerated versions’ speedups over MATLAB 53
7.7 Execution time percentage of each stage . 54
7.8 Execution time comparison for videos A and B . 55

B.1 Angle tracking in Video B . 63

List of Tables

4.1 Preprocessing parameters . 20
4.2 Whisker point detection parameters . 20
4.3 Clustering parameters . 21
4.4 Stitching I parameters . 23
4.5 Stitching II parameters . 23
4.6 Parameter fitting parameters . 24

5.1 Improved curve tracing parameters . 34
5.2 Improved stitching parameters . 37

6.1 Stage complexities . 41

7.1 Detection ratio on videos A and B, original and improved versions of WhiskEras 49
7.2 GPU Specifications . 52
7.3 Execution time (milliseconds) per frame for different versions of WhiskEras 52
7.4 Speedups of accelerated versions over MATLAB . 52
7.5 Execution time (milliseconds) per frame for two different video setups (accelerated) 55

A.1 Parameter selection for videos A and B, original and improved versions of WhiskEras 62

xi

1
Introduction

Neuroscience is the scientific field studying how the nervous system works. This involves understanding the
complex properties of neurons, as entities, and neural networks. The ultimate challenge, as described by
Eric Kandel, is to comprehend the biological grounds behind learning, memory, behaviour, perception and
consciousness [31]. Studying this field has expanded from molecular and cellular examination of neurons to
imaging various sensory, motor and cognitive tasks in the brain.

An interesting ongoing research in the field of neuroscience is observing whisker movements of rodents.
Mice, like other mammals, use their whiskers to obtain tactile information regarding their environment, as
well as performing other functionalities [51]. This research can potentially lead to useful information con-
cerning neuronal function in sensorimotor activities, in mammals.

1.1. Motivation and Problem Statement
Whisker movement can theoretically now be tracked reliably, thanks to the advent of high-speed cameras.
These cameras are able to record at up to 1000 frames per second, thus making it possible for a human be-
ing to follow the trajectory of each whisker through the video, frame-by-frame. However, this is extremely
impractical, as a human would have to manually go through 1000 frames for each second of a video and
perform annotations.

For that purpose, algorithms are devised to do this work in an automated and efficient way. In the Eras-
mus MC Neuroscience department, experiments are conducted where untrimmed, head-fixed rodents are
exposed to lab-controlled stimuli. The tool currently used to track whiskers in these experiments is BWTT
(Biotact Whisker Tracking Tool), which incorporates the ViSA [41] algorithm. It was accelerated by Y. Ma et
al. [37] to perform the task almost in real-time, in a recent MSc thesis which involved TUDelft and Erasmus
MC. BWTT detects whiskers, frame-by-frame, with limited accuracy. A post-processing script, developed in
Erasmus MC, is responsible for tracking the whiskers in the duration of the video, delivering the angle and
pivot point position of all whiskers. However, the tracking part of the algorithm is unreliable. As studied by
J.L.F. Betting in his more recent MSc thesis [8], the algorithm had to be redesigned from the bottom up in
order to perform both accurate detection and tracking of whiskers.

As a solution, Betting devised the WhiskEras algorithm, formerly known as FWTS, a project that was also
part of the collaboration between TUDelft and Erasmus MC. It has since been proven to be a strong competi-
tor method in tracking whiskers of untrimmed, head-fixed rodents [9]. This work has by far surpassed the
Biotact Whisker Tracking Tool’s ViSA method [41] in terms of quality in detecting whiskers and also incorpo-
rates a tracking module.

There are two main issues, though. WhiskEras, as a new algorithm, is slow at its task. Specifically, it was
reported to process less than 1 frame per second. This is inconvenient, since there is an entire database
of whisker videos in Erasmus MC which await processing. In addition, online tracking is a desired feature
which requires real-time processing performance (1000 frames per second). That would enable neuroscien-
tists to obtain results as they run their experiments. Thus, if it is to be used in practice, WhiskEras needs to be
speeded up substantially.

The other problem is parameter tuning. The videos recorded include different experimental settings such
as lighting conditions, camera viewing angle etc. To process all these videos, a human would need to under-

1

2 1. Introduction

stand how all algorithm parameters affect the results and attempt to tune them for each video. This involves
34 parameters, which could theoretically take from 2 to more than 100 discrete values. This is undesirable as
it would require both user expertise and time consumed between runs on different videos.

Thus, the problem can be formalized as follows: revisit WhiskEras, making it faster and able to deal with
different video conditions in a robust, automated way.

1.2. Thesis Scope and Contributions
Following is a list of the objectives of this thesis, which was conducted from the beginning, but was also
modified along the way. The most noteworthy change of plans was in the improvements of WhiskEras. The
initial approach was to analyze the algorithm in depth. This involved defining the parameter space and the
impact of the parameters on the results. This was done to prepare the ground for a potential Design Space
Exploration (DSE), in order to discover optimal sets of parameters for different videos. However, it was found
that performing a successful DSE was not trivial for this problem. Furthermore, the analysis showed that the
algorithm suffers in accuracy due to other inherent limitations. Thus, a different direction was chosen, which
targeted certain algorithmic aspects of WhiskEras.

1.2.1. Thesis Objectives
The objectives of this thesis can be divided in two separate parts. The first part corresponds to improvements
targeting automation and higher detection accuracy. This involves the following steps:

(i) Analyze WhiskEras’ whisker detection stages in terms of their parameters and their effect on the algo-
rithm’s results.

(ii) Pinpoint the weak spots of WhiskEras and investigate why they perform suboptimally under certain
conditions or in general.

(iii) Explore ways to tackle the problems spotted in the literature and implement the solution(s) which are
most prominent.

(iv) Evaluate their impact and compare to original WhiskEras.

Furthermore, the resulting algorithm was targeted for acceleration. This is a long process which requires
good programming skills and high-performance computing knowledge. Specifically, the goal was to:

(i) Port the Matlab code to a low-level, efficient language (C++).

(ii) Profile the algorithm to locate its hot-spots, where most time is spent during processing.

(iii) Implement parallel execution on the CPU (OpenMP) and the GPU (CUDA) wherever appropriate to
further speed up the algorithm and perform optimizations wherever possible.

(iv) Evaluate the speed-up obtained.

1.2.2. Thesis Contributions
During this project, the following contributions were made:

• WhiskEras was analyzed in depth in terms of its design choices and their effect. Parameter tuning was
elaborated on and the most impactful parameters were singled out.

• The shortcomings of WhiskEras’ whisker detection part were pinpointed. Solutions to the issues arising
were studied from the literature and their applicability to the project’s needs was assessed.

• A solution which was a natural build on WhiskEras’ whisker-point detection stage was implemented.
Other modifications to the algorithm were also carried out, including replacements of several parame-
ters to make the algorithm more robust.

• The whole WhiskEras pipeline was profiled and accelerated by porting the code to C++, taking advan-
tage of inherent parallelism and performing advanced optimization techniques.

1.3. Thesis Organization 3

• The results of the improved WhiskEras were assessed using a multitude of tracking-related criteria. The
speedup achieved from the acceleration was also evaluated by running the code on different videos, on
selected powerful hardware.

• A publication will be made as a by-product of this thesis.

1.3. Thesis Organization
The document is organized as follows. Chapter 2 lays the theoretical grounds for topics which will be dis-
cussed in the rest of this report. Chapter 3 mentions past projects which are related to this work. Then,
Chapter 4 analyzes the WhiskEras algorithm and discovers its shortcomings. Also, it makes a special mention
to Design Space Exploration and its deficiency to the problem at hand. The solutions which were examined
and adopted to counter these issues are given in Chapter 5. Furthermore, the acceleration techniques used to
speed up the improved WhiskEras are mentioned in Chapter 6. The results are illustrated in Chapter 7, where
a direct comparison to the original WhiskEras in quality and execution time is made. Finally, the conclusions
and future work considerations are reported in Chapter 8.

2
Background

This chapter introduces important concepts and topics which will form the basis for the rest of this thesis.
First, the anatomy of whisker movement in rodents is described, as well as the experimental setup used to
record whisker videos in Section 2.1. Following is a brief introduction to Design Space Exploration in Sec-
tion 2.2. Section 2.3 makes a short introduction to Computer Vision and outlines the problem of Curvilinear
Centerline Extraction. Then, Section 2.4 provides a summary of Radon Transform, specifically used for curve
detection. Last, a recount on using parallelism to boost computing performance is made, with a focus on
Amdahl’s Law and GPU acceleration in Section 2.5.

2.1. Rodent Whisker Movement

Figure 2.1: Rodent vibrissal
groups [17]

Whiskers, also known as macrovibrissae, are long facial hair that are found on
numerous mammals, including rodents. They can be distinguished from nor-
mal hair by their long length, hair follicle, and by having an identifiable rep-
resentation in the somatosensory cortex of the brain. Rats and mice use their
whiskers to explore their environment through multiple tasks such as locali-
sation, tactile discrimination and locomotion [51]. Thus, they are particularly
interesting for understanding patterned motor activity in mammals.

Neuroscientists mostly observe the behaviour of whiskers rooted in the
mystacial pad (Figure 2.1). These form an ordered grid of rows, where each
whisker grows from a hair follicle which is heavily innervated by sensory nerves.

Whisker movement is controlled by the extrinsic and intrinsic muscles. Ex-
trinsic musculature shifts the surface of the mystacial pad backwards, while the intrinsic muscles rotate in-
dividual whiskers forward [7]. It can occur in a rhythmic pattern, called whisking. During whisking, rodents
sweep their whiskers in frequencies up to 25 Hz and at reported speeds up to 1106 deg./sec [13]. The param-
eters of interest that describe the state of a whisker are its pivot point (attachment point of follicle) and its
angle. The mechanical model of whiskers is depicted in Figure 2.2.

(a) Extrinsic musculature [27] (b) Intrinsic musculature and follicular
anatomy [27]

(c) Mechanical model of whisker movement
[7]

Figure 2.2: Vibrissal mechanical model

5

6 2. Background

2.1.1. Whisking Experimental Setup

(a) Operating setup (b) Head constraint and camera setup

Figure 2.3: Whisking experimental setup [8]

The videos containing whisker movement which were used to develop, test and validate the improved
WhiskEras algorithm originate from the Erasmus MC Neuroscience Department in Rotterdam, the Nether-
lands. These videos were recorded at 750-1000 Hz, using a bright LED panel as backlight, in grayscale.

Adult C57BL/6J mice were used as test subjects. These mice have dark fur, which contributes to lower
noise in the videos. The mouse’s snout appears as a black silhouette which can later be filtered out easily. The
animal is head-restrained in order to be able to reliably track its whiskers. There is no prior trimming to its
fur or whiskers, so that the whisker movements are as close to real behaviour as possible. The experimental
setup is illustrated in Figure 2.3 and is the same as in [47].

In general, two different camera-angle views have been used during the recording of the videos, depicted
in Figure 2.4. In 2.4a, the camera is zoomed in towards one side of the snout. The whiskers that can be seen
mostly belong to the top row of the mystacial pad, while intersections and occlusions between whiskers are
common. In 2.4b, only the snout’s right-side whiskers (left in the image) are tracked. Because there is only a
small fraction of pixels dedicated to the area of interest, less whiskers are visible.

(a) Camera view 1 (b) Camera view 2

Figure 2.4: Whisking experiment camera views

The neuroscientists of Erasmus MC are interested in tracking the angle of the whiskers relative to the
snout. Due to the mystacial pad moving backwards (Figure 2.2a), the pivot point of each whisker along the
snout also changes. This is not clearly visible on the videos because the mystacial pad is in vertical view.

2.2. Design Space Exploration
Design Space Exploration (DSE) is the process of discovering and assessing design alternatives during system
development [32]. It is commonly used as an optimization method in order to go through millions or even
billions of different design choices and pinpoint the optimal ones according to some metric.

2.3. Computer Vision 7

C

Pareto

A

B

f2(A) < f2(B)

f1

f2

f1(A) > f1(B)

Figure 2.5: f1 and f2 scores for different design points
[38]

The red line crosses the set of the Pareto
frontier points.

In multi-objective problems, there are several objectives
that are targeted by the optimization process. One way to
find the optimal solutions to these problems is by locating the
Pareto fronts. An optimal solution is a non-dominated solu-
tion, i.e if none of the objective functions can be improved
in value without degrading some of the other objective values
[38]. An example is given in Figure 2.5, where there are two ob-
jective functions f1 and f2 and the Pareto frontier is the set of
optimal solutions.

Apart from objectives, the design space has to be defined in
terms of scale and constraints. When there exist a number of
parameters p1, p2, ..., pN , each parameter pi has to be assigned
lower, upper limits and a traversal step. The more parameters
and the more values they are allowed to take, the more compli-
cated becomes the design space to explore. Often, the design
space is so vast that this procedure cannot be performed by the
user in a manual fashion. This is where DSE frameworks come

in handy.
There is a variety of different approaches to DSE, such as genetic (evolutionary) algorithms (example [20])

or Monte Carlo methods. Different frameworks use different approaches and deciding on one usually comes
down to efficiency, convergence to optimal solutions, diversity of solutions and ease of use.

2.3. Computer Vision
Human vision is an extraordinarily complex task, even though it seems trivial to humans. Computer vision
is a field that studies how a computer can see, i.e how to interpret image data to infer information about the
world [12].

It involves a wide variety of techniques ranging from simple image processing to sophisticated Artificial
Intelligence techniques. Computer Vision applications involve tasks, such as:

• Object Detection: Where are the objects in the image?

• Object Classification: In which broad category does an image’s object fall into?

• Object Segmentation: Which image pixels belong to the object?

(a) Object Detection: drawing boxes around objects. Object
Classification: labelling objects. [33]

(b) Object Segmentation: each object’s pixels are coloured uniquely for each
class. [53]

Figure 2.6: Computer Vision task examples

2.3.1. Curvilinear Centerline Extraction
A challenging Computer Vision task is curvilinear centerline extraction. Whiskers are essentially curvilin-
ear objects. Knowing that, WhiskEras detects whiskers by extracting curvilinear centerlines, i.e 1-pixel wide
curved lines crossing the centre (width-wise) of each whisker. It performs this task with sub-pixel precision.
In other words, it is not limited to the discrete space of image pixels, but can find curve points between pixels.
This is the main stage of WhiskEras that was targeted for improvement in this thesis.

8 2. Background

A few applications which employ the curvilinear extraction technique are:

• Road detection in aerial road map images (Figure 2.7a).

• Blood-vessel detection in retinal images (Figure 2.7b).

• Neuronal detection (Figure 2.7c).

(a) Aerial suburban road map (taken using
Google maps)

(b) Retinal image [29] (c) Neuron confocal fluorescence image [4]

Figure 2.7: Images where curvilinear extraction may provide useful information

2.4. Radon Transform
The Radon Transform, mathematically, is an integral transform [42]. It takes as input a function f on a 2D
plane and outputs a function R f on the (also) two-dimensional space of lines in this plane. For each line, it
takes a value which is equal to the integral of that line over f . Suppose f (x, y) is the function representing an
object in Figure 2.8. Also, α is the angle of the line with the x axis, s is its distance from the origin and z is the
arc length. Then,

R f (α, s) =
∫ ∞

−∞
f (x(z), y(z))d x =

∫ ∞

−∞
f ((z si nα+ s cosα), (−z cosα+ s si nα))d x

Figure 2.8: Radon Transform of a function f [43]

The Radon Transform is widely used in tomographic reconstructions [19]. In particular, when an object
which is represented as f (x, y), mathematically, is scanned by a detector, from all projection angles, we can
then get the full representation of that object in the projection domain, parametrized by (α, s). In other words,
the full description of the object in terms of the parameters (α, s) is available. Then, in order to recover the
function of the object in the (x, y) domain, an Inverse Radon Transform can be used. This is the method
deployed to interpret the output of CT (Computed Tomography) scans.

2.5. High Performance Computing and Parallelism 9

2.4.1. Radon Transform in Curve Detection
Images consist of an integer grid of pixels. In that case, the Discrete Radon Transform can be applied by
summing over its pixels, rather than computing an integral. In this work, the Radon Transform is used to
detect lines. This has already been studied in [50], [44]. Lines can be detected, globally, by performing Radon
Transforms across the entire image. This involves computing the inner products of lines with the image. In
other words, each line, in the (α, s) space, can be quantified, using Radon Transform, as the summation of the
intensities of all pixels belonging to that particular line. If that sum is large enough, then it can be considered
as a valid line in the image. Furthermore, the Generalized Radon Transform can be used to detect curves,
in general, using different curvilinear profiles (linear, quadratic, etc). In this thesis, the Localized Radon
Transform is used, as discussed in Chapter 5, which is the Radon Transform over a limited number of pixels
(specific line length), rather than the entire image.

2.5. High Performance Computing and Parallelism
We live in the multicore era of High Performance Computing. Computer engineers are no longer just grinding
the hardware, architecture and compiler of a single processor core to enhance performance. Instead, the
programmers have to write their code in such a way that they take advantage of multiple cores for parallel
execution [40].

2.5.1. Amdahl’s Law

20 22 24 26 28 210 212 214 216

Number of processors

0

2

4

6

8

10

12

14

16

18

20

S
p
e
e
d
u
p

Amdahl's Law

Parallel Portion

50%

75%

90%

95%

Figure 2.9: Theoretical speedup of the execution time of a program for varying parallel fractions according to Amdahl’s Law

Suppose that a program’s fraction f is infinitely parallelizable with no scheduling overhead, while the
remaining fraction 1− f is entirely sequential. Then, the speedup obtained by using n processor cores to run
the program, as opposed to running on a single core would be:

S = 1

(1− f)+ f
n

(2.1)

Equation 2.1 provides a theoretical upper boundary to the max speedup that can be obtained from paral-
lelization. Needless to say, this is an optimistic prediction, as it does not account for any overhead associated
with shared caches, interconnection networks, memory controllers etc. Still, it does provide the programmer
with a useful indication whether parallelization would be worthwhile. Furthermore, Figure 2.9 shows that
programmers should always seek to increase the parallelizable fraction f of their program [28].

10 2. Background

2.5.2. Heterogeneous Parallel Computing
A different approach to parallelization is the many-thread trajectory, which focuses on the execution through-
put of parallel applications [34]. Following this trajectory, GPUs support thousands of threads running in par-
allel, as opposed to a few threads currently supported by CPUs. GPUs take advantage of data-level parallelism
to perform substantially more Floating Point Operations (FLOPS) per second than CPUs. This translates to
significantly lower execution times for some applications. The reason is that CPUs are more oriented towards
sequential execution. GPUs, on the other hand, have a larger memory bandwidth as well as hiding thread
latency while always keeping their Streaming Multiprocessors (SMs) busy with work. This is why they are
better suited for performing massively parallel operations. Now, the focus is on the programmer to be able to
reformulate their algorithm’s most expensive stage in such a way that it can benefit from GPU execution, as
illustrated in Figure 2.10.

Figure 2.10: How GPU acceleration works [21]

2.5.3. GPU: Accelerating Image Processing
Today, GPUs are no longer just a luxury to play video games. Most research labs are equipped with the
most expensive GPUs to facilitate their experiments. For example, Neural Networks, a concept that has been
around for many decades [2], started being realized in a large scale only in the last two decades, largely due
to the breakthroughs in GPUs. Their presence has changed research in a way that was unimaginable in the
past.

Image processing can heavily benefit from data-level parallelism. Since images are dataframes with mil-
lions of elements, performing parallel operations on multiple pixels at once is desirable. This is where GPUs
thrive. In particular, using the CUDA parallel programming language, an experienced programmer can assign
memory-aligned pixels to consecutive threads and perform fast calculations in the GPU’s Single Instruction
Multiple Data (SIMD) processing units. For example, Figure 2.11 shows how 2D blocks of 16x16 threads can
be formed to process all pixels of an image in parallel.

2.5. High Performance Computing and Parallelism 11

Figure 2.11: Image processing using thread blocks on the GPU [34]

2D grid of blocks of threads to process an image. Left: a single 16x16 block of threads. Right: image segments assigned to

different blocks. Threads that are outside the bounds of the image (light grey) are handled by control logic to not

perform any work.

3
Related work

Many whisker-tracking algorithms have been developed over the years. BWTT and Janelia Whisk are some of
the most popular ones. These, along with WhiskEras, will be presented briefly in this chapter. WhiskEras was
the algorithm chosen to work on because it was considered to have the most potential and is also relativaly
new, so it still has margin for improvement. Then, some of the Curvilinear Centerline Extraction methods will
be mentioned, which were considered as alternatives to Steger’s Unbiased Curvilinear Detector, currently
used in WhiskEras.

3.1. Y. Ma’s ViSA Implementation

Figure 3.1: Contour extraction and snout template fitting to detect head [37]

Figure 3.2: Whisker shaft detection and parametrization [37]

The ViSA algorithm is the basis of BWTT. It is an algorithm which detects whisker shafts in video frames.
It does so in the following stages:

1. It detects the head of the mouse (Figure 3.1) by:

(a) extracting the contours of the frame using simple image processing and morphological operations
and

(b) fitting a user-defined snout template to the contour.

13

14 3. Related work

2. It detects a narrow band around the snout and parametrizes the whisker shafts around it (Figure 3.2)
by:

(a) performing background subtraction and masking to select pixels within a radius of the snout,

(b) creating a whisker tree of points which will form whiskers,

(c) clustering using polynomial fitting on the sink, source and central nodes of the line segments
detected and

(d) selecting candidate segments in an iterating process to form the whisker shafts.

Figure 3.3: Acceleration of ViSA algorithm workflow [37]

Ma accelerated the ViSA algorithm in several different ways, as shown in Figure 3.3. First, he modified
the MATLAB code to utilize parallel execution in the form of multithreading in the CPU and the GPU. The re-
sult was significantly faster but still not fast enough to be used in practice for processing high-speed whisker
videos. Following, the code was ported to C, a low-level language which is much faster than MATLAB. From
there on, several different routes were explored, where either data-level parallelism and task-level parallelism
were emphasized. The data-level parallelism was taken advantage of both on the GPU using CUDA and a
Maxeler Dataflow Engine (DFE), which is based on FPGA technology and is suitable for stream-based pro-
cessing. However, some parts of the code which were non-parallelizable were becoming the bottleneck in
performance. Hence, an OMP implementation was developed which provided batches of sequential frames
to multiple CPU threads. This resulted in the greatest speedup, yielding a 1.21 ms/frame peak performance.
This is really close to real-time processing, which requires 1 ms/frame. Ma mentions a final attempt to reach
it by using DFEs together with OMP. Unfortunately, at the time, the DFEs did not support initialization from
different processor threads. Thus, they did not deliver better performance.

This work really showcases the different approaches one may take in High-Performance Computing (HPC)
to achieve high-speed processing and is an inspiration to future acceleration projects, such as this one. In this
thesis, both task-level and data level parallelism were exploited using CUDA (GPU) and OMP (CPU multi-
threading) to speed up WhiskEras.

Most whisker-tracking algorithms have a prerequisite for whisker clipping, labeling and/or trimming to
facilitate the task. This is rather invasive from a behavioural point of view. BWTT was the only whisker-
tracking algorithm, before WhiskEras, with the capability of detecting unclipped and unlabeled whiskers.
Still, it lacks a tracking module, meaning it can only detect whiskers. The post-processing script which is used
to perform tracking is not very accurate, due to the nature of BWTT, as discussed in [8]. Despite its problems,
Ma’s implementation of ViSA is the algorithm currently being used by the neuroscientists in Erasmus MC to
process high-speed videos of the whisking experiments and has already led to important findings.

3.2. Janelia Whisk 15

3.2. Janelia Whisk
Janelia Whisk [16] is another whisker-tracking algorithm which works well for trimmed, head-fixed mice, at
a moderate processing speed of around 35 frames / second. Contrary to BWTT, however, it does incorporate
the ability of tracking whiskers.

It uses three stages to perform whisker tracking:

1. Tracing: curvilinear objects are located using a linear detector based on profiling the intensity of whiskers
as a rectangular valley in the image, with varying position, width and angle.

2. Linking: curves found during tracing are identified as whiskers using statistical methods which either
require providing the number of whiskers to identify, or estimate it.

3. A Naive Bayes classifier is employed to trace the trajectory of whiskers over the course of an experi-
ment/video.

Although this is a competitive whisker-tracking algorithm, it can only track a few whiskers accurately.
Consequently, trimming of hair and whiskers is needed as a pretreatment. This limits the information that
can be distilled from whisking experiments considerably.

3.3. WhiskEras: a Whisker-Tracking System
WhiskEras is a whisker tracking algorithm which detects and tracks whiskers on untrimmed, head-constrained
rodents. It was inspired by the Biotact Whisker Tracking Tool (BWTT) [41], but was developed to incorporate a
tracking module which was lacking in BWTT. Its recent paper publication [9] made a strong case of its superi-
ority to other methods such as BWTT and Janelia Whisk. In particular, it has been shown to reliably follow the
movement of more than 10 whiskers over the course of a video, whereas older trackers relied on more invasive
experimental setups such as marking whiskers with clips and trimming to the point where 2-4 whiskers are
visible.

Furthermore, it is an unsupervised algorithm, meaning it does not need to be provided with labelled data
to do its work. Collecting a sufficient amount of annotated data to develop a supervised algorithm would
require great amounts of resources. Although modern supervised AI algorithms dominate applications in
different areas, WhiskEras makes good work of the task without having an enormous labelled dataset to back
it up.

The algorithm itself was written in MATLAB in a fairly efficient way, taking advantage of inherent paral-
lelism wherever possible. However, it is still slow due to MATLAB being a high-level, prototyping program-
ming language. In addition, it requires a lot of parameter tuning to work accurately in different experimental
and video recording setups. Further details on WhiskEras will be given in Chapter 4.

3.4. Curvilinear Centerline Extraction Methods
Whisker-point detection in WhiskEras is formulated as a curvilinear centerline extraction problem. As such,
it is addressed using the Unbiased Curvilinear Detector from Steger [49]. This algorithm performs well in
general, but suffers from several issues which will be described in Section 4.3. A high-level summary of this
algorithm will also be provided in Section 5.2.

Curvilinear extraction (manually) is illustrated in Figure 3.4. It can easily be inferred that producing the
output image on the right, given the input image on the left, is no trivial task, even for a human being. A
general categorization of the methods to perform this task was provided by [55]. In fact, these methods can
demonstrate the variety of ways with which one can approach a Computer Vision problem.

Intuitive Methods In general, they look for different characteristics of curvilinear structure and background
in local regions (hence, their name). They can be further divided into Hessian-based and model-based ap-
proaches [24]. Hessian-based methods rely on the eigenvectors and eigenvalues of the Hessian matrix in
order to segment the filamentary structure. The drawback is that they need a Gaussian Blur preprocessing
which may lead to errors when the local structure is too wide or located in a branch region. Steger’s unbiased
curvilinear detector [49] falls into this category. On the other hand, model-based methods instead focus on
fitting filaments with known geometric shapes. The optimally oriented flux (OOF) [35] localizes the spherical
region to compute the gradient flux by minimizing the inward flow, a work that was further improved [52].
Despite the long-year progress of these methods, their performance was reported to deteriorate substantially
when dealing with small and thin filaments, in cluttered and ambiguous backgrounds [24].

16 3. Related work

Figure 3.4: Left: retinal image input. Right: manual curvilinear extraction output. [29]

Learning-based Methods With Machine and Deep learning seeing tremendous progress during the last two
decades, these methods are definitely cutting edge in this task. They employ supervised algorithms which
build a learning/clustering model and then make decisions based on either classification or regression. In
this task, they typically output a binary image declaring pixels either as belonging (or not) to a curvilinear
structure. Multi-Centered Hough Forest Method (MCHF) [55], Learning to Boost Filamentary Structure Seg-
mentation (LSF) [24] and other algorithms have reported results unparalleled by intuitive methods. However,
the lack of labelled data is prohibiting us from using any of these methods, unless annotation of (a lot of) data
precedes it.

Graph-based Methods Curvilinear structure is often characterized by the tree-like or net-like filamentary
structure. Thus, there are methods that locate it by extending graphs/networks. Chai et al. [14] developed a
method which samples junction points using a Monte Carlo mechanism. The disadvantage of this approach
is that it is more suitable towards a network with piecewise straight lines. De et al. [18] reformulated the
problem into label propagation over directed graphs. This method handles the crossover problem (intersec-
tion between curves) well, but it also integrates a supervised classifier, which requires training over an existing
labelled dataset. More importantly, its segmentation module, which discovers the curvilinear structure, is not
necessarily more accurate than the intuitive methods.

The method which was used, in this work, to replace Steger’s Curvilinear Detector was K. Raghupathy’s
Improved Curve Tracing [45], which is an intuitive approach. The reasons behind this choice, as well as an
extensive presentation of this method will be given in Chapter 5.

4
WhiskEras: Algorithm Analysis

In this chapter, an analysis of WhiskEras is given. Section 4.1 provides an overview of the algorithm. Then, in
Section 4.2, the design choices in terms of parameters in WhiskEras are explored. Section 4.3 pinpoints the
weak spots of WhiskEras. Finally, an analysis as to why a Design Space Exploration was not pursued is given
in Section 4.4.

Background
Removal

Silhouette & Fur
RemovalPreprocessing

Centerline
Extraction

Local Clustering

Cluster Stitching

Parameter Fitting

Tracking

Learning /
Recognition

Steger's
Curvilinear
Detector

Steger
Clustering

DBSCAN
Clustering

Non-linear Fitting

Stitching I & II

Kalman Filter Whisker-Point-
to-Cluster Fitting

SVM Classifier

Pixel-level
 Processing

Parameter
 Fitting

Tracking
over time

Detection Module

Tracking Module

Figure 4.1: WhiskEras overview

17

18 4. WhiskEras: Algorithm Analysis

4.1. Overview
WhiskEras comprises of two main modules: Detection and Tracking. The Detection module is responsible
for detecting whiskers and fitting them into an abstract representation of several parameters. The Tracking
module’s duty, on the other hand, is to follow these whiskers, frame-by-frame. The system can also be divided
into three components, summarized below. The complete Whisker-Tracking System is illustrated in Figure
4.1.

Pixel-level Processing It involves preprocessing of the frame in order to remove the background, silhouette
and fur. We are then left with the light whiskers in a dark background. Centerline extraction (i.e whisker-point
detection, as will be referred to later) is the process of locating the whisker points, with the help of Steger’s
curvilinear detector [49], as discussed in Section 3.4.

Parameter Fitting It takes as input the centerline positions of the whisker points in the image and performs
local clustering in order to form groups of points which belong to the same whisker. This clustering, however,
does not result in a perfect grouping where each cluster forms an entire whisker. Rather, cluster stitching is
required to unify clusters which belong to the same whisker. Afterwards, parameter fitting takes place, where
each whisker is compressed to a set of parameters (position along snout, angle, bending and length).

Tracking over time This stage is responsible for matching the newly found whiskers with the whiskers
found previously. The Tracking - Learning - Detection (TLD) technique was adopted, as described in [30],
to ensure consistency across a long sequence of frames. Tracking is performed using either a Kalman filter
or by fitting whisker points to whiskers found in previous frames. A Support Vector Machine (SVM) Classifier
is employed as a learner to recognize the correct matches between current and previous whiskers. Tracking
is necessary to collect a minimum number of data to train the SVM. Then, the SVM is relied upon to identify
whiskers in a consistent way, while tracking is used to potentially fit whiskers that were not recognized by the
SVM.

This thesis mainly focuses on:

• Enhancing the Detection module. This is the module which requires more intense parameter tuning
and is considered to be the bottleneck of the algorithm.

• accelerating the whole Whisker-Tracking System.

Naturally, providing optimal detection results to the Tracking module can facilitate its work substantially.
In the next sections of this chapter, we only refer to the Detection module of the algorithm.

4.2. Analyzing Design Choices
WhiskEras is an extremely accurate whisker tracking method, being able to track a large number of whiskers
in untrimmed, head-fixed mice way more consistently than other methods [9]. The downside is that it needs
significant tuning in order to perform well and it is unknown whether design choices so far have offered
optimal results. Specifically, the detection pipeline contains 34 parameters in total. The first goal of this
thesis is to explore the impact of these parameters on the results and define a bounded discrete space for
each one of them.

To facilitate this task, each substage of the algorithm has been analyzed in isolation, for the most part.
This is a fair treatment, since the results generated by each stage have a clear linear relation to subsequent
results. In other words, the Computer Vision techniques used do not justify any non-linear effects. The effect
of the parameters on the results of each stage will be made clear below. The results of each substage can be
seen in Figure 4.2. Note that Stitching is subdivided into parts I and II in the upcoming analysis.

The first system variable that has to be defined is the line which defines the position of the snout. This
needs to be specified by the user, according to the input video. The line (Figure 4.3) is specified by the X and
Y coordindates of two points on the line, for a total of 4 parameters. This will ensure only curves below the
snout line are detected and in the case of Figure 4.3b, only on one side of the snout.

4.2. Analyzing Design Choices 19

(a) Unprocessed Frame (b) Preprocessing (c) Centerline Extraction / Whisker-Point
Detection

(d) Local Clustering (e) Cluster Stitching (f) Parameter Fitting

Figure 4.2: Results from each substage of the WhiskEras Detection module

(a) Setup 1 (b) Setup 2

Figure 4.3: User-specified snout line (in white).

4.2.1. Preprocessing
The first preprocessing step is to subtract the unmoving background as well as the snout silhouette which
is constant for the entire experiment. Additionally, the frame goes through a contrast-adjustment step to
highlight whiskers more than noise. Then, deinterlacing or a Gaussian blur filter can be used interchangeably
to remove the artifacts created by the interlacing effect, which is present in the Erasmus MC videos. The noise
can further be reduced by a mild thresholding operation. Because there is a timestap in some of the videos, a
few edge pixels can also be removed without any loss of vital whisker parts.

All parameters associated with preprocessing are described in Table 4.1. Effect refers to the result of in-
creasing a parameter’s value. A useful parameter range has been specified, as well as a traversal step. When
these specify a single value, this means that the user does not need to bother tuning that specific parameter,
in which case the traversal step is indicated as a "−".

Most of these parameters do not have a margin for improvement, so they can remain fixed. The imdi-
late_value and cutoff have a similar role. Ideally, these should be kept to small values. This way, no whisker
parts are lost. However, the algorithm may have trouble, particularly during the stitching stage, if much of
the hair is retained. For that reason, in certain videos, it helps to increase those values. Regarding contrast

20 4. WhiskEras: Algorithm Analysis

Name Functionality Effect Range Step

bwThreshold thresholds to obtain less noise and whisker points 1 −
mouse silhouette

imdilate_value shaves off hair/whiskers less hair and shorter whiskers, 0−40 5
near the snout more distant from snout

cutoff filters out area below less hair and shorter whiskers, 0−40 5
snout line more distant from snout

histEqMinT zeroes out intensities below less noise and whisker points 3 −
this value

histEqMaxT saturates intensities above less noise and whisker points 50−120 10
this value

histEqGamma weights either bright or dark less noise and whisker points 0.7−1 0.05
pixel intensities more

do_deinterlacing negates interlacing effect introduces noise, false −
distorts angles

initialGaussianSigma negates interlacing effect introduces noise 0 −
distorts angles

remove_lowlevels removes noise removes noise and 10 −
whisker points

framing removes time stamp removes edge pixels 5 −

Table 4.1: Preprocessing parameters

enhancement, either decreasing histEqMax or histEqGamma can potentially increase detection sensitivity,
up to a critical value where decreasing them further only adds considerable noise. Because their effect is
not additive, just adjusting one of those two values is sufficient, while keeping the other fixed. Furthermore,
the interlacing effect, present in the videos, does not hurt the algorithm as much as its countermeasures in
deinterlacing or Gaussian Blur. The last two parameters of Table 4.1 are not that significant to the algorithm’s
functionality.

4.2.2. Centerline Extraction
Steger’s unbiased curvilinear detector [49] is used during this step. First, the image is upscaled. This step is
necessary because adjacent whiskers are hard to distinguish by Steger’s algorithm. Then, the Hessian Matrix’s
second order derivatives are computed using a Gaussian Kernel. Following that, whisker points are discovered
with subpixel accuracy by using the eigenvalues and eigenvectors of the Hessian Matrix and a sensitivity value
tr2.

Name Functionality Effect Range Step

upscaling increases image dimensions better response near 2 −
intersections, worse elsewhere

sigma adjusts gaussian sigma less noise and whisker points 2.3 −
gaussianKernelSize adjusts gaussian window size better detection quality up to 20 −

a critical value
tr2 adjusts detection sensitivity less noise and whisker points 0.8−1.5 0.1

Table 4.2: Whisker point detection parameters

The effect of upscaling, mentioned in Table 4.2, is depicted in Figure 4.4. An additional downside (to the
one mentioned in Table 4.2) of upscaling is that it heavily increases the execution time because there are more
pixels to process during this stage and more whisker points during the subsequent stages. A good trade-off
was found for a value of 2.

The sigma and gaussianKernelSize parameters were found to produce good-quality, stable results for a
specific value under different video conditions. In particular, increasing gaussianKernelSize to more than 20
does not bring any further benefits. In addition, it also heavily impacts the computational cost of this stage, so

4.2. Analyzing Design Choices 21

(a) Upscal i ng = 2 (b) Upscal i ng = 3

(c) Upscal i ng = 4 (d) Upscal i ng = 5

Figure 4.4: Whisker points detection: varying upscaling

it should not be increased more than needed. tr2 is an important parameter that should be tuned depending
on each video.

4.2.3. Local Clustering
Having detected the whisker points, the algorithm forms groups of points which belong to the same whiskers.
Again, Steger’s algorithm [49] offers a solution to this task. In this step, a graph-connectivity matrix is con-
structed, which connects neighbouring points together using distance and orientation as factors. Each point’s
orientation is computed using Steger’s algorithm. Betting [9], in fact, modified Steger’s algorithm to only form
connections among doubly-linked points. He also increased maximum distance between neighbours to from
1 pixel to 2 pixels radius.

Name Functionality Effect Range Step

steger_c adjusts orientation weight, more accurate connections, 1−20 2
relative to distance but more clusters are formed

Table 4.3: Clustering parameters

Aside from choosing the steger_c value in Table 4.3, an alternative clustering method option was also
provided in WhiskEras, the well-known DBSCAN method [46]. It was reported that, in certain cases, DBSCAN
achieved better results [9]. However, experimentation performed in this work indicates that Steger Clustering
has more potential in whisker clustering. Figure 4.5 illustrates clustering results obtained using DBSCAN.
In configuration 4.5a too many clusters are formed, whereas in 4.5b certain errors have been introduced,
although its results seem better overall. This has to do with the fact that DBSCAN forms groups with respect
to point density, not lines. Let us compare these results with the results of Steger Clustering in Figure 4.6. It

22 4. WhiskEras: Algorithm Analysis

(a) epsi lon = 4,mi nPoi nt s = 3 (b) epsi lon = 5,mi nPoi nt s = 4

Figure 4.5: DBSCAN whisker clustering for two sets of parameters

(a) WhiskEras original implementation (b) Using an angle difference limit

Figure 4.6: Steger Clustering

is clear that this method is much more suitable for identifying lines. Also, by modifying the Steger Clustering
implementation used in WhiskEras and providing an angle-difference limit between neighbour points (set at
7 degrees), errors of clustering parts of different whiskers together (Figure 4.6a), no longer occur (Figure 4.6b).
These results demonstrate the superiority of Steger Clustering for the task at hand.

4.2.4. Stitching I
Stitching I is responsible for connecting clusters that belong to the same whisker but are seperated either due
to intersections between whiskers or noise. For a cluster, all other clusters which are rooted (their closest
point to the snout) further than its tip (with regards to to the snout) are rotated towards its tip. If the two
clusters are close enough in terms of distance and angle, a stitching score is computed. The cluster with the
best (lowest) score is then stitched to this cluster. This procedure is repeated for all clusters in a frame.

The parameters in Table 4.4 are all very difficult to tune. There are always trade-offs to be made: in-
creasing maxX, maxY and maxAD may allow some additional correct stitchings but can also force erroneous
stitchings. Furthermore, parameter c can be increased to address intersecting whiskers but that can poten-
tially split some whiskers into smaller segments. It appears that some issues are unavoidable, particularly in
frames with multiple intersections. More details on this are given in Section 4.3.

4.2.5. Stitching II
This stage addresses cases of whiskers being hidden behind other whiskers. Whiskers which are rooted far
from the snout are stitched to parts of other whiskers which are closer to the snout. For example, Figure 4.7
shows a part of the pink whisker in the middle of the frame that, after Stitching II, also belongs to the dark

4.2. Analyzing Design Choices 23

Name Functionality Effect Range Step

minClusterSize filters clusters with few points less noise and clusters 4−10 2
lengthOfTipAndBottom sets length of cluster edge to favours straight-line 10−30 5

extract angle from whiskers
maxX sets max cluster distance parallel favours intersections, 100−600 50

to whisker line but prone to errors
maxY sets max cluster distance negates noisy edges, 5−20 2

perpendicular to whisker line but prone to errors
maxAD sets max cluster angle difference negates noisy edges 7−20 2

(degrees) but prone to errors
c adjusts angle weight, relative better for intersections, 0−1000 50

to distance but worse elsewhere

Table 4.4: Stitching I parameters

Name Functionality Effect Range Step

minClusterSize filters clusters with few points less noise and clusters 15−30 3
lengthOfTipAndBottom sets length of cluster edge to favours straight line 10−30 5

extract angle from whiskers
highestRoot sets distance from snout which better for videos with 20−200 20

allows stitching II obstructed part of snout
acceptableXdistance sets max cluster distance on x axis more stitching, prone 30−80 10

to errors
acceptableYdistance sets max cluster distance on y axis more stitching, prone 7−14 2

to errors

Table 4.5: Stitching II parameters

green whisker.

Stitching II parameters are a bit easier to tune than Stitching I. However, in the case of highestRoot, some
video setups can be tricky. Figure 4.8 illustrates such a case, where part of the snout is obstructed. When
hi g hestRoot = 60, two whiskers on the right of the image are filtered out, contrary to when hi g hestRoot =
200. This high value could spawn an error in different cases though.

(a) Input (b) Output

Figure 4.7: Stitching II effect

24 4. WhiskEras: Algorithm Analysis

(a) Unprocessed Frame (b) Stitching II output, hi g hestRoot = 60 (c) Stitching II output, hi g hestRoot = 200

Figure 4.8: Stitching II results with varying highestRoot

4.2.6. Parameter Fitting

Figure 4.9: Frame in which
whiskers have comparable
length to hair

This final detection step gets each cluster’s points and outputs a parametrization for
each of them, by fitting them on a 2nd degree curve ax2 +bx + c. Each whisker can
now be represented by only 4 parameters: pivot-point position c, angle b, bending a
and length L. The length is computed by integrating over the whisker.

Parameter fitting parameters, shown in Table 4.6, only have to do with filtering
clusters that are either likely not whiskers or the result of wrong clustering/stitching.
They are fairly standard, meaning they can mostly make right decisions in rejecting
clusters for a general configuration, even under different video setups.

The minLength parameter requires more delicate handling. For example, in Fig-
ure 4.9, many whiskers which are rooted to the mystacial pad have comparable
length to hair from the animal’s fur, rooted higher on the snout. It is impossible to
keep every whisker while discarding the hair, in the current algorithm. One solu-
tion would be to keep both and let the neuroscientists discard the hair from the final
tracking results.

Name Functionality Effect Range Step

minNrOfDots filters clusters with few points less hair and whiskers 30−50 5
minLength filters clusters with small length less hair and whiskers 50−150 20

minAngleToSnout filters hair (almost) parallel less hair and whiskers 2−10 2
to snout

maxBend filters erroneous clusters less whiskers 0.01 −
maxMSE filters erroneous clusters less whiskers 80−400 40

Table 4.6: Parameter fitting parameters

4.3. Whisker Detection Limitations
As has become apparent from the above analysis, WhiskEras has a few weaknesses, particularly revolving
around intersecting whiskers. Overall, the preprocessing and parametrization stages do a reasonably good
job without much parameter tuning. Most issues stem from the whisker-point detection stage (Section 4.2.2)
which feeds an imperfect input to the clustering and stitching stages, further down the pipeline.

The main issues of Steger’s algorithm, used to extract the whisker centerlines are the following:

1. Faint whiskers are only partially recovered and they can be noisy (Figure 4.10a).

2. Intersecting whiskers that are not interrupted have a unified part of noisy points near the junction
centre that does not clearly belong to either of the two whiskers (Figure 4.10b).

3. Intersecting whiskers of lower intensities are being interrupted. This results in whiskers being con-
tinued as far as hundreds of pixels away in the frame. To make matters worse, the edge parts of the
interrupted whiskers are often noisy (Figure 4.10c).

4.3. Whisker Detection Limitations 25

(a) Right line is not fully recovered because it
is faint. It is also extremely noisy.

(b) Noisy points around the junction of two
intersecting whiskers. A segment seems to

belong to both whiskers.

(c) Interrupted whisker. The edge on top is
noisy, i.e it does not point to the other section

of the whisker.

Figure 4.10: Whisker point detection issues.

Note that Figure 4.10 is not the real image of detected whisker points. It is rather the real image’s con-
version from raster to vector graphics, using Inkscape. This was done for clarity, as the real image’s quality is
repulsive. This also reveals another issue, perhaps the root of all problems: the centerlines detected are far
from smooth. That is probably caused by the compression algorithm which was used to shrink video sizes for
convenient storing, in Erasmus MC. This compression will not take place for future videos, but nothing can
be done for older videos.

Hence, the input to the clustering stage is cumbersome. Then, the issue with clustering is that it forms too
many groups of points, typically from 100 to 1000. This means that stitching will have to do significant work
in order to form groups of complete whiskers. However, it was already mentioned that stitching requires
specifying a handful of parameters that are extremely hard to generalize even for a video alone, let alone
multiple videos with different setups.

Stitching I, in particular, has to deal with a multitude of complex cases. For example, it has to stitch
together whiskers that are split into multiple parts and interrupted parts of whiskers due to intersections. In
the first case, the distance factor has to be weighted more heavily. However, in the second case, the cluster’s
orientation has to be the prime factor. This is illustrated in Figure 4.11, where for c = 1, an interrupted whisker
part (circled in red in 4.11a) is wrongly stitched to the brown cluster (4.11b). For c = 700, the algorithm seems
to begin to understand where it should be stitched to, but now multiple errors have occurred due to close
whisker parts not being stitched to each other.

(a) Local Clustering results (b) Stitching I results for c = 1 (c) Stitching I results for c = 700

Figure 4.11: Stitching I tuning issue 1

Another issue is demonstrated in Figure 4.12. Specifically, the small cluster circled in red in 4.12a is
stitched to the other cluster circled in red which corresponds to hair. After parameter fitting, the result (4.12b)
shows a pink whisker which is clearly wrong. This issue could have been avoided if the allowed distance be-
tween clusters to stitch max X was lowered. However, there may be a case where max X indeed needs to be
large enough to stitch together two clusters which belong to the same whisker. This problem gets worse as the
parameters would have to be tuned differently for different video dimensions and whisker sizes in general.
Similar problems can occur with maxY and max AD values. To sum up, Stitching I has to take a lot of difficult
decisions which demand different parameter tunings. The conclusion is that, the current form of Centerline
Extraction - Local Clustering - Cluster Stitching will inevitably make some mistakes over the span of a video.

26 4. WhiskEras: Algorithm Analysis

(a) Results after stitching I & II (b) Results after parameter fitting

Figure 4.12: Stitching I tuning issue 2

4.4. Regarding Design Space Exploration
Design Space Exploration (DSE) could theoretically be performed at this stage. This could be done by :

1. choosing a DSE framwork for multi-objective optimization,

2. supplying it with the parameters, mentioned as impactful to the results in Section 4.2, with their corre-
sponding boundaries and variation step and

3. choosing a good optimization criterion that would maximize whisker-detection accuracy and sensitiv-
ity across runs over different videos.

There are two issues with this approach:

1. It must have become apparent by now, that WhiskEras suffers from severe algorithmic issues, more
than parameter-tuning ones. It is unlikely that a DSE could discover an optimal set of parameters, even
for a single video, which would be able to deal with the problems mentioned in Section 4.3.

2. Choosing an optimization goal in this type of problem is extremely difficult. Several optimization ob-
jectives were considered such as: variation (σ) in the number of detected whiskers during the course of
the video, measuring the quality of the third stage’s feedback (tracking). For the first objective, there is
no guarantee that the algorithm would not find a way to ignore certain troublesome parts of whiskers.
This could make the variation of the number of detected whiskers more stable but at the same time de-
crease sensitivity. The second objective seems more promising, but it does rely on the assumption that
tracking works well. Also, measuring the quality of tracking involves taking into account only certain
parameters which affect tracking. A perfect whisker-detection algorithm would need to be accurate in
terms of all the parameters set during Parameter Fitting, a goal which seems hard to achieve just by
steering the algorithm with regards to tracking results.

To conclude this chapter, it seems more appropriate to revise certain aspects of the algorithm in order
to deal with issues, such as intersecting whiskers, in a more robust way. After all, the goal is to standardize
and/or automate the selection of parameters in WhiskEras so that it can be used conveniently. At its current
state, it is difficult to do so. Even for a single video file, visual inspection of results showed that altering specific
parameters favoured detection of certain whiskers over others, which is essentially a compromise.

5
Improvements

As shown in Section 4.3, WhiskEras has a number of shortcomings which mainly stem from the whisker-
point detection stage. Steger’s algorithm, which performs both curvilinear detection and clustering is the
target for improvement. If these two steps were enhanced, then the work of stitching would be made easier.
Furthermore, stitching also has some room for improvement, particularly related to its parameter selection.

In the rest of this chapter, the improvements which were made to WhiskEras are reported. First, the in-
tuition behind the decision for a new detection algorithm is given, in Section 5.1. Next, the algorithm of our
choice, Improved Curve Tracing is discussed in Section 5.2 along with its adaptation in WhiskEras and our
thoughts on it. Finally, the stitching stage’s enhancements are explained in Section 5.3.

5.1. Choosing a Detection Algorithm
Whisker-point detection can be placed into the broader category of curvilinear centerline extraction. As de-
scribed in Section 3.4, there are three main approaches to address this problem.

Learning-based approaches are the most advanced ones, but as clarified before, they require a non-
negligible amount of labelled data which is simply not available. Graph-based approaches, on the other
hand, have their own shortcomings (see Section 3.4). The only remaining choice is, then, intuitive methods.

Going for an alternative Hessian-based approach such as multiscale vessel enhancement [23] would seem
naive as it is based on the same principles as Steger’s unbiased curvilinear detector [49]. Another option is to
adopt a model-based approach, such as the optimally oriented flux (OOF) [35]. However, there is no guaran-
tee that a different intuitive method would provide substantially better results than Steger’s. As a reference,
both multiscale vessel enhancement and OOF are reported to have comparable results in terms of accuracy,
sensitivity and specificity on retinal vessel, neuron and aerial road map datasets in [55]. Furthermore, these
methods do not provide a clustering method such as Steger’s, to group whisker points into different clusters.
This task would then have to be resolved by looking into other methods, if DBSCAN is deemed incompe-
tent as a clustering choice (such an argument is made in Section 4.2). However, this would mean adapting
a brand-new algorithm to detect whiskers and also searching for an additional clustering method. Consid-
ering the uncertainty of such an approach having major improvements over the existing algorithm and this
thesis’ time constraints, it was decided not to pursue this path. After all, WhiskEras has proven to be signif-
icantly better at whisker tracking than its competition [9]. It is therefore better to invest time and resources
into improving some aspects of the algorithm and accelerating it, rather than completely reinventing its core
stages.

The method that was chosen is K. Raghupathy’s Improved Curve Tracing in Images [45]. This solution
builds on Steger’s algorithm and expands it to deal with the problems below:

1. Noisy images.

2. Multiple and possibly intersecting curves.

3. Disappearance and re-emergence of a curve.

4. Tracing curves that fade out.

27

28 5. Improvements

These are more or less the issues with Steger’s algorithm in whisker detection which were encountered in
Section 4.3. Improved curve tracing makes some modifications to Steger’s localized algorithm, while incorpo-
rating global features to address the problems above.

5.2. Improved Curve Tracing
Steger’s original algorithm is summarized in Algorithm 1. There are two user-defined threshold parameters
tr 1 and tr 2, which have to satisfy |tr 1| ≤ |tr 2|. Low values of the second directional derivative S indicate
high curvature. Pixels with S < −tr 1 are valid curve points, though they are not necessarily present in the
clustering results, unlike points with S <−tr 2. The latter are points from which curve extension starts taking
place. Each curve point has an orientation/angle (computed using Steger’s algorithm) which dictates which
pixels in a 1-pixel radius are potential neighbours. Linking of curve points is illustrated in Figure 5.1.

Algorithm 1: Steger’s original algorithm

/* Curve point detection */
for (x, y) i n Imag e pi xel s do

Compute, perpendicular to curve, direction n(t) using Hessian Matrix;
Compute first (F) and second (S) directional derivatives along n(t);
if F vanishes within the current pixel AND S <−tr 1 then

(x, y) is a valid curve point;
end

end
/* Clustering */
for pixels with second directional derivative S i n [Smi n ,Smax] do

Assign point a new cluster;
if S ≥−tr 2 then

break; // when S is larger than some threshold tr2, stop creating new curves
end
Check for neighbours in a 1-pixel radius in the orientation of the current point;
while there is a neighbour that is a valid curve point do

Find best neighbour;
Assign neighbour to existing cluster;
Neigbour point becomes current point;
Check for neighbours in a 1-pixel radius in the orientation of the current point;

end
end

67.5 < θ < 112.5

θ

22.5 < θ < 67.5

Pixels checked for neighbours

θ = curve orientation of pixel

d

β

d = distance between curve points

β = orientation difference between curve points

Figure 5.1: Linking of curve points

Criteria to determine best neighbour are β and θ.

5.2. Improved Curve Tracing 29

In WhiskEras [9], Steger’s detection algorithm was modified (Algorithm 2). The key difference is that all
points detected in the first stage are present after the clustering stage, because only one threshold, tr 2 is
used. Additionally, every curve point can peek 1 pixel further to locate a neighbour. This is beneficial because
sometimes curve points of the same whisker can be more than 1 pixel apart. Finally, neighbours have to be
doubly-linked to ensure reliable clustering. This means that two points can be neighbours only if both points’
best neighbour is the other one.

Algorithm 2: WhiskEras adaptation of Steger’s algorithm

/* Curve point detection */
for (x, y) i n Imag e pi xel s do

Compute direction n(t) using Hessian Matrix;
Compute first (F) and second (S) directional derivatives along n(t);
if F vanishes within the current pixel AND S <−tr 2 then

(x, y) is a valid curve point;
end

end
/* Clustering */
for pixels in valid curve points do

Check for neighbours in a 2-pixel radius in the orientation of point;
Find best neighbours in both directions of the orientation;

end
Connect doubly-linked neighbours in parallel to form clusters;

Improved curve tracing, as opposed to WhiskEras, maintains the curve point detection part of Steger’s
algorithm as is. All improvements are incorporated into the Clustering stage. How would it then do a bet-
ter job at detecting points? Remember that not every valid curve point appears at the clustered results. By
improving the way curve points are connected, more curve points can be found, while leaving out most of
the noise. This method complements Steger’s algorithm. It is the same as Algorithm 1, but now, there are 3
more ways in which the neighbour curve points are searched, in addition to plain Steger linking. These are
i) curve following at junctions, ii) tracing faint curves and iii) disappearance and re-emergence of curve. The
algorithm attempts to find a neighbour by first attempting to follow curve at junction. If that fails, it attempts
plain Steger linking. If this is also unsuccessful the next two options are applied. Note that Raghupathy leaves
the sequence of the last two options up to the programmer. Algorithm 3 describes Improved Curve Tracing
from a high-level. The introduced linking steps are described in detail below. Figure 5.2 demonstrates the
superiority of Imporved Curve Tracing, compared to the Steger’s algorithm, for a certain image.

(a) Input image (b) Steger’s algorithm output (c) Improved curve tracing output

Figure 5.2: Comparison of Steger’s algorithm and Improved Curve Tracing

Curve following at junctions As shown in Figure 5.2, two curves can intersect with each other and some-
times Steger’s algorithm fails to recognize the natural continuation of each curve (5.2b). This is solved by
introducing an angle difference limit β0, such that the angle difference ∆θ between two neighbour points is
less than β0: ∆θ < β0. This is exactly the countermeasure which was used in Section 4.2 to enhance Steger
Clustering. In addition, the current point (x1, y1) is looking for neighbours in the direction of its angle at a

30 5. Improvements

Algorithm 3: Improved Curve Tracing

/* Curve point detection */
// Same as original Steger’s algorithm
...
/* Clustering */
for pixels with S i n [Smi n ,Smax] do

Assign point a new cluster;
if S ≥−tr 2 then

break;
end
do

Follow curve at junction;
if no neighbour has been found then

steger_linking; // linking that was applied in original Steger’s algorithm
end
if no neighbour has been found then

Trace faint curve;
end
if no neighbour has been found then

Search for re-emergence of curve;
end

while there is a neighbour that is a valid curve point;
end

longer distance, determined by a factor L. In other words, possible neighbours are located as far as

(x2, y2) = (x1 +Lcos(θ(x1, y1)), y1 +Lsi n(θ(x1, y1)))

where L decides the maximum distance to which the point looks ahead for the next curve point. The most
suitable neighbour is decided as the point with the minimum ∆θ with the current point. This ensures the
most natural orientation change in the curve.

φ

θ = average orientation
of last few pixels

Compute inner product
 with lines

Figure 5.3: Tracing curves that fade

Inner products are computed with lines oriented between θ−φ and θ+φ.

Tracing faint curves This is the stage that incorporates global information into the Steger algorithm. It
does that by using the Radon Transform, a technique described in Section 2.4. This is a more global approach,
relative to the method used in Steger’s algorithm, that extracts curvilinear structures by modelling their profile
(linear, quadratic etc) and then calculating the inner product of the image with all possible curves. This stage
uses the first-order (linear) Radon Transform. When a curve has ended, i.e no valid neighbours were found
using curve following and Steger linking, we search for a potential faint curve, by computing the inner product
of the image with various linear curves, with the last curve point as the starting point. This inner product is
the intensity sum of the image over the faint curve. Suppose θ is the average orientation of the last part of the
curve. Then, we limit our search to the 2φ cone [θ−φ,θ+φ], as shown in Figure 5.3. We then find the angle

5.2. Improved Curve Tracing 31

in which the inner product is maximum:

θ0 = ar g max
ψ∈[θ−φ,θ+φ]

l−1∑
k=0

I (x1 +k · cosψ, y1 +k · si nψ)

If this inner product is larger than a pre-defined threshold f , this line segment can be added to the curve. The
parameters introduced in this stage are: M the number of last curve points to calculate average angle θ from,
φ the cone in which we look for faint curves, l the length of the line segment and f the threshold to accept a
line segment as a valid faint curve. A different curve profile can also be used (e.g quadratic), other than the
linear one.

Curve disappears and re-emerges

Curve completed

predicted path using average orientation over last few pixels

Figure 5.4: Tracing re-emergent curves

Disappearance and re-emergence of curves If the curve is neither terminated nor fading, there is a third
possibility: the curve is disappearing and then re-emerging some pixels further (Figure 5.4). A re-emergent
curve is searched in the average orientation of the last M points of the curve, up to K pixels away:

(x2, y2) = (x1 +K cos(θ(x1, y1)), y1 +K si n(θ(x1, y1)))

Note that this is the same procedure as in curve following, except the orientation is averaged over the last
pixels and K > L. However, instead of choosing the point with the minimum angle difference ∆θ, the best
neighbour is chosen using a weighted score of both angle difference and strength µ (image intensity):

(x2∗, y2∗) = ar g min
(x,y)∈S

(w
∣∣θ(x, y)−θ∣∣+ (1−w)

∣∣µ(x, y)−µ∣∣)
where S is the set of all possible neighbours and w is the weight attributed to angle difference relative to
strength.

To compare Steger’s algorithm to Improved Curve Tracing, the input image of Figure 5.2a was processed
by both in [44]. It can be seen that Steger’s algorithm makes a clustering error after the junction point of the
big blue dotted and the small blue dotted clusters, while curves that fade out, disappear and re-emerge are
not fully detected (Figure 5.2b). Improved curve tracing alleviates these issues, as shown in Figure 5.2c.

5.2.1. Adaptation
The actual implementation is largely inspired by Improved Curve Tracing but has some distinctions. The
final modifications to Steger’s algorithm were derived after thorough evaluation and testing. Following, the
key elements of our adaptation of Improved Curve Tracing are explained.

32 5. Improvements

Current Pixel

Potential Neighbours

(a) Upward neighbour search (−22.5◦ < θ < 22.5◦) (b) Diagonal neighbour search
(22.5◦ < θ < 67.5◦)

Figure 5.5: Pixel peeking (L = 3) - Current pixel (yellow) is looking for neighbours.

Pixel peeking Steger linking was modified to have a variable radius of pixels, L. This was a combination
of Betting’s implementation in WhiskEras (where L = 2) and the curve following at junction step of Improved
Curve Tracing. Angle difference ∆θ < β0 between neighbour points is also limited. It was discovered that a
value of L = 3 is sufficient in the videos seen, as the gap between two whisker points which belong to the same
whisker part can be as large as 3 pixels. This modified version of Steger linking was named pixel peeking. Pixel
peeking is demonstrated in Figure 5.5, for L = 3 and two different cases of the angle θ of the current point.

Figure 5.6: Beam scanning for K = 15
and θ = 152.6◦

Beam scanning This step is a mix of curve following at junction
and disappearance and re-emergence of curves. It was named beam
scanning, because the current pixel is scanning for neighbours in a
beam-like way, i.e in a certain angle θ and up to a specific range K ,
as illustrated in Figure 5.6, where the current pixel (yellow) searches
for a neighbour in the red pixels. The angle θ is the average an-
gle of the last M = 15 points of the curve, just like in disappear-
ance and re-emergence of curves, while K = 15. In addition, if a
neighbour is found, it is checked that the new point does have a
close neighbour in the angle θ, to prevent connecting to noisy points.
The procedure of choosing the ideal neighbour is the same as in
pixel peeking – a weighted score of distance and angle difference.
As in pixel peeking, points with ∆θ > β0 are discarded from candi-
dates.

Algorithm 4 summarizes the logical structure of our adaptation of Im-
proved Curve Tracing. Notice that there are two stages and two sides.
When a point with a large negative S (second directional derivative) value
is chosen to start forming a cluster, it is usually located somewhere in the
midst of a curve. Hence, the curve needs to be extended both upwards
(and right) and downwards (and left) to take its full shape. Side refers pre-
cisely to which direction the curve is currently being extended to. In both stages, the extension is first done
upwards and when there is no further neighbour in that direction, the side is reverted. In Stage 1, only pixel
peeking takes place. When no further connection is possible from both sides, Stage 2 begins, where both
pixel peeking and beam scanning are performed. This is actually a precaution against extending noisy curve
points. In particular, if the number of points (i.e cluster size) of the curve so far is lower than some pre-defined
threshold, then this curve is possibly a group of noisy pixels and will not be extended.

5.2.2. Discussion
The adaptation of Improved Curve Tracing, described in Section 5.2.1 certainly leaves a lot to be desired.
"Where are the global characteristics incorporated by using Radon Transform in tracing a faint curve? How

5.2. Improved Curve Tracing 33

Algorithm 4: Adaptation of Improved Curve Tracing

/* Curve point detection */
// Same as original Steger’s algorithm
...
/* Clustering */
for pixels with S i n [Smi n ,Smax] do

Assign point a new cluster;
if S ≥−tr 2 then

break;
end
Stage = 1;
Side = UP;
while true do

pixel_peeking;
if Stage == 2 AND there is no valid neighbour AND cluster size > threshold then

beam_scanning;
end
if there is no valid neighbour then

if Side == UP then
Side = DOWN;
Current point = lowermost point of curve;

else if Stage == 1 then
Side = UP;
Current point = uppermost point of curve;
Stage = 2;

else
break;

else
Current point = neighbour;

end
end

can a curve re-emerge after it disappears, using this implementation?" one might ask. And these are valid
questions.

First of all, Improved Curve Tracing is used as a complete clustering technique. This means it does not
need any Stitching thereafter, to form the complete curves. Thus, another good question would be "Can
Improved Curve Tracing surpass the performance, in quality, of the algorithm currently used by WhiskEras?"
The short answer is no. Careful testing showed that the results of using just Improved Curve Tracing are not
adequate. Not only that, but using each and every aspect of Improved Curve Tracing would hurt Stitching
afterwards. The details are given below.

Tracing faint curves proved to be a tall task in the whisker videos, possibly because of significant noise,
with which Steger’s algorithm has a hard time coping [44] [24] [55]. Although faint curves may actually be
beneficial, a whisker that disappears before an intersection might start extending on the other intersecting
whisker. This is an issue, as the re-emerging whisker on the other side of the intersection will never be able
to reunite with its counterpart, neither during this stage nor during Stitching I. On a positive note though,
instead of here, the Radon Transform is used to improve Stitching I, as explained in Section 5.3.1.

Handling the case of disappearance and re-emergence of curves is also tough. In the whisker videos, it is
not rare that the curve re-emergence happens more than a 100 pixels away. Note that Raghupathy suggested
using K = 35 in Improved Curve Tracing, a value far smaller than what is needed in this application. There are
two dangers in increasing the value of K to such amounts. i) The angle in which we search might not be quite
right in locating the next curve point, the further away we search for (remember the name used here – Beam
scanning). ii) The noisy points which are detected near intersections, as mentioned in Section 4.3, also have
a distorted angle. Thus, it is possible that the disappearing whisker gets connected to a different whisker, if K

34 5. Improvements

is large. Using curve strength (image intensity) in choosing the right neighbour did not help much either, as
the whiskers have relatively comparable strength.

Having analyzed that, the adaptation of Improved Curve Tracing might come off as a huge failure. How-
ever, this implementation improves the quality of Steger Clustering significantly. It does that, largely by using
beam-scanning, which contributes to forming complete whisker parts, where they do not disappear. As a
result, the clusters formed after this stage are fewer than in WhiskEras, closer to the real number of whiskers.
This is great for Stitching I, as it does not need to take so many difficult decisions, as seen in Section 4.3.
Furthermore, it is easier to filter out noise during Stitching I by increasing the minClusterSize, which discards
clusters with less points than this value, since whisker parts are usually large already, after this stage.

Name Functionality Effect Range Step

L pixel peeking radius not very impactful 2−5 1
β0 prevents steep angle more reliable linking, 5−20 2

changes in whiskers but more clusters
M number of points to not very impactful 5−20 2

compute average angle
K beam scanning range less clusters but 10−40 5

more errors
beamThreshold minimum cluster size less noise and 3−15 2

permitting beam scanning whisker points

Table 5.1: Improved curve tracing parameters

Improved curve tracing also introduces some parameters, shown in Table 5.1. Although it might seem that
a whole lot more of tuning needs to be done, it was found that fixing these values, with only small oscillations,
did not harm performance in any of the videos seen. Nevertheless, a suggested tuning range is given, in case
new video settings are introduced, or the user desires to explore their impact.

5.3. Stitching
Stitching proved to be a tricky stage, as there are multiple parameters that cannot be tuned to handle all cases.
Hence, the focus is towards altering conditions that allow stitching to be more robust. The ultimate goal is to
automate the process of stitching so that there is no need to alter a handful of parameters when dealing with
different videos.

5.3.1. Stitching I
Improvements to this stage focused on eliminating parameters that were hard to tune, such as maxX and
maxY, which define the maximum stitching distance, in the X and Y axis. This was done by replacing them
with more sturdy parameters, as well as engineering new methods to generalize better to the desired cluster-
ing result.

Inspired by the concept of Radon Transform, a powerful approach to reject erroneous stitchings was de-
veloped. Specifically, when two clusters are to be stitched together, an additional check is performed that
involves performing a linear Radon Transform between the close edges of the two clusters that are to be
stitched. This practically means that, if no whisker part is present between the two clusters, the result of the
Radon Transform will be less than some pre-defined threshold r adonT hr eshold = 30. Therefore, the stitch-
ing will be halted. The effect of the Radon-Transform check is demonstrated in Figure 5.7. This essentially
allows us to discard the troublesome parameters maxX and maxY.

Radon-Transform check will typically not be useful for close-distance clusters. In order to further ensure
that stitchings are accurate, a cone condition was added. Specifically, stitchings are only accepted within a
cone of the edge of a cluster. This is depicted in Figure 5.8a.

Another issue is that the edges of a disappearing and re-emerging whisker are often noisy, as discussed in
Section 4.3. In many cases, one of the two edges points towards the other, while the other is not. WhiskEras
was using the parallel and perpendicular distances d x and d y from the tip cluster (closer to the snout) to
the bottom cluster. These were previously compared to maxX and maxY to check if a stitching was valid. In
order to compensate for the above phenomenon, these distances are now computed from each of the two
clusters to the other cluster and the minimum distances are kept. The difference in distances depending

5.3. Stitching 35

(a) Stitching I results, no Radon Transform check. The wrongly
stitched clusters are circled in red and blue.

(b) Parameter fitting results, no Radon Transform check. The
previously stitched clusters form erroneous whiskers together.

(c) Stitching I results, with Radon Transform check (d) Parameter fitting results, with Radon Transform check

Figure 5.7: Radon Transform check effect on Stitching I and Parameter fitting results

on the reference cluster is illustrated in Figure 5.8b. In practice, this means that there are two cones drawn
from both clusters’ edges. If none of the two cone conditions allows the stitching to be performed, only
then it is invalidated. This was found to be advantageous in the cases mentioned, where only one of the two
edges points towards the other. As for maxAD, it can be safely fixed to a large value, e.g max AD = 20◦. That
is because the maximum angle which allows stitchings to take place is now largely controlled by the cone
condition.

cluster 1 tip

cluster 2 bottom

cluster 3 bottom

(a) Stitching I cone condition. Cluster 2 can be stitched to cluster 1,
while cluster 3 cannot.

dx1

dy1

dx2

dy2

(b) The parallel and perpendicular distances between two clusters.
Depending on the reference cluster, these are different.

Figure 5.8: Stitching I illustrations of cone condition and distances between clusters

Finally, the score is weighted differently than in WhiskEras. In WhiskEras, the stitching score was given by

scor e =
√

d x2 +d y2 + c ·β
where β is the angle difference of the edges of the two clusters and c is its weight. However, d y should be
weighted more heavily than d x, especially at longer distances (larger d y means that the cluster is towards

36 5. Improvements

one of the edges of the cone in Figure 5.8a). The same case can be made about β. On the other hand, close
whisker parts that are disconnected have noisy edges (that is why they were not connected during clustering).
Thus, we should leave a little breathing room for d y and β to be a bit larger when two clusters are really close
to each other. Taking all these into consideration, the new score is

scor e =
{

d x +d y +β, if d ≤ d0

d x + c
d x ·d y + c ·β, if d > d0

Notice that d y and bet a are weighted as much as d x for small distances d0 (e.g d0 = 5). When the distance
indicates that the clusters are not two close whisker parts, d y and β should be the prime factors. This neces-
sitates the use of a large value for c (e.g c = 1000).

5.3.2. Stitching II

(a) old Stitching II: dark green whisker is
stitched to light green whisker in an unnatural

way

(b) new Stitching II: light green whisker is
stitched to violet whisker in a natural way

Figure 5.9: Stitching II cone effect

Stitching II addresses the issue of whiskers being hidden behind other whiskers (see Section 4.2) by adding
points of one cluster to another. Thus, these points end up belonging to both clusters. The improvements
that were made to this stage also focused on deriving parameters that were robust and applying more natural
stitchings. Specifically:

1. The parameter acceptableXdistance was kept, as it makes sense that a disappearing whisker should
be hidden in a whisker part nearby. However, acceptableYdistance was not retained. Instead, a cone
parameter was introduced, which has the same role as in Stitching I (see Figure 5.8a). The effect of this
change to Stitching II is shown in Figure 5.9. New Stitching II feels much more natural.

2. A maxAD parameter was also added, much like in Stitching I. Here, though, the angle difference is
between the floating whisker’s edge (whisker which is partially hidden) and the whisker part’s edge
which is stitched to it. This rules out stitching for clusters that are very differently oriented.

3. The highestRoot is fixed to a small value (e.g. 10), so all whiskers that are floating a little further from
the snout are stitched, if there is a valid candidate. To deal with obstructed snout parts (see Section 4.2),
whiskers that are still floating after Stitching II are not discarded, but are transferred to the next stage of
Parameter fitting. Instead, their distance from the snout is added to their length, to compensate. This is
done because it was discovered that whiskers that are far from the snout are always stitched if they are
indeed hidden, while noisy curve parts are just filtered out with minClusterSize. Thus, when a whisker
part is still floating at the end of Stitching II, it is due to an obstructed snout part.

5.3.3. Discussion
Improvements to Stitching I and II introduced some new parameters, while discarding other, inconvenient
parameters, as shown in Table 5.2. It was found that the new parameters can generalize much easier to the
whisker videos in the Erasmus MC dataset.

Furthermore, the Preprocessing parameters imdilate_value and cutoff can be fixed to small values (e.g
10) as small hair is not an issue anymore in the Stitching stages. This breakthrough can be attributed to the
introduction of the Radon-Transform check.

5.3. Stitching 37

Name Functionality Effect Range Step

Stitching I

cone sets cone condition’s angle more stitchings 7−20 2
radonThreshold sets radon transform less stitchings 20−40 5

intensity threshold
radonLength sets curve length relative to 10−30 5

of Radon Transform radonThreshold
d0 sets close clusters’ distance more stitchings 2−10 2

maxX
maxY

Stitching II

cone sets cone condition’s angle more stitchings 7−20 2
maxAD sets acceptable angle more stitchings 12−25 2

difference
acceptableYdistance

Table 5.2: Improved stitching parameters

6
Acceleration

Another serious drawback of WhiskEras is performance in terms of speed. It is coded in Matlab, a high-
level programming language which is great for developing algorithms and exploring multiple approaches.
However, when performance is desired, a compiled programming language has to be used.

It was decided to port the Matlab code, together with the improvements from Chapter 5, into C++. The
reason is that C++ can be low-level with great compiler-optimization support, while also incorporating some
fast libraries like STL and BOOST, which can speed up the application further. In a sense, C++ is a superset of
C [48]. Although writing the code in C was also an option, some of the libraries that were used during devel-
opment were only available in C++. Hence, the code was mostly written in C-style, while taking advantage of
some of the options that C++ offers.

Using C++ provides a big boost to the performance of WhiskEras, but, still, the code is run by a single core
on the CPU. Given that the goal is to reach real-time processing performance, parallelism is a feature that our
application must take advantage of. Thus, multi-core processing using OpenMP, as well as GPU acceleration
using CUDA were deployed for parallel execution.

Coding is an art by itself and writing a well-structured, sustainable, error-free and efficient code is a very
demanding task. This chapter does not aim to describe each and every detail of this long procedure, but
rather focuses on the most interesting and successful acceleration techniques which were used.

In the rest of this chapter, the algorithm’s parallelism and cost overview is summarized in Section 6.1.
Section 6.2 refers to acceleration techniques used in Improved Curve Tracing. Then, the alternative options
which were examined to speed up the Learning stage are pointed out in Section 6.3. Finally, some other
libraries which were used during the project are mentioned in Section 6.4.

6.1. Overview

Acceleration Profile algorithm Hotspot(s) located? Optimize

Target reached?
No

Yes

Figure 6.1: Acceleration process of WhiskEras

Accelerating an algorithm requires thorough profiling at all steps. After porting the whole code to C++,
the algorithm was profiled and the stages with the heaviest workload were targeted for speedup. This is a
repetitive procedure: the algorithm is profiled, its hotspots are located and then optimized, as depicted in

39

40 6. Acceleration

Figure 6.1. A good breaking point (i.e point to end the acceleration process) is either when the programmer
has reached their goal or further speedup is hard to achieve. At this point, there ought to be multiple stages
which take comparable time to complete.

This section focuses on how much parallelism can be extracted over the algorithm’s different stages as
well as their complexity. These are probably the most important aspects when it comes to speeding up an
algorithm and recognizing its limits.

6.1.1. Parallelism

Whisker Point
Detection

Preprocessing
Tracking

Learning

RecognitionParameter Fitting

Clustering

Stitching

Pixel-level processing Parameter fitting Tracking over time

Sequential

CUDA

OpenMP

Figure 6.2: Overview of Improved WhiskEras acceleration in each of its each stages and substeps.

Figure 6.2 depicts the acceleration performed in Improved WhiskEras in each of its stages. Pixel-level pro-
cessing consists of image processing operations. As expected, it involves massive parallelism which is taken
advantage of, using CUDA. The previous version of Clustering could be almost fully parallelized on the GPU.
The improved version, sadly, requires sequential code due to the way clusters are formed. By reformulating
part of the problem, though, it was possible to move some of the costly operations to the GPU. In Stitch-
ing, multiple cores are used to compute rotation data, stitching scores (Stitching I) and also rotate clusters
(Stitching II). Next, Parameter fitting uses whisker-level parallelism to perform non-linear fitting on each of
the whiskers, using OpenMP. Tracking and Recognition are not particularly costly substeps, so they were not
investigated for further speed-up. Learning though, involves training SVMs, using a a one-vs-one classifi-
cation strategy [6]. This constitutes an especially heavy workload, so we ended up using an efficient library
(libLinear) as well as multicore parallelism to train each instance of the one-vs-one classifiers.

The CUDA kernels used to compute results on the GPU parallelized the image-processing operations to
N threads, where N =W i d th ×Hei g ht of the image. This was done by using 2D blocks of threads. The only
exceptions are the separable convolutions (Section 6.2.1) where the optimized code from NVIDIA uses less
threads to compute more elements per thread.

6.1.2. Complexity
The computational complexity of each substep is given in Table 6.1. This is not necessarily indicative of how
much execution time each stage takes, as some steps involve more costly operations. It does, however, reveal
how the problem scales. Important sizes are the image dimensions n, the guassianKernelSize m (whisker-
point detection parameter), the number of whisker points found u, the number of clusters formed before
stitching I p and before stitching II q and the number of whiskers found w . Indicative values, for the above
sizes, are: n = 307200, m = 20, u = 6000, p = 70, q = 30 and w = 15. The Whisker-Point Detection complexity
can be lowered using special techniques, as will be explained in Section 6.2.1.

The image dimensions usually also indicate a larger number of whisker points and clusters. Note that this
is true for the setups in Figure 2.4. However, this might not always be true: it largely depends on the resolution
and how much the image is focused on the whiskers. In general, the more whiskers showing in the video, the
larger the above sizes will get.

Naturally, stages that are performed in parallel decrease the time complexity, to a theoretically smaller
one. For instance, Preprocessing and Whisker-Point Detection would have a complexity of O (1) and O (m2),
respectively, if the GPU was able to run N threads at once. The same applies to the Learning step: if K CPU

threads are available, the complexity would be O (dw2

K e). This is unrealistic though because: i) GPUs cannot
run that many (millions) threads in parallel at once even at full occupancy and ii) there are other limiting
factors such as memory bandwidth, throttling, control hazards etc. that apply to both the CPU and the GPU.

6.2. Improved Curve Tracing 41

Stage Complexity

Preprocessing O (n)
Whisker-Point Detection O (n ·m2)

Clustering O (u · l og (u))
Stitching O (p2 +q2)

Parameter fitting O (w)
Tracking O (u ·w)
Learning O (w2)

Recognition O (w)

Table 6.1: Stage complexities

In these cases, the true complexity lies somewhere in between.

Consequently, it is fair to say that the algorithm’s cost is not too sensitive to increasing image dimensions,
because image processing is performed on the GPU entirely. On the other hand, more whisker points, clusters
and whiskers would impact cost more heavily, since the corresponding stages do not exhibit the same amount
of parallelism.

6.2. Improved Curve Tracing
Improved Curve Tracing consists of the Whisker-Point Detection and Clustering steps. It is essentially Steger’s
algorithm with the improvements described in Section 5.2. Following are the most crucial techniques which
were used to speed up these two steps.

6.2.1. Separable Convolution

Extracting the whisker centerlines requires computing the Hessian Matrix. To do this, we need to convolve
the image with 5 different Gaussian kernels: Gx , Gxx , Gx y , Gy , Gy y , where Gi is the Gaussian derivative along
the i axis and Gi j is the Gaussian derivative along the i axis, followed by the derivative in the j axis. This is
the most expensive part not just of this stage, but of the entire algorithm. As shown in Table 6.1, it yields a
O (N ·M 2) complexity, where m = 20 is the Gaussian Kernel size. In comparison, the rest of the steps in center-
line extraction have an O (N) complexity and were found to be about 100 times faster, when run on the GPU,
compared to the convolutions, on the tests run.

Column Kernel

Image

Intermediate output

Row Kernel

Output

Figure 6.3: Separable convolution of a 5×5 image with a 3×3 kernel

When a matrix (in our case, the Gaussian kernel) has a rank of 1, then by using SVD (Singular Value De-
composition), two vectors can be found whose outer product is equal to this matrix. In this case, the kernel

42 6. Acceleration

is separable. A separable kernel example is3 6 9
4 8 12
5 10 15

=
3

4
5

× [
1 2 3

]
All kernels Gx , ..., Gy y used to compute the Hessian Matrix are separable. This means that instead of carrying
out normal convolutions, we can perform spatially separable convolutions and obtain the exact same results
[54]. In separable convolution, the input image is first convolved with the row vector across all its rows to pro-
duce an intermediate image. Then, the new image is convolved with the column vector across all its columns
to output the final result. The order (column-row convolution) can be reversed. This is demonstrated in
Figure 6.3. The total complexity is now reduced to O (n ·2m) (for square kernels - as in our case).

These separable convolutions are performed in the GPU using CUDA. The Separable Convolution sam-
ple from the NVIDIA CUDA Toolkit Samples [39] was adopted to carry out all 5 of the separable convolutions.
The toolkit provides extremely optimized code such as loading halo elements into the GPU’s shared memory.
These are the elements of the image that are used multiple times during convolution and, thus, can benefit
from instant memory accesses. Shared memory provides faster accesses than the GPU’s default global mem-
ory. Using this toolkit saves the programmer’s valuable time, not having to come up with these optimizations
on their own. In addition, the sample was modified to handle variable-sized shared memory and even-sized
vector-kernels due to the application’s needs.

6.2.2. Sorting on the GPU
According to Algorithm 3, there is a loop, iterating over the second directional derivative values S of the
whisker points, from the largest negative value to the largest positive value. Initially, this was done by lo-
cating the minimum at every step of the loop. Naturally, this approach proved to be really slow. Hence, it
was decided to sort these values before entering the loop. Then, the minimum could be accessed by sim-
ply accessing the next element of the sorted array, at each iteration. This is why the complexity of this stage
(Clustering) is characterized by the radix-sort (average) complexity of O (u · l og (u)), where u is the number of
whisker points. Then, this was taken a step further by carrying out sorting on the GPU. For that, the extremely
powerful and efficient CUB library [1] was used. CUB’s DeviceRadixSort class was used to sort the S values for
all whisker points which were candidate starting points to form a cluster. In other words, for all points which
satisfy S <−tr 2. Overall, this provided a significant speedup to the Clustering stage.

6.2.3. Transfering Data Between Host and Device

Pageable Data Transfer Pinned Data Transfer

Device

Host

Pageable
Memory

Pinned
Memory

Host

Pinned
Memory

DRAM

Device

DRAM

Figure 6.4: Pageable data transfer vs Pinned data transfer [26]

In order to optimize some of the transfers between the Host (CPU) and the Device (GPU), pinned memory
on the side of the Host was used [26]. Specifically, some fixed-sized structures, like the preprocessed image,
were allocated in pinned memory on the side of the Host. This increases the bandwidth of repetitive transfers

6.3. Training SVMs 43

between the Host and the Device considerably. As illustrated in Figure 6.4, when data is allocated on the Host’s
pageable memory, an additional step is required to transfer it to the Device. This extra step is eliminated when
the data is in the Host’s pinned (page-locked) memory.

Figure 6.5: CUB DeviceSelect functionality [1]

Array elements are discarded according to the binary values of another equally sized array of flags.

Furthermore, the whisker points’ angles and second directional derivative values are required in the Clus-
tering stage. Originally, these were transferred to the Host in arrays with as many entries as image pixels.
Non-whisker point pixels were marked with some pre-defined value e.g −1, for distinction. Again, this was a
naive approach. Instead, another image-sized array was used on the GPU to indicate the presence of whisker
points. Then, CUB’s DeviceSelect class was used to discard non-whisker points from the arrays of interest and
keep whisker points only. The functionality of this class is illustrated in Figure 6.5. Consequently, the size of
these results, which are transferred from the GPU to the CPU, decreased dramatically.

6.3. Training SVMs
During the Learning step, the SVM is trained over a randomized subsample of the data (frames) seen so far.
This does not occur at every frame. Its frequency is selected by the user. Testing and evaluation so far has
shown that once every 5 frames is a good choice, but it could potentially be lowered to every 10-20 frames.
As expected, training is costly in terms of execution time, as the SVM could be using data from about 500
previously seen frames (again, this is user-selectable). Four different libraries were employed for training
(and testing) the SVM. Results indicate there is a clear winner in terms of performance, the libLinear library.
Furthermore, it provides the most accurate results, only contested by libSVM.

libSVM This is one of the first state-of-the-art libraries for SVMs [15]. It provides several options such as
kernel type and one-vs-one multi-class classification during training. The radial-basis function (RBF) kernel
was extensively tested for a wide range of parameters, but was not found to provide better results than a
linear-function kernel, used in WhiskEras. Furthermore, this library is fairly inefficient, even when modified
to perform multi-class training in parallel, compared to other options.

gpuSVM This library [36] performs training (and testing) on the GPU. However, it was quickly realized that
this approach is more suitable towards training large datasets and also testing a lot of data at once. The online
method that is required in WhiskEras demands training multiple binary classification problems, since there
are many classes/whiskers. As a result, running all these trainings on the GPU, one after another, is inefficient.
It is rather desired to split the multi-class problem into multiple one-vs-one binary problems that are trained
in parallel (task-level parallelism).

sgdSVM A very different approach to solving the SVM classification problem is followed by Stochastic Gra-
dient Descent SVM. Stochastic Gradient Descent (SGD) is traditionally used in Neural Networks. This library
performs optimization over a loss function by using a learning rate and SGD to construct the SVM decision
boundaries. A good explanation of this method can be found in [5]. It was chosen because of its efficiency,
reported to surpass even the performance of libLinear [10]. However, the quality of the results was far from
satisfactory. It should be noted that this method could be tested more extensively to see if it could indeed be
a good alternative option. For this project, libLinear was found to be good enough.

44 6. Acceleration

libLinear From the authors of libSVM, libLinear [22] offers more options to SVM Classifiers which use linear
kernels, while being much faster. This is the best choice that was tested and it does not lag behind the other
WhiskEras stages in performance. Note that the out-of-the-box multi-class solution offered is one-vs-all,
which gave substantially worse results. Instead, multiple one-vs-one classification problems were created
manually and were trained in parallel using OpenMP.

6.4. Other Libraries
Code efficiency often comes down to using fast libraries. A few other libraries which were used during the
project are mentioned below.

6.4.1. OpenCV
The OpenCV libary [11] is a popular Computer Vision and Machine Learning library, with a C++ interface,
among others. It was used in this project to read video frames and perform image processing both sequen-
tially and in parallel on the GPU (it has a CUDA module), particularly during Preprocessing. Its performance
and ease of use make it a an excellent choice, although it does have a slight overhead when reading frames
from a video. Even though this can probably be dealt with using clever tricks, it was not that significant to the
total algorithm’s cost.

6.4.2. Eigen
The Eigen library [25] is an efficient and easy to use linear-algebra library for C. It performs vectorized oper-
ations on vectors and matrices, while using cache and loop-unrolling optimizations. It also provides useful
numerical solvers and related algorithms.

Eigen was extensively used in this project during multiple stages. Mostly, it was employed to perform
operations on the clusters’ whisker points, such as computing rotation data during Stitching. Some of its
out-of-the-box algorithms were also used during non-linear fitting (Parameter fitting), e.g QR decomposition
using the householder function.

7
Evaluation

The improvements on WhiskEras look good both on paper and on visual inspection of a limited number of
frames. However, such an evaluation, which was used during development, is insufficient. A more systematic
way of testing the performance of the Improved WhiskEras is required. This is the topic of Section 7.1. Then,
in Section 7.2, the performance of the new version of WhiskEras, accelerated as described in Chapter 6, is
evaluated on powerful hardware. Where appropriate, comparisons to previous versions are made and timing
profiles are given.

7.1. Algorithmic Improvements
Overall, the improvements are believed to have made the algorithm more consistent in locating whiskers.
This is expected to have a positive impact on accuracy (less false positives) and sensitivity (less false nega-
tives). This does not mean that the improved version outperforms the original version at every single frame.
On the contrary, it is often the case that the improvements output similar results to before, especially for
videos of the setup depicted in Figure 7.1b. However, when more whiskers are available for tracking (Figure
7.1a) and intersections are frequent, results are much more consistent in the improved version. Furthermore,
the algorithm appears to perform well under a general set of parameters, for different video settings.

During development, visual inspection was used to evaluate the enhanced quality of the results. However,
in order to quantitatively verify and report the improvements, an automated way had to be devised to scan
through large video segments and provide strong indication of the superiority of the advanced detection
module. Fortunately, Betting [9] has already come up with a few criteria. These make use of the tracking
module to verify that WhiskEras is correctly following whisker movement. Thus, we will use them to evaluate
the improved Whiskeras’ performance.

7.1.1. Video Selection and Parameter Tuning
The videos used to evaluate the improvements are shown in Figure 7.1. Video A’s setup makes it feasible to
track up to about 18 whiskers. This presents challenges, as whiskers often intersect or hide each other. At the
same time, the whisker that is shown intersecting with multiple whiskers in a very different angle than neigh-
bouring whiskers, at the middle of the frame, is probably a superciliary whisker. These whiskers stem from
the eyes (see Figure 2.1) and they are not of particular interest to the neuroscientists. However, it was deemed
important that they are located accurately, otherwise their parts may be mixed up with other whiskers, in the
Stitching stage. In the final results, they can be easily removed or disregarded.

In Video B, we only track the whiskers on the right side of the snout (left on the image). The camera is not
focused on our area of interest and as expected, less whiskers are visible. This makes for a less compelling
candidate to the improvements made, as intersections and occlusions are less frequent. Regardless, it is still
interesting to report whether there is any meaningful difference between the two versions, the original and
the improved one.

The detection parameters for both the improved and the original WhiskEras were tuned using i) visual in-
spection and ii) tracking results over a short duration of the video. Visual inspection provides a good basis for
choosing good parameters. Tinkering those base values using tracking did not affect the results significantly,
as there are usually trade-offs: a whisker is detected more frequently over another. This makes a strong case

45

46 7. Evaluation

(a) Video A (b) Video B

Figure 7.1: Videos used for evaluation

for the limited potential in tuning parameters. In particular, just a small amount of tuning to a few parame-
ters which can be affected by different video settings is sufficient. Note that the tracking parameters were not
explored at all. Although this could yield better results, it was outside the scope of this thesis. Nevertheless,
both versions will be equally evaluated using the same tracking parameters.

For the most part, the parameters used were the same for both versions. Exceptions are parameters that
are not present in both versions or parameters that are tuned differently with the introduction of the im-
provements. In the improved version, the parameters used were the same both for Video A and Video B. On
the other hand, the original version required more fine-tuning, i.e slightly different parameters for Videos A
and B. For the full list of the parameters selected for each video, for which evaluation was performed, see
Appendix A.

It is worth mentioning that the Mean Squared Error (MSE) criterion, in Parameter Fitting (see Section
4.2.6, maxMSE parameter), was withdrawn in both versions. The MSE is the difference between the coor-
dinates of the points found during Clustering and the coordinates of the corresponding points in the fitted,
2nd degree curve, obtained during Parameter Fitting. Even though it was a counter-measure against erro-
neous whiskers (weirdly shaped), it was found to often be filtering out legitimate whiskers, making tracking
harder. Additionally, in the improved version, WhiskEras rarely makes outright mistakes during detection, as
was previously frequent.

7.1.2. Setting up Tracking
The algorithm’s tracking module is particularly sensitive to the detection results of the first video frame. It sets
up a number of whisker tracks, i.e certain whiskers to follow during the video, based on the whiskers found
in the first frame and then attempts to rediscover the same whiskers in the rest of the video, updating these
tracks. For example, if 15 whiskers are discovered in the first frame, WhiskEras will only attempt to match
whiskers found in consecutive frames to the 15 pre-constructed tracks. Even if 17 whiskers are found on a
following frame, at least 2 whiskers will be discarded (more if they are not matched to the existing tracks).
This is a design flaw because the algorithm i) does not guarantee 100% accuracy and sensitivity in detecting
whiskers, ii) a whisker may be hidden in the first frame and emerge in a subsequent frame.

A solution that was tested was establishing a small bootstrap period in which the algorithm would create
new whisker tracks every time a newly detected whisker was not matched to a track. At the end of this period,
the algorithm would discard all tracks with low detection rate and keep the rest. This solution, however,
created new problems as the tracking algorithm used in the first period of the video is weak. That is because
the SVM classifier is not launched before acquiring a minimum amount of data, i.e going through a minimum
number of frames. Thus, more tracks are created which are difficult to track later on.

This tracking issue creates the following problems in the comparison of the original WhiskEras and the
improved version:

1. The WhiskEras instance which does a better job at the first frame may have the edge, because it does
not create faulty tracks or produces more accurate tracks. The improved WhiskEras is believed, based
on visual inspection, to be more consistent in locating more whiskers which have the correct shape and

7.1. Algorithmic Improvements 47

also filtering out erroneous whiskers. However, this does not mean that there are no single frames in
which it can get outperformed by the original version.

2. Comparing two different numbers of tracks makes direct whisker-to-whisker comparison difficult. Tracks
may be mixed up in the duration of the video and corrupt detection rates etc, which will be used
as evaluation criteria. It is much easier to make a comparison on the same whisker tracks (i.e the
whisker tracks begin from the same starting point) and deduce which WhiskEras version performs bet-
ter whisker-by-whisker.

3. It is unclear whether following more tracks is an advantage. A track can begin from a whisker that is not
actually there. Then, it could be a faulty track for the rest of the video (occasionally mixed up with true
whiskers) or at some point be matched to a previously hidden whisker.

This first frame limitation is a drawback at the core design of WhiskEras’s tracking module which should be
resolved in future work. For now, though, we would feel that our results can reflect a more fair comparison if
the starting point is the same for both versions and that the created tracks are valid. This way, we can measure
how the new instance of WhiskEras follows those tracks, relative to the original one. The improvements, do
not increase the number of whiskers found, for the most part anyway, so this method will not miss out on
any important aspects. Thus, for each experiment, the tracks were set up using the improved WhiskEras on
the first frame (having checked that the whiskers found were valid) and then were transfered to the original
version for the same run.

7.1.3. Criteria
The criteria used to compare the quality between the original and the improved WhiskEras are the following:

1. Detected whiskers per frame.

2. Detection ratio.

3. Angle tracking quality.

4. Signal-to-noise ratio.

Detected Whiskers Per Frame
The first criterion to measure success is the number of detected whiskers per frame. This would ideally be
fixed during the course of a video, but whiskers are often hidden behind other whiskers or detection fails.
However, it should be fairly stable and not oscillate too much, particularly when there is only slight whisker
movement. Thus, two metrics are measured with this norm: i) the variance of whiskers detected and ii) the
mean number of whiskers detected, during the course of the video. The improvements made to WhiskEras
mainly target consistency. In other words, detecting a constant number of valid whiskers, while minimizing
the number of erroneous whiskers. This corresponds to less variance. Although a larger number of whiskers
would indicate greater sensitivity, oscillating much higher than the average number of whiskers found usually
means false positives. This was visually observed for the original WhiskEras algorithm. False positives can
make the job of tracking more difficult, as they can potentially get confused with valid whisker tracks.

Figure 7.2 shows the histogram of the number of detected whiskers per frame, from the first to the last
frame of video A. In other words, it depicts in how many frames a certain number of whiskers were detected.
It is apparent that the Improved WhiskEras performs better at detecting whiskers, as the detected whiskers
number is narrower around 17-18 whiskers. The average number of whiskers detected is 17.33 and the stan-
dard deviation is 1.13 for the entire course of the video, for the improved version. Compared to 17.38 and
1.54, respectively, for the original version, the improved version shows a 26.7% decrease in standard devia-
tion. Again, this translates to more robust detection. The slight decrease in the mean number of whiskers
should not be concerning, as higher variance dictates higher levels of noisy whiskers being detected.

Different results were observed for Video B. Figure 7.3 shows that, on average, more whiskers seem to be
detected in Improved WhiskEras, as the distribution is centered around a higher number of whiskers. This
was also confirmed by actual numbers: average number of whiskers detected per frame was 13.67, with a
standard deviation of 1.19 in Improved WhiskEras. The respective numbers for Original WhiskEras were 12.56
and 1.19. Though there is no impact on variance, indeed more whiskers are detected in the improved version.
This means the additional whiskers that are detected are probably valid. More can be inferred by looking at
the rest of the criteria, as will be discussed below.

48 7. Evaluation

11 12 13 14 15 16 17 18 19 20 21 22 23
Number of detected whiskers

0

2000

4000

6000

8000

10000

12000

Nu
m

be
r o

f f
ra

m
es

Number of detected whiskers per frame histogram

(a) Original WhiskEras

11 12 13 14 15 16 17 18 19 20 21 22 23
Number of detected whiskers

0

2000

4000

6000

8000

10000

12000

Nu
m

be
r o

f f
ra

m
es

Number of detected whiskers per frame histogram

(b) Improved WhiskEras

Figure 7.2: Histogram of detected whiskers per frame in Video A, entire video segment

7 8 9 10 11 12 13 14 15 16 17 18
Number of detected whiskers

0

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f f
ra

m
es

Number of detected whiskers per frame histogram

(a) Original WhiskEras

7 8 9 10 11 12 13 14 15 16 17 18
Number of detected whiskers

0

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f f
ra

m
es

Number of detected whiskers per frame histogram

(b) Improved WhiskEras

Figure 7.3: Histogram of detected whiskers per frame in Video B, frames 5021-30000

Detection Ratio
The detection ratio of each whisker indicates in what percentage of the frames a whisker was successfully
tracked. 18 whiskers were tracked in Video A and 13 in Video B. The results for each individual whisker and
the total average are depicted in Table 7.1.

For Video A, although there are significant differences between individual whiskers, the total average dif-
ference (0.89 to 0.87) is not substantial. These differences can be attributed to different detection results
which cause the whisker tracks to take very different trajectories in the two versions. Thus, whisker 1, for ex-
ample, is detected less than half of the time in the original version, while it is detected almost in every frame,
in the improved version. On the other hand, whisker 3 is detected much more consistently in the original
version. This could have to do with how these whisker tracks evolve over time. Even though their starting
points are the same, they may end up representing a very different whisker.

In Video B, the detection ratio is 5% better overall, which means that the increased number of whiskers
found, per the previous criterion, are successfully matched to more tracks. While this could be a good thing,
not much can be said about the accuracy of the detections or tracking quality without diving deeper. This will
be done using the next criterion.

Angle Tracking Quality
The previous criteria provide a quantative way of evaluating improvements. However, it is still unclear whether
the algorithm does fit the correct whiskers to the tracks. The angle is the most important parameter for the
neuroscientists, representing each whisker. Hence, its trajectory was used to evaluate the tracking quality.
In particular, the angular change of the whiskers was examined, over the course of the videos. When this

7.1. Algorithmic Improvements 49

Whisker ID

Video A Video B

Original Improved Original Improved

1 0.48 0.97 0.54 0.92
2 0.99 0.97 0.99 0.87
3 0.92 0.72 0.83 1.00
4 0.89 0.81 0.98 0.86
5 0.96 0.77 0.82 0.95
6 0.99 0.96 0.96 0.86
7 0.88 0.91 0.60 0.91
8 0.82 0.94 0.94 1.00
9 0.86 0.72 0.92 0.87

10 0.69 0.86 0.82 0.50
11 0.89 0.82 0.99 0.95
12 0.82 0.99 0.99 0.94
13 0.70 0.95 0.77 0.98
14 0.93 0.76 - -
15 0.84 0.95 - -
16 1.00 0.97 - -
17 1.00 0.99 - -
18 0.95 0.98 - -

Average 0.87 0.89 0.85 0.90

Table 7.1: Detection ratio on videos A and B, original and improved versions of WhiskEras

change is too vast and sudden, it is clear that detection and/or tracking fail. During whisking, in particu-
lar, the whiskers quickly oscillate and provide an extra challenge to the algorithm. These are also the most
interesting movements, for the neuroscientists, so it is important that the whiskers are followed accurately.

The angular tracking plots of a segment (2500-3500 frames) from Video A are provided below. For clarity,
the 18 whisker tracks were divided into three separate plots for each version of WhiskEras. To further facilitate
inspection, the whiskers were sorted in terms of their average angle and proximal whiskers, in terms of angle,
were put in different plots.

In Figure 7.4, the trajectory of all whiskers’ angles are depicted. For whiskers 1-6, the results of the original
version are shown in Figure 7.4a, whereas the results for the improved one are shown in Figure 7.4b. The
improved version showcases better tracking quality, in general. Specifically, whisker 6 is tracked more reliably
in Figure 7.4b. Furthermore, whiskers 4 and 5 seem to be mixed up in the original version.

For whiskers 7-12, the results also favour the improved version. In particular, whiskers 11 and 12 are
tracked better in Figure 7.4d, compared to Figure 7.4c. However, whisker 10 appears to be very noisy in the
improved version. As mentioned before, the improved version does not necessarily guarantee that every
single whisker would be located and tracked better. Also, the tracks that correspond to a certain whisker
might have diverged for the two different versions.

Finally, Figure 7.4e demonstrates even worse problems for the original version. Whisker 16’s angle seems
smoother in Figure 7.4f, compared to Figure 7.4e. In addition, whiskers 17 and 18 are tracked quite well in
the improved version, while the original version contains a lot of noisy points which do not appear to be
connected at all.

As a final remark, the improved WhiskEras does enhance tracking majorly for a few of the whiskers. This
does not mean that it is necessarily better at every single point of tracking, nor that it makes tracking perfect.
It certainly helps though, particularly for difficult to trace, intersecting whiskers. Tracking quality results were
also obtained for Video B and can be viewed in Appendix B. Enhanced tracking quality was also observed
there, limited to fewer whiskers, but fewer whiskers are tracked in Video B in any case (13 as opposed to 18 in
Video A).

50 7. Evaluation

2600 2800 3000 3200 3400
Frame Index

1.0

1.5

2.0

2.5

3.0

W
hi

sk
er

 A
ng

le

whisker 1
whisker 2
whisker 3
whisker 4
whisker 5
whisker 6

(a) Original WhiskEras, whiskers 1-6

2600 2800 3000 3200 3400
Frame Index

1.0

1.5

2.0

2.5

W
hi

sk
er

 A
ng

le

whisker 1
whisker 2
whisker 3
whisker 4
whisker 5
whisker 6

(b) Improved WhiskEras, whiskers 1-6

2600 2800 3000 3200 3400
Frame Index

1.0

1.5

2.0

2.5

3.0

W
hi

sk
er

 A
ng

le

whisker 7
whisker 8
whisker 9
whisker 10
whisker 11
whisker 12

(c) Original WhiskEras, whiskers 7-12

2600 2800 3000 3200 3400
Frame Index

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

W
hi

sk
er

 A
ng

le

whisker 7
whisker 8
whisker 9
whisker 10
whisker 11
whisker 12

(d) Improved WhiskEras, whiskers 7-12

2600 2800 3000 3200 3400
Frame Index

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

W
hi

sk
er

 A
ng

le

whisker 13
whisker 14
whisker 15
whisker 16
whisker 17
whisker 18

(e) Original WhiskEras, whiskers 13-18

2600 2800 3000 3200 3400
Frame Index

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

W
hi

sk
er

 A
ng

le

whisker 13
whisker 14
whisker 15
whisker 16
whisker 17
whisker 18

(f) Improved WhiskEras, whiskers 13-18

Figure 7.4: Angle tracking in Video A

Signal-to-Noise Ratio
An additional criterion to measure tracking/detection quality is the signal-to-noise ratio of the whisker an-
gles. This was also estimated by tracing the whisker angle. As mentioned before, vast and sudden angle
variations indicate the presence of noise. As in [9], this was computed as follows: i) The angle parameter of
each whisker was smoothed over time using the smoothdata function of MATLAB. A window size of 10 frames
was used, with a Savitzky-Golay filter, which is appropriate for quick variations of data, since whisker angles
change rapidly during whisking. ii) The smoothed data was subtracted from the actual data. iii) The outcome
was considered as the noise, while the smoothed data was the signal. Then, the snr function was used to

7.1. Algorithmic Improvements 51

compute the SNR of each whisker.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Av.
Whisker index

0

10

20

30

40

50
SN

R
(d

B)

Original WhiskEras
Improved WhiskEras

Figure 7.5: Bar diagram of SNR (in dB) of each whisker over video A

For Video A, the SNR of every tracked whisker is depicted in Figure 7.5. The Improved WhiskEras outputs
a higher SNR for most of the whiskers, with only two exceptions. For some of the whiskers, e.g 2, 4, 7, 8, the
improvement is significant. For others, it is only slight. The overall average SNR is 43.20 dB for the improved
version and 40.97 for the original version, as shown in the rightmost column of Figure 7.5. The benefits
are not groundbreaking, but as expected, whiskers which are probably intersecting are tracked much more
consistently. The tracking quality was also enhanced for almost all whiskers, according to the criterion. This
does not necessarily show a revolutionary breakthrough to the existing algorithm. Instead, it illustrates how
the existing algorithm was fine-tuned through the improvements made in this thesis. Furthermore, both
Video A and Video B were processed using the same parameters in the improved version. This makes for a
tracking system which can conveniently be used in practice.

7.1.4. Discussion
After the extensive evaluation of Improved WhiskEras, some afterthoughts are in order. Specifically, the fol-
lowing findings are reported:

Finding 1 The improvements made to WhiskEras which targeted its shortcomings in video setups such as A
(Figure 7.1a) did pay off. Specifically, results shown in the previous subsections illustrated superior detection
and tracking performance. The modifications also enhanced the performance in the other commonly used
experimental setup in Video B (Figure 7.1b), though to a smaller extent. This is natural, as less whiskers are
visible in Video B. Overall, Video-A-style setups pose more challenges to the detection algorithm.

Finding 2 The different design choices of the whisker-detection module can be limited to a few parameters.
Especially the new parameters which were introduced to replace others are much more robust to different
video conditions. Results for both Video A and Video B were obtained using the same configuration in the
Improved version (see Appendix A). This is great news for whisker-tracking users who want to get the best out
of WhiskEras without spending too much time tinkering. Although exhaustive parameter exploration was not
performed, manual tuning, as well as algorithmic analysis indicates that perfect detection is not within the
reach of WhiskEras, due to the limitations of Steger’s algorithm. For that, other methods should be explored,
such as learning-based approaches. However, WhiskEras has already showcased great tracking performance,
compared to competition [9], through its powerful Tracking - Learning - Detection technique. It is time it

52 7. Evaluation

was used in practice by neuroscientists, who can then expertly evaluate its adequacy. The acceleration of
WhiskEras provides the opportunity for that, as will be shown next.

7.2. Algorithm Acceleration

The videos used to evaluate performance are, again, the ones from Figure 7.1. The hardware utilized consisted
of an AMD EPYC 7551 32-Core Processor @ 2.0 GHz, with 64 threads CPU and an NVIDIA Tesla V100-PCIE
GPU. The specification of the GPU is given in Table 7.2. The C++ compiler was run with the -O3 flag to
perform aggressive optimizations such as loop unrolling and vectorized operations, which vastly improve
performance.

NVIDIA Tesla V100-PCIE

On-Board DRAM 32.5 GB
Memory Bandwidth 1134 GB/s

Max Clock Rate 1.38 GHz
Memory Clock Rate 877 MHz
Memory Bus Width 4096-bit

L2 Cache Size 6.29 MB
Multiprocessors 80

CUDA cores 5120
Max Threads/MP 2048

Table 7.2: GPU Specifications

7.2.1. Speedups

Execution times were obtained by running the algorithm on Video A and averaging the time taken between
frames 3000 to 4000 to extract the processing time per frame. The reason is that by frame 3000, the SVM
Classifier already has plenty of data to train on (more data means more training time). Results for each stage
are shown in Table 7.3. Along with MATLAB, three different versions of the accelerated code were run: a
completely sequential (C++), a C++ with CUDA version and the final version which also incorporates OpenMP.
The corresponding speedups per stage are depicted in Table 7.4 and Figure 7.6.

Prep. Point D. Clust. Stitch. Param. Track. Train. Transfers Total

MATLAB 12.3 23.0 39.7 520.2 421.3 123.0 140.6 - 1284.7
C++ 23.4 232.1 3.9 4.0 12.1 2.9 9.1 0 3081

+ CUDA 0.9 1.5 3.2 3.9 12.0 1.9 9.9 2.1 36.6
+ OMP 0.9 1.5 2.5 2.7 3.3 1.9 2.0 1.2 17.1

Table 7.3: Execution time (milliseconds) per frame for different versions of WhiskEras

Video Prep. Point D. Clust. Stitch. Param. Track. Train. Total

C++ 0.53 0.10 10.09 128.79 34.78 43.15 15.43 4.17
+ CUDA 13.47 15.38 12.38 134.39 35.17 64.02 14.16 35.06
+ OMP 14.00 15.58 16.02 193.71 126.94 65.44 69.63 74.96

Table 7.4: Speedups of accelerated versions over MATLAB

7.2. Algorithm Acceleration 53

PREP P.DET. CLUST STITCH PARAM TRACK TRAIN TOTAL
0

25

50

75

100

125

150

175

200 C++
C++/CUDA
C++/CUDA/OMP

Figure 7.6: Bar diagram of the accelerated versions’ speedups over MATLAB

First of all, it is observed that the speedup obtained from C++ alone is not massive (4.17x). Observing
Table 7.3, it can be seen that both Preprocessing and Whisker-Point Detection stages are slower. In particular,
the Whisker-Point Detection stage is 10x faster in MATLAB. That is because MATLAB was already optimized
to use parallel execution both on the CPU and the GPU. By executing everything sequentially on the CPU,
we are not taking advantage of the data-level parallelism, present in the image-processing operations which
are performed in these stages. This is reflected in Figure 7.7b, where Point Detection heavily dominates total
execution time. The good news is that Stitching and Parametrization, which previously were accounting for
more than 70% of the execution time (see Figure 7.7a), are now substantially faster, just from porting the code
to C++.

Introducing CUDA into the pipeline speeds up the stages which exploit data-level parallelism profoundly,
compared to the pure C++ version, for a total speedup of 35.06x. Furthermore, the Whisker-Point Detection
step was originally running at comparable speed to MATLAB, even with CUDA. This was significantly im-
proved (about 10x) by the Seperable Convolution optimization, seen in Section 6.2.1. By observing the new
execution time profile (Figure 7.7c), it is clear that the algorithm’s bottleneck is once again moved to Param-
eter Fitting and Training. Note that the Transfers stage refers to the transfer of data between the CPU and the
GPU. This is an unavoidable overhead, also present in MATLAB, but is not measured independently there,
hence the "− " in Table 7.3. Rather, it is accounted for in other stages which either use the GPU or read from
the GPU.

The final version of the accelerated Improved WhiskEras also makes use of OpenMP to take advantage of
task-level parallelism on the CPU. The speedup now improves further for the previously troubling stages, to a
total of 75.96x over MATLAB. It should be mentioned that the choice of the libLinear library was also pivotal as
it makes training about 10x faster than using, e.g libSVM. Although the Parameter Fitting and Stitching stages
appear to be slightly more expensive than the rest, the percentage pie chart is now much more balanced
(Figure 7.7d). In other words, to further accelerate the algorithm, we would need to speed up multiple stages
by a ∼ 10x factor. For example, even if the Parameter Fitting and the Stitching stages were two times faster,
the total execution time would still be around 0.014 seconds per frame (down from 0.017), which is still far
from real-time processing. From this point, it is significantly harder for the programmer to extract meaningful
speedups.

54 7. Evaluation

Preprocessing
Point Detection
Clustering
Stitching
Parametrization
Tracking
Training

(a) MATLAB execution time percentage of each stage

Preprocessing
Point Detection
Clustering
Stitching
Parametrization
Tracking
Training

(b) C++ execution time percentage of each stage

Preprocessing
Point Detection
Clustering
Stitching
Parametrization
Tracking
Training
Transfers

(c) C++/CUDA execution time percentage of each stage

Preprocessing
Point Detection
Clustering
Stitching
Parametrization
Tracking
Training
Transfers

(d) Final version’s execution time percentage of each stage

Figure 7.7: Execution time percentage of each stage

7.2.2. Problem Scaling
Different videos yield different processing times. A comparison of the execution times of the videos shown in
Table 7.5 is visualized in Figure 7.8. It can be seen that processing Video B is much faster than Video A.

This comparison can be useful in understanding how performance scales with problem size and how
algorithmic complexities, introduced in Section 6.1.2, affect performance. To put the problem into context,
Video A frames consist of 640×480 pixels, compared to the 480×512 pixels of Video B. By analyzing the results,
it was found out that about 8000 whisker points are detected in every frame of Video A, compared to about
4000 points in Video B. Furthermore, the difference in number of clusters before Stitching I and II is not that
vast to have a clear impact, while the number of whiskers found on average is only 10-20% lower in Video B.

Beginning with image dimensions, the number of pixels (of the upscaled image) which are processed
during Preprocessing and Whisker-Point Detection are about 20% reduced in Video B, compared to Video A.
As expected, this is hardly noticeable in their execution times, since these stages are massively parallelized
on the GPU.

The number of points discovered is roughly double in Video A. Although we were not surprised to see
the Clustering cost drop significantly, the Stitching, Parametrization and Tracking stages also benefited. That

7.2. Algorithm Acceleration 55

Video Prep. Point D. Clustering Stitching Param. Tracking Training Transfers Total

A 0.9 1.5 2.5 2.7 3.3 1.9 2.0 1.2 17.1
B 0.8 1.4 1.6 2.0 2.0 1.0 1.6 0.8 12.2

Table 7.5: Execution time (milliseconds) per frame for two different video setups (accelerated)

is because there are multiple linear-algebra operations on these points during the aforementioned stages.
Even though the difference in number of clusters is not worth mentioning, the number of points alone does
have a substantial impact on execution time. Thus, less pixels dedicated to the area of interest, as in Video B
contributes to faster processing. This is also an argument against increasing image upscaling by too much,
as it would heavily affect the compute load.

PREP P.DET. CLUST STITCH PARAM TRACK TRAIN TRANS TOTAL
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016
VIDEO A
VIDEO B

Figure 7.8: Execution time comparison for videos A and B

Lastly, the number of whiskers detected should have an effect on both parametrization and training. How-
ever, it was found (Figure 7.8) that parametrization is more strongly affected by the number of whisker points,
since non-linear fitting is executed in parallel on the CPU. As for training, its cost is determined by the num-
ber of whisker tracks followed, squared. As explained in Section 7.1.2, this number is only dependent on the
first frame of the video. Training is indeed 20% more costly for a 27.7% increase in whisker tracks, which is
probably more than anticipated, since this stage is also parallelized on the CPU cores.

7.2.3. Real-time Processing
Online whisker tracking requires the algorithm to go through frames at least as fast as they are provided to it
from a camera. In Erasmus MC, 750-1000 Hz cameras are used, which means 750-1000 frames per second.
This high frequency is necessary, in order to reliably follow whisker movement. After acceleration, WhiskEras
is still far from reaching this target. It can only process about 50-120 frames per second, depending on the
video, as analyzed in Section 7.2.2. Further speedup would require considerable efforts (see Section 7.2.1)
and it would still be uncertain whether it would be enough to reach real-time performance.

Even Ma, in his work [37], could not quite reach the goal of 1000 frames per second definitively. A 1.21
ms/frame peak performance was reported, which translates to 826 frames per second. Furthermore, ViSA is
a much simpler algorithm than WhiskEras and does not provide a tracking over-time module. In particular,
BWTT has reached these levels of performance just by porting the code to C and processing frames in parallel
using OpenMP. This would certainly be inadequate for WhiskEras, as it contains some intensive image pro-
cessing which would be slow on the CPU. More importantly, it would be infeasible, as the tracking module
requires from the algorithm to go through the frames sequentially.

56 7. Evaluation

Finally, online tracking does not just require an algorithm with real-time processing power. Another issue
is parameter tuning. An algorithm whose design choices need to be explored after video recording, to dis-
cover an optimal configuration for the specific setup, is unfit for online whisker tracking. During this work,
the algorithm was studied in detail and altered where necessary to provide robust parameter tuning without
the need to change a great number of parameters to achieve optimal results. In addition, a short calibration
period was conceptualized where a few parameters could be automatically configured. However, the time
constraints of this thesis did not allow to fully investigate its practicality, so it is left as future work. Therefore,
some steps have already been made towards online tracking.

8
Conclusions

In this thesis, WhiskEras, a whisker-tracking system on head-fixed rodents was studied. The algorithm’s
whisker-detection stages were analyzed and its design choices were investigated. The system’s potential was
found to be limited by algorithmic flaws, rather than unexplored parameter options. Improvements were
made to tackle those issues which were aiming for higher accuracy and robustness across different whisker
videos. In addition, the whole system was accelerated by porting the code to C++ and exploiting massive
data-level and task-level parallelism.

This chapter concludes this work. In Section 8.1, a thesis overview is given. Section 8.2 summarizes the
contributions made to WhiskEras through this work. Finally, Section 8.3 offers some thoughts and recom-
mendations regarding future work.

8.1. Thesis Overview
The objectives of this thesis were to speed up WhiskEras and improve its accuracy under different video set-
tings. The acceleration task was straightforward and required advanced coding skills and high-performance
computing knowledge. The second task, however, involved exploring its potential, its limits and some way to
breach them. This proved to be substantially more challenging.

The real difficulty in making WhiskEras robust in processing different videos was identifying the core
problem. Coming into this thesis, the incentive was to enable WhiskEras’s whisker detection module to per-
form its job flawlessly by tuning its parameters. This is a well-known problem with an also common solution:
Design Space Exploration. WhiskEras offers a handful of parameters which indeed can deal with many differ-
ent issues during whisker detection: stitching far-distant clusters, stitching close-distant clusters, detecting
more points etc. These parameters can be restricted to a sensible range in which tuning them results in trade-
offs. The problem was that they could not address all the different challenges without making compromises.
These compromises did not just degrade performance on some videos, but on every video. The problem was
split into smaller problems: we were able to analyze the algorithm’s stages in isolation and find the root of the
problem. This was Steger’s algorithm, which performed curvilinear centerline extraction, i.e whisker-point
detection.

Steger’s unbiased detector was performing subpar in detecting whisker curves, particularly in the pres-
ence of intersections. Several other algorithms were considered, also fulfilling the same purpose: curvilinear
detection. These methods included intuitive, learning-based and graph-based approaches, as discussed in
Section 2.3.1. Only the learning-based algorithms were presumed to offer certain gains over Steger’s algo-
rithm (Section 5.1). However, these require supervision, i.e a large amount of labelled data to train on. This
restriction is prohibiting us from migrating to a detection algorithm which would be far superior. Instead, the
route that was chosen was that of Improved Curve Tracing [45], which was an expansion of Steger’s algorithm,
showcasing promising results.

Improved Curve Tracing was also an uphill battle in its implementation. Although its structure was clear,
the whisker-videos’ peculiarities prohibited the use of many of its strong aspects. Hence, the resulting adap-
tation of the algorithm, which performed both curvilinear detection and clustering, was not as impressive as
expected. However, it did provide certain virtues which could help the next stage of the algorithm-Stitching.
Stitching completes the work left unfinished by Local Clustering: it receives the incomplete clustering results

57

58 8. Conclusions

of Steger’s Clustering and finalizes them by forming the complete whiskers. This was an especially troubling
stage, as it has to make a lot of decisions when pairing up clusters. These clusters’ local characteristics often
did not help as they would not point towards each other when they should etc. Nevertheless, a modification
of the Stitching stage followed, which targeted different issues such as the one mentioned. In particular, there
was a focus towards devising new, more robust parameters which would make sense algorithmically, under
any video conditions.

The improvements performed proved to be valuable to the tracking module of the algorithm, as shown in
Section 7.1. Seamless, automated whisker tracking is the ultimate goal of WhiskEras and, although it is not
there yet, the modifications made to the algorithm certainly steered it in the correct direction. Furthermore,
the parameters introduced were much easier to tune: the same set of parameters were used for both Videos A
and B (Figure 7.1) in the Improved WhiskEras and still offered better results overall than the original version,
which required more delicate tuning. Although it is not claimed that this is the best performance that can be
obtained, it is strongly believed that there is not much more potential to exploit by exhaustively tuning the
parameters. This can be a relief to candidate users of WhiskEras, which will not need to channel their efforts
in altering the parameters, in search of a massive quality upgrade.

Besides the improvements made, the algorithm was also speeded up substantially. First the MATLAB code
was ported to C++, a low-level language which provides significantly faster execution on the CPU. However,
the lack of parallel execution was prohibitive in achieving massive speedups. This is where standard paral-
lelization techniques were used to split processing on the GPU threads, as well as the CPU threads, depend-
ing on the level of parallelism. Both CUDA and OpenMP were instrumental in achieving the final speedup of
74.96x over MATLAB. In addition, some key optimizations were implemented, the most significant being the
one of Separable Convolution and the use of an efficient library (libLinear) in SVM training.

The accelerated Improved WhiskEras is capable of processing around 50-120 frames per second, depend-
ing on the input video. This should be sufficient for practical post-processing of whisker videos in Neu-
roscience labs. At the moment, online tracking is not possible. This requires real-time processing (1000
frames per second) capabilities which demand speeding up most of the algorithm’s stages significantly more.
Although this seems out of reach for the time being, the advancements in hardware platforms and high-
performance computing could help future endeavors gain further acceleration. Perhaps other routes could
be explored as well, for example FPGAs.

8.2. Contributions
The following contributions were made throughout this project:

• The WhiskEras algorithm was extensively studied. The potential of its whisker detection module was
explored through its design choices.

• Its stages were examined in isolation, through their intermediate results, to simplify the problem. Non-
linear relation between the results of different stages was deemed infeasible, due to the Computer Vi-
sion techniques used.

• The weaknesses of WhiskEras were pinpointed in the Whisker-Point Detection stage, which employed
Steger’s unbiased curvilinear detector.

• Alternative solutions in the broader category of Curvilinear Centerline Extraction were examined. The
most prominent solutions were considered to be learning-based, which at the moment are inaccessible
due to the lack of labelled data.

• Improved Curve Tracing, an algorithmic expansion of Steger’s algorithm was adapted into WhiskEras’
detection module.

• The Stitching stage was modified to make room for more robust parameters under different video se-
tups.

• The MATLAB code was initially ported to C++. Then, CUDA and OpenMP were utilized to move the
most expensive parts of the code into parallel execution on the GPU and the CPU threads, respectively.

• Some more advanced acceleration techniques were used to increase the parallelizable portion of the
code or decrease the time complexity of certain stages.

8.3. Discussion and Future Work 59

• The Improvements to WhiskEras’ detection module were evaluated on different video setups by using
the feedback of its tracking module. Several criteria were adopted from Betting’s first evaluation of the
algorithm, such as detection ratio and tracking quality.

• The speedups obtained from each level of parallelization were assessed, compared also to the MATLAB
code. The timing profile of each was given as well as an analysis on problem scaling on different whisker
videos.

• The work done during this thesis led to important breakthroughs in whisker tracking. A publication
will be made, as a result.

8.3. Discussion and Future Work
Concluding this work, we have presented a working version of a fast and even more accurate WhiskEras.
This will enable researchers in Neuroscience around the globe to actively use it to process their whisker
videos from head-fixed rodents. Its true capabilities will then be explored further, as well as limitations or
issues which did not come to light during the limited time of this thesis. However, hands-on experience on
WhiskEras has given us the confidence to make some recommendations for future work. These pointers are
presented in a question - answer form, for illustration purposes.

What is next for WhiskEras?

WhiskEras was devised more than 2 years ago [8]. Its paper [9] was only recently published and it has
already received attention in the field. It has been shown to be miles ahead of other popular methods such
as Janelia Whisk [16] and BWTT [37]. The objective of this work was to make it practical to use in the Neuro-
science lab of Erasmus MC. A GUI may need to be integrated in this work, along with a manual, so that it can
be used by a neuroscientist with ease.

In addition, improving the tracking module was not the focus of this thesis. However, it was explored and
a number of limitations were discovered there as well, such as the sensitivity to the tracking results of the
first frame, as explained in Section 7.1.2. This should be addressed in future work. Furthermore, the intensity
of each whisker, as a function of the distance from the snout, was found to remain relatively constant. This
could be integrated as a feature in the SVM classifier and confirm if it can indeed increase tracking accuracy.
Finally, there is a large number of parameters, also in this module. Future research should consider studying
the effect of these parameters on the different whisker videos and potentially find an automated way of tun-
ing them.

Are the tracking results reliable, so that the neuroscientists can trust them in their research?

This question can be answered from multiple perspectives. From a Computer Vision point of view, the
algorithm is estimated (not measured) to be about 70-80% accurate, depending on the challenges posed by
each whisker video. Certain whiskers will consistently be detected, some will be detected most or some of
the time and a few will not be detected at all. WhiskEras’ tracking module is very robust in following whiskers
which are not detected for some of the time. Macrovibrissae which are never detected are usually short or
intersect with multiple hair along a line nearly parallel to the snout. It is the place of an expert in neuroscience
to judge whether these whiskers could provide valuable information to justify further work into improving
the detection module of WhiskEras. If this is deemed necessary, the research conducted during this thesis
has pointed towards learning-based methods. Adopting one of the countless methods mentioned in Section
2.3.1 and combining it with Transfer Learning to minimize the amount of labelled data necessary could be
promising. However, this would go into a completely different direction (supervised method) and would
require frame-by-frame annotation, which, in this application, is extremely time-consuming.

Regarding different approaches, deep learning is currently leading the research industry in Computer Vi-
sion. Convolutional neural networks, in particular, are great candidates for a wide variety of image-processing
applications. Theoretically, an end-to-end neural network could be devised, which obtains the input image
and outputs a compressed representation of whiskers (e.g the output of the Parameter Fitting stage). This
could combine a conv-net (CNN) which takes as input each frame’s pixels and outputs a squeezed output.
Then a recurrent neural network (RNN) further down the pipeline, which processes this output and decides
how many and what whiskers are in the frame. This could constitute the whole detection module, replacing

60 8. Conclusions

the entire pipeline from Preprocessing to Parameter Fitting. Needless to say, such a project would require
huge resources to come to realization, starting from the collection of data.

A much simpler route would be to build on the current implementation by performing more modest mod-
ifications to the algorithm. For example, tracing faint curves could prove to be effective after Stitching II. This
was unfortunately not tested in this work due to time constraints. Also, improving the tracking module, as
already mentioned, could lead to significant improvement.

Parameter tuning seems to be easier than before. However, there are still lots of parameters. How can we
trust that the best values have been discovered, let alone for any future video to be processed? Is it not necessary
to perform a Design Space Exploration?

From an empirical standpoint, searching for a better parameter configuration could help, but only slightly.
The videos examined, which involved two very different setups showcased that near-optimal results can
be achieved, where optimality is dictated by the inherent limitations of Steger’s algorithm. However, it is
not claimed that every whisker video will fall into the same category. There can be videos from different
labs which use a very different setup and/or recording settings. These could indeed require different design
choices.

A Design Space Exploration could theoretically help the detection module of WhiskEras, although it is
not strongly believed, given that the algorithm can be manually tuned stage-by-stage, to a reasonable extent.
Hence, finding a unique combination of parameters that yields tremendous improvements, without paying
attention to intermediate results, seems unlikely. Furthermore, as explained in Section 4.4, a DSE would
impose practical difficulties in its implementation which mostly have to do with the optimization criterion.
Therefore, it is not recommended to go into that direction.

Can we speed up WhiskEras further?

The answer to this question is a plain, simple yes. However, one would have to consider the target. The al-
gorithm can already process videos at a reasonably good pace. If real-time processing is the goal, then a great
amount of time and high-performance computing skills would need to be invested. As already explained
in Section 7.2.3, the current timing profile of the algorithm suggests that multiple stages (specifically, all of
them) of the algorithm have to be speeded up and in some cases, by more than 10 times. This is a signifi-
cant speedup for an algorithm that already uses advanced parallelization techniques, both on the CPU and
the GPU. The programmer would have to come up with even more advanced optimization techniques and
possibly make compromises or completely reformulate the most costly parts of the code. For a better grasp
of the situation, consider that only the separable convolutions performed very efficiently on one of the best
GPUs on the market (NVIDIA Tesla V100) take about 1 ms per frame or more. That means that one part of
one stage takes about all the time that is available to perform real-time processing. And this is also one of the
fastest stages. Hence, it seems unlikely that the current iteration of WhiskEras can be used for online track-
ing. One possibility would be to use multiple GPUs and attempt to move more stages of the problem into
CUDA. However, that would require an even more expensive hardware setup. Perhaps a different accelerator
platform, such as an FPGA could be used, but since this falls outside our field of expertise, it is left for future
research.

A
Selected Parameters for Detection

In Table A.1, the complete list of parameters selected to process Videos A and B (Figure 7.1) for both the
Improved and the Original WhiskEras is provided. Notice that for the Improved WhiskEras, the parameters
selected are identical in both Videos. Oscillating around this specific design point did not offer any meaning-
ful quality gain. On the other hand, the Original WhiskEras did have some margin for improvement through
parameter alteration between videos, particularly for the hard to tune parameters in Stitching I and II.

61

62 A. Selected Parameters for Detection

Original WhiskEras

Name Video A Video B

Snout Line Position

tip (764,70) (420,840)
middle (28,276) (120,370)

Preprocessing

bwThreshold 1 1
imdilate_value 20 20

cutoff 10 10
histEqMinT 3 3
histEqMaxT 100 100

histEqGamma 0.95 0.95
do_deinterlacing 0 0

initialGaussianSigma 0 0
remove_lowlevels 10 10

framing 2 2

Whisker Point Detection

upscaling 2 2
sigma 2.3 2.3

gaussianKernelSize 20 20
tr2 1.2 1.2

Clustering

steger_c 1 1
USE_DBSCAN 0 0

- - -
- - -
- - -
- - -
- - -

Stitching I

minClusterSize 5 4
maxAD 20 20

lengthOfTipAndBottom 20 20
c 1 1

maxX 100 100
maxY 10 7

- - -
- - -

Stitching II

minClusterSize 30 30
highestRoot 20 40

lengthOfTipAndBottom 30 30
acceptableXdistance 50 50
acceptableYdistance 10 8

- - -

Parameter Fitting

minNrOfDots 40 40
minLength 150 150

minAngleToSnout 5 5
maxBend 0.01 0.01
maxMSE Inf Inf

Improved WhiskEras

Name Video A Video B

Snout Line Position

tip (764,70) (420,840)
middle (28,276) (120,370)

Preprocessing

bwThreshold 1 1
imdilate_value 10 10

cutoff 0 0
histEqMinT 3 3
histEqMaxT 100 100

histEqGamma 0.95 0.95
do_deinterlacing 0 0

initialGaussianSigma 0 0
remove_lowlevels 10 10

framing 2 2

Whisker Point Detection

upscaling 2 2
sigma 2.3 2.3

gaussianKernelSize 20 20
- - -

Clustering

steger_c 1 1
tr2 1.5 1.5
β0 7 7
L 3 3
M 15 15
K 15 15

beamThreshold 10 10

Stitching I

minClusterSize 7 7
maxAD 20 20

lengthOfTipAndBottom 15 15
c 200 200

cone 7 7
radonLength 20 20

radonThreshold 30 30
d0 5 5

Stitching II

minClusterSize 30 30
highestRoot 10 10

lengthOfTipAndBottom 30 30
acceptableXdistance 100 100

cone 20 20
maxAD 20 20

Parameter Fitting

minNrOfDots 40 40
minLength 150 150

minAngleToSnout 5 5
maxBend 0.01 0.01
maxMSE Inf Inf

Table A.1: Parameter selection for videos A and B, original and improved versions of WhiskEras

B
Tracking Quality - Angle Plots

Figure B.1 illustrates angle tracking in Video B (Figure 7.1b) for frames 8000-9000. Two plots are provided with
different whiskers, for clarity. It can be seen that, particularly for whiskers 1, 2 (Figures B.1b - B.1a), Improved
WhiskEras has the edge over the Original one.

8000 8200 8400 8600 8800 9000
Frame Index

0.5

1.0

1.5

2.0

2.5

3.0

W
hi

sk
er

 A
ng

le

whisker 1
whisker 2
whisker 3
whisker 4
whisker 5
whisker 6
whisker 7

(a) Original WhiskEras, whiskers 1-7

8000 8200 8400 8600 8800 9000
Frame Index

0.5

1.0

1.5

2.0

2.5

3.0

W
hi

sk
er

 A
ng

le

whisker 1
whisker 2
whisker 3
whisker 4
whisker 5
whisker 6
whisker 7

(b) Improved WhiskEras, whiskers 1-7

8000 8200 8400 8600 8800 9000
Frame Index

1.0

1.5

2.0

2.5

3.0

W
hi

sk
er

 A
ng

le

whisker 8
whisker 9
whisker 10
whisker 11
whisker 12
whisker 13

(c) Original WhiskEras, whiskers 8-13

8000 8200 8400 8600 8800 9000
Frame Index

1.0

1.5

2.0

2.5

3.0

W
hi

sk
er

 A
ng

le

whisker 8
whisker 9
whisker 10
whisker 11
whisker 12
whisker 13

(d) Improved WhiskEras, whiskers 8-13

Figure B.1: Angle tracking in Video B

63

Bibliography

[1] The cub documentation. URL https://nvlabs.github.io/cub/.

[2] Neural networks: History. URL https://cs.stanford.edu/people/eroberts/courses/soco/
projects/neural-networks/History/history1.html.

[3] Mouse cover image. URL https://wallhere.com/en/wallpaper/109260.

[4] 2015 cold spring harbor summer course: "imaging structure and function in the nervous system". URL
https://meetings.cshl.edu/galleries/galleries.html.

[5] William Arliss. Solving the svm: Stochastic gradient descent and hinge loss, 2020. URL https://
towardsdatascience.com/solving-svm-stochastic-gradient-descent-and-hinge-loss-8e8b4dd91f5b.

[6] Amey Band. Multi-class classification — one-vs-all & one-vs-one, 2020. URL https://
towardsdatascience.com/multi-class-classification-one-vs-all-one-vs-one-94daed32a87b.

[7] Rune W. Berg and David Kleinfeld. Rhythmic whisking by rat: Retraction as well as protraction of the
vibrissae is under active muscular control. Journal of Neurophysiology, 89(1):104–117, jan 2003. doi:
10.1152/jn.00600.2002.

[8] Jan-Harm L. F. Betting. Full-whisker tracking system: A new algorithm for accurate whisker tracking in
untrimmed head-fixed mice. Master’s thesis, Delft University of Technology, Sep. 2018.

[9] Jan-Harm L. F. Betting, Vincenzo Romano, Zaid Al-Ars, Laurens W. J. Bosman, Christos Strydis, and Chris
I. De Zeeuw. WhiskEras: A new algorithm for accurate whisker tracking. Frontiers in Cellular Neuro-
science, 14, nov 2020. doi: 10.3389/fncel.2020.588445.

[10] Léon Bottou. Stochastic gradient svm, 2007. URL https://leon.bottou.org/projects/sgd#
references.

[11] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[12] Jason Brownlee. A gentle introduction to computer vision, March 2019. URL https://
machinelearningmastery.com/what-is-computer-vision/.

[13] GE Carvell and DJ Simons. Biometric analyses of vibrissal tactile discrimination in the rat. The Journal
of Neuroscience, 10(8):2638–2648, aug 1990. doi: 10.1523/jneurosci.10-08-02638.1990.

[14] Dengfeng Chai, Wolfgang Forstner, and Florent Lafarge. Recovering line-networks in images by junction-
point processes. jun 2013. doi: 10.1109/cvpr.2013.247.

[15] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available athttp://www.csie.ntu.
edu.tw/~cjlin/libsvm.

[16] Nathan G. Clack, Daniel H. O'Connor, Daniel Huber, Leopoldo Petreanu, Andrew Hires, Simon Peron,
Karel Svoboda, and Eugene W. Myers. Automated tracking of whiskers in videos of head fixed rodents.
PLoS Computational Biology, 8(7):e1002591, jul 2012. doi: 10.1371/journal.pcbi.1002591.

[17] Margaret J. Cook. The Anatomy of the Laboratory Mouse. Academic Press, Elsevier, 1965, Revised 2008
for the web. URL http://www.informatics.jax.org/cookbook/index.shtml.

[18] Jaydeep De, Li Cheng, Xiaowei Zhang, Feng Lin, Huiqi Li, Kok Haur Ong, Weimiao Yu, Yuanhong Yu, and
Sohail Ahmed. A graph-theoretical approach for tracing filamentary structures in neuronal and retinal
images. IEEE Transactions on Medical Imaging, 35(1):257–272, jan 2016. doi: 10.1109/tmi.2015.2465962.

65

https://nvlabs.github.io/cub/
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/History/history1.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/History/history1.html
https://wallhere.com/en/wallpaper/109260
https://meetings.cshl.edu/galleries/galleries.html
https://towardsdatascience.com/solving-svm-stochastic-gradient-descent-and-hinge-loss-8e8b4dd91f5b
https://towardsdatascience.com/solving-svm-stochastic-gradient-descent-and-hinge-loss-8e8b4dd91f5b
https://towardsdatascience.com/multi-class-classification-one-vs-all-one-vs-one-94daed32a87b
https://towardsdatascience.com/multi-class-classification-one-vs-all-one-vs-one-94daed32a87b
https://leon.bottou.org/projects/sgd#references
https://leon.bottou.org/projects/sgd#references
https://machinelearningmastery.com/what-is-computer-vision/
https://machinelearningmastery.com/what-is-computer-vision/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.informatics.jax.org/cookbook/index.shtml

66 Bibliography

[19] Stanley R. Deans. The Radon Transform and Some of Its Applications. Courier Corporation. ISBN
0486462412.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, apr 2002. doi: 10.1109/4235.
996017.

[21] NVIDIA Documents. How gpu acceleration works. URL http://www.nvidia.com/docs/IO/143716/
how-gpu-acceleration-works.png.

[22] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A library
for large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

[23] Alejandro F. Frangi, Wiro J. Niessen, Koen L. Vincken, and Max A. Viergever. Multiscale vessel enhance-
ment filtering. pages 130–137, 1998. doi: 10.1007/bfb0056195.

[24] Lin Gu and Li Cheng. Learning to boost filamentary structure segmentation. dec 2015. doi: 10.1109/
iccv.2015.80.

[25] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[26] Mark Harris. How to optimize data transfers in cuda c/c++, 2012. URL https://developer.nvidia.
com/blog/how-optimize-data-transfers-cuda-cc/.

[27] D. N. Hill, R. Bermejo, H. P. Zeigler, and D. Kleinfeld. Biomechanics of the vibrissa motor plant in rat:
Rhythmic whisking consists of triphasic neuromuscular activity. Journal of Neuroscience, 28(13):3438–
3455, mar 2008. doi: 10.1523/jneurosci.5008-07.2008.

[28] Mark D. Hill and Michael R. Marty. Amdahl's law in the multicore era. Computer, 41(7):33–38, jul 2008.
doi: 10.1109/mc.2008.209.

[29] A.D. Hoover, V. Kouznetsova, and M. Goldbaum. Locating blood vessels in retinal images by piecewise
threshold probing of a matched filter response. IEEE Transactions on Medical Imaging, 19(3):203–210,
mar 2000. doi: 10.1109/42.845178.

[30] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Tracking-learning-detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 34(7):1409–1422, 2012. ISSN 0162-8828. doi: 10.1109/TPAMI.
2011.239.

[31] Eric R. Kandel. Principles of Neural Science, Fifth Edition. McGraw-Hill Education. 2012. ISBN 978-
0071390118.

[32] Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. An approach for effective design space exploration.
pages 33–54, 2011. doi: 10.1007/978-3-642-21292-5_3.

[33] Kedar Potdar, Chinmay Pai, and Sukrut Akolkar. A convolutional neural network based live object recog-
nition system as blind aid. 2018. doi: 10.13140/RG.2.2.34494.54085.

[34] David B. Kirk and Wen mei W. Hwu. Programming massively parallel processors: A hands-on approach.
In Todd Green and Nathaniel McFadden, editors, Second Edition, chapter 1, pages 2–13. Morgan Kauf-
mann, 225 Wyman Street, Waltham, MA, 02451, USA, 2013.

[35] Max W. K. Law and Albert C. S. Chung. Three dimensional curvilinear structure detection using optimally
oriented flux. pages 368–382, 2008. doi: 10.1007/978-3-540-88693-8_27.

[36] Qi Li, Raied Salman, Erik Test, Robert Strack, and Vojislav Kecman. GPUSVM: a comprehensive
CUDA based support vector machine package. Open Computer Science, 1(4), jan 2011. doi: 10.2478/
s13537-011-0028-7.

[37] Yang Ma, Prajith Ramakrishnan Geethakumari, Georgios Smaragdos, Sander Lindeman, Vincenzo Ro-
mano, Mario Negrello, Ioannis Sourdis, Laurens W.J. Bosman, Chris I. De Zeeuw, Zaid Al-Ars, and Chris-
tos Strydis. Towards real-time whisker tracking in rodents for studying sensorimotor disorders. jul 2017.
doi: 10.1109/samos.2017.8344621.

http://www.nvidia.com/docs/IO/143716/how-gpu-acceleration-works.png
http://www.nvidia.com/docs/IO/143716/how-gpu-acceleration-works.png
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/

Bibliography 67

[38] Multi-objective optimization. Multi-objective optimization — Wikipedia, the free encyclopedia, 2007.
URL https://en.wikipedia.org/wiki/Multi-objective_optimization. [Online; accessed 22-
12-2020].

[39] NVIDIA. Cuda samples. URL https://github.com/NVIDIA/cuda-samples.

[40] David A. Patterson and John L. Hennessy. Computer organization and design: The hardware/software
interface. In Todd Green and Nate McFadden, editors, Fifth Edition, chapter 1, pages 43–46. Morgan
Kaufmann, The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, 2014.

[41] Igor Perkon, Andrej Košir, Pavel M. Itskov, Jurij Tasič, and Mathew E. Diamond. Unsupervised quantifi-
cation of whisking and head movement in freely moving rodents. Journal of Neurophysiology, 105(4):
1950–1962, apr 2011. doi: 10.1152/jn.00764.2010.

[42] Johann Radon. On the determination of functions from their integral values along certain manifolds.
IEEE Transactions on Medical Imaging, 5(4):170–176, dec 1986. doi: 10.1109/tmi.1986.4307775.

[43] Radon transform. Radon transform — Wikipedia, the free encyclopedia, 2004. URL https://en.
wikipedia.org/wiki/Radon_transform. [Online; accessed 16-01-2021].

[44] K. Raghupathy. Improved curve tracing in images. Master’s thesis, CORNELL UNIVERSITY, 2004.

[45] K. Raghupathy and T.W. Parks. Improved curve tracing in images. In 2004 IEEE International Conference
on Acoustics, Speech, and Signal Processing. IEEE. doi: 10.1109/icassp.2004.1326611.

[46] Anant Ram, Jalal Sunita, Anand Jalal, and Kumar Manoj. A density based algorithm for discovering den-
sity varied clusters in large spatial databases. International Journal of Computer Applications, 3, 06 2010.
doi: 10.5120/739-1038.

[47] Vincenzo Romano, Licia De Propris, Laurens WJ Bosman, Pascal Warnaar, Michiel M ten Brinke, Sander
Lindeman, Chiheng Ju, Arthiha Velauthapillai, Jochen K Spanke, Emily Middendorp Guerra, Tycho M
Hoogland, Mario Negrello, Egidio D'Angelo, and Chris I De Zeeuw. Potentiation of cerebellar purkinje
cells facilitates whisker reflex adaptation through increased simple spike activity. eLife, 7, dec 2018. doi:
10.7554/elife.38852.

[48] Vijay Singh. Difference between c and c++. URL https://hackr.io/blog/
difference-between-c-and-cplusplus.

[49] C. Steger. An unbiased detector of curvilinear structures. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(2):113–125, 1998. doi: 10.1109/34.659930.

[50] P.A. Toft. Using the generalized radon transform for detection of curves in noisy images. doi: 10.1109/
icassp.1996.545862.

[51] Ben Mitchinson Tony J. Prescott and Robyn Anne Grant. Vibrissal behavior and function. Scholarpedia,
6(10):6642, 2011. doi: 10.4249/scholarpedia.6642.

[52] Engin Turetken, Carlos Becker, Przemyslaw Glowacki, Fethallah Benmansour, and Pascal Fua. Detecting
irregular curvilinear structures in gray scale and color imagery using multi-directional oriented flux. dec
2013. doi: 10.1109/ICCV.2013.196.

[53] Kanan Vyas. Object segmentation, 2020. URL https://medium.com/visionwizard/
object-segmentation-4fc67077a678.

[54] Chi-Feng Wang. A basic introduction to separable convolutions, 2018. URL https://
towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728.

[55] Hanjin Zhang, Yang Yang, and Hongbin Shen. Detection of curvilinear structure in images by a multi-
centered hough forest method. IEEE Access, 6:22684–22694, 2018. doi: 10.1109/access.2018.2823726.

https://en.wikipedia.org/wiki/Multi-objective_optimization
https://github.com/NVIDIA/cuda-samples
https://en.wikipedia.org/wiki/Radon_transform
https://en.wikipedia.org/wiki/Radon_transform
https://hackr.io/blog/difference-between-c-and-cplusplus
https://hackr.io/blog/difference-between-c-and-cplusplus
https://medium.com/visionwizard/object-segmentation-4fc67077a678
https://medium.com/visionwizard/object-segmentation-4fc67077a678
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728

	List of Figures
	List of Tables
	Introduction
	Motivation and Problem Statement
	Thesis Scope and Contributions
	Thesis Objectives
	Thesis Contributions

	Thesis Organization

	Background
	Rodent Whisker Movement
	Whisking Experimental Setup

	Design Space Exploration
	Computer Vision
	Curvilinear Centerline Extraction

	Radon Transform
	Radon Transform in Curve Detection

	High Performance Computing and Parallelism
	Amdahl's Law
	Heterogeneous Parallel Computing
	GPU: Accelerating Image Processing

	Related work
	Y. Ma's ViSA Implementation
	Janelia Whisk
	WhiskEras: a Whisker-Tracking System
	Curvilinear Centerline Extraction Methods

	WhiskEras: Algorithm Analysis
	Overview
	Analyzing Design Choices
	Preprocessing
	Centerline Extraction
	Local Clustering
	Stitching I
	Stitching II
	Parameter Fitting

	Whisker Detection Limitations
	Regarding Design Space Exploration

	Improvements
	Choosing a Detection Algorithm
	Improved Curve Tracing
	Adaptation
	Discussion

	Stitching
	Stitching I
	Stitching II
	Discussion

	Acceleration
	Overview
	Parallelism
	Complexity

	Improved Curve Tracing
	Separable Convolution
	Sorting on the GPU
	Transfering Data Between Host and Device

	Training SVMs
	Other Libraries
	OpenCV
	Eigen

	Evaluation
	Algorithmic Improvements
	Video Selection and Parameter Tuning
	Setting up Tracking
	Criteria
	Discussion

	Algorithm Acceleration
	Speedups
	Problem Scaling
	Real-time Processing

	Conclusions
	Thesis Overview
	Contributions
	Discussion and Future Work

	Selected Parameters for Detection
	Tracking Quality - Angle Plots
	Bibliography

