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Abstract 

 

A prognostic framework is proposed in order to estimate the remaining useful life of 

composite materials under fatigue loading based on acoustic emission data and a 

sophisticated Non Homogenous Hidden Semi Markov Model. Bayesian neural networks are 

also utilized as an alternative machine learning technique for the non-linear regression task. 

A comparison between the two algorithms operation, input, output and performance 

highlights their ability to tackle the prognostic task. 

Keywords: SHM, remaining useful life, machine learning techniques, composite materials, 

acoustic emission 

 

1. INTRODUCTION 

The fatigue performance of composite materials is a field of much research effort the last 

decades. Especially in the aerospace industry where the damage tolerance philosophy is 

prevalent analytical and numerical tools have been utilized to design taking into account 

fatigue. Lately, and after increasing the Technology Readiness Level of several structural 

health monitoring (SHM) after damage has been diagnosed, located and characterized. In 

prognostics, probably the most important quantity to estimate is the remaining useful life 

(RUL) of a specific component or sub-structure properly sensorized and monitored on a 

permanent basis. 

Composite materials undergoing fatigue loading are reported to fail in a rather stochastic 

fashion even under constant (i.e. deterministic) amplitude fatigue. This is attributed to their 

complex multi-phase nature, the plethora of inherent defects (fiber misalignment, voids, resin 

rich, resin poor areas) that cannot be absolutely controlled during the usual manufacturing 

processes and thus the stochasticity of their macroscopic mechanical properties. The result is 

that coupons from the same material batch, being manufactured under the very same process, 

tested under the same machine in alike conditions can fail in totally different number of 

cycles.  Stochastic modeling and more specifically Markov chains have been utilized as early 

as the 1980s (see Bogdanoff and Kozin [1] and later Rowatt and Spanos [2], Pappas et al. [3]) 

but the Markovian assumption regarding degradation i.e. future degradation states are 

independent of the past states, is not generally valid in engineering practice [4]. Recently, 

Chiachio et al. in [4] re-visited the idea of Markov chain modeling of fatigue damage in 

composites under a purely Bayesian framework utilizing stiffness reduction histories from 16 

glass-fiber coupons. However, these approaches utilize mostly stiffness degradation data as 
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damage indicator assuming the Markovian property for the degradation property and utilizing 

simple Markov chains. Secondly, they do not exploit at all SHM data. Very recently [5-6] Liu 

et al. [5] and Chiachio et al. [6] realized remaining fatigue life estimations of a composite 

component under fatigue utilizing SHM measurements and damage propagation physical 

models. In [5] real-time acousto-ultrasonic measurements are correlated with stiffness 

degradation and integrated in a Bayesian inference framework which provides with RUL 

estimates. Physics-based degradation models suffer from the fact that there is no widely 

accepted theory for the progressive failure of composites and the aforementioned works 

involve the modeling of specific damage mechanisms such as delamination and matrix 

cracking without accounting for their interactions. The proposed framework of condition-

based reliability assessment is driven by the increased usage of composite materials in high-

end applications in industries such as the aerospace, automotive and wind energy among 

others and the need to enhance our understanding of the damage process and the health 

assessment of a subcomponent or a structure during service life has become more pressing 

than ever. 

 

2. MACHINE LEARNING ALGORITHMS 

2.1 Non-Homogeneous Hidden Semi Markov Models (NHHSMM) 

 

The damage process in composite materials can be considered as a stochastic hidden process 

which manifests itself only indirectly through for instance SHM or NDT data. Multi-state 

degradation modeling is an appropriate framework to model damage in composites which 

gradually accumulates and increases during service loading. To this direction the most 

interesting and mathematically rich stochastic models are Hidden Semi Markov Models. 

These models were extended in [7,8] to take into account non-homogeneity i.e. age 

dependence during state transitions. To fully describe a NHHSMM the definition of a series 

of elements is required. The number of possible discrete degradation health states (Ν), the 

transition diagram which defines the connectivity between the states and the allowed 

transitions, the transition rate's statistical function (λ), the observations i.e. the SHM damage-

sensitive feature(s) y1:t and the number of discrete feature values (m) after the observations 

quantization. The number of hidden states obviously refers to the number of discrete levels of 

degradation. In a Maximum Likelihood Estimation (MLE) approach, Moghaddass et al. [7,8] 

demonstrated a procedure to maximize Pr(𝑦(𝑘)|𝜽), i.e. define the model parameters θ which 

maximize the probability of the K available for training observation sequences 𝒚(𝒌).  
 

𝐿(𝜃, 𝒚(𝟏:𝑲)) = ∏ 𝑃𝑟(𝒚(𝒌)|𝜽)
𝐿′=𝑙𝑜𝑔 (𝐿)
⇒      𝐾

𝑘=1 𝐿′(𝜽, 𝒚(𝟏:𝑲)) = ∑ 𝑙𝑜𝑔(𝑃𝑟(𝒚(𝒌)|𝜽))𝐾
𝑘=1 ⇒ 

𝜽∗ = 𝑎𝑟𝑔max
𝜽
(∑ 𝑙𝑜𝑔 (𝑃𝑟(𝒚(𝒌)|𝜽))

𝐾

𝑘=1

) 

      

(1) 

 

Utilizing Baum's auxiliary function, the above optimization task is reduced to a set of 

independent equations for the re-estimation of the elements of Γ, Β. The mathematical 

treatment leads to two re-estimation equations: 
 

𝜔1,1
𝑟 (𝜽𝒐𝒍𝒅, 𝜽) = ∑ 𝑃𝑟(𝒚(𝒌)|𝜽𝒐𝒍𝒅)

−1
× ∑ ∑ ∑ log (𝜀𝑎

(𝑘)(r, j, d|𝜽) ×
𝑑𝑘−𝑎
𝑑=1

𝑑𝑘
𝑎=0

𝑁
𝑗=1

𝐾
𝑘=1

𝜅𝑎
(𝑘)
(r, j, d, 𝒚(𝒌)|𝜽𝒐𝒍𝒅)                                         (2) 
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where 1≤ 𝑟 ≤ 𝑁 − 1 giving thus N-1 equations and   

 
 

𝑏𝑖(𝑤) =
∑ (𝑃𝑟(𝒚(𝒌)|𝜽𝒐𝒍𝒅)

−1
× ∑ 𝛾𝑡(𝑖, 𝒚

(𝒌)|𝜽𝒐𝒍𝒅)𝛿𝛰𝑡
(𝑘)
,𝑤

𝑑𝑘
𝑡=1 )𝐾

𝑘=1

∑ (𝑃𝑟(𝒚(𝒌)|𝜽𝒐𝒍𝒅)−1 × ∑ 𝛾𝑡(𝑖, 𝒚(𝒌)|𝜽𝒐𝒍𝒅)
𝑑𝑘
𝑡=1 )𝐾

𝑘=1

 

 

(3) 

 

where 1 ≤ w ≤ m and the terms 𝜀𝑎
(𝑘)(i, j, d|𝜽), 𝜅𝑎

(𝑘)
(r, j, d, 𝒚(𝒌)|𝜽𝒐𝒍𝒅)  and 𝛾𝑡(𝑖, 𝒚

(𝒌)|𝜽𝒐𝒍𝒅) are 

introduced in order to simplify the MLE process (refer to [21-22] for details) and are defined 

as follows: 
 

 𝜀𝑎
(𝑘)(i, j, d|𝜽) = Pr (𝑋𝑛 = 𝑗, 𝑡𝑎+𝑑−1

(𝑘)
< 𝑇𝑛 ≤ 𝑡𝑎+𝑑

(𝑘)
|𝑋𝑛−1 = 𝑖, 𝑡𝑎−1

(𝑘)
< 𝑇𝑛−1 ≤ 𝑡𝑎

(𝑘)
, 𝜽),  

𝜅𝑎
(𝑘)
(r, j, d, 𝒚(𝒌)|𝜽𝒐𝒍𝒅) =

Pr (𝑋𝑛 = 𝑗, 𝑡𝑎+𝑑−1
(𝑘)

< 𝑇𝑛 ≤ 𝑡𝑎+𝑑
(𝑘)
, 𝑋𝑛−1 = 𝑖, 𝑡𝑎−1

(𝑘)
< 𝑇𝑛−1 ≤ 𝑡𝑎

(𝑘)
, 𝒚(𝒌)|𝜽𝒐𝒍𝒅),  

𝛾𝑡(𝑖, 𝒚
(𝒌)|𝜽𝒐𝒍𝒅) = 𝑃𝑟(𝑄𝑡 = 𝑖, 𝒚

(𝒌)|𝜽𝒐𝒍𝒅),  
 

with 𝑋𝑛 being the state of the component after the nth transition, 𝑇𝑛the time of the nth 

transition, Qt the current hidden state and 𝑡𝑖
(𝑘)

the ith observation time point of the kth 

observation/SHM data sequence 𝒚(𝒌). 
The MLE approach begins with a random initialization of Γ, Β and via the use of the re-

estimation equations (2) and (3) it aims to the iterative maximization of 

the ∑ 𝑙𝑜𝑔 (𝑃𝑟(𝒚(𝒌)|𝜽))𝐾
𝑘=1  value. This procedure concludes to a parameter vector 𝜽 which 

describes the most probable model for a given training data set. 

Regarding the prognostics, the mean Remaining Useful Life (RUL) is the quantity of interest 

in a condition-based monitoring framework. It can be estimated via eq. (4) as the integral of 

the conditional reliability function 𝑅 (𝑡|𝑦1:𝑡𝑝 , 𝐿 > 𝑡𝑝,𝑀) = 𝑃𝑟 (𝐿 > 𝑡|𝑦1:𝑡𝑝 , 𝐿 > 𝑡𝑝,𝑀) i.e. 

the probability that the composite material/component continues its operation after a time 

point t (less than life-time L) further than the present time tp. This is a definition which is 

conditional on SHM data i.e. the observation sequence 𝑦1:𝑡𝑝. Details on the calculation of the 

conditional reliability function can be found in [7,8]. 

𝑅𝑈�̂� (𝑡|𝑦1:𝑡𝑝 , 𝐿 > 𝑡𝑝, 𝑀) = ∫ 𝑅 (𝑡 + 𝜏|𝑦1:𝑡𝑝 , 𝐿 > 𝑡𝑝, 𝑀)𝑑𝜏
∞

0

 
 

(4) 

In prognostics, an estimate of the uncertainty that follows the mean RUL estimation is of 

utmost importance, in order to give a confidence of the predicted mean value. The calculation 

of confidence intervals is based on the calculation of the a% and (1-a)% lower and upper 

percentiles respectively. It can be easily proved [5,7] that the cumulative distribution function 

(CDF) for RUL can be defined at any time point utilizing the conditional reliability according 

to the following: 

𝑃𝑟 (𝑅𝑈𝐿𝑡𝑝 ≤ 𝑡|𝑦1:𝑡𝑝 ,𝑀) = 1 − 𝑅(𝑡 + 𝑡𝑝│𝑦1:𝑡𝑝 , 𝑀) 
(5) 

 

2.2 Bayesian Feedforward Neural Networks 

 

An alternative approach handles the RUL estimation as a nonlinear regression task 

mathematically described as: 
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𝑦(𝒙) = 𝑅𝑈𝐿(𝒙) = 𝑓(𝒙, 𝜽) + 𝒆                                           (6) 
 

Where 𝑅𝑈𝐿(𝒙) is the output RUL estimated at the ith time instant during the coupon’s 

lifetime, 𝑓(𝒙, 𝜽) the nonlinear mathematical model trained throughout the training process 

which takes as input the damage feature vector x obtained from SHM and is characterized by 

a number of model parameters θ, e is random noise. Let us note the different use of y variable 

in contrast to section 2.1. y here denotes the output i.e. the RUL of a nonlinear regression 

scheme. The concept is to use historical data D={(x1,y1),…, (xN,yN)} to estimate 𝑓(𝒙, 𝜽) and 

consequently be able to predict the RUL(xnew) for any new SHM input xnew. 

A state-of-the-art model utilized for nonlinear regression is the classical feed-forward 

artificial neural network (FFANN). In FFANN the mathematical function f correlating the 

outputs with the inputs can be expressed as 𝑓(𝒙,𝒘) where w are the weight and bias 

parameters involved in the various layers of the network. A limitation of the conventional 

FFANN is that it is of deterministic nature and its predictions do not entail confidence limits. 

From a prognostic point of view this is not acceptable as any prediction must be accompanied 

by a confidence interval to make sense. This is why we resort to Bayesian FFANN 

(BFFANN). The Bayesian approach to neural networks learning and prediction processes is 

based on the Bayesian inference. This means the integration of the weights w and the quest of 

its PDF function instead of searching for a single vector of w. In this approach all parameters 

are treated as random variables. A hierarchical Bayesian modeling of the FFANN as first 

discussed in [9] utilizes the Bayes theorem to obtain the posterior likelihood on weights w as 

follows: 
 

𝑝(𝒘|𝑫)~𝑝(𝑫|𝒘)𝑝(𝒘)                           (7) 

 

Where 𝑝(𝑫|𝒘) is the likelihood function and 𝑝(𝒘) the prior PDF on weights w. From the 

Principle of Maximum Information Entropy it follows that if we assume a zero mean 

Gaussian for the error term in (6), i.e. 𝑒𝑖~𝑁(0, 1/𝑏) where b is the inverse variance, then the 

observed output will also be Gaussian, 𝑦𝑖~𝑁(𝑓(𝑥𝑖, 𝒘), 1/𝑏).  
Consequently, the likelihood function is given by the following: 
 

𝑝(𝑫|𝒘) =∏𝑝(𝑦𝑖|𝒙,𝒘)

𝑁

𝑖=1

=∏(2𝜋/𝑏)−
1
2 exp [−

𝑏

2
 {𝑦𝑖 − 𝑓(𝑥𝑖, 𝒘)}

2]

𝑁

𝑖=1

 

          

In a regression problem such as the prediction of a quantity e.g. the RUL of a composite 

structure conditional on historical training data, the target RUL ynew is computed by applying 

the rule of summation in probability theory marginalizing out the weight w. 
 

𝑝(𝑦𝑛𝑒𝑤|𝑥𝑛𝑒𝑤, 𝑫, 𝑎, 𝑏) = ∫𝑝(𝑦𝑛𝑒𝑤|𝑥𝑛𝑒𝑤, 𝒘, 𝑏) 𝑝(𝒘|𝑫, 𝑎, 𝑏)𝑑𝒘              (9) 
 

having predetermined the hyperpriors a,b. 

Eq. (9) is very important since it provides the whole PDF of the random variable 𝑦𝑛𝑒𝑤 or 

RUL(𝑥𝑛𝑒𝑤). Thus mean, variance etc can be subsequently calculated. The integral in (9) is 

generally not analytically tractable since w is of high dimension. Computational approaches 

such as the Markov Chain Monte Carlo Sampling (MCMC) render the calculation viable via 

the estimation of the integral by a finite sum: 

 

(8) 
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𝑝(𝑦𝑛𝑒𝑤|𝑥𝑛𝑒𝑤, 𝑫) ≈
1

𝑚
∑𝑝(𝑦𝑛𝑒𝑤|𝑥𝑛𝑒𝑤, 𝑤𝑖)

𝑚

𝑖=1

 

 

Where wi are samples generated from the posterior PDF 𝑝(𝒘|𝑫, 𝑎, 𝑏). Conventional MCMC 

algorithms such as the Metropolis-Hastings have proved rather inefficient in the case of 

BFFANN where w can be of considerably high dimension. Hybrid Monte Carlo, a stochastic 

sampling algorithm which incorporates the gradient of Hamiltonian energy information to 

search more effectively the sample space in regions of higher likelihood. More details can be 

found in [10]. 

 

3. CASE STUDY 

Constant amplitude fatigue tests were performed in nine open-hole coupons towards the 

validation of the proposed stochastic modeling for damage diagnostics and remaining useful 

life prognostics in composite materials. Plates from carbon/epoxy prepregs were 

manufactured in house via the autoclave process. The stacking sequence was a typical quasi-

isotropic [0/45/-45/90]2s and rectangular open-hole coupons were cut in dimensions 300x30 

mm
2
. A central hole of 6 mm diameter was drilled subsequently to all coupons. Tensile tests 

indicated a mean tensile failure load of 28kN. Tension fatigue at 10 Hz loading frequency 

and ratio R=0.1 were performed in an Instron hydraulic universal testing machine (Figure 

4a). The maximum loading level was kept constant at 90% of the ultimate tensile load in 

order to minimize the time needed for the tests. Table 1 summarizes the cycles to failure 

distribution between the tested coupons. Evidently, the scatter in the cycles to failure is quite 

large, an expected result of the stochasticity in the material properties and material 

inhomogeneities inherent in composites. 

Coupon 

# 

Fatigue test 

conditions 

Cycles to failure (x 

10
3
) 

Cycles to end-of-life 

threshold (Figure 1) 

(x 10
3
)  

A1 

R=0.1, f=10Hz, 

Fmin= 2.5 kN 

Fmax=25.2 kN 

286 285 

A2 159 121 

A3 116 116 

A4 146 135 

A5 109 76 

A6 317 306 

A7 261 224 

A8 53 37 

A9 204 160 
Table 1. Cycles to failure of tested coupons 

AE was recorded in situ via a PCI-2 A/D acquisition board system provided by 

Envirocoustics Ltd (Mistras Group). Pre-amplification of 40 dB and band-bass filtering of 

100-1200 kHz was applied using general purpose voltage pre-amplifiers. A threshold of 50 

dB was adequate to reject hydraulic noise and the choice of the timing parameters was 

PDT=50μsec, HDT=100μsec and HLT=300μsec. The single AE sensor is a wideband 

piezoelectric sensor type WD 100-900 kHz manufactured by PAC, USA. Figure 1 depicts the 

resulted degradation histories of all coupons in terms of windowed cumulative RA 

(10) 
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(Risetime/amplitude). This feature came out after assessing the monotonicity of several other 

AE features. Windows of 2.5 minutes were used to calculate the proposed feature. An end-of-

life threshold is necessary for the NHHSMM as it requires the last observation to be unique 

i.e. non hidden. On the contrary BFFANN does not require such a threshold which can be 

considered an advantage. The degradation histories kept for the training of both models were 

formed with data up to this threshold though in order to secure comparability. Moreover, the 

NHHSMM requires quantized data and to this direction a simple k-means clustering scheme 

was used (see [11] for details).  

 

 

Figure 1:  Degradation histories of 9 coupons in terms of windowed cumulative RA 

 

The application of a k-fold leave-one-out cross-validation scheme in the case of the 

NHHSMM gives the parameters involved in θ=[Γ,Β]. A similar training approach gives the 

distribution of the parameters w of the BFFANN.  

The BFFANN was designed with two layers and 20 hidden neurons to model the relationship 

between the inputs and the output. Training of FLNN model was done within 20 epochs of 

scaled conjugate gradient (SCG) optimization method. An isotropic Gaussian prior for 

weights was assumed with an inverse variance of 0.1. Also the noise model was defined as a 

normal distribution with inverse variance hyperparameter equal to 0.1. Inference and 

prediction was done by using Gibbs sampler and 1000 steps of Hybrid Monte Carlo (HMC) 

algorithm [10].  

The results of the application of the two machine learning algorithms in the degradation 

histories from coupons A2 and A9 are presented in Figures 2 and 3. 
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Figure 2: Prognostic results for coupon A2 

 

Figure 3: Prognostic results for coupon A9 
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4. PROGNOSTIC PERFORMANCE METRICS 

For a more quantitative assessment certain prognostic performance criteria were utilized. 

Squared correlation coefficient (SCC), Mean Square Error (MSE), Precision, Cumulative 

Relative Accuracy (CRA) and Mean absolute percentage error (MAPER) were used as the 

basic prognostic performance criteria introduced in [11]. These criteria were measured 

between the predicted RUL and the actual RUL. Precision, MAPER and CRA are defined as: 

Precision=√
∑ (y(t)−ŷ(t))2N
t=1

N−1
  ,         MAPER=

1

N
∑ |

100∙y(t)

RULactual(t)
|N

t=1  ,         CRA=
∑ RA(t)N
t=1

N
 

where  y(t) = RULactual(t)  −  RÛL(t) is the prediction error and ŷ(t) the mean prediction 

error, RA is the relative accuracy at each point, RA(t)=1-|
RULactual(t) − RÛL(t)

RULactual(t) 
  |, t=1:N is the 

temporal instants that recordings take place and N is the total number of recordings. 

In tables  2 and 3 the performance metrics defined above are presented and highlighted to 

show which performs better in the comparison between the two. 

 

Coupon MSE SCC PRECISION MAPER CRA 

A1 3.90x10
9
 0.785 53.6 x10

-11
 59.1 0.41 

A2 0.52x10
9
 0.793 1.24 x10

-11
 57.5 0.42 

A3 4.65x10
9
 0.500 24.7 x10

-11
 285.5 -1.85 

A4 3.40x10
9
 0.662 7.62 x10

-11
 142.3 -0.42 

A5 5.44x10
9
 0.873 5.45 x10

-11
 219.2 -1.19 

A6 5.87x10
9
 0.656 58.4 x10

-11
 55.17 0.45 

A7 1.74x10
9
 0.65 5.86 x10

-11
 117.1 -0.17 

A8 5.21x10
9 

0.857 5.05 x10
-11

 299.0 -1.99 

A9 1.19x10
9
 0.559 6.58 x10

-11
 61.4 0.39 

Table 2. Prognostic performance metrics for BFFANN results 

Coupon MSE SCC PRECISION MAPER CRA 

A1 27.4x10
9
 0.748 110 x10

-11
 99.95 5.5x10

-4
 

A2 4.95x10
9
 0.908 10.7 x10

-11
 99.91 9.5x10

-4
 

A3 4.47x10
9
 0.864 5.51 x10

-11
 99.86 14x10

-4
 

A4 6.1 x10
9 0.743 16.0 x10

-11
 99.86 14x10

-4
 

A5 1.96x10
9
 0.815 5.14 x10

-11
 99.75 25x10

-4
 

A6 31.3x10
9
 0.689 74.7 x10

-11
 99.94 5.8x10

-4
 

A7 16.7x10
9
 0.918 40.7x10

-11
 99.93 6.7x10

-4
 

A8 0.48x10
9
 0.851 0.44 x10

-11
 99.58 42x10

-4
 

A9 8.78x10
9
 0.905 7.6 x10

-11
 99.94 6.2x10

-4
 

Table 3: Prognostic performance metrics for NHHSMM results 

 

5. CONCLUSIONS 

A novel framework was proposed that utilizes AE data for fatigue damage prognostics in 

composite materials. A stochastic multi-state degradation approach (NHHSMM) versus a 

more conventional soft computing approach (BFFANN) were implemented to this direction. 
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The methodology was validated in coupon level after a fatigue test campaign. The two 

algorithms differ significantly in their philosophy and operation. NHHSMM is a multi-state 

left-to-right generalized Hidden Semi Markov Process which takes into account the ageing of 

the asset/components it tries to model. BFFANN attempts to find the nonlinear relationship 

between observations i.e. SHM data and RUL. BFFANN does not depend on an end-of-life 

threshold which is generally desirable as opposed to NHHSMM. Concerning the RUL 

predictions, special metrics were utilized to assess the prognostic algorithms performance. 

None of the two algorithms clearly excels but the NHHSMM gives more coherent predictions 

with less fluctuations and with confidence intervals that close as time passes and more data 

come into play. The BFFANN on the other hand, despite seeming to provide with better 

estimates towards the end-of-life, its confidence intervals deviate increasingly, which is 

definitely not desirable for a robust prognostic algorithm. Both approaches require training 

data and apparently the more the historical data available the better. Considering their 

generalization, both procedures can be extended to structures of higher than coupons 

complexity. Moreover, any type of SHM data that can form highly monotonic features can be 

successfully utilized for prognostics. 
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