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Abstract

Introduction
This thesis considers the problem of estimating life-cycle fatigue damage for military off-road vehicles using
limited available data. An important durability question is whether military off-road vehicles can cope with
the fatigue damage from extreme random, complex, and non-stationary loads for the design life of up to 30
years. We aimed to investigate the accuracy of fatigue damage estimation models by varying the fraction
of data used. An accurate life-cycle fatigue damage estimation is essential for military off-road vehicles as
the lives of military personnel can depend on a durable vehicle in future use. In addition, minimizing costly
data acquisition time leads to a faster validation of a prototype vehicle, which in turn means the vehicle is
taken into service faster.
Currently, no comparable publications seem to be available regarding fatigue damage estimation or load
extrapolation on (military) off-road vehicles or components. Especially for military applications, reports
are often classified or commercially confidential. In addition, some papers contain case studies on operating
conditions of utility vehicles, for which road surfaces and loading conditions are not fully comparable to that
of (military) off-road vehicles. This study aimed to optimize existing time-domain load extrapolation meth-
ods and compare them in fatigue damage to frequency-domain models for military off-road vehicles while
minimizing data acquisition time and costs. An error below 5% between the fatigue damage estimations and
the validation is deemed satisfactory.

Method
In total, eight existing fatigue damage estimation models were selected (i.e. two time-domain approaches and
six frequency-domain approaches) and the required parameters (e.g. threshold selection, parametric load
distribution) were optimized to the varying input data. Fatigue damage calculations in the time-domain is
a classical reliable method often considered as benchmark for comparison to frequency-domain models. The
two time-domain approaches apply Peak-Over-Threshold load history extrapolation (POT) and Peak-Over-
Threshold Rainflow matrix extrapolation (limiting RFM) to complement the lack of extreme loads in the
measurements. The selected frequency-domain models performed well on wideband PSDs like automotive
spectra in other applications. The six frequency-domain methods implemented were Dirlik (DK), Zhao &
Baker (ZB), Ortiz & Chen (OC), Single moments (SM), Tovo & Benasciutti (TB3), and empirical α0.75

method. The eight fatigue damage models were compared in a case study using 270 km of unique off-road
strain measurements from a 4x4 light armoured personnel carrier. These measurements represent the actual
use in all operating conditions, yet still lack the most extreme events which rarely occur. The dataset was
split into a training dataset of 90 km and a validation dataset of 180 km. The parameters of each method
were then optimized for a fraction of the training dataset (i.e. 10%, 20%, 40% and 100%) to investigate the
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accuracy by calculating the relative error to the benchmark, which is the fatigue damage calculated from
the time-domain approach without load extrapolation also called mileage extrapolation (ME). In addition,
a generic military off-road PSD-envelope was constructed from the training dataset which was used as a
fifth input for the frequency-domain methods to assess accuracy. If the fatigue damage estimation of the
PSD-envelope is sufficiently accurate, dynamic modal analysis and fatigue damage can be estimated by
only determining the transfer function of the system, thereby eliminating the need for large datasets. Fi-
nally, each fatigue damage estimation was validated using the damage calculated from the validation dataset.

Results
The accuracy of the time-domain approaches is determined from the load spectra comparison and relative
fatigue damage error [%] to the mileage extrapolation benchmark. For the frequency-domain approaches
only the error in fatigue damage to the ME benchmark was calculated. Finally, for all eight methods the
error between the fatigue damage estimations and the fatigue damage from the validation dataset are cal-
culated. The load spectra and fatigue damage error of the POT and limiting RFM to the ME benchmark
show that:

• Fatigue damage in the time domain is underestimated up to 32% when only using 10% of the training
dataset for ME (i.e. without applying load extrapolation) compared to the full training dataset. The
lack of extreme loads in the tail data when using a 10-20% fraction of the training dataset is also clearly
visible as discontinuities in the load spectra of the ME and POT method.

• The POT method applied on 10% of the training dataset compensates the fatigue damage underesti-
mation from 32% to an error of 24%, whereas the limiting RFM reduces the error to 18 %. A clear
and logical trend is visible; the error between POT or limiting RFM and the ME reduces when a larger
fraction of the training dataset was used.

• At least 40% of the training dataset was required for a satisfactory accurate fatigue damage estimation
of <5% for both time-domain fatigue damage models.

• With the full training dataset as input, the limiting RFM approach gives 0.5% error to the validation
fatigue damage, whereas POT showed an error of 4.5%.

Results of the six frequency domain fatigue damage models show that:

• Dirlik’s method shows <10% error in validation for 10-20 % of the training dataset but overestimates
fatigue damage by 14% for larger fractions of the training data.

• TB3 is the most accurate method and is robust when at least 40% of the training dataset is used for
input. The minimum error for TB3 was found to be 2.1%, yet this required the PSD from the full
training dataset.

• OC overestimate the fatigue damage by 14-27% depending on the fraction of the training dataset used.
In addition, the SM method underestimates fatigue damage by 13-17%.

• The generic off-road PSD-envelope gives an error of <3% to the validation data when using the TB3
and empirical α0.75 methods. A comparable error was obtained when applying TB3 and α0.75 to the
PSD for the full training dataset.

Discussion
The aim of this study was to optimize load extrapolation in the time-domain for military off-road vehicles
and compare accuracy of all eight fatigue damage models whilst minimizing data acquisition time and costs.
Eight existing fatigue damage models were applied on 10%, 20%, 40% and 100% of a training dataset and
an off-road PSD-envelope. The accuracy of the models is investigated by the error between the estimation
and the normalized fatigue damage from the validation dataset. Both time-domain and frequency-domain
models show an error <5% when >40% of the training dataset was used.
The largest factor of influence on the final fatigue damage estimation is the data input. By varying the
fraction of the training dataset and calculating the error in fatigue damage to the validation dataset, the in-
fluence on accuracy is investigated. Results show significant fatigue damage underestimation for all methods
when only 10-20% of the training dataset is used. This is expected since a short time history or correspond-
ing PSD does not contain all information from rare and extreme events. Although validation is performed
on a dataset only twice the size of the training dataset, results from all methods show that above a 40%
fraction of the training dataset the error compared to the validation stabilizes, indicating the time history
contains sufficient extreme loads for an accurate (i.e. <5% error) fatigue damage prediction. For both
time-domain load extrapolation methods the input is also determined by the threshold selection method and
(non)parametric fit to the exceedances.
Accuracy of the frequency-domain methods depends greatly on whether the assumptions on which the
method is developed are valid or not. For example, (semi)empirical approaches are often applicable for a
certain range of material parameters and PSD shapes. Other approaches assume the loads to be random,
stationary, and Gaussian. All six selected methods performed well on other typical wide-band automotive
spectra, yet OC and the SM method did not cope well with this specific off-road truck application compared
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to the other methods. TB3 and α0.75 showed the lowest error in validation on >40% of the training dataset.
Both methods are more recently revised (TB3 in 2006) or developed (α0.75 in 2004) empirical methods fitted
to a large variety of PSD samples. Furthermore, the PSD envelope and PSD from the full training dataset
show equivalent accuracy for TB3 and α0.75. This shows potential to use the envelope as input for dynamic
modal analysis.

Conclusions and recommendations
None of the fatigue damage models performed satisfactory for all data fractions of the training set, i.e.,
<5% error in validation. For at least 36 km of the training dataset, the limiting RFM is the most accurate
and computationally efficient time-domain method, whereas BT3 is the most accurate frequency-domain
method. The load spectrum from 40% of the training dataset was continuous up to 80% of the maximum
value present in the measured time history and provided a validation error <5%. It is suggested to use this
subjective graphic rule-of-thumb to assess if sufficient extreme loads are present in the measured signal to
obtain a fatigue damage estimation error below 5%. The generic PSD-envelope shows comparable accuracy
to the PSD from the full training dataset.
In addition to this research, data acquisition time can be reduced further by complementing the extreme
and rare events in the measured time history with measurements from an off-road test track where loads
are induced at an accelerated rate correlated to the user profile. Also, the graphical methods used for initial
threshold selection in the time-domain load extrapolation are subjective, and additions should be made
to improve the automated selection procedure. For the frequency-domain approaches, the dependency on
material parameters is to be researched since frequency-domain methods are often developed for a specific
range. Furthermore, additional research is required to perform dynamic modal analysis and calculate fa-
tigue damage estimates from a generic military off-road PSD. For example, this requires knowledge on the
contribution of vehicle parameters, the off-road user profile, and operating conditions to the PSD.

1 Introduction
Testing prototype vehicles is costly and time consuming. With fast developments within the automotive branch,
manufacturers strive to deliver a reliable and durable product to the market fast. Therefore, testing is often
done by simulation parallel to the design phase to save time. Yet, the prototype vehicle still needs to pass tests
on the proving ground.

1.1 Accelerated Life Cycle Testing
Both reliability and durability are essential aspects to address while testing. Unexpected and premature sys-
tematic failures are costly and often lead to recalls, which influence sales numbers due to the affected consumers
brand quality opinion [1]. In addition, for military off-road vehicles durability and reliability are more critical
since they are required to operate in extreme and often dangerous conditions in remote areas where unexpected
failures are difficult to repair. Durability aspects which are often tested include accelerated weathering tests,
thermal/climatic testing, buzz, squeek, rattle test and accelerated life cycle testing. In accelerated life cycle
testing the main failure mode is fatigue damage caused by cyclic loading of the (sub)structure. Accelerated life
cycle testing therefore focuses on fatigue induced wear-out failures at the end of a vehicle’s service life as it
often leads to catastrophic (component) failure, see figure 1. Several components are economically unattractive
to replace if failure occurs and are therefore required to last the service life of up to 20-30 years, e.g. chassis,
cabin, axles and other large assemblies. Manufacturers of civilian off-road vehicles stride to simulate the full
vehicle durability test, using computer-assisted engineering tools. However, this requires a very accurate and
complex multi-body dynamic vehicle and tire model, which is also very time consuming to develop and needs
to be validated. Thus, a combination of simulated and actual measured service loads is still often used to make
fatigue damage estimations [2]. For off-road military vehicles the nation which procures the vehicle generally
performs their own durability tests on the prototype to validate the requirements of the vehicle. Again time
is very limited as production is otherwise delayed or the vehicle is taken into service at a later stage thereby
influencing operational readiness.
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Figure 1: Hazard function, also called ’Bathtub curve’ [3]

1.2 Fatigue Damage Estimation
Commonly, life-cycle fatigue damage is estimated through load extrapolation of a short measured load history
using Rainflow counting combined with a damage accumulation rule or from a known power spectral density
(PSD) using frequency-domain methods.

Time-domain

Time domain fatigue damage estimation spanning the majority of a service life requires a measured load history,
often strain, forces, or acceleration measurements. To reduce data acquisition time and costs, a load extrapo-
lation method is required using a short term load history to obtain a service life load history or spectrum. In
publications, two main traditional time-domain extrapolation methods are often used and adapted for specific
applications: (1) load history extreme value theory (EVT) extrapolation in the time domain [4, 5], and (2)
rainflow matrix (RFM) extrapolation using EVT [6, 7, 8]. However, the first challenge is determining a repre-
sentative short term load history containing all operating conditions. An extrapolation factor of 10-1000 times
of the measured load history is not uncommon as limited unique off-road data is available. Furthermore, off-road
vehicles, especially for military applications, cope with complex and random non-stationary loads, which makes
an accurate long term fatigue damage prediction even more challenging. For military off-road vehicles durability
testing standards and procedures are described [9, 10, 11, 12] which focus on classic fatigue damage estimation
using an instrumented vehicle to measure a wide variety of loading conditions including the most damaging con-
tent from rare and extreme events. After the service loads are obtained and extrapolated, the fatigue damage
is calculated using a rainflow counting method, the material S-N or E-N curve, and the Palmgren-Miner linear
damage accumulation rule [13]. The rainflow counting algorithm extracts the range and mean of variable load
cycles within the time history. The S-N curve is a stress fatigue life model which gives the number of cycles
Nf a standardized specimen can resist up to failure at constant stress amplitude si, see 1, where C and m are
material properties.

Nfs
m
i = C (1)

Another fatigue life model is given by the Strain-Life method, which assumes that the strain range ∆ε determines
the fatigue response in the structure, see 2.

∆ε

2
=

σ′
f

E
(2Nf )

b + ε′f (2Nf )
c (2)

Where E is the elasticity modulus, b is basquin’s exponent, and c is the fatigue ductility exponent. In expression
2, both plastic and elastic deformations contribute to fatigue damage contrary to the stress-life model. Thus, for
long fatigue life containing primarily elastic deformations, the fatigue strength σ′

f dominates fatigue damage.
Whereas, for short fatigue life, plastic deformations dominate fatigue damage through the fatigue ductility ε′f
and c. Finally, the total damage D induced by the extrapolated or full service load history is calculated using
the Palmgren-Miner linear accumulation rule (equation 3), in which ni is the number of load cycles within the
interval of the signal used, and Nf is the number of cycles to failure in that interval according to stress- or
strain-life model.

D =
∑
i

ni

Nf
(3)
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If the accumulated damage D > 1 in the load history failure occurs. Finally, using the accumulated damage D,
and signal time interval Tx the estimated fatigue life T is calculated using 4.

T =
Tx

D
(4)

Frequency-domain

Besides extrapolation of the load history or RFM, fatigue damage can be directly estimated from the PSD using
spectral moments in the frequency domain [14, 15]. Frequency-based fatigue damage models utilize parameters
calculated from the spectral moments about the origin and integrated over the PSD. One key consideration is
that also the PSD needs to be representative of all loading conditions as the methods finds a mean damage rate
Ḋ calculated from the PSD. Many methods are based on compensating a narrow band or wide band solution
with an irregularity factor or bandwidth parameter, e.g. [16, 17, 18, 19, 20]. A narrow band signal contains
only a few or one frequency, whereas a wide band signal is shot noise and contains many frequencies, see figure
2 for PSD examples. If the signal is falsely assumed narrow band the damage prediction is overestimated, yet
for a false wide band assumption the damage is underestimated [21].

Figure 2: Time history examples for a narrow-band, wide-band, and bimodal signal and the corresponding
PSD plots [22]

1.3 Problem Statement
There is a paucity on knowledge on how to accurately estimate lifecycle fatigue damage from a short measured
load history or PSD. Fatigue damage models are widely reviewed on various PSD shapes or specific applications,
yet no comparable publications seem to be available regarding fatigue damage estimation on (military) off-
road vehicles or components. In addition, minimizing the measured load history required for an accurate
prediction reduces data acquisition time and costs in durability testing. Ideally, an accurate life-cycle fatigue
damage estimation is made without performing time-consuming data acquisition using an instrumented vehicle.
Therefore, the goal of this thesis was to optimize existing time-domain and frequency-domain fatigue damage
estimation methods while minimizing data input for military off-road vehicles. Obviously, accuracy of the
estimation is equally important, therefore a maximum error of 5% between the fatigue damage estimation and
the validation data is set. The theory behind the applied methods and parameters are presented in chapter 2.
Next, the results of a case study using off-road strain measurements from a 4x4 military truck are presented
in chapter 3 and validated. Finally, the results from the case study are discussed and concluding remarks and
future work are given in chapter 4, and 5, respectively.
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2 Method
In literature, a wide variety of existing time-domain and frequency-domain fatigue damage estimation methods
are implemented, adapted and reviewed for different applications. The load history of a military off-road vehicle
shows a tail heavy load distribution and a wide-band PSD. From reviews and applications [22, 23, 24, 25, 26,
27], eight widely used fatigue damage estimation models were selected for the case study in chapter 3. For all
eight fatigue damage models described in sections 2.1, and 2.2 below, parameters need to be optimized for the
varying input in the case study in chapter 3. The available dataset from the 4x4 military off-road armoured
personnel carrier consists of 270 km of strain measurements on the front axle assembly, which is split into a 90
km training dataset and 180 km validation dataset. The input for the case study consists of various fractions, i.e.
10%, 20%, 40% and 100%, from the training dataset. The time-domain approach without load extrapolation,
called mileage extrapolation (ME), will serve as benchmark eventhough it is known to be conservative due to the
lack of rare and extreme loads. For the time-domain approaches, the normalized load spectra will be compared
for analysis of the fatigue damage content per data fraction. Furthermore, the fatigue damage estimations are
normalized to the ME from the full training dataset after which the error between the ME and the eight damage
estimations is calculated per fraction. In addition, a generic military off-road PSD-envelope is used as a fifth
input for the frequency-domain methods to assess accuracy. The overall power in the envelope is equal to that
of the PSD from the training dataset. If the fatigue damage estimation of the PSD-envelope is accurate, i.e.
<5%, dynamic modal analysis and fatigue damage can be estimated by only determining the transfer function
of the system, thereby eliminating the need for large datasets. Finally, the results from the eight fatigue damage
models on varying fractions of the training dataset are validated with the remaining subset containing 180 km
of strain measurements from the same vehicle in similar conditions.

2.1 Time-domain fatigue damage models
Classical time-domain approaches are considered reliable methods for fatigue damage estimation and are used
as benchmark to evaluate the performance of frequency domain methods. Since the goal is to minimize data
acquisition, the load history or load spectrum needs to be extrapolated to unobserved loads not present in
the original signal. The extrapolated signals will be compared in the case study to the results from mileage
extrapolation (ME), which is the fatigue damage from the measured time history without load extrapolation
scaled to the desired distance or signal length. First, the pre-processing steps performed on the measured time
history are explained. Next, the rainflow counting method is presented. The final subsection elaborates on both
time-domain load extrapolation methods.

2.1.1 Pre-processing

Before applying extrapolation methods on the measured time history or corresponding load spectrum, the
non-damaging and irrelevant content below the fatigue endurance limit is filtered, which also has computational
benefits. Let X(t) = x1, x2, ..., xn, with t ∈ [0, T ] be the short term measured load history with sample frequency
fs, with independent and identically distributed samples of an unknown continuous distribution. First, a band
pass filter is applied on X(t) which filters slow steering corrections < 1 Hz and high frequency vibrations
> 40 Hz, which preserves load cycles relevant for automotive fatigue analysis. It is shown by [5, 6] that small
amplitude and high frequency cycles only contribute marginally to fatigue damage and therefore can be filtered
to reduce computational effort. The Nyquist sampling theorem states that fs ≥ 2B for the frequency B to be
preserved in sampling. However, when applying a rainflow counting algorithm the sample rate needs to be 10-20
times the highest frequency to preserve in order to detect the peaks and valleys in the signal [28]. The sample
frequency should therefore be upwards of 400 Hz for off-road vehicle loads. For the case study where fs = 2000
Hz, this results in a factor 2-5 data reduction.

2.1.2 Rainflow Counting

After filtering, the first time-domain model (POT) directly performs load extrapolation on the measured time
history to obtain an extrapolation load history. The second time-domain approach extrapolates the measured
RFM, thus after rainflow counting. Using rainflow counting the load distributions of the extrapolated signals
can be compared. The method was first introduced by Matsuichi and Endo [29] and counts cycles as closed
hysteresis loops by turning the time history into a series of reversals where the signal changes sign. From the
reversals, the number and ranges of loading cycles, as well as the mean, are extracted. From the first definition,
more than a dozen rainflow counting methods are developed. Newer methods have superseded many older
counting methods, which if the time signal starts at the highest peak or lowest trough give the same counts.
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Rychlik’s definition [30] states that a rainflow range only exists if the signal crosses the level of the current
reference peak. Thus checking for previous and future peaks in the signal and only applying the rainflow count
when the previous peak value is exceeded. Rychlik’s definition is widely used and is shown in figure 3.

Figure 3: Rychlik’s definition of a rainflow range cycle, where the cycle is defined as (mrfc
k ,Mk), with

amplitude Srfc
i = (Mk −mrfc

k )/2 [30]

A range-mean plot from the training dataset using Rychlik’s rainflow counting method is given in figure 4.
Finding the load distribution of the resulting range and mean from rainflow cycle counting is a multivariate

Figure 4: Range-mean histogram containing 4483 cycles derived from the training dataset by Rychlik’s
definition of rainflow cycle counting.

problem. Since the mean stress affects fatigue strength significantly [31] stress correction is applied to obtain
zero-midpoint equivalent stress ranges, thereby reducing the problem to a univariate case. The relation proposed
by Marin [32] is generalized in expression 5.(

σa

σar

)n

+

(
f
σm

σu

)m

= 1 (5)

With σa, σar, σm, σu the original stress amplitude, corrected stress amplitude, original mean stress and ultimate
tensile strength, respectively. Multiple mean correction methods are developed on this general expression of
which the values are given in table 1 [33]. Where σy, and σfB are the yield strength and true fracture strength,
respectively. The true fracture strength can be replaced in Morrow’s method for σ′

f , which is the physical limit
to σm.
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Method Values
Goodman n = 1,m = 1, f = 1
Gerber n = 1,m = 2, f = 1
Dietman n = 2,m = 1, f = 1
Soderberg n = 1,m = 1, f = σu

σy

Morrow n = 1,m = 1, f = σu

σfB

Table 1: Mean stress corrections in stress-life fatigue

2.1.3 POT Load Extrapolation

Since the ME is performed on an incomplete load distribution from a fraction of the training dataset, EVT is
applied to correct the estimation. The tail of the load distribution contains large uncertainties due to the lack
of data, especially for short time histories. EVT extrapolates only extreme loads to complement the lack of
tail data. Four methods are available of which three are applied on a time history and one extrapolates the
measured RFM. The first time-domain approach is peak-over-threshold (POT), which defines a threshold level
and fits an excess distribution function to the exceedances above the threshold. The second is block-maxima-
method (BMM) which divides the time history into equal blocks and models the probability of the maximum
(or minimum) in each block. The method-of-independant-storm (MIS) is the third time-domain method and
combines POT and BMM by also defining a threshold within the signal blocks, which in this methods are events
(storms). Since BMM and MIS require large sample sizes as they only utilize a small fraction of the available
data, they are not suitable for off-road data and not considered any further. The limiting RFM approach is
similar to the POT-method, except it is applied to the extreme values of the measured RFM in stead of the
time history.

Generalized Pareto Distribution

For the POT-method a threshold needs to be selected to separate the bulk and tail of the load distribution.
Next, a suitable tail model needs to be fitted. As shown by [34], and [35] the tail model or conditional
excess distribution function follows a Generalized Pareto Distribution (GPD) for sufficiently high thresholds, as
graphically illustrated by [36] in figure 5. Considering the exceedances yi of X(t) above a threshold level u, i.e.:

yi = xi − u, for xi > u (6)

The conditional excess distribution function Fu(y) of the exceedances is then given by expression 7.

Fu(y) = P (X − u ≤ y|X > u) =
P (X − u ≤ ∧X > u

P (X > u)
=

F (u+ y)− F (u)

1− F (u)
(7)

The cumulative distribution function (CDF) and probability density function (PDF) of the GPD are defined in
8 and 9 , where the parameters ξ and σ of are called the shape and scale parameter, respectively.

F (x|µ, ξ, σ) =

{
1− (1 + ξ x−u

σ )−
1
xi , ξ ̸= 0

1− exp(−x−u
σ ) , ξ = 0

(8)

f(x|µ, ξ, σ) =

{
1
σ [1 + ξ(x−µ

σ )]1+
1
ξ , ξ ̸= 0

1
σ exp(−

x−µ
σ ) , ξ = 0

(9)

In the limiting case, the GPD reduces to an exponential distribution for ξ = 0 and µ = 0 or a Pareto distribution
when ξ > 0 and µ = σ/ξ.
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Figure 5: Examples of extreme value mixture models with a GPD-tail distribution.

Threshold Selection

Before generating more data regarding the extreme and random loads in the tail of the PDF, a proper threshold
needs to be selected for which the GPD tail model assumptions hold. Many threshold selection methods are
developed using graphical methods, computational methods, rules of thumb, or a combination of those methods.
Determining the threshold is a trade-off between variance and bias. The variance increases as a result of the
reduced sample size. However, a sufficiently high threshold is required to make the assumed GPD tail model
valid, thereby reducing bias [36]. Traditional graphical methods to estimate the threshold require experience
and are subjective, e.g. the Mean Residual Life plot (MRL) and threshold stability plot [37]. The MRL-plot
shows the mean of the exceedances versus threshold, which is approximately linear for a GPD [38]. Suppose
the measurements x1, x2, ..., xk are a subset of the time history X of which k observations exceed the possible
threshold u0. The mean excess function is given by

e(u) = E(X − u|X > u) =
σu0 + ξu

1− ξ
(10)

For a threshold u0 the excesses follow a GPD, then for all u > u0 the resulting GPD has the same shape, yet
shifted scale σu = σu0 + ξ(u− u0). The expectation of the exceedances for (X − u) ∼ GPD(σ,ξ) is given by 11.
Hence, by verifying the empirical mean excess function is linear in u the threshold can be graphically selected.

en(u) =
1

k

k∑
i=1

(xi − u) (11)
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In the threshold stability plot, the MLE of the shape parameter ξ is calculated and plotted against the number
of exceedances and the threshold. For the specific case where ξ > 0 and the GPD is a Pareto Distribution,
the Hill estimator [39] is often used as maximum likelihood estimator for the power coefficient α = −ξ. The
likelihood function for the power coefficient α is given by:

L(α, xi) =

∞∏
i=1

α
xα
m

xα+1
i

= αnxnα
m

∞∏
i=1

1

xα+1
i

(12)

Where xm is the mean of x. Taking the partial derivative of the logarithmic likelihood function with respect to
α and set this equal to zero we get the Hill estimator Hk.

Hk = α−1 =
1

k

k∑
i=1

log x(n−i+1) − log x(n−k) (13)

In all graphic methods, the lowest threshold value is chosen which still results in a good tail model fit. For
large datasets graphical methods can be time-consuming. Therefore, constant quantile levels preserving fatigue
damage content or pre-determined (physical) thresholds are chosen if applicable. However, in applications there
are often many suitable threshold, which are not taken into consideration when choosing a fixed threshold. In
addition to fixed thresholds, several rules of thumb have been developed, e.g. fitting Pareto tails to the 10th
and 90th percentiles by [40], or selecting k =

√
N0 as suggested by [41, 42] or k = N

2/3
0 /log[log(N0)] by [43],

where N0 is the number of cycles in the signal.

Limiting Rainflow Matrix

The ME benchmark for the case study is the measured RFM F scaled by a desired factor to represent a service
life load history, however this doesn’t capture all loading conditions. To solve this issue, the limiting RFM G
is constructed from an estimation for extreme values (i.e. the tail), and the measured RFM F normalized by
distance elsewhere. Often, a smoothing technique, e.g. (a)KDE smoothing, is also applied to the bulk of the
measured RFM. The limiting RFM is given by:

G = (gij)
n
i.j=1 , with gij = lim

z→∞

E[fij ]

z
(14)

Where fij are the number of cycles in the measured RFM regarding z km. Calculation of the limiting RFM G
by directly estimating a model for the loads is often not possible due to the lack of available data in the tail.
However, the area of interest for fatigue damage is the tail of the model. Finding G which only fits the tail
accurately is therefore essential for fatigue damage estimation. Calculating the limiting RFM G for extreme
loads is therefore done by extracting the number of level upcrossings from the measured RFM F . The level
upcrossing spectrum N is extrapolated to unobserved levels using POT. The upcrossings of a high or low level
(threshold) are assumed to converge into two independant Poisson processes [44, 45]. Furthermore, Rychlik’s
definition of the Rainflow count [30] states that a cycle with a minimum below u and maximum above v only
exist if the values are exceeded in both directions in the signal, which is equivalent to upcrossing the interval
[u, v] of the time history X(t), t ∈ [0, T ]. The intensity µ of the number of upcrossings NT (u, v) is given by

µ(u, v) = lim
T→∞

NT (u, v)

T
(15)

For an ergodic process, the upcrossing intensity µ(u, v) of the closed interval [u, v] is equal to that of the cumu-
lative rainflow intensity µrfc(u, v). Johannesson [7] showed that for a threshold with a GPD-tail distribution a
good approximation for the upcrossings intensity is given by

µrfc(u, v) ≈ µ(u)µ(v)

µ(u) + µ(v)
(16)

To apply the POT-method on the the measured RFM F the level upcrossing spectrum N can be calculated
using

N = (nk)
n
k=1 , with nk =

∑
i<k<j

fij (17)

Where only cycles exceeding the threshold are summed. The level upcrossing spectrum can be used to identify
a threshold based on quantile levels. Secondly, using N the exceedances are derived and the parameters ξ, and
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σ of the GPD are estimated using the MLE. Finally, the limiting RFM G is estimated using equation 18 and
the approximation for the cumulative rainflow intensity 16.

G = (grfcij )ni.j=1 , with grfcij = µrfc
i+1,j−1 − µrfc

i,j−1 − µrfc
i+1,j + µrfc

i,j (18)

Johannesson [7] showed that the limiting RFM G gives good results for extreme values. Yet, the threshold
choice remains essential for the fitted GPD. Furthermore, for the bulk of the distribution or the cycles below
the threshold the estimation is not valid. Thus a suitable bulk model is still required.

(Adaptive) Kernel Density Estimation

As rainflow matrices rarely follow a parametric distribution, one option is to apply a kernel smoothing function
on F below the threshold to obtain the empirical normalized RFM of all loading conditions. Kernel smoothing
is achieved by convolution of an estimator with a kernel K. Considering the samples X, representing zero
midpoint rainflow ranges, from the unknown probability distribution f . The kernel density estimate (KDE) for
a 1-dimensional problem is shown in expression 19 [46].

f̂h(x) =
1

nh

n∑
i=1

K(
x−Xi

h
), (19)

where h is the bandwidth and K is the kernel function of which several examples are given below. For f̂h(x) to
be a pdf, the kernel K needs to satisfy:

K(x) ≤ 0 , K(x) = K(−x)

∫ ∞

−∞
K(x)dx = 1 ,

∫ ∞

−∞
xK(x)dx = 0 ,

∫ ∞

−∞
x2K(x)dx < ∞

(20)

In addition the scaled kernel Kh is given by 21, which reduces 19 to 22

Kh(u) = h−1K(h−1u) (21)

f̂h(x) =
1

n

n∑
i=1

Kh(x−Xi). (22)

For KDE, the choice of kernel K has less influence on the estimation than the bandwidth parameter h. However,
a uniform kernel can give very jagged edges in the estimation resulting in undesirable discontinuities [46]. Several
examples of univariate kernels are given in table 2.

Kernel K(x)

Normal (2π)−
1
2 exp 1

2x
2

Epanechnikov ( 34 )(1− x2)1(|x|<1)

Uniform (box) 1
21(|x|<1)

Biweight ( 5
16 )(1− x2)21(|x|<1)

Triweight ( 3532 )(1− x2)31(|x|<1)

Triangular (1− |x|)1(|x|<1)

Table 2: Popular univariate kernels

The problem of selecting the bandwidth h is crucial for an accurate estimation as it affects smoothing
of data. If the bandwidth is too small, undersmoothing occurs resulting in small bias and large variance.
Furthermore, oversmoothing from a large bandwidth results in large bias and small variance. To prevent under-
or oversmoothing, the optimal bandwidth is calculated by minimizing the global error criterion; the Mean
Integrated Squared Error (MISE) given in 23, also called the L2 loss function.

MISE = E

[∫ ∞

−∞
(f̂h(x;h)− f(x))2dx

]
(23)
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Finding the optimal bandwidth h is generally not possible with 23, since f(x) is unknown. A large sample
approximation of the MISE is required by Taylor series expansion. Under the assumptions that f ′′ ̸= 0 and
µ2 ̸= 0, 23 can be rewritten into:

MISE = AMISE + o((nh)−1 + h4) ,

AMISE = (nh)−1R(K) +
1

4
h4µ2(K)2R(f ′′) , with

R(K) =

∫
K(x)2dx , µ2(K) =

∫
x2K(x)dx , R(f ′′) =

∫
f ′′(x)2dx

(24)

AMISE is the asymptotic MISE and is the large sample approximation. The minimum AMISE and corre-
sponding bandwidth hAMISE is found by differentiating with respect to the bandwidth h and set this equal to
zero:

∂

∂h
AMISE = −R(K)

nh2
+ µ2(K)2h3R(f ′′)

hAMISE =

(
R(K)

µ2(K)2R(f ′′)n

) 1
5

(25)

The trade-off between bias and variance is clearly shown in 24, where the first term of the AMISE is the variance
and converges at a rate proportional to (nh)−1. To minimize the variance the bandwidth h should be large.
However, convergence of the bias is proportional to h4, which suggest h should be as small as possible. Since the
true density function f is unknown, equation 23, and 25 cannot be used directly. Therefore, many bandwidth
selection methods are suggested, e.g. rule-of-thumb, cross-validation, or plug-in selectors.

Yet, a fixed KDE can perform poorly in sparse data regions like the tail of an off-road vehicle load spec-
trum. Using adaptive kernel density estimation can provide a more accurate model. Shimazaki & Shinomoto
[47] suggested to iteratively find the optimal bandwidth within local intervals using a stiffness constant γ. The
stiffness constant is defined as a ratio of the optimal fixed bandwidth to a length of a local interval in which a
fixed-kernel bandwidth optimization was performed. The steps are as follows:

1. Identify data representing all loading conditions

2. Calculating the local cost function in 27 for possible bandwidth h for interval w.

3. Repeat previous step and vary the interval w, using the stiffness parameter γ, around observation xi for
all observations. ,

4. Find optimal interval length Wγ and bandwidth hγ within that interval by calculating and minimizing
the cost function.

For the algorithm described above the cost function to be minimized for a Gaussian kernel and the MISE from
expression 23 is given by:

C(h,w) = f̂h(x;h)
2 − 2f̂h(x;h)f(x) +

2/w√
2π

f(x) (26)

The possible interval lengths are scaled according to

W = γ−1ŵ (27)

As explained in [47], small γ results in a bandwidth optimization of a long interval, whereas for γ ∼ 1 the
interval in which the bandwidth is optimized is short. The approach using the stiffness parameter gives locally
optimized bandwidths within scaled and shifted intervals. Hence, the resulting intervals overlap and require
smoothing. The Nadaraya-Watson kernel regression is applied to achieve a smooth density estimate from a
locally weighted average using weights which sum up to 1.
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2.2 Frequency-domain fatigue damage models
Computational effort becomes a serious aspect in load extrapolation in the time-domain [48]. Furthermore, it is
expensive to collect a sufficiently long load history containing all loading conditions. Thus selecting an accurate
frequency-based fatigue damage model is preferred but requires the PSD of the load history. Models based on
the PSD assume that the variable amplitude random loading is a sequence of stationary processes, which for real
applications isn’t exactly true. Frequency based fatigue damage models for stationary, random and Gaussian
processes provide direct and computationally efficient damage estimations from spectral moments calculated
from the PSD. The PSD from a time signal is calculated using 28, where Ls is the length of the time history.

Gk(f) = 2Ls

[
(realXk)

2 + (imagXk)
2
]

(28)

Main benefit from spectral methods are the computational efficiency compared to time domain fatigue damage
estimation methods. However, for comparison and verification in chapter 3 on off-road vehicle loads a synthesized
timeseries from the PSD is also constructed which in this case counteracts the improved computational efficiency.
Many frequency-domain fatigue damage models have been developed, which are often suitable for a specific range
of material parameters or PSD shapes. Examples of frequency-domain fatigue damage estimation methods
are given below. From the available methods six methods are selected on good performance on wideband
(automotive) PSD plots, which are indicated bold.

• Wirsching and Light (1980) [16],

• Dirlik (1985) [20]

• Ortiz and Chen (1987) [17],

• Larsen and Lutes ’Single Moments’ (1990) [18]

• Zhao and Baker (1992) [49]

• Fu-Cebon (2000) [50]

• Tovo and Benasciutti (2002, 2005, 2006) [51], [19], [52]

• Benasciutti, empirical α0.75 method (2004) [53]

• Gao and Moan (2008) [54]

• Lalanne (2009) [55]

Fatigue damage in the frequency-domain calculated with the S-N curve and Miner cumulative damage rule is
defined as:

D = νpTC
−1

∫ ∞

0

skp(s) ds (29)

With s the rainflow amplitudes, p(s) the cycle amplitude PDF, C the Basquin material constant from equation
1, and T is the desired time duration. Since p(s) is essential in the damage estimation yet unknown it needs to
be estimated using spectral moments calculated from a single sided PSD using 30.

Mj(f) =

∫ ∞

0

f jGk(f)df (30)

Where f j is the frequency of order j and Gk is the single sided PSD from 28. The PSD is often discontinuous
and needs to be numerically integrated to obtain the spectral moments. Statistically, the zero order moment M0

is the variance and
√
M0 is the standard deviation. From the selected models, the methods Ortiz & Chen (OC),

Single Moments (SM), Tovo-Benasciutti from 2006 (TB3), and empirical α0.75 all compensate a narrowband
solution of 39. However, the methods from Dirlik (DK) and Zhao & Baker (ZB) estimate p(s) with a mixture
model.
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2.2.1 Narrowband correction methods (OC, SM, TB3, α0.75)

For a narrowband extreme load distribution, Bendat [56] assumed the rainflow amplitude of each cycle is
symmetrical and the PDF follows a Rayleigh distribution. Which defines the narrowband fatigue damage as:

DNB = ν0C
−1T (

√
2M0)

mΓ

(
1

2
m+ 1

)
(31)

Where Γ is the gamma function and m is the fatigue slope exponent. As mentioned in chapter 1, a narrow
band signal contains only one or a few frequencies, whereas a wideband signal is like shot noise and contains
many frequencies. If the signal is falsely assumed narrowband the damage prediction is overestimated, yet for a
false wideband assumption the damage is underestimated. Automotive spectra cannot be assumed narrowband
and thus require correction. Many proposed methods apply a correction factor ζ to the narrowband damage
estimation DNB using bandwidth parameters αi:

αi =
Mi√
M0M2i

(32)

In which for i = 2 the irregularity factor γ is given, calculated with the expected rate of upcrossing ν0 and
the average rate of peaks νp. For ζ ∼ 1 the result is narrowband, and for ζ ∼ 0 the damage corresponds to a
wide-band process. The irregularity factor γ is given by

γ =
ν0
νp

=

√
M2

M0√
M4

M2

=
M2√
M0M4

(33)

The first correction method by Ortiz & Chen suggests to compensates 31 with ζOC, which is developed using
the generalized spectral bandwidth βk. The term Mk is the numerical integration of 30 of order 2/m.

ζOC =
βm
k

α2
, with

βk =

√
M2Mk

M0Mk+2

k = 2/m

(34)

The second frequency-domain method using a narrowband correction is the single moment (SM) method sug-
gested by Lutes and Larsen, which compensates DNB by

ζSM =
(Mk

M0
)m/2

ν0
, with

k = 2/m

(35)

Additionally, the third method given by Tovo-Benasciutti (TB3) seeks a linear combination between DNB,
which is often an overestimation, and the rainflow count fatigue damage approximated from the compensated
narrowband damage using γ from 33. The approach requires four spectral moments and was fitted to 286
sampled PSD’s. Tovo-Benasciutti suggested:

ζTB = b+ (1− b)αm−1
2 (36)

The initial parameter b has been improved twice in later studies, and are given below. The parameters α1 and
α2 are calculating using 32. The third definition (TB3), based on b3 is used later on in the case study.

b1 = min

(
α1 − α2

1− α1
, 1

)

b2 =
(α1 − α2)[1.112(1 + α1α2 − (α1 + α2))e

2.11α2 + (α1 − α2)]

(1− α2)2

b3 =
α2
0.75 − α2

2

1− α2
2

(37)
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The final narrowband correction method is also from Benasciutti. The empirical α0.75 method is given by:

ζα = α2
0.75 (38)

2.2.2 Dirlik (DK)

The Dirlik method is developed from 70 PSDs of various shapes which where normalized to the same rms value
and expected rate of peaks νp. From the PSDs time histories where generated using IFFT. After applying a
rainflow counting algorithm the PSDs where related to the PDF of the rainflow ranges. The suggested PDF
consists of a mixture of an exponential and two Rayleigh distributions [20], which is given by:

p(Z) =
1

2
√
M0

[
D1

Q
e−

Z
Q +

D2Z

R2
e−

Z2

2R2 +D3Ze−
Z2

2

]
(39)

Where r are the rainflow ranges, Z is the normalized rainflow ranges defined as Z = r
2
√
M0

, and the parameters
D1, D2, D3, Q, and R are defined as:

D1 =
2(Xm − γ2

1 + γ2
)

D2 =
1− γ −D1 +D2

1

1−R

D3 = 1−D1 −D2

Q =
1.25(γ −D3 −D2R)

D1
, with

Xm =
M1

M0

√
M2

M4
, , R =

γ −Xm −D2
1

1− γ −D1 +D2
1

(40)

2.2.3 Zhao and Baker (ZB)

Zhao and Baker (ZB) combined theoretical assumptions and simulation to define the PDF of the rainflow ranges,
which consists of a linear combination of a Weibull and Rayleigh PDF:

p(Z) = wαβZβ−1e−αZβ

+ (1− w)Ze−
Z2

2 (41)

The parameters w, α, and β are expressed as:

w =
1− α2

1−
√

2
πΓ

(
1 + 1

β

)
α− 1

β

α = 8− 7α2

β =

{
1.1 , α2 < 0.9

1.1+9(α2 − 0.9) , α2 ≥ 0.9

(42)

The first element in the PDF estimate of the ZB-method (41) is the Rayleigh distribution for large rainflow
ranges, the second element is the Weibull distribution for small ranges. The ZB method is not applicable for
α2 < 0.13, otherwise w > 1 which gives incorrect results. Furthermore, preferably 2 ≤ m ≤ 6 as the model is
simulated for those values. The improved ZB-method, also called ZB2, is not considered as the method is for
developed for m ≈ 3 whereas 5 < m < 8 is a default range for steels in military applications as described in
[12].
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3 Case Study
The data for the case study consist of 270 km of unique strain measurements from the front axle assembly of
a 4x4 armoured personnel carrier. The full vehicle details and user profile are military confidential, therefore
limited vehicle specifications are given in table 3. The dataset contains 17 samples with different operating

Combat weight 15000 kg
Vehicle Width 2.5 m
Vehicle length 7.2 m
Vehicle height 2.7 m
Wheelbase 3.9 m
Track width 2.1 m

Table 3: Specifications of the 4x4 military off-road vehicle

conditions (surface type, vehicle speed, etc) specified in the off-road user profile which is military confidential.
This dataset is split into a training dataset of 90 km and a validation set of 180 km by splitting each of the 17
samples in the corresponding ratio. For the case study eight fatigue damage models are selected and optimized
for a 10%, 20%, 40% or 100% fraction of the training dataset to examine when the fatigue damage content of
rare and extreme events within the sample is insufficient and leads to an inaccurate (i.e. above 5% error) fatigue
damage estimation. The eight fatigue damage models are:

1. POT extrapolation (POT)

2. Limiting RFM (lim RFM)

3. Ortiz & Chen (OC)

4. Single Moments (SM)

5. α0.75 (a75)

6. Tovo & Benociutti 3 (TB3)

7. Dirlik (DK)

8. Zhao & Baker (ZB)

First, the experimental setup used for data acquisition of the strain measurements is illustrated. Secondly, the
effects of the pre-processing steps are shown. Next, the two time domain fatigue damage models are implemented
and the load extrapolation is optimized for a 20% fraction of the training dataset. The procedure for the other
sample fractions is equal, yet other parameters are found to be optimal. Following, the PSD-plots of the samples
and the PSD-envelope are presented for the six frequency-domain fatigue damage models. Finally, the results of
the load spectra comparison of the time-domain models are presented along with the errors in fatigue damage
estimation of all eight models and are validated with the validation dataset in the final section.

3.1 Experimental setup
Data acquisition was performed with an instrumented vehicle using strain gauges with a linear pattern and a
90°shear/torque rosette pattern combined with a portable data collection system. The bridge circuits of the
linear strain gauges were completed using bridge completion modules at the measuring location of the strain
gauge, see figure 6. The linear strain gauge was applied on the front axle, rear axle, shock absorber mounts and
main chassis beams on both the left and right side of the vehicle. The shear/torque rosette strain gauges were
applied on the front and rear chassis crossmembers for which the bridge circuit is completed within the data
collection system. Datasheets [57, 58] are added in appendix A. Measurements from a linear strain gauge on
the left side of the front axle are used in the case study.
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Figure 6: Linear strain gauge and bridge completion module on the left side of the front axle of the military
4x4 armoured personnel carrier.

3.2 Pre-processing
The strain load history used in this case study are imposed on the vehicle through the tire-surface contact patch
by driving over disturbances from road section varying from block pavement to cobble stone roads and even
rock terrain, see appendix B for surface examples [59, 60]. A required speed was pre-determined and adapted
by the driver if needed for comfort or safety. The 20% fraction of the training load history after pre-processing
including filtering is given in figure 7, where 7b shows the desired content for the rainflow counting is preserved
after resampling. The damaging content of the sample is analyzed before optionally removing non-damaging
content for computational purposes. Figure 8 shows the RFM of the sample and which load cycles contribute
the most in fatigue damage. The damage from figure 8b accumulated and scaled to desired length is equivalent
to the ME approach without load extrapolation. Clearly, even though the tail of the distribution lacks data, the
few extreme and rare loads contribute significantly more to the fatigue damage accumulation than the many
but small load cycles. If computational problems arise when extrapolating in the time domain one can choose
to remove the smallest load cycles as they contribute marginally to the fatigue damage. By applying the band-
pass filter and re-sampling from section 2.1 the original data size is already reduced by a factor five. Yet, when
extrapolating up to a 1000 times, further data reduction by removing small load cycles may be required. For
the most accurate results one should preserve as much content as possible also taking into consideration that
the sequence of loading affects the fatigue damage induced on the structure [61]. Additionally, the Goodman
correction is applied to compensate for alternating loads with a non-zero midpoint to obtain zero-midpoint
equivalent loads [62], thereby reducing the load spectrum to two dimensions and simplifying load extrapolation.

3.3 Time-domain fatigue damage models
In this section the POT load extrapolation method is applied on both the measured time history and the
measured RFM. The 20% fraction from the training dataset is used as sample. For all data fractions the
optimization steps below were executed.

3.3.1 Time history extrapolation

The first step for the POT-method is threshold selection, after which the extreme values surpassing the threshold
are resampled from the fitted GPD distribution. In order to select a suitable initial threshold for the POT-
method, the Mean Residual Life plot and Threshold Stability Plot are graphically inspected. Secondly, possible
thresholds linearly spaced around the initial threshold are defined. For each possible threshold, three parametric
tail models (i.e. GPD, exponential, and Weibull distribution) are fitted to the exceedances for comparison. The
final fit and threshold are selected on the minimum mean squared error (MSE).
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(a) Load history from a 20% or 18 km training sample.

(b) Zoomed section of figure 7a showing the effect of resampling with fs = 400Hz.

Figure 7: Training data strain load history measured on the front axle assembly of a 4x4 military truck in
unloaded condition while driving on various off-road surfaces.

To assist in selecting a value for the threshold u, the mean residual life (MRL) plot or mean excess plot was
produced for values starting at zero, see figure 9. For the GPD to be a good fit for the tail model, the MRL-plot
should be linear in the threshold as mentioned in section 2.1.3. As the MRL-plot shows a linear relation for all
possible thresholds one can assume the parametric GPD fit for the entire load distribution. However fitting on
the entire load distribution often shows greater errors in the tail, which is the region of interest containing rare
and extreme loads. Accuracy of the tail fit for a large and low threshold is shown in appendix C and D.

18



(a) Rainflow count.

(b) Relative damage contribution.

Figure 8: Distribution and fatigue damage content of load cycles in original strain time history.

Figure 9: Mean Residual Life plot from a 20% training sample containing off-road strain measurements
measured on the front axle of a 4x4 military truck. The dotted blue lines show 95% confidence intervals and

the dotted black lines show the number of exceedances with the corresponding threshold.

The MRL-plot shows that at three possible thresholds (i.e. 80, 95 and 116 µm/m) the slope changes
indicating a transition to the rare and extreme values. The other changes in slope where u > 130µm/m cannot
be considered reasonable as they result in an insufficient number of exceedances to accurately fit the extreme
load distribution. For each sample, a good initial thresholds from the MRL-plot can be identified and the error
of the fit on the extreme load distribution is calculated, which is minimized later on when the exact threshold
is determined. The lowest possible threshold is selected to preserve a high number of extreme values, thereby
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reducing variance. When reducing the amount of input data by a factor 3-5, the shape of the MRL-plot and
thereby initial threshold selection method remain fairly unchanged which indicates the extreme loads are evenly
distributed among the various off-road sections driven. Yet, with a shorter time sample fewer exceedances
remain for a good fit on the tail distribution. The corresponding threshold stability plot (TSP) in figure 10
shows for both positive and negative exceedances the MLE of the scale parameter. The MLE of the shape
parameter ξ remains constant and stable up to 75 µm/m for positive, and 92 µm/m for negative exceedances,
respectively. The suitable initial thresholds from the TSP are in agreement with the MRL-plot.

(a) MLE of shape parameter for positive exceedances

(b) MLE of shape parameter for negative exceedances

Figure 10: Threshold stability plots of the shape parameter from a GPD-fit versus possible thresholds applied
to 20% of the training dataset containing strain measurements of a military off-road vehicle. The dotted lines
show 95% confidence intervals.

To find the optimal threshold, the MSE between the empirical exceedance distribution and fitted (Weibull,
exponential or GPD) distribution is calculated for linearly spaced possible threshold around the initial threshold
options found from the MRL- and TSP-plots. The distribution and threshold with the lowest error is selected,
which for 20% of the training dataset was a GPD with thresholds 78 and -95 µm/m for positive and negative
exceedances, respectively. The optimal thresholds differs for each sample of the training dataset used and are
given in table 4.

Sample of training dataset 10% 20% 40% 100%
umax[µm/m] 73 78 90 98
umin[µm/m] -84 -95 -104 -110

Table 4: Optimal thresholds for different sample sizes of the training dataset.

For the 20% sample, the mean squared errors (MSE) of the fit on the exceedances are given in table 5. Selection
on the MSE suggests the GPD for both negative and positive exceedances.
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Distribution MSE+ (×10−4)
u = 0

MSE+ (×10−4)
u > 78

MSE− (×10−4)
u = 0

MSE− (×10−4)
u > 78

Exponential 24.00 4.26 9.32 2.50
Weibull 1.00 4.41 1.17 2.38
Generalized Pareto 14.00 4.00 5.47 2.32

Table 5: MSE for fitted distributions on the positive and negative exceedances above threshold u of the 20%
training dataset.

Since the MRL-plot is approximately linear for all u, this suggests a low (or no) threshold is also possible.
Thus, we consider all three parametric distributions, i.e. Weibull, Exponential, and Generalized Pareto, to fit
on the entire sample (i.e. u = 0µm/m) and just the tail data (i.e. |x ≥ u). The fit is shown together with the
empirical CDF and squared errors in appendix C and D. The parametric distributions fitted to the full load
history show greater errors in the tail of the distribution compared to the parametric distribution only fitted
to the exceedances, thereby providing more accurate results when extrapolating. The optimal shape- and scale
parameter of the GPD-fit on the positive exceedances are set to κ = −ξ = 0.0417, and σ = 16.448. For the
GPD fit on the negative exceedances the shape and scale parameters are κ = −ξ = −0.0240, and σ = 18.809,
respectively. The low values for the shape parameter indicate that the fit is close to exponential where κ = 0.
Figure 11 shows satisfactory comparison between the empirical and fitted distribution. In addition, it shows the
lack of available tail data and an unexpected high probability for positive exceedances around 100 µm/m, which
are confirmed by a graphical goodness of fit assessment from the probability- and quantile plot in appendix
E. Detailed analysis shows that the data deviates significantly between positive and negative exceedances. For
instance, there are less positive exceedances than negative, namely 166 versus 302. Yet, the positive exceedances
have higher absolute maxima, which confirms a separate fit for positive and negative exceedances is required.

(a) PDF for positive exceedances with u = 150µm/m (b) PDF for negative exceedances with u = 150µm/m

Figure 11: Empirical PDF, non-parametric aKDE, and parametric GPD fit on extreme loads of a 20% training
sample from strain measurements. The measurements were performed on the front axle assembly of a military
4x4 off-road truck.

Figure 11 also displays the result from a non-parametric fit on the exceedances using aKDE, see section 2.1.3.
Since an aKDE does not assume any shape of the PDF it is able to suit the dataset better, yet it is also more
sensitive to outliers. The aKDE shows slightly higher probability overall for negative exceedances. However,
for the positive extreme values the same aKDE method overfits on the data with a narrow bandwidth. The
dip in the lower ranges is due to the aKDE being applied on just the exceedances for comparable probabilities.
Considering one of the objectives of this thesis is to select a robust extrapolation method on a very limited
amount of data, the parametric fit is considered favorable as it is less sensitive to outliers and more suitable for
a tail with low data density.
After threshold selection and fitting a parametric distribution to the extreme values, the final step is copying
the load history and randomly resample only the positive and negative exceedances from the fitted GPDs.
As suggested by [42], the original time history is extrapolated a factor 10 or higher to obtain a load history
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respresenting all loading conditions. A fraction of the time history containing resampled exceedances is shown
in figure 12.

Figure 12: Time interval of a 20% strain measurement training sample capturing the original signal (black)
and five times POT extrapolation (other colors) above the threshold umax and below umin.

Every simulation will provide slightly different results, since the POT extrapolation method is based on a
random simulation of the extreme values from the fitted exceedance distribution. Next, rainflow cycle counting
is applied and the mean strain is corrected in the strain range or amplitude. The result is a two dimensional
load spectrum shown in figure 13, where the zero values are removed for readability.

Figure 13: Load spectrum of the sample (i.e. 20% training data) and 10 times POT extrapolated load history.

3.3.2 RFM extrapolation

As an alternative to applying the POT-method on the time history, the limiting RFM can be constructed
for extreme values from the measured RFM. Working in the rainflow domain is more efficient than the time
domain as it doesn’t result in long time histories for large extrapolation factors. The limiting rainflow matrix
describes the shape of the rainflow matrix for extreme values containing fatigue damage content from all loading
conditions, i.e. loads above the threshold. The method is based on the asymptotic theory of (extreme) load level
crossings, as described in section 2.1.3 and also applies the POT-method. First, the original level upcrossing
spectrum is calculated from the measured rainflow matrix in which the cycles below the fatigue endurance limit
are neglected and thus rainflow filtered. Next, the level upcrossings are extrapolated to higher unobserved load
levels using the POT-method, see figure 14. As figure 14 shows, a lower extreme of -421.5 µm/m and a high
extreme load of 403 µm/m occur once for an extrapolation factor of 100, i.e. 10−2 upcrossings.
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Figure 14: Upcrossing spectrum from a 20% training data sample and GPD extrapolation of the extreme
positive (blue) and negative (red) load levels.

In contrary to the time domain approach where minimizing the M(I)SE combined with graphical methods was
used for threshold selection, the threshold is now set using a rule of thumb and verified using the same graphical
methods. The threshold is set for 5% of the sample that crosses the maximum value of the upcrossing spectrum
as suggested by [7]. Thresholds and parameters of the fitted GPDs are given in table 6. Using the extrapolated

Parameters threshold [µm/m] κ σ
Positive load levels 191.7 -0.184 48.45
Negative load levels -193.8 -0.0978 38.40

Table 6: Fitted GPD parameters on the level upcrossing spectrum of the 20% sample from the training
dataset.

upcrossing spectrum, the extreme RFM is calculated using equations 16 and 18. Finally, the limiting RFM
G consists of two separate RFM’s; 1: the RFM for extreme extrapolated load levels which is only valid above
the threshold, and 2: the original or (a)KDE smoothed RFM elsewhere. The limiting RFM G using 20% of
the training dataset is shown in figure 15. Clearly, the extrapolated extreme RFM envelops the rare extreme
cycles in the tail of the distribution nicely and allows for other cycles to be present for high extrapolation
factors. Furthermore, in figure 15 the asymmetric curved shape of the limiting RFM estimate in the extreme
values is coherent with the fact that there are more negative extremes present in the measured load history.
Unfortunately, smoothing the bulk of the RFM also smoothens the values below the line y = x, which is an
unwanted effect. The arrays in the final limiting RFM G should therefore be set to zero.
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Figure 15: Limiting RFM G from a 20% training sample measured on the front axle of a military off-road
truck. The extrapolated extreme RFM is valid above umax and below umin], and the aKDE smoothened

RFM is used elsewhere. The limiting RFM is shown in isolines, whereas the original rainflow cycles are shown
as red dots.

3.4 Frequency-domain fatigue damage models
Frequency-domain load extrapolation methods use spectral moments calculated from the PSD, as explained in
detail in section 2.2. The input PSD is calculated from the corresponding time sample so all methods have the
same input. It is also desirable to compare the PSD approach to the time-domain methods in load spectra.
Therefore, a synthesized load history can be generated from a PSD. As described by [24], the PSD input is
multiplied with perfect white noise before IFFT to synthesize a time series with an equivalent PSD shape and
amplitude. However, the load spectrum of the PSD generated time history does not provide reasonable results,
see fig 17. The PSD’s and time histories of the original and synthesized signal are compared and validated in
appendix F, which show the loading sequence is falsely neglected and needs to be taken into account. Since this
information is unknown when only the PSD is used as input it is impossible to reconstruct the load sequence
of the extreme ranges. This method is therefore not considered any further.

The PSD from the training dataset sample, a 10 times POT extrapolation, and a generic military off-road
PSD-envelope are given in figure 18. The off-road truck PSDs show good agreement in shape with typical
wideband automotive spectra as shown in [25]. The PSD from the POT extrapolation shows the frequencies
where damaging content is added by complementing the tail of the load distribution. Furthermore, the PSD-
envelope is suggested to be used as a fifth input (besides the PSDs from the four training dataset fractions)
for the frequency-domain methods to assess accuracy. If the fatigue damage estimation of the PSD-envelope
is sufficiently accurate, dynamic modal analysis and fatigue damage can be estimated by only determining the
transfer function of a new system and correlating the user profile to an PSD-envelope, thereby eliminating the
need for large datasets.

3.5 Results
The results of the case study are shown in figure 16 and table 7. First, graphical analysis of the load spectra
for time-domain fatigue damage models allows to quantify the underestimation of ME and how well the load
extrapolation methods compensate the lack of rare and extreme loads. Next, the eight fatigue damage estima-
tions from the 10%, 20% and 40% samples are normalized to the result from the full training dataset and the
error between ME and the other methods is calculated to investigate trends and identify which estimations are
within the 5% error tolerance.

3.5.1 Load Spectra

Figure 16 clearly shows where the PSD extrapolated time history deviates from the original time history caused
by neglecting the load sequence resulting in an inaccurate fatigue damage estimation as explained in appendix
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F. The load spectrum of the original sample shows that the data density in the tail becomes sparse from around
190 µm/m or 46% of the load spectrum, whereas the 10 times POT extrapolated time history shows the same
issue from a range of 330 µm/m or 67% of the spectrum. As expected, the load spectra of the original sample
and POT time domain extrapolation match below the threshold. The minute deviations below the threshold are
from normalization, which results in a smoothing effect. The limiting RFM approach gives a smooth normalized
spectrum up to load cycles with extreme ranges since the extrapolation is performed on the upcrossing spectrum,
normalized to 1 km and smoothed using aKDE.

Figure 16: Normalized load spectrum for a 20% training sample, 10 times POT extrapolation, 10 times PSD
extrapolation, and limiting RFM . All cycles are normalized to the number of cycles to occur in one signal

length of the original sample. Zero values are not plotted for readability.

3.5.2 Fatigue Damage Error

The fatigue damage of the time domain methods are computed from the load spectra using equations 1, 2,
and 3. The frequency-domain models calculate fatigue damage using the spectral moments calculated from
the sample PSD and PSD-envelope using equations 28, 30, and the model specific equations, see section 2.2.
Since the objective was to minimize the input data while still achieving satisfactory accuracy in the final fatigue
damage calculations, the length of the input time history is varied to assess the robustness of the extrapolation
method. The four samples T1 − T4 represent 10%, 20%, 40%, and 100% of the training data, which for this
specific military vehicle corresponds to 1

600 ,
1

300 ,
1

150 ,
1
60 of the annually driven off-road km’s. The first row with

the mileage extrapolation is normalized to the damage from the longest time history, i.e. D4. The error for
each sample is based on the benchmark for each time history length, which is the fatigue damage of the mileage
extrapolation (ME). All parameters are optimized separately for each time history as described in the previous
sections. The error is determined as:

Ei =
Dij −DiME

DiME
× 100 (43)

In expression 43 the index i represents the corresponding input time history varying from 1-4, and j indicates
one of the eight methods used. The relative fatigue damage and errors from the eight fatigue damage models
are given in table 7. The fatigue damage from the PSD-envelope is only reviewed in validation since the
PSD-envelope does not vary and thus gives a fixed damage rate.
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Method D1 E1[%] D2 E2[%] D3 E3[%] D4 E4[%]
ME 0.6807 n.a. 0.8722 n.a. 1.0308 n.a. 1 n.a.
POT 0.7598 11.63 0.9238 5.92 1.0988 6.60 1.0456 4.56
Lim RFM 0.8181 20.20 0.9269 6.28 1.1001 6.73 0.9947 -0.532
OC 0.8657 27.18 0.9989 14.53 1.2497 21.24 1.2060 20.60
SM 0.5911 -13.16 0.7221 -17.20 0.8814 -14.49 0.8401 -15.99
a75 0.7679 12.81 0.9212 5.62 1.1095 7.64 1.0618 6.18
TB3 0.7419 8.99 0.8769 0.54 1.0674 3.56 1.0173 1.73
DK 0.8045 18.19 0.9619 10.28 1.1337 9.99 1.1120 11.20
ZB 0.7662 12.56 0.9185 5.308 0.9371 -9.09 0.9226 -7.74

Table 7: Relative fatigue damage Di and error Ei comparison between time-domain and frequency-domain
fatigue damage models for four input signal lengths representing ; 1) 10% , 2) 20% , 3) 40%, and 4) 100% of

the 90 km training dataset.

Fatigue damage in the time domain is underestimated up to 32% when only using 10% of the training
dataset for ME (i.e. without applying load extrapolation) compared to the full training dataset. The lack of
extreme loads in the tail data when using a 10-20% fraction of the training dataset is also clearly visible as
discontinuities in the load spectra of the ME and POT method. Furthermore, the POT method applied on 10%
of the training dataset compensates the fatigue damage underestimation from 32% to an error of 24%, whereas
the limiting RFM reduces the error to 18 %. A clear and logical trend is visible; the error between POT or
limiting RFM and the ME reduces when a larger fraction of the training dataset was used. In addition, at least
40% of the training dataset was required for a satisfactory accurate fatigue damage estimation of <5% for both
time-domain fatigue damage models. With the full training dataset as input, the limiting RFM approach gives
a 4.5% overestimation, whereas POT showed an underestimation of 0.5%.

Results of the six frequency domain fatigue damage models show that Dirlik’s method performs well for 10-20
% of the training dataset but overestimates fatigue damage >10% for larger fractions of the training data. TB3
is the most accurate method and is robust when at least 20% of the training dataset is used for input. The
minimum error for TB3 was found to be 0.5%. On the other hand, OC and SM give inaccurate overestimates.
OC overestimates fatigue damage by 14-27% depending on the fraction of the training dataset used. Whereas,
the SM method underestimates fatigue damage by 13-17%.

3.6 Validation
Validation is performed by using the validation dataset containing the remaining 180 km of unique strain
measurements of the same vehicle and operating conditions driven in 9.23 hr. The load spectra, PSDs, and
fatigue damage errors are used to validate the results. The validation dataset gives a total fatigue damage
D = 4.9 × 10−4 [-] and from 4 the fatigue life T = 18692 hr based on confidential material parameters of the
front axle assembly where the measurements were performed.

3.6.1 Load Spectra

More data from rare and extreme loads results in a more continuous tail of the load spectrum, as shown in
section 3.5.1. For the 20% training sample the load spectrum only had sufficient load cycles up to 67% of the
maximum strain range. Figure 17 shows a load spectra comparison including the validation dataset.
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Figure 17: Normalized load spectrum of the 20% training sample, 10x POT extrapolation, 10x PSD
extrapolation, limiting RFM and validation dataset. All cycles are normalized to the number of cycles to

occur in one signal length of the original sample. Zero values are not plotted for readability.

Clearly, the 10 times POT extrapolation and the validation dataset show comparable load spectra. The vali-
dation load spectrum shows more cycles in the range of 180-250 µm/m, yet fewer cycles between 280 and 360
µm/m. A better graphical validation could be performed on a larger validation dataset with a continuous load
spectrum above 380 µm/m. In addition, after a 10 times POT extrapolation on the 40% and 100% training
sample the extrapolated load spectrum contains more extreme load ranges than the validation dataset. As addi-
tional validation step, the limiting RFM is therefore compared to a factor 50 POT extrapolation, see appendix
G for details. The high extrapolation factor provides a more smooth load spectrum to compare to the limiting
RFM approach. The load spectrum of the limiting RFM approach is smooth for extreme ranges and fits the
load spectrum of the validation data good up to 400 µm/m. However, the estimation of the load spectrum tail
from the extrapolated upcrossing spectrum shows an increasing uncertainty for smaller fractions of the training
dataset. When calculating the fatigue damage from the load spectra, an underestimation or negative error to
the validation dataset is expected for small training samples due to this effect.

3.6.2 PSD

The PSDs from the 20% sample of the training dataset, 10 times POT extrapolation, and the suggested military
off-road envelope from section 3.4 are displayed with the validation PSD in figure 18. Since the PSD is the input
for the frequency-domain fatigue damage models, the differences in fatigue damage estimations are caused from
deviations between the PSD plots.
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Figure 18: Single sided PSDs of the 20% training dataset sample, 10x POT extrapolated sample, off-road
envelope and validation dataset.

The validation PSD shows a higher power around 10 Hz, 33 Hz, 70 Hz, and between 90-100 Hz. Earlier analysis
proved that the damaging content is found below a frequency of 40 Hz. The deviations between the validation
and other PSDs noticeable in figure 18 increase or decrease when using a smaller or larger sample from the
training dataset, respectively. Furthermore, the PSD envelope follows the overall shape of the other PSD plots
and contains the same energy in the frequency intervals 0-20 Hz, 20-50 Hz, and 50-100 Hz.

3.6.3 Fatigue Damage Error

With the load spectra and corresponding PSD as input for all fatigue damage models, the fatigue damage
estimations are now compared to the validation data. The error from 43 is now calculated with the normalized
validation fatigue damage as benchmark. Results are given in figure 19.

Figure 19: Error between fatigue damage estimation and the validation dataset on off-road strain
measurements from a 4x4 military truck. Where T1, T2, T3, and T4 contain 5%, 10%, 20%, and 50% of the

data compared to validation, respectively. T5 corresponds to the suggested PSD-envelope.
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3.7 Code availability
The case study was performed in MATLAB with data from the Dutch Army. From the main file dependancies
to 14 other function files exist. Below the function files are listed and their function briefly explained. All 15
MATLAB m-files are uploaded to the TU Delft Repository.

1. Msc_main.m; main file to estimate life cycle fatigue damage from a time history.

2. Load_data.m, preprocessing.m, and sniptool.m; Loads dataset, performs all preprocessing steps, and
splits the dataset into training and validation subset.

3. Threshold_selection.m; determines initial threshold for POT time history extrapolation.

4. EVT.m; determines final theshold, fits GPD to exceedances, and randomly resamples the exceedances.

5. limiting_RFM.m, svvkernel.m; calculate upcrossing spectrum, extrapolate the upcrossing spectrum with
a GPD fit to the tails, and estimate extreme RFM. Also applies aKDE estimation to the bulk of the RFM
for smoothing.

6. PSD_extrapolation.m, TimeseriesFromPSD.m; calculates PSD from the time sample, generates statisti-
cally equal time history of desired length.

7. RFMtoLoadSpectra.m; calculates RFM from time histories, applies Goodman correction, and calculates
normalized load spectra.

8. CyclestoDamage.m; calculates fatigue damage from load spectra and Wohler curve.

9. Create_PSD_envelope.m; create off-road PSD envelope from training data.

10. PSDtoDamage.m; applies frequency-domain fatigue damage models to a given PSD.

4 Discussion
Goal of this thesis was to identify fatigue damage models which perform satisfactory (i.e., <5% error) for a
minimized fraction of the training dataset. The sample of the training dataset was varied from 10% to 100% for
eight fatigue damage models and the fatigue damage was calculated, after which the error to the full training
dataset and validation dataset was determined to assess accuracy. In addition, for the time-domain models a
load spectra comparison was executed. The results from section 3.5 and validation in section 3.6 mostly show
expected trends and results in load spectra, PSDs, and fatigue damage error. For all fatigue damage models,
the largest factor of influence on the final fatigue damage estimation is the presence of extreme load cycles in
the data input. Ideally, the entire load spectrum is smooth after load extrapolation for the desired extrapolation
factor. When only 10-20% of the training dataset is used, the load spectrum is discontinuous in the tail resulting
in a large fatigue damage error. The 40%, and 100% training dataset samples result in a fatigue damage error
below 5% (after compensation for the concentration of extreme loads in the 40% sample). Thus, the sample also
contains sufficient extreme load cycles. The load spectrum of the 40% sample shows that 80% of the required
load spectrum displays no large discontinuities. On the contrary to ME and POT methods, the limiting RFM
approach always provides a smooth normalized RFM, which is easily extrapolated to the desired signal duration
or distance. Yet, the accuracy of the limiting RFM fatigue damage estimation is within the 5% error tolerance
above a 20% sample of the training dataset. For both time-domain load extrapolation methods the input is also
determined by the threshold selection method and (non)parametric fit to the exceedances.

The ideal frequency domain fatigue damage estimation method is accurate independent of the PSD shape
and material parameters. In this study, the scope is limited to military off-road vehicle loads, varying the frac-
tion of input data and keeping the material parameters C and m constant. The influence of a different S-N slope
exponent m and different S − N curve constant C on the fatigue damage estimation error is not investigated
yet. For the spectral fatigue damage models, identical PSDs give identical fatigue damage rates. However, the
PSD plots corresponding to the fractions of the training dataset shows lower energy in some regions compared
to the validation PSD. Again, the negative error or fatigue damage underestimation increases for a smaller
fraction of the training dataset used. Although validation is performed on a dataset only twice the size of the
training dataset, results from all methods show that above a 40% fraction of the training dataset the validation
error stabilizes, indicating the time history and PSD contain sufficient extreme loads for an accurate (i.e. <5%
error) fatigue damage prediction. Unexpectedly, the fatigue damage is overestimated for ME, POT, lim RFM,
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OC, α0.75, TB3 , and DK for the 40% fraction of the training dataset. Analysis of the training dataset show
that a concentration of extreme loads was present in the shortened sample causing this effect. Accuracy of the
frequency-domain methods also depends on whether the assumptions on which the method is developed are
valid or not. For example, (semi)empirical approaches are often tuned for a certain range of material param-
eters and PSD shapes. Other approaches assume the loads to be random, stationary, and Gaussian. All six
selected freqency-domain methods performed well on other typical wide-band automotive spectra in literature,
yet OC and the SM method did not cope well with this specific off-road truck application compared to the other
methods. TB3 and α0.75 showed the lowest error in validation on >40% of the training dataset. Both methods
are more recently revised (TB3 in 2006) or developed (α0.75 in 2004) empirical methods fitted to a large variety
of PSD samples. Finally, the validation error from the PSD envelope and PSD from the full training dataset
show equivalent accuracy for TB3 and α0.75. Although, the PSD envelope underestimates damage whereas the
training dataset overestimates the damage. Fatigue damage underestimation or a negative error is preferred in
validation considering the training dataset contains less damaging load cycles than the validation dataset. This
shows potential to use the envelope as input for dynamic modal analysis with these fatigue damage models.

5 Conclusions
The aim of this study was to compare accuracy of existing time-domain versus frequency-domain fatigue damage
estimation models for military off-road vehicles whilst minimizing data acquisition time and costs. To do so,
load extrapolation methods in the time-domain were optimized after which eight existing fatigue damage models
were applied on a 10%, 20%, 40% and 100% fraction of a training dataset and an off-road PSD-envelope. The
accuracy of the models is investigated by the error between the estimation and the normalized fatigue damage
from the validation dataset. One time-domain and two frequency-domain models show an error <5% when
>40% of the training dataset was used. None of the fatigue damage models performed satisfactory for all data
fractions of the training set, i.e., <5% error in validation. Fatigue damage underestimation due to the lack of
rare and extreme loads in the sample is reduced significantly when using >40% of the training dataset. Thus,
a minimum dataset of 36 km or 13.3% of the total dataset was required in this case study for an accurate
fatigue damage prediction. For at least 40% or 36 km of the training dataset, the limiting RFM is the most
accurate and computationally efficient time-domain method. Furthermore, the limiting RFM approach provides
a continuous load spectrum suitable for large extrapolation factors and is the most accurate method for >20%
of the training dataset. The load spectrum from 40% of the training dataset was continuous up to 80% of the
maximum value present in the measured time history and provided a validation error <5%. It is suggested to
use this subjective graphic rule-of-thumb to assess if sufficient extreme loads are present in the measured signal
to obtain a fatigue damage estimation error below 5%.
Regarding the frequency domain methods, TB3 is the most accurate method and is robust for >40% of the
training dataset. The minimum error was found to be 2.1%, which is well below the 5% tolerance. The empirical
α0.75 method gives marginally poorer results in accuracy, as it systematically gives a higher fatigue damage
prediction. The OC, SM, ZB, and DK methods are not recommended for military off-road application since
the absolute errors in validation are in the order of 10-20%. Notably, ZB and DK approximate the load cycle
amplitude pdf with a mixture model and both give poor prediction regardless of the training dataset fraction
used. In addition, the validation error from the generic PSD-envelope is <5% for the best performing spectral
methods, i.e. TB3 and α0.75. Therefore, the shape of the off-road envelope and approach to preserve the energy
content within intervals is promising for further research. However, this envelope is specific to the 4x4 military
truck and user profile from this case study.

5.1 Scientific and practical implications
Performance of a fatigue damage model is often determined by comparison to the ME benchmark in the time-
domain, and the objective is to find a method which performs well for various PSD shapes or load spectra,
material parameters and/or applications. For this thesis the case study was fixed to the specific application
on military trucks used off-road. The performance of the models was assessed by investigating the effect of
sample size on the error to the ME benchmark as time and costs due to data acquisition and validation are
to be minimized. This study recommends the limiting RFM approach in the time-domain or TB3 and α0.75

in the frequency-domain. These conclusions are in contrast to [19, 53], which found good results from the DK
and ZB methods. However, [25, 27] showed that for higher values of m the error tends to increase up to 50%
for DK. Furthermore, [25] made similar conclusions about the performance of the improved TB-method over
28 different fatigue loads including automotive spectra. Yet, found the ZB-method to be the most accurate
for accelerated automotive loads which is not the case for off-road test profiles in this study. The results
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from this thesis provide a solid base for application in life-cycle fatigue damage calculations within the Dutch
Armed Forces. Data acquisition for the off-road section of the user profile is reduced to a minimum without
compromising on accuracy of the fatigue damage prediction. As a result, validation of a military off-road
prototype vehicle’s durability is performed faster and the vehicle can be taken into service earlier. In addition,
this thesis shows which estimation methods give the best results for the specific application to military off-road
vehicles and quantifies the error to be made if incorrect assumptions are made about the damaging content
within a measured sample.

5.2 Future work
In addition to this research, data acquisition time can be reduced further by complementing the extreme and rare
events in the measured time history with measurements from an off-road test track where loads are induced at an
accelerated rate correlated to the user profile. Essentially, the tail of the unique load spectrum is complemented
with accelerated data which represent a larger distance of actual use. Also, the graphical methods used for initial
threshold selection in the time-domain load extrapolation are subjective. The threshold selection is essential
for the time-domain fatigue damage models and a widely discussed topic on it’s own. For now, the MSE is
minimized between the empirical and fitted PDF/CDF for possible thresholds around the graphically identified
initial threshold. Further development of the automated threshold selection procedure is desirable. In addition,
excluding the graphical methods for threshold selection and implementation of objective selection criteria is
recommended, see e.g. [63] where a multi-criteria decision-making process is explained, which not only takes
the error between empirical and fitted PDF/CDF into account, but also executes the χ2-test and proposes a
method for objective selection of the lowest threshold that satisfies the conditions. Further research regarding
the frequency-domain approaches is to be executed on the dependency on the material parameters C and m
on the fatigue damage error since methods are often developed for a specific range. Other studies [26, 53, 64]
show that generally the error increases for high values, i.e. 7 < m < 12. Also, the relation between the loading
capacity of the vehicle that is utilized and the effect on the load history is neglected in this study and still
to be investigated. Finally, in order to implement the PSD-envelope on other user profiles further research is
required to correlate the PSD shape of this case study to off-road surface conditions (sand, gravel, riverbeds,
mud, snow, rocks, etc), vehicle parameters (axle load, wheel diameter, wheelbase, trackwidth, number of wheels,
etc) and experimental conditions (speed, weather, driver style, etc). In addition, to perform dynamic modal
analysis and estimate lifecycle fatigue damage from the PSD-envelope the frequency-response function H(ω) of
the vehicle used in this thesis and a different military off-road vehicle need to be determined. To conclude, it is
recommended to apply the limiting RFM and/or TB3 method on lifecycle fatigue analysis of military off-road
vehicles which requires data representing at least 13% of the desired lifespan for the prediction to be accurate
within a 5% error tolerance.
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A Data Acquisition Datasheets

A.1 Linear Strain Gauge

For technical questions, contact  
mm@vpgsensors.com

www.micro-measurements.com
1

Document No.: 11079
Revision: 30-Aug-2016

062AP

General Purpose Strain Gages—Linear PatternGeneral Purpose Strain Gages—Linear Pattern

GAGE PATTERN DATA

actual size

GAGE 
DESIGNATION

See Note 1, 3

RESISTANCE 
(OHMS)

See Note 2

OPTIONS 
AVAILABLE

See Note 3

EA-XX-062AP-120
ED-DY-062AP-350
EK-XX-062AP-350
WA-XX-062AP-120
WK-XX-062AP-350
EP-XX-062AP-120
SA-XX-062AP-120
SK-XX-062AP-350
SD-DY-062AP-350
WD-DY-062AP-350

120 ±0.15%
350 ±0.4%
350 ±0.15%
120 ±0.3%
350 ±0.3%
120 ±0.15%
120 ±0.3%
350 ±0.3%
350 ±0.8%
350 ±0.8%

W, E, L. LE, P
E, L*, LE*
W, SE
W*
W*, SP35*

DESCRIPTION

Widely used general-purpose gage. See also 062UW 
pattern. EK-Series gages are supplied with duplex 
copper pads (DP) when optional feature W or SE is 
not specified.

GAGE DIMENSIONS
Legend

 ES = Each Section CP = Complete Pattern
 S = Section (S1 = Section 1) M = Matrix

inch

millimeter

Gage Length Overall Length Grid Width Overall Width Matrix Length Matrix Width

0.062 0.114 0.062 0.062 0.26 0.16

1.57 2.90 1.57 1.57 6.6 4.1

GAGE SERIES DATA — See Gage Series datasheet for complete specifications

Series Description Strain Range Temperature Range

EA Constantan foil in combination with a tough, flexible, polyimide backing. ±3% –100° to +350°F (–75° to +175°C)

ED Isoelastic foil in combination with tough, flexible polyimide film. ±2% –320° to +400°F (–195° to +205°C)

EK K-alloy foil in combination with a tough, flexible polyimide backing. ±1.5% –320° to +350°F (–195° to +175°C)

WA Fully encapsulated constantan gages with high-endurance leadwires. ±2% –100° to +400°F (–75° to +205°C)

WK Fully encapsulated K-alloy gages with high-endurance leadwires. ±1.5% –452° to +550°F (–269° to +290°C)

EP Annealed constantan foil with tough, high-elongation polyimide backing. ±10% –100° to +400°F (–75° to +205°C)

SA Fully encapsulated constantan gages with solder dots. ±2% –100° to +400°F (–75° to +205°C)

SK Fully encapsulated K-alloy gages with solder dots. ±1.5% –452° to +450°F (–269° to +230°C)

SD Equivalent to WD Series, but with solder dots instead of leadwires. ±1.5% –320° to +400°F (–195° to +205°C)

WD Fully encapsulated isoelastic gages with high-endurance leadwires. ±1.5% –320° to +500°F (–195° to +260°C)
 
Note 1: Insert desired S-T-C number in spaces marked XX.

Note 2: Tolerance is increased when Option W, E, SE, LE, P, or SP35 is specified.

Note 3: Products with designations and options shown in bold are not RoHS compliant.

*Options available but not normally recommended. See Optional Features data sheet for details.
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A.2 Bridge completion module
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2400-EN
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MR-Series Bridge Completion Modules

Information and Selection Chart

Strain gage instrumentation is readily available with 
built-in bridge completion resistors and “dummy” gages 
to accept quarter- and half-bridge strain gage input 
circuits. However, if the instrumentation at hand is not 
provided with these components, or if the measurement 
application does not permit their use, external bridge 
completion must be provided, and MR-Series Bridge 
Completion Modules can be an excellent choice in  these 
applications.

MRF-Series Bridge Completion Modules employ Bulk 
Metal Foil Resistors. The resistors are specially processed 
to “match” the thermal expansion coeficient of the 
ceramic, resulting in a very low resistance temperature 
coeficient equivalent to ±0.15με/°F (±0.27με/°C) for 
the half-bridge circuits, and ±0.35με/°F (±0.63με/°C) for 
the dummy gages, over a temperature range from 0° to 
+200°F (–18° to +95°C). Maximum operating temperature 
range is –50° to +250°F (–45° to +120°C).

Each module is covered with a special environmental 
protection system to ensure long-term stability. Each 
module is provided with foam tape for easy attachment 
to the test-part surface or at the instrumentation site, and 
gold plated copper terminals facilitate attachment of up to  
22-gauge (0.64 mm dia.) leadwires.

Information and Selection Chart

Completing the bridge circuit at the strain gage site 
provides for a symmetrical, balanced leadwire system 
between the strain gage circuit and the instrumentation. 
This can reduce effects of noise pickup in the leadwire 
system in some environments. Where switch contacts, 
slip rings, or other mechanical connections are employed 
between the strain gages and measuring instrumentation, 
or when leadwires will be periodically disconnected from 
the measuring instrument, accuracy can be improved by 
completing the bridge at the measurement site. Bridge 
completion modules can be designed to meet special 
circuit requirements. Contact our Applications Engineering 
Department for a detailed discussion of your special needs.

CHARACTERISTICS

MODULE TYPE AND FEATURES
BRIDGE EXCITATION (VOLTS)

RECOMMENDED MAXIMUM

MRF-350-127: Provides a precision 350 Ω half bridge as well as 120 Ω and 350 Ω 
dummy gages. Recommended for use with half-bridge strain gage circuits of any 
resistance value, or with 120 Ω or 350 Ω three-wire quarter-bridge circuits. Size 
(including foam tape): 1.3 x 1.2 x 0.3 in (32.5 x 29.5 x 7.8 mm). Weight: 6g.

0.5–15 V  
0.5–25 V

20 V (D120) 
35 V (D350)

MRF-350-127-Z: RoHS compliant MRF-350-127 
0.5–15 V  
0.5–25 V

20 V (D120) 
35 V (D350)

MRF-10C-129: Provides a precision 1000 Ω half bridge and a 1000 Ω dummy 
gage. Recommended for use with half-bridge strain gage circuits of any resistance 
value, or with 1000 Ω quarter-bridge circuits. High resistance extends battery life 
in battery-powered instrumentation, reduces strain gage self-heating, and permits 
higher bridge excitation voltage to improve signal-to-noise ratio. Size (including 
foam tape): 1.3 x 0.7 x 0.2 in (32 x 18.2 x 5.7 mm). Weight: 6g.

0.5–30 V 40 V

MRF-10C-129-Z: RoHS compliant MRF-350-127 0.5–30 V 40 V

MRF-350-130: Provides a precision 350 Ω half bridge and a 350 Ω dummy gage. 
Recommended for use with half-bridge strain gage circuits of any resistance value, 
or with 350 Ω three-wire quarter-bridge circuits. Size (including foam tape): 
1.3 x 0.7 x 0.2 in (32 x 18 x 5.7 mm). Weight: 6g.

0.5–18 V 25 V

MRF-350-130-Z: RoHS compliant MRF-350-130 0.5–18 V 25 V

MRF-350-128: Provides a precision 350 Ω half bridge in a compact size for use with 
half-bridge strain gage circuits. Small size makes it ideal for attachment at the strain 
gage site on the test part in many applications. Size (including foam tape): 
0.9 x 0.9 x 0.2 in (21.7 x 23.8 x 5.7 mm). Weight: 6g.

0.4–18 V 25 V

 
Half-bridge circuits in each module type are balanced to within ±0.005%. Resistance tolerance on each dummy gage is ±0.02%.
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MR-Series Bridge Completion Modules

Information and Selection Chart

CHARACTERISTICS

MODULE TYPE AND FEATURES
BRIDGE EXCITATION (VOLTS)

RECOMMENDED MAXIMUM

MRF-350-128-Z: RoHS compliant MRF-350-128 0.4–18 V 25 V

MRF-120-133: Provides a precision 120 Ω half bridge and a 120 Ω dummy gage. 
Recommended for use with half-bridge strain gage circuits of any resistance value, 
or with 120 Ω three-wire quarter-bridge circuits. Size (including foam tape): 
1.3 x 0.7 x 0.2 in (32 x 18.2 x 5.7 mm). Weight: 6g.

0.5–15 V 20 V

MRF-120-133-Z: RoHS compliant MRF-120-133: 0.5–15 V 20 V

MRF-50C-130-Z: Provides a precision 5000 Ω half bridge and a 5000 Ω dummy 
gage. Recommended for use with half-bridge strain gage circuits of any resistance 
value, or with 5000 Ω quarter-bridge circuits. High resistance extends battery life 
in battery-powered instrumentation, reduces strain gage self-heating, and permits 
higher bridge excitation voltage to improve signal-to-noise ratio. Size (including 
foam tape): 1.3 x 0.7 x 0.2 in (32 x 18 x 5.7 mm). Weight: 6g.

0.5–30 V 40 V

MRF-50C-130-Z: RoHS compliant MRF-50C-130: 0.5–30 V 40 V

 
Half-bridge circuits in each module type are balanced to within ±0.005%. Resistance tolerance on each dummy gage is ±0.02%.
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A.3 Shear/Torque Rosette Strain Gauge

For technical questions, contact
mm@vpgsensors.com

2555-EN
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www.micro-measurements.com
1

187UV / 187UVA

General Purpose Strain Gages—Shear/ Torque PatternGeneral Purpose Strain Gages—Shear/ Torque Pattern

GAGE PATTERN DATA

actual size

GAGE 
DESIGNATION

See Notes 1, 4 

RESISTANCE 
(OHMS)

See Note 2

OPTIONS 
AVAILABLE

See Note 3

CEA-XX-187UV-120

CEA-XX-187UVA-350

120 ±0.4%

350 ±0.2%

P2, SP35

P2, SP35

DESCRIPTION

Two-element 90° rosette for torque 

and shear-strain measurement. 

Sections have a common electrical 

connection. Exposed solder tab area 

is 0.13 x 0.08 in [3.3 x 2.0 mm].

GAGE DIMENSIONS

Legend
 ES = Each Section CP = Complete Pattern
 S = Section (S1 = Section 1) M = Matrix

inch

millimeter

Gage Length Overall Length Grid Width Overall Width Matrix Length Matrix Width

0.187 ES 0.560 CP 0.170 ES 0.320 CP 0.63 0.39

4.75 ES 14.22 CP 4.32 ES 8.13 CP 15.9 9.8

GAGE SERIES DATA — See Gage Series datasheet for complete specifications

Series Description Strain Range Temperature Range

CEA Universal general-purpose strain gages. ±5% –100° to +350°F (–75° to +175°C)
 
Note 1: Insert desired S-T-C number in spaces marked XX.

Note 2: Tolerance is increased when Option W, E, SE, LE, P, or SP35 is speciied.

Note 3: Pattern names ending with “A” are built with Advanced Sensors Technology.
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A.4 Data Collection System
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DEWE-5000

DEWE-5000
 High-end benchtop all-in-one instrument

 16 isolated DAQP analog inputs

 Flexible sidepanel for counters, sensor supply …

 Up to 5 PCI slots for A/D and other cards (1394, ARINC, 1553…)

DEWE-5000 series

Input specifications DEWE-5000
Slots for DAQP/HSI/PAD modules 16
Main system 1)

Total PCI slots 5 (4 full / 1 half length)
Hard disk 1000 GB
Data throughput Typ. 70 MB/s 2)

Power supply (max.) 90 to 264 VAC

Display 17.3“ full-HD TFT (1920 x 1080)
Processor Intel® Core™ i5
RAM 8 GB
Ethernet 2x 1 Gbit 2 LAN
USB interfaces 6
RS-232 interface 1
Operating system 64 bit Microsoft® WINDOWS® 7
Dimensions (W x D x H) 460 x 351 x 192 mm (18.1 x 13.8 x 7.7 in.)
Weight Typ. 17 kg (37 lb.)
Environmental specifications 
Operating temperature 0 to +50 °C, down to -20 °C with prewarmed unit
Storage temperature -20 to +70 °C
Humidity 10 to 80 % non cond., 5 to 95 % rel. humidity
Vibration 3) MIL-STD 810F 514.5, procedure I
Shock 3) MIL-STD 810F 516.5, procedure I
1) Please find current specifications in the latest price list 
2) Depends on the system configuration. Examples: 
   • DEWE-5000 with 4x DEWE-ORION-1624-200 and 1x DEWE-CAM01 = 72 MB/s 
   • DEWE-5000 with 2x DEWE-ORION-1624 + 4x DEWE-CAM01 = 60 MB/s 
3) Tested with Solid State Disk 

1

DEWE -3300

DEWE-3300
 Most portable all-in-one instrument

 16 isolated DAQP analog inputs

 2 PCI slots for A/D cards

 15.6” TFT multi-touch screen

DEWE-3300

Input specifi cations  DEWE-3300
Slots for DAQ/HSI/PAD modules 16
Quasi-static channel expansion 12 Hz EPAD2 interface
Main system 1)

Total PCI slots 2 half length 

Hard disk
1 TB HDD dedicated for data storage (upgrade to 1 TB SSD available)

120 GB SSD for operating system and application software,
both in a single removable drive bay

Data throughput Typ. 80 MB/s

Power supply (max.) 95 to 260 VAC

Display 15.6“ TFT wide-screen with multitouch-screen (1920 x 1080)
Processor Intel® Core™ i5
RAM 8 GB
Ethernet 2x 1 Gbit LAN
USB interfaces 6
Operating system 64 bit Microsoft® WINDOWS® 7
Dimensions (W x D x H) 462 x 320 x 135 mm  (18.2 x 12.6 x 5.3 in.)
Weight Typ. 8.2 kg (18 lb.)
Environmental specifi cations 
Operating temperature  0 to +50 °C, down to -20 °C with prewarmed unit
Storage temperature -20 to +70 °C
Humidity 10 to 80 % non cond., 5 to 95 % rel. humidity
Max. Altitude 2000 m (6560 ft)
Sine vibration (EN 60068-2-6) 2) Acceleration 20 m/s², Freq. 10 Hz - 150 Hz, Sweep 1 oct/min, 20 cycles
Shock (EN 60028-2-27) 2) Acceleration 15 g, duration 11ms, pulse form half sine, 3 pumps/direction, 6 directions
Random vibration (EN 60721-3-2) 2) Class 2M2 (spectral acceleration density 1 m²/s³, frequency range 10 Hz-200 Hz, duration 30 min/direction)
1) Please fi nd current specifi cations in the latest price list
2) Tested with Solid State Disk

Needed to complete the system

DEWE-ORION “A/D Boards” offer simultaneous sampled 
analog inputs, synchronous digital I/Os, high-performance 
counters and high-speed CAN interfaces. DAQP signal 
amplifiers and software are needed as well. 

Options to expand the system

Add further “Interface Cards” like ARINC-429, 1553, and 
analog output or special “Sensors” like synchronized 
video, industrial encoders (RIE-360) or GPS.

SoftwareDAQPA/D card CNT2-LEMO VIDEO CAN
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Example Configurations

5000-PS-BAT
Optional battery power supply  
with UPS function

DEWE-5000

Counter inputs

Current clamp supply

Analog expansion
Analog output

DEWE-5000

Most flexible model, prepared for DAQP isolated analog input 
amplifier modules. DAQP conditioners offer highest band-
width, great accuracy, different input ranges and integrated 
filters. Besides the single channel modularity – a module eas-
ily can be changed by the user at any time – the main advan-
tage of these modules is the high galvanic isolation which 
ensures safe measurements, high quality results and make 
them almost indestructible. See chapter “Signal Conditioning” 
for details.

ANALOG

DIGITAL
Max. channel count

16 DAQ modules

I/O card & counter & CAN

Flexible side panel

The DEWE-5000 series instruments offer a flexible side panel prepared for adding 
additional connectors. 

The most popular use of this panel is adding Lemo sockets for counter / encoder 
inputs. However, there are many different versions like multiple Binder 712 power 
supply connectors for current transducers, BNC sockets for analog outputs, multi-pin 
Sub-d sockets for additional analog inputs …

Due to the high number of available PCI slots the connection of additional 
interfaces like CAN bus, ARINC-429, Firewire-1394 etc. is done directly via 
the slot panel.

DEWE-5000

 Side panel with 10 connectors for powering current transducers

 2 CAN interfaces on slot panel

 2 FireWire interfaces on slot panel
DEWE-5000 side view
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DEWE-5000

System options and upgrades for DEWE-5000 series

Options Description
BAT-89WH Lithium-Ion battery, 14.4 V, 89Wh, max. 8A
BAT-CHARGER-1 Desktop battery charger for 1 battery, incl. external AC adaptor
BAT-CHARGER-4 Desktop battery charger for 4 batteries, incl. external AC adaptor
PS-BAT-REMOTE-ON Special add-on for the battery power supply, one extra connection with a wake-up signal is required 
DEWE-DCDC-24-300-ISO External DC/DC converter with isolation, input: 11 to 32 VDC, output: 24 VDC, 300 W

5000-PS-BAT Battery power supply with UPS function, 18 .. 24 VDC non-isolated input, incl. external AC adaptor, 
3 slots for hot-swappable batteries, 3 batteries for appr. 2 hours operation included

Upgrades Description
5000-CPU-UP-I7 Upgrade of PC for DEWE-5000 series to Intel® Core™ i7 processor

RAM-8GB-16GB Upgrade from 8 GB to 16 GB RAM (total)

HDD-1T-SSD-256G Upgrade to industrial grade 256 GB solid state disk (replaces 1 TB harddisk)

HDD-1T-SSD-1T Upgrade to industrial grade 1 TB solid state disk (replaces 1 TB harddisk)

DEWE-5000 with DEWE-30-16 signal conditioning chassis; DAQP modules for voltage, ICP®, bridge, strain ... measurement

Accessory: 5000-CSMK1Internal 256 GB Solid State 
Disk for maximum reliability 

Option 5000-DC-12V   
Internal 9 .. 18 VDC power 
supply including external  
AC adaptor. 

A carrying bag is 
available

Popular Accessories

Channel Expansion
Signal conditioning for slow signals is added by connecting EPAD2 series modules to the systems EPAD interface.

For expanding the number of dynamic channels there are three choices:

Analog cable: Additional A/D 
boards are installed into the basic 
instrument and external signal con-
ditioning, e.g. DAQ modules in a 
DEWE-30 chassis, is connected by 
means of an analog signal cable.

DEWE-NET: Several instruments are con-
nected via Ethernet. Each unit requires 
an ORION-SYNC option. For short dis-
tances a sync cable is used if the units 
are far from each other a sync interface 
like DEWE-CLOCK is used.

PCI expansion: A PCI-HOST card 
is installed into the basic instru-
ment and external signal condi-
tioning, e.g. DAQ modules in a 
DEWE-50 chassis, is connected by 
means of a PCI cable.

Example
Analog expansion standard 2 m / optional up to 50 meter

                                          
     

    
   

   
Ana

lo
g e

xp
ansion cable

        
     

    
    

    
   

   
   

    
    

Analog expansion cable

      
      

       
    Analog expansion cable

Option BAT-CHARGER-1 
and BAT-CHARGER-4
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B Off-road terrain and test track examples

Figure 20: Selection of surfaces of the Millbrook proving ground[59]

Figure 21: Selection of surfaces available on the Polygon Testing Grounds [60]
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C Parametric fit on full 20% training sample, i.e. u = 0µm/m

(a) CDF of positive exceedances for u = 0 (b) CDF of negative exceedances for u = 0

(c) Tail fraction of fig 22a (d) Tail fraction of fig 22b

(e) Squared Error for positive exceedances with u = 0 (f) Squared Error for negative exceedances with u = 0

Figure 22: Parametric tail fit on CDF and squared error of both positive and negative exceedances with
u = 0µm/m on the measured load history from an 4x4 military truck.
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D Parametric tail fit on 20% training sample with umin = −78µm/m,
and umax = 95µm/m

(a) CDF of positive exceedances for u = 78 (b) CDF of negative exceedances for u = −95

(c) Squared Error for positive exceedances with u = 78 (d) Squared Error for negative exceedances with u = −95

Figure 23: Parametric tail fit on CDF and squared error of both positive and negative exceedances with
umin = −95µm/m and umax = 78µm/m on the measured load history from an 4x4 military truck.

E Diagnostic plots for parametric tail distribution
For EVT the goodness of fit on the GPD are graphically assessed using diagnostic plots. The MLE of the shape
and scale parameters of the GPD should follow a normal distribution if the fit could be repeated with independant
data. The asymptotic normality distribution is checked by plotting the 1000 fold bootstrap estimates of κ and
σ. In addition, the quantile plots of the bootstrap estimates provide a more accurate way to detect deviations.
For both the positive and negative GPD-fits the results are shown in figures 24,and 25.
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(a) Estimate of κ for 1000 fold bootstrapped data
samples.

(b) Estimate of σ for 1000 fold bootstrapped data
samples.

(c) Quantile plot for a 1000 fold bootstrap estimate of κ.

(d) Quantile plot for a 1000 fold bootstrap estimate of log σ.

Figure 24: Diagnostic plots for the GPD fit on the positive exceedances of the 8x8 military truck off-road data.
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(a) Estimate of κ for 1000 fold bootstrapped data
samples.

(b) Estimate of σ for 1000 fold bootstrapped data
samples.

(c) Quantile plot for a 1000 fold bootstrap estimate of κ.

(d) Quantile plot for a 1000 fold bootstrap estimate of log σ.

Figure 25: Diagnostic plots for the GPD fit on the negative exceedances of the 8x8 military truck off-road data.
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F PSD and generated time history
The PSD from the original time history, see figure 18, is used to generate a new time history of desired length,
which gives an identical PSD in the frequency domain. The synthesized time history is compared to the
original signal in figure 26. Clearly, the original time history has higher amplitudes, but overall contains the
same frequency content. Furthermore, the load sequence of the original time history is not preserved in the
synthesized time history, which can significantly affect fatigue damage [61, 65]. In the original time history an
extreme load is followed with another slighty lower extreme value of opposite sign, which is logical as the vehicle
suspension slowly dampens the disturbance. In the PSD generated time signal this causality is not taken into
account.

Figure 26: Section of the original measured time history and the time history generated from the PSD.

G Limiting RFM validation
If sufficient data is available the load spectrum is smooth and suitable for large extrapolation factors using
the mileage extrapolation method. However, for very limited input data the accuracy depends on the fitted
distribution to obtain a smooth load distribution or RFM for extreme values. The time-history POT method
was only used for an extrapolation factor of 10, leading to a load spectrum which was smooth up to 250 µm/m
or around 50% of the total spectrum. We stride to reach at least 80%, which is achieved with an extrapolation
factor of 50 on the original time history thereby making it comparable with the validation data and limiting
RFM approach. Results are shown in figure 27. Both the 50x POT and limiting RFM extrapolated load
spectra show good agreement with the validation data. Considering the load spectrum of the validation data
lacks data above 425 µm/m we assume the corresponding fatigue damage for even the validation data is slightly
underestimated. Thus both methods showing a higher fatigue damage estimation compared to the validation
is expected since they complement the load spectrum, see also figure 19. Again, the limiting RFM approach
is preferred as it shows good agreement with both the validation load spectrum and comparable POT time
history approach. In addition, high extrapolation factors make the POT time history method computationally
unattractive.
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Figure 27: Normalized load spectra of the original sample, limiting RFM approach and 50x POT
extrapolation.
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