
LLM of Babel: Evaluation of LLMs on code for non-English
use-cases

Paris Loizides
EEMCS, Delft University of Technology, The Netherlands

Supervisor(s): Prof. Dr. Arie van Deursen, Assistant Prof. Dr. Maliheh Izadi, ir. Jonathan Katzy

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Paris Loizides
Final project course: CSE3000 Research Project
Thesis committee: Prof. Dr. Arie van Deursen, Assistant Prof. Dr. Maliheh Izadi, Assistant Prof. Dr. Gosia Migut

An electronic version of this thesis is available at http://repository.tudelft.nl/.

LLM of Babel: Evaluation of LLMs on code for non-English
use-cases
Paris Loizides

Delft University of Technology
Delft, The Netherlands

ABSTRACT
This paper evaluates the performance of Large Language Mod-
els, specifically StarCoder 2, in non-English code summarization,
with a focus on the Greek language. We establish a hierarchical
error taxonomy through an open coding approach to enhance the
understanding and improvement of Large Language Models in mul-
tilingual settings as well as identify the challenges associated with
tokenization and influence by mathematical datasets. Our study
includes a comprehensive analysis of error types, tokenization effi-
ciency, and quantitative metrics such as BLEU, ROUGE, and Seman-
tic Similarity. The findings highlight the importance of semantic
similarity as a reliable performance metric and suggest the need
for more inclusive tokenizers and training datasets to address the
limitations and errors in non-English contexts.

KEYWORDS
LLMs, Multilingual, NLP, Tokenization, Greek language, Code sum-
marization, Hierarchical Error Taxonomy, Evaluation metrics

1 INTRODUCTION
The integration of Large LanguageModels (LLMs) such as GPT1 and
BERT2 into software development has significantly enhanced cod-
ing efficiency and productivity, particularly for English-speaking
environments [28, 36]. At the same time, broader educational bene-
fits have also been highlighted [4]. Despite their advantages, there
is a notable performance disparity when these technologies are
applied to non-English programming contexts, which limits their
global applicability and effectiveness [26]. This raises important
questions about the inclusivity and accessibility of AI tools in di-
verse linguistic landscapes.

This research is concerned with the main question: "How does
the performance of Large Language Models vary across differ-
ent comment generation tasks when applied to non-English lan-
guages?". We aim to investigate this by focusing specifically on the
Greek language, exploring the application of LLMs like StarCoder
2 in comment completion and code summarizing tasks, and identi-
fying the challenges and distinct patterns in the errors that occur
most frequently. We aim to raise awareness and initiate discussion
on issues faced in non-English code completion, that will eventually
lead to an increased availability of multi-lingual AI tools, and thus
extend and deploy the benefits of these models on a global scale.

To systematically analyze and categorize the types of errors, we
employ an open coding approach. This method involves breaking
down data, labelling them, and comparing for similarities and dif-
ferences [14, 17]. By iteratively refining these labels, we develop a

1https://platform.openai.com/docs/models
2https://huggingface.co/docs/transformers/en/index

hierarchical error taxonomy that provides a structured overview of
the errors.

Our study makes several key contributions by answering the
following questions:

(1) What types of errors are most common in Greek and other
non-English languages, and how can a hierarchical error
taxonomy help guide future developments in LLM technol-
ogy?

(2) How does the tokenization process of prompts affect the
performance of LLMs in recognizing Greek and generating
comments?

(3) What is the quantitative performance of StarCoder 2 in code
summarization when prompted with Greek-documented
code snippets?

2 RELATEDWORK
A significant disparity exists in the natural language usage within
code files, with English being overwhelmingly dominant compared
to non-English languages. This disparity presents challenges for
multilingual LLMs, which must be addressed to improve their per-
formance and inclusivity across different linguistic contexts [26].

Recent advancements in enhancing the multilingual capabil-
ities of LLMs have focused on overcoming resource disparities
and improving performance across diverse languages. Different
approaches have been proposed to improve the performance of
under-resourced languages by utilizing the knowledge of models in
resource-rich languages [12, 19, 34]. Additionally, multilingual sen-
tence embeddings have been extended from monolingual models
using knowledge distillation. This technique aligns vector spaces
across multiple languages, ensuring accurate semantic understand-
ing and enhancing the utility of sentence embeddings in diverse
linguistic contexts. These efforts aim to address the challenges
posed by multilinguality in LLMs [27].

The open coding approach is widely used in qualitative research
to systematically categorize and label data. In the context of LLM
evaluation, this approach facilitates a detailed analysis of model
outputs by closely examining, and identifying similarities and dif-
ferences [14, 17]. This method helps in identifying common errors
and patterns, which is crucial for developing error taxonomies and
improving model performance. The iterative process of open coding
ensures that labels are refined and updated based on continuous
analysis for error identification and correction. Notable research
involves a hierarchical error taxonomy to systematically categorize
errors produced by LLMs during code completion tasks, but also a
related work that uses open coding for the qualitative analysis of
code snippet translation to English comments [16, 21, 23]. These

1

https://platform.openai.com/docs/models
https://huggingface.co/docs/transformers/en/index

Paris Loizides

taxonomies aid in identifying common pitfalls and guiding model
improvements.

In the field of Natural Language Processing (NLP), error tax-
onomies are commonly used to systematically identify and cate-
gorize errors [5, 9, 13, 15, 30–32]. These taxonomies are crucial for
understanding the types and sources of errors in automatically gen-
erated text. Consequently, we adopt a similar approach to develop a
hierarchical error taxonomy for multilingual comment completion,
an area that remains under explored.

Tokenization is a critical aspect of training LLMs, significantly
influencing their performance and training efficiency, especially
for multilingual models [20]. Research highlights that the choice of
tokenizer can substantially impact model performance and training
costs, emphasizing its importance in the pre-training phase [1].
Factors such as the tokenizer’s size, pre-tokenization regular ex-
pressions, and training data can affect generation speed, effective
context size, memory usage, and overall model effectiveness [10].
Using a specialized monolingual tokenizer for each language can
enhance performance compared to using a single multilingual to-
kenizer, particularly for adequately represented languages [29].
These insights underscore the necessity of selecting and optimiz-
ing tokenizers for better performance and efficiency especially in
multilingual LLMs.

Notable research has been conducted for the evaluation of LLMs
in programming tasks. Significant contributions in code evalua-
tion are different proposed techniques and metrics to successfully
measure the ability of a model to predict code [2, 7, 11]. Further
evaluation metrics such as CodeBERTScore have been developed,
effectively comparing a ground-truth reference with code snippets
generated by models, by computing cosine similarity among the se-
quence of vectors generated from the tokens sequence of pretrained
models [35]. A similar approach to extract semantic similarity of
doc-strings and other code is applied in ReCode benchmark [33].

3 METHODOLOGY
3.1 Collaborative Efforts
This project involves a collaborative effort among five teammates,
each working on a different language and LLM: Dutch, Chinese,
Polish, and Greek. The goal of this collaboration is to identify error
labels and patterns across these languages and models. Weekly
meetings are held to discuss findings, iteratively update the Hierar-
chical Error Taxonomy, and ensure consistency in the experimental
process. This collaborative approach helps answer the main re-
search question by investigating the performance of a variety of
models and languages, resulting in a more generalized conclusion
and taxonomy of errors.

3.2 Experiment Setup and Pipeline
We selected StarCoder 2 for its impressive performance in various
evaluation metrics and trained using the Fill-in-the-Middle (FIM)
objective to generate code summarization predictions [3, 22]. The
pipeline, used a max token length of 215 for Greek, motivated in
subsection 4.4.

3.3 Open Coding
Open Coding Approach. Open coding approach is utilized for

the qualitative analysis of the model’s performance in order to
answer research question 1. This approach is used to analyze qual-
itative data by labelling them iteratively, closely examining, and
comparing them for similarities and differences [17]. For our exper-
iment, the analysis is split into 2 steps:

(1) Error Identification: The outputs generated by the model
are carefully reviewed to identify instanceswhere themodel’s
predictions diverge from the expected correct completions.
These errors are updated weekly in every new iteration of
the Error Taxonomy. Newly found errors are noted down
for further analysis and comparison with similar error pat-
terns by other models in different languages.

(2) Hierarchical Taxonomy Development: A hierarchical
taxonomy of errors is developed to provide a structured
overview of the types of errors encountered. This taxon-
omy categorizes errors into broad types and further sub-
categories based on specific characteristics.

Labelling. Labelling was a crucial part of the experimental pro-
cess and open coding approach in order to ensure consistency
among the research team. Throughout the Hierarchical Error Taxon-
omy iterations, different labelling schemas were adapted to ensure
minimal bias from the dataset, but also to extract as many meaning-
ful error labels as possible efficiently. The labelling schemas were
as follows:

(1) Initial Iteration: 3 Error labels per comment with a de-
tailed explanation for inclusion criteria for each label.

(2) Second Iteration: 3 Error labels per comment while at the
same time limiting to a total of 5 labels per file to avoid over-
population of the labelling pool by dominant files. Include
any remarks and observations of new error patterns.

(3) Final Iteration:Only taking 1 randomly selected comment
per repository, mark all Error labels identified and any
remarks, for discussion with the research team.

3.4 Tokenization Experimental Approach
Tokenization for StarCoder 2. To address research question

2, we discuss the tokenizer for the StarCoder 2 model. According
to the technical report of StarCoder 2, the tokenizer is a byte-level
Byte-Pair Encoding (BPE) tokenizer trained on a small subset of
The Stack v13 dataset. The pre-tokenization step involves using a
digit-splitter and regex splitter from the GPT-2 pre-tokenizer. The
tokenizer has a vocabulary size of 49,152 tokens [22].

While the tokenizer itself was not trained on the OpenWebMath
dataset, the StarCoder 2 model was trained on a more extensive
dataset that includes OpenWebMath which consists of 14.7 billion
tokens of high-quality mathematical documents from the web [22].
This dataset features Greek letters in various mathematical docu-
ments4 [25]. We want to explore the effect of mathematical context

3https://huggingface.co/datasets/bigcode/the-stack
4A mathematical document consists of fundamental mathematical content, including
theorems, definitions, proofs, questions and answers, formal mathematics, or interdisci-
plinary documents that feature mathematical formulas in fields like physics, chemistry,
biology, economics, and finance

2

LLM of Babel: Evaluation of LLMs on code for non-English use-cases

in the performance of StarCoder 2 when dealing with the Greek
alphabet in a natural language context.

The Stack v1 Dataset. Additional analysis of The Stack v1, on
which the tokenizer for StarCoder 2 is built, reveals that 94% of the
Python files used to extract docstrings and comments are in English,
with only 12 files in Greek (el) [25]. This low frequency of Greek
files means that the tokenizer has limited exposure to Greek text
during training, potentially leading to sub-optimal tokenization for
Greek letters.

Furthermore, the distribution of programming languages in The
Stack v1 indicates a wide variety of languages, but very few support
the use of the Greek alphabet natively in code. Most programming
languages, such as HTML, JavaScript, Java, Python, C++, and others,
primarily use the Latin alphabet. However, it is important to note
that while the source code itself may not use the Greek alphabet,
comments and documentation within the code can still include
Greek letters, especially in mathematical contexts. This does not
imply that the tokenizer is able to build tokens of Greek words for
natural language processing since Greek is still underused in the
dataset.

Experimental Evaluation. To evaluate the impact of this math-
ematical context on the tokenization of StarCoder 2, we designed
the following experiment to gain insights into the information den-
sity of Greek tokens for StarCoder 2 in comparison to a Greek-based
tokenizer and a mathematical-based tokenizer:

We compare three distinct tokenizers:
(1) StarCoder 2 Tokenizer
(2) Meltemi-7B-v15: Tokenizer of the first Greek Large Lan-

guage Model (LLM)
(3) OpenWebMath Custom Tokenizer:

• Built on 50% of theOpenWebMathHuggingFaceDataset6.
• Pre-tokenized using a digit-splitter and regex splitter

from the GPT-2 pre-tokenizer, similar to the StarCoder
2 tokenizer.

• Utilizes byte-level Byte-Pair Encoding (BPE) like the
StarCoder 2 tokenizer.

All extracted comments were encoded using the different tok-
enizers. We compared the length of tokenized comments to assess
the information density of each tokenizer.

3.5 Quantitative Evaluation Metrics
To quantitatively assess the performance of the StarCoder 2 model
and answer research question 3, we employ several well-established
metrics in the field of natural language processing and n-grams
comparison:

• Accuracy: This metric evaluates the correctness of the code
completions provided by the model. Accuracy is the per-
centage of acceptable comments, determined by manually
comparing the model’s output to the expected correct com-
pletions and the ability of the model to correctly summarize
and describe the related code snippet in Greek.

• BLEU Score (Bilingual Evaluation Understudy): This
metric is used to evaluate the quality of the generated code

5ilsp/Meltemi-7B-v1
6open-web-math/open-web-math

by comparing the n-gram overlap between the model’s out-
put and the reference code snippets. For the experiment, we
are using the Sentence Bleu score, with the Smoothing Func-
tion technique Method 4, which scales inflated scores for
short sentence translations. The use of the smoothing func-
tion leads to better correlation with human judgment [6].
A higher BLEU score indicates better performance [24].

• ROUGE Score (Recall-Oriented Understudy for Gist-
ing Evaluation)7: This is used to measure the recall of the
generated comment snippets, particularly focusing on how
much of the reference comment is captured by the model’s
output. We are calculating the ROUGE-1 F score which
compares the fraction of the n-grams in the prediction that
are also in the reference.

• Sentence transformer (semantic similarity): Multilin-
gual Sentence Transformers extend monolingual models
to multiple languages via multilingual knowledge distilla-
tion, aligning vector spaces across languages. Using XLM-R,
pre-trained on 100 languages including Greek, it enables
accurate multi-lingual semantic understanding [8, 27]. We
first encode the reference and prediction and calculate the
cosine similarity between the vector representations to ob-
tain the semantic similarity score. Similar to the approach of
established metrics like CodeBertScore and ReCode bench-
mark [33, 35].

4 DATA
4.1 Greek Language in NLP
The Greek language occupies a unique position among languages
like Dutch, Polish and Chinese. It shares underlying semantic rules
with other Latin-based languages while also presenting distinct
challenges with its own alphabet and complexity. The Greek script,
consisting of 24 letters with unique Unicode representations, is
widely used in academia and programming, especially in mathemat-
ics, physics, and engineering. The language also features diacritical
marks such as tonos (´) and diaeresis (¨) that modify pronuncia-
tion and meaning. Accurate handling of these marks is crucial for
correct tokenization and text representation.

Greeklish is the practice of writing Greek using the Latin alpha-
bet. While Greeklish can simplify typing, it introduces inconsisten-
cies in spelling and can complicate NLP tasks due to the lack of
standardized translation rules. For the purposes of this research, we
focus exclusively on data written in the Greek alphabet, as the pri-
mary aim is to analyze and improve model performance on native
modern Greek script.

Evaluation tasks have been developed targeting natural language
inference, word sense disambiguation, and metaphor detection,
underscoring the need for specialized datasets to advance the Greek
NLP ecosystem [18].

4.2 Dataset Creation and Filtering
To conduct the experiments, a dataset consisting of Greek code
snippets was prepared by extracting available Java files with Greek
text from Github, using the top 2500 most frequent Greek words.

7Understanding ROUGE score for NLP Evaluation

3

https://huggingface.co/ilsp/Meltemi-7B-v1
https://huggingface.co/datasets/open-web-math/open-web-math
https://medium.com/@sthanikamsanthosh1994/understanding-bleu-and-rouge-score-for-nlp-evaluation-1ab334ecadcb

Paris Loizides

The Dataset filtering was necessary to improve the inference so
that errors are identified correctly. The following dataset filtering
was conducted on the files:

(1) Large files exceeding the context window of 8,192 tokens.
(2) Files that do not contain any comments.
(3) Duplicate files.
After extracting line comments and block comments using Reg-

ular Expressions8, we filter out instances of comments that are not
Greek using Fasttext-Langdetect9.

4.3 Data Masking and Formating
Since StarCoder 2 has been trained using the Fill-In-the-Middle
(FIM) objective, we need to maintain the same data input format
for inference. Therefore, we will need to perform masking and pre-
processing, resulting in a format that the model will understand [3].
The following operations are applied on the dataset to spanmask
the comments using the FIM objective:

(1) Extract all block and line comments from the filtered dataset.
(2) Process content of the files by including FIM tags used by

StarCoder 2 during training, as explained in the technical
report [22]. The resulting file content will be as follows:

<fim_prefix>pre_code<fim_suffix>suf_code<fim_mid>

(3) To indicate the intended language of the predicted comment
to the model, we retain the first 3 words of the original
comment for block comments, and the first 2 words for line
comments as part of the pre_code.

4.4 Dataset Statistical Analysis
To decide on the maximum token length for pipeline initialization,
we tokenized the extracted original comments and calculated the
total number of tokens for each comment. The mean number of
tokens was computed to understand the average tendency of our
dataset (mean=75 tokens). In the token length distribution, we ob-
served a right-skewed shape, with notable spikes of lengths greater
than 1500 tokens. This can be attributed to commented-out code
snippets and long Greek text, unrelated to code, such as exercise
descriptions and random text. We determined the 95th percentile
token length at 215 tokens to achieve a balance between complete-
ness and efficiency in the model’s predictions.

5 RESULTS
5.1 Open Coding Taxonomy

Hierarchical Error Taxonomy. To answer the first research
question, table 1 visualizes the final Hierarchical Error Taxonomy,
which is the result of weekly labelling iterations and refinements of
the different labels and categories. Table 1 lists the agreed taxonomy
among the research team, as well as the frequency of the different
errors in Greek comment generation for StarCoder 2.

Qualitative Results. The qualitative analysis aims to identify
the most frequent error labels within the model’s predictions. The

8https://docs.python.org/3/library/re.html
9https://pypi.org/project/fasttext-langdetect/

Table 1: Hierarchical Taxonomy of Error Labels for the Greek
language on 300 labeled data points of the final iteration.

Error label and ID Count

Comment Generation Errors
Syntax

(ST-IF) Incorrect Comment Format
(ST-IF1) Style Inconsistency
(ST-IF2) Omitted Identifier

Linguistic
(LG-IS) Incorrect Synonym
(LG-WL) Wrong Language

(LG-WL1) Undesired Translation
(LG-WL2) Incorrect Language

(LG-GR) Grammar
(LG-GR1) Plurality
(LG-GR2) Conjugation
(LG-GR3) Gendering
(LG-GR4) Spelling
(LG-GR5) Capitalization
(LG-GR6) Cohesion

Semantic
(SE-MD) Missing Details
(SE-TS) Too Specific
(SE-CS) Code Snippet Inclusion

(SE-CS1) Commented out Code
(SE-CS2) Code Intended to Run

(SE-HA) Hallucination
(SE-HA1) Misplaced Facts
(SE-HA2) Contextual Discrep-
ancy
(SE-HA3) Educated Guess

Model Specific
(MS-IG) Incoherent Generation
(MS-CC) Copy Context
(MS-ET) Early Termination
(MS-LT) Late Termination
(MS-ME) Memorization

(MS-ME1) Contains PII
(MS-ME2) Contains URL
(MS-ME3) Verbatim Memoriza-
tion

(MS-RE) Repetition
(MS-RE1) Pattern Repetition
(MS-RE2) Verbatim Repetition

Miscellaneous
Excluded

719
16
16
14
2
48
0
12
3
9
36
1
0
16
2
1
16
315
22
6

195
14
181
92
4

24
64
222
16
89
7
32
37
3
10

24
41
12
29
30
88

4

https://docs.python.org/3/library/re.html
https://pypi.org/project/fasttext-langdetect/

LLM of Babel: Evaluation of LLMs on code for non-English use-cases

Figure 1: Error Labels Distribution of Final Iteration using
300 comment predictions.

Figure 2: Heat Map of the top 6 most common errors and
their percentage of asymmetric co-occurance.

distribution of error labels in the Greek dataset is depicted in Figure
1.

The most common error label identified was SE-CS (Includes
Code Snippet), which appeared with the highest frequency of 181
occurrences. This was followed by MS-CC (Copying Context), E
for Excluded labels due to extracted comment that do not provide
meaningful insights when labelled, and SE-HA3 (Educated Guess)
which is a type of Hallucination by the model. The excluded errors
(E), may contain: (1) Commented out code snippet, (2) URLs, (3)
Names, (4) File related information such as course name or author
information, (5) Discussion comments among authors (6) "TODO:"
comments.

A notable Error label was M (Miscellaneous) which occurred
30 times in the data. This label describes all errors that were not
considered significant enough to be included in the Taxonomy due
to their limited appearance when iterating over the Error taxonomy
with the research team. For the Greek language and StarCoder2,

Figure 3: Box Plot comparison of the number of tokens for
the StarCoder 2, Meltemi, and OpenWebMath Tokenizers on
14,524 Greek comments, the mean score for each tokenizer
in red text, plotted on a logarithmic scale on the Y axis. A
lower number of tokens is better.

these errors include the following: (1) Incorrect use of accents, (2)
Declension10 errors in grammar, (3) Predicted comment ends with
a closing curly bracket (}), (4) Generation of in/out-of-context
getters and setters methods, (5) Generation of Document Variables
as jQuery11 construct.

Further qualitative analysis is visualized in Figure 2. The co-
occurrence heat map demonstrates the relation between the most
common errors in the generated comments. It is obvious that due to
the high frequency of SE-CS2 (Code intended to run), all errors are
highly correlated with predicting code, highlighting the weakness
of the model in correctly terminating the token generation when
the comment is complete. Furthermore, a high correlation of 0.45 is
noted among the pair SE-CS2 and MS-CC (Copy Context) as well as
0.27 for SE-CS2 and SE-HA3 (Educated Guess). This means that al-
most 50% of the times that the model predicts code snippet intended
to run, it is just copying the context of the inferred file, while 27%
of the times the generated code is a hallucination, grounded to the
provided context. Lastly an important co-occurence would be that
among MS-ME3 (Verbatim Memorization) and MS-CC (Copy Con-
text) with a value of 0.52. This suggests that in more than half of the
instances where memorization from the training data is observed
in the generated Greek comment, the generated code is copied from
the provided file. This could also explain that the copied context is
memorized from the training data, indicating overfitting on files
that contain Greek documented code and were part of the model’s
training set.

5.2 Tokenization Experimental Results
In order to answer research question 2, we present and analyze
the experimental results of tokenization for different tokenizers,
focusing on the analysis of Greek tokens.We compare the StarCoder
v2 tokenizer, the Greek Tokenizer (Meltemi), and the OpenWebMath
Tokenizer in terms of their efficiency and information density.

10Greek nouns, pronouns, and adjectives alter their form based on their grammatical
role, a process referred to as declension.
11jQuery API Documentation

5

https://api.jquery.com/jQuery/

Paris Loizides

Figure 4: Distribution of BLEU Scores of 430 data points from
the last iteration, random comment selection from all repos-
itories, plotted on a logarithmic scale on the Y axis.

Greek Tokens Analysis. StarCoder v2:We analyzed the tokens
of the StarCoder v2 tokenizer and found that out of a total of 49,152
tokens, only 39 are Greek, which translates to a ratio of 0.0008. All
of the Greek tokens have a maximum length of 2 characters. These
39 tokens do not include Greek capital letters, which are split into
two non-human readable tokens by the StarCoder 2 tokenizer.

GreekTokenizer (Meltemi):This tokenizer extends theMistral-
7B tokenizer with Greek tokens. Out of a total of 61,362 tokens,
28,136 tokens are Greek, which is 46% of all tokens. Additionally,
95% of these Greek tokens are longer than 2 characters, leading to
an efficient Greek tokenizer with meaningful information density
per token.

OpenWebMath Tokenizer: Trained on 3 million mathematical
documents, which is 50% of the entire dataset, this tokenizer yields
a total of 90 Greek tokens out of 49,152, resulting in a ratio of 0.0018.
Out of these Greek tokens, 85% have a length of less than or equal
to 2 characters, most of which are mathematical symbols such as:
["∆x", "φ", "∆t", "π", "χ", "∆", "µm", "ξ", " µs"].

Information Density of Tokenizers: Comparison. The box
plot of Figure 3 comparing StarCoder 2, OpenWebMath, andMeltemi-
7B-v1 tokenizers reveals significant differences in tokenization and
information density for Greek comments. On average, StarCoder
2 produces longer token sequences (74.56 tokens) compared to
Meltemi-7B-v1 (25.96 tokens), indicating that StarCoder 2’s tok-
enizer tends to tokenize Greek text one letter at a time, resulting
in inefficient representation. The higher number of outliers for
StarCoder 2 suggests inconsistent tokenization patterns that could
hinder performance in Greek contexts. In contrast, the similarity
in average token lengths between StarCoder 2 (74.56 tokens) and
OpenWebMath (80.27 tokens) indicates that both tokenizers handle
mathematical and Greek content similarly. This similarity suggests
that StarCoder 2’s tokenization leads to long sequences of individ-
ual letter tokens that lack the information density necessary for
efficient NLP tasks.

Figure 5: Distribution of ROUGE-1 F Scores of 430 data points
from the last iteration, random comment selection from all
repositories.

Figure 6: Distribution of Semantic Similarity Scores of 430
data points from the last iteration, random comment selec-
tion from all repositories.

Figure 7: Scatter plot with Kernel Density Estimation (KDE)
of Semantic similarity for 300 labelled Correct and Incorrect
comments.

6

LLM of Babel: Evaluation of LLMs on code for non-English use-cases

5.3 Quantitative Analysis
The results of the quantitative analysis answer research question 3
regarding the different metrics aimed to measure the performance
of the model for Greek use cases.

Accuracy Rate. The accuracy of themodel as defined inmethod-
ology subsection 3.5 is measured at 49% of correct comment predic-
tions that correctly describe the code snippet being summarized.

BLEU. The log scaled distribution of BLEU scores (Figure 4) re-
veals a significant skew towards lower scores, with the majority of
scores clustered around 0. This indicates that many predicted com-
ments have low accuracy compared to their reference comments.
Responsible for this data distribution and trend towards score zero,
is also the extensive predictions by the model. Code snippets are
also generated, thus lowering the BLEU score on most examples
when comparing reference to model prediction. However, a few
instances achieve higher BLEU scores, suggesting that the model
occasionally produces highly accurate syntactic predictions.

ROUGE. Notably, the ROUGE-1 F score distribution (Figure
5), shows a peak at lower scores, with a gradual decline as the
scores increase. This pattern alignswith the BLEU score distribution,
reinforcing the observation that the model struggles with high
recall-oriented accuracy in most cases but can achieve better results
in specific instances.

Semantic Similarity. Similarly, the semantic similarity scores
(Figure 6) measure the semantic equivalence between the predicted
and reference comments, demonstrating how well the model cap-
tures the underlying meaning and context.

The semantic similarity score distribution (Figure 6) highlights
a more varied performance, with a notable peak around the 0.3-
0.5 range. This indicates that despite code snippets being part of
the generated prediction, the model often captures the semantic
essence of the comments.

Further analysis of the Correct and Incorrect data points, for
Semantic Similarity and File Length in terms of tokens (Figure 7)
demonstrates a correlation between the two metrics. The Kernel
Density Estimation (KDE) visualizes the density of correct predic-
tions around the 0.5 Semantic Similarity score with a file token
length of 1000. On the other hand, Incorrect predictions are con-
centrated at around 0.3 Semantic Similarity Score with a file token
length of 500 tokens. Average token length and semantic similarity
score for both correct and incorrect predictions are also visual-
ized in Figure 7, confirming the effect of Context token length of
inference in the quality of the predictions.

Effectiveness of Quantitative Metrics Comparison. The box
plot comparison (Figure 8) highlights the effectiveness of different
metrics in evaluating the correctness of comments. Among the
metrics, the semantic similarity score best differentiates between
correct and incorrect comments, showing a larger gap and higher
variance for correct predictions without any outliers. This indicates
that semantic similarity is more representative of comment correct-
ness. The low performance across all scores is attributed to the poor
quality of Greek documentation which is used as ground truth, and
the model’s tendency to predict code snippets, which inherently

lowers the scores. Taking into consideration these limitations, se-
mantic similarity seems to be the most useful metric, effectively
answering research question 3, regarding the performance of Star-
Coder 2 when prompted with Greek code snippets.

6 DISCUSSION
6.1 Implication
Our findings underscore the necessity for more inclusive and ex-
tensive research on multilingual LLMs designed for coding. The
hierarchical error taxonomy developed through the open coding
approach sheds light on common pitfalls and errors that code LLMs
encounter in multilingual contexts. This taxonomy can serve as a
valuable tool for guiding future research and development efforts
to enhance the inclusivity and effectiveness of these models on a
global scale.

The Greek language, in particular, presents unique challenges
due to the influence of both the tokenizer and the training data. Our
analysis revealed that models not specifically tailored to the Greek
language exhibit unexpected behaviors. This can be attributed to
the frequent use of Greek characters in mathematical contexts and
the limited availability of purely Greek repositories that can result
in learning Greek letter tokens in both mathematical and natural
language processing contexts. The individual letter tokenization,
highlights the lack of extensive Greek content in training datasets
like The Stack v1, leading to suboptimal performance in Greek
comment generation tasks.

Our evaluation of quantitative metrics revealed that BLEU and
ROUGE scores are not reliable indicators of performance in this con-
text due to the generation of code snippets in predicted comments
and the poor quality of Greek documentation used as ground truth.
Instead, semantic similarity scores, obtained through multilingual
transformers, provided a more accurate measure of the quality of
predictions. These results align with previous research on similarity
scores, such as CodeBERTScore and the ReCode benchmark, which
also emphasize the importance of semantic similarity for evaluating
the quality of generated content [33, 35].

Additionally, we are hypothesizing that despite the lack of non-
English documented datasets, the model’s ability to summarize code
in languages other than English can be attributed to the contextual
similarities of code. This is due to the model mapping specific code
snippet contexts to a shared space, allowing for effective transfer
across different languages. Generalization capabilities indicate that
a shared space is created that facilitates this transfer, thereby en-
hancing the model’s performance even with limited training data
for certain languages [26].

6.2 Recommendations
Based on our findings, we propose several recommendations to
enhance the performance and inclusivity of LLMs used for multi-
lingual coding tasks:

Development ofMultilingual Tokenizers andModels:Greater
emphasis should be placed on creating multilingual tokenizers that
are inclusive of languages like Greek. At the same time models
should be trained on a larger corpus of non-English data. Tech-
niques such as knowledge distillation from resource-rich languages,
the use of lexicons, translation of training data, self-translation, and

7

Paris Loizides

Figure 8: Box plot comparison of Correct and Incorrect predictions for BLEU, ROUGE, Semantic Similarity, and the mean score
in red for each score.

alignment of vector spaces demonstrate potential for improving
multilingual models performance [12, 19, 27, 34].

Prioritize Semantic Similarity Metrics: In multilingual ex-
periments, semantic similarity metrics should be prioritized for
evaluating the quality of generated comments for code snippets.
This metric closely aligns with human evaluation of code comple-
tion tasks [33, 35]. This approach provides a more accurate and
meaningful assessment of model performance compared to tradi-
tional metrics like BLEU and ROUGE.

6.3 Limitations
While this study provides valuable insights into the performance
of LLMs in non-English programming contexts, several limitations
must be acknowledged.

Due to time constraints, the data labelling process was less ex-
tensive than desired. Ideally, a larger dataset would be labeled to
ensure comprehensive analysis and conclusions. Additionally, hav-
ing multiple annotators label the same datasets for each language
and model would help mitigate individual biases and improve the
reliability of the error taxonomy.

Another limitation is the rotation of all discussed languages
among the different models. To fully understand the performance
variations across languages, it would be beneficial to evaluate each
model with every language and model included in the study while
at the same time creating an English dataset as a baseline of compar-
ison. This would provide a more accurate view of model capabilities
and shortcomings.

6.4 Future Work
In this subsection, we propose directions for future research to
enhance our understanding of Greek-related issues in LLMs and
extend the research to other non-English languages.

Further research could be conducted on the content of The Stack
v2 to identify the total Greek corpus used during model training, es-
pecially focusing on Java files relevant to this study. Understanding
the proportion of Greek data compared to English data in The Stack

v2 could offer deeper insights into the tokenization challenges and
performance disparities observed.

Additionally, while the hierarchical error taxonomy developed
in this study is a valuable tool, its effectiveness could be enhanced
with more iterations and refinements. Future work should aim to
involve a more diverse range of languages and models to ensure
the taxonomy’s applicability across different contexts.

Finally, the exclusion of Greeklish data from this study, although
intentional to maintain consistency, limits the applicability of this
study to informal digital communication contexts. Future studies
could explore the impact of Greeklish on LLM performance to
provide a more comprehensive understanding of Greek language
usage in coding environments.

Addressing this future research will help to refine the findings
and contribute to the development of more inclusive and effective
LLMs for non-English programming contexts.

7 CONCLUSION
This study has conducted an evaluation of Code LLMs, specifically
StarCoder 2, in non-English programming contexts, focusing on
the Greek language. Our research reveals significant disparities in
Greek natural language usage within code files, highlighting the
need for advanced techniques to enhance the multilingual capabili-
ties of LLMs. By developing a hierarchical error taxonomy through
an open coding approach, we identified and categorized common
errors, providing a framework for improving model performance.
The tokenization experiments further revealed critical insights into
the impact of training data and tokenizer design on model effective-
ness, particularly for underrepresented languages like Greek. The
findings underscore the importance of using semantic similarity
metrics over traditional metrics like BLEU and ROUGE for evaluat-
ing multilingual models. Our recommendations emphasize the need
for more inclusive tokenizers and training datasets to bridge the re-
source gap between English and non-English contexts. Future work
should focus on refining this taxonomy and expanding research to
other underrepresented languages, ultimately contributing to the
development of inclusive AI tools.

8

LLM of Babel: Evaluation of LLMs on code for non-English use-cases

8 RESPONSIBLE RESEARCH
Conducting responsible research is important to ensure the integrity
and ethical standards of our study. In our work, we have prioritized
transparency, reproducibility, and ethical considerations.

By focusing on multiple languages through collaborative efforts,
we aim to contribute to the inclusivity and accessibility of AI tools,
addressing potential biases and limitations in current LLMs. Creat-
ing models that are accessible to all users regardless of language
is crucial, particularly in educational settings where proficiency
in English is limited. These tools can significantly aid in teaching
coding to non-English speakers, making the technology more in-
clusive. Addressing language biases in LLMs ensures that people
from diverse linguistic backgrounds can benefit equally, fostering a
more equitable technological environment.

To ensure that our experiments are reproducible, we have made
our methodology transparent and provided all necessary resources
for replication. The code12 used in our experiments is open-sourced
and available on GitHub. The dataset13 used as part of open coding
approach can be accessed fromHugging Face, and the labeled data14
is available in Google Drive.

Additionally, we did not train or finetune any models on the
provided data, and excluded licenses encountered, thus adhering to
ethical standards.

REFERENCES
[1] Mehdi Ali, Michael Fromm, Klaudia Thellmann, Richard Rutmann, Max Lübber-

ing, Johannes Leveling, Katrin Klug, Jan Ebert, Niclas Doll, Jasper Buschhoff,
Charvi Jain, Alexander Weber, Lena Jurkschat, Hammam Abdelwahab, Chelsea
John, Pedro Ortiz Suarez, Malte Ostendorff, Samuel Weinbach, Rafet Sifa, Stefan
Kesselheim, and Nicolas Flores-Herr. 2024. Tokenizer Choice For LLM Train-
ing: Negligible or Crucial?. In Findings of the Association for Computational
Linguistics: NAACL 2024, Kevin Duh, Helena Gomez, and Steven Bethard (Eds.).
Association for Computational Linguistics, Mexico City, Mexico, 3907–3924.
https://aclanthology.org/2024.findings-naacl.247

[2] Loubna Ben Allal, Niklas Muennighoff, Logesh Kumar Umapathi, Ben Lipkin, and
Leandro von Werra. 2022. A Framework for the Evaluation of Code Generation
Models. Available online: https://github.com/bigcode-project/bigcodeevaluation-
harness.

[3] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine
McLeavey, Jerry Tworek, and Mark Chen. 2022. Efficient Training of Lan-
guage Models to Fill in the Middle. arXiv e-prints, Article arXiv:2207.14255
(July 2022), arXiv:2207.14255 pages. https://doi.org/10.48550/arXiv.2207.14255
arXiv:2207.14255 [cs.CL]

[4] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (SIGCSE 2023). Association for Computing Machinery, New York, NY, USA,
500–506. https://doi.org/10.1145/3545945.3569759

[5] Emanuela Boros, Maud Ehrmann, Matteo Romanello, Sven Najem-Meyer, and
Frédéric Kaplan. 2024. Post-Correction of Historical Text Transcripts with
Large Language Models: An Exploratory Study. In Proceedings of the 8th Joint
SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social
Sciences, Humanities and Literature (LaTeCH-CLfL 2024), Yuri Bizzoni, Stefa-
nia Degaetano-Ortlieb, Anna Kazantseva, and Stan Szpakowicz (Eds.). Asso-
ciation for Computational Linguistics, St. Julians, Malta, 133–159. https:
//aclanthology.org/2024.latechclfl-1.14

[6] Boxing Chen and Colin Cherry. 2014. A Systematic Comparison of Smoothing
Techniques for Sentence-Level BLEU. InWMT@ACL. https://api.semanticscholar.
org/CorpusID:7410732

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,

12https://github.com/ploizides/LLM-of-Babel-Paris
13https://huggingface.co/parislo
14https://docs.google.com/spreadsheets/d/1mEqcouS4rPNqSDiX-
IIgjm0gHj9ggudEzV-NgmNmnzs/edit?usp=sharing

Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, MiraMurati, Katie Mayer, PeterWelinder, BobMcGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[8] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guil-
laume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer,
and Veselin Stoyanov. 2020. Unsupervised Cross-lingual Representation Learn-
ing at Scale. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics.

[9] Angela Costa, Wang Ling, Tiago Luís, Rui Correia, and Luisa Coheur. 2015.
A linguistically motivated taxonomy for Machine Translation error analysis.
Machine Translation 29 (06 2015), 127–161. https://doi.org/10.1007/s10590-015-
9169-0

[10] Gautier Dagan, Gabriel Synnaeve, and Baptiste Rozière. 2024. Getting the most
out of your tokenizer for pre-training and domain adaptation. arXiv e-prints,
Article arXiv:2402.01035 (Feb. 2024), arXiv:2402.01035 pages. https://doi.org/10.
48550/arXiv.2402.01035 arXiv:2402.01035 [cs.CL]

[11] Hantian Ding, Varun Kumar, Yuchen Tian, Zijian Wang, Rob Kwiatkowski, Xi-
aopeng Li, Murali Krishna Ramanathan, Baishakhi Ray, Parminder Bhatia, and
Sudipta Sengupta. 2023. A Static Evaluation of Code Completion by Large Lan-
guage Models. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 5: Industry Track), Sunayana Sitaram, Beata
Beigman Klebanov, and Jason D Williams (Eds.). Association for Computational
Linguistics, Toronto, Canada, 347–360. https://doi.org/10.18653/v1/2023.acl-
industry.34

[12] Julen Etxaniz, Gorka Azkune, Aitor Soroa, Oier Lacalle, and Mikel Artetxe. 2024.
Do Multilingual Language Models Think Better in English?. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (Volume 2: Short Papers), Kevin
Duh, Helena Gomez, and Steven Bethard (Eds.). Association for Computational
Linguistics, Mexico City, Mexico, 550–564. https://aclanthology.org/2024.naacl-
short.46

[13] Valentin Hartmann, Anshuman Suri, Vincent Bindschaedler, David Evans, Shruti
Tople, and Robert West. 2023. SoK: Memorization in General-Purpose Large
Language Models. arXiv:2310.18362 [cs.CL]

[14] A Huberman et al. 2014. Qualitative data analysis a methods sourcebook. (2014).
[15] Rudali Huidrom and Anya Belz. 2023. Towards a Consensus Taxonomy for

Annotating Errors in Automatically Generated Text. In Proceedings of the 14th
International Conference on Recent Advances in Natural Language Processing,
Ruslan Mitkov and Galia Angelova (Eds.). INCOMA Ltd., Shoumen, Bulgaria,
Varna, Bulgaria, 527–540. https://aclanthology.org/2023.ranlp-1.58

[16] Maliheh Izadi, Jonathan Katzy, Tim Van Dam, Marc Otten, RazvanMihai Popescu,
and Arie Van Deursen. 2024. Language Models for Code Completion: A Practical
Evaluation. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. 1–13.

[17] Shahedul Huq Khandkar. 2009. Open coding. University of Calgary 23, 2009
(2009), 2009.

[18] Konstantinos Kogkalidis, Stergios Chatzikyriakidis, Eirini Giannikouri, Vasiliki
Katsouli, Christina Klironomou, Christina Koula, Dimitris Papadakis, Thelka
Pasparaki, Erofili Psaltaki, Efthymia Sakellariou, and Charikleia Soupiona. 2024.
OYXOY: A Modern NLP Test Suite for Modern Greek. In Findings of the Asso-
ciation for Computational Linguistics: EACL 2024, Yvette Graham and Matthew
Purver (Eds.). Association for Computational Linguistics, St. Julian’s, Malta,
311–322. https://aclanthology.org/2024.findings-eacl.21

[19] Fajri Koto, Tilman Beck, Zeerak Talat, Iryna Gurevych, and Timothy Baldwin.
2024. Zero-shot Sentiment Analysis in Low-Resource Languages Using a Multi-
lingual Sentiment Lexicon. In Proceedings of the 18th Conference of the European
Chapter of the Association for Computational Linguistics (Volume 1: Long Papers),
Yvette Graham and Matthew Purver (Eds.). Association for Computational Lin-
guistics, St. Julian’s, Malta, 298–320. https://aclanthology.org/2024.eacl-long.18

[20] Tomasz Limisiewicz, Jiří Balhar, and David Mareček. 2023. Tokenization Im-
pacts Multilingual Language Modeling: Assessing Vocabulary Allocation and
Overlap Across Languages. In Findings of the Association for Computational
Linguistics: ACL 2023, Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(Eds.). Association for Computational Linguistics, Toronto, Canada, 5661–5681.
https://doi.org/10.18653/v1/2023.findings-acl.350

[21] Mario Linares-Vásquez, Gabriele Bavota, Michele Tufano, Kevin Moran, Massi-
miliano Di Penta, Christopher Vendome, Carlos Bernal-Cárdenas, and Denys
Poshyvanyk. 2017. Enabling mutation testing for Android apps. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn,
Germany) (ESEC/FSE 2017). Association for Computing Machinery, New York,
NY, USA, 233–244. https://doi.org/10.1145/3106237.3106275

9

https://aclanthology.org/2024.findings-naacl.247
https://github.com/bigcode-project/bigcodeevaluation-harness
https://github.com/bigcode-project/bigcodeevaluation-harness
https://doi.org/10.48550/arXiv.2207.14255
https://arxiv.org/abs/2207.14255
https://doi.org/10.1145/3545945.3569759
https://aclanthology.org/2024.latechclfl-1.14
https://aclanthology.org/2024.latechclfl-1.14
https://api.semanticscholar.org/CorpusID:7410732
https://api.semanticscholar.org/CorpusID:7410732
https://github.com/ploizides/LLM-of-Babel-Paris
https://huggingface.co/parislo
https://docs.google.com/spreadsheets/d/1mEqcouS4rPNqSDiX-IIgjm0gHj9ggudEzV-NgmNmnzs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1mEqcouS4rPNqSDiX-IIgjm0gHj9ggudEzV-NgmNmnzs/edit?usp=sharing
https://arxiv.org/abs/2107.03374
https://doi.org/10.1007/s10590-015-9169-0
https://doi.org/10.1007/s10590-015-9169-0
https://doi.org/10.48550/arXiv.2402.01035
https://doi.org/10.48550/arXiv.2402.01035
https://arxiv.org/abs/2402.01035
https://doi.org/10.18653/v1/2023.acl-industry.34
https://doi.org/10.18653/v1/2023.acl-industry.34
https://aclanthology.org/2024.naacl-short.46
https://aclanthology.org/2024.naacl-short.46
https://arxiv.org/abs/2310.18362
https://aclanthology.org/2023.ranlp-1.58
https://aclanthology.org/2024.findings-eacl.21
https://aclanthology.org/2024.eacl-long.18
https://doi.org/10.18653/v1/2023.findings-acl.350
https://doi.org/10.1145/3106237.3106275

Paris Loizides

[22] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-
Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. StarCoder 2 and The Stack v2: The Next Generation. arXiv preprint
arXiv:2402.19173 (2024).

[23] Junayed Mahmud, Fahim Faisal, Raihan Islam Arnob, Antonios Anastasopoulos,
and Kevin Moran. 2021. Code to Comment Translation: A Comparative Study
on Model Effectiveness & Errors. In Proceedings of the 1st Workshop on Natural
Language Processing for Programming (NLP4Prog 2021), Royi Lachmy, Ziyu Yao,
Greg Durrett, Milos Gligoric, Junyi Jessy Li, Ray Mooney, Graham Neubig, Yu Su,
Huan Sun, and Reut Tsarfaty (Eds.). Association for Computational Linguistics,
Online, 1–16. https://doi.org/10.18653/v1/2021.nlp4prog-1.1

[24] Kishore Papineni, Salim Roukos, Todd Ward, and Wei jing Zhu. 2002. BLEU: a
Method for Automatic Evaluation of Machine Translation. 311–318.

[25] Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. 2023. Open-
WebMath: An Open Dataset of High-Quality Mathematical Web Text. In The 3rd
Workshop on Mathematical Reasoning and AI at NeurIPS’23.

[26] Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How Multilingual is Multi-
lingual BERT?. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, Florence,
Italy, 4996–5001.

[27] Nils Reimers and Iryna Gurevych. 2020. Making Monolingual Sentence Em-
beddings Multilingual using Knowledge Distillation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computa-
tional Linguistics, Online, 4512–4525. https://doi.org/10.18653/v1/2020.emnlp-
main.365

[28] Steven I. Ross, FernandoMartinez, Stephanie Houde, Michael Muller, and Justin D.
Weisz. 2023. The Programmer’s Assistant: Conversational Interaction with a
Large Language Model for Software Development. In Proceedings of the 28th
International Conference on Intelligent User Interfaces (IUI ’23). Association for
Computing Machinery, New York, NY, USA, 491–514. https://doi.org/10.1145/
3581641.3584037

[29] Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder, and Iryna Gurevych. 2021.
How Good is Your Tokenizer? On the Monolingual Performance of Multilingual
Language Models. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), Chengqing Zong, Fei Xia, Wenjie
Li, and Roberto Navigli (Eds.). Association for Computational Linguistics, Online,
3118–3135. https://doi.org/10.18653/v1/2021.acl-long.243

[30] Khetam Al Sharou and Lucia Specia. 2022. A Taxonomy and Study of Critical
Errors in Machine Translation. In Proceedings of the 23rd Annual Conference of
the European Association for Machine Translation, Helena Moniz, Lieve Macken,
AndrewRufener, Loïc Barrault, Marta R. Costa-jussà, ChristopheDeclercq,Maarit
Koponen, Ellie Kemp, Spyridon Pilos, Mikel L. Forcada, Carolina Scarton, Joachim
Van den Bogaert, Joke Daems, Arda Tezcan, Bram Vanroy, and Margot Fonteyne
(Eds.). European Association for Machine Translation, Ghent, Belgium, 171–180.
https://aclanthology.org/2022.eamt-1.20

[31] Liyan Tang, Igor Shalyminov, AmyWong, Jon Burnsky, Jake Vincent, Yu’an Yang,
Siffi Singh, Song Feng, Hwanjun Song, Hang Su, Lijia Sun, Yi Zhang, Saab Man-
sour, and Kathleen McKeown. 2024. TofuEval: Evaluating Hallucinations of LLMs
on Topic-Focused Dialogue Summarization. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Volume 1: Long Papers), Kevin Duh, Helena
Gomez, and Steven Bethard (Eds.). Association for Computational Linguistics,
Mexico City, Mexico, 4455–4480. https://aclanthology.org/2024.naacl-long.251

[32] Arda Tezcan, Véronique Hoste, and Lieve Macken. 2017. SCATE taxonomy and
corpus of machine translation errors. https://doi.org/10.1163/9789004351790_012

[33] Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue
Shang, Varun Kumar, Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh
Nallapati, Murali Krishna Ramanathan, Dan Roth, and Bing Xiang. 2023. Re-
Code: Robustness Evaluation of Code Generation Models. In Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
(Eds.). Association for Computational Linguistics, Toronto, Canada, 13818–13843.
https://doi.org/10.18653/v1/2023.acl-long.773

[34] Yuanchi Zhang, Yile Wang, Zijun Liu, Shuo Wang, Xiaolong Wang, Peng Li,
Maosong Sun, and Yang Liu. 2024. Enhancing Multilingual Capabilities of
Large Language Models through Self-Distillation from Resource-Rich Languages.
arXiv:2402.12204 [cs.CL]

[35] Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. 2023. Code-
BERTScore: Evaluating Code Generation with Pretrained Models of Code. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for
Computational Linguistics, Singapore, 13921–13937. https://doi.org/10.18653/
v1/2023.emnlp-main.859

[36] Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2022. Productivity
assessment of neural code completion. In Proceedings of the 6th ACM SIGPLAN

International Symposium on Machine Programming (MAPS 2022). Association
for Computing Machinery, New York, NY, USA, 21–29. https://doi.org/10.1145/
3520312.3534864

10

https://doi.org/10.18653/v1/2021.nlp4prog-1.1
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.18653/v1/2021.acl-long.243
https://aclanthology.org/2022.eamt-1.20
https://aclanthology.org/2024.naacl-long.251
https://doi.org/10.1163/9789004351790_012
https://doi.org/10.18653/v1/2023.acl-long.773
https://arxiv.org/abs/2402.12204
https://doi.org/10.18653/v1/2023.emnlp-main.859
https://doi.org/10.18653/v1/2023.emnlp-main.859
https://doi.org/10.1145/3520312.3534864
https://doi.org/10.1145/3520312.3534864

LLM of Babel: Evaluation of LLMs on code for non-English use-cases

A ERROR LABELS
All error labels used in the final iteration of labelling are listed below. Error label ID, label name and detailed inclusion criteria for each label
used by the research team are included.

A.1 Syntax
Syntax errors are all errors which are related to the syntax of the comments.

Incorrect comment format. Model uses outdated format of javadoc. Model uses comment format that is inconsistent with the standards.
Errors with javadoc format.

(1) (ST-IF1) Style Inconsistency
a) Model uses outdated format of javadoc
b) Model uses comment format that is inconsistent with the standards
c) Model repeated auto-generated-comment like format which is not informative enough, instead of generating an actual description
d) Model does not follow the javadoc format that is present in the rest of the file (if present format is correct)

(2) (ST-IF2) Omitted Identifier
a) Model starts enlisting @params, but misses some of them
b) Generation started with a tag @return but then doesn’t have @params
c) Generated @params, but does not have @return for a method that does not return void

A.2 Linguistic
Linguistic errors are all errors related to the linguistic content of the generated text

(LG-IS) Usage of incorrect synonym . Usage of a similar word with an incorrect meaning in context (e.g. home->house)

Wrong language. The model predicts a comment (or significant part of it) in a language other than the target language
(1) (LG-WL1) Undesired translations

Translations that are correct but undesired in the language because the words are seldomly used in that context.
(2) (LG-WL2) Incorrect language

The model predicts a comment (or significant part of it) in a language other than the target language.

Grammar. Language is correct, grammatical mistake was made.

(1) (LG-GR1) Plurality
Incorrect usage of plurality rules (the subject and verb in a sentence do not agree in number. For example, "The book are on the
table" should be "The book is on the table.")

(2) (LG-GR2) Conjugation
Incorrect usage of conjugation rules

(3) (LG-GR3) Gendering
Incorrect gendering in case the language has gendered nouns

(4) (LG-GR4) Spelling
Incorrect spelling

(5) (LG-GR5) Capitalisation
Prediction capitalizes letters that grammatically is not correct to capitalize: e.g all capitals, every word begins with capital

(6) (LG-GR6) Cohesion
a) Mistake in using a language that involves organizing words and phrases that don’t make sense (incoherence).
b) Missing (or inappropriate usage of) a comma or a quotation mark
c) Lack of local cohesion, which is logical and grammatical consistency between consecutive, adjacent sentences in paragraphs.
Significant disorders of the coherence of the statement are, for example, paragraphs built from a sequence of sentences that are
neither logically nor grammatically related to each other (a stream of loose thoughts, associations).
d) Syntax errors in writing refer to mistakes in the arrangement of words and phrases in a sentence that violate the rules of grammar
and sentence structure
- Run-On Sentences: These happen when two or more independent clauses are joined without appropriate punctuation or conjunctions.
For instance, "I like to read I also enjoy writing."
- Misplaced Modifiers: This error occurs when a word or phrase is placed too far away from the word it is meant to modify, leading
to confusion or ambiguity. For example, "Running quickly, the bus was missed." This suggests that the bus was running quickly, not
the person.
- Double Negatives: Using two negative words in a sentence can create confusion or ambiguity. For example, "I don’t want none of

11

Paris Loizides

that" should be "I don’t want any of that."
- Lack of Parallel Structure: This occurs when a list of items in a sentence is not presented in a parallel manner. For example, "She
likes hiking, to swim, and reading." This should be "She likes hiking, swimming, and reading."

A.3 Semantic
Semantic errors are all errors related to the semantics or meaning of the generated content.

Hallucination. Category for hallucination generations, i.e. factually incorrect or not related to input prompt.
(1) (SE-HA1) Misplaced Facts

Randomly inserted facts (such as names, dates, or events) are present in the content and do not align with the context or expected
content. For example, referencing an event that did not happen or mentioning the wrong/finctional person.

(2) (SE-HA2) Contextual Discrepancy
Hallucination not grounded in the provided context.

(3) (SE-HA3) Educated Guess
a) Syntactically correct but semantically or factually incorrect
b) Grounded in the provided context.

Code Snippet Inclusion. Model generates actual code outside of comment
(1) (SE-CS1) Commented out code

Code that resides in a code block.
(2) (SE-CS2) Code intended to run

Code that the model intends to run.

Missing Details (SE-MD). Description does not fully describe the content of the summarized code. Current information does not describe the
full functionality of code being summarized. Current information does not describe the entire purpose of the summarized code. Generated
comment is too generic.

(SE-TS) Too Specific. Model copies the surrounding context verbatim.

A.4 Model Specific
Model specific errors are all errors which are related to the workings of LLMs.

(MS-IG) Incoherent Generation. Model outputs random words which have no logic between them

(MS-CC) Copy Context . Model copies the surrounding context verbatim

Memorisation. Model recognised the code to some capacity
(1) (MS-ME1) Contains PII

Personally identifiable information is included in the generated comment (fictional or did not occur in the original prompt)
(2) (MS-ME2) Contains URL

URL for a file or repository is included
(3) (MS-ME3) Verbatim Memorization

1) The model memorized the content verbatim
2) the text would not be generated if not for memorization

Repetition. Model generates and repeats what it has already said it in some capacity
(1) (MS-RE1) Pattern repetition

Model generated a repeating pattern: eg. 1,2,3,4,5,6,
(2) (MS-RE2) Verbatim repetition

Model generated verbatim repetition: eg. i am repeating i am repeating i am repeating

(MS-ET) Early Termination . Model stops generating in the middle of prediction, while the comment is clearly not complete or did not
generate anything

(MS-LT)Late Termination . The comment continues producing content even though it should have stopped earlier. e.g 1. When it includes
unnecessary empty tags (@version) 2. Continues adding line comments even though it is unnecessary

A.5 Miscellaneous
Anything that does not fall into any of the above categories

12

LLM of Babel: Evaluation of LLMs on code for non-English use-cases

B USE OF CHATGPT
Throughout the creation of this report, ChatGPT was used to assist in different stages of the writing and formatting process. The AI provided
valuable input on refining the language and ensuring clarity, coherence and conciseness, as well as the formatting of plots used in the
analysis. Prompts used throughout the project are listed below:

• "Can you rewrite the following paragraph to be more concise and to the point, while adhering to conference paper use of language"
• "Given the code for the creation of 3 different Box plots, help me create the code that combines all 3 in one figure that shares the Y

axis"
• "Can you provide me with phrases that I can use while explaining my results and graphs?"
• "In the following section what can be considered redundant content that could be removed to save space?"
• "Please review this text for any grammatical errors or inconsistencies."

13

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Collaborative Efforts
	3.2 Experiment Setup and Pipeline
	3.3 Open Coding
	3.4 Tokenization Experimental Approach
	3.5 Quantitative Evaluation Metrics

	4 Data
	4.1 Greek Language in NLP
	4.2 Dataset Creation and Filtering
	4.3 Data Masking and Formating
	4.4 Dataset Statistical Analysis

	5 Results
	5.1 Open Coding Taxonomy
	5.2 Tokenization Experimental Results
	5.3 Quantitative Analysis

	6 Discussion
	6.1 Implication
	6.2 Recommendations
	6.3 Limitations
	6.4 Future Work

	7 Conclusion
	8 Responsible Research
	References
	A Error Labels
	A.1 Syntax
	A.2 Linguistic
	A.3 Semantic
	A.4 Model Specific
	A.5 Miscellaneous

	B Use of ChatGPT

