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A B S T R A C T

Shape optimization of vessel hulls and airfoils is crucial for achieving optimal performance and minimizing
environmental impact. Typically, these designs are adaptations of existing ones, not fully optimized for specific
Key Performance Indicators (KPIs) such as drag or lift, and their optimization often relies on a mix of human
experience and numerical approaches. The current state-of-the-art approach leverages Computational Fluid
Dynamics (CFD) Data-Driven Surrogate (DDS) models in a four-step process. First, a shape design space is
created through parametrization, involving varying levels of human input. Accurate KPI estimation using CFD
is computationally intensive, preventing direct optimization. Thus, in the second step, representative shapes
are selected from the design space, and evaluated for their KPIs using CFD. Next, a DDS model is constructed
from the generated data, which, although costly to develop, allows for efficient KPI prediction. This model
is then integrated into an optimization loop to identify optimal geometries on the Pareto front. Finally, these
results are validated through CFD to ensure physical plausibility. This review sets focuses on recent advances
in DDS models for shape optimization of hulls and airfoils since 2015, an area not thoroughly covered in
previous surveys. We systematically examine the four-step optimization process in recent studies, highlighting
the evolution and deeper integration of DDS models with CFD. Additionally, we critically assess unresolved
issues and gaps in current methodologies, exploring future research directions such as the application of
machine learning for shape optimization. These elements highlight the novelty of our work by synthesizing
recent technological advances and proposing pathways for future developments, bridging the gap between
traditional methods and future possibilities in shape optimization, with implications for both academic research
and industrial practice.

Contents

1. Introduction ...................................................................................................................................................................................................... 2
2. Problem formalization ........................................................................................................................................................................................ 5
3. Literature review ............................................................................................................................................................................................... 8

3.1. Step (1) Shape parametrization, parameter ranges, and KPIs definition ....................................................................................................... 8
3.1.1. Parametrization........................................................................................................................................................................ 8
3.1.2. Ranges .................................................................................................................................................................................... 10
3.1.3. KPIs ........................................................................................................................................................................................ 10
3.1.4. Summary................................................................................................................................................................................. 10

3.2. Step (2) Sampling, data generation, and DDS construction......................................................................................................................... 10
3.2.1. Sampling techniques................................................................................................................................................................. 10
3.2.2. Data generation with CFD......................................................................................................................................................... 12
3.2.3. CFD DDS ................................................................................................................................................................................. 12
3.2.4. Summary................................................................................................................................................................................. 14

3.3. Step (3) Shape optimization .................................................................................................................................................................... 14
3.3.1. Objectives and constraints......................................................................................................................................................... 14
3.3.2. Optimizers and performance ..................................................................................................................................................... 14

∗ Corresponding author.
E-mail addresses: j.m.walker@tudelft.nl (J.M. Walker), a.coraddu@tudelft.nl (A. Coraddu), luca.oneto@unige.it (L. Oneto).
https://doi.org/10.1016/j.oceaneng.2024.119263
Received 23 April 2024; Received in revised form 3 September 2024; Accepted 12 September 2024
vailable online 19 September 2024 
029-8018/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/oceaneng
https://www.elsevier.com/locate/oceaneng
mailto:j.m.walker@tudelft.nl
mailto:a.coraddu@tudelft.nl
mailto:luca.oneto@unige.it
https://doi.org/10.1016/j.oceaneng.2024.119263
https://doi.org/10.1016/j.oceaneng.2024.119263
http://creativecommons.org/licenses/by/4.0/


J.M. Walker et al. Ocean Engineering 312 (2024) 119263 
3.3.3. Summary................................................................................................................................................................................. 17
3.4. Step (4) Physical plausibility and feedback ............................................................................................................................................... 17

4. Open problems and future perspectives ............................................................................................................................................................... 17
5. Conclusion ........................................................................................................................................................................................................ 19

CRediT authorship contribution statement ........................................................................................................................................................... 20
Declaration of competing interest ........................................................................................................................................................................ 20
References......................................................................................................................................................................................................... 20
S
S

S
S

1. Introduction

Shape optimization of vessel hulls (Walker et al., 2024; Campana
et al., 2006; Tahara et al., 2006; Kostas et al., 2015; Huang and Yang,
2016; Peri, 2016; Cheng et al., 2018; Coppedè et al., 2019; Miao and
Wan, 2020; Wang et al., 2020; D’Agostino et al., 2020; Zhang et al.,
2021b; Mittendorf and Papanikolaou, 2021; Liu et al., 2022; Wan et al.,
2022; Luo et al., 2021; Zhang et al., 2021a) and airfoils (Koziel and
Leifsson, 2013; Massaro and Benini, 2015; Zhang et al., 2016; Herrema
et al., 2017; Ou et al., 2019; He et al., 2019; Tao and Sun, 2019; Shi
et al., 2020; Han et al., 2020; Du et al., 2021; Lye et al., 2021; Raul and
Leifsson, 2021; García-Gutiérrez et al., 2022; Shukla et al., 2024; Qu
et al., 2017; Hu et al., 2022) describes the new design, or modification
of an existing one, to achieve the optimal performance according to the
requirements of the specific application. Usually, the optimal hull or
airfoil shape is designed to operate with the lowest energy requirements
(i.e., efficient fuel usage) and with affordable production processes,
driven by economic (Lutz and Wagner, 1998; Nelson et al., 2013; Wang
et al., 2015; Ghassemi and Zakerdoost, 2017), environmental (Buckley
et al., 2010; Nejat et al., 2014), or a combination of both (Ahmadzade-
htalatapeh and Mousavi, 2015) factors. Given the ongoing fluctuations
in fuel prices (Yilmaz, 2022; Sala et al., 2022) and the rising efforts to
address climate change (Sala et al., 2022), shape optimization of hulls
and airfoils is now an important area of research and will continue to
remain so for the foreseeable future.

The concept of optimal performance depends on the specific appli-
cation and is assessed based on one or more Key Performance Indicators
(KPIs). KPIs aim to minimize different requirements such as: the energy
requirements (consequently, fuel consumption and emissions) (Walker
et al., 2024; Campana et al., 2006; Tahara et al., 2006; Kostas et al.,
2015; Huang and Yang, 2016; Cheng et al., 2018; Coppedè et al.,
2019; Miao and Wan, 2020; Mittendorf and Papanikolaou, 2021; Liu
et al., 2022; Koziel and Leifsson, 2013; Zhang et al., 2016; Herrema
et al., 2017; Ou et al., 2019; He et al., 2019; Tao and Sun, 2019;
Shi et al., 2020; Han et al., 2020; Du et al., 2021; Lye et al., 2021;
Raul and Leifsson, 2021; García-Gutiérrez et al., 2022; Shukla et al.,
2024; Qu et al., 2017; Wan et al., 2022; Luo et al., 2021; Zhang et al.,
2021a; Hu et al., 2022); drag of a hull (Walker et al., 2024; Campana
et al., 2006; Tahara et al., 2006; Kostas et al., 2015; Huang and Yang,
2016; Cheng et al., 2018; Coppedè et al., 2019; Miao and Wan, 2020;
Wang et al., 2020; Zhang et al., 2021b; Mittendorf and Papanikolaou,
2021; Liu et al., 2022; Wan et al., 2022; Luo et al., 2021; Zhang
et al., 2021a); lift and drag of an airfoil (Koziel and Leifsson, 2013;
Massaro and Benini, 2015; Zhang et al., 2016; Herrema et al., 2017;
Ou et al., 2019; He et al., 2019; Tao and Sun, 2019; Shi et al., 2020;
Han et al., 2020; Du et al., 2021; Lye et al., 2021; Raul and Leifsson,
2021; García-Gutiérrez et al., 2022; Qu et al., 2017; Hu et al., 2022); lift
and drag of a hydrofoil (Bonfiglio et al., 2018); instability (Gammon,
2011); overheating (Ou et al., 2019); volume (Kenway and Martins,
2016); mass (Tezzele et al., 2023); cost (Kenway and Martins, 2016);
or, risk (Júnior et al., 2022).

It is possible to optimize the KPIs of hulls and airfoils in many dif-
ferent ways. Classically, shape optimization involves the adaptation of
an existing parent geometry through human experience (Evans, 1959),
numerical optimization methods (Reuther et al., 1996; Campana et al.,

2006; Tahara et al., 2006; Stück and Rung, 2011), or a mix between
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these approaches (Huyse and Lewis, 2001). This, on the one hand, pre-
vents the exploration of non-conventional shapes with possibly better
KPIs (Massaro and Benini, 2015; Mittendorf and Papanikolaou, 2021)
but, on the other hand, simplifies the manufacturing process being
closer to known ones (Albuquerque et al., 2018). Optimizing KPIs is
usually based on the evaluation of candidate designs with a virtual
experiment using Computational Fluid Dynamics (CFD), which itself
varies in both fidelity (Koziel and Leifsson, 2013) and veracity (Stern
et al., 2001). However, in recent years, the availability of computa-
tional resources and vast amounts of data has opened the door for
Data-Driven Methods (Brunton et al., 2020; Vinuesa and Brunton, 2022;
Lee and Carlberg, 2020) to gain notoriety in this field of research. In
particular, Data-Driven Methods can reduce the computational demand
of virtual experiments (Brunton et al., 2020; Kochkov et al., 2021), or
replace the need for them all together using a Data-Driven Surrogate
(DSS) (Massaro and Benini, 2015; Zhang et al., 2016; Huang and Yang,
2016; Herrema et al., 2017; Bonfiglio et al., 2018; Coppedè et al., 2019;
Ou et al., 2019; Tao and Sun, 2019; Miao and Wan, 2020; Shi et al.,
2020; Han et al., 2020; Du et al., 2021; Lye et al., 2021; Raul and
Leifsson, 2021; Mittendorf and Papanikolaou, 2021; Liu et al., 2022)
that is computationally expensive to construct but inexpensive for
making predictions that would otherwise require CFD or Experimental
Fluid Dynamics (EFD).

The application of the DDS to shape optimization of hulls and
airfoils is an area of research that remains vibrant. Previous reviews and
surveys on shape optimization methods (Wang and Shan, 2007; Ang
et al., 2015; Forrester and Keane, 2009; Kim and Boukouvala, 2020;
Leifsson and Koziel, 2016; Koziel and Leifsson, 2016) have primarily
focused on the optimization aspects, and, to the best of the authors’
knowledge, there is no recent review or survey paper holistically sum-
marizing the state-of-the-art on shape optimization of hulls and airfoils
leveraging CFD DDS models. A graphical abstract of this review is
reported in Fig. 1.

This review will focus on the four main steps related to shape
optimization of hulls and airfoils leveraging CFD DDS models

tep (1) shape parametrization, parameter ranges, and KPIs definition;
tep (2) sampling, data generation with CFD possibly integrating al-

ready available shapes, and DDS construction;
tep (3) shape optimization leveraging the CDF DDS;
tep (4) physical plausibility of the candidate shapes and feedback.

Step (1) deals with the parametrization of the geometry and the
definition of the parameter ranges and the desired KPIs for the specific
novel hull or airfoil design. The parametrization is responsible for
translating the geometry into a numerical representation and must
be homomorphic (a unique set of parameters is matched to only one
shape in the design space and vice-versa Marinić-Kragić et al., 2016).
Parametrization must also be informative (to allow for the prediction
of the desired KPIs), intelligible (to allow for interpretation and test
the physical plausibility of the results), and synthetic (it must not
contain redundant information) (Serani and Diez, 2022). Parameter
ranges should be defined based on domain knowledge by domain
experts to construct a shape design space large enough to allow for
meaningful modifications and small enough to allow for its actual
manufacturing (Huang and Yang, 2016; Feng et al., 2018). KPIs should
well characterize the performance of the geometry. They can be both

explicit (e.g., drag of a hull or lift and drag of an airfoil) or implicit
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Fig. 1. The graphical abstract of this review.
e.g., the range of the parameters can impose the fact that some
eometries should not be explored since they are too hard to manu-
acture) (Coppedè et al., 2019; Miao and Wan, 2020; Mittendorf and
apanikolaou, 2021; Liu et al., 2022; Zhang et al., 2016; Herrema
t al., 2017; Ou et al., 2019; Tao and Sun, 2019; Shi et al., 2020; Han
t al., 2020; Du et al., 2021; Lye et al., 2021; Raul and Leifsson, 2021).
arametrization and parameter ranges affect both the complexity of es-
imating the KPIs (see Section 3) and the effectiveness of the optimizer
n finding designs that can be actually manufactured (Upadhyay et al.,
021). In fact, if we rely solely on CFD to explore a large design space, it
s often tricky to calibrate the simulations accurately. If instead, we use
CFD DDS on a large design space, a vast amount of data is necessary

hat can be hard to retrieve (i.e., relying on EFD data) or computa-
ionally expensive to produce (i.e., relying on CFD simulations). For
hese reasons, Step (1) usually starts with the design requirements,
ission profiles, mission constraints, and design constraints that define
raw starting point for the design process (Hwang and Martins, 2016;
lbuquerque et al., 2018). It is not possible, nor meaningful, to think
bout a fully automated design process that does not exploit the domain
nd expert knowledge such as reference geometries and manufacturing
onstraints (Albuquerque et al., 2018). The level of human intervention
n this phase depends on the type of project, its cost, its scope, and
elivery time (Cui et al., 2012). Note that these steps deeply influence
he quality of final results: a well-constrained design process will fa-
ilitate the success of the next steps (Coppedè et al., 2019; Miao and
an, 2020; Mittendorf and Papanikolaou, 2021; Liu et al., 2022; Zhang

t al., 2016; Herrema et al., 2017; Ou et al., 2019; Tao and Sun, 2019;
hi et al., 2020; Han et al., 2020; Du et al., 2021; Lye et al., 2021;
aul and Leifsson, 2021). As we will see later in Section 3.1, a number
f approaches to parametrization exist in the literature, either based on
odeling shapes in parametric design software (Huang and Yang, 2016;
ittendorf and Papanikolaou, 2021; Liu et al., 2022) or deforming a

pecific parent shape (Coppedè et al., 2019; Miao and Wan, 2020; Feng
t al., 2018; Guerrero et al., 2018; Zhang et al., 2021b; Liu et al., 2022),
ith both approaches having varying degrees of human intervention
nd their associated strengths and weaknesses.

Step (2) deals with the accurate estimation of the desired KPIs
ased on the shape parameters defined at Step (1). In order to perform
n accurate estimation, high-fidelity CFD (Duraisamy et al., 2019)
e.g., Direct Numerical Simulation if computationally feasible (Shan
t al., 2005), or an engineering approximation using Reynolds-averaged
avier–Stokes equations (Massaro and Benini, 2015; Bonfiglio et al.,
018; Ou et al., 2019; Coppedè et al., 2019; Miao and Wan, 2020;
3 
Tao and Sun, 2019; Mittendorf and Papanikolaou, 2021; Raul and
Leifsson, 2021; Liu et al., 2022), or Large Eddy Simulation (Barnes
and Visbal, 2016)) is needed, but its computational requirements are
incompatible with an automated optimization process that usually
requires several thousand shapes to be evaluated (Skinner and Zare-
Behtash, 2018; Forrester and Keane, 2009; Keane and Voutchkov,
2020) (see Step (3)). In fact, high-fidelity CFD are based on iterative
methods to solve the underlying physics of the problem at hand and
require a significant computational effort (Wang and Shan, 2007; Leif-
sson and Koziel, 2016; Harries and Abt, 2019; Keane and Voutchkov,
2020). Low-fidelity CFD are much cheaper in terms of computational
requirements (Koziel and Leifsson, 2016), but most of the time much
less accurate with respect to high-fidelity CFD (Stern et al., 2001)
and still much more computationally demanding with respect to the
DDS (Harries and Abt, 2019). In fact, the DDS relies on a simple
idea: instead of depending on physical knowledge of the phenomena to
make predictions, a model is built based on examples (data) of the in-
put/output (parameters/values or parameters/KPIs) relationships (Kim
and Boukouvala, 2020; Jiang et al., 2020) under exam leveraging state-
of-the-art Artificial Intelligence (AI), and especially Machine Learning
(ML) techniques (Shalev-Shwartz and Ben-David, 2014; Goodfellow
et al., 2016; Aggarwal, 2018). The positive aspects of the DDS lie in
the fact that the predictions are computationally inexpensive since the
function approximating the input/output is cheap to evaluate. For this
reason, DDS models have recently attracted the attention of researchers
as accurate and computationally inexpensive surrogates of high-fidelity
CFD (Coppedè et al., 2019; Miao and Wan, 2020; Mittendorf and
Papanikolaou, 2021; Liu et al., 2022; Zhang et al., 2016; Herrema
et al., 2017; Ou et al., 2019; Tao and Sun, 2019; Shi et al., 2020; Han
et al., 2020; Du et al., 2021; Lye et al., 2021; Raul and Leifsson, 2021).
However, this advantage comes with a price. In fact, building a DDS is
both data demanding and computationally expensive (Wang and Shan,
2007; Leifsson and Koziel, 2016; Harries and Abt, 2019; Keane and
Voutchkov, 2020). For what concerns the data, in-field data requires
performing trials (Bai and Wang, 2016; Maniaci et al., 2020) (taking
months), EFD data requires model scale tests (Keuning and Katgert,
2008; Huang and Yang, 2016; Feng et al., 2018) (taking weeks), and
CFD data requires computationally expensive simulations (Coppedè
et al., 2019; Miao and Wan, 2020; Mittendorf and Papanikolaou, 2021;
Liu et al., 2022; Zhang et al., 2016; Herrema et al., 2017; Ou et al.,
2019; Tao and Sun, 2019; Shi et al., 2020; Han et al., 2020; Du
et al., 2021; Lye et al., 2021; Raul and Leifsson, 2021) (taking days).
Moreover, building a DDS based on this data requires computationally
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intensive procedures, the so-called training phase, which comes with
its own computational burden (taking hours) even if this burden is
negligible with respect to the one needed to generate or collect the
data (Yan et al., 2019). The key advantage of the DDS is that once it is
constructed, the forward phase time is negligible (milliseconds or less),
enabling its use with any state-of-the-art numerical optimizer (Ruder,
2016; Poli et al., 2007; Vikhar, 2016). For this reason, in Step (2), a
few specific and representative shapes are sampled, based on human
experience or through more complex strategies (Antony, 2014; Ander-
son and Whitcomb, 2016), from the design space and fed into the CFD
to produce the related data, which is added to possibly already existing
data (e.g., in-field or EFD data). This step aims to build a representative
dataset of examples to train the DDS (Coppedè et al., 2019; Miao and
Wan, 2020; Mittendorf and Papanikolaou, 2021; Liu et al., 2022; Zhang
et al., 2016; Herrema et al., 2017; Ou et al., 2019; Tao and Sun, 2019;
Shi et al., 2020; Han et al., 2020; Du et al., 2021; Lye et al., 2021; Raul
and Leifsson, 2021). The more representative the input/output relation
dataset is, the less data is needed for the DDS (Shalev-Shwartz and Ben-
David, 2014). Consequently, there are both theoretical and practical
reasons to pay appropriate attention at this stage. Theoretically, the
database contains the phenomenon we want to learn, and careful
consideration regarding the geometry sampling and KPIs estimation
is required to capture the desired behavior. Building a representative
dataset with a smart sampling strategy is an important and challenging
problem per se (Antony, 2014; Anderson and Whitcomb, 2016) and in
this survey, we will review the most exploited strategies in the context
of hulls and airfoils shape optimization leveraging CFD DDS models (see
Section 3.2). Practically, an extensive CFD campaign is often required
to build the database, which demands a significant amount of time and
computational resources (Coppedè et al., 2019; Miao and Wan, 2020;
Mittendorf and Papanikolaou, 2021; Liu et al., 2022; Zhang et al., 2016;
Herrema et al., 2017; Ou et al., 2019; Tao and Sun, 2019; Shi et al.,
2020; Han et al., 2020; Du et al., 2021; Lye et al., 2021; Raul and
Leifsson, 2021). In an ideal world we would rely on already available
data (e.g., historical experimental campaigns or simulation) for the
dataset to circumvent this challenge. However, at present, this is not
always possible due to the lack of historical data and the reliance on
very specific parametrizations and parameter ranges that are unique
to their particular investigation (Coppedè et al., 2019; Miao and Wan,
2020; Feng et al., 2018; Guerrero et al., 2018; Liu et al., 2022).

In Step (3), we leverage the outputs of Step (1) and Step (2) to
automatically search for optimal candidate geometries. For this rea-
son, we are mainly concerned with two connected problems: (i) the
formulation of the objective function we want to optimize and (ii)
the formulation of the constraints we will apply to the objective. In
the context of shape optimization of hulls and airfoils, the objective
function is a multi-objective one composed of all the KPIs we want
to optimize. Some of these KPIs will be simple functions of the shape
geometry parameters (e.g., the volume of a hull), while others can be
more complex functions needing a CFD DDS (e.g., the airfoil’s drag
and lift coefficients). The constraints, instead, are derived from the
domain knowledge and represent the fact that not all the parameter
space, defined at Step (1), correspond to a feasible shape (e.g., due to
cost considerations Wang et al., 2015, performance constraints Coppedè
et al., 2019; Miao and Wan, 2020; Mittendorf and Papanikolaou, 2021;
Liu et al., 2022; Zhang et al., 2016; Herrema et al., 2017; Ou et al.,
2019; Tao and Sun, 2019; Shi et al., 2020; Han et al., 2020; Du et al.,
2021; Lye et al., 2021; Raul and Leifsson, 2021, manufacturing con-
straints International Maritime Organization (IMO), 2022, or regulatory
constraints International Maritime Organization (IMO), 2023).

It is worth mentioning that formulating the constraints may also
require the computation of complex quantities via a CFD DDS. To
deal with the multi-objective nature of the problem, the most common
approach is to replace the multiple objectives with a weighted sum
of the different objectives (Emmerich and Deutz, 2018) but also other

approaches exist (Deb, 2001; Emmerich and Deutz, 2018; Wang and
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Shan, 2007; Forrester and Keane, 2009; Ang et al., 2015; Leifsson and
Koziel, 2016; Koziel and Leifsson, 2016; Vu et al., 2017; Kim and
Boukouvala, 2020; Jiang et al., 2020; Burachik et al., 2022). In this
way, the problem becomes a constrained single-objective optimization
problem that can be solved with state-of-the-art optimizer (McCall,
2005; Poli et al., 2007; Vikhar, 2016; Ruder, 2016; Kochenderfer
and Wheeler, 2022; Swarnkar and Swarnkar, 2020; Burachik et al.,
2022). Note that, nowadays, optimizers can also be empowered with
AI-based techniques (Swarnkar and Swarnkar, 2020), which allows
them to reduce their computational requirements or improve their
effectiveness in finding good solutions. Nevertheless, given the multi-
objective nature of the original problem, it is required to create the
so-called Pareto frontier allowing to find the set of all Pareto efficient
solutions (Emmerich and Deutz, 2018; Burachik et al., 2022), namely
all the solutions for which is not possible to find more than one objec-
tive better than the one of the solutions itself. To tackle this problem,
usually, multiple single-objective optimization problems need to be
solved (e.g. single-objective problems resulting from the weighted sum
of the different objectives of the original multi-objective problem with
different configurations of the weights Emmerich and Deutz, 2018)
resulting in additional computational overhead (Coppedè et al., 2019;
Miao and Wan, 2020; Mittendorf and Papanikolaou, 2021; Liu et al.,
2022; Zhang et al., 2016; Herrema et al., 2017; Ou et al., 2019; Tao
and Sun, 2019; Shi et al., 2020; Han et al., 2020; Du et al., 2021; Lye
et al., 2021; Raul and Leifsson, 2021).

The last step, the Step (4), is probably the most important one not
just because it takes the output of all the previous steps to produce a
candidate shape but because it also provides feedback and refinements
for previous steps able to empower them (Koziel and Leifsson, 2016;
Forrester and Keane, 2009). In fact, by exploiting shape design pref-
erences from experienced designers’ expertise, it is possible to choose
some candidate shapes on the Pareto front, potentially exhibiting the
best trade-off between the KPIs for the specific application. This choice
obviously does not conclude the design process. In fact, these new shape
designs (i) must be physically plausible (e.g., it is actually possible
to manufacture them and it is cost-effective) and (ii) must actually
provide the required performance. This can be verified with different
levels of accuracy (Koziel and Leifsson, 2013; Huang and Yang, 2016;
Feng et al., 2018). In the first level, high-fidelity CFD are used since
they can surely be exploited to study a few candidate shapes (Coppedè
et al., 2019; Miao and Wan, 2020; Mittendorf and Papanikolaou, 2021;
Liu et al., 2022; Zhang et al., 2016; Herrema et al., 2017; Ou et al.,
2019; Tao and Sun, 2019; Shi et al., 2020; Han et al., 2020; Du
et al., 2021; Lye et al., 2021; Raul and Leifsson, 2021). Then a model
scale test can be performed to confirm the CFD (Huang and Yang,
2016; Feng et al., 2018). Finally, a field trial will be performed to
confirm the results of model scale and CFD results (Min and Kang,
2010; Strasser et al., 2015). If, during this verification, inconsistencies
are encountered, or the candidate shape does not exhibit satisfactory
performances, these results are used as feedback to modify and improve
the previous steps (e.g., modifying the parameter ranges in Step (1),
improving the DDS accuracy by including more data in Step (2), or
improving the definition of the constraints in Step (3)). Then, the
procedure is repeated until a satisfactory design is obtained (Koziel and
Leifsson, 2016; Forrester and Keane, 2009).

In this review, it is not possible to consider all the publications in
this vibrant field of research due to the large volume of works. Hence,
we defined a criteria, taking inspiration from Snyder (2019), to narrow
down the top publications according to

• problem category: we focus primarily on shape optimization of
hulls and airfoils but, at times, may also include some adjacent
shapes;

• publication date: we focus on works published after the year 2015;
• publication quartile: we favor publications in the first quartile
(and in some specific cases also the second one) of journals;
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Fig. 2. Graphical table of contents.
• number of citations: we favor journals that have averaged at least
three or more citations per year since publication.

Subsequently, we performed a critical review of the narrowed literature
accompanied by informative summary tables.

The rest of the review is organized as follows (see Fig. 2). Section 2
contains the problem formalization which is necessary to understand
the survey. Section 3 presents the analytical review on shape optimiza-
tion of hulls and airfoils leveraging CFD DDS models following the
four-step approach of Fig. 1. Section 4 discusses the open problems and
future perspectives of this vibrant field of research. Finally, Section 5
concludes the review.

2. Problem formalization

The goal of shape optimization of hulls and airfoils is to find the
optimal shape 𝛺∗ in a set of possible ones , where  are all the
possible candidate geometries that we can explore given, e.g., cost
constraints, performance constraints, manufacturing constraints, or reg-
ulatory constraints. The optimality principle is guided by one or more
KPIs depending on the specific application, e.g., the drag of a hull (Cam-
pana et al., 2006; Tahara et al., 2006; Kostas et al., 2015; Huang and
Yang, 2016; Cheng et al., 2018; Coppedè et al., 2019; Miao and Wan,
2020; Wang et al., 2020; D’Agostino et al., 2020; Zhang et al., 2021b;
Mittendorf and Papanikolaou, 2021; Liu et al., 2022) or the lift and
drag of an airfoil (Koziel and Leifsson, 2013; Massaro and Benini, 2015;
Zhang et al., 2016; Herrema et al., 2017; Ou et al., 2019; He et al.,
2019; Tao and Sun, 2019; Shi et al., 2020; Han et al., 2020; Du et al.,
2021; Lye et al., 2021; Raul and Leifsson, 2021; García-Gutiérrez et al.,
2022). We then define, in Step (1), 𝑘 KPIs as functions of a particular
shape as follows

𝙹𝑖(𝛺) ∶  → R, 𝑖 ∈ {1,… , 𝑘}, 𝛺 ∈ , (1)

and consequently, our final goal to optimize shape of hulls or airfoils,
can be formalized as follows

min
𝛺∈

𝙹1(𝛺),… , 𝙹𝑘(𝛺). (2)

Note that, 𝛺 is the actual 3D (or in some cases 2D) geometry, which,
although technically possible (Kara and Shimada, 2006), is hard to
5 
handle/modify directly through human intervention because there is
a vast amount of possible modifications that can be made and it is
preferable to structure the modifications with a method that is logical,
consistent, and repeatable (Coppedè et al., 2019; Miao and Wan, 2020;
Mittendorf and Papanikolaou, 2021; Liu et al., 2022; Zhang et al., 2016;
Herrema et al., 2017; Ou et al., 2019; Tao and Sun, 2019; Shi et al.,
2020; Han et al., 2020; Du et al., 2021; Lye et al., 2021; Raul and
Leifsson, 2021).

For this reason, in Step (1) a particular parent shape 𝛺𝑝 is taken
as reference geometry and then 𝛺 ∈  are parametrized so that a
modification vector 𝒙 ∈ R𝑑 can be applied to 𝛺𝑝 according to a rule 𝚁 to
generate 𝛺 ∈  (Massaro and Benini, 2015; Zhang et al., 2016; Huang
and Yang, 2016; Herrema et al., 2017; Bonfiglio et al., 2018; Coppedè
et al., 2019; Ou et al., 2019; Tao and Sun, 2019; Shi et al., 2020; Han
et al., 2020; Du et al., 2021; Lye et al., 2021; Raul and Leifsson, 2021;
Liu et al., 2022). Note that this leads to an approximation since

• 𝚁 may not be able to generate all 𝛺 ∈  with 𝒙 ∈ R𝑑 (Massaro
and Benini, 2015; Huang and Yang, 2016; Coppedè et al., 2019;
Mittendorf and Papanikolaou, 2021);

• some 𝒙 ∈ R𝑑 applied to the rule 𝚁 may generate 𝛺 ∉ 
(D’Agostino et al., 2020; Massaro and Benini, 2015; Zhang et al.,
2016; Huang and Yang, 2016; Herrema et al., 2017; Bonfiglio
et al., 2018; Coppedè et al., 2019; Ou et al., 2019; Tao and Sun,
2019; Shi et al., 2020; Han et al., 2020; Du et al., 2021; Lye et al.,
2021; Raul and Leifsson, 2021; Liu et al., 2022).

For the first problem, the trade-off between exploring more 𝛺 ∈ 
and increasing the dimensionality of the parametrization, namely 𝑑,
is determined by domain experts (Massaro and Benini, 2015; Huang
and Yang, 2016; Coppedè et al., 2019; Mittendorf and Papanikolaou,
2021). For the second problem, some specific 𝒙 ∈ R𝑑 may lead to
𝛺 ∉  (D’Agostino et al., 2020), so we always have to check for
this consistency by adding constraints to 𝒙 ∈ R𝑑 (Massaro and Benini,
2015; Zhang et al., 2016; Huang and Yang, 2016; Herrema et al., 2017;
Bonfiglio et al., 2018; Coppedè et al., 2019; Ou et al., 2019; Tao and
Sun, 2019; Shi et al., 2020; Han et al., 2020; Du et al., 2021; Lye et al.,
2021; Raul and Leifsson, 2021; Liu et al., 2022).

The modification vector 𝒙 handles the modifications to 𝛺𝑝 easily,
retrieving a particular 𝛺 ∈ . So 𝒙 is just instrumental. The ele-
ments in 𝒙 must be independent because we must be able to change
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every element independently from the others, i.e., two dependent
elements would result in a (𝑑 − 1)-dimensional modification vector.
In order to define 𝚁, a number of approaches exist in the literature,
the two most common being boundary (Gain and Bechmann, 2008)
and domain-based parametrizations (Sederberg and Parry, 1986). For
the former, in its most naive form, 𝚁 ∶  × R𝑑 →  can corre-
spond to the displacement of coordinates on the surface of the shape.
Whereas, a domain-based parametrization considers a control volume
around the shape and the rule corresponds to the displacement of
control points for a deformation-based, e.g., a Free-Form Deforma-
tion (FFD) parametrization (Sederberg and Parry, 1986). However,
regardless of the implementation, the rule 𝛺 = 𝚁(𝛺𝑝,𝒙) must be
homomorphic (Wang et al., 2022a) and maps a parent shape 𝛺𝑝 ∈ 
into another one 𝛺 ∈  based on 𝒙 ∈ R𝑑 . For what concerns the
homomorphism of 𝚁, what we require is a bijective homomorphism,
namely

∃𝚁−1 ∶ 𝚁−1(𝚁(𝛺,𝒙),𝒙) = 𝛺,∀𝒙 ∈ R𝑑 , 𝛺 ∈ , (3)

or, in other words, a particular 𝒙 ∈ R𝑑 corresponds to one and only one
modification of 𝛺 ∈  and vice-versa. Consequently, Problem (2) can
be reformulated subject to (s.t.) the described constraints as follows

min
𝒙∈R𝑑

𝙹1(𝛺),… , 𝙹𝑘(𝛺), (4)

s.t.: 𝛺 = 𝚁(𝛺𝑝,𝒙), 𝛺 ∈ .

Problem (4) remains mathematically and numerically challenging
due to the complex relationships between the 3D (or 2D) geometries
and the specific KPIs of interest (Koziel and Leifsson, 2016; Forrester
and Keane, 2009). For this reason, in Step (1), we need to make some
further reformulations and approximations to the problem at hand. For
the multi-objectives of Problem (4), namely 𝙹𝑖(𝛺) with 𝑖 ∈ {1,… , 𝑘}, re-
earchers formulate with different approaches (e.g., High/Low-fidelity
FD (Koziel and Leifsson, 2013)) a more or less accurate estimation
f 𝙹𝚁𝑖 (𝒙) given 𝒙 (which varies during optimization) and 𝚁 (which is
ixed) (Massaro and Benini, 2015; Zhang et al., 2016; Huang and Yang,
016; Herrema et al., 2017; Bonfiglio et al., 2018; Coppedè et al., 2019;
u et al., 2019; Tao and Sun, 2019; Miao and Wan, 2020; Shi et al.,
020; Han et al., 2020; Du et al., 2021; Lye et al., 2021; Raul and Leif-
son, 2021; Mittendorf and Papanikolaou, 2021; Liu et al., 2022). For
he constraints, namely 𝛺 ∈  with 𝛺 = 𝚁(𝛺𝑝,𝒙), researchers translate
hem into simple box constraints on 𝒙 when possible, i.e., 𝒍 ≤ 𝒙 ≤ 𝒖
here 𝒍, 𝒖 ∈ R𝑑 and 𝒍 ≤ 𝒖 (Massaro and Benini, 2015; Ou et al., 2019;
oppedè et al., 2019; Tao and Sun, 2019; Han et al., 2020; Lye et al.,
021; Mittendorf and Papanikolaou, 2021; Raul and Leifsson, 2021; Liu
t al., 2022). When this simplification is not possible (e.g., we need to
ave constraints on physical properties of 𝛺) researchers translate these
onstraints into 𝑐𝙴 equality and/or 𝑐𝙸 inequality constraints over more
r less accurate functions of 𝒙 that approximate the desired properties,
amely 𝙸𝚁𝑖 (𝒙) with 𝑖 ∈ {1,… , 𝑐𝙸} and 𝙴𝚁

𝚒
(𝒙) with 𝑖 ∈ {1,… , 𝑐𝙴} (Massaro

nd Benini, 2015; Huang and Yang, 2016; Bonfiglio et al., 2018; Tao
nd Sun, 2019; Miao and Wan, 2020; Han et al., 2020; Mittendorf
nd Papanikolaou, 2021; Raul and Leifsson, 2021). As a consequence
roblem (4) is reformulated as follows

min
∈R𝑑

𝙹𝚁1(𝒙),… , 𝙹𝚁𝑘(𝒙), (5)

s.t.: 𝙸𝚁𝑖 (𝒙) ≤ 0, 𝑖 ∈ {1,… , 𝑐𝙸},

𝙴𝚁𝑖 (𝒙) = 0, 𝑖 ∈ {1,… , 𝑐𝙴},

𝒍 ≤ 𝒙 ≤ 𝒖.

Problem (5) usually raises computational challenges since, in order
o compute some of the 𝙹𝚁𝑖 (𝒙) with 𝑖 ∈ {1,… , 𝑘}, 𝙸𝚁𝑖 (𝒙) with 𝑖 ∈
1,… , 𝑐𝙸}, and 𝙴𝚁

𝚒
(𝒙) with 𝑖 ∈ {1,… , 𝑐𝙴}, the computational require-

ents may be prohibitive (Harries and Abt, 2019) (e.g., when using
igh-fidelity CFD Koziel and Leifsson, 2013). In fact, these functions of-

en approximate the physical properties and phenomena of 𝛺 and while
6 
n some case an accurate enough estimation can be found with Low-
idelity CFD (Kostas et al., 2015) (which require a comparatively low
omputational effort), in other cases, High-fidelity CFD are mandatory
o reach a desirable level of accuracy (Martineau et al., 2006).

To address this problem, in Step (2), researchers propose to use
DSs. DDSs focus on approximating a complex and computationally
xpensive function with another function that is computationally ex-
ensive to construct but computationally inexpensive to evaluate and
s well suited to replace the ones in Problem (5) (Massaro and Benini,
015; Zhang et al., 2016; Huang and Yang, 2016; Herrema et al., 2017;
onfiglio et al., 2018; Coppedè et al., 2019; Ou et al., 2019; Tao and
un, 2019; Miao and Wan, 2020; Shi et al., 2020; Han et al., 2020; Du
t al., 2021; Lye et al., 2021; Raul and Leifsson, 2021; Mittendorf and
apanikolaou, 2021; Liu et al., 2022). In particular, given a complex
nd computationally expensive relation 𝜇 ∶ R𝑑 → R, in our case one
lement in the subset of {𝙹𝚁1(𝒙), ⋯, 𝙹𝚁𝑘(𝒙), 𝙸𝚁1(𝒙), ⋯, 𝙸𝚁

𝑐𝙸
(𝒙), 𝙴𝚁1(𝒙), ⋯,

𝚁

𝑐𝙴
(𝒙)} that are computationally expensive to evaluate, and a series

f 𝑛 samples, namely a dataset, of the input–output relation 𝑛 =
(𝒙1, 𝑦1),… , (𝒙𝑛, 𝑦𝑛)} where 𝑦𝑖 = 𝜇(𝒙𝑖) with 𝑖 ∈ {1,… , 𝑛} we are able
o generate a model 𝑓 (𝒙) which is computationally expensive to build
ince

• building this model from 𝑛 using ML is computationally expen-
sive (Ray, 2019);

• retrieving 𝑛 via CFD or EFD may be hard and is for sure compu-
tationally expensive (Campana et al., 2006; Vinuesa and Brunton,
2022). In fact, EFD suitable for the particular design may not
be available due to its prohibitive cost (Pena and Huang, 2021;
Casalone et al., 2020). If instead we generate data via CFD,
sampling a representative set of geometries is already a challenge
per se, and then evaluating the performance of each geometry
may take months due to the computational complexity of the CFD
simulations (Casalone et al., 2020);

ut computationally inexpensive to estimate since, for the vast ma-
ority of ML algorithms, estimating 𝑓 (𝒙) takes fractions of millisec-
nds (Coraddu et al., 2020).

Upon initial observation, one might question the logic behind this
pproach. In fact, in order to create the DDS we are spending a
ignificant amount of computational power in both creating 𝑛 with
FD simulations and 𝑓 (𝒙) based on 𝑛. It is easy to assume that this
omputational power can instead be used to solve Problem (5) directly,
everaging CFD simulations to estimate the complex relationships. This
ssumption is incorrect. In fact, when solving Problem (5) even using
tate-of-the-art optimizers, it is not uncommon to explore hundreds of
housands, if not millions, of values for 𝒙 which may take years if we
ere to rely solely on CFD for the performance estimation (Casalone
t al., 2020). Instead, to build the DDS, only a hundreds (maximum
housands) of samples are required for 𝑛, needing only a few months of
FD simulations while building 𝑓 (𝒙) may only take weeks (Keane and
outchkov, 2020). Therefore, the computational savings are in order
f magnitude thanks to the DDS (Keane and Voutchkov, 2020; Harries
nd Abt, 2019).

The problem of building a DDS can be then divided into two main
ub-problems

• collecting/generating 𝑛;
• building the actual DDS.
Regarding the first sub-problem, collecting/generating 𝑛, it is pos-

ible to rely on already available EFD of CFD data when possible (Keane
nd Voutchkov, 2020; Fahrnholz and Caprace, 2022), but, in most
ases, data needs to be generated from scratch (Massaro and Benini,
015; Zhang et al., 2016; Huang and Yang, 2016; Herrema et al., 2017;
onfiglio et al., 2018; Coppedè et al., 2019; Ou et al., 2019; Tao and
un, 2019; Miao and Wan, 2020; Shi et al., 2020; Han et al., 2020; Du
t al., 2021; Lye et al., 2021; Raul and Leifsson, 2021; Mittendorf and
apanikolaou, 2021; Liu et al., 2022). In this case, the main problem is
o decide how to sample the space induced by the modification vector
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𝒙, which is already quite a challenge, and for which several proposals
have been developed (Antony, 2014; Anderson and Whitcomb, 2016).

Regarding the second sub-problem, building the actual DDS, it can
easily mapped into a now-classical supervised ML problem, particularly
an ML regression problem (Massaro and Benini, 2015; Zhang et al.,
2016; Huang and Yang, 2016; Herrema et al., 2017; Bonfiglio et al.,
2018; Coppedè et al., 2019; Ou et al., 2019; Tao and Sun, 2019; Miao
and Wan, 2020; Shi et al., 2020; Han et al., 2020; Du et al., 2021; Lye
et al., 2021; Raul and Leifsson, 2021; Mittendorf and Papanikolaou,
2021; Liu et al., 2022). In regression, we have an input space  ⊆ R𝑑

composed of 𝑑 features (in our case the modification vector), an output
space  ⊆ R (in our case one of the subsets of {𝙹𝚁1(𝒙), ⋯, 𝙹𝚁𝑘(𝒙),
𝙸𝚁1(𝒙), ⋯, 𝙸𝚁

𝑐𝙸
(𝒙), 𝙴𝚁1(𝒙), ⋯, 𝙴𝚁

𝑐𝙴
(𝒙)} that are computationally expensive

to evaluate), and a series of 𝑛 samples 𝑛 where 𝒙𝑖 ∈  and 𝑦𝑖 ∈ 
𝑖 ∈ {1,… , 𝑛}. The scope is to learn the input/output relation 𝜇 ∶

 →  based just on 𝑛. Generally, 𝜇 is a probabilistic relation, but
in our case, this relation is induced by, e.g., CFD models, so it is
deterministic (Coraddu et al., 2023). An ML regression algorithm 𝒜 ,
characterized by its hyperparameters , selects a model 𝑓 inside a set
of possible ones  based on the available data 𝒜 ∶ 𝑛 ×  → 𝑓 .

Various ML algorithms exist in the literature (Shalev-Shwartz and
Ben-David, 2014; Shawe-Taylor and Cristianini, 2004; Breiman, 2001;
Goodfellow et al., 2016). However, according to the no-free-lunch the-
orem (Wolpert, 2002), there is no a priori method for determining the
best ML algorithm and best hyperparameters for a specific application
for a particular problem, and the only option is to empirically test
multiple approaches verifying which is actually the best one. This
phase is referred to as model selection (Oneto, 2020). Broadly speak-
ing, there are two main families of ML algorithms: shallow and deep
models (Goodfellow et al., 2016; Shalev-Shwartz and Ben-David, 2014).
For shallow models,  is first mapped, by means of an handcrafted
feature engineering phase (Chicco et al., 2022) or by means of a more
or less elaborated procedure like the kernel trick (Shawe-Taylor and
Cristianini, 2004), into a vector 𝜙(𝑋) ∈ R𝑑 , named representation, able
to well represent  while discarding the not useful information (Oneto
et al., 2015). For deep models,  is mapped into a representation 𝜙(𝑋),
ut not with a fixed procedure, as 𝜙 is parameterized and learned
irectly from the data (Cipollini et al., 2019; Liu and Lang, 2019).
hallow models are the top-performing approaches in the case of non-
tructured (tabular) data while deep models are the top-performing
pproaches from structured (e.g., graphs and sequences) data.1 More-
ver, deep models usually require significantly more data with respect
o the shallow ones to be trained (Liu and Lang, 2019; Horwath et al.,
020).

The error of 𝑓 in approximating 𝜇 is measured by a prescribed
etric 𝑀 ∶  → R. For what concerns the 𝑀(𝑓 ) many different
etrics are available in literature (Acar, 2015; Shao et al., 2017) both

uantitative (e.g., the mean absolute error, the mean square error,
he root mean square error, the coefficient of determination, and the
ean absolute error in percentage to name a few (Acar, 2015)) and

ualitative (e.g., scatter plots of the real versus predicted metrics Shao
t al., 2017). In order to estimate the performance of the final model
ccording to the desired metrics the error estimation phase needs to be
erformed (Oneto, 2020).

Finally, in order to give some insights on what the algorithms
ctually learned from the data it is required to provide some explain-
bility properties of the learned models (Castelvecchi, 2016; Horwath
t al., 2020; Dong and Liu, 2018). For shallow models, feature ranking,
amely how much the handcrafted features actually contribute to the
rediction, is one of the most effective tools (Dong and Liu, 2018).
or deep models attention maps represent the state-of-the-art tools for
xplanations (Hicks et al., 2021; Innat et al., 2023).

1 Results from the most popular machine learning website, Kaggle (https:
/www.kaggle.com/) show this to be the case when using real-world data.
7 
At the end of Step (2) we obtain a new set of functions {�̃�𝚁1(𝒙), ⋯,
�̃�𝚁𝑘(𝒙), �̃�

𝚁

1(𝒙), ⋯, �̃�𝚁
𝑐𝙸
(𝒙), �̃�𝚁1(𝒙), ⋯, �̃�𝚁

𝑐𝙴
(𝒙)} which are the computationally

nexpensive counterparts of {𝙹𝚁1(𝒙), ⋯, 𝙹𝚁𝑘(𝒙), 𝙸𝚁1(𝒙), ⋯, 𝙸𝚁
𝑐𝙸
(𝒙), 𝙴𝚁1(𝒙),

, 𝙴𝚁
𝑐𝙴
(𝒙)} where, in some cases, we simply use the original function

if computationally inexpensive) or a surrogate (if computationally
xpensive). The result of this process is a reformulation of Problem (5)
nto the following one

min
∈R𝑑

�̃�𝚁1(𝒙),… , �̃�𝚁𝑘(𝒙), (6)

s.t.: �̃�𝚁𝑖 (𝒙) ≤ 0, 𝑖 ∈ {1,… , 𝑐𝙸},

�̃�𝚁𝑖 (𝒙) = 0, 𝑖 ∈ {1,… , 𝑐𝙴},

𝒍 ≤ 𝒙 ≤ 𝒖.

Problem (6) is now computationally tractable and many approaches
xist to tackle it (Massaro and Benini, 2015; Zhang et al., 2016; Huang
nd Yang, 2016; Herrema et al., 2017; Bonfiglio et al., 2018; Coppedè
t al., 2019; Ou et al., 2019; Tao and Sun, 2019; Miao and Wan, 2020;
hi et al., 2020; Han et al., 2020; Du et al., 2021; Lye et al., 2021;
aul and Leifsson, 2021; Mittendorf and Papanikolaou, 2021; Liu et al.,
022) and Step (3) exactly deals with this problem. The first challenge
f Problem (6) is the fact that it is characterized by multiple objectives.
o deal with this challenge, multiple approaches exist (Massaro and
enini, 2015; Ou et al., 2019; Tao and Sun, 2019; Mittendorf and
apanikolaou, 2021; Lye et al., 2021; Miao and Wan, 2020; Emmerich
nd Deutz, 2018). Nonetheless, the vast majority of them reformulate
he problem as a single objective problem as follows

min
∈R𝑑

𝑘
∑

𝑖=1
𝜆𝑖�̃�

𝚁
𝑖 (𝒙) (7)

s.t.: �̃�𝚁𝑖 (𝒙) ≤ 0, 𝑖 ∈ {1,… , 𝑐𝙸},

�̃�𝚁𝑖 (𝒙) = 0, 𝑖 ∈ {1,… , 𝑐𝙴},

𝒍 ≤ 𝒙 ≤ 𝒖.

where 𝜆𝑖 ∈ [0, 1],∀𝑖 ∈ {1,… , 𝑘} are constants such that ∑𝑘
𝑖=1 𝜆𝑖 = 1

that weights more or less a particular objective (Emmerich and Deutz,
2018). Varying 𝜆𝑖 ∀𝑖 ∈ {1,… , 𝑘} in Problem (7) it is possible to find
all the possible solutions of Problem (6) (Emmerich and Deutz, 2018).
Note that, among all of the possible solutions, just some of them are
actually meaningful: the ones on the Pareto front (Liu et al., 2021;
Massaro and Benini, 2015), obtained via the Skyline operator (Liu et al.,
2021), namely, the solutions that are not dominated by any other one
according to at least one objective of Problem (6) (Liu et al., 2021;
Massaro and Benini, 2015).

Problem (7) is now a computationally tractable single objective
constrained optimization problem, namely a standard optimization
problem to be addressed (Massaro and Benini, 2015; Zhang et al., 2016;
Huang and Yang, 2016; Herrema et al., 2017; Bonfiglio et al., 2018;
Coppedè et al., 2019; Ou et al., 2019; Tao and Sun, 2019; Miao and
Wan, 2020; Shi et al., 2020; Han et al., 2020; Du et al., 2021; Lye et al.,
2021; Raul and Leifsson, 2021; Mittendorf and Papanikolaou, 2021;
Liu et al., 2022). In general, Problem (7) is both non-linear and non-
linearly constrained (Massaro and Benini, 2015; Huang and Yang, 2016;
Bonfiglio et al., 2018; Tao and Sun, 2019; Miao and Wan, 2020; Han
et al., 2020; Mittendorf and Papanikolaou, 2021; Raul and Leifsson,
2021). To address Problem (7), many approaches exists (Ruder, 2016;
Poli et al., 2007; Vikhar, 2016) but they can be grouped in two main
families

• Problem (7) can be relaxed, either globally or in iterative local
stages, into a convex formulation. This transformation enables the
use of highly efficient algorithms designed specifically for convex
optimization. Specifically

– global convex relaxation reformulates Problem (7) into an-
other problem which tries to approximate it at best with a
single convex objective and a series of convex constraints

(Bonfiglio et al., 2018; Han et al., 2020; Lye et al., 2021;

https://www.kaggle.com/
https://www.kaggle.com/
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Raul and Leifsson, 2021). This approach is not always pos-
sible since there is an obvious trade-off between accuracy of
the approximation of Problem (7) and convexity of the as-
sociated resulting optimization problem (Liu and Lu, 2014);

– iterative local convex relaxation means that, starting from
a point the domain of Problem (7), the problem is locally
approximated with a linear or quadratic or convex objective
and with a convex domain (defined by linear or quadratic
or convex constraints). Then, the solution of this convex
problem is used as a new starting point, and the steps are
repeated until convergence to a local minima (Ruder, 2016).
To improve the quality, a multiple starting point approach
(colloquially, multi-start), is adopted (Raul and Leifsson,
2021);

• Problem (7) is directly addressed with optimizers that can di-
rectly handle non-linear and non-linearly constraint optimization
problems (Massaro and Benini, 2015; Ou et al., 2019; Coppedè
et al., 2019; Mittendorf and Papanikolaou, 2021; Liu et al.,
2022). Examples of these algorithms are the evolutionary algo-
rithms (Vikhar, 2016).

Finally, Step (4) focuses on checking the physical plausibility of
the solutions on the Pareto front of Problem (7). In particular, it is
important that these solutions do not degenerate into a physically
implausible one due to the many different approximations that stem
from Problem (2) to Problem (7) (i.e., due to parametrization in Step
(1), surrogation in Step (2) (Castelvecchi, 2016; D’Amato et al., 2022;
Kalikatzarakis et al., 2023; Coraddu et al., 2023), and optimization
in Step (3) (Huang and Yang, 2016; Bonfiglio et al., 2018; Ou et al.,
2019; Coppedè et al., 2019; Tao and Sun, 2019; Miao and Wan, 2020;
Han et al., 2020; Lye et al., 2021; Mittendorf and Papanikolaou, 2021;
Raul and Leifsson, 2021; Liu et al., 2022; Koziel and Leifsson, 2013;
Huang and Yang, 2016; Feng et al., 2018; Massaro and Benini, 2015)).
This check is usually performed in two stages.

The first stage of checks is performed during surrogation in Step
(2) (Castelvecchi, 2016; D’Amato et al., 2022; Kalikatzarakis et al.,
2023; Coraddu et al., 2023). In fact, surrogating CFD with a DDS
may lead to a loss in physical plausibility due to the fact that the
DDS can take shortcuts (Castelvecchi, 2016) hidden in the data in
order to learn the desired relation (D’Amato et al., 2022; Kalikatzarakis
et al., 2023; Coraddu et al., 2023). This is extremely counterproductive
when DDSs are exploited in optimization since these shortcuts can trick
the optimizers into solutions that are physically implausible (Coraddu
et al., 2023). Therefore, it is worthwhile to check the DDS for physical
plausibility by means of two approaches

• the first, is to challenge the DDS into solving increasingly complex
extrapolation scenarios (Walker et al., 2024; D’Amato et al., 2022;
Kalikatzarakis et al., 2023; Coraddu et al., 2023): the DDS is first
trained on a subset of data that represent particular physical con-
ditions (e.g., low cruise speed when predicting the hull resistance)
and then tested for accuracy in a different physical conditions
(e.g., high cruise speed when predicting the hull resistance). A
high accuracy in challenging extrapolation scenarios increases
the trust in the DDS and checks for hidden shortcuts in the
data (Walker et al., 2024; Kalikatzarakis et al., 2023; Coraddu
et al., 2023);

• the second one is to inspect the behavior of the DDS through ex-
plainability, that tries to open the black box (Geirhos et al., 2020)
of the DDS for an expert to check the learned relation (Moradi and
Samwald, 2021).

The second stage of checks is performed during optimization in
tep (3) (Huang and Yang, 2016; Bonfiglio et al., 2018; Ou et al.,
019; Coppedè et al., 2019; Tao and Sun, 2019; Miao and Wan, 2020;
an et al., 2020; Lye et al., 2021; Mittendorf and Papanikolaou, 2021;
aul and Leifsson, 2021; Liu et al., 2022; Koziel and Leifsson, 2013;
uang and Yang, 2016; Feng et al., 2018; Massaro and Benini, 2015).

n particular, given the solution of the Pareto front, they are checked
8 
for physical plausibility and quality by a series of increasingly complex,
time consuming, and costly procedures (Koziel and Leifsson, 2013;
Huang and Yang, 2016; Feng et al., 2018; Massaro and Benini, 2015;
Bonfiglio et al., 2018; Ou et al., 2019; Coppedè et al., 2019; Tao and
Sun, 2019; Miao and Wan, 2020; Han et al., 2020; Lye et al., 2021;
Mittendorf and Papanikolaou, 2021; Raul and Leifsson, 2021; Liu et al.,
2022). The first one is a check by a human expert who searched for
implausible or non-manufacturable features of the geometry (Huang
and Yang, 2016; Bonfiglio et al., 2018; Ou et al., 2019; Coppedè et al.,
2019; Tao and Sun, 2019; Miao and Wan, 2020; Han et al., 2020; Lye
et al., 2021; Mittendorf and Papanikolaou, 2021; Raul and Leifsson,
2021; Liu et al., 2022). This step is crucial since it allows both to
verify the quality of the pipeline and gives insights to experts on
ideas for geometries that can be reused in other projects. Then, once
this step is passed, the geometries are verified to have the desired
performance via CFD (Huang and Yang, 2016; Bonfiglio et al., 2018;
Ou et al., 2019; Coppedè et al., 2019; Tao and Sun, 2019; Miao and
Wan, 2020; Han et al., 2020; Lye et al., 2021; Mittendorf and Pa-
panikolaou, 2021; Raul and Leifsson, 2021; Liu et al., 2022). This check
actually gives insights on both parametrization in Step (1)(e.g., the
ranges were too tight/loose or the parametrization too rough/detailed),
surrogation in Step (2) (e.g., some degenerate solution or inaccuracy
of the DDS are discovered), and optimization in Step (3) (e.g., some
approximations during optimization were too imprecise). If the CFD
checks are passed, EFD are checked (Keuning and Katgert, 2008; Huang
and Yang, 2016; Feng et al., 2018). If also EFD checks are passed, sea
trials are performed (Bai and Wang, 2016; Maniaci et al., 2020). At
each one of these checks, significant human intervention is required to
discover issues, criticalities, and provide feedback to the previous step
for improvements (Koziel and Leifsson, 2013; Huang and Yang, 2016;
Feng et al., 2018; Massaro and Benini, 2015; Bonfiglio et al., 2018; Ou
et al., 2019; Coppedè et al., 2019; Tao and Sun, 2019; Miao and Wan,
2020; Han et al., 2020; Lye et al., 2021; Mittendorf and Papanikolaou,
2021; Raul and Leifsson, 2021; Liu et al., 2022; Keuning and Katgert,
2008; Bai and Wang, 2016; Maniaci et al., 2020).

3. Literature review

This section will report the actual review of the current literature
on the four main steps described in Section 2, summarized in the
graphical abstract reported in Fig. 1, and structured as depicted in
Fig. 2. Specifically, Section 3.1 reviews Step (1), Section 3.2 reviews
Step (2), Section 3.3 reviews Step (3), and Section 3.4 reviews Step
(4).

3.1. Step (1) Shape parametrization, parameter ranges, and KPIs definition

As previously described, Step (1) mainly deals with three aspects:
parametrization, parameters ranges, and KPIs definition that will be
reviewed in Sections 3.1.1, 3.1.2, and 3.1.3 respectively. Section 3.1.4
will summarize the main work in the literature according to the most
critical aspects identified during the review of the three main aspects
related to Step (1).

3.1.1. Parametrization
Parametrization deals with translating the modification of a par-

ticular parent geometry (e.g., a hull or airfoil) into a numerical rep-
resentation through a modification vector. The dimensionality of the
modification vector, in coordination with the parameter ranges, defines
the shape design space.

In general, it is possible to find two dominant approaches to
parametrization in the literature

• Boundary-based parametrization: concerns parametrizing the
boundary of the shape based on splines or physical attributes

(e.g., length, breadth, depth, etc.) to drive the design;
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Fig. 3. Boundary and domain-based parametrizations.
• Deformation-based parametrization: concerns parametrizing the
domain surrounding a parent geometry and uses non-physical
descriptors to describe modifications from the parent shape (e.g.,
Free-Form Deformation).

Both of these approaches are demonstrated in Fig. 3.

Boundary-based parametrizations. Boundary-based parametrizations ex-
ist in many forms in the literature. Every parametrization is specific to
the considered shape.

For airfoils, it is possible to parametrize a geometry with the
Class/Shape function Transformation (CST) approach (Kulfan, 2008)
demonstrated in Han et al. (2020). Similarly, the Hicks-Henne ap-
proach (Masters et al., 2017; Lye et al., 2021) enables the parametriza-
tion of an airfoil with 2÷25 design variables. Whereas the PARSEC-11
approach (Sobieczky, 1999) (leveraged in Raul and Leifsson (2021))
describes an airfoil with 11 parameters (shown in Fig. 3(a)) by defining:
the leading edge radius (𝑟𝑙𝑒), the upper and lower curvature (𝑍𝑋𝑋𝑢𝑝
and 𝑍𝑋𝑋𝑙𝑜 respectively), the coordinates of the lowest point on the 𝑋𝑍
plane (𝑋𝑙𝑜, 𝑍𝑙𝑜), the coordinates of the highest point on the 𝑋𝑍 plane
(𝑋𝑢𝑝, 𝑍𝑢𝑝), the wedge angle (𝛽𝑇𝐸), the trailing edge angle (𝛼𝑇𝐸), the
height of the trailing edge (𝑍𝑇𝐸), and finally, the trailing edge thickness
(𝛥𝑍𝑇𝐸).

The most dominant boundary parametrizations for hulls and air-
foils are curves or parametric models, or a combination of both.
Parametrizations based on curves (Zhang and Zhang, 2015; Luo and
Lan, 2017; Wan et al., 2022; Walker et al., 2024), for example, Bezier
curves (Derksen and Rogalsky, 2010) and Non-Uniform Rational B-
Spline (NURBS) (Shamsuddin et al., 2006; Zhang et al., 2021a), develop
a relationship between the design parameters and the feature curves
that define the geometry (either through control points or another
functional relationship). It is worth mentioning that shape parametriza-
tions based on this approach can lead to high dimensional parameter
representations for complex geometries, and while there is a clear
benefit to increasing the size of the shape design space, the resulting
parametrization requires larger computational efforts with regard to
the construction of a dataset and the optimization (see Sections 3.2
9 
and 3.3). For this reason, the number of free parameters following this
approach is usually reduced to around 6÷14 in the referenced works,
and the performance of the DDS models is between ∼ 2÷4% (Zhang
and Zhang, 2015; Luo and Lan, 2017; Zhang et al., 2021a). However,
preserving physical relevance in the parametrization scheme allows the
geometries to be easily reconstructed from their parametric represen-
tations and the importance of each parameter remains intuitive (Zhang
and Zhang, 2015; Peri, 2016; Luo and Lan, 2017; Luo et al., 2021).
Maintaining the physicality of the parameters has a key advantage for
reconstructing the geometry and preserving the knowledge obtained
through shape optimization. Additionally, when the physical attributes
of the model are used in the parametrization, it becomes easier for
the human-machine interaction and to interpret the results of the
optimization. The referenced works (Huang and Yang, 2016; Moore
et al., 2016) include using physical attributes in the parametrization
and found performance increases of ∼ 2÷9%.

Domain-based parametrizations. Domain-based parametrizations (Gain
and Bechmann, 2008) involves the definition of Control Volumes (CVs)
on the geometry and can be placed on local areas of interest (i.e., the
bulbous bow of a vessel hull (Zhang et al., 2017; Guerrero et al.,
2018)), globally (i.e., covering the entire geometry), or in multiple
parts to investigate a shape design space that covers global and local
influences (Miao and Wan, 2020). Fig. 3(b) shows a hull with CVs
defined over both global and local regions.

FFD (Sederberg and Parry, 1986) is a popular and effective choice
for domain-based parametrizations as demonstrated in a number of
studies (Zhang et al., 2017; Guerrero et al., 2018; Zhang et al., 2021b;
Demo et al., 2018; Miao and Wan, 2020; Coppedè et al., 2019; Wang
et al., 2020; Hu et al., 2022). During this approach, a CV is defined
on a parent shape, which is characterized by a number of control
points, and the shape modification rule is directly related to the dis-
placement of one or more control points. Often control points will
be grouped together in the CV using a simple function (e.g., linear,
quadratic) (Demo et al., 2018) to displace a group of control points
according to a single parameter. This grouping of control points reduces
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both the dimensionality of the parametrization and the likelihood of
inducing physically implausible designs.

In general, the referenced works were able to exploit deformation
methods to optimize complex shapes based on the specified KPIs,
and achieve performance improvements ranging from approximately ∼
2÷12%. However, the key drawback of this approach is the relation be-
tween deformation parameters and their physical meaning to the origi-
nal shape. Consequently, without careful tuning of the parametrization
scheme through human intervention, there is a tendency for domain-
based parametrizations to induce physically implausible designs which
is often dealt with by imposing strict constraints on the design space
(i.e., making very small modifications (Huang and Yang, 2016; Miao
and Wan, 2020; Hu et al., 2022)) or via constraints based on a physical
property of the shape (Huang and Yang, 2016; Miao and Wan, 2020).
Furthermore, each parametrization scheme is unique to the parent
shape and the specific domain. Consequently, it is not possible to
generalize the findings from a deformation-based optimization into
physically meaningful information that can be used in other shape
optimization tasks.

3.1.2. Ranges
The parametrization used in shape optimization must meet sev-

eral, sometimes conflicting, requirements. For instance, it should be
sufficiently informative to predict geometry KPIs, be homomorphic,
and avoid containing redundant information. The parameter ranges (in
coordination with the parametrization dimensionality) define the shape
design space around the parent design that the optimizer can explore to
find the best candidate. Making the ranges suitably large is important
to ensure an optimal candidate in the shape design space. However, too
large ranges combined with too many features in the parametrization
can suffer from the curse of dimensionality (Altman and Krzywinski,
2018) and prevent the optimizer from finding the best design in an
adequate time.

For what concerns the ranges in the referenced works, exploring
airfoil designs in 2-dimensions makes this task simple: as the parameter
ranges are bound within the 𝑋𝑍 plane, the design space is bound
within the interval [0, 1] along both axes (i.e., [0, 1] × [0, 1]) (Tao and
Sun, 2019).

For hulls, the ranges are more complex because the shapes are
modeled in 3 dimensions instead of 2, and constrained more rigorously
to reduce the likelihood of inducing infeasible designs (see Section 3.3).
Additionally, because it is easy to induce infeasible designs, the param-
eters ranges are kept deliberately small in practice. This restricts the
admissible space around a known feasible design and reduces the like-
lihood of the DDS inducing the optimizer into physically implausible
candidate shapes.

3.1.3. KPIs
In most cases where the shape optimization aimed to minimize

the energy requirements, the KPIs were obtained directly from the
CFD model (Bonfiglio et al., 2018; Coppedè et al., 2019; Huang and
Yang, 2016; Han et al., 2020; Mittendorf and Papanikolaou, 2021)
(i.e., lift, drag, or both) or through coefficients derived from the output
of the CFD model such as the Coefficients of lift and drag (𝐶𝐿 and
𝐷 respectively) (Massaro and Benini, 2015; Ou et al., 2019; Raul and
eifsson, 2021; Lye et al., 2021; Tao and Sun, 2019). Other KPIs were
lso demonstrated for investigations for priorities outwith minimizing
he energy requirements. The heat flux (𝑄) was minimized on the jet
hermal protection system (Ou et al., 2019) to improve safety and
erformance. The stall angle of an airfoil was maximized in Raul and
eifsson (2021) to improve performance. The coefficient of discharge

𝐶𝐷𝐶 ) was optimized for the exhaust nozzle. g

10 
It is also worth mentioning that KPIs are often solved for different
operating conditions, e.g., velocity (Miao and Wan, 2020), Mach num-
ber2 (Ma) (Tao and Sun, 2019), or Froude Number3 (Fr) (Huang and
Yang, 2016; Coppedè et al., 2019) according to the design requirements
of the specific application.

3.1.4. Summary
Based on the review performed in Sections 3.1.1, 3.1.2, and 3.1.3

we reported in Table 1 the most important works which deal with Step
(1) considering the main different critical and fundamental aspect that
raised during the review process

• Parent Geometry: the shape subject that has been optimized;
• Param.: the parametrization method leveraged;
• Param. Dim.: the dimensionality of the parametrization;
• Rule: the implementation of the parametrization;
• Ranges: the size of the shape design space;
• KPIs: the KPIs that that works decided to optimize.
Summarizing Table 1, the critical aspect of Step (1) is to create a

suitably large shape design space (in terms of dimensionality of the
parametrization and the parameter ranges) so that an optimal design
exists while ensuring the relationship between the parameters and KPIs
can be easily captured in the ensuing steps. It is worth mentioning that
while the shape design space is unique for each of the investigations,
it is still meaningful to look at the state-of-the-art approaches to con-
structing the shape space for each parent geometry. For air/hydrofoils
the referenced works usually relied on parametrizations with a dimen-
sionality of 5÷17 (Ou et al., 2019; Bonfiglio et al., 2018), while for hulls
there were usually 5÷7 (Coppedè et al., 2019) parameters.

3.2. Step (2) Sampling, data generation, and DDS construction

Step (2) deals with three aspects: sampling techniques for the can-
didate geometries (Section 3.2.1), data generation with CFD (Sec-
tion 3.2.2), and CFD DDS (Section 3.2.3) for the accurate estimation
of the desired KPIs based on the shape parameters defined in Step (1).
Section 3.2.4 will summarize the main work in the literature according
to the most critical aspects identified during the review of the three
main aspects related to Step (2).

3.2.1. Sampling techniques
In the referenced works, there are two favored approaches to sam-

pling. The first one is Latin Hypercube Sampling (LHS) (Viana, 2016;
Anderson and Whitcomb, 2016) where a multidimensional space is de-
fined either randomly or structured so that the samples are distributed
through all of the dimensions. The second one, which is the Full
Factorial (FF) Design of Experiments (DoE) (Antony, 2014), involves
constructing the full distribution of every possible factorial and then
drawing (randomly) from that space. The LHS approach have been
previously used in Bonfiglio et al. (2018), Coppedè et al. (2019), Huang
and Yang (2016), Han et al. (2020), Miao and Wan (2020), Mittendorf
and Papanikolaou (2021) and Raul and Leifsson (2021) and is over-
whelmingly the preferred choice to fill vast multidimensional design
spaces. It is also worth mentioning that Orthogonal Sampling (OS),
which extends the principles of the LHS DoE, is also demonstrated in
the literature (Ou et al., 2019). The key difference between LHS and OS
lies in the fact that OS specifically aims to uniformly distribute samples
across the dimensions of the design space, making it a more structured
approach compared to LHS and is reported to require less samples
than LHS to well-represent the design space (Ou et al., 2019). On the
other hand, the FF DoE approach is also an effective choice (Coraddu

2 The Mach Number is the ratio between the flow velocity and the speed
f sound.

3 The Froude Number is the ratio between the flow inertia and the
ravitational forces, and is proportional to the velocity.
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Table 1
Most important works which deal with Step (1) considering the shape subject that has been optimized (Parent geometry), the parametrization method leveraged (Param.), the
dimensionality of the parametrization (Param. Dim.), the implementation of the parametrization (Rule), the size of the shape design space (Ranges), and the KPIs the work decided
to optimize (KPIs).

Ref. Parent geometry Param. Param.
Dim.

Rule Ranges KPIs

Massaro and
Benini (2015)

Airfoil B-Spline 14 B-spline approach that allows
the complete description of an
airfoil using control points.

𝑥∕𝑐 ∈ [0, 1] 𝑦∕𝑐 ∈ [0, 1] 𝐶𝐿

Huang and Yang
(2016)

Hull FFD/B-spline 5÷10 FFD & B-spline functions &
539 Control points governed
by 10 parameters

Constraints on bulbous
bow (width, height, and
angle) and Section area
curves of entrance, fore,
run, and aft of vessel.

Drag

Bonfiglio et al.
(2018)

Hydrofoil B-Splines 17 4 curves for 2d sections then
scaled into 3d

Narrow bounds selected
around the original design.

Drag

Ou et al. (2019) Airfoil (thermal
protection system)

Design
parameters

5 25 RANS model simulations
according to Orthogonal test
design method DoE with 4
factors (5 levels per factor)
and operating pressure.

𝐿∕𝐷 ∈ [0.5, 1.5]
𝑑∕𝐷 ∈ [0.0625, 0.3125]
𝑃𝑅 ∈ [0.2, 0.6]
𝑟0∕𝐷 ∈ [0.016, 0.024]

𝐶𝐷&𝑄

Coppedè et al.
(2019)

Hull FFD 7 7 parameters depending on
how deformed the sections are
[0 − 1] with a design space
characterized by 107 possible
configurations.

FFD parameters were
bound within [−1, 1].

Drag

Tao and Sun
(2019)

Airfoil Design
parameters

5 Five-order CST (class/shape
function transformation) to
govern 39 design parameters.

𝑥 ∈ [0, 1] 𝑦 ∈ [−0.1, 0.2] 𝐶𝐷 at Ma =
[0.765, 0.775,
0.785, 0.795,
0.805]

Miao and Wan
(2020)

Hull FFD 5 FFD with 5 parameters
functionally linked to groups
of control points.

Geometric constrains so
maximum variation in
displacement or surface
area is 1%

Drag at Fr
= [0.2, 0.26]

Han et al.
(2020)

Airfoil Design
parameters

17 2d section of wing plotted in
𝑥∕𝑐 and 𝑦∕𝑐.

Design space was defined
by expanding coefficients
by 1.5 times and
narrowing by half.

Drag

Lye et al. (2021) Airfoil Design
parameters

7 C-grid mesh deformed using a
thin plate splines based radial
basis function interpolation
around the airfoil according to
Hicks–Henne parameters.

All parameters bound in
[0, 1].

𝐶𝐿&𝐶𝐷

Mittendorf and
Papanikolaou
(2021)

Hull Design
parameters

6 Parametric model of a
catamaran

Designs vary the length
and area of the vessel.

Drag

Raul and
Leifsson (2021)

Airfoil PARSEC-11 6 8 Parameters linked to
physical attributes and
B-Splines.

Parameters bounded to
ensure a typical shape is
retrieved.

Stall Angle

Liu et al. (2022) Hull FFD coupled
with splines

5 3 FFD parameters & 2 splines
parameters.

Ranges bound within ±15%
of ship waterline length.

Drag

Walker et al.
(2024)

Hull B-Spline
Curves

32 32 Control points to define
the B-Splines of different hull
sections.

Ranges bound within
margins determined from
real vessels.

Drag

Luo et al.
(2021)

Hull Design
parameters

5 Maximal radius, Coefficient of
minimal radius of the rear
body, parallel body length,
tail fat index, and tail
smoothing index.

Ranges bound within small
margin determined by
experimental results.

Drag

Wan et al.
(2022)

Hull Design
parameters

6 3 parameters for longitudinal,
transverse, and length ratio
dimensions of hull, and 3
parameters based on fusion
factors to apply deformations
to the initial cross-section.

Ranges bound within [0, 1]. Drag

(continued on next page)
et al., 2020). The difference between LHS/OS and FF DoE is important
because the LHS/OS involves drawing the samples from a distribution
which is a subspace of the one we use in the case of FF DoE. In fact,
no matter how many samples we draw to form the LHS/OS subspace,
this distribution is fixed, whereas we can keep re-sampling from the FF
11 
approach without drawing from a separate distribution. Beyond LHS,
OS, and FF DoE, it is worth mentioning that other sampling techniques
exist and are demonstrated in the literature. In Liu et al. (2022) authors
employ the Sobol sampling method which is a method designed to
space out samples more evenly than drawing from a purely random
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Table 1 (continued).
Ref. Parent geometry Param. Param.

Dim.
Rule Ranges KPIs

Hu et al. (2022) Airfoil FFD 10 5 FFD parameters on top and
bottom sides of airfoil.

Ranges bound within ±10%
of airfoil chord length.

Lift to Drag
ratio.

Zhang et al.
(2021a)

Underwater glider NURBS 12 Thickness factor and Rotation
angle in z-direction for 6
airfoil sections.

Ranges fixed empirically. Lift to Drag
ratio.
distribution. Additionally, in Tao and Sun (2019), authors leverage
Gibbs sampling method based on Markov Chain Monte Carlo methods.

Apart from the sampling technique, it is also worth considering
the proportion of the design space that is sampled to build the DDS.
Obviously, this problem is dependent on the task at hand and de-
pends not only on the dimensionality of the design space but also
on the sensitivity of the model to changes in the design parameters
(i.e., the complexity of the underlying phenomenon). Therefore, from
the referenced works, we can only deduce heuristics in relation to the
dimensionality of the problem and the task at hand. The best DDS
(i.e., that could approximate the output of the HF model with an error
of just a few %) have a ratio 𝜌 of

𝜌 =
number of samples

dimensionality of the parametrization (8)

of minimum 65 (Bonfiglio et al., 2018) and more typically 300÷500 (Mit-
tendorf and Papanikolaou, 2021). Furthermore, in Coppedè et al.
(2019) the authors show the effect of the number of samples on the
accuracy of the DDS. They found that when using a 𝜌 ratio of between
4÷8 the accuracy of the DDS was relatively stable. However, the DDS
accuracy was significantly improved when the 𝜌 ratio was increased to
17 which is in line with expectations.

3.2.2. Data generation with CFD
Regarding the data needed to develop the DDS we need to leverage

CFD to estimate the KPIs defined in Section 3.1.3, for each of the sam-
pled geometries defined in Section 3.2.1, based on their corresponding
parameters value defined in Section 3.1.1.

In general, there is a wide degree of fidelity can be obtained from
different CFD models. On one hand, Reynolds Averaged Navier Stokes
(RANS) (Hirsch, 2007; Andersson et al., 2011) models are usually
considered the gold standard High-Fidelity (HF) approach and can also
include unsteady/turbulent extensions, but even this method can vary
in trustworthiness (Stern et al., 2001) and fidelity (Koziel and Leifsson,
2013). On the other hand, Low-Fidelity (LF) models, e.g., boundary
methods (Hall, 1994; Choi et al., 2001), are much less accurate but
can still make useful inferences for shape optimization problems.

Aerodynamic modeling using RANS CFD was demonstrated in Han
et al. (2020), Massaro and Benini (2015), Ou et al. (2019) and Raul
and Leifsson (2021) and an LF approach (Euler methods) in Lye et al.
(2021). Hydrodynamic modeling using RANS CFD was demonstrated
in Bonfiglio et al. (2018), Coppedè et al. (2019) and Miao and Wan
(2020) and LF models, e.g., Neumann–Michell (NM) (Noblesse et al.,
2013) were applied in Miao and Wan (2020) to reduce the computa-
tional complexity of an HF CFD model, and Boundary Element Method
(BEM) (Hall, 1994; Choi et al., 2001) is also an effective choice of
model (Coraddu et al., 2020) if it is accurate enough for the problem
at hand. Additionally, a multi-fidelity approach to shape optimization
was proposed in Tao and Sun (2019) where the authors used a limited
number of HF samples (5) and 19 LF samples to fill the design space.

One of the key concerns for the CFD models regards the valida-
tion of the ground truth and, subsequently, the trustworthiness of the
data. CFD models are often validated on experimental data (Bonfiglio
et al., 2018) which is the preferred method for validating virtual
experiments (Stern et al., 2001). Additionally, there are methods for
validating mesh convergence during independent studies to improve
the reliability and trustworthiness of the CFD (Stern et al., 2001;

Martineau et al., 2006).

12 
Regarding the accuracy of CFD models for shape optimization,
the referenced works employed various methods depending on the
problem at hand. For the resistance prediction or airfoils and hull
forms, it is clear that HF RANS models are the favored tool, and the
best models out of the referenced works (i.e., those characterized by
DDS that could approximate the output of the HF model with a small
error 1÷5%) typically used the unsteady RANS CFD simulations with
turbulence (Bonfiglio et al., 2018; Miao and Wan, 2020; Mittendorf and
Papanikolaou, 2021). This is explained by the fact this model deter-
mines a more accurate representation of the underlying phenomenon
to capture the relationship between shape and performance accurately.

It is also worth mentioning that it is possible to develop the database
using both LF and HF data, as was demonstrated in a couple of
works (Liu et al., 2022; Han et al., 2020), but some careful considera-
tion is required in this case. Too little HF data leads to an LF dominant
DDS characterized by insufficient accuracy for shape optimization. Too
much HF data does not allow the LF data to play its part (Liu et al.,
2022). Although, if the correct balance between HF and LF is struck
the variable fidelity approach can outperform single fidelity (Han et al.,
2020). For this reason, and according to the current literature on the
topic, single-fidelity sampling is the preferred approach for DDS-based
shape optimization (Massaro and Benini, 2015; Huang and Yang, 2016;
Bonfiglio et al., 2018; Ou et al., 2019; Coppedè et al., 2019; Miao and
Wan, 2020; Lye et al., 2021; Mittendorf and Papanikolaou, 2021; Raul
and Leifsson, 2021; Liu et al., 2022).

3.2.3. CFD DDS
For the referenced works, the problem of building a DDS based on

the data generated as described in Section 3.2.3 can be considered
a conventional ML multi-output regression problem (Shalev-Shwartz
and Ben-David, 2014). In this context the inputs of the regression
problem are the vector of parameters that characterize the geome-
tries (Section 3.1.1) and the outputs are the desired KPIs to estimate
(Section 3.1.3).

The ML pipeline to address a multi-output regression problem con-
sists of three main parts

• data-cleaning and data normalization (Hastie et al., 2001; Clarke
et al., 2009; Ilyas and Chu, 2019; Fahrnholz and Caprace, 2022;
Guerrero et al., 2018);

• model development (Goodfellow et al., 2016; Shawe-Taylor and
Cristianini, 2004; Shalev-Shwartz and Ben-David, 2014; Massaro
and Benini, 2015; Huang and Yang, 2016; Bonfiglio et al., 2018;
Ou et al., 2019; Coppedè et al., 2019; Tao and Sun, 2019; Miao
and Wan, 2020; Han et al., 2020; Mittendorf and Papanikolaou,
2021; Raul and Leifsson, 2021; Liu et al., 2022);

• model selection and error estimation (Oneto, 2020).

In the first phase, data are, mostly manually, explored and checked for
inconsistency/outliers (Hastie et al., 2001; Clarke et al., 2009). This
phase is useful to check for errors in EFD measurements or failures in
CFD simulations (Fahrnholz and Caprace, 2022; Guerrero et al., 2018).
Subsequently, to avoid numerical issues, data is normalized.

In the second phase, a series of algorithms, shallow and/or deep,
are chosen together with the range of their hyperparameters to learn
the input–output relation (Goodfellow et al., 2016; Shawe-Taylor and
Cristianini, 2004; Shalev-Shwartz and Ben-David, 2014). In this setting,

shallow models are preferred since they are less data-hungry (Liu and
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Lang, 2019; Horwath et al., 2020) and better suited for the tabular data
that mostly characterizes the problem at hand (Massaro and Benini,
2015; Huang and Yang, 2016; Bonfiglio et al., 2018; Ou et al., 2019;
Coppedè et al., 2019; Miao and Wan, 2020; Han et al., 2020; Mittendorf
and Papanikolaou, 2021; Raul and Leifsson, 2021; Liu et al., 2022).
When input data are more structured (e.g., the input represents the
actual 2D or 3D geometries), or we have a huge amount of data, deep
models are preferred (Wang et al., 2023; Achour et al., 2020; Wang
et al., 2022b).

The third and final step is the model selection and error estimation
phase (Oneto, 2020). Model selection is devoted to the selection of
the optimal algorithms and associated hyperparameter (Oneto, 2020;
Huang and Yang, 2016; Coppedè et al., 2019; Coraddu et al., 2020)
while error estimation is devoted instead to providing an estimation
of the future performance of the final model learned with the best
optimal algorithms and associated hyperparameter on the available
data (Oneto, 2020; Coraddu et al., 2020).

In the following paragraphs, we will review the use of shallow
and deep models and how model selection and error estimation are
actually performed in the current literature. We will not focus on data-
cleaning and data normalization since this part is heavily handcrafted
and usually not detailed in the works.

Shallow models. Gaussian Processes Regression (GPR) were leveraged
n Bonfiglio et al. (2018), Coppedè et al. (2019), Han et al. (2020), Mit-
endorf and Papanikolaou (2021), Ou et al. (2019), Tao and Sun (2019),

ang et al. (2020) and Raul and Leifsson (2021) and specifically the
riging algorithm (which is a type of GPR) was seen in Mittendorf
nd Papanikolaou (2021), Han et al. (2020), Wang et al. (2020) and
aul and Leifsson (2021). For what concerns the problem at hand,

his approach treats the model parameters as random variables and
hus determines a probability distribution for each parameter (Bolstad,
007). Since GPR is non-parametric, this approach is not concerned
ith the ability of a single function to fit the data but instead calculates

he probability distributions according to all of the functions that can
it the data (Rasmussen and Williams, 2006). This means we have
o specify a prior to bound the specific functions we consider. For
he case of GPR, the prior distribution is a Gaussian (Neal, 1998).
he posterior distribution is then obtained by looking at the data and
etermining the probability distribution based on Bayes’ theorem (Ras-
ussen and Williams, 2006). In Coppedè et al. (2019), Mittendorf and
apanikolaou (2021) and Ou et al. (2019) the authors opt to use the
adial Basis Function (RBF) with two hyperparameters (Schulz et al.,
018): 𝜆 (the length-scale) and 𝜎2 (the signal variance), to map the
ata into a higher dimensional space where a linear solution exists to
he problem at hand. Kriging and GPR are interpolation algorithms
ased on Gaussian processes and focused on fitting a function into
very point in the data. For the construction of a DDS, the fact GPR
asses through every point in the data set may be a useful attribute
hen the learning paradigm is focused within the bounds of the data
in re interpolation scenario as discussed in Section 2). On the other
and, this characteristic may pose some problems when it comes to
xtrapolating outside the training data in comparison to algorithms
hat are designed to generalize (the extrapolation approach). In the
eferenced works, which mostly addressed constructing the DDS to
nterpolate within the bounds of the database, the accuracy of the
odels was often characterized by 1% of Relative Error in Percentage

REP) and R2 ≥ 0.9 (Bonfiglio et al., 2018; Coppedè et al., 2019) which
uggests this approach is well suited for interpolating within the bounds
f the experiments even when dealing with very complex functions.

Kernel methods (Shawe-Taylor and Cristianini, 2004), were used
n Huang and Yang (2016), Mittendorf and Papanikolaou (2021) and

alker et al. (2024). Kernel Ridge Regression (KRR) was used in Huang
nd Yang (2016) and Walker et al. (2024). Additionally, Support Vec-
or Regression (SVR) (Cortes et al., 1995) was leveraged in Mitten-
orf and Papanikolaou (2021). In both KRR and SVR it is possible
13 
o exploit kernel functions to learn a model for very complex func-
ions (Fernández-Delgado et al., 2014; Wainberg et al., 2016) although
he kernel and model hyperparameters (𝛾, 𝜆) (Oneto et al., 2015)

must be tuned according to an appropriate MS procedure (Oneto,
2020). When kernel methods were used to construct a DDS for the
interpolation scenario within the bounds of the database, the accuracy
of the surrogates was similar to the Bayesian GPR with the scatter
plots (Shao et al., 2017) showing a good agreement between the real
versus predicted resistance (Huang and Yang, 2016; Mittendorf and
Papanikolaou, 2021).

Ensemble Methods, demonstrated in Walker et al. (2024), are tree-
based algorithms that group week predictors to generate robust en-
sembles. Random Forest (RF) (Breiman, 2001; Orlandi et al., 2016)
is based on randomly sampling a subset of the training data to build
different trees and averaging the models’ outputs to reduce variance
and improve performance. Alternatively, XGBoost (Chen and Guestrin,
2016), in contrast to RF, builds models sequentially, where each new
tree attempts to correct the errors made by the previous ones. This
technique gradually leads to improved model performance.

Shallow Neural Networks (SNNs) (Goodfellow et al., 2016) are a
versatile set of algorithms (Abiodun et al., 2018) that leverage dif-
ferent optimizers, e.g., backpropagation (BP) (Buscema, 1998), ADAM
(Kingma and Ba, 2015), Levenberg–Marquard (LM) (Kumaraswamy,
2021), etc., to train models containing neurons layered in a structure
that resembles the human brain (Mehrotra, 1996). Basically, SNNs
are Kernel Methods where the kernel is not fixed a priori but learned
from the data (Goodfellow et al., 2016; Aggarwal, 2018). SNNs are
widely adopted for their ability to perform well even on complex
functions (Hornik et al., 1989) and were used in Massaro and Benini
(2015) and Tao and Sun (2019). The referenced works found that
SNNs worked well with a significant proportion of samples (Massaro
and Benini, 2015) and were able to learn a number of complex rela-
tionships (Massaro and Benini, 2015) but were superseded by other
approaches when the number of samples was low, e.g., in Tao and Sun
(2019). Another network based algorithm, based on the SNNs, is the
Extreme Learning Machine (ELM) (Ding et al., 2014) used in Coraddu
et al. (2020) and Walker et al. (2024). The approach of the ELM is
very similar to Kernel Methods but the kernel is generated randomly
(random projection) (Huang et al., 2006). In Coraddu et al. (2020),
authors found the ELM was able to construct an effective DDS to predict
the hydrodynamic response of a submersible substructure in both an
interpolation case (working within the bounds of the data) with a
Mean Absolute Percentage Error (MAPE) of 3.75% and an extrapolation
case where the DDS was evaluated using data outside the scope of the
original problem with a MAPE of 5.78%.

Deep models. Since data for shape optimization of hulls and airfoils
data are quite in research, DDS based on deep models are not commonly
used. A Deep Neural Network (DNN) based DDS was investigated in Tao
and Sun (2019) where they used a database of 28 airfoils and reserved
4 geometries for testing. The REP using the DNN was 4.38% which was
worse than using kriging (2.39%) for the DDS designed to interpolate
within the boundaries of the database. However, authors of Shukla
et al. (2024) demonstrated a DNN trained on the NACA airfoil dataset
to predict the viscous flow field around the airfoil design. Results
indicated that a highly accurate prediction can be obtained when
sufficient data are available. Additionally, since the DNN is trained to
predict a series of functions, it is invariant to the input space. Thanks to
this particular property, authors show that the DNN can work with both
low and high dimensional shape parametrizations without the need for
retraining.

Model selection and error estimation. One of the main lacks in current
research is that the model selection and error estimation phases are
often undocumented or incomplete in the referenced works. This lack
has been raised before in research (Coraddu et al., 2020). On occasion,
authors do not report the accuracy metrics on the error estimation
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which makes it difficult to evaluate the DDS (Massaro and Benini,
2015). On the other hand, some of the referenced work (Huang and
Yang, 2016; Miao and Wan, 2020; Mittendorf and Papanikolaou, 2021)
presented scatter plots (Shao et al., 2017) to illustrate the performance
of the DDS models instead of conventional accuracy metrics. In the
referenced works, different statistical approaches were used for the EE:
a Monte Carlo (MC) simulation was used in Huang and Yang (2016),
Leave-One-Out (LOO) repetition was used in Coppedè et al. (2019), and
K-Fold Cross validation (KCV) was used in Coppedè et al. (2019) and
Coraddu et al. (2020).

3.2.4. Summary
Based on the review performed in Sections 3.2.1, 3.2.2, and 3.2.3

we reported in Table 2 the most important works which deal with Step
(2) considering the main different critical and fundamental aspect that
raised during the review process

• Parent Geometry: the shape subject that has been optimized;
• Sampling: the strategy exploited and the number of samples

drawn from the design space;
• CFD: the method(s) used for data generation;
• DDS: the algorithm(s) exploited to build the DDS(s);
• KPI: the KPI(s) informed by the CFD and estimated by the DDS(s);
• Performance: the performance of the DDS(s).

.3. Step (3) Shape optimization

Step (3) deals with mainly two aspects: the definition of the op-
imization problem (as previously described in Section 2) to define
bjectives and constraints (Section 3.3.1) and then the choice of the
ptimizer (Section 3.3.2). Section 3.3.3 will summarize the main work
n the literature according to the most critical aspects identified during
he review of the two main aspects related to Step (3).

.3.1. Objectives and constraints
The optimality of particular hull or airfoil varies greatly depending

n the specific application and is assessed according to a number of
ifferent KPI(s). For the reasons described in Section 1, shape optimiza-
ion is usually concerned with minimizing the energy requirements of
candidate shape (Bonfiglio et al., 2018; Coppedè et al., 2019; Huang

nd Yang, 2016; Han et al., 2020; Mittendorf and Papanikolaou, 2021;
assaro and Benini, 2015; Ou et al., 2019; Raul and Leifsson, 2021;

ye et al., 2021; Tao and Sun, 2019). Typically, the design of the most
fficient hull or airfoil is aimed at achieving minimal energy usage
i.e., efficient fuel usage) which is particularly relevant given current
lobal considerations (Yilmaz, 2022; Sala et al., 2022). Therefore, when
t comes to the objectives of shape optimization of hulls and airfoils
e are mostly concerned with minimizing the drag of a hull (Campana
t al., 2006; Tahara et al., 2006; Kostas et al., 2015; Huang and Yang,
016; Cheng et al., 2018; Coppedè et al., 2019; Miao and Wan, 2020;
ang et al., 2020; Zhang et al., 2021b; Mittendorf and Papanikolaou,

021; Liu et al., 2022) or the lift and drag of an airfoil (Koziel and
eifsson, 2013; Massaro and Benini, 2015; Zhang et al., 2016; Herrema
t al., 2017; Ou et al., 2019; He et al., 2019; Tao and Sun, 2019; Shi
t al., 2020; Han et al., 2020; Du et al., 2021; Lye et al., 2021; Raul
nd Leifsson, 2021; García-Gutiérrez et al., 2022). However, in addition
o energy efficiency, various studies consider optimality through the
ens of maximizing safety (Ou et al., 2019) and performance (Raul and
eifsson, 2021; Ou et al., 2019).

Considering the constraints applied to CFD DDS-based shape opti-
ization of hulls and airfoils, researchers and practitioners often prefer

o bound the optimization problem with simple box constraints (Mas-
aro and Benini, 2015; Ou et al., 2019; Coppedè et al., 2019; Tao
nd Sun, 2019; Han et al., 2020; Lye et al., 2021; Mittendorf and
apanikolaou, 2021; Raul and Leifsson, 2021; Liu et al., 2022). This is
ertainly a feasible approach when the parameter ranges are small (Ou
t al., 2019; Coppedè et al., 2019; Liu et al., 2022). However, this is
14 
often not possible when the shape design space is quite large and filled
with unfeasible or inadmissible shapes, because of the approximations
during the parametrization (see Section 3.1.1) (Massaro and Benini,
2015; Zhang et al., 2016; Huang and Yang, 2016; Herrema et al., 2017;
Bonfiglio et al., 2018; Coppedè et al., 2019; Ou et al., 2019; Tao and
Sun, 2019; Shi et al., 2020; Han et al., 2020; Du et al., 2021; Lye et al.,
2021; Raul and Leifsson, 2021; Liu et al., 2022). Therefore, additional
constraints are imposed based on the physical properties of the parent
geometry (e.g., thickness) or problem under exam (e.g., Angle of Attack
- AoA ans static stability) (Massaro and Benini, 2015; Huang and
Yang, 2016; Bonfiglio et al., 2018; Tao and Sun, 2019; Miao and Wan,
2020; Han et al., 2020; Mittendorf and Papanikolaou, 2021; Raul and
Leifsson, 2021; Hu et al., 2022). Imposing constraints based on the
physical properties of the shape was shown to be particularly important
when dealing with parametrizations based on non-physical descriptors
(e.g., FFD) (Huang and Yang, 2016; Miao and Wan, 2020).

3.3.2. Optimizers and performance
When it comes to the choice of optimizer the state-of-the-art ap-

proaches for CFD DDS-based shape optimization belong to, broadly
speaking, three main categories (Ruder, 2016; Poli et al., 2007; Vikhar,
2016): (i) Gradient-based Algorithms (Ruder, 2016), (ii) Swarm Intel-
ligence Algorithms (Poli et al., 2007), (iii) Evolutionary Algorithms
(Vikhar, 2016).

Nevertheless, the Shape Optimization of Hulls and Airfoils problem
mainly results in a mixed-integer, non-convex objective, and non-
linearly constrained optimization problems (Massaro and Benini, 2015;
Zhang et al., 2016; Huang and Yang, 2016; Herrema et al., 2017;
Bonfiglio et al., 2018; Coppedè et al., 2019; Ou et al., 2019; Tao and
Sun, 2019; Miao and Wan, 2020; Shi et al., 2020; Han et al., 2020;
Du et al., 2021; Lye et al., 2021; Raul and Leifsson, 2021; Mittendorf
and Papanikolaou, 2021; Liu et al., 2022) that reduces the choices for
optimizer selection (Ruder, 2016; Poli et al., 2007; Vikhar, 2016).

Regarding Evolutionary Algorithms (Vikhar, 2016), Genetic Algo-
rithms (GAs) (Liu et al., 2022) and variants (Massaro and Benini,
2015; Ou et al., 2019; Coppedè et al., 2019; Miao and Wan, 2020;
Mittendorf and Papanikolaou, 2021; Walker et al., 2024), are far and
beyond the most popular algorithm in the literature for solving hull
and airfoil shape optimization problems. Investigations utilizing GAs
show they are particularly effective in mixed-integer, non-convex, and
non-linearly constrained problems, common in hull and airfoil opti-
mization (Massaro and Benini, 2015; Ou et al., 2019; Coppedè et al.,
2019; Miao and Wan, 2020; Mittendorf and Papanikolaou, 2021). The
core strength of GAs lies in their evolutionary-inspired mechanism to
explore a broad spectrum of possible candidate designs. This approach
iteratively generates new candidates by combining characteristics from
existing designs in the population (Vikhar, 2016). The effectiveness of
this strategy to find optimal designs is shown in the referenced works
leveraging GAs, which found significant performance improvements
of 7 ÷ 10% (Bonfiglio et al., 2018; Coppedè et al., 2019; Miao and
Wan, 2020). However, while evolutionary strategies are proven to be
effective, this success comes with a price. In fact, new candidate designs
are introduced within the shape optimization by means of combining
traits from existing designs in the population. This strategy leads to
a generating a significant proportion of infeasible and sub-optimal
designs due to the complex relationship between the shape design
parameters and the candidate’s performance. For this reason, GAs can
be computationally demanding and may require significant time to
converge, especially in complex, multi-dimensional search spaces such
as with the problem at hand.

Regarding Swarm Intelligence Algorithms (Poli et al., 2007), such as
Particle Swarm (Tao and Sun, 2019) and Artificial Bee Colony (Huang
and Yang, 2016) optimization, were also demonstrated to be a popular
and effective choice for solving hull and airfoil shape optimization

problems. These algorithms also excel in exploring complex search
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Table 2
Most important works which deal with Step (2) considering the shape subject that has been optimized (Parent geometry), the sampling strategy exploited and the number of samples
sampled (Sampling), the CFD method(s) used for data generation (CFD), the algorithm(s) exploited to build the DDS(s) (DDS), the KPI(s) informed by the CFD and estimated by
the DDS(s) (KPI), and the performance of the DDS(s) (Performance).

Ref. Parent
geometry

Sampling CFD DDS KPI Performance

Massaro and
Benini (2015)

Airfoil 320 samples drawn
from 8 generations of
optimization

Initial population of points
evaluated using RANS Solver
(500 × 150 mesh)
Spalart–Allmaras turbulence
for an SC1095 helicopter
blade.

SNN Cl –

Huang and
Yang (2016)

Hull 200 samples drawn
from LHS DoE

CFD simulations and Steady
Ship Flow solver based on
Neumann-Michell validated
against other literature.

RBF Interpolation and
Multi- quadratic kernel
method

Drag Cross-validated scatter
plot shows agreement
between CFD model
and DDS.

Bonfiglio
et al. (2018)

Hydrofoil 1100 samples made up
of 1000 LF and 100 HF
simulations drawn from
LHS DoE

URANS CFD performed in
OpenFOAM and validated on
experimental data. LF coarse
grid simulations (0.5M cells)
and HF fine grid simulations
(3.5M cells).

GPR Kriging model
with Matern 5/2
kernel.

Drag DDS error of
approximately 1%
from HF model.

Ou et al.
(2019)

Airfoil 25 samples drawn from
OS DoE

2d RANS CFD model in
ANSYS Fluent with k-w SST
turbulence and ICEM mesh
with 129÷143k cells.

DDS with Quadratic
Response Surface
Method developed in
Isight 5.5

Cd & Q R2 = 0.964 for Cd
and 0.965 for Q.

Coppedè
et al. (2019)

Hull 30÷90 RANS CFD in OpenFOAM with
a mesh containing 2.5 × 106

elements. Mesh validated
against workshop averages.

GPR Response Surface
Method.

Drag LOO resampling R2 =
0.947÷0.973; RMSE =
0.09÷0.05 for DDS.

Tao and Sun
(2019)

Airfoil 5 samples for HF
approach and 19 for LF
drawn out of design
space sampled with
Gibbs sampling method.

CFD RANS model with 22 m
cells for HF approach and k-w
SST turbulence for LF. Models
validated against experimental
data with 0.88÷1.89 % error
between physical and virtual.

SNN (BP), Kriging,
DBN, and Multi-Fidelity
DBN

Cd at Ma =
[0.765, 0.775,
0.785, 0.795,
0.805]

DDS Errors: BP 5.91%
Kriging 4.71% DBN
4.38% Multi-Fidelity
DBN 2.39%.

Miao and
Wan (2020)

Hull 40 samples chosen
from LHS DoE

CFD RANS and NM. Models
validated against experimental
results and maximum error is
2.45%.

RBF Interpolation, SVR,
and MARS

Drag at Fr =
[0.2, 0.26]

LOO cross-validation
showed good
agreement between
experiment and DDS
prediction.

Han et al.
(2020)

Airfoil 2105 samples across 3
levels of fidelity using
LHS DoE

HF model with 131k cells; MF
model with 33k cells; and LF
model with 8k cells.

Multi-hierarchical
Kriging (MHK) with
varied numbers of
samples for each
fidelity model.

Drag Error of 0.008% at
46% reduction in CD;
MHK DDS
outperforms regular
kriging.

Lye et al.
(2021)

Airfoil 544 samples (N0 +
k𝛥N training samples,
for N0 = 64 and 𝛥N =
16, k up to 30)

Euler equations using
NUWTUN finite volume solver
for RAE2822 wing solved for
steady-state convergence using
implicit time scheme.

DNN Cl & Cd –

Mittendorf
and
Papanikolaou
(2021)

Hull 2000 samples drawn
from LHS DoE in 6
dimensions.

CFD using FreSCo+ solver
with HF RANSE model with
2.1 m cells used to develop LF
in-house Rankine-panel
method for reduced
computational time. Final
models validated on HF RANS
models and sit within ±2%
error bounds.

GPR, SVM, MARS Drag –

(continued on next page)
spaces, but in a fundamentally different way to evolutionary ap-
proaches. Rather than combining different traits of candidates to form
new designs, Swarm Intelligence Algorithms leverage the collective
behavior of a group of individuals or particles. In the case of Particle
Swarm Optimization, each particle adjusts its position in the search
space based on its own experience and the best experiences of its
neighbors, mimicking the behavior of a flock of birds (Poli et al.,
2007). On the other hand, Artificial Bee Colony Optimization, is in-
spired by the foraging behavior of honey bees, where a number of
potential solutions are explored and the information is shared within
the optimization (Thirugnanasambandam et al., 2022). The advantage
15 
of Swarm Intelligence Algorithms is the ability to quickly converge
to promising regions in the search space due to the collaboration
among individuals or particles. The referenced works found perfor-
mance improvements on 10 ÷ 15% (Huang and Yang, 2016). However,
Swarm Intelligence Algorithms have been noted to struggle in cases
where the search space is highly non-convex or contains multiple local
optima (Goel, 2020).

Finally, regarding Gradient-based optimizers (Bonfiglio et al., 2018;
Han et al., 2020; Lye et al., 2021; Raul and Leifsson, 2021), it is worth
mentioning that these algorithms are typically preferred for learning
the weights of ML algorithms rather than solving hull and airfoil shape
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Table 2 (continued).
Ref. Parent

geometry
Sampling CFD DDS KPI Performance

Raul and
Leifsson
(2021)

Airfoil 60÷80 drawn from LHS
DoE

CFD RANS model in
OpenFoam of NACA0012 wing
with BlockMesh utility and
387k cells. Model validated
against literature (LES and
EFD) and full grid and time
independence studies
conducted to validate spatial
and temporal resolutions.

Kriging Stall angle RNMSE: 10% for DDS
to predict objective
and >5% for
constraint.

Liu et al.
(2022)

Hull 20÷50 drawn with
Sobol sampling

CFD RANS model in
(naoe-FOAM)/NMShip-SJTU
with a mesh using 3
coarseness levels. Grid
independence study and
experimental validation
reported to validate CFD
models.

(Co-)Kriging Drag DDS RMSE: 0.7÷0.45
using 20÷50 samples.
Results show mixed
fidelity (HF + LF)
DDS did not always
outperform
single-fidelity model.

Walker
et al. (2024)

Hull FF DoE CFD RANS model in
StarCCM+ with a grid quality
assessment. Validation of CFD
with experimental results is
reported.

RF, XGBoost, KRR, ELM Drag at both
high and low
speeds.

DDS MAE
= 0.9 ÷ 1.8[N] based
on increasingly
complex LOO
extrapolation
scenarios.

Luo et al.
(2021)

Hull Optimal LHS DoE CFD RANS model in Ansys
Fluent with a grid quality
assessment. Validation of CFD
with experimental results is
reported.

RBF Drag and Energy
Consumption

DDS R2 = 0.99 for
Drag and 0.97 for
Energy Consumption
reported on 10
samples.

Wan et al.
(2022)

Hull 60 samples drawn from
LHS DoE for 2
scenarios (120 total
samples)

CFD RANS model in
StarCCM+. Grid independence
study with 3 levels of mesh
coarsening reported.

4th-order Response
Surface Method

Drag at surface
and underwater
at 0.42 m

DDS R2 = 0.97 and
0.95 respectively.

Hu et al.
(2022)

Airfoil 500 samples drawn
from LHS DoE

CFD RANS model in
StarCCM+. Grid independence
study with 3 levels of mesh
coarsening reported for 3
different KPIs. Final CFD
model is also validated with
experimental results.

ANN Lift to Drag ratio
and
static-stability
height

DDS MSE = 0.05
averaged over the 2
outputs.

Zhang et al.
(2021a)

Underwa-
ter
glider

70 samples drawn from
LHS DoE

CFD RANS model in
Fine/Marin. Grid
independence study with 2
levels of coarsening is
reported.

Kriging Lift to Drag ratio −
optimization problems. However, in the referenced works, they were
shown to be an effective choice for some problems (Bonfiglio et al.,
2018; Han et al., 2020; Lye et al., 2021), leading to performance
increases of 7÷50. Although, it is fair to say that the shape optimization
problems considered in this review are not convex, so it is worth
mentioning that this approach relies on relaxing the shape optimization
problem, either globally or in iterative local stages, into a convex for-
mulation (Ruder, 2016). Global relaxation is usually not preferred due
to the fact this approximation leads to a severe penalty on the accuracy
of solving the problem. Therefore, local-convexity is assumed and the
optimization is repeated using a multi-start strategy to find a global
optimal (Raul and Leifsson, 2021). Although, it is worth mentioning
that dealing with the local-convexity approximation with multi-start
may lead to significant computational overhead due to performing a
large number of simulations.

It is worth mentioning that stochastic optimizers, e.g., Adaptive
Simulated Annealing (ASA) (Luo et al., 2021) and Interval Optimiza-
tion (Wan et al., 2022), are also found in the relevant literature. These
algorithms leverage randomness to explore the search space effectively,
making them particularly useful for complex, non-convex, and multi-
modal optimization. In the referenced work, to improve computational
efficiency, the ASA approach is coupled with a gradient-based ap-
proach, the modified method of feasible direction (MMFD), to improve
16 
computational efficiency (Luo et al., 2021). The interval optimization
approach is based on taking into account a range of accuracy of the
DDS. It was shown under certain conditions (e.g., a small interval
[95% ÷ 105%]) to outperform GA-based techniques; however, larger
intervals of ±10% and ±15% did not outperform GA.

Regardless of the choice of optimizer, not all of the possible solu-
tions found during Step (3) are actually meaningful. In fact, we are only
interested in the solutions that are not dominated by any other one
according to at least one objective of shape optimization problem (Liu
et al., 2021; Massaro and Benini, 2015), which are identified via the
Skyline operator (Liu et al., 2021). Therefore, the meaningful output
of Step (3) is actually a Pareto Front of candidate designs that represent
all feasible solutions to the optimization depending on the priority of
different objectives (Emmerich and Deutz, 2018; Massaro and Benini,
2015). In one sense, all of the solutions on the Pareto front are ac-
tually optimal according to a specific trade-off between objectives. In
rare cases, often with few objectives, it may be that one solution far
outperforms the rest, i.e., the Pareto frontier is formed of only one
feasible solution, namely a global optimal solution. However, it is more
common that the design preferences of human experts guide a selection
of one or more candidate designs from the Pareto front to take into Step
(4) depending on the specific application (Miao and Wan, 2020).
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3.3.3. Summary
Based on the review performed in Sections 3.3.1 and 3.3.2 we

reported in Table 3 the most important works which deal with Step
(3) considering the main different critical and fundamental aspect that
raised during the review process

• Parent Geometry: the shape subject that has been optimized;
• Objectives: the objective(s) that have been selected;
• Constraints: the constraint(s) that have been implemented;
• Optimizer: the optimization algorithm(s) that have been

exploited;
• Performance: the achieved results in terms of improvement of the

KPI(s)

.4. Step (4) Physical plausibility and feedback

Step (4) deals with the validation of the final output of the optimizer
n terms of physical plausibility and provides feedback to the preced-
ng steps (e.g., to decide if the candidate design meets the specified
riteria). Note that, in practical applications, this is likely the most
mportant step of the four, but it also involves more human feedback,
aking it the most challenging to automate (Huang and Yang, 2016;
onfiglio et al., 2018; Ou et al., 2019; Coppedè et al., 2019; Tao and
un, 2019; Miao and Wan, 2020; Han et al., 2020; Lye et al., 2021;
ittendorf and Papanikolaou, 2021; Raul and Leifsson, 2021; Liu et al.,

022).
The validation in terms of physical plausibility is an important step

n the pipeline since, using particular parametrization, KPIs computa-
ion, constraints, and especially DDS we are making an approximation
f the physics (CFD) (Kalikatzarakis et al., 2023; Huang and Yang,
016; Bonfiglio et al., 2018; Ou et al., 2019; Coppedè et al., 2019; Tao
nd Sun, 2019; Miao and Wan, 2020; Han et al., 2020; Lye et al., 2021;
ittendorf and Papanikolaou, 2021; Raul and Leifsson, 2021; Liu et al.,

022). Verifying that all these approximations did not induce numerical
rtifacts is vital (Huang and Yang, 2016; Bonfiglio et al., 2018; Ou et al.,
019; Coppedè et al., 2019; Tao and Sun, 2019; Miao and Wan, 2020;
an et al., 2020; Lye et al., 2021; Mittendorf and Papanikolaou, 2021;
aul and Leifsson, 2021; Liu et al., 2022).

If the DDS performance is a numerical artifact because a vast num-
er of the induced geometries are not physically plausible (Castelvec-
hi, 2016; D’Amato et al., 2022; Kalikatzarakis et al., 2023; Coraddu
t al., 2023), feedback to Step Step (1) might suggest augmenting the
esign space (reducing the dimensionality) to reduce these artifacts.

If the predictions from the DDS are significantly different from
he CFD, the optimizer may be induced into false minima due to the
mprecision of the DDS. Therefore, feedback to Step Step (2) may
nfer that more data is required to improve the reliability of the DDS
o reduce the likelihood of numerical artifacts (Castelvecchi, 2016;
’Amato et al., 2022; Kalikatzarakis et al., 2023; Coraddu et al., 2023).

Feedback to Step Step (3) (Huang and Yang, 2016; Bonfiglio et al.,
018; Ou et al., 2019; Coppedè et al., 2019; Tao and Sun, 2019; Miao
nd Wan, 2020; Han et al., 2020; Lye et al., 2021; Mittendorf and Pa-
anikolaou, 2021; Raul and Leifsson, 2021; Liu et al., 2022; Koziel and
eifsson, 2013; Huang and Yang, 2016; Feng et al., 2018; Massaro and
enini, 2015) may infer that the dimensionality of the parametrization

s too small, and more free variables are required to find an optimal
esign. Similarly, the box constraints on the parametrization may be
mproved to facilitate exploring a larger number of candidate designs.
nother feedback could be to change the optimizer hyperparameters if

he solutions found are sub-optimal.
Based on the review performed in this section, we reported in

able 4 the most important works which deal with Step (4) considering
• Parent Geometry: the shape subject that has been optimized;
• Physical Plausibility: the adopted method to check for the physi-

cal plausibility of the generated geometry.
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4. Open problems and future perspectives

Following the review carried out in Section 3, this section elaborates
on the open problems of future perspectives of the shape optimization
of hulls and airfoils leveraging CFD and DDSs.

Regarding Step (1), it is clear from the review that each work
develops a unique parametrization schema (e.g., particularly when
using domain-based parametrizations) requiring a new database to be
collected/generated from EFD and CFD simulations. While this problem
is overcome by standardized parametrizations (e.g., Hicks-Henne and
PARSEC-11), there is a lack of standardized schemes for domain-based
parametrizations. The latter represents an important open challenge
(especially for hull shape optimization). Establishing a new database
for every parametrization scheme presents a considerable challenge,
as it greatly increases computational costs and necessitates human
oversight. This issue is further complicated when devising a dedicated
parametrization scheme alongside CFD models. Additionally, such a
high degree of customization poses a significant hurdle for the com-
munity in terms of developing shared datasets. These shared resources
are crucial for continually expanding toward larger and more diverse
design spaces. Decoupling parametrization from parameters leveraged
by DDSs to make prediction (Walker et al., 2024; Lazarevska, 2018;
Šegota et al., 2021; Fahrnholz and Caprace, 2022; Shukla et al., 2024)
may help the community in reusing the same DDSs in optimization with
different parametrization schema.

Regarding Step (2), the DDS models reviewed in this work show
the learning paradigm is almost always focused on interpolating rather
than extrapolating beyond the bounds of the data used to construct the
models. This means that little effort has been made to assess the per-
formance of DDS models with a specific setting or application. In fact,
there are a number of interesting extrapolation scenarios (unseen fami-
lies of geometries, unseen geometries, or unseen speeds) that are useful
to develop models that work well when applied outside the boundaries
of the data used to construct them (Walker et al., 2024). Extrapolation
is a particularly valuable attribute of DDS models since, in practice,
shape optimization is the adaptation of an existing (not optimized)
design for specific KPIs. Existing designs for hulls and airfoils are based
on historical design requirements (e.g., using conventional fuels), and
changing design requirements (inspired by fluctuations in fuel prices
or addressing climate change) requires exploring a wider design space
leveraging DDS models that remain accurate even in extrapolating
conditions. Hence, during DDS-based shape optimization it is beneficial
to produce a geometry for novel, yet-to-be-explored candidates, rather
than confining ourselves to established (not optimized) designs.

Regarding Step (3), the current approach to optimization largely re-
lies on well established methods for solving multi-objective non-linear
and non-linearly constrained problems. Given the context of increased
design uncertainty for hulls and airfoils, there is a necessity for a
more comprehensive exploration of certain aspects within the domain
of shape optimization. One promising avenue to achieve this is the
cross-fertilization of methodologies from operations research into this
field of research. State-of-the-art techniques from operations research
and other related fields, such as physics-based optimization and hybrid
strategies (Mohammadi and Sheikholeslam, 2023), offer a number of
methods to enhance the current approaches to optimization in CFD-DDS
based shape optimization of hulls and airfoils. Moreover, the increase
in quantum computing resources presents an opportunity for enhanced
optimization methods in the future. Quantum computers, which can
perform complex computations at speed, offer the potential to reduce
the time required for optimization tasks (Meglio et al., 2023). The
integration of these advanced computational techniques with existing
CFD DDS shape optimization could lead to significant breakthroughs in
the field.

Finally, regarding Step (4), there are a number of instances in the
referenced works where the validation of the candidate designs is not

confirmed using the high-fidelity CFD. This remains an open problem



J.M. Walker et al. Ocean Engineering 312 (2024) 119263 
Table 3
Most important works which deal with Step (3) considering the shape subject that has been optimized (Parent geometry), the objective(s) that have been selected (Objectives),
the constraint(s) that have been implemented (Constraints), the optimization algorithm(s) that have been exploited (Optimizer), and the achieved results in terms of improvement
of the KPI(s) (Performance).

Ref. Parent
geometry

Objectives Constraints Optimizer Performance

Massaro and Benini
(2015)

Airfoil Minimize 𝐶𝐿 in two conditions
with different free-stream
velocities and angles of attack.

Geometrical constraint to ensure
thickness > 9.5%.

GA
variant

No improvement found from
baseline geometries after 20
generations.

Huang and Yang
(2016)

Hull Minimize total Drag over 3
Froude Numbers.

DDS developed for displacement
constraint.

Artificial
Bee
Colony

Optimizer found a 10 ÷ 15%
reduction in Drag for low and
high speeds.

Bonfiglio et al.
(2018)

Hydrofoil Minimize ratio of 𝐶𝐷∕𝐶𝐿 to the
𝐶𝐷∕𝐶𝐿 ratio of a benchmark
solution.

Constrained 0.09 ≤ 𝐶𝐿 ≤ 0.11
and geometric constraint on
thickness.

Gradient
Descent

Improved performance by 7%

Ou et al. (2019) Airfoil Minimize the 𝐶𝐷 and the Heat
flux (𝑄).

Box constraints on parameter
ranges.

GA
variant

Optimal designs found for
single- and multi-objective
problems.

Coppedè et al.
(2019)

Hull Minimize the Drag. Box constraints on parameter
ranges.

GA
variant

Optimal candidate found by
optimizer and DDS reduced
Drag by 3N (8%).

Tao and Sun (2019) Airfoil Minimize the Drag at 3 Mach
numbers.

Geometric constraints on AoA
and wing thickness at different
points.

Particle
Swarm

Optimal candidate found that
outperformed the baseline
geometry.

Miao and Wan
(2020)

Hull Minimize the Drag at two
Froude numbers.

Geometric constraints fix main
dimensions of the hull.
Additionally, maximum
variation for displacement and
surface area is fixed at ±1%.

GA
variant

3 Pareto-optimal candidates
selected with 5 ÷ 10% reduction
in drag according to the DDS.

Han et al. (2020) Airfoil Minimize 𝐶𝐿 𝐶𝐷 ≥ 𝐶𝐿 of baseline geometry.
Thickness constraints over the
width of the design.

Gradient-
based

Cd reduced between 23 ÷ 25%
according to DDS models
developed with varying
fidelity data.

Lye et al. (2021) Airfoil Minimize 𝐶𝐷 𝐶𝐿 is kept constant according to
a benchmark design (around
0.9). Strict penalty on deviating
𝐶𝐿 constrains the shape design
space around the reference
airfoil.

Gradient-
based

Optimal candidate found with
very similar 𝐶𝐿 (0.88) and
50% reduction in 𝐶𝐷 .

Mittendorf and
Papanikolaou
(2021)

Hull Minimize Drag at 5 speeds. Constant displacement. GA
variant

At design speed of 23 knots
DDS models predicted
reduction in drag of 1 ÷ 1.5%.

Raul and Leifsson
(2021)

Airfoil Minimize dynamic stall. Constrained the dynamic stall
point of the airfoil shape
(informed by a DDS).

Gradient-
based

Optimized airfoil increased
stall angle by 3◦

Liu et al. (2022) Hull Minimize Drag Box constraints on parameter
ranges.

GA Drag reduced by 4N with
single-fidelity DDS and 2N
with mixed-fidelity DDS.

Walker et al.
(2024)

Hull Minimize weighted sum of
Drag at high and low speeds

Box constraints on parameter
ranges.

GA
variant

Significant Drag reductions
found based on the extent of
variation from the baseline
design.

Luo et al. (2021) Hull Minimize weighted sum of
Drag and Energy Consumption

Box constraints on parameter
ranges.

ASA+MMFD Drag reduced by 9 ÷ 11% and
Energy Consumption by 3÷4%.

Wan et al. (2022) Hull Minimize Drag Box constraints on parameter
ranges.

GA and
Interval
Optimiza-
tion.

Drag reduced by 4% and 6%
with GA and Interval
Optimization respectively.

Hu et al. (2022) Airfoil Maximize Lift over Drag Box constraints on parameter
ranges.

GA Lift to Drag ratio decreased
compared to baseline design
due to static stability
constraint.

Zhang et al.
(2021a)

Underwater
glider

Maximize Lift over Drag Box constraints on parameter
ranges.

GA Lift to Drag ratio increased by
18.98% compared to baseline
design.
18 
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Table 4
Most important works which deal with Step (4) considering the shape subject that has been optimized (Parent geometry) and the adopted method to check for the physical
plausibility of the generated geometry (Physical Plausibility).

Ref. Parent geometry Physical Plausibility

Huang and Yang (2016) Hull Validation with numerical (CFD) and experimental (EFD) methods showed candidate shape increased
drag by 6% at low speeds and decreased drag between 6 ÷ 13% at medium to high speeds.

Bonfiglio et al. (2018) Hydrofoil Validation with LF and HF solvers informed the candidate shape performance.

Ou et al. (2019) Airfoil Validation of the candidate design with CFD showed the 𝐶𝐷 predicted by the optimizer was 7% lower
than the HF model and 1% lower for 𝑄.

Coppedè et al. (2019) Hull Validation with CFD showed the optimal candidate had a Drag reduction of 0.5N (1%).

Tao and Sun (2019) Airfoil Validation showed good agreement between CFD and DDS predicted 𝐶𝐷 for the optimal candidate.

Miao and Wan (2020) Hull Results validated with NM plus CFD method and pressure distribution around the candidates
compared to original for plausibility.

Han et al. (2020) Airfoil Validation with CFD showed good agreement with DDS. Error of DDS prediction on optimal candidate
was 0.2 ÷ 0.5%.

Lye et al. (2021) Airfoil Validation shows physical plausibility and explains large reduction in 𝐶𝐷 by reducing in upper shock
on upper surface.

Mittendorf and Papanikolaou (2021) Hull Final design validated with HF RANS model showed 1 design failed physical plausibility (drag
actually increased) and the other passed (error between DDS and CFD of 0.4%).

Raul and Leifsson (2021) Airfoil Final model validated against HF CFD showed physical plausibility.

Liu et al. (2022) Hull Validation with HF CFD showed actual reduction of 1N for single-fidelity candidate and agreement
with mixed-fidelity prediction.

Walker et al. (2024) Hull Validation with HF CFD showed strong physical plausibility between DDS and real Drag when close
to known designs. As the hull design deviated from known examples physical plausibility decreased.

Hu et al. (2022) Airfoil Validation with HF CFD showed 3.6% deviation between DDS and real Lift to Drag ratio and 0.0$
error for stability prediction.

Zhang et al. (2021a) Underwater glider Validation with HF CFD affirmed that the actual Lift to Drag ratio outperformed the baseline design.
in the field until this procedure is common practice and must include
a comparison between the KPI predicted by the DDS and the real one
informed by the CFD. Ultimately, this approach will lead to a better
understanding of the performance of DDS models.

5. Conclusion

This paper reviews the current research in shape optimization of
vessel hulls and airfoils, which is a critical step to ensure optimal per-
formance and minimal environmental footprint. In fact, their design is
usually an adaptation of an existing one, not optimized for specific KPIs
like the drag of a hull or lift and drag of an airfoil or the result of a mix
between human experience and numerical optimization approaches.
Nowadays, the state-of-the-art approach for shape optimization of hulls
and airfoils is based on CFD DDS models and consists of four steps.
First, parametrization and parameter ranges are defined, with more or
less human intervention, to build a shape design space.

Accurate estimation of KPIs, such as drag resistance for hull designs
or lift and drag for airfoils, is a cornerstone of modern aerodynamic
and hydrodynamic engineering. However, the direct computation of
these KPIs based on shape parameters involves complex simulations
using CFD, which is notably resource intensive. This high computa-
tional demand traditionally limits the feasibility of direct numerical
optimization of these KPIs in real-time design workflows. To address
this challenge, a pragmatic approach is typically employed, involving
a multi-step process that integrates both human expertise and advanced
data-driven strategies. Initially, a selective sampling of distinct and
representative shapes from the design space is conducted. This selection
can be based on experienced human judgment or through sophisticated
algorithmic strategies that aim to cover the potential variability in the
design space. These selected designs are then subjected to detailed CFD
analysis to evaluate their performance against the desired KPIs. Based
on the insights gained from these analyzes, a DDS model is developed.
While the initial creation of the DDS is computationally demanding –
requiring substantial data processing and model training – the resul-
tant model offers a significant reduction in computational expense for

subsequent predictions. This efficiency is achieved by approximating
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the complex relationships between shape parameters and their resul-
tant KPIs through learned data patterns, thus circumventing the need
for direct CFD simulation in the early stages of design exploration.
Recent advancements in machine learning have further enhanced the
capabilities of DDS models, incorporating techniques such as deep
learning and reinforcement learning to refine prediction accuracy and
model robustness. Studies have demonstrated that such models can
effectively predict hydro/aerodynamic properties with high reliability,
approaching the fidelity of direct CFD simulations under varied opera-
tional conditions. Once the DDS is established, it can then seamlessly
integrate into an optimization loop. This integration facilitates efficient
exploration of the design space, enabling the rapid generation and
assessment of candidate geometries. The objective is to identify designs
that approximate the Pareto front, optimizing multiple conflicting KPIs
simultaneously, a method that has seen significant refinement in recent
years through multi-objective optimization algorithms. The final step
in this process involves a rigorous validation of the proposed designs.
Using CFD, the physical plausibility of each candidate geometry sug-
gested by the DDS and the optimization framework is verified. This
validation is crucial, as it ensures that the surrogate model and the
optimization algorithms have not proposed non-viable or physically
implausible shapes. This comprehensive evaluation not only reinforces
the reliability of the DDS, but also aligns the theoretical models with
practical, real-world applicability. This approach, which blends so-
phisticated data-driven models with traditional simulation techniques,
represents a significant shift in the way hull and airfoil designs are
developed. By reducing reliance on extensive CFD simulations and
leveraging recent research in surrogate modeling and optimization, this
methodology promises to accelerate the design cycle, reduce costs, and
enhance the innovation process in fields demanding high precision and
efficiency.

Based on our review, we identified several important discussion
points. In general, DDS-based shape optimization is an effective strategy
for the optimization of hulls and airfoils and will remain an important
area of research given the current motivations towards minimizing the
energy requirements of hulls and airfoils. However, a key acknowl-
edgment is that the current approaches to parametrization (especially

when using domain-based parametrizations) often lack standardization.
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Consequently, much of the generated data remains unusable for fu-
ture work despite a large degree of similarity among many existing
designs. This redundancy not only lengthens the time frame of indi-
vidual projects but also restricts the broader community’s capacity to
build upon prior findings. Additionally, future changes to conventional
design requirements opens the door for shape optimization to explore
novel design concepts, and improving the extrapolation capabilities
of DDS models will significantly benefit this endeavor. However, at
the time of writing, these challenges have not yet been extensively
investigated or overcome.
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