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Abstract 
This paper investigates the fatigue-induced delamination growth in carbon fibre-reinforced polymer 
(CFRP), considering different fibre orientation combinations. The study explores the application of 
Artificial Neural Networks (ANN) in the simulation of fatigue delamination behaviour to reduce the 
number of experimental tests required for fatigue evaluation and eventual certification. The research 
aims to evaluate the effectiveness of ANN at different stages of data processing, including raw data 
simulation and final curve estimation. The results show that applying ANN at the raw data stage provides 
flexibility in modelling, with error < 10%. In addition, when ANN is applied directly to the final Paris 
curve, it minimises errors and increases reliability, allowing for a more cost-effective fatigue evaluation 
process. The study highlights the importance of the data processing stages in determining the accuracy 
of fatigue delamination predictions with AI modelling, thus informing strategies for efficient fatigue 
evaluation of CFRP components in structural applications.  
 
 
1. Introduction 
Carbon Fibre Reinforced Polymer (CFRP) is widely used in structural components due to its ability to 
reduce weight while maintaining the high stiffness required for the application. One of the main 
limitations of applying CFRP is the low delamination strength, as interlaminar fracture is dominated by 
cohesive and adhesive failure, which is significantly weaker than fibre fracture [1]. In addition, CFRP 
poses a significant challenge in terms of certification for structural applications, as the modification of 
lay-up and fibre orientation can lead to entirely different mechanical behaviours and consequently 
increase the number of tests required in the qualification pyramid for materials and structures [2,3]. Van 
der Panne et al. [4] showed that the different fibre orientations at the delamination interface under cyclic 
loading change the failure mechanisms, modifying the formation of fibre bridging and the saturation of 
the Paris curve. This confirms the need to extend the coupon tests for each lay-up used. However, this 
could lead to a significant increase in certification costs and could make structural projects using CFRP 
infeasible. 
 
The current approach to certifying composite materials for primary aircraft structures under European 
Safety Agency (EASA) and Federal Aviation Authority (FAA) regulations is based on analysis-assisted 
certification, which provides the standards for allowable-based certification [5]. Several methods have 
been applied, such as numerical/computational methods based on finite element analysis [6], statistical-
based analysis (e.g., Taguchi, surface response method, among others) [7] and artificial intelligence 
(AI), aiming to minimise certification costs by reducing the number of coupon tests. Zhang et al. [8] 
applied an artificial neural network (ANN) to the FE model to predict mixed-mode delamination under 
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different loading ratios, using the AI method as an intermediate subroutine of the numerical simulation 
to reduce the number of coupon experiments. On the other hand, Loban et al. [9] applied artificial 
modelling directly to experimental raw data of residual damage according to several input parameters, 
allowing the prediction of several combinations of levels that are not experimentally accessible by 
analytical models. 
 
Allegri [10] demonstrated the application of single hidden layer neural networks to model the Paris 
curves in modes I, II, and mixed-mode with several stress ratios. The results show a level of accuracy 
equal to those obtained using the Hartman-Schijve equation (variation of the Paris model). This work 
demonstrates that using artificial intelligence to simulate data is a viable solution to provide interactive 
analysis of multiple input parameters inaccessible to analytical models. It can also reduce the number of 
coupon-level experiments required to validate and certify components on a larger scale. However, 
artificial data estimation could be applied to several stages of data analysis/processing, from the 
reproduction of raw data acquisition to the final processed data. 
 
Intending to reduce the number of experiments at coupon level, this work initially proposes training an 
ANN to model fatigue delamination and access crack propagation behaviour in fibre orientation 
combinations not accessed experimentally. However, some questions remain regarding the application 
of artificial intelligence methods to data generation: what is the influence of ANN application in the 
specific data analysis stage? Would it be possible to determine the contribution of artificial data 
generated at each data processing stage? To answer the above questions, this work aims to determine 
the most effective stage of data processing for simulating artificial data and to understand how artificial 
data affects the accuracy of data processing. The main contribution is to evaluate the accuracy of 
artificial data from fatigue crack propagation curves using an ANN to model unexplored curves with 
different fibre orientations, regarding the most effective stage of data processing. The ANN was trained 
on experimental results from mode I fatigue delamination over three fibre orientations at the 
delamination interface: (0//0), (0//45) and (0//90). Three stages of data processing are proposed for 
artificial data estimation: 

i) Raw data (compliance and crack length per cycle) – captured directly from experimental tests. 
ii) Post-processing (G-N and a-N curves) – after application of ASTM D5528 [11] procedures. 
iii) Final processed data, Paris curves (da/dN vs Gmax) – after application of ASTM D5528 [11] and 

D6115 [12] procedures. 
The error generated for each analysis was compared and experimentally validated by predicting the 
fatigue crack propagation curve for the laminate with a new interface (0//15). 
 
 
2. Methodology  
 
2.1.  Materials and mechanical test procedures 
 
Double cantilever beam (DCB) specimens were manufactured from IM7/8552 unidirectional carbon 
fibre/epoxy prepreg from Hexcel®. The prepreg was laid up into different plates with the following 
stacking sequence [011/( )/011 -plane and represents 0, 45, and 

 a length of 50 mm was 
added in the laminate mid-plane. The laminates were hand-laid with 24 layers and cured in the autoclave 
at 110 ºC for 60 min and then 180ºC for 120 min, with a vacuum of 0.2 bar and 7 bar of pressure. 
Specimens were prepared with dimensions of 160  25  3 mm3, following ASTM D5528 [11]. The 
ply elastic properties are: longitudinal and transverse Young's modulus (E1 E2 = 12 GPa), 
ply shear modulus (G12 v12  [13]. 
 
Fatigue delamination was performed under displacement control following ASTM D6115 [12]. The 
maximum displacement was set to 90% of the critical displacement ( C). The tests were performed at a 
frequency of 2.5 Hz with a displacement ratio ( min max) = 0.1, using an MTS hydraulic fatigue 
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testing machine equipped with a 500 N load cell. During the tests, images of the laminate surface were 
taken to measure crack propagation at 100-cycle intervals. The modified compliance calibration (MCC) 
method was used to measure the strain energy (Eq. 1), and the Paris law similitude parameter used was 
Gmax (Eq. 2).  
 

 (1) 

  

 (2) 

 
where, GIC is the fracture toughness, Pc is the critical load, C is the compliance, N1 large displacement 
and loading block correction factor large displacement correction factor  A1 is the slope 
of the plot of a/h versus (C/N1)1/3, b is the width, h id the thickness, da/dN is the crack propagation rate, 
Gmax is the similitude parameter for the strain energy release rate (SERR),  and  are the fitting 
constants. 
 
2.2.  ANN method 
 
Before the ANN, a Python subroutine was performed to input the relative elastic properties (Ex, Ey, Gxy, 
vxy) based on the ply elastic properties and lay-up: number of plies and fibre orientation. At the same 
time, the same Python subroutine was used to determine the Dc and Bt values, which represent the ratio 
of plane stress to plane strain flexural stiffness (Eq. 3) and the amount of bend/twist coupling in the 
laminate (Eq. 4), respectively. The ANN plug-in in MatLab was used to train, validate and test the 
proposed neural networks; 70% of the data sets were used for training, while the rest were used for 
validation and testing. One-layer and two-layer neural networks were optimised for performance using 
the trial-and-error approach. The best-performing ANN was the single hidden network with 20 nodes 
and a normalised mean squared error (MSE) < 10-2, with the number of epochs varying according to the 
procedure. Figure 1 illustrates the ANN scheme where the input parameters were the relative elastic 
properties, coupling coefficients, specimen dimensions, fracture toughness, fracture toughness at the 
saturated fibre bridging zone and fibre orientation at the interface. The responses were the raw data 
(compliance curve versus crack length/thickness), the first processed data (G-N and a-N curves) and the 
Paris curve (da/dN versus Gmax). The hyperbolic tangent activation functions allow the modelling of 
non-linear relationships within the experimental data. The weighting algorithm used was elastic 
backpropagation with backtracking, while the error function used was MSE minimisation. 
 

 (3) 

  

 (4) 
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Figure 1. Scheme of input/output in ANN modelling.

Figure 2 shows the flowchart of the data analysis. The data from (0//0), (0//45) and (0//90) were used 
for training, and then the data from laminate (0//15) were simulated to validate the modelling. The ANN 
application follows three paths according to the objectives of this work: i) simulation of raw data, and 
then the apply MCC methods and the power law equation to the simulated data; ii) after the raw data, 
the MCC method was applied and then the ANN were carried out to simulate G-N and a-N curves (after 
the first data analysis), followed by the application of the power law equation to provide the Paris curve; 
finally, the third path iii) where the ANN where applied to directly simulate the Paris curve (da/dN
versus Gmax). This series of tests aims to analyse the error generated by the simulated data at the different 
stages of data processing (Fig. 2) and compare the final Paris curve estimated for the laminate (0//15). 
In the end, it will be possible to compare the best stage for generating artificial data and evaluate the 
ANN application effect at each stage.

Figure 2. Flowchart of data analysis using ANN to produce data at: i) raw data simulation, ii) first 
data analysis simulation and iii) Paris curve simulation.

3. Results and discussion
Figure 3 shows the experimental results of modelling the fatigue delamination curves for laminates with 
the interface (0//0), (0//45), and (0//90) for both the experimental and predicted curves for the validation. 
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The points on each curve represent the experimental values, and the lines represent ANN fitting. Figure 
3a shows the results of path (i), where the ANN method was applied to raw data. The advantage of using 
the ANN for raw data is the freedom to post-process the data without dependence on the SERR equation, 
compliance method, the similitude parameter (G) and the da/dN data reduction method. The dependence 
on the ANN-raw data is related to the geometry and lay-up parameters [f(b,h,a0 ] since the force and 
displacement results directly relate to the crack growth in this stage. As a first result (Fig. 3a), the ANN 
model showed an error of less than 3.58%, which was associated with an appropriate curve fit.

Figures 3b and 3c show the second modelling path (ii), where the ANN method was applied after the 
first data processing, i.e., after using the MCC SEER equation. The advantage of this stage is the 
independence of the geometric parameters (b and h) since the SEER aspects are already considered a 
function of the bending stress of the beam. Also, it is independent of the similitude parameters (G) and 
the da/dN data reduction method. On the other hand, all modelling from this stage forward is a dependent 
function of the MCC equation [f(MMC)]. In other words, if another standard equation or J-integral were 
applied, the dispersion between the models could be associated with an error in the ANN modelling. 
The error generated for this second case was 3.45%, similar to those found previously, considering that 
each model was optimised by training on experimental data.

Figure 3. ANN simulation data for: a) raw data (i), b) G-N curve (ii), c) a-N curve (ii) and d) Paris 
curve (iii).
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Figure 3d shows the third ANN application path (iii), where the neural network was applied to directly 
generate the final curve of da/dN versus Gmax. Note that the dots are the experimental results, and the 
lines represent the AI-predicted data. In other words, the Paris Power Law has yet to be applied to these 
curves. Applying ANN at this stage can provide faster modelling of the most important curve for crack 
propagation analysis (the Paris curve) without adding a post-process subroutine for new calculations 
and data analysis. On the other hand, the artificial results depend on the equation and compliance method 
used, the da/dN curve reduction method and the similitude parameter used [f(MCC, da/dN, G)]. The 
error generated at this modelling stage was 3.46%. 
 
The error was similar for all stages, suggesting an initial independence from the stage of ANN 
application to generate artificial data. Although there are some limitations regarding dependence on the 
standard functions when simulating data, new training could easily be performed from the original 
model to generate the new desired curve. For example, when using different equations to obtain the 
SEER values (e.g., J-integral), a new ANN training could be performed to avoid the intrinsic dispersion 
generated between the models. Considering that the neural network applied at each stage provides the 
Paris curves, Figure 4 shows the experimental and simulated results to give the Paris model. 
Experimental results of the curve for the laminate with the interface (0//15) are represented by black 
dots. The red dots are the results of the raw data simulated by ANN and then applied to Eq. 1 (MCC), 
using Gmax as a similitude parameter and power law to reduce the a-N curve. The blue dots are the results 
when the ANN is used to generate second stage data (G-N and a-N), and then Gmax is used as a similitude 
parameter with a power law to reduce the a-N curve. Finally, the green dots are the curves generated 
when the ANN directly simulates the Paris curve. For each data set (experimental and predicted), the 
power law from the Paris model was applied in the linear region to capture the constants  and . The 
error generated according to the ANN application in each stage was captured (Table 1). 
 
 

 
 

Figure 4. Paris curve comparative curve for (0//15) simulated and experimental data. 
 
The curve generated when the ANN is applied in the first step (i – raw data) is the one that visually 
represents the most significant shift in the curve and changes in the threshold range of SEER from the 
experimental values. The errors for the angle coefficient ( ) were 0.81% but presented a shift in alpha 
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values of 91%. The errors between the start and end of the curve were 2.58 and 8.04%, respectively. 
The mean squared error of the curve was 10.41 N/m. This increase in the error generated from raw data 
to the final Paris curve is a consequence of the accumulated error generated in each parameter P, A1 and 
C from the MCC equation (Eq. 1) and the new data reduction of the da/dN curve.  
 
The Paris model resulting from the application of ANN in the second stage (ii – G-N, a-N) presented an 
angular coefficient error ( ) of 11.05% and, although it is in the same range of Gmax, the constant  
presented a high significant value because of change in the curve slope, which is associated to a shift in 
da/dN data reduction behaviour. In addition, the error between the beginning (Gmax,b) and the end (Gmax,u) 
of the Gmax values was 6.10% and 0.52%, respectively, giving a mean square error (MSE) of the curve 
of 2.83 N/m. In the second step, the accumulated error from the P, A1 and C parameters of Eq. 1 was 
removed (as they are taken from the experiments and not simulated).  
 

Table 1. Error analysis between ANN modelling for different stages of data processing. 

Variable Exp.  
data 

Raw data  
ANN 

error  
(%) 

G-N / a-N  
ANN 

error 
(%) 

Paris 
ANN 

error 
(%) 

 1 10-62 9 10-64 91.00 1 10-56 >> 100 5 10-65 99.50 
 24.43 24.63 0.81 21.737 11.05 24.49 0.23 

aGmax,i 205.76 200.45 2.58 193.20 6.10 207.35 0.77 
bGmax,u 165.49 178.79 8.04 166.35 0.52 163.33 1.30 

a – Initial (i) value of Gmax in the Paris curve, b – ultimate (u) value of Gmax in the Paris curve at 50 k cycles. 

 
The curve using simulation in the final stage of data processing (iii) showed a significant reduction in 
error. Although the constant  remained with an error close to 100%, the angular coefficient  error was 
0.23 %. The errors at the beginning and end of the Gmax range were 0.77 and 1.30 %, respectively, and 
the mean square error of the curve was 1.20 N/m. Although this model is directly dependent on the 
SEER equations, compliance parameters and da/dN data reduction used in the previous stages of data 
processing, it represents a significant reduction in the errors in data simulated artificially, thus ensuring 
higher precision in the results obtained. 
 
Given the reduced dependence on SEER, compliance calibration, similitude parameter and da/dN data 
reduction, applying ANN at the raw data stage provides greater freedom in the modelling of data 
processing. However, when the standardised models are applied to the estimate curves from the initial 
simulated data, the accumulation of error in the forward equation significantly increases the dispersion. 
This indicates that the number of errors found could increase with more data processing steps. Therefore, 
the ANN application stage directly affects the Paris model error. The direct application to generate the 
final curve presents greater match with the experimental results and higher reliability. 
 
 
4. Conclusions 
In this study, fatigue-induced delamination growth was investigated at interfaces (0//0), (0//45), and 
(0//90) to train, validate, and test the proposed neural networks and (0//15) was used to validate the 
simulation method. ANN was a feasible method for predicting crack propagation curves and simulating 
configurations not explored experimentally, with an error of less than 3.5% for each data processing 
stage. 
 
Applying ANN to raw data provides greater freedom in post-processing modelling, with a Paris curve 
error < 10% and an MSE error of 10.41 N/m. On the other hand, applying ANN directly to the final 
stage Paris curve significantly minimises the error (< 2%) and MSE, generating a more direct application 
to the target curve for fatigue delamination. In conclusion, the ANN application directly into the Paris 
curve enables the reduction of the coupon test level, thus reducing the cost associated with fatigue 
evaluation. In addition, the data processing stage directly affects the accuracy of the Paris curve.   
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