
 
 

Delft University of Technology

On the Evaluation of NLP-based Models for Software Engineering

Izadi, Maliheh ; Ahmadabadi, Martin Nili

DOI
10.1145/3528588.3528665
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software
Engineering (NLBSE)

Citation (APA)
Izadi, M., & Ahmadabadi, M. N. (2022). On the Evaluation of NLP-based Models for Software Engineering.
In Proceedings of the 2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software
Engineering (NLBSE) (pp. 48-50). Article 9808680 (Proceedings - 1st International Workshop on Natural
Language-Based Software Engineering, NLBSE 2022). IEEE. https://doi.org/10.1145/3528588.3528665
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3528588.3528665
https://doi.org/10.1145/3528588.3528665


On the Evaluation of NLP-based Models for Software Engineering

Maliheh Izadi
m.izadi@tudelft.nl

Delft University of Technology

Delft, Netherlands

Matin Nili Ahmadabadi
matin_nili@alumni.ut.ac.ir

University of Tehran

Tehran, Iran

ABSTRACT

NLP-based models have been increasingly incorporated to address

SE problems. These models are either employed in the SE domain

with little to no change, or they are greatly tailored to source code

and its unique characteristics. Many of these approaches are con-

sidered to be outperforming or complementing existing solutions.

However, an important question arises here: Are these models eval-

uated fairly and consistently in the SE community?. To answer this

question, we reviewed how NLP-based models for SE problems are

being evaluated by researchers. The findings indicate that currently

there is no consistent and widely-accepted protocol for the eval-

uation of these models. While different aspects of the same task

are being assessed in different studies, metrics are defined based

on custom choices, rather than a system, and finally, answers are

collected and interpreted case by case. Consequently, there is a dire

need to provide a methodological way of evaluating NLP-based

models to have a consistent assessment and preserve the possibility

of fair and efficient comparison.

KEYWORDS

Evaluation, Natural Language Processing, Software Engineering

ACM Reference Format:

Maliheh Izadi and Matin Nili Ahmadabadi. 2022. On the Evaluation of NLP-

based Models for Software Engineering. In The 1st Intl. Workshop on Natural

Language-based Software Engineering (NLBSE’22), May 21, 2022, Pittsburgh,

PA, USA.ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3528588.

3528665

1 INTRODUCTION

Researchers have been using NLP-models to solve a diverse set of

SE problems such as code generation, completion, summarization,

bug fixing, question answering, test case generation, documenta-

tion, and many more. As these models attract more researchers and

the number and diversity of studies grows, it is imperative to have

good evaluation measures and techniques to assess them properly.

These measures should be consistent throughout the literature in

order to conduct fair and comparable comparisons. To understand

the evaluation of NLP models, we reviewed the field in the past five

years and report the results here. To the best of our knowledge, we

.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike International 4.0 License.

NLBSE’22, May 21, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9343-0/22/05.
https://doi.org/10.1145/3528588.3528665

are the first to conduct a systematic literature review on evalua-

tion of NLP-based models to understand the underlying patterns,

identify the challenges, and recommend future research direction.

2 METHODOLOGY

We conducted our systematic review using the following proto-

col. Our main research question is “How are NLP-based models

evaluated in SE?”. Search phrases in the title, abstract or body of

a paper are NLP, natural language processing, code, and evaluation.

Papers must be peer-reviewed, written in English, and be published

after 2017 by one of the following SE prominent conferences and

journals: ICSE, ESEC/FSE, ASE, IEEE TSE, ACM TOSEM, and EMSE.

We usedGoogle Scholar as the source, and retrieved 157 papers. Two

of the authors manually inspected all papers to identify the papers

that propose an NLP-based model to solve a SE problem. Finally,

53 papers were excluded because of one or more of the following

reasons: the paper’s scope was unrelated to NLP and SE, the main

proposed model was not based on NLP, or it was a secondary or

duplicate study. Next, we present the result of the review on the

remaining 104 included papers. More information on the protocol

and papers can be found in our GitHub repository.1

3 EVALUATION OF NLP-BASED MODELS

There are two approaches to evaluation intrinsic with a focus on

intermediary goals (sub-tasks), and extrinsic for assessing the per-

formance of the final goal. NLP-based models in SE are generally

evaluated with one or more of the following metrics.

(1) Automatically: Automatic evaluation consists of three groups,

namely (i) metrics for assessing the results of classification models

such as Accuracy, Precision, Recall, and F measure, (ii) metrics for as-

sessing recommendation lists including 𝑇𝑜𝑝@𝑛 or ranked versions
such as MRR and MAP, and (iii) metrics for analyzing the quality of

generated text or source code including BLEU, METEOR, ROUGE,

CIDEr, chrF, Perplexity, and Levenshtein similarity metrics.

(2) Manually: Manual assessment is more subjective and heeds

the judgment of human participants. Researchers first select the

relevant metric(s) to evaluate different aspects of the proposed

model’s output. Then, they invite a group of experts to assess the

results based on the selected metrics. For instance, for a code sum-

marization task, researchers use informativeness as an indicator

of the quality of the generated summaries from the developers’

perspective.

Automatic evaluation is easier, faster, and completely objective

compared to the manual version. Thus most researchers opt to use

automatic evaluation for assessing their models. However, human-

based assessments can potentially convey more information for

several aspects of a model, hence, they can be used to complement

1https://github.com/MalihehIzadi/nlp4se_eval

48

2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3528588.3528665&domain=pdf&date_stamp=2023-02-01


NLBSE’22, May 21, 2022, Pittsburgh, PA, USA Izadi and Nili

automatic evaluation. Recently, Roy et al. [12] conducted an em-

pirical study on the applicability and interpretation of automatic

metrics for evaluation of the. code summarization task. With the

help of 226 human annotators, they assessed the degree to which au-

tomatic metrics reflect human evaluation. They claim that less than

2 points improvements for an automatic metric such as BLEU do

not guarantee systematic improvements in summarization quality.

This makes the role of human assessment salient.

Although automatic measures are uniformly defined in the liter-

ature, manual metrics are harder to define, interpret and use. These

measures must be properly indicative of a model’s goal and per-

formance. Furthermore, their definitions and usage must be kept

consistent to have comparable results. Hence, in the following we

review the most popular existing manual assessment measures in

the SE domain and leave the rest of them (such as effectiveness,

comprehensibility, time-saving, relatedness, rightness, usability,

recency, grammatically correctness, advantageousness, diversity,

self-explanatory, theme identification, and more) for a more com-

prehensive study. Usefulness: Several studies define usefulness as

how useful participants find the proposed solution for solving the

problem at hand [2, 4, 7, 11, 16]. Others define usefulness as the

tendency or preference of users to use their proposed model [17].

Jiang et al. [8] assess the usefulness of its results based on both

its accuracy and the difficulty of generating outputs. That is, they

focus on how often the model works when it is indeed needed.

Naturalness, Expressiveness, Readability, and Understand-

ability: Roy et al. [13] define naturalness as how easy it is to read

and understand generated outputs. They also use readability to

measure to what extent the output is perceived as readable and un-

derstandable by the participants. Aghamohammadi et al. [1] define

naturalness as how smooth, human-readable, and syntactically-

correct are their outputs. Gao et al. [5] measure naturalness as

the grammatical correctness and fluency of a generated sentence.

Zhou et al. [18] use expressiveness as whether their model’s output

is clear and understandable. Correctness or Content: Huang et

al. [6] define correctness as whether participants can find the cor-

rect API using their proposed tool, while Chen et al. [3] define it

as a measure to verify the general correctness of the abbreviations

and synonyms in their thesaurus. In Roy et al.’s [13] study, content

means whether a summary correctly reflects the content of a test

case.Completeness and Informativeness: Uddin et al. [14] define

completeness as a complete yet presentable summarization of API

reviews. Aghamohammadi et al. [1] define informativeness as how

much of the important parts of a piece of code are covered by a

generated summary. Conciseness: In Roy et al.’s [13] study, con-

cise summaries do not include extraneous or irrelevant information.

Zhou et al.[18] quantifies conciseness through answering whether

the repair recommendation is free of other constraint-irrelevant

information. Relevance or Similarity: Several studies define rele-

vance as to how relevant is the model’s output to the reference text

or code [2, 5, 11, 16]. Others asked developers to rate the similarity,

relatedness, and contextual or semantic similarity between outputs

and reference texts [9, 10, 15].

4 DISCUSSION, AND FUTURE DIRECTION

We reviewed 104 studies to understand how NLP-based models

are usually evaluated in the SE domain and provided the list of

most used metrics. Next, we provide the main challenges for the

evaluation of NLP-based models. (1) Both automatic and manual

approaches can be utilized to provide a more holistic view of the

performance of an NLP-based model, however, not all of the eligi-

ble studies use both of these approaches. (2) For the manual form

of assessment, there exist numerous and sometimes conflicting or

ambiguous evaluation metrics. This problem exacerbates in the

case of measures with multiple definitions (e.g., informativeness)

or in case of multiple metrics which are overlapping (e.g., natu-

ralness, readability, understandability, and expressiveness). Some

researchers evaluate different aspects of their model, (e.g., com-

pleteness, naturalness, or correctness) while others only address

one or two aspects. As there are various aspects to each model,

there should be a methodological way to first identify the most

important aspects of a given SE task and then properly evaluate

those aspects with concretely defined metrics. (3) In addition to the

definition and use of the metrics, there is no standard for defining

the set of answers. That is, some use yes/no answers, while oth-

ers use 𝑛-point Likert scale or even free-format text answers. (4)
Finally, identifying novel evaluation metrics or techniques can help

SE researchers assess these models more thoroughly and where

it matters. For example, for the automatic code completion task,

predicting an identifier is more valuable and difficult than predict-

ing a keyword. Hence, evaluating models for predicting any token

is not very helpful. Through reviewing the literature, we took the

first step toward addressing the challenges of proper evaluation for

NLP-based models. We suggest future research focus on providing

a systematic and consistent framework for evaluation of these mod-

els to (1) clearly define measures, (2) distinguish between different

needs of SE tasks, and (3) determine the proper use of a measure

in the context. Hopefully, a systematic way of evaluation makes it

possible to conduct fair and correct evaluations for the NLP-based

models in the SE field.

REFERENCES
[1] Alireza Aghamohammadi, Maliheh Izadi, and Abbas Heydarnoori. 2020. Gener-

ating summaries for methods of event-driven programs: An Android case study.
Journal of Systems and Software 170 (2020), 110800.

[2] Liang Cai, Haoye Wang, Bowen Xu, Qiao Huang, Xin Xia, David Lo, and Zhen-
chang Xing. 2019. AnswerBot: an answer summary generation tool based on
stack overflow. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1134–1138.

[3] Chunyang Chen, Zhenchang Xing, and Ximing Wang. 2017. Unsupervised
software-specific morphological forms inference from informal discussions. In
2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).
IEEE, 450–461.

[4] Andrea Di Sorbo, Sebastiano Panichella, Carol V Alexandru, Corrado A Visaggio,
and Gerardo Canfora. 2017. SURF: summarizer of user reviews feedback. In
2017 IEEE/ACM 39th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 55–58.

[5] Zhipeng Gao, Xin Xia, John Grundy, David Lo, and Yuan-Fang Li. 2020. Generat-
ing question titles for stack overflow frommined code snippets. ACMTransactions
on Software Engineering and Methodology (TOSEM) 29, 4 (2020), 1–37.

[6] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018. API
method recommendation without worrying about the task-API knowledge gap. In
2018 33rd IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 293–304.

[7] Maliheh Izadi, Abbas Heydarnoori, and Georgios Gousios. 2021. Topic recom-
mendation for software repositories using multi-label classification algorithms.

49



On the Evaluation of NLP-based Models for Software Engineering NLBSE’22, May 21, 2022, Pittsburgh, PA, USA

Empirical Software Engineering 26, 5 (2021), 1–33.
[8] Lin Jiang, Hui Liu, and He Jiang. 2019. Machine learning based recommendation

of method names: how far are we. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 602–614.

[9] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from diffs using neural machine translation. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 135–146.

[10] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. 2019. Auto-
matic generation of pull request descriptions. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 176–188.

[11] Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming Zhu, and
Jianling Sun. 2020. API-misuse detection driven by fine-grained API-constraint
knowledge graph. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 461–472.

[12] Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova. 2021. Reassessing auto-
matic evaluation metrics for code summarization tasks. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1105–1116.

[13] Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale Panichella,
Sebastiano Panichella, Danielle Gonzalez, and Mehdi Mirakhorli. 2020. DeepTC-
Enhancer: Improving the readability of automatically generated tests. In 2020

35th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 287–298.

[14] Gias Uddin and Foutse Khomh. 2017. Automatic summarization of API reviews. In
2017 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 159–170.

[15] Yaza Wainakh, Moiz Rauf, and Michael Pradel. 2021. IdBench: Evaluating Seman-
tic Representations of Identifier Names in Source Code. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 562–573.

[16] Haoye Wang, Xin Xia, David Lo, John Grundy, and XinyuWang. 2021. Automatic
Solution Summarization for Crash Bugs. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 1286–1297.

[17] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and
William GJ Halfond. 2019. Recdroid: automatically reproducing android applica-
tion crashes from bug reports. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 128–139.

[18] Yu Zhou, Xin Yan, Taolue Chen, Sebastiano Panichella, and Harald Gall. 2019.
DRONE: a tool to detect and repair directive defects in Java APIs documenta-
tion. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). IEEE, 115–118.

50




