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Preface

In accordance with fulfilling the requirements of obtaining a Master of Science degree at the Delft
University of Technology, the main findings of the Master thesis research are presented in this report.
This report mainly deals with presenting the results following from an extensive analysis of an MRO
database related to forecasting models within the airline maintenance operations domain. The findings
are used to formulate an improved methodology for applying forecasting methods, by considering
statistically correlated causal factors when forecasting aircraft spare parts with time-series methods.
The results show that by implementing causal factors with time-series methods, the forecasting accuracy

can be improved.

This report will be especially relevant for academia interested in optimising maintenance operations,
forecasting spare parts demand and/or identifying underlying causal factors inherent to spare parts
demand patterns. Finally | would like to personally thank Dr. ir. Wim Verhagen for his clear and
thorough guidance and input throughout the execution of the thesis research.

Keywords: aircraft spare parts, spare parts forecasting, aircraft maintenance modelling, demand
forecasting methods
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CHAPTER 1

Introduction

Existing research has indicated that it is very challenging to plan and allocate resources accurately
when dealing with spare parts, since the demand is uncertain for both the frequency and the volume of
the demand. So it is not only uncertain when demand will occur, but the volume of the demand when it
occurs is also uncertain. This leads to Maintenance, Repair and Overhaul (MRO) companies having to
incorporate large spare parts buffers in their operations, in order to ensure having spare parts available
at all times. This sub-optimal strategy can lead to very high holding costs, which, according to some
estimates, can account for 40% of the total costs for MRO'’s [7]. Additionally, it is estimated that each
year approximately $10 billion is invested in spare parts stocks [8]. Also on the other hand, having too
few spare parts can also be very costly. According to Air Transport World [9], a delay of two hours can
cost an airline close to $150,000. These figures emphasize the need for improved and more efficient
operations and policies when dealing with forecasting spare parts demand and planning accordingly.

Therefore the main problem that this research aims to tackle can be defined as: “The uncertain nature
of spare parts demand makes it very challenging for MRO's to accurately forecast the need for spare
parts, often leading to sub-optimal operations.” The objective of the proposed research is therefore to
identify methods that will help reduce the demand uncertainty and with that, improve the accuracy
of existing forecasting models and consequently improve the efficiency of maintenance policies and
operations. The scope of this research project will be limited to spare parts demand forecasting and
the thesis will focus on characterising the causal factors that may impact the demand for spare parts.

Currently, time-series forecasting methods are commonly used in practice, which rely heavily on
consistent historic data and still perform rather poorly under lumpy or erratic demand patterns. Unique
in this research is the fact that statistically correlated causal factors are taken into account with these
time-series forecasting methods, so that the estimated demand sizes can be predicted more accurately.
The identification and implementation of these causal factors are the main novel aspects of the research,
and the corresponding improved methodology of these common time-series methods can be considered
the main contribution to the academic state of the art.

This report is the Final Thesis Report which presents the methodology, results and main conclusions
of the performed thesis research. Chapter [2] will summarise the relevant Literature study that was
performed prior to the thesis research, and it will outline the research scope and relevant research
questions of this thesis. Furthermore, Chapter BJwill focus on the description of the general methodology
that is applied throughout the thesis project. After this, Chapters [4] through [7] will present the main
findings and results obtained through each of the main phases of the thesis. Finally, Chapter [8] will
conclude all findings of the thesis research and will e recommendations based on these findings.
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CHAPTER 2

Academic background and research scope

Before the research of this thesis can commence, it is necessary to be aware of the academic background
that the research deals with. This chapter will therefore describe the most relevant academic literature
related to the research topic.

2.1 Relevant academic literature

This section will describe the most relevant academic sources related to the suggested research problem.
The applied strategy in reviewing literature is first described, after which the three most important
categories of research will be summarised with relevant sources of academic literature. Finally, the
main shortcomings in the current state-of-the-art are discussed, before the research scope can be
defined.

2.1.1 Applied methodology in reviewing literature

This subsection will detail the general philosophy or strateqgy that was applied throughout the execution
of the search for credible and relevant literature sources. When looking for specific sources, the relevant
topic and the problem were always kept in the background when initially selecting research papers
based on their titles. The main research problem was defined as:

The uncertain nature of spare parts demand makes it very challenging for MRO's to accurately forecast
the need for spare parts, often leading to sub-optimal operations.

To determine whether or not a source was deemed relevant for this literature study, a series of questions
were asked as the contents of the documents were being identified. If the document in particular fails
to positively respond to any of the questions, it would be deemed to be irrelevant, and as such it would
be discarded and excluded from this literature review. Furthermore, the main objective of the paper
would also be categorized into three different categories, all of which are relevant within the scope
of this research. Any of the relevant papers would either concern itself with model building, model
evaluation or the definition of driving factors.

Model building deals with the development of a completely new forecasting model, or an improvement of
an existing model. Otherwise within Model evaluation, a paper could also focus on the evaluation of the

MSc. Thesis Exploring inherent characteristics of spare parts demand patterns I



accuracy of existing forecasting methods, by quantifying the forecasting errors and comparing between
applicable models. Finally, within the category of Definition of driving factors, a relevant paper could
also deal with investigating the main drivers or causal factors that define the characteristics of spare
parts demand patterns. Figure [2.1] shows a visual representation of this entire selection procedure and
the corresponding categories a research paper may be considered relevant for.

Is the context/domain related to
(aircraft) maintenance
operations?

Does the paper focus on
forecasting methods, their
accuracy or factors causing lumpy
demand patterns?

Does the paper focus on
Does the paper aim to formulate a evaluating the accuracy and the Does the paper focus on the
new or improved spare parts performance of existing spare (o s inherent characteristics of lumpy
demand forecasting method? parts demand forecasting demand patterns?
methods?

o Model evaluation Definition of driving factors
M | buildin; o . "
The accuracy of existing The inherent driving factors
forecasting methods is leading to lumpy demand patterns
determined, errors are measured are defined and can be used to
and compared between other assess the impact on forecasting
forecasting methods to identify accuracy and to suggest improved
the most accurate model models

New model is built from the
ground up, or existing models are
adjusted and improved based on
the identified lack of performance

of existing forecasting methods

Figure 2.1: Flowchart depicting the selection process of relevant documents for the literature review

2.1.2 Spare parts demand forecasting: model building

As described by Wang and Syntetos (2011), ‘intermittent demand patterns are very difficult to deal with
from a forecasting perspective because of the associated dual source of variation’ [10]. According to
Wang and Syntetos, Corrective Maintenance (CM) leads to demand being uncertain with regards to the
time arrival, but usually deterministic in its size, while demand stemming from Preventive Maintenance
(PM) is deterministic regarding arrival, but uncertain regarding the demand size [10]

Additionally, Wang and Syntetos state that currently, all of the forecasting methods developed in recent
years mainly focus on coping reactively with demand patterns. The authors criticise the forecasting
models for attempting to provide the most accurate modelling of lumpy demand patterns, without
questioning the demand generation process itself. Thus they identify as a main gap in knowledge that
as of yet, no efforts have been made "to characterise the very sources of such demand patterns for the
purpose of developing more effective, pro-active mitigation mechanisms" (Wang and Syntetos, 2011).

They furthermore state that they believe that it would be possible to move away from the reactive
nature of current maintenance procedures for spare parts to more pro-active methods, by studying the
demand generating process itself. As such, the authors propose a new forecasting model that is based

12 Improving the demand forecasting methods for aircraft spare parts MSc. Thesis



on both regularly planned PM and CM activities using the concept of "delay time". Delay time (DT)
modelling is a method that has been discussed in previous literature as well [11] [12] [13] and is based
on the principle that if a defective items arrives, it will lead to failure after some delay time.

The main results that the authors found is that the DT model yields more accurate results than the
Syntetos-Boylan Approximation (SBA) method. These findings hold true for both the Block based
inspection and the Age based inspection. For volumetric pumps, the average absolute error is 87.63 for
SBA and 83.29 for DT, and for peristaltic pumps, the average absolute error was found to be 36.34
for SBA and 34.11 for DT. This indeed confirms that regarding forecasting errors, the proposed DT
method does outperform the SBA method.

Wang and Syntetos also emphasize that conventional forecasting methods like a time-series based
approach, rely heavily on the availability of past data. A maintenance-based approach is not dependent
on past data, which is another advantage of using DT over SBA, especially when forecasting items that
have little historic data available. However, for this method to work, the reliability characteristics of
the items should be known beforehand, since these characteristics are linked to the input parameters
that are used by the simulation.

Regarding the investigation to find out the underlying causes and factors of spare parts demand
patterns, Wang and Syntetos unfortunately stayed rather superficial. Additionally, none of the results
support their conclusion which states that their research "offers insights as to why demand for spare
parts is intermittent’. Especially in this area, a lot of research opportunities still exist, which is why
that will be a predominant aspect within the project scope of the proposed thesis research. More
details regarding the project scope can be found in Section [2.2]

Another relevant source that deals with model building, is a relatively recent paper released in 2013
that deals with developing a forecasting method that estimates the material consumption related to
non-routine maintenance. In this paper, Zorgdrager et al. |3 focus on several regression and stochastic
models to evaluate which model performs the most accurately for forecasting the demand for scheduled
maintenance tasks. The main objective of their research is to propose a method that is able to predict
material demand specifically for non-routine aircraft maintenance.

The authors first introduce how demand for aircraft maintenance is usually characterised. According to
the authors, the classification of any demand pattern is related to its Coefficient of Variation (CV) and
its Average Demand Interval (ADI). CV provides a measure of how divergent the demand volume is, i.e.
what is the variance of the demand relative to the average demand. The ADI tells something about
how often demand occurs within a specific time frame, and provides a measure of what the average
interval is between two demand occurrences. Using these CV and ADI values, specific demand patterns
can be identified to be either of the following:

- Smooth demand (CV<0.49, ADI<1.32) : reqular demand occurrence, low variance in demand
volume, easy to forecast with low forecasting accuracy

- Erratic demand (CV>0.49, ADI<1.32) : reqular demand occurrence, large variance in demand
volume, difficult to predict demand volume

- Intermittent demand (CV<0.49, ADI>1.32) : irreqular demand occurrence, low variance in
demand volume, difficult to predict demand occurrence

- Lumpy demand (CV>0.49, ADI>1.32) : irreqular demand occurrence, high variance in demand,
difficult to predict both demand occurrence and demand volume

Figure 2.2 shows a graphical representation of these typical demand patterns that are described in the
previous list.

According to Zorgdrager et al., the demand for non-routine material can typically be classified as being
intermittent or lumpy, which is something they wish to confirm with the available dataset of KLM in
their study. Furthermore, they mention that traditional forecasting methods give accurate results for

MSc. Thesis Exploring inherent characteristics of spare parts demand patterns 13
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Figure 2.2: Typical demand patterns in the aircraft maintenance domain ||

smooth demand, but yield inaccurate results for intermittent, lumpy or erratic data. For this reason, the
authors consider a range of stochastic models that have shown to perform adequately for intermittent
or lumpy demand data, as recommended by Ghobbar et al. [14]. Zorgdrager et al. will then analyse
which of these models fits best with their data in the case study.

Subsequently, maintenance data from KLMs B737 fleet was used to analyse the demand predictability
for non-routine maintenance checks. For the selected part numbers, the required material for non-
routine maintenance was linked to scheduled maintenance tasks, thus effectively making the uncertain
occurrence of non-maintenance tasks more predictable. Consequently, the authors computed for each
forecasting model the Sum of Squared Errors (SSE) and Root Mean Squared Error (RMSE), to assess
the accuracy of both the demand probability and quantity as predicted by the forecasting models. The
results of this assessment are summarised in Figure [2.3]

140N2139-1: Forecasting model Probability Quantity

Cabin Window SSE RMSE | SSE RMSE

AL Weighted Mean 0.60 0.31 571.17  9.75
Linear 0.07 0.13 158.5 6.29
Weighted Linear 0.29 0.27 772 13.8
Weighted Exponential 0.79 0.44 97.52 4.9
Weighted 2nd Polynomial | 0.27 0.30 206.70 8.30
Weighted 5th Polynomial | 0.00 0.00 0.00 0.00
MA 0.05 0.09 52.80 2.96
EMA 0.04 0.08 26.65 2.10
Savitzky Golay Filter 0.04 0.08 15.58 1.61
SES 0.00 0.00 0.00 0.00
Croston 0.06 0.10 6.25 1.02
SBA 0.50 0.29 250.65 6.46

Figure 2.3: Overview table showing the SSE and RMSE values for all forecasting models ||

Based on the results presented in Figure [23] the authors conclude that when regarding overall
forecasting accuracy, regression forecasting models are not suitable for predicting non-routine material
demand, while stochastic models show significant better performance, partly due to the high reactiveness
of these models and their ability to adapt to the irreqular demand patterns captured by them. Overall,
the authors choose the EMA method as the most suitable method for forecasting parts demand for
non-routine maintenance tasks, due its low error values and its ability to capture general demand

14 Improving the demand forecasting methods for aircraft spare parts MSc. Thesis



trends.

With this method, the authors have successfully shown that it is actually possible to improve the
predictability of the demand for parts due to non-routine maintenance by linking them to the scheduled
maintenance tasks.

The results of this paper provide more insights on how to reduce uncertainty of a certain sub-set of
demand for parts, specifically those required for non-routine maintenance. Even though the findings
are restricted to non-routine maintenance demand, similar methods could be applied when dealing
with more general demand patterns. Especially the insights regarding the grouping of parts in case of
low availability of historic data, or linking the probability of demand occurrence to other events that
are more predictable, can highly benefit the research methodology proposed for this thesis.

2.1.3 Spare parts demand forecasting: model evaluation

The sources detailed in this subsection are relevant for the category of evaluating the errors of spare
parts demand forecasting models. Many of the sources look at existing forecasting models that are
identified to perform well, and the authors try to determine the most accurate model by comparing
forecasting errors between the models. These insights can then be used to further improve these
forecasting models.

In 2003, Adel A. Ghobbar and Chris H. Friend conducted a research on developing a predictive model
that can indicate which existing forecasting methods are most appropriate to be used by airline
operators and MRO organisations. Starting with the definition of the state of the art, the authors
describe demand forecasting to probably be the biggest challenge in the MRO industry, as airlines
face a common problem of needing to know the short-term spare part demand with high accuracy [14].
The authors’ work will focus on achieving the following two main objectives of their research [14]:

- To analyse the behaviour of different forecasting methods when dealing with lumpy and uncertain
demand. According to the authors, the performance of a forecasting method should vary with the
level and type of lumpiness (i.e., with the sources of lumpiness).

- Based on the forecast accuracy measurements and the results of their statistical analysis, a
predictive model is developed successfully for each of the 13 forecasting methods analysed.

To reach these objectives, the authors have selected 13 forecasting methods to consider in their study.
They use sample data from Fokker, BAe and ATR, taking into account only repairable parts with
unpredictable and recurring demand behaviour. The weekly demand levels in these data sets were
grouped together to give overviews of monthly and quarterly intervals of demand, with corresponding
ADI- and CV-values. Almost all of the data were categorised to be either lumpy or intermittent. The
Microsoft Excel tool solver was used to estimate the optimal smoothing parameters that will minimize
forecasting errors, before initialising their forecasting methods and measuring the accuracy of the
models by using the Mean Average Percentage Error (MAPE) metric.

An Analysis of Vartance (ANOVA) was then used to determine the impact of ADI, CV, Seasonal Period
Length (SPL) and Primary Maintenance Process (PMP) on the forecasting errors, specifically the
MAPE metric, in order to gain an understanding of the significance of sources of lumpiness. The
p-values resulting from this ANOVA were analysed to determine if a factor was significant or not, with
a p-value being lower than a significance level of 0.01 or 0.05 (depending on the model and factor)
indicating a significant relationship. Applying this methodology yielded the following main results:

- The highest forecasting error occurs when Winter's method (either AW or MW) has to forecast
demand with high variation.

- Weighted moving averages is much superior compared to exponential smoothing

- WMA, EWMA and Croston's method show the best performance compared to the other models
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- The impact of demand variability (ADI and CV?) on forecast errors is significant, with an increasing
demand variability leading to an increased MAPE.

- Generally, hard-time components show to have more effect on increasing the forecast error
compared to condition-monitoring components.

- An increased SPL will reduce the average forecasting error for all methods.

The fact that the WMA approach is superior was also found by the research performed by Zorgdrager
et al. Furthermore, the superiority of both WMA and Croston's method is once again confirmed. In
addition, it is good to see that the authors add knowledge to the state-of-the-art by finding results
that indeed confirm that the extent of lumpiness has an impact on the forecasting error, even though
there was existing knowledge on the fact that lumpy and erratic patterns lead to inaccurate forecasting
results in general. An interesting take in this research is that the authors did not only consider which
forecasting model had the least errors, but they also evaluated the impact of some of the underlying
factors of lumpy demand.

Another paper that deals with the evaluation of forecasting models, is a research conducted by A. A.
Syntetos and J. E. Boylan in 2005 [15]. Like many other authors, Syntetos and Boylan start their paper
by explaining the difficulties of forecasting spare parts, due to the demand patterns showing a dual
source of variation.

According to Syntetos and Boylan, the current state of the art and the standard method in forecasting
spare parts is Croston's method. Croston successfully proved the biased nature of SES models when
applied in an intermittent context [16]. Even though Croston's method was claimed to be unbiased,
Syntetos and Boylan did show that it was positively biased, therefore over-estimating mean demand.

Subsequently, they suggested an adjusted and improved version of Croston’s method, which was
deemed to be an approximately unbiased forecasting method called the Syntetos-Boylan Approximation
(SBA) [17]. They also devised the SY method, which is another modification of Croston’s method, which
appeared to be exactly unbiased [18].

Therefore, it is necessary to find out which model actually shows the minimum variance and thus can
be determined to be an unbiased estimator of mean demand. In their research paper, Syntetos and
Boylan evaluate the variance explicitly for SES, Croston’s method, the SY method and the SBA method.
Unfortunately though, no actual results and values are computed, as the authors aimed to provide the
relevant equations and relations, which could then potentially be used for further analytical work. As
such, the authors can not conclude themselves which model shows the least variance, and thus is the
most unbiased estimator.

The next model evaluation paper that will be outlined is that of Wallstrom and Segerstedt (2010) [4].
Unlike the other papers, this research deals with evaluating several forecasting error measurements,
instead of focusing on the accuracy of the most commonly used forecasting methods. The authors point
out that in existing research, evaluations of forecasting methods are often carried out using only one
measure of error, most commonly with the Mean Absolute Deviation (MAD) or with the Mean Squared
Error (MSE).

The authors start their paper by briefly describing the governing equations which are used in the
four forecasting methods that will be applied in their research. SES is explained to be very efficient
in providing short-term forecasts for smooth demand patterns, depending on the proper selection of
a smoothing constant. As stated by other research papers, the authors also state that SES is very
inaccurate under intermittent circumstances, and describe Croston’s method to be effective for these
demand patterns. Since the Croston method was still shown to be biased [18], a model adjusted by
Syntetos and Boylan is also described, which the authors call CrSyBo. Finally, another modified
Croston method is described, which is a model that forecasts the demand rate directly, and like SES
also requires one smoothing constant.

For the four forecasting methods, the number of items showing the lowest error for each type of error
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measure was then counted. An example of an overview of MSE results is presented in Figure
Looking at this figure, it can be seen that regarding forecasting performance, SES showed the lowest
MSE values. In a similar fashion, results are presented and discussed for remaining error measures as
well.

MSE Mean Naive

ModCr Croston CrSyBo SES ModCr Croston CrSyBo SES

0.025-0.30 8 4 16 44 7 6 24 35
0.025 7 7 15 43 6 9 21 36
0.05 4 3 31 34 6 10 27 29
0.075 5 1 48 18 5 2 44 21
0.10 4 1 58 9 4 2 55 11
0.15 2 3 64 3 4 2 60 6
0.20 0 3 68 1 2 2 66 2
0.25 0 0 72 0 2 2 67 1
0.30 0 0 72 0 1 0 70 1

Figure 2.4: One example of a results table from Wallstrom and Segerstedt's research [4]

The authors conclude their paper by stating that while evaluating the several forecasting methods
ModCr showed the most bias errors, followed by Croston. Based on the results, ModCr would
overestimate the demand consistently, thus making it the least suitable method. The authors also
mention that none of the forecasting methods are completely free of bias in all cases, and at some point
will show bias. Therefore they suggest that it should always be important to have methods that can
detect the bias (and not only the error), so proper corrections can be implemented in the forecasting
methods.

The final research paper that was found to be relevant regarding the evaluation of forecasting models
is the one written by Regattiert et al. in 2005 [5]. Using data from Alitalia, Regattieri et al. analyse
the behaviour of forecasting models under lumpy conditions, and they identify the effectivity and
accuracy of models that are used to forecast aircraft spare parts. Referring to Ghobbar and Friend’s
research [19] the authors mention that only 10% of companies actually use forecasting models, while
the majority of airlines usually base their predictions on their operational experience, annual budgets
and recommendations provided by manufacturers.

The proposed methodology by Regattieri et al. first starts with measuring the degree of lumpiness in
their data set, continued by the selection of forecasting models to be evaluated, and concluded with an
evaluation of error values. Figure [25] shows the degree of lumpiness by plotting the ADI and CV values
for each of the five components. Since all of the components have ADI and CV values over 1.32 and
0.49 respectively, it becomes very apparent that all of these components show lumpy demand patterns.
It can also be seen that item w is the most lumpy (largest CV and ADI values), while item z is the
least lumpy (smallest CV and ADI values).

Furthermore, Figure |2.6[ shows the performance of the forecasting methods in general, with the position
scores either summed or averaged to indicate the accuracy of each method. In this case, the lowest
total score represents the best performance. Based on these results, the conclusion can be drawn that
the WMA method performs best across all boards (at least regarding forecasting accuracy), followed by
Croston’s method. Additionally, the error values are also graphed for each item and forecasting method
combination, as shown in Figure [2.7]

From this graph it can already be seen on first glance that regardless of item type, WMA and Croston
show the lowest error values. However, a more interesting note is that the item lumpiness is actually
the determinant factor for the magnitude of errors, and not necessarily type of forecasting method.
These results are also in accordance with Figure [2.5] as item w had the highest lumpiness and as such
shows the highest error values, while item z had the lowest lumpiness and shows the lowest error
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Figure 2.5: Degree of lumpiness for each component type (based on monthly CV and ADI) |

Method Total score Average score
WMA 8 1.6
CROSTON 18 3.6
EWMA 21 4.2
TAES 21 4.2
SRM 24 4.8
Mw# 24 6.0
AW 31 6.2
SES 34 6.8
MA(12) 54 10.8
MA(11) 56 11.2
MA(9) 58 11.6
MA(10) 58 11.6
MA(8) 60 12.0
MA(7) 61 12.2
MA(4) 70 14.0
MA(S) 73 14.6
MA(6) 76 15.2
MA(3) 89 17.8
DES 95 19.0
MA(2) 98 19.6

Figure 2.6: Overall performance of forecasting methods, with total and average scores ||
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Figure 2.7: Plotted MAD/A values to indicate method accuracy for each item
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values, accordingly.

The research of Regattieri et al. is very relevant for this thesis research, as the authors not only present
results that show which method performs best, but they also underline that in the general picture,
item lumpiness is the main factor that impacts forecasting inaccuracies, while the specific forecasting
method is of secondary importance. Similar to the findings of Regattieri et al, a study conducted by
Kostenko and Hyndman (2006) [20] also confirms that the magnitude of CV/? impacts the accuracy of
the selected forecasting method. Additionally, in a research performed by Petropoulus et al. (2014) [21],
the best-performing forecasting methods are selected based on not only CV?, but also on other demand
characteristics such as the length of the series, the seasonal period length and the forecasting horizon.

With regard to selecting and applying suitable forecasting methods, some authors also apply bootstrap-
ping methods which have shown advantages in certain conditions [22] [23], but they are computationally
demanding since the calculations are rather complex. This is also why they are not often implemented
in practice. Furthermore, a recent study by Syntetos [24] has shown that the advantages of these
bootstrapping methods over conventional methods are questionable. This is why improving time-series
forecasting methods will be a focal point in this thesis research

2.1.4 Definition of driving factors

This subsection will outline the most important literature that focuses the inherent characteristics
generating spare parts demand. Even though research on this specific topic is rather scarce, some
relevant sources could still be identified. Some of the few authors that are particularly concerned with
the actual underlying sources of demand patterns, are A. A. Ghobbar and C. H. Friend. Their papers
on evaluating model errors are already discussed in the previous subsection, but they also have an
interesting piece of work on the investigation of sources of demand lumpiness [25].

Ghobbar and Friend believe that environmental factors can have an impact on the extent of lumpiness
of demand. To verify this hypothesis, they select a number of factors to investigate whether or not they
have an effect on lumpiness in spare parts demand. The factors that are included in their experiment
are the following:

Primary maintenance process (PMP)

Aircraft utilization rate (AUR)

Component'’s overhaul life (COL)
- Square coefficient of variation (CV?)

- Average inter-demand interval (ADI)

By using an ANOVA method, their aim is to find and compare p-values, which quantify the level of
impact a factor can have on lumpiness. Their findings show that all factors and their interactions were
highly significant, thus implying that these factors most likely have an impact on demand lumpiness.
It also appears that the coefficient for AUR is positive, which implies a positive correlation between
aircraft utilisation rate and demand size.

The authors conclude their paper by stating that AUR, COL and PMP are major sources in increasing
the demand size, which they believe can aid material managers in providing a clearer picture and
could therefore lead to substantial benefits. Additionally, the authors mention that understanding the
sources of lumpiness is important in choosing a proper forecasting method.

The findings presented by the authors are very much in line with the proposed thesis research, and
can thus form a fundamental basis for the methodology to be executed at a later stage. Especially the
fact that there is a way that implementing these insights could contribute to improvements in practice,
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is an important result that further solidifies the need for the proposed research, and it is an indication
that the research could lead to promising results.

The paper called 'Reliability and operations: keys to lumpy aircraft spare parts’, written by A. F. Lowas
IIl'and F. W. Ciarallo in 2015 [6] is one of the first research papers that mainly focuses on the reasons
for aircraft spare parts to show lumpy demand patterns. These insights are then used to provide
suggestions on how to improve the reqularity of spare parts demand, thus allowing opportunities to
improve forecasting accuracy. The authors start their paper by reviewing existing studies that deal
with the difficulties involved in forecasting for lumpy demand patterns. Like other authors, Lowas IlI
and Ciarallo investigate the existing forecasting methods and how to deal best with intermittent or
lumpy demand patterns, as they summarise the main findings of existing research.

The main objective of Lowas Il and Ciarallo’s research is stated to be to empirically demonstrate
the underlying factors for lumpy spare parts demand, by uncovering probable reasons that affect the
lumpiness of spare parts demand. Furthermore, the authors use Weibull-based models to simulate the
failure of (and therefore, demand for) replaceable aircraft components. Since 93% of non-structural
components are cited to exhibit a constant failure rate [26] the failure probability density function can
be modeled by an Exponential function with constant failure rate. With that, the scope of the research
is limited to non-repairables components fitting the Weibull distribution of failure models.

In this research, Buy Period (BP) is considered to be an inherent characterizing factor that may impact
demand lumpiness, and it is assumed that each aircraft has a life of 20 years, and the aircraft in the fleet
are acquired evenly over a BP of 1, 2, 4, 8 or 16 years. Another characterising factor that is considered
is the Fleet size, which is assumed to consist of 8, 32, 128, 512 or 2048 aircraft. Each simulation will
also be replicated 50 times to ensure statistical significance, and with 3000 unique combinations of the
previously mentioned variables and Weibull parameters, the total number of simulations will amount to
150,000.

The results showed that 76% of the cases had output that could be characterised to be lumpy. Based
on the results, it can also be stated that there is a strong correlation between ADI and CV, meaning
that a higher ADI will usually also come with a higher CV. The appropriateness of selecting a Weibull
distribution to simulate the results is also proven by fitting the Weibull graphs onto actual engineering
data for a C-135 ruddervator, F-15 speed brake and a F-15 radome. The Monte Carlo model results
are compared to actual demand histories in Figure [28] which shows that indeed for these types of
components, the simulated demand can be assumed to be accurately modeled with Weibull distributions.

The authors also have findings related to the effects of the aforementioned factors: fleet size, buy period
and as-built component life. According to the authors, fleet size is the most significant single factor
impacting the lumpiness of demand, with smaller fleets having dramatically higher CV and ADI values
than larger fleets. Additionally, it is stated that a fleet size of at least 256 will enable a fleet planner
to anticipate that failures will occur every quarter, with minimal variability of demand, thus making the
total demand pattern less lumpy and less challenging to forecast.

The final paper to be discussed in this Literature Review section is the most recent research paper also
considering underlying demand generating factors, which is applied to improve forecasting methods.
The paper is called Forecasting spare part demand with Installed Base information: a review’, written
by S. van der Auweraer, R. Boute and A. A. Syntetos [27] and it aims to mainly provide a literature
review on installed base forecasting methods.

The authors suggest to work with Installed Base information, which does take more factors into account
than just historical demand. The benefits of using installed base information are emphasised, with the
authors referring to previous work stating that the use of installed base information to forecast spare
part demand can lead to cost savings up to 58% [28].

The authors mainly have the objective to present a summary of existing and relevant literature in
similar fields, in order to motivate future researchers to consider installed base information as means
of forecasting for spare parts. The authors first describe the most prominent part characteristics that
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cause difficulties in forecasting spare parts demand to be as follows:

1. Part demands show very particular patterns
2. They are generated by maintenance policies and part breakdowns
3. Parts tend to have a limited amount of historical demand data available

4. They are subject to obsolescence

From an installed base perspective, the key drivers of spare parts demand are the maintenance activities,
which is very different from preventive maintenance spare parts management. With that in mind, the
authors proceed to explain how to use installed base information to forecast CM demand. They provide
the governing equations used to express the expected demand under four conditions: constant installed
base, increased installed base, decreasing installed base and fluctuating installed base. The authors
cite other authors that state that all four modifications of using installed base information can be
deemed appropriate methods (in some way or another) of forecasting demand and investigating the
causal factors.

In comparing corrective maintenance with preventive maintenance, the authors state that CM is
characterised by a stochastic arrival of demand, while the demand size is deterministic. In the case of
PM the arrival of demand is deterministic, while the demand size can often be stochastic. The authors
thus suggest that the use of installed base information might be more suited for unplanned corrective
maintenance.

According to the authors, their research shows that rich information can be made available to improve
spare parts demand forecasting. They state that the use of causal methods is appealing, but the
application of the presented information is not exclusive to causal methods alone. It is for example also
possible to use time series models in combination with installed base information.

In the research performed by B. Hellingrath and A. Cordes [29], a time-series method is combined with
causal information. The authors implement data generated from an Intelligent Maintenance System,
which is a physics-based model that considers physical characteristics of individual components and
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relates those characteristics to the probability of failure of that component.

In their research, Hellingrath and Cordes focus on integrating the IMS data with the SBA method
proposed by Syntetos and Boylan in 2001, due to its proven accuracy under lumpy conditions [18].
They execute this by using the output of the IMS data as input for determining the parameters of
the underlying pdf distribution of the SBA method. The authors also estimate the demand values
forecast by the SBA method without taking into account IMS data, after which both series of results
are compared with each other and with the actual demand data to draw conclusions regarding the
accuracy of both methods.

From the obtained findings it was found that when IMS data is included in the forecasting, the estimated
demand values are in fact closer to the actual demand values, compared to the forecasting method that
did not include IMS data. This is a very interesting finding, as this confirms for this specific data set
that considering and implementing underlying causal factors does in fact improve forecasting accuracy.
It should be noted however that only five different types of spare parts were forecasted, and these
results may not necessarily hold true for all aircraft spare parts in general.

These results do reinforce the fact that the integration of underlying factors and information could
benefit the accuracy of existing forecasting methods, thus justifying further research in this specific area.
Therefore, the integration of causal methods or underlying factors with existing time-series methods is
rightfully so a major focal point of this master thesis.

2.1.5 Main shortcomings in current state of the art

Combining the main takeaways of the reviewed literature of all three categories, it can be said
that the proposed thesis research will contribute a novel addition to each of the three discussed
categories. Following from the initial statistical analysis, the most statistically significant factors will
be implemented in the second phase of model building and adjusting.

This is also an aspect that is rarely performed in existing research. Many of the sources describe
methods to improve forecasting accuracy by changing or updating the models themselves, but this is
often done without taking into account the underlying causal factors. The research of Hellingrath and
Cordes [29] have successfully executed this, although the scope of their research was limited to a small
data set of spare parts.

Throughout the literature review, it was found that not many academic articles deal specifically with
the subdomain of both investigating inherent causal factors and implementing them to improve spare
parts forecasting methods. This imposes some difficulties in defining the current state-of-the-art and
how the existing academic knowledge can be used to devise an appropriate research methodology for
this specific issue. This does however emphasise the fact that this is actually a very novel research
area, and many improvement opportunities still exist in this area.

The few research papers that have touched upon this area have shown promising results with respect
to improvement of forecasting methods if additional factors are considered. If the research objectives
and questions as described in Section 2.2 can be satisfied properly, significant contributions can be
made to the existing academic and industrial state-of-the-art by this thesis project.

2.2 Research scope and research questions

This section details the description of the project scope of the thesis following from the identified gaps
in the literature review. It will outline which elements will be of importance during the execution of
the research, and which topics will be considered. The project scope will be limited to the proper
execution and research of four main pillars, which will be described in the first subsection. After this,
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the research questions according to the research scope will be presented in the second subsection.

2.2.1 Description of project scope

The first pillar of the thesis research is the extraction of specific data sets from the MRO data base
and the identification of the inherent characteristics of the demand patterns of aircraft spare parts.
The main issue in forecasting spare parts is not that the existing forecasting methods are inadequate,
but that they are very inaccurate for forecasting demand patterns with high variety. Therefore it can
be of significant importance to first understand which elements generate demand in an MRO and
why the demand size and frequency is so varied. If these insights can be identified, they can provide
opportunities to improve the effectivity of existing forecasting methods.

The second pillar of the thesis research concerns itself with the selection of existing forecasting methods
to be used as a baseline forecasting method. This baseline forecasting method will be applied to the
specific data sets extracted in the initial phase of the research. Furthermore, this baseline method will
be altered according to the insights gained in the previous pillar; the causal factors will be incorporated
with the adjusted forecasting methods. The altered forecasting methods will then also be applied to
the selected data sets.

The third pillar of the project scope is to measure, evaluate and compare the performance of the selected
baseline and adjusted forecasting models. This pillar will be where the findings of the previous two
pillars come together, and based on the results it will clarify whether or not the incorporation of the
identified driving factors has in fact had a positive impact on the forecasting accuracy. This step will
yleld the main results of the research, and based on these results recommendations can be provided
regarding future implementations and development.

The fourth and final pillar will be dedicated to validating the approach through the use of data sets of
additional component categories within the MRO database. The applied approach in the first three
pillars will be repeated for a selection of validation data sets, which will yield the main general
conclusions of the thesis. At this stage, a sensitivity analysis will also be performed to assess how
slightly changing the assumed model parameters may impact the general conclusions.

2.2.2 Formulation of research questions

Based on the four main pillars of Project Scope laid out in the previous subsection, the main objective
of the thesis research will be "To demonstrate that aircraft spare parts demand forecasting accuracy
will improve when inherent causal factors are taken into account while forecasting with time-series
methods’. To reach this objective, multiple research questions will have to be answered throughout the
research. The main research question that the thesis research aims to answer is the following:

- Will spare parts demand forecasting accuracy improve if inherent causal factors are taken
into account while forecasting with time-series methods?

These main question in turn also generates multiple secondary research questions, which can be
answered subsequently in order to find answers and conclusions for the primary research question.
These questions will form the underlying framework of the methodology to be applied, where answering
the secondary research question will eventually lead to findings that answer the primary research
question, and as such the objective of the thesis research will be achieved. The list of secondary
research questions is listed as follows:

1. Which underlying causal factors can be identified to have a significant impact on the endogenous
demand patterns?

2. What is the statistical significance of these factors regarding impact on specific component
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removals in the data base?

. How can an existing forecasting model be altered to incorporate the effect of the key causal

factors?

. Which error measure is suitable to be used to evaluate the forecasting accuracy of the chosen

forecasting model?

. What is the forecasting accuracy of the selected model in its baseline conditions, without taking

into account the causal factors?

. What is the forecasting accuracy of the selected model in adjusted conditions, taking into account

the causal factors?

. Can an improvement of accuracy be established when comparing the baseline forecasting method

with the adjusted forecasting method?

. Does using a different data set of aircraft spare parts components result in similar findings, thus

validating the suggested approach?
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CHAPTER 3

Methodology

With the academic state of the art outlined and the research domain described in the previous chapter,
it is now relevant to introduce the main methodology applied to the thesis research. This chapter will
therefore outline the main functions, inputs and outputs of the methodology that is applied to satisfy
the proposed research questions. Section 3.1 will describe the model that was applied, after which
Section 3.2 will detail the selected forecasting methods and error metrics. Finally, Section 3.3 will
present the proposed methodology for the altered forecasting method, and Section will describe the
Verification and Validation strategy that was applied in this research.

3.1 Model description

The model that was built to be applied in this research is quite extensive and includes multiple inputs,
outputs and functions to generate the required results. This section will outline the details of this
model and will describe the general flow of actions that is applied in this model.

Figure shows the flow of operations in the initial phase of the model. This phase mainly deals
with the selection of specific datasets within a big database. The main input for this module is the
database provided by the MRO, which contains a large number of data entries for component removals
since the 1930s. The first step is to filter this data to a more recent timeframe, so that the results are
more useful in the operations of the MRO. This timeframe is set between 2008 and 2015, to initiate the
model with sufficient data and to use more representable and consistent data in recent years.

After this, the data is selected and split further based on operator type, aircraft type and component
type. Finally, since all the component removals in the data base are registered on a specific day of
the month, it is necessary to generate monthly quantities for the component removals and the causal
factors to be analysed. This entire process will generate as outputs the monthly patterns of component
removals and the causal factors in the timeframe between 2008 and 2015 for specific operators, aircraft
types and component types. The results of this phase are presented and discussed in Chapter [4]

The patterns generated in the first phase of the model will be used as inputs for the second phase of
the model, which is depicted in the flowchart shown in Figure 3.2] The second phase of the model
mainly deals with identifying any statistical relations between the component removals and the selected
causal factors. First, a data scatter is created for component removals vs. the causal factors, after which
the Pearson’s correlation coefficient is computed to find out if there exists a statistical relation between
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Figure 3.1: Methodology of the first phase of the applied model

the component removals and the causal factors. The main output of the second phase of the model are
the values for correlation coefficients, which will be used as inputs the third phase of the model. The
results corresponding to the second phase of the model are discussed in Chapter 5]

Monthly Determine .
Generate scatter . Correlation
Component plots corrglgtlon coefficients
removals coefficients
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Figure 3.2: Methodology of the second phase of the applied model

Finally, the outputs generated in phases 1 and 2 of the model will be used in the third phase of the
model. The process of this phase is shown in Figure [33] This phase is the most important aspect of
the applied model, since it deals with applying and evaluating the baseline and adjusted forecasting
methods. First, the baseline forecasting methods are applied, after which the predicted demand volumes
will be compared to the actual demand to compute the forecast error.

Monthly Apply baseline
Component forecasting Baseline forecast
removals methods
\ 2
Monthly patterns Arf)ply adjgsted Adi df Determine Complare and
of causal factors orecasting justed forecast forecast errors evaluate
methods performance

Correlation
coefficients

Figure 3.3: Methodology of the third phase of the applied model
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Next, using the patterns of component removals, the causal factors and the corresponding correlation
coefficients, the adjusted methods are applied to the selected data sets. This will generate an adjusted
forecast, which will also be compared to the actual demand volumes to compute the forecast errors.
Finally, the performance of the baseline methods will be evaluated and compared to the performance of
the adjusted methods, to determine which methods are the most accurate in forecasting the spare parts.
The results of this phase of the model will be presented and discussed in Chapter [0]

3.2 Description of baseline forecasting methods, error metrics and causal
factors

This section will detail which forecasting methods will be applied to the selected datasets. Two
relevant forecasting methods will be selected as baseline methods, which will both be applied to the
endogenous demand data sets of the most common and relevant component categories. The baseline
methods will be the Moving Averages (MA) method and the Single Exponential Smoothing (SES)
method, which are time-series methods that are commonly used to forecast the demand of spare parts in
practice. The reason that time-series methods are used for this research, is because time-series methods
are more suitable for short term forecasting and are computationally less demanding compared to
stochastic models. Even though scientific literature shows that Croston's method is the most applicable
method in forecasting lumpy demand patterns, in this case SES will be a suitable alternative since no
zero-demand months exist in any of the component removal data subsets.

3.2.1  Moving Averages method

The MA method takes the average of the last m values of a time series to determine a forecast value [30].
Equation 3.1] shows the mathematical relation that governs the Moving Averages forecasting method.

frn = —) Yis (31)

In this equation, m is the user-set parameter that determines how much historical demand is included
in defining the average. A smaller value for m leads to a more reactive forecasting method. For the
purpose of initialising the baseline forecasting methods for this specific research, m is set at a value of
3 (months). This means that the MA forecasts presented in Section use the (moving) average value
of the previous three months to determine the forecast value for the upcoming month.

3.2.2 Single Exponential Smoothing method

The SES method is one of the most accurate forecasting methods when forecasting aircraft spare parts
demand data. It takes the forecast error into account and adjusts it with a certain smoothing constant
a. Equation [31] shows the governing mathematical equation for the SES forecasting method.

ft+1 = Qyy + (1 - a)f[ (32)

The smoothing constant is essential in determining how reactive the SES method is to its own forecast
errors, with a higher « leading to a higher reactiveness to the forecast error. Usually this value is
between 0.1 and 0.3 [31], but for the purpose of applying the baseline methods in this thesis research,
an « of 0.3 has been assumed, since the component removal data sets to be forecast are very volatile
in their demand size.
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3.2.3 Root Mean Square Error metric

To evaluate the forecasting performance of both the MA method and the SES method, the Root Mean
Square Error (RMSE) will be measured and compared. The RMSE is an error metric that sums the
squared error values of each forecast, and then takes the root of this sum. In doing so, the RMSE shows
the magnitude of the overall error that has been made by the forecasting methods. Equation 3.3 shows
the mathematical relation that was used to determine the RMSE for each forecast demand data set.

3.2.4 Mean Absolute Percentage Error metric

In addition to assessing the RMSE values of each forecast, the MAPE will also be determined for each
forecast. In contrast to the RMSE metric, the MAPE metric is not scale dependent, so it provides a
better estimate of the forecasting performance when comparing multiple methods in various databases,
since the overall demand size does not have to be taken into account. The RMSE gives a restricted
sense of the overall performance of the forecasting method, if the scale of the demand sizes are not
taken into account.

The drawback of using the MAPE metric is that it is only applicable to demand data sets without any
zero-demand months, while the RMSE metric is suitable for all demand patterns. The mathematical
relation that was used to determine the MAPE value is given by Equation 3.4]

1 a et
MAPE = — —|-100 34
n;|y| (34

t

3.2.5 Selection of causal factors

The causal factors to be selected are factors that may have an impact on the demand pattern of a
specific component. Of course there are many factors in aircraft maintenance that may impact the
demand generation of component removals. Possible examples of these factors can be listed as follows;

- Environmental effects

- Flight cycles

- Pilot complaints

- Fleet size

- Time to failure of a component

- Aircraft landings

- Operator type

- Aircraft type

- Characteristics of component type

- Maintenance policy of MRO

For the scope of this research however, the methodology will limit itself to the implementation of the
causal factors pilot complaints and aircraft landings only. The main reason for this is the abundance
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of available data in the MRO database on these specific factors, and because it is feasible to expect
a statistical correlation between the number of pilot complaints, the utilitisation rate of the aircraft
and the number of removed components. Additionally, the operator type, aircraft type and component
type will be used as factors to segregate the data in the initial phase, prior to generating the monthly
patterns of the causal factors and component removals. A more elaborate motivation for the selection of
these causal factors is provided in Section 5.1

3.3 Methodology for altered forecasting method

An approach to improving the existing methods with additional insights, is to somehow incorporate the
correlation coefficients obtained for the causal factors with the forecast demand output. The correlation
coefficients describe how strongly the component removal data would follow a relative change in the
causal factors. It is therefore also necessary to include the ratio of pilot complaints and aircraft landings
in the current month, over the average value for these factors in the past three months.

Multiplying these ratio’s with the correlation coefficients for the causal factors, will tune the forecast
value either upwards or downwards. For example, in case a certain month relatively has a lot of pilot
complaints and aircraft landings, the forecast demand output obtained from the MA or SES method
will be tuned upwards. In case there are relatively very few pilot complaints and aircraft landings, the
forecast value will be tuned downwards.

The hypothesis is that this tuning effect will reduce forecasting errors, since additional statistically
significant explanatory factors are taken into account. Equation 3.5] shows the governing relation that
will be used to improve the baseline forecasting methods. This improved forecasting methodology will
be implemented and applied in Chapter [f]

(35)

[ ( cpc - [PC1/PCO} +Ccp- [LD1/LDO])
Cpc + €D

Where;

F’ is the MA or SES demand forecast value

- cpc is the correlation coefficient for Pilot Complaints

- c1p is the correlation coefficient for Aircraft Landings

- PG is the number of Pilot Complaints in the current month

- P( is the average number of Pilot Complaints in the past three months
- LDy is the number of Aircraft Landings in the current month

- LDy is the average number of Aircraft Landings in the past three months

3.4 Verification and Validation methods

In order to ensure that the findings and conclusions are representative of reality, the suggested
methodology also needs to be verified and validated throughout the research. This section will therefore
briefly explain the applied verification and validation strategies.
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3.41 Verification strateqy

The approach is mainly verified in the initial stages of the research. The main objective of the initial
phase of the model is to correctly load and select data from an Excel environment into the MATLAB
enivornment. To ensure that this goes without errors, the method is verified by recalculating the results
found in MATLAB with Excel. The verification of the model is thereby applied by looking into any
discrepancies in the results generated by MATLAB and those in Excel. In case the results are the
same, the approach is deemed to be verified successfully.

For example, during the initial phase of the model, most of the data will be selected and imported
to generate the data patterns. The results in the data patterns are then verified by confirming that
excel yields the same quantities for random months in the time span of eight years. This process is
repeated several times for random months, and if the results are equal then it is verified that the model
successfully is able to import and handle the data base stored in Excel.

3.4.2 Validation strateqy

The applied model also needs to be validated to ensure that the results and conclusions are not
applicable for one specific situation and set of requirements only, but that the approach also is able to
successfully generate results under other conditions. In case of the described model, the validation will
be applied in the latter phase of the analysis. In the last phase, initially the baseline and adjusted
forecasting methods are applied to a few specific component types for a specific operator.

After the results and conclusions are generated for these specific component types, the whole process
will be repeated for components in other categories as well, thus validating the approach if the
additional findings are supporting the initial conclusions obtained. The validation strategy is therefore
basically applying the whole model again under different conditions for multiple different component
types. If the results of the validation are in line with the conclusions in the initial research, the method
can be deemed successfully validated.
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CHAPTER 4

Data selection and analysis of historic demand patterns

The first phase of the project concerns itself with the selection of proper databases and the identification
of the main demand characteristics of these selected databases. Using an extensive database with
endogenous and exogenous spare parts demand data from an existing MRO, the specific demand
patterns are visualised and extracted. Section [4.1] will describe the preliminary analysis that was
performed on the MRO database, which will be followed by an analysis of the demand size variation
as described in Section

4.1 Preliminary analysis MRO database

The first step was to actually analyse the available data on a preliminary level, such that an effective
and more complex analysis of the demand pattern characteristics and statistically significant factors
can be performed using MATLAB. To ensure the generation of results effectively without jeopardising
the computational efforts required, the large initial database was split into a smaller data sets with a
sample space that could guarantee efficient yet thorough analysis.

First of all, the historic timeframe of the sample space to be analysed was restricted to a timespan of
eight years, investigating all components removals occurring between January 2008 and December
2015. This period was mainly chosen due to the fact that it became apparent from the database, that
the more recent years contain more relevant, complete and consistent data. The quality of consistent
data was the main motivating factor in deciding which database to start the general analysis with. For
the remainder of the thesis research, this sample space is also restricted to demand data between
January 2008 and December 2015, to ensure more qualitative and consistent results and conclusions.

The monthly removals of all components for Fokker 50, Fokker 70 and Fokker 100 aircraft are combined
and represented in Figure [41] At a first glance, looking at the removal of all components by Fokker
between 2008 and 2015 leaves the impression that the demand patterns could be characterised to
be smooth. However, this is mainly explained by the fact that every single component type (CT) is
pooled together in this case, which negates the erratic nature of individual components in a bigger
collective group of components. In practice, any useful forecasting method would be applied for
individual components (categories), rather than for the entire batch of components in the inventory. This
emphasises the fact that the demand for spare parts should always be considered on a more detailed
level.
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Figure 4.1: Component removals of all categories and aircraft types between 2008 and 2015

It is expected that the demand patterns for more detailed component categories will show a more
erratic distribution compared to the demand pattern for all components combined. For this reason,
all the components in the sample space are grouped together with their ATA3-chapter code for each
aircraft type in the database, to identify the demand variation of certain component categories. To do
this, separate data subsets were generated for each ATA3-component for each aircraft type, yielding
the component removals per month over the same timespan of eight years.

For illustrative purposes, Figure [£2] shows the demand pattern for all components in the ATA-342
chapter for the Fokker 100 aircraft type, which represents the Attitude and Direction section of the
Navigation category. Just by looking at the distribution of demand data for this specific set of ATA-342
components, it can already be seen that the demand volumes show a larger variation compared to the
demand pattern of all components depicted in Figure 1] with monthly demand sizes ranging between
12 and 44. This is of course in line with the expectation that the demand patterns for more detailed
components will show a less smooth distribution than for all components combined.

With the developed preliminary analysis method, similar graphs are generated for each possible ATA3-
component and aircraft type combination existing in the identified timeframe. From this preliminary
analysis, it becomes apparent that the majority of the ATA3-categories of components have a commonality
of less than 1%. To ensure measurable advantages of the newly proposed forecasting method and to
minimise the computational efforts, a pre-selection was made of ATA3-categories with a commonality
higher than 3%. This subset of component removal data accounts for almost 40% of the total removals
and it will be used for further analysis, since any forecasting benefits found in this subset could lead
to significant impacts on the overall operations, due to the significance of these six ATA3-categories of
components.

This subset of data was then imported into MATLAB for further analysis of the demand pattern
characteristics. The CV2-values for each of the ATA3-component datasets was determined, to gain
insights on the degree of demand size variation for each component category. Table shows an
overview of the overall CV?-values for each of the six components, per aircraft type. The CV?-values
are calculated over the same period of eight years, between 2008 and 2015.

Looking only at the CV?-values presented in Table it can already be seen that all of the values

32 Improving the demand forecasting methods for aircraft spare parts MSc. Thesis



Fokker 100 monthly ATA-342 component removals

B January

45 m February

u March

u April
1 May

u June

u July

® August
September
October

November

December

Components removed in each month

T T T T T T T
2008 2009 2010 2011 2012 2013 2014 2015

Figure 4.2: Component removals of the ATA-342 category for Fokker 100 aircraft between 2008 and
2015

Table 4.1: Overview of CV-values for the six ATA3-component demand patterns between 2008 and
2015

2

C:;:E;:fgnt Description Commonality (%) F_50CVF_;/ggjesF_70
253 Equipment/Furnishing - Buffet/Gallery 32 5.78 1.88 255
324 Landing Gear - Wheels and Brakes 20 176 | 232 | 214
334 Lights - Exterior 3.0 2.48 1.71 2.98
342 Navigation - Attitude and Direction 4.4 1.82 203 2.8
345 Navigation - Dependent Position Determining 31 209 | 209 | 360
351 Oxygen - Crew 5.2 2.01 2.45 1.16

are over the threshold CV/?-value of 0.49, implying that all of the demand patterns in this subset show
irregularity in the demand size. The ADI-values on the other hand are 1.00 for all datasets, since there
are no zero-demand months and therefore every month demand is to be expected for each of the six
presented component categories. This is due to the fact that still many different types of unique and
more detailed components are included under the ATA3-chapter level.

Looking at the 324 category for example, Landing Gear - Wheels and Brakes includes components
ranging from nose and main wheel tires to the brake valves and sensors. For this reason, a more
detailed analysis is performed for one of these component categories on the ATAb-level. This approach
separates the parts based on their ATAb-codes, and thus this separation is based on more detailed
characteristics/categories of the individual components. As such, a more detailed analysis is performed
on the ATA-324 component category (Landing Gear - Wheels and Brakes), mainly because this category
contains the most components by far, and therefore the achieved results in this subset of data could
lead to more substantiated implications in the total database.
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4.2 CV?-analysis of Wheels and Brakes components

The 324-category in the ATA3-chapter description represents the Wheels and Brakes group of
components within Landing Gear. This section will present the results gained from a more detailed
analysis of demand patterns for the Wheels and Brakes category specifically. It should be noted
however that many subcategories of the 324-category (Wheels and Brakes) are represented within this
particular data subset with a commonality of less than 1%.

It is for that reason that all components at the ATA6-chapter description with a commonality of less
than 10% are initially omitted from the data subset. The following ATA6-chapter subcategories which
remain in the data subset for a more detailed analysis of CV values are presented in Table

Table 4.2: Overview of ATAb-categories for detailed CV analysis

ATAG6-category | Description Commonality
324-101 Main Wheel Tire (MWT) 43%
324-103 Nose Wheel Tire (NWT) 24%
324-201 Main Wheel Brake Unit (MWBU) 16%

As can be seen from this overview, the vast majority of components in the ATA3-324 category belong to
the subcategories 324-101, 324-103 or 324-201. It should also be noted that the sum of these three
subcategories accounts for 83% of all the data within the 324 category, which is in accordance with
the 80/20 Pareto-rule. All other component subcategories in the Wheels and Brakes category amount
to a volume size of less than 20% of the total.

With the data subsets now defined, the more detailed CV-analysis can be performed for the three
different Aircraft Types (ACT) between the period January 2008 until December 2015. It is assumed
that the ADI values will always be equal to 1, since in each month there will be a quantity of at
least one component. Therefore during the detailed analysis, only the CV?-values will be of interest
and the degree of demand size variation will be assessed purely on whether or not the CV? will be
above (thus erratic) or below (thus smooth) the threshold value of 0.49.

For each data subset, the standard deviation is divided by the mean of that subset, to retrieve a value
for the CV2. This process is applied to the three subcategories (324-101,324-103 and 324-201) for
three aircraft types (Fokker 50, Fokker 100 and Fokker 70), yielding nine different CV/?-values for all
of the analysed data subsets. An overview of these results is presented in Table

Table 4.3: CV?-values for selected ATA6-categories

2
ATAb6-category Subcategory description Fokker 50 E;T(kgfzugg Fokker 70
324-101 Main Wheel Tire (MWT) 0.985 1.63 0.995
324-103 Nose Wheel Tire (NWT) 0.00 170 123
324-201 Main Wheel Brake Unit (MWBU) 1.08 0.592 0.490

Looking at the preliminary results in Table it becomes clear that almost all demand patterns in the
data subsets can be classified to be erratic. The most erratic spare parts data is seen in the Main
Wheel Tire (324-101) and Nose Wheel Tire (324-103) components for the Fokker 100 aircraft, followed
by the Nose Wheel Tire (324-103) components for the Fokker 70 aircraft and the Main Wheel Brake
Unit (324-201) components for the Fokker 50 aircraft.

Interestingly, the demand pattern for MWBU components for the Fokker 70 has a CV?-value that is
exactly equal to the threshold value of 0.49. Furthermore, the NWT components for the Fokker 50
aircraft result in a CV?-value of exactly 0.00, which is an unlikely value for a demand pattern. Upon
further investigation of the data subset, it appears that this particular data subset contains insufficient
data to perform the CV?-values computations and to verify the pattern characteristics. This subset
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contains 30 entries equal to 1, which is far too few data points over a time span 8 years (and thus 96
months). Considering this fact, the data subset of 324-103 for the Fokker 50 will also be omitted from
the remainder of the preliminary analysis.

With the remaining 8 subsets of Wheels and Brakes component demand data, it can be stated that the
demand pattern for MWBU-Fokker70 will show the least erratic characteristics, while the demand
pattern for NWT-Fokker100 will show the most erratic characteristics. To gain insights on the demand
patterns themselves, an overview and discussion of the 8 subsets of data is presented in Section [4.3]

4.3 Demand patterns of components within Wheels and Brakes

In the previous section, it was determined through a detailed CV?-analysis of certain Wheels and
Brakes subcategories that all of the remaining data subsets showed erratic demand characteristics.
This confirms the hypotheses in relevant literature studies that the majority of aircraft spare parts
demand data show large variation in demand size.

In order to gain a better understanding of the underlying inherent demand-generating factors, it is
important to visualise the data subsets analysed in the Section Figures [4.3] and show the
results of the preliminary analysis of the most erratic and least erratic data subsets, respectively. The
demand patterns for the remaining data subsets are represented by Figures [A1] through [A.6] which
can be found in Appendix [l Again, all the data subsets are from January 2008 until (and including)
December 2015.

Monthly Main Wheel Brake Unit removals - Fokker 70 (CV2=I).49)
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Figure 4.3: Monthly component removals of 324-201 category for Fokker 70 between 2008 and 2016

Looking at Figure 3] it becomes clear why this specific demand pattern is the least erratic compared
to the other seven demand patterns. Almost every month in the eight year time frame has a monthly
removal quantity between 5 and 15, with outlying demand sizes being 2 at the least, or 20 at the
most. For some reason, the demand size for the MWBU component of the Fokker 70 has been rather
consistent, and could therefore perhaps be forecast with greater accuracy in the (near) future.

In contrast, Figure [£.4] shows the most erratic demand pattern of the eight analysed data subsets,
with many large outliers of demand size in many different months. The monthly demand size of the
NWT component of the Fokker 100 varies between 5 and almost 100. This large variation in monthly
demand size is of course coupled with the fact that this data subset has the highest CV?-value of the
eight investigated patterns.
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Figure 4.4: Monthly component removals of 324-103 category for Fokker 100 between 2008 and 2016

With these newly gained insights, it can be stated that the inherent spare parts demand characteristics
differ per aircraft type, but also per component type. Overall, the MWBU components show less
erratic demand patterns compared to the main/nose wheel tire components. In addition, the detailed
CV-analysis reaches the same conclusion as the preliminary analysis; the F-100 aircraft type has the
most erratic demand pattern within the Wheels and Brakes category. Also it is of interest to note that
in general, the pooling and categorisation of spare part components also affects the found CV?-values.
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CHAPTER b

Impact of Causal Factors on Component Removal data

With the most relevant components identified and their pattern characteristics analysed in the previous
chapter, it is now of importance to generate data sets for specific component removals and to relate
these statistically to other possible factors. Section [5.1] describes which demand-driving factors can
be identified, after which Sections 5.2l and p.3] present the results of the generated data sets for the
component removals and the causal factors. Finally, Section [5.4 will describe how the generated data
sets are statistically correlated to the data sets of the causal factors.

5.1 Identifying inherent characteristics of aircraft spare parts demand pat-
terns

To investigate which demand-generating causal factors impact the main findings and observations
in Chapter [4 it is important to have an understanding of how Component Removal (CR) demand is
generated in the first place. The following two subsections will outline the general flow of demand
generation in a typical MRO practice, and the corresponding causal factors that could potentially be
incorporated to improve forecasting methods.

5.1.1 The general flow of demand data in a typical MRO

This subsection will outline the general flow of demand data and any possible key factors that may
impact the monthly demand size of component removals. The general flow of demand data in the
current MRO industry is depicted in Figure B.1]

The red arrows represent the flow of actual and available data, which is present due to historic
data generated in the past. The blue arrows represent demand data generated after the occurrence
of component removals, which is used as input for Forecasting methods. Finally, the green arrows
represent the main research gap to be investigated throughout this specific thesis work, focusing mainly
on the integration of inherent demand pattern characteristics with existing high-performing time-series
models.

Furthermore, the underlying factors impacting the generation of demand data is represented by green or
yellow blocks. The green blocks represent internal factors that either contribute to a component removal
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Figure 5.1: Typical flow of demand data generation in MRO industry

or a forecast of demand, based on the current state-of-the-art of scientific and industry knowledge (as

summarised in Chapter [2). Specific examples of typical internal factors could include:

Upper-management of the MRO

The finance department of the MRO

The specific maintenance strategy of the MRO

Component removal guidelines in MRO documentation based on historic policy

Forecasting methods based on historic data (Time-series forecasting)

The yellow blocks represent external factors that may have a direct or indirect impact on the generation
of demand within the particular MRO, but which are outside the control of the MRO itself. Mapping out
these factors is essential in understanding the inherent characteristics of aircraft spare parts demand

patterns. Factors may include (but are not limited to) the following list:

- Flight data generated by each flight (pilot complaints, CNS data)

- Utilisation rate of the atrcraft

Installed base of the operator (fleet size, aircraft types)

Environmental factors like weather conditions and geographical limitations.

Finally, the blue block represents a field of expertise that can be regarded as having the most scientific
and practical contributions to the current standard forecasting models (which are often time-series
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forecasting methods).

5.1.2 Inherent key demand-driving factors to be analysed

The specific research field represented by the blue block in Figure [5.1]is generally directly related
to improving existing forecasting models and the demand size these models forecast, and it is also
the main research focus for this specific thesis project. The main objective of this research is to find
patterns and correlations in historic data and take them into account while forecasting with existing
methods. In doing so, the hypothesis is that the forecasting errors will be reduced measurably.

Of course many factors may directly or indirectly impact the actual number of component removals in
a given time period, but for the purpose of this thesis the scope is initially limited to consider four
factors. These specific factors are selected based on the available data related to these factors. Looking
back at the overview of data generation represented in Figure the initial factors of interest will be
related to Pilot Complaints and the Utilisation Rate of the aircraft, due to the significant amount of
available data related to these causal factors in the database. Furthermore, the data set will first be
split based on Aircraft type and external Operator. As such, the key demand-driving causal factors that
will be explored in this research will be:

- Indirect factor: Aircraft Operator (ACO)

Indirect factor: Aircraft Type (ACT)

Direct factor: Pilot Complaints (PIC)

Direct factor: Aircraft Landings (LND)

The first two key factors (ACO and ACT) are indirect factors that inherently determine the quantity of
the remaining two key factors (PIC and LND), which are in fact factors that may be directly correlated
to component removals. Therefore, the indirect key factors Aircraft Operator and Aircraft Type will
be used to categorise the datasets into smaller data subsets, which will then be used to analyse
any correlation between the remaining two direct key factors (PIC and LND) and component removal
quantities. The analysis of the aforementioned causal factors will be explored in further detail in the
following sections.

5.2 Indirect factors: Aircraft Operator and Aircraft Type

The available MRO database includes many different types of operators which all have an individual
demand pattern regarding Wheels & Brakes (W&aB) component removals. It is therefore interesting to
select a few operators before conducting a detailed analysis on their demand patterns to identify any
impacts of the stated causal factors. This section will describe which operators were selected for the
analysis of their causal factors, and it will present the specific demand patterns to be analysed.

5.2.1 Selection of Aircraft Operators

During Phase | of the research, there was not yet a distinction made between operators. The bulk of
data was divided only based on Aircraft types and specific component categories. This means that all
the subsets of demand data discussed in Phase |, represent Wheels & Brakes component removal data
for Aircraft types 1, 2 and 3, for all operators within the eight year time span. In the more detailed
second Phase of the research, inherent characteristics and correlations will need to be identified.
Therefore it is of importance to select appropriate operators in which these key factors can actually be
signified. The selection of these operators is based on the following two selection criteria:
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1. Data continuity for Wheels & Brakes component removals between 2008 and 2015

2. Geographic diversity in selected operators

The main selection criterion of these operators is that they need to have data continuity for component
removals, in order to draw solid and valid conclusions at a later stage in the research. A secondary
selection criterion was that the operators need to operate in geographically diverse regions, such that
any environmental differences can be associated to the presented data. With these criteria in mind,
three operators were selected for further analysis.

1. Operator 1: Regional airline in NW Europe
2. Operator 2: Domestic airline in Oceania

3. Operator 3: Regional airline in Nordic country

All three of these operators have Wheels & Brakes component removal data continuously present
between 2008 and 2015. The specific demand patterns for each of these operators for specific Aircraft
Types are presented in the following subsection.

5.2.2 Monthly component removal quantities per Operator and per Aircraft type

Figures [5.2) through [5.4] represent monthly Wheels & Brakes component removal data for operators 1, 2
and 3, respectively. The presented demand patterns are separated based on aircraft type, component
category and aircraft operator. It should be noted however that the component type categorisation
is based on ATA3-level chapter descriptions. This means that the monthly quantities represent all
components related to the Wheels & Brakes category, so no further distinction of subcategories is made
at this stage of the analysis.
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Figure 5.2: Monthly Component removal data for Operator 1

Figure 5.2 shows the monthly component removals for Operator 1, between 2008 and 2015. It is
interesting to note that this operator used all three aircraft types in this time frame, but stopped using
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Figure 5.3: Monthly Component removal data for Operator 2
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Figure 5.4: Monthly Component removal data for Operator 3

Aircraft types 1 and 2 in 2010 and 2012, respectively. It can also be clearly seen that the vast majority
of Wheels & Brakes component removals is related to aircraft type 3, with monthly removal quantities
ranging between approximately 30 and 120 units.

Looking at Figure p.3] the monthly component removal distribution for Operator 2, it can already be
seen that this operator has only used aircraft types 1 and 2 in the specific time span of eight years.
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The data shown appears to be very erratic, with monthly Wheels & Brakes component removals ranging
between one and 24 units.

Finally, Figure [5.4] shows the component removal demand pattern for Operator 3, which apparently has
only utilised aircraft type 1 in the eight year time span. Even though that the other aircraft types are
not present, this is still an interesting data set given its continuity. It can also be seen that this demand
pattern is very erratic, with a few zero demand months, and monthly quantities ranging between zero
and 35 units.

5.3 Direct causal factors: Pilot Complaints and Aircraft Landings

Before the impact of the two causal factors on the component removal rates can be assessed, it is
necessary to gain an understanding of the historic patterns of these factors themselves. For that
purpose, the number of Pilot Complaints and the number of Aircraft Landings between 2008 and 2015
will be visualised in this section. The subsets of data have been retrieved in a similar fashion as the
component removal data presented in Section [5.2] The data s first split based on operators and then
based on aircraft types, after which monthly quantities of PIC and LND have been found for each
operator, per atrcraft type.

5.3.1 Historic data patterns of Pilot Complaints

The data subset of Pilot Complaints is selected for the three operators, for each aircraft type. It is
important to note that these specific Pilot Complaints relate to the Landing Gear category (ATA 32)
only. This distinction was made because the component removals to be analysed are related to the
Wheels & Brakes category, which was the major category in the dataset. Therefore it is assumed that
most of the PIC regarding Landing Gear, are related to the Wheels & Brakes category as well.

With that, the number of monthly Pilot Complaints related to Landing Gear for each Operator are
represented in Figures through At first glance, the three figures already show a very sporadic
behaviour in the Pilot Complaints data patterns, similar to the component removal patterns. Furthermore
it becomes clear that Operator 1 used three different aircraft types, while Operator 2 used Aircraft
Types 1 and 2 and Operator 3 only used Aircraft Type 1.

5.3.2 Historic data patterns of Aircraft Landings

Since the scope of the research is initially focused on Wheels & Brakes component removal data, it
is also interesting to look at a factor that can likely be directly linked to the demand size of these
specific components. Therefore the number of Aircraft Landings will be a direct key factor which will
be researched in this thesis project as well. It is likely that there is a correlation between the number
of Aircraft Landings and the demand size for Wheels & Brakes component removals.

Before this hypothesis can be confirmed it is necessary to generate the data subsets that contain the
monthly Aircraft Landings for each operator, per aircraft type. These data patterns are generated using
the same methodology as described in the previous subsection. Figures 5.8 through [5.10] represent the
monthly Aircraft Landings for each operator and aircraft type.

From Figure 5.8 it becomes obvious that Operator 1 utilised Aircraft Type 3 most intensely, with
monthly aircraft landings ranging between approximately 3000 and 5000 times. Also it can be seen
that the utilisation of all three aircraft show rather smooth patterns, compared to the data patterns of
Component Removals and Pilot Complaints.

Figure 5.9 shows that over the eight year time span, Operator 2 slightly increased the utilisation of
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Figure 5.5: Monthly number of Pilot Complaints for Operator 1
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Figure 5.6: Monthly number of Pilot Complaints for Operator 2

Aircraft Type 2, while the utilisation of Aircraft Type 2 slightly decreased. Secondly, it can be seen
that in general, the Aircraft Landings data patterns for Operator 2 are very smooth compared to the
other operators.

Finally, Figure [5.70] shows that the number of Aircraft Landings have been rather sporadic for Operator
3, with values ranging between approximately 400 and 1200 landings. There is also a general trend of
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Figure 5.7: Monthly number of Pilot Complaints for Operator 3

Number of monthly Aircraft Landings for Operator 1
7000 \ \ ‘ ‘ ‘ T ‘

I AC Type 1
I AC Type 2
6000 AC Type 3| |

(&)
o
o
o
T
|

4000 7

Monthly AC Landings

N
o
o
o
T
I

1000 fr

e

0
2008 2009 2010 2011 2012 2013 2014 2015
Years

Figure 5.8: Monthly number of Landings for Operator 1

decreasing utilisation by this operator. With the data patterns of the direct key factors now generated
and visualised for each operator and aircraft type, the next section will detail the performed statistical
analysis to find any correlation between the causal factors and the component removal data.
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Figure 5.10: Monthly number of Landings for Operator 3

5.4 Statistical analysis of correlation between direct factors and compo-
nent removals

The available MRO data is now split into subsets which are suitable for the statistical analysis. The
statistical analysis will show which of the direct and indirect factors have a statistically significant
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impact on the component removal demand patterns. Specifically, this section will detail if there are
statistical correlations between the removal of Wheels & Brakes components and the discussed direct
factors, for each operator and aircraft type. Once those values are known, the baseline forecasting
methods can be initiated, after which the causal factors can be incorporated while forecasting. This
process will be detailed in Chapter [o]

5.41 Correlation between Pilot Complaints and Component Removals

The correlation between the Pilot Complaint data sets and W&B Component Removal data sets has
been determined by finding the Pearson’s correlation coefficients. The coefficients resulting from this
analysis represent any correlation between PIC and CR with a 95% confidence interval, where a value
of 1.0 can be interpreted as a perfect linear correlation and a value of 0.0 would mean that there is no
correlation whatsoever. It is important to note that the analysis of correlation is applied to only the first
6 years of the dataset, since the last two years will be used to validate the improved forecasting method
by generating forecast demand. Table [5.1] shows an overview of the obtained correlation coefficients
between PIC and CR, for the three operators, per Aircraft Type. Note that since Operators 2 and 3 have
not utilised all three aircraft types, the correlation coefficients for some aircraft types are not available.

Table 5.1: Overview of correlation coefficients between Pilot Complaints and Component Removal
quantities

Fokker 50 | Fokker 100 | Fokker 70
Operator 1 0.779 0.923 0.813
Operator 2 -0.067 0.269 n/a
Operator 3 -0.034 n/a n/a

The results in Table B.7] show that there is a significant correlation between the PIC and W&B CR
databases for Operator 1, across all three aircraft types. The strongest correlation exists for the Fokker
100, which has a correlation coefficient of 0.923. Unfortunately Operator 1 does not operate the Fokker
50 and Fokker 100 anymore, but for the aircraft that they still have in operation (Fokker 70) there also
exists a positive significant correlation of 0.813. The data scatter of pilot complaints versus component
removals for all three aircraft types of Operator 1 are shown in Figures through

Regarding the databases for Operator 2, there appears to not be a correlation between PIC and CR for
the F50 aircraft, but there seems to be a slight correlation of 0.269 for the F100 aircraft. Finally, there
is also no positive or negative correlation between the PIC and CR databases for Operator 3, since the
correlation coefficient is almost zero. These insights show that the Operator 1 data sets can offer the
most potential to incorporate the effects of the key causal factors when forecasting W&B component
demand sizes.

5.4.2 Correlation between Aircraft Landings and Component Removals

The correlation between the LND data base and CR data base is also obtained by determining
Pearson’s correlation coefficient, in order to estimate the potential impact of Aircraft Landings on the
monthly demand size of Wheels & Brakes component removals. Again, the results indicate if there is a
correlation between LND and CR with a 95% confidence interval, with 1.0 being a perfect correlation
and 0.0 being no correlation at all. Again, it should be noted that the statistical analysis is only
applied to the first 6 years of the dataset, to ensure efficient validation of the last two years of demand
data. Table shows the overview of correlation coefficients resulting from the statistical analysis, for
each operator and aircraft type. Again, three coefficients are missing due to the fact that their operators
have not utilised all three aircraft types.

Looking at Table it can be seen that again the data sets of Operator 1 show the most significant
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Figure 5.11: Scatter plot of PIC vs. CR for F50 of Operator 1

351 o
O

30 [
%)
9
£
©
= = )
2_25 O O Oo
8 O

= o) o)

_'_‘20 o
=
w 15[ (@) (@)
[S) o o
= e} )
o
Re) @] O O
E10- (0]
-] (@) o O
=z

5_

o} e} o

O | | | | | | |

0 2 4 6 8 10 12 14 16 18 20
Number of Component Removals

Figure 5.12: Scatter plot of PIC vs. CR for F100 of Operator 1

correlation coefficients, with values of 0.790, 0.905 and 0.772 for the F50, F100 and F70 respectively.
For Operator 2, no apparent correlation can be seen for any of their aircraft. Interestingly, for Operator
3 there appears to be a correlation of 0.463 between their F50 landings and component removals,
while there was no apparent correlation between pilot complaints and component removals. Again, to
visualise the data behind the most relevant correlation coefficients, Figures [5.14] through [5.76] show the
Aircraft Landings versus Component Removals scatter plots of all three aircraft types of Operator 1.
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Figure 5.13: Scatter plot of PIC vs. CR for F70 of Operator 1

Overview of correlation coefficients between Aircraft Landings and Component Removal

Fokker 50 | Fokker 100 | Fokker 70
Operator 1 0.790 0.905 0.772
Operator 2 -0.124 0.100 n/a
Operator 3 0.463 n/a n/a

These results indicate that the Fokker 70 data sets of Operator 1 can have the most promising and
relevant improvements when forecasting demand sizes, which is why the baseline forecasting methods
will be applied to this specific data set initially. Furthermore, the W&B component removals for the
Fokker 70 are for more than 75% accounted for by Operator 1, thus further emphasizing the significance
of this specific data set and the potential forecasting improvements that can be achieved.
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Figure 5.15: Scatter plot of LND vs. CR for F100 of Operator 1
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CHAPTER O

Application of forecasting methods

The relevant correlation coefficients are found in the statistical analysis performed in the previous
chapter, so now the forecasting methods described in Chapter [3] can be applied. This chapter will
therefore mainly focus on the application of the baseline and adjusted forecasting methods, starting
with the application of the baseline methods described in Section [6.1] Following from this, Section [6.7]
will describe how the effect of seasonality can be factored in while forecasting, after which Section [p.3]
will describe how the adjusted forecasting methods are applied to the Wheels & Brakes data sets.

6.1 Applying baseline forecasting methods

The two baseline forecasting methods described in Section [3.2] are now used to forecast the three
Wheels & Brakes components Main Wheel Tire, Nose Wheel Tire and Main Brake Wheel Unit,
specifically for the F70 aircraft of Operator 1. In the following subsections, the actual and forecast
demand data are visualised, after which the forecast errors are displayed. Finally, in order to assess
the performance of both forecasting methods, the overall forecast error is determined with the RMSE
and MAPE metrics. It should be noted that both forecasting methods will forecast demand between
2009 and 2015, using the actual demand in the same time frame as a comparison to determine the
forecast error.

6.1.1 Forecasting Main Wheel Tire components

The Main Wheel Tire components are the most significant segment within the Wheels & Brakes
category. The actual demand of the Main Wheel Tire component removals for the Operator 1 F70 are
depicted in Figure [0.1] In the same figure, the MA and SES forecast demand patterns are presented
with a blue dashed line and a red line with dots, respectively. Following from that, Figures [6.2] and [p.3]
depict the monthly forecast error produced by the MA and SES methods when forecasting the Main
Wheel Tire demand size.

From Figure it becomes clear that both the forecasting methods follow the general trend of ups and
downs in forecasting the demand data. Both methods fail to capture the truly outlying months, when
there is suddenly a month with a very high or very low demand size. While the actual demand data
size varies between 10 and almost 70 units, the forecast demand in general varies between 20 and 50
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Figure 6.1: Actual and forecast monthly demand volumes for Main Wheel Tire components
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Tires

units. This indicates that the forecast methods are less volatile than the actual demand pattern.

When looking at the forecast performance of both methods, as depicted in Figures [6.2 and [6.3] both
methods show a similar error pattern. Many months are underestimated and overestimated, with some
months being underestimated by more than 25 units, which is quite significant. To assess which method
performed best, the error values of the baseline MA method and SES method have been determined to
be as follows:

- RMSE for Moving Averages method equals: 9.34
- RMSE for Single Exponential Smoothing method equals: 8.71
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- MAPE for Moving Averages method equals: 29.3%
- MAPE for Single Exponential Smoothing method equals: 28.8%

These RMSE and MAPE values indicate that the general average magnitude of error for the MA
method is higher compared to the SES method. Based on these facts, it can be stated that for this
specific data set, the SES method yields a more accurate forecast demand.

6.1.2 Forecasting Nose Wheel Tire components

The Nose Wheel Tire components are also forecast with the MA method and SES method. The results
of these forecasts is presented in Figure [6.4] It can already be seen that the overall demand size of
NWT components is less than MWT components, but the variability is still very high. Again, both
forecast methods fail to accurately predict the months with extremely outlying demand sizes. Both
of the methods also follow the same general trend, while the MA method is slightly more volatile
compared to the SES method.
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Figure 6.4: Actual and forecast monthly demand volumes for Nose Wheel Tire components

Figures [6.5] and [6.6] show the monthly forecast error graphs for both of the forecasting methods. The
graphs represent the fact that both methods are rather inaccurate in general, as many months are
either underestimated or overestimated. In the extreme cases, both methods often underestimate or
overestimate the demand size with more than 10 units, which is a fairly significant amount. To determine
the forecasting accuracy of MA and SES for the Nose Wheel Tire data subset, the RMSE values have
been determined to be:

- RMSE for Moving Averages method equals: 6.51
- RMSE for Single Exponential Smoothing method equals: 6.07
- MAPE for Moving Averages method equals: 25.6%
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- MAPE for Single Exponential Smoothing method equals: 24.5%

Looking at both the RMSE and MAPE values, again it can be said that the SES method slightly
outperformed the MA method. The obtained RMSE values are also lower than the RMSE values of the
Main Wheel Tire data set, but this is due to the fact that the magnitude of overall demand sizes (and
therefore the magnitude of forecast errors) is lower for Nose Wheel Tires than for Main Wheel Tires.
When looking at the MAPE values, it can be seen that they are in roughly the same range as the
MAPE values for MWT components, which further demonstrates the fact that the MAPE metric is less
susceptible to the magnitude of overall demand sizes, in comparison to the RMSE metric.

6.1.3 Forecasting Main Wheel Brake Unit components

Finally, the Main Wheel Brake Units are a significant portion of the Wheels & Brakes data set, which is
why the demand volumes of these specific components are also forecast with the MA and SES method.
Figure [b.7] shows the actual and forecast demand volumes for Main Wheel Brake Unit components
between 2009 and 2015, and Figures [6.8] and [6.9 show the corresponding forecast errors produced by
the MA and SES method, respectively.

Figure [6.7] shows that the overall demand sizes for MWBU components are lower compared to MWT
and NWT components. This leads to the forecast values for MWBU components being less volatile, in
comparison to the forecast values for MWT and NWT components. As can be seen from Figure [b.7] the
forecast values range between 4 approximately 10, while the actual demand size varies between 1 and
17 units. Once more, the MA method seems to be more sensitive to extremes compared to the SES
method.

Looking at Figures [.8] and [6.9] the performance of the MA method and SES method can be determined.
Again, both methods have underestimated and overestimated the demand sizes in most of the months,
but the overall forecast error is less compared to the MWT and NWT component data sets. Finally, to
compare the forecasting accuracy of the two forecasting methods for the Main Wheel Brake Unit data
set, the RMSE and MAPE values have been determined as follows:

- RMSE for Moving Averages method equals: 2.68
- RMSE for Single Exponential Smoothing method equals: 2.28
- MAPE for Moving Averages method equals: 49.8%
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Figure 6.7: Actual and forecast monthly demand volumes for Main Wheel Brake Unit components
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- MAPE for Single Exponential Smoothing method equals: 42.6%

Interestingly, the RMSE values for the MA method and SES method are very similar, with SES
outperforming MA with a marginal RMSE error magnitude of only 0.4. While the RMSE results appear
to be the smallest for the MWBU component type, it should be taken into account that the monthly
demand size for MWBU components is also significantly less than the demand sizes for MWT and NWT
components. In this case, the MAPE values provide a more complete sense of the forecasting accuracy,
as they are significantly higher than the MAPE values determined for MWT and NWT components.
This indicates that the baseline forecast methods have shown the least forecasting accuracy when
forecasting Main Wheel Brake Unit components.
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6.2 Adjusting forecasting with seasonality

Looking at the actual demand data patterns as shown in the previous section, a seasonal trend can
be recognised in the data patterns of Main Wheel Tires and Nose Wheel Tires. This trend can be
explained by the fact that the quality of tires is directly related to the operating environment. Thus,
in hot summer months, the necessity to replace these specific components is increased under warm
environmental conditions. Similarly, one can expect less tire removals during the cold winter months.

The seasonal trends can also be taken into account when forecasting, in order to improve the accuracy
of the forecast. Figures[6.10] and [6.TT] show the demand patterns with a sinusoidal function fitted to the
data, to highlight the seasonal trend.

A%qal demand for Main Wheel Tires with Seasonal trend

I Actual demand

Seasonal trend

(2]
o

(&)
o

Monthly MWT removals

—_
o

0
2009 2010 2011 2012 2013 2014 2015 2016

Years

Figure 6.10: Monthly demand volumes for MWT components, with Seasonal trend

One method to take this seasonal effect into account is to tune the forecast values accordingly. With
this method, the forecast demand in a month with high seasonality will be tuned upwards, while the
forecast demand will be tuned downwards if the forecast is for a month with low seasonality. Equation
[b-T) shows the mathematical relation that was implemented to determine if adjusting for seasonality will
reduce forecast errors. In this equation, the parameter s determines how strongly the forecast should
follow the seasonal trend.

F*=F s [Y1/Y0 (6.1)
Where;

- F'is the MA or SES demand forecast value
- s s the seasonal correction factor

- Y) is the seasonal trend in the current month, given by the output of the fitted sinusoidal function

56 Improving the demand forecasting methods for aircraft spare parts MSc. Thesis



A%ual demand for Nose Wheel Tires with Seasonal trend
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Figure 6.11: Monthly demand volumes for NWT components, with Seasonal trend

- Yo is the mean seasonal equilibrium in the data set

The effects of seasonality have been incorporated for both the MA and SES forecasting methods.
Figures [6.72] through [6.75] show the resulting graphs depicting the actual demand, the baseline MA or
SES forecast, and the forecasts adjusted for seasonality. For this analysis, the seasonal correction
factor s was assumed to be equal to 0.8, which yielded the least forecasting errors.

Looking at Figures [0.12 and [6.73] at first glance it can already be seen that the forecast including
Seasonality more accurately follows the actual demand pattern, compared to the baseline MA and
SES methods. To quantitatively determine the forecasting improvements achieved by adjusting for
Seasonality, the forecasting error has been computed for each forecasting method, using a MAPE error
metric. Table [6.] provides an overview of the MAPE values for the baseline MA and SES methods, the
forecasting methods adjusted for Seasonality, for MWT and NWT components.

Table 6.1: Overview of MAPE values for baseline and adjusted forecasting methods

MAPE
Main Wheel tires | Nose Wheel tires
MA (baseline) 29.3% 25.6%
MA (adj. for Seasonality) 28.5% 30.3%
SES (baseline) 28.8% 24.5%
SES (adj. for Seasonality) 25.5% 27.4%

Based on the MAPE values presented in Table [6.] it can be concluded that tuning the MA and SES
forecast with Seasonality resulted in a better forecasting performance for Main Wheel Tires only.
Adjusting for Seasonality when forecasting Main Wheel Tires has reduced the MAPE from 29.3% to
28.5% and from 28.8% to 25.5%, for the MA and SES methods respectively. Unfortunately, accounting
for Seasonality when forecasting Nose Wheel Tire components leads to increased forecasting errors.
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Figure 6.12: Actual and MA forecast demand volumes for MWT components, including Seasonality
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Figure 6.13: Actual and SES forecast demand volumes for MWT components, including Seasonality
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Figure 6.14: Actual and MA forecast demand volumes for NWT components, including Seasonality
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Figure 6.15: Actual and SES forecast demand volumes for NWT components, including Seasonality
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These findings indicate that the sinusoidal function fitted to the Main Wheel Tire demand data is a
better representation of the seasonality, compared to the seasonality function fitted to the Nose Wheel
Tire demand data. Therefore it can be recommended to include the Seasonality trend for Main Wheel
Tires, and to not take Seasonality into account when forecasting Nose Wheel Tires.

6.3 Applying adjusted forecasting method

This section will deal with the application of the altered forecasting method as described in Section
B3| in the previous chapter. This is the method that will help answer the main research questions by
determining the forecasting improvements that can be realised when additional factors are incorporated.
These additional factors are the number of Pilot Complaints and Aircraft Landings in a recent time
frame.

As explained in Section [3.3] the time-series forecast that results from historic data will be tuned
depending on the statistical correlation between the two additional factors and the historic component
removal data. The results of the baseline and adjusted Moving Averages forecasting methods are
presented in Figures [6.T6] through [6.T8] In a similar fashion, the baseline SES forecasting method has
been altered, the results of which are found in Figures [B.T] through [B3]in Appendix B.
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Figure 6.16: Actual and MA Forecast demand for Main Wheel Tires

Figures [6.76] through [6.18] show that the adjusted forecasting method in general roughly follows the
same trend as the baseline forecasting method. The differences between the two methods are less
extreme compared to the difference between the baseline forecasting method and the forecasting method
adjusted for seasonality, as depicted in Figure [6.12) for instance.

However, by just looking at the forecasting results it is hard to determine whether the adjusted MA
method has outperformed the baseline MA method for the three components. That is why the MAPE of
each forecast is computed and presented in Table [6.2]
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Figure 6.17: Actual and MA Forecast demand for Nose Wheel Tires
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Figure 6.18: Actual and MA Forecast demand for Main Wheel Brake Units
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Table 6.2: Overview of MAPE values for baseline forecasting methods and forecasting methods adjusted
for Key factors

MAPE
Main Wheel Tires | Nose Wheel Tires | Main Wheel Brake Units
MA (baseline) 29.3% 25.6% 49.8%
MA (adj. with Key Factors) 24.8% 232% 47.6%
SES (baseline) 28.8% 245% 42.6%
SES (adj. with Key Factors) 23.6% 21.5% 42.6%

Based on the results presented in Table [6.2) it can be observed that almost all MAPE values have
decreased in magnitude after taking into account the two key factors. Only the SES forecast of MWBU
components has shown no improvement in forecast accuracy, which has stayed the same. With that, it
can be effectively concluded that tuning the time series forecast with the actual behaviour of the two
key factors generally will reduce the forecasting error and therefore improve the forecasting accuracy.
The extent of the improvement is still dependent on the component type as well, as the forecasts of
Main Wheel Tires have shown a more significant reduction in MAPE, compared to Nose Wheel Tires
and Main Wheel Brake Units components.

Since the impact of including Seasonality was also positive for Main Wheel Tires, it is also interesting
to determine how a combined method would perform, which takes into account the two key factors
as well as Seasonality. Again, this analysis is only performed for the MWT and NWT components,
since there was no seasonal trend to be observed for the MWBU components. The final results of this
combined forecasting approach are presented in Table [6.3]

Table 6.3: Overview of MAPE values for baseline FC methods and FC methods adjusted for Key
factors and Seasonality

MAPE
Main Wheel tires | Nose Wheel tires

MA (baseline) 29.3% 25.6%
MA (adj. with Key Factors) 24.8% 23.2%
MA (ad;. Wlth. Key Factors 23.7% 23.7%
and Seasonality)

SES (baseline) 28.8% 24.5%
SES (adj. with Key Factors) 23.6% 21.5%
SES (ad;j. wlt!"n Key Factors 20.7% 20.4%
and Seasonality)

As can be seen from the results in Table [0.3] altering the baseline forecasting methods with both the
Key Factors and Seasonality leads to an even further reduction of MAPE values. Compared to the
baseline SES method, the altered methodology yields a reduction of forecasting error of 8.1 and 4.1
percent point for the Main Wheel Tires and Nose Wheel Tires, respectively.

This approach has shown that the forecasting accuracy can be improved to almost 20%, thus out-
performing the baseline methods significantly. Based on these results, it can therefore be concluded
that taking into account Pilot Complaints, Aircraft Landings and Seasonality has a significant positive
effect on the forecasting accuracy for both the MA method and the SES method when forecasting
MWT and NWT components. Adjusting the MA method for MWBU components has improved the
MAPE values, while no significant impact could be determined for the performance of the SES method.
To ensure that the improved forecasting methods also yield favorable results with other component
categories in the MRO data base, the approach will be validated in the next chapter.
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CHAPTER [

Validation of altered forecasting methods

In Chapter [0] it became clear that the incorporation of additional factors while forecasting with the
MA and SES method, will lead to forecasting accuracy improvements for components in the Wheels &
Brakes category. In order to ensure that the method is validated and the same results can be expected
with multiple types of components, this chapter will deal with the application of the adjusted forecasting
method to additional datasets of components that do not necessarily belong to the Wheels & Brakes
category. Section will describe the component categories that will be used for the validation,
followed by Section [72] which will describe the main results of applying the adjusted methods to the
validation datasets. Section will present an evaluation of the performance of the adjusted method
and finally Section [7.4 will describe the sensitivity analysis that was applied to conclude the research.

7.1  Description of validation datasets

To validate that the adjusted forecasting method will also lead to forecasting improvements for component
types other than Wheels & Brakes, a total of twelve additional datasets from several other component
categories have been selected for the validation phase of the analysis. These datasets are mainly
selected based on the largest commonality (i.e. the percentage of how much a specific component
category is represented within the total database) after Wheels % Brakes, all of which have a commonality
between 1% and 5%. The selected component categories are described in an overview in Table [71]
The actual demand patterns themselves will be presented in Section [7.2] together with the forecast
demand. Also it should be noted that the selected component categories all belong to the F70 aircraft
type of operator 1.

Looking at the overview presented in Table [/7] it can be seen that the majority of the validation
datasets can be classified as erratic, as many of the CV?-values are over the threshold value of 0.49.
Furthermore, even though the data subsets with the highest commonality are selected, the majority
of the validation data still show a commonality of less than 3%. This is due to the vast number of
component categories that are available in the MRO dataset, with the majority of component categories
having a commonality of less than 1%. With the additional component categories of the validation
datasets amounting up to approximately 30%, a more generally valid sense of the performance of the
adjusted forecasting method can be determined.
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Table 7.1: Overview of component demand data subsets to be used for validation

ATA3-code Component category Commonality | CV?
Component type 1 212 Air conditioning - Distribution 1.5% 0.75
Component type 2 215 Air conditioning - Cooling 1.1% 0.84
Component type 3 221 Auto flight - Autopilot 2.8% 0.54
Component type 4 231 Communications - Speech 1.3% 0.78
Component type 5 235 Communications - Audio integrating 2.8% 0.58
Component type 6 253 Equipment/furnishing - Buffet/galley 3.2% 0.34
Component type 7 291 Hydraulic power - main system 1.2% 1.30
Component type 8 323 Landing gear - Extension and Retraction 1.1% 0.84
Component type 9 334 Lights - Exterior 3.0% 0.46
Component type 10 342 Navigation - Attitude and Direction 4.4% 0.43
Component type 11 345 Navigation - Dependent Position Determining 3.1% 0.52
Component type 12 351 Oxygen - Crew 5.2% 0.19

7.2 Application of baseline and adjusted FC methods on validation datasets

With the validation datasets selected as described in Section [7.1] it is now possible to apply the
baseline and adjusted forecasting methods to the validation datasets. The results of the demand forecast
will be presented in this section, after which the forecast errors will be evaluated in Section B The
MA, SES and adjusted forecasts of component type 1, 7 and 12 are represented in Figures [71] through
[76] These three component types are selected to depict how the forecasting methods deal with the

most smooth dataset (CT12), the most erratic dataset (CT7) and a dataset with a high CV-value (CT1).

The remainder of the results for each component type can be found in Appendix [C]
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Figure 7.1: Actual demand, MA forecast and adjusted forecast for component type 1

Based on Figures[/]and [/ it is not directly clear from visual inspection which method was the most
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Figure 7.3: Actual demand, MA forecast and adjusted forecast for component type 7
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Figure 7.6: Actual demand, SES forecast and adjusted forecast for component type 12

accurate in forecasting the spare parts of CT1, but it does seem that the adjusted method follows the
outlier months more accurately. Judging from Figures [/.3)and [7:4] the adjusted MA and SES methods
are more suitable to forecast the spare parts of CT7/, which is the most erratic data set of the validation
data sets. This can especially be seen from the fact that the adjusted MA and SES methods are more
accurate in forecasting the most outlying month in 2011.

Finally, looking at Figures[75] and [7.6] it appears that the adjusted methods are less accurate than the
baseline methods in forecasting the spare parts of the smooth CT12 data set. This can be observed
from the fact that the demand volumes predicted by the adjusted methods appear to be more volatile
compared to the actual demand pattern and the demand forecast by the baseline methods. These
observations initially imply that the adjusted methods are more accurate in forecasting erratic demand
patterns and less accurate in forecasting smooth demand patterns. To confirm these conclusions, the
performance of the baseline and adjusted methods will be evaluated in Section [/.3]

7.3 Evaluation of forecast performance of the applied methods

This section will evaluate the forecast errors of the baseline and adjusted forecasting method on the
validation datasets. However since some of the validation datasets contain few zero-demand months,
the MAPE error metric is not suitable to be used for the evaluation, as the MAPE produces computation
errors when dealing with zero-demand months. For the evaluation, the RMSE error metric which
was introduced in Chapter 3 would be more suitable, but a major drawback of this metric is its scale
dependency. This fact makes it challenging to effectively compare the forecast of multiple datasets
solely using the RMSE metric, since the average demand volumes and scale of the data also has an
impact on the value of the RMSE.

For this reason, a normalised measure of the total error will be introduced first, since this metric
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is most suitable for comparing the forecast performance on multiple datasets. This metric is called
Theil's U-statistic and is mathematically represented by Equation [/1] Theil's U-statistic yields a value
between 0 and 1, with smaller values of the U-statistic indicating a better forecasting performance,
where a U-statistic equal to O represents a perfect fit [32).

(:‘

R

To confirm whether the suggested adjusted forecasting methods improve the accuracy of the validation
data sets, the Theil's U-statistic has been determined for the baseline methods and the adjusted
methods, for each component type dataset. The statistical relation to Pilot Complaints and Aircraft
Landings has also been determined for each data set, in a similar fashion as described in Section
b.4 Table [/ shows an overview of the U-statistic values for the baseline and adjusted methods,
the difference between these values (0U), the CV-values and the correlation coefficients with Pilot
Complaints (CCpjc) and Aircraft Landings (CCynp) corresponding to each validation data set. Note
that in this Table, a positive 0U should be interpreted as a reduction of the U-statistic (thus an
improvement in forecasting accuracy), while a negative 0U indicates an increase of the U-statistic (and
therefore a decrease in forecasting accuracy). Furthermore, Figures[/.7] and present a graphical
representation of the U-statistic values for the MA method and SES method, respectively.

2
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Table 7.2: Overview of U-statistic values for validation data sets

CT [ CVZ| CCpic | CCnp | Uma | Uvacdj | 0Uma | Uses | Uses.ag; | 6Uses
CT1 | 075 | 0628 0.373 | 00727 | 0.0655 | 0.0071 | 0.0640 | 0.0569 0.0071
CT2 | 084 | 0531 0.285 | 01515 | 0.1276 0.0239 | 01332 0.1081 0.0251
CT3 | 054 | 0368 0.00 0.0382 | 0.0347 0.0035 | 0.0341 0.0307 0.0034
CT4 | 078 | 0379 0.275 | 01731 | 0.1666 0.0065 | 0.1540 0.1486 0.0054
CT5 | 058 | 0468 0.381 0.0571 | 0.0570 0.0002 | 0.0518 0.0527 | -0.0010
CTe | 034 | 0386 0186 | 0.0164 | 0.0168 | -0.0003 | 0.0150 0.0155 | -0.0004
CT7 13 0.391 0.233 | 01612 | 0.1370 0.0242 | 0.1504 0.1229 0.0275
CT8 | 084 | 0022 0.110 | 01560 | 01536 | 0.0024 | 01434 | 0.1413 0.0021
CT9 | 046 | 0426 0.322 | 0.0494 | 0.0499 | -0.0005 | 0.0442 | 0.0449 | -0.0008

CT10 | 043 | 0.309 0.397 | 0.0342 | 0.0310 0.0032 | 0.0306 0.0276 0.0030
CT11 | 052 | 0.292 0126 | 0.0552 | 0.0534 0.0018 | 0.0487 0.0477 0.0010
CT12 | 019 | 0.731 0.264 | 0.0036 | 0.0054 | -0.0017 | 0.0033 0.0052 | -0.0020

Looking at the results presented in Table [7Z]and Figures[/.7] and several conclusions can be drawn
regarding the performance of the applied forecasting methods. First of all, it can be stated that the
suggested methodology to incorporate the key factors has generally led to improvements in forecasting
accuracy, thus successfully validating the approach. The adjusted method has led to a minor increase
of the U-statistic in only three cases for the MA method and four cases for the SES method, thereby
decreasing the accuracy of the baseline methods slightly. For the majority of component types, a
decrease in U-statistic was found and therefore an improvement in forecasting accuracy is established.
These results show that including additional statistically correlated factors when forecasting improves
the forecasting accuracy not only for Wheels & Brakes components, but also for additional component
categories in the MRO database.

Furthermore it can be stated that overall, the baseline and adjusted SES method are more accurate in
forecasting the demand volumes compared to the baseline and adjusted MA method, respectively. This
can be concluded from the fact that all values for the U-statistic are smaller for the SES method than
for the MA method, with the smallest U-statistic values obtained for the adjusted SES method. Based
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on this fact, it can be concluded that the adjusted SES method is the most accurate forecasting method
for all component types, and therefore should be recommended as the most suitable method to forecast
the demand volumes of components within the specific MRO database.

Finally, by observing the values in the Uy and 0Usgs columns of Table [/.2] and comparing them to
the values in the CV? column, there appears to be a relation between the CV?-value of a data set and
the extent to which the U-statistic of that data set can be decreased by incorporating the statistically
relevant factors. Based on the presented results, it appears as if the data sets that inherently have
larger variation in demand size (and thus a higher CV?-value) would benefit the most from following
the trend of the causal factors, since these data sets generally show higher values for 0U. This can be
especially seen in the data sets with the highest and lowest CV/?-value, where the data set of CT7
(with the highest CV?-value of 1.3) has shown the largest improvement in the U-statistic, whereas
the data set of CT12 (with the lowest CV?-value of 0.19) shows the largest deterioration of Theil's
U-statistic.

To confirm if there exists a positive correlation between the CV?-value of a data set and the oU
that can be obtained, a linear regression has been applied on the scatter plots between these units.
This regression is depicted in Figures [7.9] and [7.10] for the MA methods and for the SES methods,
respectively. In these figures, the improvement in Theil's U-statistic after adjusting both the MA method
and SES method is shown on the y-axis, versus the CV?-value of the data sets on the x-axis. Also,
the data points in these scatter plots are numbered to indicate which component type data set they
represent. Furthermore, Table provides the R? and p-values for both linear regressions. Based on
the p-values provided in this table, it can be stated with a 95% confidence interval that there exists a
linear relation between the U and CV?2 for both of the adjusted MA and SES methods, since the
p-values are lower than 0.05.
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Figure 7.9: Scatter plot with linear regression for Uy versus CV/?
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Table 7.3: Linear regression statistics corresponding to the linear fits between dU and CV?

R’ p-value
Adjusted MA-method | 0.6547 | 0.0014
Adjusted SES-method | 0.6523 | 0.0015

7.4 Sensitivity analysis of baseline and adjusted methods

The results obtained in the research so far have indicated that generally, the existing MA and SES
methods can improve their forecasting accuracy and performance if they are adjusted to follow the
trend of the statistically significant causal factors Pilot Complaints and Aircraft Landings. However
while applying the baseline and adjusted forecasting methods, some inherent user-set parameters are
assumed, which have a direct impact on the results of the forecast. This section will therefore describe
the sensitivity analysis that was performed to determine if the main conclusions and insights found in
the initial analysis are sensitive to change if there are (minor) alterations in these user-set parameters

or not.

For both the baseline and adjusted methods several parameters and units were assumed in the analysis.
These parameters can be listed as follows:

the forecasting method is to its forecasting errors.

past months that are considered when calculating the average value of these months.

a = 0.3, the smoothing constant used in the baseline SES method. It determines how reactive

m = 3, the moving time-window used in the baseline MA method. It determines the number of

- PGy, the average number of Pilot Complaints in the past three months used in the adjusted MA
and SES methods. This average value can be adjusted to be taken from bigger or smaller time
frames.
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- LDy, the average number of Aircraft Landings in the past three months used in the adjusted MA
and SES methods. This average value can be adjusted to be taken from bigger or smaller time
frames.

The following subsections will describe if and how slightly altering the parameters described in the
previous list will impact the main conclusions of the analysis. First, a sensitivity analysis will be
applied to the user-set parameters of the baseline forecasting methods, after which the sensitivity
analysis will be applied to the parameters of the adjusted forecasting methods.

7.41 Sensitivity analysis of baseline FC method parameters

First, a sensitivity analysis is performed by varying the value used as the smoothing constant « in the
SES method. Initially this constant was set equal to 0.3 when applying the baseline SES method.
For the purpose of this sensitivity analysis, this constant is varied from 0.1 to 0.5, and the impact on
the 0U is assessed. Table presents the 0U values for each of the validation data sets, for the five
smoothing constant cases.

Table 7.4: Overview of change in U-statistic values for multiple values of «

0Usgs

CT [a=01|a=02|a=03|a=04]| a=05
CT1 0.0048 | 0.0064 | 0.0071 0.0070 | 0.0060
CT2 0.020 0.0234 | 0.0251 0.0252 | 0.0236
CT3 | 0.0031 0.0035 | 0.0034 | 0.0027 | 0.0016
CT4 | 0.0037 | 00046 | 0.0054 | 0.0056 | 0.0051
CT5 | 0.0003 | -0.0003 | -0.0010 | -0.0018 | -0.0027
CT6 | -0.0003 | -0.0003 | -0.0004 | -0.0006 | -0.0008
CT7 | 00183 | 00241 | 0.0275 | 0.0279 | 0.0250
CT8 | 0.0022 | 00023 | 0.0021 0.0015 | 0.0007
CT9 | -0.0002 | -0.0004 | -0.0008 | -0.0013 | -0.0021
CT10 | 0.0030 | 0.0032 | 0.0030 | 0.0025 | 0.0018
CT11 | 0.0009 | 0.0010 | 0.0010 | 0.0008 | 0.0004
CT12 | -0.0013 | -0.0016 | -0.0020 | -0.0023 | -0.0027

Based on the results presented in Table [7.4] it can be stated that varying the assumed value for a
in the baseline SES method leads to the same conclusions that were found in the initial research;
adjusting the baseline SES method to follow the trend of the key factors will generally lead to a more
accurate forecast of the demand size of components. This can be seen from the fact that in the majority
of cases, a positive OU is observed for the same data sets as in the initial research. Varying the value
of a does slightly impact the extent to which the accuracy of the forecast is improved (or in few cases,
deteriorates). With that, it can be said that the main conclusions of the research are not sensitive to
changes in the assumed a-parameter.

Next, the sensitivity analysis is performed by varying the time frame m used to compute the forecast in
the MA method. In the initial research, this parameter was set equal to 3 when applying the baseline
MA method. This constant is varied from 1 to 5 for the sensitivity analysis, and again the impact on
the U is assessed. Table [/5 shows the dU values for each of the validation data sets, for the five
different cases.

Based on the results presented in Table [7.5] it can be seen that varying the assumed value for m has
no impact on the general conclusions found in the initial research; the majority of the data sets would
benefit from using the adjusted forecasting methods, as the most cases show a reduction of Theil's
U-statistic (a positive dUpma). As such, the main findings in the initial research are not sensitive to
changes in the assumed parameter m. However, the assumed value for m does seem to impact the
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Table 7.5: Overview of change in U-statistic values for multiple values of m

oUma

CT m="1 m=2 m=3 m=4 | m=5
CT1 | 0.0050 | 0.0079 | 0.0071 | 0.0069 | 0.0065
CT2 | 0.0204 | 0.0262 | 0.0239 | 0.0220 | 0.0217
CT3 | 0.0004 | 0.0019 | 0.0035 | 0.0039 | 0.0045
CT4 | 0.0031 | 0.0058 | 0.0065 | 0.0053 | 0.0048
CT5 | -0.0032 | -0.0013 | 0.0002 | 0.0001 | -0.0004
CTé6 | -0.0007 | -0.0003 | -0.0003 | -0.0003 | -0.0003
CT7 | 00211 | 0.0260 | 0.0242 | 0.0201 | 0.0188
CT8 | 0.0004 | 0.0016 | 0.0024 | 0.0023 | 0.0021
CT9 | -0.0017 | -0.0013 | -0.0005 | 0.0002 | -0.0003
CT10 | 0.0001 | 0.0025 | 0.0032 | 0.0037 | 0.0035
CT11 | 0.0006 | 0.0020 | 0.0018 | 0.0011 | 0.0008
CT12 | -0.0025 | -0.0019 | -0.0017 | -0.0016 | -0.0016

extent to which Theil's U-statistic is reduced.

In some cases, altering the value of m even leads to the baseline MA method being more accurate
than the adjusted MA method. This can be seen in the results for the CT5 and CT9 data sets, where
it seems that for lower values of m, the baseline MA method outperforms the adjusted MA method.
This can be concluded from the negative dUpa-values that are observed for these component types
specifically. Although for these specific data sets the baseline MA method is more accurate than the
adjusted MA method, for two-thirds of the data sets a positive dUpma is observed, thus supporting the
conclusion that the adjusted MA method is more accurate in forecasting than the baseline MA method.

7.4.2 Sensitivity analysis of adjusted FC method parameters

Finally, a sensitivity analysis will be applied to the adjusted forecasting methods. This will be done
by varying the time window used in determining the average value for PCy and LDy, which are
respectively the average number of pilot complaints and the average number of aircraft landings, in
the past 'k’ months. For the purpose of this analysis, k is varied from 1 to 5 to determine if the
conclusions of the research are sensitive to changes in the assumed parameters in the adjusted FC
methods. Table [/.6] shows an overview of the dUpa and dUsgs resulting from the sensitivity analysis.
In this analysis, the value of the past 'k months has been varied when computing the average number
of pilot complaints (P Cp).

Judging from the results presented in Table it can be stated that altering the value of k when
computing PCp has no major impacts on the general conclusions obtained in the initial research. Still,
for the vast majority of data sets improvements in forecasting accuracy could be determined by adjusting
the baseline MA and SES methods, regardless of the assumed value for k. The assumed value for k
does impact the extent to which an improvement can be realised, with higher values for k often leading
to larger values of oU. This can especially be seen for component types 2, 4, 7 and 11, where the dU
seems to increase for increasing values of k. As such, it can be recommended to set this parameter
equal to at least three months, in order to increase the forecasting accuracy improvements that can be
realised.

Similarly, the same sensitivity analysis has been applied to the computation of the average number of
aircraft landings (LDgp), where the value of the past k months again ranges from 1 to 5. An overview of
0 U-statistic values resulting from these changes is presented in Table

Based on the results presented in Table it can be stated that altering the time frame in determining
the average number of Aircraft Landings barely has an impact on the obtained dU-values. The
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Table 7.6: Overview of change in U-statistic values for multiple values of kK months when computing

PGy
oUma 0UsEs
CcT k=1 k=2 k=3 k=4 | k=5 | k=1 k=2 k=3 k=4 | k=
CT1 | 00021 | 0.0045 | 0.0071 | 0.0062 | 0.0060 | 0.0019 | 0.0043 | 0.0071 | 0.0063 | 0.0064
CT2 | 00108 | 0.0204 | 0.0239 | 0.0242 | 0.0262 | 0.0126 | 0.0218 | 0.0251 | 0.0256 | 0.0278
CT3 | 00008 | 0.0028 | 0.0035 | 0.0038 | 0.0031 | 0.0005 | 0.0025 | 0.0034 | 0.0040 | 0.0036
CT4 | 00027 | 00039 | 0.0065 | 0.0071 | 0.0101 | 0.0019 | 0.0027 | 0.0054 | 0.0061 | 0.0095
CT5 | 0.0005 | 0.0000 | 0.0002 | -0.0004 | -0.0005 | -0.0004 | -0.0011 | -0.0010 | -0.0013 | -0.0014
CT6 | 0.0002 | -0.0002 | -0.0003 | -0.0006 | -0.0004 | 0.0001 | -0.0003 | -0.0004 | -0.0006 | -0.0005
CT7 | 00110 | 00235 | 0.0242 | 0.0299 | 0.0348 | 00143 | 0.0272 | 0.0275 | 0.0346 | 0.0395
CT8 | 00022 | 0.0021 | 0.0024 | 0.0020 | 0.0022 | 0.0020 | 0.0019 | 0.0021 | 0.0017 | 0.0018
CT9 | 0.0010 | 0.0009 | -0.0005 | -0.0006 | -0.0005 | 0.0009 | 0.0007 | -0.0008 | -0.0009 | -0.0009
CT10 | 0.0025 | 0.0035 | 0.0032 | 0.0027 | 0.0022 | 0.0023 | 0.0033 | 0.0030 | 0.0027 | 0.0024
CT11 | -0.0004 | 0.0006 | 0.0018 | 0.0024 | 0.0025 | -0.0006 | -0.0001 | 0.0010 | 0.0016 | 0.0017
CT12 | -0.0010 | -0.0012 | -0.0017 | -0.0018 | -0.0019 | -0.0011 | -0.0014 | -0.0020 | -0.0020 | -0.0022
Table 7.7: Overview of change in U-statistic values for multiple values of k months when computing
LDy
oUma 0UsEs
CcT k=1 k=2 k=3 k=4 | k=5 | k=1 k=2 k=3 k=4 | k=5
CT1 | 00070 | 0.0070 | 0.0071 | 0.0072 | 0.0073 | 0.0072 | 0.0071 | 0.0071 | 0.0071 | 0.0072
CT2 | 00229 | 00234 | 0.0239 | 0.0242 | 00243 | 0.0240 | 0.0245 | 0.0251 | 0.0253 | 0.0255
CT3 | 00035 | 00035 | 0.0035 | 0.0035 | 0.0035 | 0.0034 | 0.0038 | 0.0034 | 0.0034 | 0.0034
CT4 | 0.0064 | 0.0064 | 0.0065 | 0.0068 | 0.0073 | 0.0055 | 0.0053 | 0.0054 | 0.0056 | 0.0061
CT5 | 00001 | -0.0001 | 0.0002 | 0.0001 | 0.0002 | -0.0009 | -0.0012 | -0.0010 | -0.0010 | -0.0009
CT6 | -0.0001 | -0.0002 | -0.0003 | -0.0004 | -0.0004 | -0.0002 | -0.0003 | -0.0004 | -0.0005 | -0.0006
CT7 | 00212 | 0.0236 | 0.0242 | 0.0250 | 0.0250 | 0.0249 | 0.0267 | 0.0275 | 0.0283 | 0.0284
CT8 | 0.0022 | 0.0029 | 0.0024 | 0.0018 | 0.0011 | 0.0021 | 0.0027 | 0.0021 | 0.0014 | 0.0007
CT9 | -0.0003 | -0.0004 | -0.0005 | -0.0005 | -0.0006 | -0.0006 | -0.0007 | -0.0008 | -0.0009 | -0.0009
CT10 | 0.0026 | 0.0029 | 0.0032 | 0.0032 | 0.0032 | 0.0026 | 0.0028 | 0.0030 | 0.0030 | 0.0031
CT11 | 0.0018 | 0.0018 | 0.0018 | 0.0017 | 0.0017 | 0.0009 | 0.0009 | 0.0010 | 0.0009 | 0.0009
CT12 | -0.0017 | -0.0017 | -0.0017 | -0.0018 | -0.0018 | -0.0020 | -0.0020 | -0.0020 | -0.0020 | -0.0021

magnitude of both dUpma and dUses only slightly changes when a higher or lower value for k is
assumed. With that, it can be concluded that average number of Aircraft Landings (LDg) has a less
dominant role in the adjusted forecasting methods, and changing the assumed value for k has no major
impacts on the matin results found in the research. This less significant role of LDy in the adjusted
methods can be explained by the fact that in general, the correlation coefficients between the component
removals and the Aircraft Landings are lower compared to the correlation coefficients obtained for Pilot
Complaints.
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CHAPTER 8

Conclusions and Recommendations

With the thesis research completed and the main result obtained, it is now possible to formulate the main
conclusions and recommendations based on the findings of the research. This final chapter will therefore

first present the most important conclusions in Section [B.7} after which the main recommendations will
be described in Section

8.1 Conclusions

The main problem of the research was introduced to be as follows; “The uncertain nature of spare
parts demand makes it very challenging for MRO's to accurately forecast the need for spare parts,
often leading to sub-optimal operations” This problem description then resulted in the following main
research question: “Will spare parts demand forecasting accuracy improve if inherent causal factors
are taken into account while forecasting?”. With the performed research and the obtained results,
this main research question can be answered. The obtained results confirm that it is indeed possible
to improve demand forecasting accuracy if the patterns of statistically correlated key factors are taken
into account when using conventional time-series forecasting methods. Adjusting the baseline methods
to incorporate the behaviour of these key factors has generally lead to reduced forecasting errors for
multiple component type demand patterns analysed in this research. An initial analysis of the MRO
data base showed that the demand size variability varies per component category, and also varies per
aircraft type.

Following from this analysis, it was found that the Wheels & Brakes component category was the
most extensive category in the data base, which is why the remainder of the thesis methodology was
applied to components belonging to the Wheels & Brakes category. Subsequently, the indirect key
factors aircraft operators and aircraft type were used to select and generate specific data patterns for
component removals. At the same time, the patterns for the direct causal factors pilot complaints and
aircraft landings were generated, after which a statistical analysis was performed to show that there
exists a strong positive correlation between the causal factors and component removals for operator 1.

As a result, the baseline forecasting methods were applied to forecast the demand for Wheels & Brakes
components of operator 1 specifically. This showed that in general the SES method is more accurate
than the MA method, since smaller values of RMSE and MAPE were obtained for the baseline SES
method. Following from this, an adjusted forecasting method was suggested, in which the correlation
coefficients and the data patterns of the causal factors were also included in determining the forecast
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value. Furthermore, a seasonality effect was recognised in the patterns for Wheels & Brakes, and
accounting for both this seasonality factor and the causal factors resulted in minimal MAPE values for
the analysed component patterns, compared to the baseline forecasting methods.

To ensure that these findings do not only hold true for specific Wheels & Brakes components, other
component categories of operator 1 were considered as validation data sets. The baseline and adjusted
methods were applied to twelve additional validation data sets, and for almost all data sets an
improvement of forecasting accuracy could be found when comparing the performance of the adjusted
methods to the baseline methods. Only for the most smooth data set, a significant increase of the
forecast error was found, which suggests that the adjusted forecasting method are the most suitable for
data patterns that are high in demand size variability. To confirm this, a positive relation between the
improvement in Theil's U-statistic and the coefficient of variation of the data sets was found, indicating
that demand patterns with a higher variability in demand size would benefit the most from using the
adjusted method over the baseline method.

Finally, a sensitivity analysis was successfully conducted to confirm that the main findings are not
sensitive to minor changes in the assumed model parameters. With that, this research has successfully
shown that the adjusted forecasting methods outperform the conventional baseline SES and MA methods
for a broad scope of components and parameter settings. These findings are another confirmation that
only looking at historic demand when using time-series models is a restricted approach, and that the
conventional time-series methods can benefit from including factors that are statistically correlated to
the number of component removals.

8.2 Recommendations

Following from the main conclusions described in the previous section, some main recommendations
can be identified, which will be described in this section. Since this thesis research has shown positive
results for including statistically related factors, the first recommendation would be to include additional
causal factors and additional data to incorporate in future analysis. This could be environmental data
or physics-based information, which could likely be related to component removals as well.

Furthermore it would be recommended to include more elaborate forecasting methods as the baseline
models to compare the adjusted methods with. In this research, the scope was limited to two time-series
methods only, but this could be expanded as well. Also, the data sets in this research were mainly
erratic, with low variability in demand frequency. This approach could therefore be repeated for more
lumpy demand patterns, for which Croston's method would be recommended as the baseline forecasting
method to compare the adjusted methods with.

Additionally, the research could be applied to substantially more data sets, to confirm for which types
of data sets the forecasting errors can be reduced the most. With an extended sample size of data sets,
a more in-depth analysis can be performed to find out if demand patterns with the highest demand size
variability do also in fact benefit the most from an adjusted forecasting method. Following from this,
the main recommendation would be to extend the applied model with Artificial Intelligence elements
to automate the process of finding the most suitable forecasting method which will yield the least
forecasting errors. Ideally, this developed model will identify the main characteristics of all data sets
to be analysed, and based on these characteristics will apply the most suitable forecasting method
with the most suitable user-set parameters.
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APPENDIX A

Analysis of Wheels and Brakes data sets
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Figure A.1: Monthly component removals of 324-101 category for Fokker 50 between 2008 and 2016
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Monthly Main Wheel Brake Unit removals - Fokker 50 (CV2=1.DB)
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Figure A.2: Monthly component removals of 324-201 category for Fokker 50 between 2008 and 2016
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Figure A.3: Monthly component removals of 324-101 category for Fokker 100 between 2008 and 2016

82 Improving the demand forecasting methods for aircraft spare parts MSc. Thesis



Monthly Main Wheel Brake Unit removals - Fokker 100 (CVZ=D.592)
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Figure A.4: Monthly component removals of 324-201 category for Fokker 100 between 2008 and 2016
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Figure A.5: Monthly component removals of 324-101 category for Fokker 70 between 2008 and 2016
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Monthly Nose Wheel Tire removals - Fokker 70 (CV2=1.23)
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Figure A.6: Monthly component removals of 324-103 category for Fokker 70 between 2008 and 2016
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APPENDIX B

Results of Baseline and Altered forecasting methods applied to W&B data sets

Actual and Forecast demand for Main Wheel Tires
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Figure B.1: Actual and SES Forecast demand for Main Wheel Tires
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Figure B.2: Actual and SES Forecast demand for Nose Wheel Tires

Aggual and Forecast demand for Main Wheel Brake Units
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Figure B.3: Actual and SES Forecast demand for Main Wheel Brake Units
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APPENDIX C

Results of Baseline and Altered forecasting methods applied to validation data
sets
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Figure C.1: Actual demand, MA forecast and adjusted forecast for component type 2
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Figure C.2: Actual demand, SES forecast and adjusted forecast for component type 2
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Figure C.3: Actual demand, MA forecast and adjusted forecast for component type 3
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Figure C.5: Actual demand, MA forecast and adjusted forecast for component type 4
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Figure C.6: Actual demand, SES forecast and adjusted forecast for component type 4
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Figure C.7: Actual demand, MA forecast and adjusted forecast for component type 5
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Figure C.8: Actual demand, SES forecast and adjusted forecast for component type 5
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Figure C.9: Actual demand, MA forecast and adjusted forecast for component type 6
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Figure C.11: Actual demand, MA forecast and adjusted forecast for component type 8
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Figure C.12: Actual demand, SES forecast and adjusted forecast for component type 8
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Figure C.13: Actual demand, MA forecast and adjusted forecast for component type 9
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Figure C.14: Actual demand, SES forecast and adjusted forecast for component type 9
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Figure C.15: Actual demand, MA forecast and adjusted forecast for component type 10
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Figure C.16: Actual demand, SES forecast and adjusted forecast for component type 10

20

18

16

14

12

10

Monthly component removals

[ JActual demand

= = == MA Forecast (baseline)
MA Forecast (adjusted)

|

Il

UL

I

2009 2010 2011 2012 2013 2014 2015

Years

2016

Figure C.17: Actual demand, MA forecast and adjusted forecast for component type 11
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Figure C.18: Actual demand, SES forecast and adjusted forecast for component type 11
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