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Summary
Wind energy presents itself as a dominant driver in the energy transition process. However, in

creased reliance on wind energy, both offshore and onshore, pose a question on their operational
performance and reliability. In this regard, the field of wind turbine prognostics and health manage
ment has gathered much interest from the scientific community. Due to the increase in data collection,
storage and availability, more artificial intelligence algorithms are being developed to process this data
and derive meaningful conclusions. While SCADA systems are readily installed in commercial wind
turbines, and rich datasets are collected, its use for condition monitoring is still at the early stages.
To this end, a 100 Hz SCADA dataset from Control Advanced Research Turbine (CART2) installed at
the NREL’s Flatirons campus, Colorado, USA is used, and its suitability for condition monitoring and
prognostics is evaluated.

The objective of this research is to develop a prognostics framework to predict gearbox failure us
ing SCADA data and identify suitable indicators, sensitive to its condition. The methodology consists
of three steps: (a) developing an artificial neural network (ANN) based normal behaviour model to
emulate the behaviour of turbine in a healthy state; (b) feature selection and engineering to select suit
able indicators to evaluate real operation deviations from the modelled normal behaviour and improve
ANN model performance and (c) finally, developing a robust approach using oneclass support vector
machine (OCSVM) model to correctly identify the anomalous operation of the turbine caused due to
incipient fault and therefore, establish an appropriate threshold to provide enough lead time to plan and
conduct maintenance activities. Additionally, a sensitivity analysis with varying SCADA data sampling
periods is carried out to determine an optimal frequency for condition monitoring purpose rather than
10 min averaged data.

The results show that a 3layer feedforward ANN can efficiently learn the complex mapping be
tween the input and output features, obtaining RMSE values of less than 0.1 and R2 values greater
than 0.95 for each model development phase, namely training, validation and testing. Four residual
error features  maximum error, minimum error, root mean squared error and error distribution are used
as inputs for the OCSVM model to understand the complex boundary between normal and anomalous
operation. The percentage of anomalies computed for each week of operation, 4 months before fail
ure, show an increasing trend as the turbine approaches failure, with the most significant increase in
anomaly rates reported 4 weeks before the failure. To this end, a realtime monitoring scheme based
on linear regression and bootstrapped confidence intervals is developed to track the progression of
anomalies and set off a maintenance alert as the first indication of incipient fault becomes evident. The
scheme alarms for maintenance a month before the actual failure, providing enough lead time to plan
and maintain the gearbox.

A sensitivity study is carried out for a range of sampling periods ranging from 100 Hz to 10 min.
The results demonstrate that highfrequency SCADA data is beneficial for condition monitoring of the
gearbox, but only if the noise in the data can be excluded. On the other hand, despite the loss of
information due to the averaging effect for large sampling periods, SCADA data aggregated over a 30
s period could be utilised to predict the gearbox failure a month in advance. Furthermore, the ANN
model performance is found to be sensitive to the number of data samples available for training.
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1
Introduction

Renewable Energy Sources (RES) have emerged as a promising alternative to conventional fossil
fuels to combat the problems of climate change, producing a transformation in the energy sector. Wind
energy stands out among the different energy resources for its excellent characteristics. It is being de
fined as one of the fastestgrowing renewable energy sources globally, with a compound annual growth
rate (CAGR) of more than 21% for the past two decades [1]. In Europe, wind energy is growing fast
as well and this progress is not projected to stagnate. Recently, the European Commission tabled the
’Fitfor55’ package, a series of legislative proposals aimed at a 55 % reduction in emissions by 2030.
This would lead to a major acceleration in the expansion of wind energy, resulting in the installation of
451 GW of wind power capacity compared to the current installed capacity at 180 GW [2]. With such
high installed capacities, the energy sector will become more reliant on wind power production. This
highlights the problem of wind turbines’ reliability.

To achieve such total installed wind capacity goals, both onshore and offshore sectors are expected
to grow. However, the future of onshore wind farms is restricted, particularly due to land constraints as
well as public resistance to developments near residential areas. On the contrary, offshore wind farms
not only have the vast area of ocean for future development and better wind conditions but also experi
ence less opposition as they are located far off the coast, away from where people live. Many European
countries are already increasing their installed wind capacity by exploiting the advantages of offshore
wind. Figure 1.1 shows the growth of offshore wind capacity in Europe, which has grown tenfold in
the past decade, from 2.5 GW to 25 GW. However, offshore wind has some disadvantages as well.
Turbines installed offshore operate in harsh conditions  extreme winds, storms, corrosive environment
 which can lead to the breakdown of mechanical and electrical components. This reduces the reliabil
ity of offshore wind, which is important when considering the large capacities to be installed in the future.

Figure 1.1: Offshore wind installed capacity growth by country (Europe) [3]
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2 1. Introduction

Various studies have been conducted to identify the most critical components in a WT. Research
for WT reliability suggests that the most critical components are the control system, gearbox, electric
system, generator, and hub and blades. Figure 1.2 shows that the gearbox failures not only occur
most frequently but also incur the longest downtime. Therefore, the gearbox is the most critical WT
component, followed by the generator, rotor blades and pitch system [4].

Figure 1.2: Failure rate and downtime per failure for different WT components (adapted from [4])

There are further challenges pertinent to the offshore wind sector related to the transportation, instal
lation and operation of such wind turbines. The difficulty of accessing these WTs and their remoteness
from centres where they are monitored, give rise to high operation and maintenance (O&M) costs.
Moreover, investigation on O&M costs for wind farms suggests that they could account for 25% to 35%
of the total cost of power generation [5]. These O&M cost percentages could increase due to recurring
failures in the different components or subcomponents of a WT. Therefore, early detection of potential
WT failures through condition monitoring (CM) and adopting an appropriate maintenance strategy is
paramount to the wind farm owners and operators.

Condition monitoring (CM) can be defined as an ”activity, conducted manually or automatically, for
observing the actual state of a component which could provide a reliable indication of a failure, so that
actions can be planned and downtime is minimised” [6]. Various manufacturers have developed Con
dition Monitoring Systems (CMS) to monitor several key signals for wind turbines, including drivetrain
vibrations and oil quality for some of the main components. Data collected using CMS is normally sam
pled at quite high frequencies (usually in the range of 525 kHz). These systems are usually installed
as additional monitoring devices to the standard WT configuration. The costs of such systems are usu
ally on the scale of 11,000 Euros per turbine, which has deterred operators from installing such CMS
[7]. However, all utilityscale WTs have a standard Supervisory Control And Data Acquisition (SCADA)
system. These systems are an extensive data resource, recording more than 200 variables in intervals
of 10 minutes, generating rich historical data. Although the commercial use of SCADA data has been
limited to monitoring the performance of wind turbines, there is a growing interest in the wind industry
to fully exploit the potential of this rich data source. In fact, there are few examples in the industry that
make use of SCADA data for condition monitoring and fault detection, but such applications are still at
nascent stages [8]. One of the reasons behind this is that SCADA data is sampled at a much lower
frequency than the CMS data and collects general information about the turbine’s operation rather than
componentspecific data. Nonetheless, SCADA data being a potentially lowcost solution, requiring no
additional sensors and providing a rich data resource, has attracted the scientific community’s attention
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to develop approaches to interpret valuable information using it for wind turbine CM, thus, fault predic
tion.

Numerous strategies have been implemented for WT failure detection and prognostics based on
physical and datadriven (or a combination of both) models [9]. Machine learning (ML) and artificial
intelligence (AI) have shown successful results in different fields of application  including the main
tenance sector, to promote datadriven decision making. ML models such as artificial neural network
(ANN) can yield research unprecedentedly due to its versatile methodology and abundance of data col
lected in WT, which is required for ML implementation. Such models can recognise complex patterns
in the data and learn the relationship between different variables. With the continual improvements in
computational performance and the efficiency of algorithms, there is a general shift in society towards
an era of digitalization. The use of extensive information and computation technology will play a vital
role in the energy transition in the future[10].

The thesis problem statement is summarized as follows: Energy transition promotes wind energy
as a dominant technological driver to mitigate climate change. However, as the reliance on wind en
ergy increases, WT reliability becomes a concerning factor due to the downtime and high O&M costs
associated with turbine failures. Adapting an intelligent maintenance strategy using CMS requires a
substantial amount of costs and resources. On the other hand, standard SCADA data for WT CM rep
resents a more effective, lowcost and widely implementable solution.

The objective of this report is to develop a framework for prognostics of gearbox failure employing
datadriven models based on different ML approaches that capture patterns of fault characteristics us
ing highfrequency SCADA data. The project’s scope is as follows: Firstly, to identify suitable SCADA
signals, which would be sensitive to changes in the health condition of the gearbox and could be used
for early detection of incipient failure. Secondly, to investigate different ML models and develop a
framework to flag anomalous gearbox operation and provide enough lead time before the actual fail
ure. Lastly, to perform a sensitivity analysis for SCADA data sampled at different frequencies to identify
the optimal sampling frequency for wind turbine gearbox failure prognostics. The models are trained,
tested and validated using data collected from Control Advanced Research Turbine 2 (CART2), situ
ated in the NREL’s Flatirons campus Colorado, USA and provided by the National Renewable Energy
Laboratory (NREL). The data set comprises highfrequency SCADA data sampled at 100 Hz, rather
than the conventionally used data averaged over 10 min intervals.

The outline of the report is structured as follows:

• Chapter 2 is a literature review on different maintenance strategies that can be employed, com
mon failure modes of WT gearbox and the approaches used for wind turbine prognostics and
health management.

• Chapter 3 provides the necessary theoretical background to understand the principles of different
machine learning models and concepts employed in the project.

• Chapter 4 introduces the framework developed for gearbox failure prognostics and describes the
methodology adopted in this research.

• Chapter 5 describes the methodology and approach followed to create the model for predicting
gearbox failure, along with an overview of the data set used to train and test the developed
framework. Moreover, it discusses the feature engineering process and hyperparameter tuning
of the model.

• Chapter 6 presents the results of the proposed approach, including model performance metrics.
Model sensitivity analysis to datasets of different frequencies is also presented and discussed in
this chapter.

• Chapter 7 concludes this research and discusses the key takeaways. Furthermore, recommen
dations for future work are also compiled in this chapter.



2
Literature review

This chapter aims to provide an overview of the literature explored during the project. It presents
a necessary background for understanding failure causes of the gearbox and maintenance strategies
to prevent such failure from occurring. As the problem of this thesis is concerned with maintenance
prediction for which a data source is required, an overview of employed monitoring systems and char
acteristics of the data it entails is provided. Also, previous research work that has been done in the
field of prognostics and health management of wind turbines is reviewed. The outline of the chapter is
divided into four sections: Section 2.1 entails different failure modes of the WT gearbox, Section 2.2
provides a summary of different maintenance strategies that are currently adopted in the wind energy
sector, Section 2.3 discusses the monitoring systems and data obtained through such systems, and
finally, Section 2.4 provides an overview of the prognostic approaches that have been explored in the
available literature.

2.1 Failure modes of WT gearboxes
To conduct proper maintenance to prevent failure, it is important to understand the operation and

possible failure causes andmodes of the wind turbine gearbox. The gearbox constitutes one of themain
components of a wind turbine. A typical wind turbine drive train configuration is shown in Figure 2.1,
where the gearbox is placed between the rotor and the generator. One of the main differences between
wind turbine gearboxes (WTGs) and those used in other applications is that WTGs step up shaft rotation
from low speed, high input torque to high speed, low output torque. In contrast, most other gearboxes
operate in the reverse direction. High transient loads are thus absorbed by the gearbox, leading to
extreme loading conditions in the bearings, which are relatively unique to wind turbines. Additionally,
the variable wind conditions lead to shortduration extreme loading on gearbox components such as
gear teeth, a common cause of WTG failure [11].

Figure 2.1: Typical wind turbine drive train [12]

The wind turbine gearbox links the lowspeed shaft to the highspeed shaft; generally, the large step
up is achieved via three separate stages. The most common configuration is a planetary first stage,

5



6 2. Literature review

with three planetary gears, followed by two parallel stage gears while all the rotating components are
supported by bearings. The lubrication is provided by a system that circulates oil around all gears and
bearings. The schematic of a typical wind turbine gearbox is shown in Figure 2.2. In general, most
gearbox failures occur due to incipient faults in either the bearings or gears. Failures of gearboxes can
be attributed to various reasons, including the following:[13]

• Underestimated design loads;
• Torque overloads;
• Wrong material;
• Manufacturing errors;
• Damage during transportation and assembly;
• Misalignment of components in the shaft.

Figure 2.2: Threestage WT gearbox with one planetary and two parallel stages [14]

Bearings are the components within the gearbox that are more prone to failure. Such breakdowns
account for approximately 75% of all gearboxrelated failures [15]. WT bearings can be subjected to
defects or induced by corrosive, high speed, and high temperature operating conditions. The perfor
mance degradation of a bearing is a continuous irreversible process. Four of the most common failure
modes are [16]:

• Axial cracking. It is caused by improper fits, improper shaft grooving, and microstructural alter
ations (white etching cracks), characterised by a crack.

• Scuffing. This is caused by material transfers from one surface to another under frictional heat
ing. This is a type of adhesive wear.

• Spalling. It is caused by deflection and misalignment, inclusions, and defects in the material sub
surface. It is characterized by flaking and pitting material from the raceways and rolling elements.

• Micropitting. This occurs due to inadequate lubrication, leading to no separation between the
contact surfaces, causing plastic deformation and breakoff.

Another critical gearbox component is the gears. Gear failure in wind turbines occurs due to a
combination of factors, such as crack initiation and propagation, surface fatigue, surface wear, structural
fatigue, and loss of lubrication [17]. The most common gear failure mechanisms are listed below [18]:
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• Fatigue cracks. This is the most common failure mode and refers to the localized stresses that
develop when two curved surfaces get in contact and deform slightly under loads. These contact
stresses are cyclic in nature and overtime lead to fatigue cracks.

• Teeth breakage. It occurs as a result of geartooth deterioration. Such deterioration can take
place due to various reasons such as poor design, overloading, misalignment, and tooth surface
defects.

• Abrasive/adhesive wear. This is caused by small particles through the gear mesh. These could
be dust particles, sand, scale from castings, or even debris in lubrication oil. Such an action
of one material siding over another with surface interaction and adhesion can lead to localized
contact areas.

• Scoring (Scuffing). It is characterized by the rapid metal removal from the tooth surfaces caused
by severe adhesion between one tooth and another. Although mild scuffing is nonprogressive
and does not constitute a primary failure in gears, severe scuffing can lead to plastic deformation
of the gear teeth.

• Surface fatigue. This is marked by the failure of material as a result of continuous surface
stresses. It is characterized by the removal of material and the formation of cavities. Destructive
pitting usually starts below the pitch line, progressively increases the size and number of pits
destroying the tooth shape.

2.2 Maintenance strategies
The reliability of wind turbines is a critical factor in the economic success of wind energy projects.

On the one hand, low levels of reliability might lead to numerous breakdowns that require extensive
maintenance, however high reliability might be prohibitively costly to achieve. The maintenance costs
are a significant part of wind turbines operation and maintenance expenditure (OPEX). In fact, opera
tions and maintenance costs contribute approximately 25% to 35% to the cost of energy. Moreover,
WT reliability affects wind farms’ overall performance and power output, resulting in additional costs
from lost revenue [19].

A recent reliability study done by Dao et al. [20], compared the WT failure rates and downtimes, for
both offshore and onshore applications, broken down by subassembly. The study included WT failure
data from 18,000 WTs, corresponding to over 90,000 turbineyears. The analysis revealed that the av
erage failure rate and downtime per assembly for offshore WTs is greater than that for onshore. Figure
2.3 compares the stop time per event (the duration that the turbine does not generate any power due
to its shutdown) for both onshore and offshore applications. On average, the stop time for an offshore
WT was found to be almost double that of an onshore WT. This is due to the severe offshore operating
conditions and the difficulty in repair / maintenance accessibility. Furthermore, the study showed that
generators and gearboxes are highly critical components for offshore wind turbines due to the associ
ated stop time in case they experience a functional failure.

To tackle economic and production losses caused due to unexpected turbine failure, it may be pru
dent to employ effective maintenance strategies. Different types of WT maintenance are mentioned
extensively throughout the literature and synthesized particularly well in [21]. Maintenance strategies
can be classified into reactive, preventive, and predictive.

Reactive maintenance strategy is the traditional approach to maintenance and means repairing a
machine or a component when failure has occurred. Due to maintenance action planning after shut
down, such a strategy results in the longest downtime before the wind turbine starts operating again
and therefore incurs a major cost in the form of production losses. Another potential disadvantage of
repairing upon failure is that the machines may fail catastrophically due to the failure of components
other than those that initially failed. Considering all of the above, a reactive maintenance strategy is
not acceptable when high availability of wind turbines is required.



8 2. Literature review

Figure 2.3: Stop time (downtime) per event for onshore and offshore wind turbines [20]

Also known as schedulebased maintenance, preventive maintenance is a timebased approach
that oversees the replacement of certain critical components at scheduled intervals. Such interven
tions are periodically undertaken at intervals shorter than the estimated time between failures. Albeit
its advantages, the main disadvantages of this strategy are: (1) the timetofailure of a certain com
ponent must be accurately predictable; (2) systematic replacement of ”healthy” components yields an
excessive consumption of unnecessary resources and (3) the frequency of maintenance activities is
quite high to ensure success. Furthermore, many unneeded maintenance activities might introduce
new faults in the machine, and several unforeseen failures could still occur. When considering a wind
turbine operating offshore, such a maintenance approach would lead to high costs and resources, and
hence, a different strategy for scheduling maintenance would be preferable.

Predictive maintenance, which is also referred to as conditionbased maintenance, seeks to carry
out activities at an optimal time, neither too late, i.e. after a component has already failed, nor too early
 when the component still has a significant remaining useful life. Through regular condition monitoring,
this strategy aims to predict the potential breakdown of a component. Predictive maintenance can be
exercised through conditionbased monitoring (CBM). CBM is defined as the process of monitoring a
machine parameter or a set of parameters. When a significant deviation from expected behaviour is
observed  the development of a failure is identified. The main advantages of CBM are: (1) signifi
cant reduction in the probability of catastrophic failure by early fault detection; (2) accurate prediction
of the component’s health for more costeffective maintenance activities; (3) valuable insights on root
causes of failure as well as reliable input for component design and improved operation of machinery;
and (4) reduced downtime associated with turbine failure ensuring higher availability. While additional
engineering activities are needed before physical maintenance, the advantages gained propose an at
tractive alternative to reactive or preventative maintenance strategies [22].

The aforementioned maintenance strategies can be compared from an economic perspective. The
cost of energy (COE) produced from wind farms can be expressed as [23]:

𝐶𝑂𝐸 = 𝐼𝐶𝐶 ∗ 𝐹𝑅𝐶 + 𝑂𝑀
𝐴𝐸𝑃 (2.1)

where, for a given annual energy production AEP (€/year); ICC (€) is the initial investment cost;
FRC (%/year) is the annual fixed charge; and OM (€/year) is the annual COE cost.

The costs associated with each maintenance strategy are presented in Figure 2.4 as a function of
the number of failures. In a reactive maintenance strategy, many faults might occur, which would lead
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to a high cost of repair and a low cost of prevention. On the contrary, in the case of preventive main
tenance strategy, the number of failures is considerably reduced while the cost of preventing makes
it expensive. As seen in the figure, a predictive maintenance strategy is optimum in improving the
reliability, availability, and maintainability of WTs while simultaneously reducing the variable costs [23]
[24].

Figure 2.4: Costs associated to maintenance strategies, Adapted from [6]

2.3 Wind turbine monitoring
Predictive maintenance is based on wind turbine monitoring and aims to perform maintenance ac

tivities before an incipient fault develops into a functional failure. WT monitoring means supervision of
the machine health through recorded measurements of physical parameters from the sensors installed
on the machine. The signals received from the WT are analyzed to detect deviation from normal op
eration of mechanical components such as bearings, gears, shafts, etc. Comprehensive knowledge of
fault development and its localization within a certain machine component can be gained by analysing
such deviations. In a broad sense, the main purposes of a WT monitoring system are:

1. Detection, where the occurrence of a fault in the machine component or subcomponent is iden
tified. This is essential as the detection of a failure is a prerequisite to taking any preventive
action.

2. Diagnosis, which is different from detection as it providesmore detail on the nature of the fault and
the precise location, which can help prepare better to plan any maintenance activities if required.

3. Prognosis, which is the prediction of the remaining useful lifetime or time to failure of a machine
component. Based on this knowledge, an effectivemaintenance strategy can be employed, which
would lead to an efficient allocation of cost and resources.

In Figure 2.5 a characteristic curve of machine health as a function of time is shown. The curve
shows that the machine performance or condition declines over time, eventually leading to a functional
failure. This exhibits a sense that failure is a process, not an event. Many of the failure modes take time
to develop to a level or degree that causes the functional failure of the machine. WT monitoring is con
cerned with tracking this progression and predict failures before the functional failure occurs. The curve
shows a linear degradation path from the point when the failure starts to occur to the point when the
first signs of failure can be detected. Afterwards, the machine health decays exponentially to the point
where a functional failure occurs. ’Fault detection’ is concerned with identifying criteria that determine
when the functional failure occurs, whereas ’Fault prognosis’ focuses on analysing when the first signs
of failure can be detected and corrective actions can be implemented to prevent the failure. Although
extensive research has been done on fault detection and diagnosis, the work on fault prognosis is still
at quite an early stage.
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Figure 2.5: WT health through the progression of time (adapted from [25])

WTmonitoring and prognostics can be achieved using monitoring systems that measure and record
signals which are sent to the operator to allow remote control and management of WT operations. Two
monitoring systems are currently employed in the commercial market [26]:

1. Supervisory Control and Data Acquisition (SCADA) system. SCADA systems were initially
designed for operating purposes only and used by operators to supervise and control WT systems
remotely. The parameters monitored by a SCADA system, in general, include active and reactive
power output, generator current and voltages, along with temperature measurements of various
critical machine components such as that of lubricant oil, bearing, nacelle, etc. These systems
usually record signals sampled at high frequency (1 Hz) and store as 10 min averaged values.

2. Condition Monitoring System (CMS). Based on the experience of monitoring rotational equip
ment, the parameters recorded by a CMS are mainly vibrationbased signals, although some
are used in combination with oil particle counts. These systems focus on remote measurement
of critical indicators of the health of WT components, seeking to identify incipient faults before
they lead to a catastrophic failure. These are measured at a higher frequency compared to the
SCADA data ranging in scales of kHz. CMSs can either be classified as an online system or an
offline system. Online CM is carried out by constantly monitoring the components with the help of
equipment that continuously transmits measurements to a data server. On the other hand, offline
CM requires a posterior laboratory analysis.

The two monitoring systems each have different advantages and disadvantages, which are sum
marised in Table 2.1 [27][9]. The suitability of SCADA systems for monitoring WT performance has led
to these systems being installed in many wind turbines by default, providing an available data source
without any additional cost. In contrast, CMSs are expensive and require expert supervision to analyse
and derive conclusions from such a data source. Commercially available WT CMS cost over €10K (e.g.
SKF WindCon costs around €14K), which would cost a wind farm (WF) developer (for a WF consisting
of over 100 WTs) millions of euros to equip each WT with such a system. Also, CMS data is usually
sampled at 20kHz, which results in an amount of data 12 million times more than the one stored by
SCADA systems. This poses difficulties in storing and analysing data, and requires expert engineers
[28]. However, using such a dataset allows for fault isolation and diagnostics, which is not possible
when using SCADA data as it records signals that provide general information about the turbine used
mostly for performance monitoring (PM) [29]. PM employs SCADA systems to train models for normal
operating states and utilize them to detect outliers or abnormal behaviour of WT. Nevertheless, cur
rently, with the motivation of potentially reducing the costs of employing a purposebased CMS, efforts
are being taken to develop robust algorithms to use SCADA measurements for failure detection and
prognostics [30].

Although SCADA system is a reliable data source collecting extensive information about the wind
turbine performance, its applicability to monitoring the condition of the wind turbine components is still
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Table 2.1: SCADA systems versus CMS

Monitoring Systems Advantages Disadvantages

SCADA systems Readily accessible, capable of iden
tifying normal behavior and outliers
through performance monitoring

Incapable of fault isolation and diag
nostics

CMS systems Capable of fault isolation and diag
nostics, capable of capturing high
frequency dynamics usually not
achievable using SCADA system

Requires extensive sources and ex
pertise to perform data analysis and
result assessment, expensive in
strumentation

limited. A reason for this is the low temporal resolution (10 min) of the data collected, along with the
negative effects of averaging for failure detection and prognostics approaches utilising these systems.
Wind turbines are subjected to dynamic loading conditions because of the rapid wind speed fluctuations,
which do not get reflected in the averaged signals. Hence, intermittent or transient anomalies cannot
be detected [31] [32]. To capture the dynamic nature of the wind turbine operation and improve the
detection capabilities, highfrequency SCADA data can be used. Recently, there have been attempts
to investigate WT performance monitoring (for example, power curve modelling) using SCADA data at
high resolution [33][34][35]. However, only a few attempts have been made to use this highfrequency
data for condition monitoring [36].

2.3.1 SCADA and CMS measurements for gearbox failure analysis

SCADA systems provide a large number of signals which could be used to extract information about
the condition of the WT components. As this study is concerned with gearbox failure, it is important to
note that the most common gearboxrelated SCADA measurements are as follows [37]:

• Gearbox lubrication oil temperature

• Gearbox bearing temperature

• Gearbox oil pressure

• Low/Highspeed shaft torque and rotational speed

Wind turbine gearboxrelated CMS signals originate from two sources: vibration transducers and
oil debris counters. The accelerometer positions for gearbox monitoring can vary; however, a common
configuration for recording vibrationbased CMS is [38] [28]:

• Lowspeed shaft (LSS) end, transverse

• Highspeed shaft (HSS) end, vertical

• Highspeed shaft (HSS), transverse

• Highspeed shaft (HSS), axial

Furthermore, a gearbox oil debris counter can be used to record both ferrous and nonferrous par
ticle sizes circulating the gearbox lubrication oil. By examining the particle counts for both ferrous and
nonferrous particles, useful information for diagnosing the development of any fault in bearing rollers,
cages, or gears can be extracted. Table 2.2 summarizes the commercial SCADA and CMS measure
ments useful for monitoring a WT gearbox monitoring.
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Table 2.2: Relevant SCADA and CMS monitoring signals from a WT gearbox [14]

Monitorable
failure
modes

Planetary
gear failure

Planetary
bearing fail
ure

ISS bearing
failure

HSS bearing
failure

Lubrication
system mal
function

SCADA
signals

Oil tempera
ture

Oil tempera
ture

Oil tempera
ture

HSS bearing
temperature

Oil pressure
level, oil filter
status

CMS
signals

LSS vibration;
non ferrous
particle oil
debris count

LSS vibration
signal; ferrous
particle oil de
bris count

LSS or HSS
vibration sig
nals; ferrous
particle oil
debris count

HSS vibra
tion signals
(vertical,
transverse,
axial); ferrous
particle oil
debris counts

Additional
signals

Rotor speed; generator speed; nacelle temperature; power output; wind speed

2.4 Approaches for wind turbine prognostics and healthmanage
ment

The main goal of prognosis is to evaluate how long a faulty component can work under reliable
operating conditions while still achieving desired performance metrics [39]. To evaluate the health of a
wind turbine drive train during its operational life, a suitable monitoring system should be put in place
as a tool for prognostics, as discussed in the previous section. While data retrieved from the monitoring
systems is the foundation for prognostics (and detection and diagnostics), the methods used to extract
relevant information from the collected data are as much if not more important.

There are many approaches to evaluating wind turbine prognosis. Prognostic methods are usually
classified into three main distinct categories: physicsbased approach, datadriven approach, and hy
brid approach. Datadriven models are further subdivided into two categories: stochastic models and
machine learning models. The classification is demonstrated in the Figure 2.6. All of these methods
can potentially employ either SCADA or CMS signals or even a combination of both.

Physicsbased approaches rely on understanding the governing physics of the system and its
degradation mechanism. The model can derive mathematical relations that describe the deterioration
process, provided that sufficient knowledge on the system components and subcomponents, their op
erational behaviour, and abnormal functioning and failure modes are available. The major drawback of
employing this model is that each failure mode has to be analyzed independently, and for many failure
modes, a clear degradation mechanism is not present [40]. Even if a certain failure mode can be asso
ciated with a specific degradation mechanism, its explanation through a physical model is not always
possible. Albeit the disadvantages of this approach, a relevant advantage is that it establishes syner
gies with the design process and help optimize future designs by understanding failure mechanisms.
Also, if a physical model explaining a certain failure mechanism is achieved, it would aid in identifying
the fault localization and further degradation using smaller data sets.

Datadriven approaches do not make use of any underlying physics that governs the system and
uses the information within data collected from a machine instead. Despite the lack of knowledge of
physics dictating the machine’s operation, datadriven approaches have been proven to be efficient
and successful for fault detection and prognosis tasks by estimating the machine’s remaining useful
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Figure 2.6: WT prognostics and health management approaches

lifetime (RUL) [37][41][42][43]. This is because the physics of failure associated with WT drive trains
are often too complicated to model and interpret. This highlights the advantages of employing data
driven models, which tend to learn the patterns within the data to identify failure characteristics of the
machine and overcomes the limitations inherent to the lack of physical knowledge. One of the main
disadvantages of this modelling approach is that it requires relatively large data sets to represent the
full operational range of WT and its variability for training, making it computationally intensive. Also, AI
models are considered blackbox models due to their lack of transparency which makes them difficult
to comprehend [44].

Hybrid approach is a term used to define any given combination of the aforementioned methods to
incorporate the strengths of both of these approaches and develop a robust model for fault prognosis.

2.4.1 Physicsbased model
Physicsbased prognostic models attempt to construct mathematical models to describe failure pro

gression, e.g. degradation indicators based on decreased gearbox efficiency, spall progression, and
crack growth. Firstly, system and subsystem configurations and their respective material properties
are defined. Then, potential failure modes and their causes in terms of the failure physics are identified
at the individual component level, associated with operating and environmental conditions under which
failure is likely to occur [45]. In the following, some of the physicsbased prognostics models proposed
in existing literature are reviewed.

Feng et al. [14] proposed a thermodynamic model to understand the cumulative high and low cycle
fatigue damage caused by stochastically varying torque imposed in wind turbines. This was achieved
by monitoring the transmission efficiency and rotational speed and relating them to gearbox tempera
ture rise (with respect to ambient temperature). Results showed that gearbox oil temperature rise could
indicate a decrease in the gearbox transmission efficiency. By observing the temperature rise trends
against binned power output and rotor rotational speed, the deterioration of the gearbox was visible at
least 3 months before a planetary gearbox failure.

Gray and Watson [46] employed a mathematical model for WT gearbox damage calculation for a
specific failure mode, i.e. bearing high cycle fatigue damage due to edge loading. To do so, they
firstly identified different failure modes, their causes, and the damaging operating conditions of the WT
gearbox, after which the expected reduction in the bearing life was estimated based on the Lundberg
Palmgren rule. The efficacy of the proposed method was demonstrated through an experimental study
on six wind turbines, which experienced severe gearbox failure, the cause for which was recorded as
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heavy debris in lubricating oil.

Butler et al. [47] utilized SCADA data, including hydraulic brake temperature, blade pitch position,
main shaft rotational speed, and hydraulic brake pressure, to formulate a mathematical model to de
scribe a WT main bearing degradation progression. The study applied a particle filtering technique to
address the mathematical model and future load uncertainties to enhance the WT main bearing RUL
projection, revealing strong evidence of failure with a 30 day lead time.

The examples provided above show that physicsbasedmodels for WT prognostics and health man
agement can accurately predict failure in WT components or subcomponents. One of the advantages
of the physicsbased approach, compared to the datadriven approach, is that it does not require exten
sive amounts of data to develop a predictive model. However, their application is limited as it is difficult
to capture the dynamic working operation of wind turbines with a set of mathematical equations, which
assume the physics of the model to be consistent across the component. Moreover, these models are
defectspecific and often complex to design.

2.4.2 Datadriven models
Datadriven models tend to identify the underlying patterns (or set of structures) in the data and use

it to understand relationships between system variables without knowledge of physical behaviour. It can
be defined as a process of building an inductive model that learns from a limited set of data without any
specialist intervention. Datadriven models can be broadly classified into two categories: stochastic
and machine learningbased models. In the next sections, these two approaches are discussed in
more detail.

Stochasticbased prognostic techniques

These techniques have been extensively explored in the field of PHM. Various techniques such
as Markov chain, Gamma process, and Wiener process have been frequently used to characterize
identifiable degradation trends [48]. Furthermore, stochastic models based on linear or polynomial re
gression models have been employed to construct a normal behaviour model (NBM), which is then
used to detect anomalies based on signal residuals between normal and faulty operations [49].

Hu et al. [50] developed a performance degradation and a realtime RUL model based on tem
perature characteristic parameters. Firstly, the temperature trend data was obtained using the moving
average method and accounting for the uncertainty of wind speed and wind direction that causes the
temperature of wind turbine bearings to vary widely. The performance degradation model was then
developed using the Wiener process and its parameters were calculated using the maximum likelihood
estimate. Finally, the RUL prediction model was built on the principle of temperature monitoring value
exceeding the first warning threshold based on an inverse Gaussian distribution function. The results
demonstrated that the model performs well for periods closer to the actual failure, with a prediction
error of 23 days.

Son et al. [51] proposed a probabilistic prognosis model by first creating a degradation indicator
using principal component analysis (PCA) and then using the Wiener process degradation modelling
to capture the noise and the nonmonotonic trend of the degradation indicator. After identifying ap
propriate features from a list of 21 sensor signals, PCA was used for dimensionality reduction, thus
reducing the number of features from 7 to 2. The data set was then split into six parts, each represent
ing different operational modes of the machine. For each operational mode, the failure space in the
twodimensional principal component space was defined. The degradation indicator was based on the
Euclidean distance of remaining data points from the barycenter of the failure space points. Therefore,
the value of the degradation indicator tends to 0 as the machine approaches failure. The Wiener pro
cess was selected as the stochastic model to map the machine’s RUL. Based on the trend observed
for the degradation indicator, a nonlinear drift parameter optimization was employed. The proposed
model could obtain better RUL predictions than the models which used the same data set [52].
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Machine learningbased prognostic technique

Machine learning (ML) models learn the underlying patterns in the data which are useful in under
standing the relationship between different variables, which can then be applied to a dataset different to
the one on which the learning occurred [9]. In the taxonomy of ML models, supervised learning predicts
output variables using labelled input data. In contrast, unsupervised learning draws inferences from
the data without using any labelled input (such as clustering algorithms). Model learning translates into
fitting model’s parameters to a specific data set, iteratively updating the parameters while continuing the
process for several cycles using the same data until a specific predefined function is minimized. Figure
2.7 shows the ML process represented as a series of four sequential steps. The first step is to acquire
all relevant data and clean it by removing erroneous data points (outliers) as these may severely affect
the model performance. Once the data set is ready for further analysis, the next step is to identify the
most sensitive features pertinent to the task at hand. Consequently, an appropriate machine learn
ing model is selected. There are two main groups of ML models for fault detection and prognostics
[29]: classification / prediction and regressionbased anomaly detection. Model selection from these
two categories depends on the problem the model is used to solve. The model is then trained and its
performance is validated using relevant metrics which are specific to the task performed, for example,
a classification model can be validated using metrics such as accuracy, model recall, precision, while
a regression model utilises validation metrics such as mean absolute error (MAE), root mean squared
error (RMSE), coefficient of determination (R2).

Figure 2.7: Series of steps representing ML process

Classificationmodels include data preprocessing (dealing with missing data, outliers), classes equal
ization (ensuring balanced classes so that model is balanced), feature selection and extraction, classi
fication model fitting and crossvalidation (to test the model’s generalizability). Several condition moni
toring applications have been explored using classification. Using SCADA data, Kusiak et al. [42] built
models that could identify / predict faults at different granularity levels (fault and nofault prediction; fault
category (severity); and specific fault prediction). They reported that neural net (NN) ensembles out
performed boosting tree algorithms (BTAs) and support vector machines (SVMs) when building level
1 models (that discriminate at higher granularities: failure / status). For level 2 models (identifying the
category of status and failures), CART (standard classification and regression tree) was identified as
the most accurate, followed by SVMs and BTAs. At the granularity of level 3, models identify specific
types of statuses and faults; BTAs were identified as the best.

Zhao et al. [43] introduced a new anomaly operation index (AOI) notion to quantitatively measure
the wind turbine’s historical performance and predict future performance based on a statistical model.
They proposed a datadriven anomaly detection technique, which adopts a clustering method (Density
Based SCAN) to distinguish anomaly data and normal data from unlabeled historical SCADA data, and
a classification method (SVM) to classify anomaly AOI and normal AOI in runtime. Finally, using Auto
Regressive Integrated Moving Average (ARIMA) to analyze realtime AOIs, prediction of future AOIs,
and estimation of RUL can be achieved. The proposed model was evaluated using wind farm data with
33 wind turbines, demonstrating that it could achieve sufficient lead time (10  20 days) for wind farm
operators to schedule maintenance before generator failures occur.

To evaluate the performance of a classification model, various metrics can be used. Some of the
most widely usedmetrics are shown below in Equations 2.22.6 and these are derived from the following
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observations [9] as shown in Figure 2.8. A confusion matrix is a summary of predicted results of a
classification model in a specific table layout that allows visualization of its performance measure. It
can be used for both a binary classification problem (2 classes) or a multiclass classification (more
than 2 classes).

Figure 2.8: Confusion matrix of a binary classification

• TP (true positive), can be interpreted as the model predicting positive class and it is true.

• FP (false positive), can be interpreted as the model predicting positive class but it is false.

• FN (false negative), can be interpreted as the model predicting negative class but it is false.

• TN (true negative), can be interpreted as the model predicting negative class and it is true.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is simply defined as the ratio between the correctly classified points to the total number
of data points. It is shown in the Equation 2.2. Although accuracy is simple to calculate, it has its own
limitations  (1) when working with highly imbalanced datasets (i.e. majority points belonging to only
one class), the model assigns all data points to the majority class and the reported accuracy is high,
making it an unreliable metric for evaluating model performance (2) accuracy provides the probability
of the predictions of the model and therefore, it cannot measure how good the predictions of the model
are.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (2.2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is defined as the fraction of correctly classified instances from the total classified in
stances labelled as positive and is expressed as Equation 2.3. Improving the precision is appropriate
when the focus is on minimizing false positives (FP).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (2.3)

𝑅𝑒𝑐𝑎𝑙𝑙 indicates howmany observations with the positive classes are correctly classified as positive.
This is defined as the ratio of TPs to the total number of observations that correctly belong to the positive
class and is given by Equation 2.4. Improving the recall of a model is advantageous when the focus in
minimizing the false negatives (FN).

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (2.4)

𝐹1𝑠𝑐𝑜𝑟𝑒 combines both precision and recall into one measure and is obtained by their harmonic
mean, given by Equation 2.5. This metric has been often used to define information retrieval, document
classification and query classification performance [53].

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (2.5)
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 is defined as the ratio between correctly negative labelled points and all data points
that are positive in reality and is expressed in Equation 2.6. This is used as a measure when all TNs
must be covered, i.e., when no false alarms can be tolerated [54].

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃 (2.6)

Regressionbased approachesmodels normal behaviour of different components and subcomponents
when they are assumed to be in a healthy state. Based on given inputs (independent variables such as
wind speed, power output, shaft torque etc.), regression models are built to predict the numeric output
of a target or dependent variable when the components are assumed to be performing at their optimum.
Ideally, NBM of the components should be constructed with data recorded during the period when the
likelihood of failure is low. Mathematical modelling methods like artificial neural networks (ANNs) have
been frequently utilized to analyse wind turbine data [30]. ANNs can be applied to monitor any com
ponent without an indepth prior knowledge of its working principles. In addition to being general, the
ANN method is easily scalable for application on a large set of turbines. ANN models can handle noisy
and missing data, and, once trained, they can aid in prediction and generalization. Furthermore, they
are highly efficient at modelling nonlinear complex systems. These advantages of the ANNbased
approaches have made them of interest for monitoring critical components [55].

One of the earliest works using ANN normal behaviour models for condition monitoring for wind
turbine applications was presented by Garcia et al. [41]. A software tool called Intelligent System for
PredictiveMaintenance was proposed. It was divided into six modules responsible for normal behaviour
modelling, anomaly detection, health condition assessment, failure diagnosis, preventive maintenance
scheduling, andmaintenance effectiveness assessment. The study concluded that artificial intelligence
and modelling techniques (such as genetic algorithms, fuzzy logic) are sufficient for developing a pre
dictive maintenance strategy.

Zaher et al. [37] employed a similar autoregressive ANN model in case studies with real wind
turbine gearbox bearing data. The results showed that the anomalies in the gearbox operation could
be tracked 6 months before the eventual replacement took place. The paper proposed a multiagent
system which would only extract useful features about all WT components combined from the data and
present them to the operator. The anomaly detection was achieved by observing an increase in the
magnitude of error between the predicted and measured output parameters. However, such a detec
tion method based on static thresholds from one turbine can be difficult with many different turbines in a
wind farm, and automatic threshold values are desirable to generate alarms from the CMS. Kusiak and
Verma [56] investigated the ANN normal behaviour models with different numbers of neurons in the
hidden layer and then selected the best performing model for predicting faults. The results showed a
prediction timeline of 1.5 h before the eventual failure, however, detection of an incipient fault so close
to the actual failure does not allow any kind of maintenance planning. Bangalore et al. [57] improved
the ANN model using a nonlinear autoRegressive exogenous model (NARX) to build a monitoring
system based on SCADA data and focused on data preprocessing and postprocessing techniques
relevant to SCADA data sets. The anomaly detection method proposed in the paper used Mahalanobis
distance (MHD), which improved the anomaly detection by considering the correlation between ANN
model error and operating conditions. The research also demonstrated that to formulate a NARXmodel
to exhibit NBM, continuous data with no missing inputs is required. This is because the NARX model
uses a feedback loop where the output from the previous time instant is required to estimate the output
at a given time. Nevertheless, when working with data from a real WT, it is almost impossible to have
a dataset with continuous inputs.

Turnbull et al. [58] developed an NBM using an autoregressive feedforward ANN model, which
was executed separately for SCADA and CMS vibration data for the same turbine to establish a more
robust method to identify gear faults and predict its remaining useful lifetime (RUL). In the first case,
SCADA features such as wind speed, power output, highspeed shaft rotational speed, ambient tem
perature, and bearing temperature, was selected to model gearbox oil temperature. Various residual
error features were then used to describe the error distribution over a chosen time period and selected to
train a SVM classifier model to detect anomalies in the measured gearbox oil temperature. The second
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case study used a combination of SCADA and vibration features to model NBM and predict anomalies
using the SVMmodel. The benefit of using the SVM classifier was twofold: (1) SVM anomaly detection
model was able to combine different error features into a single threshold, and (2) SVM was capable
to learning the complex decision boundary between the normal operation and faulty operation points,
therefore, providing accurate predictions of failure 14 weeks before the failure.

Table 2.3 compares some important aspects of methods proposed in the literature that employ ANN
models for wind turbine NBM.

Table 2.3: Summary of SCADA based monitoring methods utilizing ANNbased NBM for wind turbines

Garcia et al.
[41]

Zaher et al.
[37]

Kusiak et al.
[56]

Bangalore et
al. [57]

Turnbull et al.
[58]

Method
used

Multilayer
feedforward
auto
regressive
ANN

Multilayer
feedforward
auto
regressive
ANN

Multilayer
feedforward
ANN

NARX ANN Multilayer
feedforward
auro
regressive
ANN

Input
selection

Domain
knowledge

Domain
knowledge

Data mining
algorithms

Domain
knowledge

Domain
knowledge

Anomaly
detection

Confidence
based on
ANN model
training data

Observation
of increase in
frequency of
error

Observation
of errors

Based on
a threshold
derived from
statistical
distance
measure
(Mahalanobis
distance)

SVM classifi
cation based
on different
residual error
features

Failure
prediction
interval

26h 46 months 1.5 h 23 months 14 weeks

The performance of regressionbased NBMs can be expressed through several measures based
on predicted output �̂�(𝑖) and actual output 𝑌(𝑖). Some of the most common measures for evaluating
regression models are described below in Equations 2.7  2.10. The higher the difference between the
actual output 𝑌(𝑖) and the predicted outcome �̂�(𝑖), the more inaccurate the model is in representing
the phenomenon; the closer the values and the better the performance of the model is.

Mean absolute error (MAE) calculates the average of the absolute values of the error. It does not
provide any information on the direction in which the actual and predicted values differ but only the
absolute distance. Also, it does not penalise larger errors more than the smaller ones.

𝑀𝐴𝐸 = 1
𝑁

𝑁

∑
𝑖=1
|�̂�(𝑖) − 𝑌(𝑖)| (2.7)

Mean absolute percentage error (MAPE) measures the error between actual and predicted out
comes as a percentage. It achieves so by calculating it similar to MAE but also dividing by the actual
value, as shown in Equation 2.8. By computing the error as a percentage, it provides a better under
standing how the model predictions deviate from the actual values in relative terms.
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𝑀𝐴𝑃𝐸 = 1
𝑁

𝑁

∑
𝑖=1

|�̂�(𝑖) − 𝑌(𝑖)|
�̂�(𝑖) ∗ 100 (2.8)

Root mean squared error (RMSE) calculates the average of squared errors across all samples and
takes the square root of the results. It is represented in the Equation 2.9. Because the errors are
squared, it penalises the prediction values farther away from the actual values.

𝑅𝑀𝑆𝐸 = √ 1𝑁

𝑁

∑
𝑖=1
(�̂�(𝑖) − 𝑌(𝑖))2 (2.9)

R squared or the coefficient of determination represents the proportion of the dependent variable
𝑦 that can be explained by the independent variables 𝑥. For instance, if R2 of a model is 0.75, then
approximately 75% of the observed variation can be explained by the model features. It is calculated by
taking one minus the sum of squares for residuals divided by the sum of squares, as shown in Equation
2.10.

𝑅2 = 1 −
∑𝑁𝑖=1(�̂�(𝑖) − 𝑌(𝑖))2

∑𝑁𝑖=1(𝑌(𝑖) − 𝑌(𝑖))2
(2.10)

Overall, it is usually important to report both measures, R2 and RMSE. This is because the R2
expresses the relation between features 𝑥 in the model and the target variable 𝑦. RMSE, instead,
expresses how the data points are spread out with regards to the regression fit.

2.5 Discussion
This chapter highlighted that even though the scientific community has shown increasing interest to

study in condition monitoring of WTs, the research on fault prognosis is still in nascent stages. Keeping
in mind that the gearbox was identified as one of the most critical WT components, this study is focused
on developing a framework for performing gearbox fault prognostics and health management. From
the possible WT PHM approaches discussed in this chapter, a datadriven approach was selected.
Physicsbased approaches were not explored due to their limitation in capturing the dynamic working
operation of a WT and specificity to a failure mode.

Initially, in this project, stochastic approaches utilizing distancebased PCA andWiener degradation
process were explored. Both methods make use of the statistical trends present in relevant signals [50]
[51]. However, these approaches did not result in success. Models based on statistical approaches
have poor generalization capabilities meaning they are specific to the dataset. The Wiener degrada
tion model requires a specific trend in the target signal which is not always present within a dataset.
Distancebased PCA is applicable when the abnormal data is of significant distance from the normal
operational data when represented in principle component space. In absence of specific statistical
characteristics in the target signals, the stochastic approaches have limited application. Furthermore,
to capture complex nonlinear relationships that exist within the data increased mathematical complex
ity of the model is required, which is difficult to design.

Owing to the failed attempts of adopting a stochastic approach, a MLbased approach was em
ployed. Classification models perform poorly when the dataset has highly imbalanced classes (i.e.
healthy  faulty, normal  abnormal). Because of the specifics of the dataset utilized in this project
classification model was determined as not a good option. Therefore, finally, a regressionbased NBM
approach was employed and a framework to realise it, was developed. This is further discussed in
Chapter 4.

Additionally, most of the research done in the field of wind turbine prognosis utilizes runtofailure
data to perform RUL predictions. However, obtaining such a dataset in a realworld scenario would be
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a costly endeavour. To make use of a dataset without runtofailure data, a new method for predict
ing failure could be proposed which could also set automatic thresholds and ring an alarm to perform
maintenance of the WT component.

Lastly, in the literature reviewed the potential of using highfrequency SCADA data for condition
monitoring has not been fully explored. In the current standard industry practice, SCADA data ag
gregated over 10min intervals is used. Such aggregation is done by averaging which results in loss
of information about the condition of the wind turbine component, limiting the suitability of this data
system for WT CM purposes. To this end, an investigation on the effect of averaging for the aim of
condition monitoring, a comprehensive sensitivity analysis with varying SCADA sampling frequencies
is proposed necessary.



3
Theoretical background

To understand and implement the framework proposed in this research, comprehension of machine
learning algorithms and related datadriven techniques is necessary. This chapter aims to provide a
theoretical background for such understanding and explains related terminology and concepts. One of
the major parts of the proposed framework is an artificial neural network (ANN). Architecture, training
and implementation principles of ANN are explained in Section 3.1. To build an ANN model suitable
dataset is necessary  it should adequately represent different operational regimes. However, real
world data is usually not ideal, and to that end, preprocessing is necessary to balance the dataset.
The issue of imbalanced domains together with its solution approaches are introduced and explained
in Section 3.2. Another important part of the framework is a support vector machine. Its purpose and
cognition, when concerned with classification problems, is given in Section 3.3. Lastly, this research
proposes an online WT monitoring scheme that utilises linear regression and bootstrapping. These
concepts are explained in Section 3.4.

3.1 Artificial neural networks (ANN)

Artificial neural networks (ANN) are computational systems inspired by biological neural networks;
ANN is designed to simulate the way human brain analyse and process signals. When used in combina
tion with powerful computational hardware, ANN can solve complex problems that would be unsolvable
otherwise. ANN being a simulation of human brain activity, has a similar architecture to the human neu
ral system, where multiple neurons are interconnected with each other into a neural network. These
neurons are activated based on the information they receive from other neurons they are connected to
[59]. An ANN is a blackbox approach as there is barely any control of the model except by the external
hyperparameters. The basics and relevant working of an ANN are discussed in this section. Practical
application of these concepts is presented in Section 5.2 and results of ANN implementation are shown
in Section 6.1.

Single perceptron

The simplest form of an ANN is known as the perceptron, consisting of a single node or neuron.
The computation process within the neurons consists of addition and multiplication procedures. Figure
3.1 shows an overview of how this perceptron works. The perceptron considers a certain number of
inputs 𝑝𝑖 from 𝑅 input nodes. Each of these nodes is connected to the perceptron and each connection
has a weight 𝑤1,𝑖. At the node (summation box in Figure 3.1), a linear addition 𝑛 of all input nodes and
their weighted connections is performed, using Equation 3.1.

𝑛 = 𝑤1,1𝑝1 +𝑤1,2𝑝2 + ... + 𝑤1,𝑅𝑝𝑅 =
𝑅

∑
𝑖=1
𝑤1,𝑖 ∗ 𝑝𝑖 (3.1)

The other half of the node transforms this linear algebra operation into a nonlinear system of equa
tions by means of activation function 𝑓, which is defined by the user. This function processes the inputs
and provides for an output. An example of a sigmoid logistic function is provided in Equation 3.2.

21
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Figure 3.1: Calculation process within a neuron (adapted from [60])

𝑓(𝑛) = {
0, if 𝑛 < 0

1
1 + 𝑒−𝑛 , if𝑛 ≥ 0

(3.2)

Additionally, the node itself has a bias (𝑏), which provides additional weight to the node’s output.
Consequently, the node with a higher bias has a higher contribution to the final output. It allows for
shifting the activation function and directly influences 𝑓(𝑛). Finally, the output of the activation function
is passed as the output 𝑎 of the node; Equation 3.3

𝑎 = 𝑓 (
𝑅

∑
𝑖=1
𝑤1,𝑖 ∗ 𝑝𝑖 + 𝑏) (3.3)

ANN architecture
The above description is for a single perceptron but this yields in a poor model. To increase the

flexibility and complexity of ANN model several perceptrons and layers can be used, which yields in a
multilayer perceptron (MLP). This is a widelyused architecture, where each node in a given layer is
connected to every node in the previous and next layer, if present. Similar to the single perceptron,
each connection has a weight 𝑤𝑖. Figure 3.2 gives an overview of this architecture. The network typi
cally consists of three different types of layers  input layer, hidden layers and output layer.

The input layer carries the data stream input features. Much like in a biological neuron system,
the information propagated through the neurons in the hidden layer, which send and receive a stream
of information from the previous layers to the output layer. Such an architecture is known as a feed
forward neural network; the information is only fed forward in the network. More complex architectures
are also possible and may include, skipping connection layers, cycles within the network itself or input
fed in a layer. Nevertheless, these are difficult to design and are not considered for this thesis; only
feedforward neural networks are considered.

Input layer

The input layer is the first layer in the ANN architecture which gets raw input parameters as input.
Each node carries an input parameter and is connected to each node in the next layer with connection
weights. This layer does not have any activation function or bias.

Output layer

Another base layer in the ANN architecture is the output layer placed at the end of the network.
The output of this layer is read as the model output and further used to evaluate the model’s per
formance (using performance metrics as described in Subsection 2.4.2). The output layer provides
results respective to the specified task. For instance, for supervised learning the output layer outputs
the classification label or value from the regression problem. In the case of a classification problem,
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Figure 3.2: The architecture of an artificial neural network (ANN)

the output layer is made of the same number of neurons as the necessary classes to predict. On the
other hand, for a regression problem, the output layer consists of only one neuron, containing the target
variable to be predicted when provided with some input variables.

Hidden layers

Between the input and output layers, there can be an almost unlimited number of hidden layers,
consisting of a predefined number of neurons. As the name suggests, these layers are hidden and
do not interact directly with the user, except through setting the hyperparameters. A high number of
nodes and layers is not always advantageous as it increases the required computational power and
does not necessarily result in better model performance. Furthermore, it also increases the number of
unknowns that need to be solved by the model during training. The number of hidden layers is a crucial
parameter for the architecture of ANN. For regression problems, it has been found that it is better to use
one hidden layer and work on changing the number of neurons and/or training data set until the best
performance is achieved [61]. The reasons for not using more than one hidden layer are as follows
[62]:

1. Due to the addition of more hidden layers, the network performance becomes unstable (due to
more unknowns) and is subjected to more noise as there are more neurons and connections
between the layers.

2. The fitting of the model becomes more complex and very specialised to predict the training cases,
therefore compromising the generalization capabilities of the model due to overfitting to the train
ing data.

3. There is more potential to reach a local optimization solution when the network has two or more
hidden layers because more neurons are optimized at different layers. Consequently, this might
lead to increased model prediction errors.

4. In the case of employing certain activation functions such as sigmoid, tanh for the hidden layers,
as more layers are added, the problem of ’vanishing gradient’ becomes relevant. This is because
some activation functions compress a large input space into a small input space, which in the
case of sigmoid function would be 0 and 1. As the inputs of the activation function become larger,
the gradient becomes too small for training to be done effectively.
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Another important parameter for the ANN architecture is the number of neurons within the hidden
layer. If the chosen number of neurons in the hidden layer is too large, it could lead to overfitting,
meaning that the model fit will be very good for the data from which it learned, but it will not be able
when presented with new data to perform as well. This means that the generalisation capability of the
model would be low [60]. To obtain the optimal number of neurons in the hidden layer, an iterative
process is executed. As a starting point, as a rule of thumb, the number of hidden neurons (𝑁ℎ) can
be calculated by equation 3.4, where 𝛼 is an arbitrary scaling factor ranging (usually) from 210 and
indicates how generalized we want the model to be [60].

𝑁ℎ =
𝑁𝑠

𝛼 ∗ (𝑁𝑖 + 𝑁𝑜)
(3.4)

where 𝑁𝑠 is the number of samples in the training data set, 𝑁𝑖 is the number of input neurons, and
𝑁𝑜 is the number of output neurons.

Activation function

An activation function in a neural network defines how the weighted sum of the inputs (net input 𝑛)
is transformed into an output from a neuron in a network layer. The purpose of the activation function is
to introduce nonlinearity in the ANN model, enabling it to capture complex patterns. If a linear activa
tion function is selected, the ANN model will imitate a linear operation, equating to a linear regression
problem.

Figure 3.3: Common activation functions used in ANN models (𝜙  activation function, 𝑧  net input) [63]

Nonlinear functions are important to discover relevant information in the layers and are chosen
based on the problem the neuron is solving. Some of the common activation functions are shown
in Figure 3.3.The sigmoid function transforms the input domain (∞, ∞) into the range domain (0,1),
whereas the tanh function maps the same input domain onto a slightly different domain (1,1). All hid
den layers typically use the same activation function, while the output layer usually uses a different
activation function depending on the prediction required by the model [64]. For example, the hidden
layer may use a logistic (sigmoid) activation function to understand nonlinear relations between the
inputs and output for a regression problem. However, for the output layer, a typical choice of activation
function would be an identity (𝑓(𝑛) = 𝑛) function.
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Optimization
Optimization of ANN refers to training the model using input data for which the target output feature

is already known. Optimization of a neural network is done by updating the matrix of weights 𝑊𝑖,
subjected to an objective function. The cost function that needs to be minimised is the mean square
error (MSE)  the difference between the neural network predicted outputs and known target variable
values. The algorithm used to minimize this objective function is known as backpropagation. Equation
3.5 demonstrates the optimization of a general ANN [62].

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 ∶𝑊𝑖 ∈ 𝑅𝑁

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶
𝑁

∑
𝑖=1
(𝑇𝑖 − 𝑌𝑖)2

(3.5)

where, 𝑁 represents the number of hidden neurons, and 𝑊𝑖 is the 𝑖𝑡ℎ weight value. 𝑇𝑖 and 𝑌𝑖 are
the target and predicted values, respectively. In essence, once the output is computed through the
feedforward pass algorithm, where the training input values are propagated to the output layer using
randomly initialized weights, the inverse process starts. The weights are updated by comparing the
target value from the training dataset with the prediction and then calculating their respective deriva
tives at every layer, starting from the output layer, going through all the hidden layers. Consecutively,
ANN computes a new output based on the actualization of these weights, repeating the process until
the cost function is minimized, i.e. the weight matrix is associated with the minimum loss or MSE. The
backpropagation algorithm is a way of learning from the training data set, as progressive iterations tend
to reduce the training error close to zero [61].

The optimization algorithm describing the feedforward pass and backward propagation flow is sum
marized as follows [65]:

• Step 1  Initialisation: random initialization of weight matrix.

• Step 2  Feedforward pass: propagate the input values through the ANN to the output layer;
compute errors between the training values of the target variable and predicted values.

• Step 3  Backward propagation: Compute the gradient of the optimization function; update weight
matrix; repeat step 2 until optimization is achieved as per equation 3.5.

A detailed explanation for the optimization of neural networks along with mathematical derivations is
presented in Appendix A.

Other various optimization algorithms have been proposed to be integrated with the backpropa
gation algorithm. Following the classical gradient descent technique, the stochastic gradient descent
(SGD) technique randomly selects a subset of the training data set to calculate the partial derivatives.
Compared to its other variants, such as batch gradient descent and minibatch gradient descent tech
niques, SGD significantly reduces the computational time as fewer calculations are required. However,
in cases where the steepness of surfaces between different axes is not equally distributed, SGD has
trouble finding local optimal points [66]. In this regard, a new method named Momentum [67] was for
mulated to accelerate SGD in the relevant direction and damp oscillation by adding a fraction 𝛾 of the
update vector of the past time step to the current update vector. Consequently, an adaptive subgradient
(Adagrad) algorithm [68] was proposed, which adapts the learning rate to the parameters, performing
larger updates for infrequent and smaller updates for frequent parameters. As an extension to Adagrad
method, adaptive moment estimation (Adam) [69] was articulated. This method computes the adap
tive learning rates for each parameter. In addition to storing an exponentially decaying average of past
squared gradients, it also keeps an exponentially decaying average of past gradients.

In summary, building an efficient ANN for system prediction requires careful study of some issues
related to the network, including (1) a universal function approximation capability (i.e. the ability to
generalize the problem successfully); (2) resistance to noise or missing data (i.e. feature extraction
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and noise filtration) and (3) accommodation of multiple nonlinear variables for unknown interaction
(i.e. selection of appropriate activation function).

3.2 Preprocessing approach for imbalanced regression
Imbalanced domains are a relevant problem when working with realworld data and refers to a

dataset that is not able to properly represent a target variable under all relevant cases. The main prob
lems pertinent to imbalanced domains arise due to the limited representation of events of concern in the
data and nonuniformity in the bias of the user across the range of the target variable [70]. This issue has
been studied mostly in the context of classification tasks [71] [72]. One of the approaches for handling
imbalanced domains is intervening in the learning process of any predictive model. This could be done
in the data preprocessing stage, which tends to change the original distribution of the data before the
learning algorithm is applied, to change the target variable distribution to force the learning algorithm to
also focus on rare and interesting cases. One of the reasons for applying a specialpurpose algorithm
in the preprocessing stage is because of its flexibility regarding the use of any learning algorithm later
on. A case of imbalanced domain with regards to wind turbine operational data was encountered in
this project and is further discusses in Section 5.1.4.

Several solutions have been proposed in the literature for dealing with imbalanced classification
tasks. However, imbalanced domains also occur in other predictive contexts such as regression tasks,
data streams or time series forecasting [73] [74]. Compared to classification tasks, the problem of
imbalanced domains in regression tasks is more complex due to the continuous nature of the target
variable. Also, the definition of the importance of values of the target variable is not straightforward.
As mentioned before, a solution to the imbalanced domain problem is changing the data distribution:
increasing the density when the case is relevant and decreasing when it is not. The relevance is cir
cumstantial, and hence, it must be determined by the user providing a relevance function and threshold.
This results in determining rare and relevant cases (𝐷𝑅) and the set of normal and uninteresting cases
(𝐷𝑁).

There are three most commonly applied strategies for dealing with imbalanced domains: Random
undersampling [75], SMOTER [76] and introduction of Gaussian noise [77]. Random undersampling
is a straightforward strategy that, by randomly removing samples belonging to the normal and less
interesting cases for the target variable, achieves a better balance between the interesting / rare and
uninteresting / normal cases. SMOTER is an adaptation for regression of the well known SMOTE (syn
thetic minority oversampling technique) algorithm [78]. This algorithm applies a random undersampling
strategy to the normal cases and generates new synthetic examples from the rare cases through an
interpolation strategy. This interpolation is carried out using two rare cases (one is a seed case and the
other is randomly selected from the knearest neighbours of the seed). The new target variable value
is determined as a weighted average of the target variable values of the two rare cases used. The
introduction of Gaussian noise employs the same random undersampling strategy for normal cases.
However, it generates new synthetic examples for rare cases using the addition of normally distributed
noise to the rare examples [79]. These three approaches have been designed for classification prob
lems and adapted to regression tasks.

To overcome the issue of imbalanced domains in regression tasks, Branco et al. [70] proposed
a new preprocessing approach named SMOGN (synthetic minority oversampling technique with the
introduction of Gaussian noise), which incorporates the two existing approaches for undersampling
and oversampling, trying to solve problems associated with both of them. It combines a random under
sampling strategy with two oversampling techniques: SMOTER and introduction of Gaussian noise.
SMOGN algorithm is a preprocessing approach for tackling imbalanced domains which acts before
the learning process stage. The motivation behind SMOGN is described as follows [70]:

• To limit the risks incurred when using SMOTER as it would not use the most distant examples in
the interpolation process.

• To increase the generalization capability by allowing expansion of the decision boundaries of rare
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cases, which is more difficult to achieve with the introduction of Gaussian noise, as it is a more
conservative approach.

Application and effects of the SMOGN algorithm are discussed and illustrated in Subsection 5.1.4.

The SMOGN algorithm [70] begins by building data partitions containing consecutive examples con
sidering the target variable, which are clustered into two types: 𝐵𝑖𝑛𝑠𝑅  the rare and important partitions,
and 𝐵𝑖𝑛𝑠𝑁  the normal and less important partitions. This means the 𝐵𝑖𝑛𝑠𝑅 contains the higher rele
vance examples (examples with relevance above a predefined threshold). Random undersampling
strategy is applied to the examples in the partition belonging to 𝐵𝑖𝑛𝑠𝑁. On the other hand, the exam
ples in 𝐵𝑖𝑛𝑠𝑅 are targeted with an oversampling procedure. For each case (the seed example) in a
partition belonging to 𝐵𝑖𝑛𝑠𝑅, synthetic samples are generated using either SMOTER or the introduction
of Gaussian noise. The main idea is that if a selected nearest neighbour is at a ’safe’ distance, it is suit
able to perform interpolation through the SMOTER strategy. However, if the selected neighbour is not
at a safe distance, then it is better to generate a new synthetic sample by introducing Gaussian Noise
on the seed case. The threshold used to decide the ”safe” distance for a selected neighbour depends
on the distance of the seed example from all the remaining cases in the partition under consideration.
It is selected as half of the median of the distances between the seed example and other examples
belonging to the same partition.

Figure 3.4 shows a synthetic sample with 5nearest neighbours of a seed case, where some are
within the safe distance range (3 blue points marked in the dark grey area) and others at an unsafe
distance (2 blue points marked in the light grey area). The examples belonging to the relevant bin are
marked with blue bullets and the examples marked with crosses belong to a normal bin. It is also worth
mentioning that the examples belonging to the normal bin (𝐵𝑖𝑛𝑁) are more likely to overlap with the
examples from the relevant bin (𝐵𝑖𝑛𝑅) at an unsafe distance.

Figure 3.4: Synthetic sample generation using the SMOGN algorithm [70]

3.3 Support vector machines (SVM)
Support vector machine (SVM) [80] has been extensively used for both classification and regression

purposes. SVM is characterized as a binary classification algorithm, which differentiates the data set
between two classes by finding an optimal hyperplane that separates them. The optimal hyperplane
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is constructed to maximise the margin between the positive and negative training examples as shown
in Figure 3.5. Through a set of support vectors (the subset of the training data which is nearest to
the separating hyperplane) the maxmargin hyperplane is determined. Multiple SVM classifiers can be
built, each of which is capable of classifying between different classes (multiclass), or by classifying
between pairs of classes (onevsone), also known as oneclass support vector machine (OCSVM). In
this regards, SVMs also provide the flexibility of differentiating two classes based on multiple features
and hence, can capture complex separable boundaries between the two classes. Oneclass classifi
cation is quite distinct from the multiclass classification setting, where the classifier is only required to
differentiate between a target class and one specific nontarget class (opposing class) and not all non
target classes. With regards to anomaly detection setting, a oneclass classifier distinguishes between
the normal data (target class) and any sort of anomaly (nontarget class). This behaviour of oneclass
classifiers makes them an ideal choice for datadriven anomaly detection problems.

Figure 3.5: Support vectors and maxmargin hyperplane [63]

One class support vector machines (OCSVM) is a variant of SVM, which, as the name suggests is
a oneclass classifier and classifies between two classes by producing a hyperplane around the training
data, which is then used to decide whether the future data is similar to this class, or an anomaly [81].
This module is especially advantageous in settings where there are a lot of available ’normal’ data and
not many cases of anomalous instances. To this end, the Anomaly Detection Module in this project
was developed based on OCSVM model which was trained using a dataset comprising of all or mostly
normal operations. The model recognises the boundary of normal behaviour and then aids in deciding
if the future data also belongs to the normal class. The implementation of OCSVM is discussed in
Section 5.3 and its results are presented in Section 6.3.

Like SVM, OCSVM uses support vectors to decide on the boundary, which are just data points
closer to the boundary. In the conventional SVM, this would be the boundary between two or more
classes. Being a boundarybased method, the model is sensitive to outliers in the training data that
can degrade the model performance [82]. In order to offset this disadvantage, OCSVM uses 𝑛𝑢 as
a hyperparameter to define what portion of the data should be classified as outliers. The parameter
𝑛𝑢 is an upper bound on the fraction of margin errors and a lower bound of the fraction of support
vectors relative to the total number of training samples. For instance, a value of nu set to 0.01 would
find at most 1% of the training samples being misclassified at the cost of a small margin, while would
be beneficial in preventing any misclassified anomalies in the later stage.
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The training of OCSVM involves an intensive computational complexity as it aims to solve a quadratic
programming problem. An OCSVM solutions is obtained by estimating a probability distribution func
tion which makes most of the training data more likely that the others, and a decision rule that separates
these by the maximum possible margin. Let 𝒵 = 𝑧1, 𝑧2, ..., 𝑧𝑛 be the ndimensional training data. Let
Φ ∶ 𝒵 → 𝒢 be a kernel map which transforms the training data to a higher dimensional space. OCSVM
separates the data by trying to solve the following quadratic programming problem [83]:

min
𝑤∈𝒢,𝜖𝑖 ,∈𝑅

{12||𝑤||
2 + 1

𝜈𝑁

𝑁

∑
𝑖=1
𝜖𝑖 − 𝑏} (3.6)

subject to
𝜈 ∈ (0, 1], 𝜖𝑖 ≥ 0, ∀𝑖 = 1, ......, 𝑁, (3.7)

(𝑤 ∗ Φ(𝑧𝑖)) ≥ 𝑏 − 𝜖𝑖 , ∀𝑖 = 1, ...., 𝑁, (3.8)

wherew is the weights of the function, 𝜈 is the 𝑛𝑢 hyperparameter,𝜖 are the nonzero slack variables
in the margin to produce a soft margin that would help prevent overfitting, 𝑏 is an offset parameterising
a hyperplane in the feature space associated with the kernel, 𝑧𝑖 are the input values and Φ(𝑧𝑖) maps
these inputs from input space to feature space allowing for a hyperplane splitting the data classes to
be formed.

Using Lagrange techniques and a kernel function 𝐾(𝑧, 𝑧𝑖) = Φ(𝑧)𝑇Φ(𝑧𝑖), for the dotproduct calcu
lations, the decision function 𝑓(𝑧) becomes:

𝑓(𝑧) = 𝑠𝑖𝑔𝑛{((𝑤 ∗ Φ(𝑧)) − 𝑏)} = 𝑠𝑖𝑔𝑛 {
𝑁

∑
𝑖=1
𝛼𝑖𝐾(𝑧, 𝑧𝑖) − 𝑏)} (3.9)

Through this method, we thus create a hyperplane characterized by 𝑤 and 𝑏 which has maximal
distance from the origin in the feature space 𝒢 and separates data points. Here, 𝛼𝑖 are the Lagrange
multipliers; every 𝛼𝑖 is weighted in the decision function and therefore ”supports” the machine. In Equa
tion 3.6, nonzero 𝜖𝑖 are penalised in such a way that the decision function as shown in equation 3.9
should be positive for most input examples, i.e., they will be considered normal, while the regularization
term (||w||), shown in Equation 3.6 should remain small. This is determined by the variable 𝜈, which
is the contamination hyperparameter. The model should then provide a predicted output either being
positive 1 for data in the centre, representing clustered observed data and negative 1 for data lying out
side the boundary, meaning abnormal or anomaly. Figure 3.6 shows OCSVM facilitating a boundary
around the observed data during training, and is able to identify anomalies, i.e. the data points away
from the learned decision boundary.

Figure 3.6: OCSVM learned boundary from training data and anomaly identification [84]
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3.4 Linear Regression and Bootstrapped Confidence Intervals
Regression analysis can be defined as the collection of statistical tools that are used to model and

explore relationships between variables in a nondeterministic manner. Of all the tools available, linear
regression is a widely implemented technique to model the association between a dependent variable
and one or more independent variables [85]. In the simplest case, which is what was explored during
this project, there is one independent (response variable), usually represented by 𝑦 and a dependent
variable (predictor variable) 𝑥 . Such a relation can be explained with a simple linear regression model
of the form 𝑌 = 𝛽1𝑥 + 𝛽0, with a slope 𝛽1 and an intercept term 𝛽0. The most straightforward and
common approach to finding the optimal parameters (𝛽1 and 𝛽0) is through the setting of ordinary least
squares (OLS). OLS is a statistical method that ensures that the difference between the actual ob
served data and the fitted linear regression model is as small as possible [86].

Given a set of n pairs of observations (𝑥1, 𝑦1), (𝑥2, 𝑦2), ....., (𝑥𝑛, 𝑦𝑛) with a linear relationship be
tween them, the n samples in observation can be described by a simple regression model and can be
represented by equation 3.10 [85].

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖 , 𝑖 = 1, 2, ...., 𝑛 (3.10)

where, the data 𝑥𝑖 is the value of the predictor variable and 𝑦𝑖 is the response variable in the 𝑖𝑡ℎ
trial, 𝛽 coefficients are the unknown parameters of the linear fit and 𝜖𝑖 is the random error term with
mean 0 and variance 𝜎2. The simple linear regression model relies on a number of assumptions being
satisfied for it to provide a reliable approximation to a linear association between two variables. The
assumptions are related to the probability distributions of the random error term (𝜖) in the model. The
four main assumptions about these random errors are [87]:

1. The distribution of 𝜖 at each xvalue has a mean of zero: 𝐸{𝜖𝑖} = 0. In other words, the data
points are scattered along both sides of the regression fit in a balanced way such that the random
errors average is 0 as we move across the plot from left to right.

2. The distribution of 𝜖 at each xvalue has a constant variance, also known as homoscedasticity:
𝑣𝑎𝑟{𝜖𝑖} = 𝜎2. This means that the data points scatter evenly around the regression fit such that
the variation of the random errors is constant as we progress through the plot from left to right.

3. The distribution of 𝜖 at each xvalue is normal. That is, the data points are more likely to be
scattered closer to the regression fit than farther away and have a gradually decreasing likelihood
of being distant from the regression fit.

4. The value of 𝜖 for a certain observation is independent of the value of error for any other obser
vation.

OLS finds the estimates of 𝛽1 and 𝛽0 that best fit the data by minimizing the sum of the squared
distances (errors) from the fit of each response [88]. The sum of the square of error of the observations
from the linear regression line is given by equation 3.11 [85].

𝐿 =
𝑛

∑
𝑖=1
𝜖2𝑖 =

𝑛

∑
𝑖=1
(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)2 (3.11)

The OLS estimators of 𝛽0 and 𝛽1, symbolized by ̂𝛽0 and ̂𝛽1, must satisfy conditions in equations
3.12 and 3.13 [85].

𝜕𝐿
𝜕𝛽0

|
̂𝛽0 , ̂𝛽1

= −2
𝑛

∑
𝑖=1
(𝑦𝑖 − ̂𝛽0 − ̂𝛽1𝑥𝑖) = 0 (3.12)

𝜕𝐿
𝜕𝛽1

|
̂𝛽0 , ̂𝛽1

= −2
𝑛

∑
𝑖=1
(𝑦𝑖 − ̂𝛽0 − ̂𝛽1𝑥𝑖)𝑥𝑖 = 0 (3.13)
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The OLS estimates of the intercept ̂𝛽0 and the slope ̂𝛽1 in the simple regression model are the
solution to the above equation and are presented in the equations 3.14 and 3.15 [85].

̂𝛽0 = �̄� − ̂𝛽1�̄� (3.14)

̂𝛽1 =
∑𝑛𝑖=1 𝑦𝑖𝑥𝑖 −

(∑𝑛𝑖=1 𝑦𝑖)(∑
𝑛
𝑖=1 𝑥𝑖)

𝑛

∑𝑛𝑖=1 𝑥2𝑖 −
(∑𝑛𝑖=1 𝑥𝑖)

2

𝑛

(3.15)

where �̄� = 1
𝑛 ∑

𝑛
𝑖=1 𝑦𝑖 and �̄� =

1
𝑛 ∑

𝑛
𝑖=1 𝑥𝑖.

In statistics, a confidence interval is a measure of how accurate, or how good, an estimate of a
certain parameter is. Confidence interval comprises a range of acceptable values that are defined as
good estimates of the unknown population parameter. The necessity of confidence intervals stems
from the fact that a point estimate, being a single value, is insufficient to express the statistical variation
or random error, that the estimate might have [89]. The confidence interval can be defined as a range
of values constructed from the sample data such that the population parameter is likely to occur within
that range at a predefined probability. This predefined probability is known as the level of confidence.
Standard errors are often used to estimate approximate confidence intervals for parameter Θ of interest.
For a given estimate Θ̂ and an estimated standard error ̂𝑠𝑒, the 100(1 − 𝛼)% confidence interval for
Θ is given by the equation 3.16. In the case of a normal distribution, 95% confidence intervals can be
obtained using 1.96 as the critical value [90].

Θ̂ ± 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑣𝑎𝑙𝑢𝑒 ∗ ̂𝑠𝑒 (3.16)

This equation can also be used in reference to regression problems following the four assumptions
related to the residuals as mentioned above. However, this means that its application is limited as
if these assumptions are violated the estimation of the regression coefficients obtained by OLS may
not be appropriate [91]. In such a case, bootstrapping is an advantageous method. The bootstrap is
an important nonparametric approach to statistical inference that can provide valid standard errors,
confidence intervals and hypothesis tests without making the assumption of a normal distribution of the
parameters. It is a databased simulation method for statistical inference, which involves repeatedly
drawing random samples from the original data, with replacement. ’With replacement’ means that any
observation can be sampled more than once. Although for most problems, it is hard to discern the true
confidence interval, bootstrapping method is asymptotically more accurate than the standard intervals
obtained using sample variance and assumptions of normality [92]. Another advantage of this method
is that it avoids the cost of repeating a certain experiment to get more groups of sample data [89].
This is a very important benefit when analysing failure data for wind turbines as the realworld data
is often skewed with a significantly low number of data samples representing the faulty state of the
turbine. The bootstrap procedure can be implemented to get more accurate statistical inferences in the
following situations [93]:

• When the theoretical distribution of a parameter of interest is complex or unknown. Since the
bootstrapping procedure is distributionindependent, it provides an effective method to under
stand the underlying distribution of the sample and parameters of interest derived from it.

• When the sample size is insufficient to draw a straightforward statistical inference. Even when
the underlying distribution is well known, bootstrapping provides a good way to account for the
distortions caused by the specific sample.

In this project, owing to the unknown distribution of the sample data and insufficient samples in the
studies data set, the bootstrap method was used to estimate the confidence intervals around the linear
regression fit and its implementation is further discussed in Section 6.4. The main idea behind the
bootstrapping regression is to construct bootstrap standard errors and confidence intervals for regres
sion coefficients. The procedure to do so for a simple regression model is discussed here, specifically
called bootstrapping the residuals. The topic of bootstrapping regression is discussed in detail in the
book by Efron and Tibshirani [89].
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1. Estimate the regression coefficients ( ̂𝛽0, ̂𝛽1) for the original sample and calculate the fitted value
(�̂�𝑖) and residual for each observation. �̂�𝑖 = ̂𝛽0 + ̂𝛽1𝑥𝑖 and 𝜖𝑖 = 𝑦𝑖 − �̂�𝑖 for 𝑖 = 1,2,3, ...., n

2. Keeping these residuals as the original sample, generate𝑀 bootstrap samples and calculate 𝑦∗𝑚,𝑖
values for each observation in the bootstrap sample. (𝑦∗𝑚,𝑖 = �̂�𝑖 + 𝜖𝑚,𝑖) where, 𝑚 = 1,2,3, ....., M

3. Regress the bootstrapped 𝑦∗𝑚,𝑖 values on the fixed 𝑥 values to compute the estimated bootstrap co
efficients. Estimates are calculated using the OLSmethod. These estimators {( ̂𝛽∗0 , ̂𝛽∗1)1, ( ̂𝛽0, ̂𝛽∗1)2,
....., ( ̂𝛽0, ̂𝛽∗1)𝑚} can then be used to construct the bootstrap standard error and confidence inter
vals for the regression coefficients. The estimated coefficients can be ordered in an increasing
manner, and a simple 95% bootstrap confidence interval would be from the 0.025𝑀𝑡ℎ to 0.975𝑀𝑡ℎ
largest values.



4
Methodology

One of the goals of this research project is to develop and implement a framework for prognostics
of wind turbine gearbox. Based on the literature reviewed and presented in Chapter 2 as well as
the theoretical background explained in Chapter 3, a methodological approach was established and
prognostics model constructed. The methodology of this research is explained in this chapter. Section
4.1 describes the framework on which this research and its results are based upon. This framework can
be segmented into three different modules, each of them is explained in more detail in the subsections.
Firstly, as realworld datasets are not ideal, the need for data preprocessing and how it is carried out
are discussed. After that, the principles behind the normal behaviour model are described. Lastly,
the process of detecting anomalies in the turbine’s operation is given together with the explanation
of a realtime monitoring scheme that sets robust thresholds for activating warnings and alarms for
maintenance. Another aim for this research is to conduct a sensitivity study to investigate the effects of
different data sampling periods and determine an optimal sampling period for SCADA data. The way
the sensitivity study was conducted is explained in Section 6.5.

4.1 Framework for gearbox failure prognostics
The aim of this thesis is to develop a framework for wind turbine gearbox prognostics using SCADA

data. As mentioned before in Section 2.3, owing to the extensive information stored and applicability of
SCADA systems, SCADA data has attracted great research interest to perform condition monitoring of
wind turbines. Various signal analysis methods and modelbased approaches have been developed to
analyze trends of typical WT SCADA parameters. Such analyses have shown that significant changes
and anomalies in the WT behaviour can be detected at an early stage [30]. One such approach has
been adapted for this framework, the idea behind which is as follows:

• Normal behaviour of the WT gearbox is emulated to predict the behaviour in the case when no
fault progression is happening.

• The predicted signal representing normal behaviour is compared to the real measurement taken
in the machine.

• If the deviation of the measured signal from the modelled normal behaviour signal is observed an
indication of fault initiation and progression is detected and quantified.

• The quantified deviation is then tracked through time and a maintenance alarm is given when the
deviation starts increasing substantially indicating that the fault is bound to happen.

To realize the idea explained, a regressionbased datadriven approach is implemented using a normal
behaviour model (NBM). This can be identified as the foundation of the developed framework.

The established framework is shown in Figure 4.1. The entire framework can be segmented into
three modules, namely, data preprocessing, normal behaviour model and anomaly detection and prog
nosis. The data preprocessing module entails operations necessary to treat data that is used for
building and employing the NBM, particularly, data cleaning and feature selection and engineering.
The NBM module is an artificial neural network (ANN) model, which is trained to learn the mapping
between selected input and target features and is able to imitate the healthy state operation of the
turbine. In the Anomaly detection and prognosis module, the NBM predictions are compared with the

33
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field measurements to track anomalies. Here, OCSVM is employed to analyse the error and set a
complex, continuous boundary to distinguish between periods of healthy and anomalous operation of
the turbine. Furthermore, to understand the inception of failure in the gearbox, a realtime monitoring
scheme is developed which sets off an alarm for maintenance when the fault progression exceeds a
certain threshold.
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Figure 4.1: Model architecture for gearbox failure prognostics
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The framework is executed in two phases, the first being Training & Validation, which encompasses
training, testing and validating the employed machine learning models i.e. ANN and SVM. This is done
using the healthy instances which are represented in blue. Once the models are trained and validated,
they are used to detect anomalies and this characterizes the second phase, Application. This phase
is executed using faulty instances from the wind turbine operational data and is shown in orange. The
Training & Validation phase is a onetime process, during which the normal behaviour model is trained
to emulate normal operating conditions and the extracted residual features are then used to train the
classification model. The Application phase represents the continuous application process of anomaly
detection and condition monitoring.

Additionally, another goal of the thesis is to determine the optimal SCADA data sampling frequency
which can be utilised for wind turbine condition monitoring purposes. Once the framework is developed,
a sensitivity study to investigate the effects of different sampling periods is carried out. This was done
by analysing the model performance and amount of anomalies detected while varying the sampling
period of the data and is discussed in Section 6.5.

4.1.1 Module 1: Data preprocessing
The framework, presented in Figure 4.1, has been developed to employ a datadriven approach for

WT gearbox prognostics using SCADA data. In most modern WTs, SCADA systems record over 200
variables in intervals of 10 min, generating rich historical data. By using appropriate data treatment
solutions, the recorded signals could be converted into useful information for condition monitoring. The
SCADA dataset utilised in this project contains one failure mode of the gearbox which occurred due to
gear teeth misalignment in the planetary stage and resulted in a turbine shutdown and maintenance
[15]. A detailed overview of the data is provided in Subsection 5.1.1.

As explained before, the developed framework is based on the NBM approach which emulates the
healthy behaviour of the WT component. NBM is built using the healthy data representing the normal
operation. Hence, one of the primary tasks after acquiring the data is to identify healthy and faulty
periods of wind turbine operation. This is done by first identifying the date of failure and selecting an
optimum time frame in which the first signs of incipient failure could be apparent, referred to as ’Faulty
data’. On the other hand, ’Healthy data’ comprises data depicting no signs of anomalous or faulty tur
bine behaviour and usually belongs to the early operational period of the machine component. One
of the considerations while distinguishing these two data sets is to provide a good balance in terms of
volume of data for the specific purposes healthy and faulty data have: training and validation of NBM
and appropriate time span to analyse the progression of failure respectively.

Usually, the raw SCADA data acquired contains erroneous or abnormal data points  further referred
to as ’outliers’. These might be caused by malfunctions in the SCADA communication system, sensor
or signal processing error. In the context of SCADA signals, outliers can be identified as measurement
data far away from a much larger and densely clustered set of normal measured data. Data cleaning is
the process of correctly identifying and processing such outliers as they could have a strong negative
impact while training the model which might even lead to false alarms. Some of the most commonly
used filtration techniques are quantile filter, the Hampel identifier and the extreme studentized devi
ate test. The effects of removing outliers for wind turbine fault diagnostics and condition monitoring
has been examined by MartiPuig et al [94]. They identified that the best filtering strategy is to define
operation ranges for each variable by a human expert or the manufacturer and filter these ranges sep
arately. This is because systematic filtering of outliers might result in the removal of failure states of
the wind turbine which are misidentified as bad / abnormal data. In this case, the data vectors corre
sponding to periods of the turbine’s emergency shutdowns and anomalous power output were filtered
out. Additionally, any abnormal signal values recorded, i.e. values above the threshold defined by the
manufacturer, were removed. The filtration strategy employed within the framework of this project and
all filtration steps are discussed in detail in Subsection 5.1.4.

Once the data has been cleaned, the next step is feature selection and engineering. Feature selec
tion is the process of selecting variables, herein timeseries signals, that relate to the outcome that is
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wished to study, understand and predict. Firstly, a target feature for the NBM should be identified such
that it is sensitive to the analyzed failure mode of the gearbox and its deviation from predicted values
carries information of fault inception. Various data mining approaches can be performed for such a se
lection; for example, Kusiak and Verma [42] proposed three data mining algorithms to establish a cause
and effect relationship between different measurements available in the wind turbine SCADA system.
However, such an approach may lead to a selection of a large number of input features and domain
knowledge has to be applied to keep the number of parameters to a reasonable value as suggested
by Schlechtingen et al. [95]. Furthermore, the selection of input features based on domain knowledge
has been demonstrated successfully in other reviewed literature [41] [37] [58]. Hence, in this research,
an understanding of the physics and the domain knowledge was considered to be the best method to
decide suitable input parameters for modelling. The gearbox lubrication oil temperature was selected
as the target feature as it is the most sensitive to the condition of the gearbox. Additional signals 
wind speed, power output, highspeed shaft rotational speed, nacelle and ambient temperature were
selected as the input features. This is also demonstrated in Table 2.2.

Furthermore, a commonly occurring issue when working with realworld datasets is the imbalance
in data distribution across different operational regimes of the machine. Such imbalance domains
within the data result in overfitting for operational domains with large volumes of data and under
fitting for domains with relatively less data. This then means that the ML model learns more about
some operational regimes than others, which deters its generalization capabilities. With regards to
wind turbine, this problem is exacerbated by the fluctuations in the wind speed and consequently, the
imbalance in its operational domain. In order to tackle this issue, a preprocessing technique, synthetic
minority oversampling technique with introduction of Gaussian noise (SMOGN), was implemented
within the framework to reduce the difference between data volumes in different regimes. An extensive
explanation of the working principles of this technique is given in Section 3.2 and its application is
discussed in Section 5.1.4.

4.1.2 Module 2: Normal behaviour model
After the procedures within module 1 of the framework are carried out, the NBM can be built. The

NBM works by empirically modelling the target feature/variable based on the selected input features.
The process is summarized in Figure 4.2, where u(t) are the input variables at time step t, Ĝ(t) repre
sents the datadriven NBM to predict target variable ŷ(t) while G(t) constitutes the process of obtaining
the measured target variable y(t) through the required infield sensor. Finally, e(t) represents the resid
ual error between the predicted and the measured value.

Figure 4.2: Normal behaviour modelbased monitoring [96]

In this framework, the normal behaviour model (indicated as Model in Figure 4.2) is realised by the
use of an ANN. The first and foremost task is to design an optimal architecture of the ANN which can be
done experimentally or through algorithms. This task is concerned with configuring various parameters
of the ANN such as the number of hidden layers and neurons, optimization algorithm, learning rate etc.
For a given specific problem to be solved and the data in hand, an optimal ANN architecture results
in reduced complexity and computational power. Furthermore, with regards to model performance, a
simple architecture could lead to overfitting issues, while complex architecture  to the underfitting
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problem; in both cases causing poor generalization capabilities and trap in local solution [97]. In this
project, the model configuration was accomplished through experimentation utilizing knowledge about
the data and the problem to be solved.

The normal behaviour model is developed in periods where the turbine components can be con
sidered healthy (normal operations). Out of the samples in the healthy data set, 70% are used for
training, 15% for testing with the remaining 15% for validation. As discussed in Subsection 2.4.2, vari
ous metrics exist to verify the validity of the ANN model such as mean absolute error (MAE), root mean
squared error (RMSE) etc., and they were computed for all modelling phases to evaluate the model’s
generalizing capabilities. This trained model is then, used to predict the selected target feature, where
the prediction error gives an indication of changes in signal behaviour and thus incipient faults [37].

4.1.3 Module 3: Anomaly detection
Once the ANNbased NBM model is trained and validated, the next stage of the process is to eval

uate the error between the model predictions and the actual measurements and determine a threshold
that can distinguish between normal and anomalous behaviour of the wind turbine. While there are
different error metrics proposed in the literature, such as root mean squared error (RMSE), health de
gree based on probability or Mahalanobis distance [57], there is no definite solution on how to best
measure the NBM error. For instance, in case of modelling gearbox lubrication oil temperature, simple
thresholds can be set based on the training RMSE to determine anomaly rates up to failure [41]. How
ever, the interpretation of these results is limited, since only a single statistical metric fails to capture all
the information about fault that can be gathered and, in some cases, can even lead to false or missed
alarms. In this regard, Turnbull et al. [58] proposed a robust method to track and analyze the error by
using a combination of different residual error features and detect anomalies through support vector
machines. A similar approach was implemented in this project.

In this work, four residual error (difference between actual and predicted signal values) features 
the root mean squared error, the minimum error, the maximum error and the error standard deviation
 are computed for a selected time period. These statistical features were selected to best understand
the distribution of errors and capture maximum information about them. These residual features from
healthy data can then be used as input to train the OCSVMmodel and recognize 1% of data as anoma
lies in the training period; therefore, a similar percentile would be expected if no fault is present in the
system. This percentage is obtained through data analysis and is an iterative process. It is important to
define such a percentage of anticipated outliers in the data to develop the minmax decision boundary
for OCSVM and prevent it from misclassifying any anomalous operation as normal. If the percent
age of anomalies exceeds the predefined value of 1%, this would be an indication of incipient gearbox
fault in the WT. The SVM is able to learn the complex, continuous boundary formed by these features
and sets it as a threshold for a data point to be recognised as an anomaly. Once both the models 
ANNbased NBM and OCSVM  are trained, they can then be used to detect anomalies in the dataset
representing a faulty condition of the turbine. This is done by first using the NBM to predict the target
feature based on the same input features as the ones used in the training phase and then assessing
the error between predicted and measured values. Finally, the calculated error metrics are fed into the
SVM classifier to identify if the new data point represents normal or anomalous behaviour.

After identifying the anomalies in the faulty dataset, for each week of turbine operation before the
failure, the percentage of anomalies observed is recorded. The percentage of anomalies is the ratio of
total anomalous data points and the total number of data points logged in that week. These anomalies
are then tracked and analysed to determine an alarm threshold, which would indicate an alert for main
tenance and provide enough lead time to plan required activities. The alarm threshold can be set in
several ways. One approach is to set confidence interval bounds based on the observed distribution of
the percentage of anomalies. However, the applicability of such a static threshold would be inadequate
as it could be limited to a specific data set and, if implemented, could result in false alarms. To tackle
this issue, a realtime monitoring scheme based on setting an adaptive threshold is developed and
integrated with the framework.
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As stated above, the cause of the gearbox failure with the turbine in this study was gearteeth
misalignment. Misalignment faults in the gearbox can occur due to various reasons such as abrasive
wear, surface fatigue caused due to moisture ingression in the lubrication oil or gradual wear by debris
in the form of ferrous and nonferrous particles accumulated in the oil [98]. Such wearout processes
progress through a period of time and occur as a result of the ageing of the machine. The failure rate
of a machine component throughout its lifetime can be explained with the ’bathtub’ curve shown in
Figure 4.3 (top). During the useful life, the machine degrades at a constant rate of failure, which when
seen in the cumulative failure rate plot (Figure 4.3  bottom) translates to a linear degradation path [99].
However, as the machine approaches failure i.e. in the wearout period, the degradation accelerates
and deviates from the previous linear behaviour. This point of deviation can be related to the Figure
2.5, where the point in time when failure can be detected is followed by an accelerated degradation
path finally leading to a functional failure. Based on this concept, a realtime monitoring scheme is
developed.

Figure 4.3: Bathtub curve showing instantaneous failure rate over the lifetime of a WT component (above) and cumulative
failure distribution (below) [99]

The developed monitoring scheme uses a linear regression model to track the progression of de
tected anomalies in time and any positive deviation from this behaviour can be interpreted as the tran
sition from constant to accelerated degradation rate. The scheme alarms a maintenance alert, which
would allow for early detection of fault and provide enough lead time to plan and execute maintenance
activities. For each incoming week the linear regression model predicts a range of acceptable val
ues (95% confidence bounds) for the percentage of anomalies utilizing information from a priori data.
With each progressing week, the parameters of the model are iteratively updated making the threshold
adaptive and robust. The 95% confidence interval (CI) bounds are estimated using the bootstrapping
method. The bootstrapping method is advantageous when working with a relatively small amount of
data as it estimates the CI bounds without assuming that the data is distributed normally and bases
its estimation on the distribution observed from resampling the data [100]. Such a bound is required
to take into account the uncertainties in anomaly detection due to ML model performance or even the
outliers in the data, thus, increasing the reliability of the alarm threshold. Another benefit of such an
alarm threshold technique is that it could be used for turbines with no failure data. The implementation
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of this scheme is further discussed in Section 6.4.

4.2 Sensitivity study
One of the key features of this research stems from the fact that it utilises highfrequency SCADA

measurements instead of 10 min averaged data. To investigate the potential of such highfrequency
data, a sensitivity study is undertaken to verify the effect of different sampling periods of SCADA data for
the purpose of wind turbine condition monitoring. This is carried out by implementing all the modules
of the developed framework as mentioned above while varying the sampling periods of the SCADA
data. For each sampling period, the healthy instances of the turbine are preprocessed using the
same filtration steps as mentioned in Subsection 4.1.1, which are then used to train, test and validate
the ANNbased NBM model using the 70%15%15% split as mentioned in Subsection 4.1.2. The
model performance is evaluated for all phases of model development using appropriate metrics (𝑅2
and 𝑅𝑀𝑆𝐸). The next step is to assess the percentage of anomalies detected considering the faulty
instances of the wind turbine operation as described above for respective sampling periods. The results
derived from the sensitivity study are further elaborated and discussed in Section 6.5.
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This chapter discusses the implementation of the methodological approach followed during this
research project as introduced in Chapter 4. As the framework is divided into three modules, the ap
plication of each of them is explained in respective sections. Module 1 entailing data preprocessing is
presented in Section 5.1 which provides an overview of the data used in this project and illustrates each
step of Module 1 as they are executed with this dataset. Section 5.2 discusses the development of the
ANNmodel (Module 2) and its hyperparameter tuning to ensure good performance and generalization.
Section 5.3 explains the implementation of the OCSVM model (Module 3) for anomaly detection.

5.1 Module 1: Data preprocessing

5.1.1 Data Overview
The dataset used in this research was collected and shared by the National Renewable Energy

Laboratory (NREL). NREL is a federally funded research and development centre sponsored by the
USA Department of Energy. NREL’s Flatirons campus is the home of the National Wind Technology
Center (NWTC) which is a research facility situated in Colorado, USA and focuses on wind energy
technology research. At the NWTC, a control advanced research turbine (CART2) was installed with
the main focus on conducting stateoftheart wind turbine control research. Although testing of fault
detection and prognostic techniques was not necessarily the objective, a wide range of sensors was
placed in the turbine. The dataset record produced by these sensors can now be used for other pur
poses as well, which, in this case, is wind turbine gearbox prognostics.

The CART2 turbine configuration has a rotor diameter of 43.3 m and reaches a rated generator
power of 600 kW at a wind speed of 11 m/s. The maximum aerodynamic torque generated by the rotor
is 162 kNm at a rated rotor angular velocity of 41.7 rpm, commanding 3.524 kNm of applied generator
torque for rated operation [102]. Additional turbine characteristics are summarized in the Table 5.1.

The CART2 is a modified Westinghouse WTG600 wind turbine that was originally installed on the
island of Hawaii and was operated for about 10 years. In its original configuration, the turbine used
a synchronous generator, fluid coupling and hydraulic collective pitch actuation. To enable advanced
control research for variable speed wind turbines, the CART was retrofitted with an electromechanical
pitch actuator system hosting a servo motor coupled to a gearing system to allow for high bandwidth
individual pitch control. Additionally, the generator and power electronics were upgraded for a 650kW
squirrel cage, induction speed generator with a variable speed mode [103].

CART2, being a research turbine, is outfitted with a substantially greater number of sensors than
normally would be installed in a commercial turbine. The sensor system includes, but is not limited to,
pressure transducers, strain gauges, thermometers, position encodes, accelerometers, anemometers,
wind vanes and power current and voltage meters. A total of 88 measurements are recorded including
pitch angles, shaft torque and rotational speed, oil temperature and pressure, power output, yaw po
sitions, wind speed, tower acceleration, generator power / current / voltage and other control signals
[101]. The sensors installed in the CART2 turbine are shown in the Figure 5.1.

The dataset shared by NREL for this research comprised CART2 operational data from field tests

41



42 5. Data analysis & Model development

Table 5.1: Key characteristics of CART2 turbine [101]

Parameter Value Unit

Number of Blade 2 ()

Cutin wind speed 4 m/s

Cutout wind speed 25 m/s

Rotor Diameter 43.3 m

Tower Height 34.87 m

Rated Generator Electrical Power 600 kW

Rated Rotor Speed 41.7 rpm

Maximum Rotor Speed 58 rpm

Rated Generator Speed 1800 rpm

Figure 5.1: CART2 sensor location [101]
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recorded in the years 2002, 2008, 2009 and 2010. The CART2 experienced a gearbox failure in the
Spring of 2009 (7𝑡ℎ April’09), which led to a turbine shutdown. The root cause analysis suggested that
the failure was due to the misalignment of gear teeth in the first stage of the gearbox (planetary gear
failure). The gearbox was then replaced in the Summer of 2009 and the field tests resumed later in the
fall of 2009.

The dataset was received in folders segregated by each operational year, which was further seg
mented by days, comprising SCADA data collected during the CART2 field tests. The operational log
of the turbine for each day was stored in a generic data file (*.dat format), wherein each dat file en
compassed 600 secs of operation for the CART2 turbine. Table 5.2 summarizes the number of raw
data points (sampled at 100 Hz) available for this case study contained in each folder. The reason why
2002 data is not shown in the table is discussed in Subsection 5.1.3.

Table 5.2: Data overview as collected for each operational year and associated number of raw data points

Operational Year  2008 Operational Year  2009 Operational Year  2010

Folder name Raw data
(100Hz)

Folder name Raw data
(100 Hz)

Folder name Raw data
(100Hz)

01232008 180,000 01062009 1,500,000 03302010 1,454,615

01282008 60,000 01072009 180,000 04232010 840,000

03252008 420,000 01082009 1,200,000

06132008 180,000 01132009 420,000

06272008 120,000 01292009 1,980,000

10082008 120,000 02262009 1,920,000

10162008 120,000 03202009 1,620,000

10242008 960,000 03312009 451,411

12242008 420,000 04072009 52,445

In comparison with the datasets used in the literature for the analysis of gearbox failure detection
and prognostics, the CART2 dataset is unique because:

• Usually the SCADA system used for wind turbine monitoring stores 10 min averages of signals
measured, whereas, in this dataset the output of each sensor is recorded at a control rate of 100
Hz.

• The CART2 turbine was installed to perform advanced wind turbine control research and there
fore, the data was recorded only for the days when the field tests were conducted. Consequently,
in contrast to datasets used in WT PHM research, the collected sensor data is discontinuous in
time series which poses a problem in understanding the degradation path of the gearbox before
failure. Additionally, the main idea behind the field tests organised for CART2 was to test the
performance of the turbine when adjustments were made to the control algorithm. This could
pose difficulty in understanding the turbine dynamics and its effect on sensor outputs.
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5.1.2 Categorization of healthy and faulty instances
One of the foremost tasks, in order to apply the normal behaviour modelling (NBM) approach, is to

distinctly categorize the data corresponding to the turbine’s healthy and faulty operation. ’Healthy data’
consists of data representing the normal behaviour of the turbine and the information extracted from
this data is then used to model its healthy state. On the other hand, ’faulty data’ comprises data indi
cating deterioration of the machine component before the fault occurs, hence, containing information
of the fault initiation and development. The developed NBM output is compared with the faulty data to
identify faults based on the deviation from normal behaviour.

To that end, firstly the exact failure date was determined. Based on the available data, the final day
of operation for the CART2 turbine in Spring 2009 was assumed as the date of failure i.e. 7 April 2009.
Once the failure date was determined, SCADA data for 4 months up to failure was stored separately and
termed as ’faulty data’. A 4 month time period was selected for this study to understand the progression
of the fault and detect the earliest signs of failure inception to have a longer maintenance window, if
possible. The data from 2008, for all periods up to 6 months before the failure occurred were identified
as the representation of the turbine’s healthy operation and termed as ’healthy data’. The data from
2002 is too far behind in the timeline from the date of failure and hence was not used. Additionally,
keeping in mind turbine’s degradation through time, a normal behaviour model based on data from 2002
would not be ideal to compare turbine component’s health close to failure and could lead to false/missed
alarms. Another period of data collection that was rejected for the use of framework implementation
was from October 2009 to April 2010  after the gearbox failure and replacement took place. The
reason for not considering this data as the ’healthy data’ is twofold: (1) as the failed planetary gear was
replaced, the sensor data would reflect the turbine’s operation with the new component and would not
be apt to analyse the failure of the replaced component; (2) the field tests conducted after the gearbox
replacement were performed to test a new control algorithm and its finetuning would cause SCADA
data errors.

Figure 5.2: Weeks of operation and corresponding dates in which the data was available for healthy data (blue) and weeks to
failure and corresponding dates for faulty data (orange)

As mentioned above, the healthy dataset refers to data from January to October 2008 (i.e. all
available samples in 2008 up to 6 months before the gearbox failure occurred). Furthermore, this
dataset is segmented with respect to the weeks of operation. Figure 5.2 summarizes the 8 available
weeks of CART2 operation (ranging from 1 to 8) and the corresponding days of field tests performed
in respective weeks. On the other hand, the faulty data for each day belonging to the SCADA data log
4 months prior to the turbine failure that took place in April was analysed in terms of ’Weeks to failure’.
This segmentation was done based on the known failure date (7 April 2009), which is also shown as
’0 weeks to failure’ or the ’week of failure’ and counting the number of weeks leading up to this ’week
of failure’. Figure 5.2 shows the weeks to failure, wherein the first day considered in the faulty dataset
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was 24 Dec 2008, which is 12 weeks before the gearbox failure occurred and the turbine was shut
down for maintenance. The gaps within the weeks of operation in healthy data and weeks to failure
in the faulty data as shown in Figure 5.2 demonstrate the discontinuous operation of the turbine in the
time domain.

5.1.3 Data cleaning
In any datadriven modelling approach, the ML algorithm learns the input/output mapping based,

solely, on the data provided during the training stage. Hence, it is essential that the training data is free
from outliers / bad data. In the real world, however, there seldom exists a perfect dataset, and often, the
SCADA data are found to contain inconsistencies attributable to the noise in the data. These inconsis
tencies lead to inaccuracies in theMLmodels and hence need to be dealt with in an appropriate manner.

In this regard, the first challenge that the CART2 dataset presented was the size of the raw 100 Hz
data and the recorded signal quality at this sampling frequency. In machine learning terminology such
a case could be seen as a big data problem. For each hour of turbine operation, considering all the
signal features, 31,680,000 data points are recorded. Hence, in order to reduce the dimensionality of
the data, it was decided to downsample the original 100 Hz data to 1 Hz by considering the median
values for every second of operation. This simple strategy provided two advantages: (1) the data
was reduced to 10% of its original size; (2) the number of outliers in the original data were significantly
reduced by selecting the median values, which is a robust statistical parameter that is not influenced by
data outliers [104]. Furthermore, the failure characteristics would still be evident in the downsampled
data. Figure 5.3 shows the wind turbine power curve for the healthy data utilizing the raw 100 Hz data
on the left and the resampled 1 Hz on the right. It can be observed that the raw data has considerably
more outliers as even the characteristic wind turbine power curve is not visible.

Figure 5.3: Unfiltered wind turbine power curve for healthy data with raw data sampled at 100 Hz data and resampled at 1 Hz
data

Furthermore, the data provided still had to be filtered of ’bad’ data points due to malfunctions of
the SCADA system or sensors, periods of emergency shutdowns, or even erroneous recorded sensor
values. The following rules were utilized for filtering the outliers/garbage data out:

1. Filter out all signal data vectors where a turbine emergency shutdown was initiated due to [101]:

• a safetycritical sensor being damaged and not providing trustworthy data. An example of
this is an incorrect blade pitch encoder signal interfering with the pitch control.
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• a safetycritical component or subsystem being damaged or not operating properly. For
instance, the torque or rotational speeds for the highspeed or lowspeed shaft might show
large deviations from the expected values for a certain power output of the turbine, indicating
a fault in the gearbox components or subcomponents.

• the turbine being in an unsafe state because of external factors or behaviour of the controller.
Examples include overspeed operation and large nacelle accelerations. Also, in this case,
a number of shutdowns were initiated during the field tests.

2. Filter out all data vectors where one or more parameters have a value higher than a predefined
threshold. In this report, the threshold values are decided based on the specification sheet for
sensor values shared by NREL. For instance, all negative wind speed measurements, negative
power values, measurements with a gearbox oil temperature greater than 200∘C etc. are filtered
out.

3. Filter out all data vectors that correspond to a situation where the wind turbine is not producing
any power. This can be done by analysing the power curve of the turbine and filtering out data
points based on the following criteria:

• All data vectors corresponding to wind speeds less than the cutin wind speed and power
values greater than 0 are filtered out.

• All data vectors corresponding to wind speed greater than the cutin wind speed and power
values close to 0 are filtered out.

• All data vectors corresponding to blade pitch anomalies, curtailment losses are filtered out.
This is done by investigating the blade pitch vs rotational speed of the lowspeed shaft.
In the constant power region, the pitch control algorithm is designed to regulate the rotor
speed to 41.7 rpm (rated rotor speed as presented in Table 5.1) and therefore, the blades
start pitching as the turbine operates above rated wind speed until the rated rotor speed is
achieved. If the blades pitch before the turbine achieves this predefined rotor speed, it would
lead to anomalous power values visible in the turbine’s power curve.

In Figure 5.4, on lefthand side, anomalous blade pitch values in both healthy and faulty datasets
can be observed. These anomalies are represented by the scattered data points with high positive
values of blade pitch before the rated rotational speed is achieved. In order to filter out these outliers,
the quartile algorithm is employed for wind turbine operations below the rated rotational speed of 41.7
rpm. In statistics, IQR (Interquartile range) is defined as IQR = Q3  Q1, where Q1 and Q3 are the
25𝑡ℎ and 75𝑡ℎ percentiles respectively. The quartile algorithm for filtering outliers demonstrate that any
data point outside the range [Q1  k x IQR, Q3 + k x IQR], may be an outlier, where particularly, k = 1.5
indicates outliers and k = 3 indicates data that are ’far out’ [104].

All the three filtration steps mentioned above were applied sequentially to both, healthy and faulty,
datasets separately and this is presented in Figure 5.5. On the left, the unfiltered power output values
with respect to wind speed, for both datasets are shown. The outliers in this scatter plot are evident
such as, power values greater than 0 for wind speeds below the cutin wind speed (the point at which the
blades start rotating and turbine starts generating power), low values of output power at wind speeds
greater than the cutin wind speed, anomalous power values due to pitch anomalies (these can be
observed as low power output values for wind speeds greater than 15 m/s) etc. Table 5.3 summarizes
the number of data points in the original dataset and the cleaned dataset used for further analysis.
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Figure 5.4: Blade pitch vs LSS rotational speed for healthy and faulty data (resampled at 1 Hz): (left) in original data showing
pitch anomalies; (right) after filtration

Figure 5.5: Wind speed vs power output for healthy and faulty datasets (resampled at 1 Hz): (left) before filtration and (right)
after filtration
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Table 5.3: Summary of the number of data samples in healthy and faulty datasets

Category Raw data (100 Hz) Resampled data (1 Hz) Filtered data

Healthy data 3,240,000 32,400 18,399

Faulty data 9,743,856 97,434 64,766

5.1.4 Feature selection and Preprocessing
The next step in building a normal behaviour model is the selection of input features for modelling

a particular output / target feature. As mentioned in the Subsection 4.1.1, an understanding of the
physics and domain knowledge was used to decide suitable features for modelling. From a condition
monitoring perspective, gearbox lubrication oil temperature values are highly important, as the most
common failure modes in the gearbox, would, potentially, manifest themselves into a deviation in these
measurements. Hence, a normal behaviour model for the gearbox lubrication oil temperatures is uti
lized to perform gearbox condition monitoring. Once the target feature was determined, the next step
was to identify the input features for modelling the gearbox lubrication oil temperature.

The gearbox lubrication oil temperature is directly connected to the nacelle and ambient tempera
ture, and there exists a state of thermal equilibrium between these temperatures under normal operating
conditions [105]. The ANNbased NBM can be used to emulate this thermal equilibrium condition, and
any disturbance in the equilibrium may then indicate an anomalous operation in the gearbox. Con
sequently, the ambient and nacelle temperature measurements are utilized as input features for the
ANN NBM. Furthermore, the temperatures inside the nacelle are directly related to the wind speed and
power being produced by the wind turbine, as the electrical and mechanical losses are proportional to
the power produced; this concept was also explored in Feng et al. [38] for the monitoring of wind tur
bine gearboxes. Hence, the wind speed and power output from the turbine were also included as input
features to the NBM. Additionally, the lubrication oil is in constant contact with the gearbox components
and its flow inside the gearbox would also depend on the rotational speed of the shafts. Therefore, the
rotational speed for the highspeed shaft was also included in the list of input features. In summary,
the ANNbased NBM utilises five input features to predict one target feature as summarized in Table
5.4.

Table 5.4: Model features for the ANNbased NBM

Feature No. Feature Description Layer

1 U𝑤𝑖𝑛𝑑 Wind speed Input layer

2 P𝑜𝑢𝑡 Power output Input layer

3 U𝐻𝑠𝑠 Highspeed shaft rotation speed Input layer

4 T𝑛𝑎𝑐 Nacelle temperature Input layer

5 T𝑎𝑚𝑏 Ambient temperature Input layer

6 T𝑔𝑏 Gearbox lubrication oil temperature Output layer



5.1. Module 1: Data preprocessing 49

Data Preprocessing

Before training the ANN with the selected input and output features, it was important to ensure that
the training data is balanced across all power domains of the wind turbine. Figure 5.6 shows the density
distribution for the healthy and the faulty datasets across all operation power domains (0  600 kW). It
can be observed that the density plot for the healthy data is leftskewed which means that it consists of
data points mainly referring to low power output values, i.e. between 0  100 kW. On the other side, the
faulty data shows an even distribution across all power regions with a slight peak at high power values.
Training with such imbalanced healthy data, would lead to overfitting the model to predict accurately
in the turbine lowpower operation regions but perform poorly for the other power regions. Therefore,
to combat this issue, the SMOGN preprocessing approach, described in Section 3.2, was applied to
the healthy data.
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Figure 5.6: Data density plot for healthy and faulty data across all power domains
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Figure 5.7: Data density for original and modified training data after SMOGN application

The algorithm first builds a data partition which is based on the box plot, where, the data points which
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are closer to themedian are classified as normal and less important and the data points closer to the box
plot extremes are classified as the rare and important partitions. The samples belonging to the former
class are undersampled using the random sampling strategy, whereas, the oversampling for the latter
class is done using knearest neighbours. An additional feature of this algorithm is that if the selected
nearest neighbours are too far from the data points, the random samples are synthetically generated by
the introducing Gaussian noise, thus making the oversampling more robust. It is worth mentioning that
this feature engineering approach is only applied to the training data (i.e. 70% of the healthy dataset)
as it is important to verify the model accuracy with actual data and not with synthetically generated
samples. This additional step is taken into consideration to improve the generalisation capabilities of
the model and prevent any case of false alarms. Figure 5.7 shows the application of SMOGN to the
training data. In the modified data, the data density is improved for both the high and low power regions.
The lowpower region (0  100 kW) has undergone undersampling whereas synthetic samples were
generated in the highpower region. It is also worth noting, that there was no reduction in the number
of data samples when the training data was modified.

Feature Scaling

Additionally, since the collected SCADA data has different features of varying scales and units,
training a machine learning model with such data degrades the predictive performance as well as slow
down the prediction. Hence, all the training data is normalised using a minmax scaler in the range of
0 to 1. The normalisation of the data is done using the equation 5.1 shown below [106]:

𝑊′ = 𝑤 −𝑚𝑖𝑛(𝑤)
𝑚𝑎𝑥(𝑤) − 𝑚𝑖𝑛(𝑤) (5.1)

where 𝑊’ is the rescaled value and 𝑤 is the original value, 𝑚𝑎𝑥(𝑤) and 𝑚𝑖𝑛(𝑤) are the feature
maximum and the minimum values, respectively.

5.2 Module 2: Normal behaviour model
From the SCADA data log gathered 16 months prior to failure, as shown in Figure 5.2, the operation

of the wind turbine for the initial 10 months (from Jan  Oct 2008 when it was known that no serious
faults had occurred) was utilised for training and validating the NBM, while the SCADA data 4 months
prior to failure was utilized to track error leading up to failure. Out of the 18,399 samples from the
healthy dataset, as shown in Table 5.6, 70% are selected for training and 15% for validation, with the
remaining 15% used to test the model independently. Such a split provides a good balance between
the number of samples required for training, validating and testing the model [107].

During the training phase, the training samples were chosen at random through an algorithm and
then fed into the neural network, which was then utilized to adjust the error between predicted and
known values of the target variable. It was then validated with the validation samples, and the mean
squared error (MSE) was calculated for the new data points. This process was repeated until the MSE
no longer increased for the validation dataset, indicating that the model generalizes well and was no
longer overfitting to the training dataset. Once this was achieved, the model was then independently
tested with the testing dataset (the 15% of data remaining after random selection of training and vali
dation data) to ensure generalisation.

In order to model the NBM, a threelayer feedforward neural network was utilised, which had an
input layer consisting of five wind turbine operational parameters to predict a single output: the gear
box lubrication oil temperature  T𝑔𝑏, as described in Table 5.5. The input features include parameters
to describe the environmental conditions (wind speed  U𝑤𝑖𝑛𝑑 and ambient temperature  T𝑎𝑚𝑏), the
WT operating conditions (power output  P𝑜𝑢𝑡 and highspeed shaft rotation speed  Uℎ𝑠𝑠). Additional
model parameters for the neural network such as number of hidden neurons, optimisation algorithm,
activation function etc. were chosen to reflect the number of input and output neurons and the number
of training samples, which in this case utilised a single hidden layer.
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The number of neurons for the hidden layer was computed using Equation 3.4, by varying the
parameter 𝛼, to optimize the balance between the accuracy of prediction and computational time for
training. The value of 𝛼 was set to 5, and based on the number of training samples and neurons in the
input and output layer, the number of neurons in the hidden layer was set to 343. The neural network
model used ’Adam’  adaptive momentum estimation algorithm  as the solver for optimizing weights.
When compared to its counterparts namely  limited memoryBFGS and stochastic gradient descent
algorithms, Adam performs better on relatively larger datasets (usually on the scale of more than 1000
training samples) [108]. Figure 5.8 shows the schematic diagram for the feedforward neural network
utilized for modelling the NBM in this case study and all its parameters are listed in Table 5.5.

Figure 5.8: Schematic of threelayer feedforward neural network

Table 5.5: Key characteristics of ANN model

Attributes Value

Number of input neurons 5

Number of hidden neurons 343

Number of output neurons 2 (1 hidden layer and 1 output layer)

Loss function Adaptive moment estimation (Adam)

Learning rate 0.001 (constant)

Once the neural network was trained and optimized using the healthy data, the same input features
as mentioned in Table 5.4 from the faulty dataset were then fed into the ANN model to predict the gear
box lubrication oil temperature. The fault in the gearbox then manifests through analysis of the residual
error between the predicted and the actual temperature values.

In order to predict the gearbox failure using the faulty data, based on analysing the lubrication oil
temperature, it was ensured that there was no ambiguity in the interpretability of the anomaly detection
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Table 5.6: Data summary for training, validation, testing and implementation of ANN model

Model phase Number of samples

Model development (Jan  Oct 2008) 18,399

Model developmentTraining (70%) 12,873

Model developmentValidation (15%) 2,758

Model developmentTesting (15%) 2,759

Model implementation (Dec  Apr 2009) 36,309

results. As mentioned before, the operational days of the CART2 turbine were grouped into respective
weeks to represent the ’Weeks of operation’ in case of healthy data and ’Weeks to failure’ for the faulty
data. However, when analysed carefully, it was observed that the healthy dataset does not comprise
any week with continuous operation of the turbine for two or more consecutive days. On the other hand,
the faulty data includes 23 continuous turbine operational days in 11, 8 and 5 weeks to failure. If all
these consecutive days of operation in the faulty data are considered for failure analysis, it could raise
an important question while interpreting the results: ’Is the observed temperature rise in the lubrication
oil due to the turbine’s continuous operation or because of the incipient failure in the gearbox?’. The
NBM model would not be able to differentiate between the temperature rise caused due to these two
different reasons and could flag incorrect anomalies. Hence, to take care of such ambiguity, only the
first days of operation in all ’weeks to failure’ were considered. This ensures a fair comparison with
the data considered for the healthy operation of the turbine. Therefore, 36,309 data samples were
used to describe the turbine’s operation in all weeks, 4 months before failure. Table 5.5 summarizes
the number of data samples available for each phase of the model development including training,
validation, testing and implementation.

5.3 Module 3: Anomaly detection and Prognosis
After training and optimizing the ANN, the next step was to establish a baseline residual error on the

basis of the residuals between the actual and predicted temperature values as observed in the healthy
dataset. Once this baseline error is determined, there are several ways to then compare residuals from
the faulty data. A typical approach in this regard is to compare the daily or weekly RMSE with the RMSE
of the training period to give an indication of whether the temperature (or any other chosen parameter)
aligns with the predicted values. Such an approach does come with limitations, stemming mainly from
the fact that only one parameter is used to describe an error which, over any particular time period is
multifaceted and has a unique error distribution associated with it. Another approach could be looking
at more than one parameter in isolation, or even by analysing the entire distribution and tracking them
in time, however, this introduces a different problem: how to robustly set thresholds that will indicate
the fault.

To address the limitations with the existing approaches, a OCSVM model was utilised, firstly by
extracting multiple parameters (residual error features) that can effectively describe the distribution of
error over a chosen time period and secondly, to set more complex boundaries that can more precisely
describe the threshold to indicate a fault.

A OCSVM model was developed to evaluate the error (difference between actual and predicted
values) distribution for each minute based on the NBM output. A one minute time period is chosen to
take into consideration the inertia in recording a change in the oil temperature. For each per minute
error distribution, the parameters stated in Table 5.7 were calculated and used as inputs to the OCSVM
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model. In order to train the OCSVM model, the error features from the healthy data were selected,
giving a total of 370 samples. In the SVM, the predicted values would be a result of binary classification,
i.e. either +1 or 1, where a negative score would constitute an outlier or anomaly, which lies outside the
decision boundary whereas a positive score would be interpreted as the turbine operating in a healthy
state. The model was trained to recognise 1% of data as anomalies in the training period by defining
the 𝑛𝑢 hyperparameter as 0.01; therefore, a similar percentile would be expected moving forward if no
fault was present in the system.

Table 5.7: Residual error metrics

Feature No. Feature Description

1 𝑒𝑟𝑚𝑠 Root Mean Square Error (RMSE)

2 𝑒𝑚𝑖𝑛 Minimum Error

3 𝑒𝑚𝑎𝑥 Maximum Error

4 𝑒𝑠𝑡𝑑 Standard deviation of error distribu
tion

5.4 Discussion
This chapter firstly provided with an overview of the CART2 dataset and the gearbox failure data

present within it and highlighted its unique characteristics. Based on the known date of failure of the
turbine, the data was categorized into healthy and faulty data. Subsequently, to filter out outliers in
the data, a series of filtration steps were implemented. After the data filtration process, the features
for the ANNbased NBM model were selected using domain knowledge. The gearbox lubrication oil
temperature was found to be the most sensitive to the condition of the gearbox and was determined as
the target feature. Additional features  wind speed, power output, high speed shaft rotational speed,
ambient and nacelle temperature  were chosen as the input features to the model.

Before training the ANN model, a SMOGN preprocessing approach was implemented to ensure a
balanced dataset across all power regimes of the turbine operation. Owing to the dynamic nature of
wind availability, realworld turbine operational data is often riddled with issue of imbalanced domains
i.e. low number of data points for some power domains and extremely high number of data points for
some. This might lead to poor generalization capabilities of the model due to overfitting of the model for
power domains with high density of data and underfitting for power domain with low density. Although
this is a relevant problem when working with real turbine operational data, an effective way to combat it
has not been fully appreciated in the literature. The SMOGN approach has been proposed by Branco
et al. [70]. However, the application of it has not yet been presented in existing literature, to that end
Subsection 5.1.4 shows the efficacy of implementing the SMOGN approach.

Furthermore, this chapter discussed the selected hyperparameters of ANN model to obtain a good
model performance. The model was trained using the turbine’s healthy operational data and a 7015
15 split for training, validating and testing was used to ensure a good balance between the number of
samples available for each model development phase. Lastly, to analyse the residual error between
the measured and predicted values and correctly identify instance of anomalous turbine operation, a
OCSVM was implemented. Four residual error feature  RMSE, minimum error, maximum error and
the standard deviation of error distribution  were used as input to the OCSVM model.



6
Results and Discussion

This chapter presents and discusses the results of the developed framework introduced in Chap
ter 5. Firstly, in Section 6.1 performance of the trained ANNbased NBM is discussed by evaluating
error metrics for each phase of the model development. Then the model implementation and normal
behaviour predictions are shown in Section 6.2. Deviations of the gearbox lubrication oil temperature
from the predicted normal behaviour are then considered as anomalies; hence, sign of incipient fault.
To quantify the error progression, anomalies are detected using a OCSVM model. Its anomaly detec
tion results are discussed and compared to other methodologies commonly used in literature in Section
6.3. The implementation of a realtime monitoring scheme based on linear regression and bootstrap
ping CI is presented in Section 6.4. Lastly, the sensitivity study and its results are discussed in Section
6.5 where conclusions are drawn on the effects of using data sampled at different frequencies on model
performance and anomaly detection.

6.1 ANN model performance
A 3layer feedforward neural network presented in Section 5.2 model was used for modelling nor

mal behaviour and was trained, validated and tested using the 1 Hz resampled healthy SCADA data.
The model utilized 70% of the healthy data for training, 15% for validation and 15% for testing. The
data samples for each phase were selected randomly and fed into the neural network. Two metrics,
namely root mean squared error (RMSE) and Rsquared values (R2), were used to evaluate the model
performance in each phase of the model development. Table 6.1 summarizes these evaluation metrics
for each development phase of the model to verify its performance and generalization capabilities. As
mentioned before in Section 5.2, MSE was opted as the loss function to optimize the ANN model, and
the low values of RMSE demonstrate that the predicted values of the target feature are indeed close to
the actual values. The R2 values close to 1 and deviating 1.7% between datasets show that the model
fits well to the actual data and generalises relatively well, which sets a good foundation when trying
to detect anomalies leading up to failure. In order to get a better sense of the error distribution of this
particular ANN model, its error (𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) for all the abovementioned phases is shown in
the histogram shown in Figure 6.2.

Table 6.1: ANN model performance metrics for each model development phase

Model phase RMSE R2

Model developmentTraining (70% data) 0.04 0.97

Model developmentValidation (15% data) 0.02 0.95

Model developmentTesting (15% data) 0.06 0.95

As the training data (70%), was modified using the SMOGN algorithm and the network was trained
on synthetically generated samples, it was necessary to test the model performance with the actual
healthy data. Therefore, after the neural network was optimised, the input features (wind speed, power
output, highspeed shaft rotational speed, nacelle and ambient temperature) from the entire healthy
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data were fed to the ANN model and the comparison between the predicted and observed values can
be seen in Figure 6.1. The RMSE between observed and predicted values for healthy data obtained
was 1.3. It can be observed that the model performs equally well for periods of low and high operational
power. The maximum deviation of modelpredicted temperature is observed when there is a sudden
change in output power of the turbine, due to the variability in wind speed.
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Figure 6.1: Observed and predicted gearbox oil temperature values for healthy data (top) and power output (bottom)
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Figure 6.2: Distribution of error for all modelling phases of ANN

6.2 Model Implementation
Once a satisfactory ANN model performance was achieved, the next step was to implement the

model using the faulty data for each week starting from 4 months prior to failure. In order to do so,
the same input features  wind speed, power output, highspeed shaft rotational speed, ambient and
nacelle temperatures  were used to predict the gearbox lubrication oil temperature. It was assumed
that the incipient gearbox fault would manifest itself in an increase of deviation between the observed
and predicted values. The comparison between the model predicted values and the actual temperature
values for each operational week before failure can be seen in Figures 6.3 and 6.4.

From the figures, it can be observed that the deviation between the NBM predictions and the actual
values of the gearbox lubrication oil temperature increases as the machine approaches failure (from
12 to 0 weeks to failure). From 12 to 6 weeks before failure (Figure 6.3), the neural network predictions
show minor variations from the actual recordings, which however increase further from 5 weeks before
failure to the week when the failure actually occurred (Figure 6.4). This can be seen as an increasing
error between the ’observed’ and ’predicted’ values, which can be interpreted as a sign of fault pro
gression in the wind turbine gearbox. It is worth mentioning that observed oil temperature values have
lower values as the turbine approaches failure. Identifying a fault through the analysis of monotonically
increasing signal trends, such as one done by Hu et al. [50], would misinterpret this behaviour as a sign
of nofault. This demonstrates the superiority of an MLbased datadriven approach when compared
to statistical approaches such as moving average, signal trending etc.

Although the increase in deviation between the NBM predicted healthy behaviour and the actual
observations of the turbine is evident, signifying signs of fault in the gearbox, it is unclear as to how this
can be analysed to identify the first signs of incipient gearbox fault. Furthermore, it can be seen that
ANN predictions demonstrate deviations around the actual measured values which should be taken
into consideration when analysing the residual error between the two curves. When compared, the
deviations were smaller for the ANN model prediction with the healthy data as shown in Figure 6.1
as it is trained on that dataset. If a simple threshold based on only training RMSE is used to analyse
the model error and identify anomalies in the faulty data, even the minor deviations (any value greater
than training RMSE) might get misclassified which in result would lead to false alarms. To combat
this problem, a oneclass SVM model was developed which could establish a complex boundary and
diminish the effect of model performance while identifying anomalous behaviour of turbine distinctly
caused by the incipient gearbox fault.
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Figure 6.3: Observed and ANNbased NBM predictions for gearbox lubrication oil temperature for (a) 12 weeks to failure (b) 11
weeks to failure (c) 8 weeks to failure and (d) 6 weeks to failure
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Figure 6.4: Observed and ANNbased NBM predictions for gearbox lubrication oil temperature for (a) 5 weeks to failure (b) 4
weeks to failure (c) 1 week to failure and (d) 0 weeks to failure (day of failure)
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6.3 Anomaly detection results

In order to examine the error between the predicted and observed values, a oneclass SVM model
was developed as described in detail in Section 5.3. For every 1min step, the error output (𝑎𝑐𝑡𝑢𝑎𝑙 −
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) was determined and the residual error features as shown in Table 5.7 were computed. The
SVM model was trained using the error features calculated for the healthy data. The data samples pro
vided during training were utilized to generate a complex decision boundary to represent the healthy
state of the turbine. The SVM was trained to identify 1% of data as anomalies, therefore, when the
faulty data is fed into the model, any increase in this percentage would represent a fault initiating in the
turbine gearbox.

The Figure 6.5 shows a scatter plot of two of the computed features namely, Max error (e𝑚𝑎𝑥) and
RMSE (e𝑟𝑚𝑠) for both healthy and faulty data. The SVM model should be able to learn the boundary
defined by the error features calculated with healthy data and detect anomalies if any data point falls
outside this learnt boundary. Figure 6.6 shows a distinction between the data points classified as ’nor
mal operation’ or an ’anomaly’ for the faulty data set. SVM performs well in identifying data points that
fall inside the developed boundary, classifying them as healthy turbine operation by giving a +1 predic
tion value. On the other hand, SVM predicts a value of 1 for anomalous turbine operation, represented
by data outside the defined boundary.

For each available turbine operational week, in data 4 months leading up to failure, the percentage
of detected anomalies by the OCSVMwas calculated and is shown in Figure 6.7. In general, the results
show an increase in the anomalies as the turbine approaches the failure, with a sharp increase in a
month before failure (’4 weeks to failure’) and, thereafter, an increasing trend showing 100% anomalies
detected on the day of failure. These results are in line with the observed deviations between the
actual and predicted values of the gearbox lubrication oil temperature as shown in Figures 6.3 and 6.4.
From 12 to 5 weeks to failure, the percentage of anomalies detected increases on average by 8% with
a substantial increase by 32% between 5 and 4 weeks before the failure. Once the progression of
anomalies is obtained, it is imperative to understand how to set a robust threshold that could provide
information about the first warning i.e. when the failure could be first detected and flag a maintenance
alert allowing enough lead time to plan and execute required maintenance activities. This is done using
a realtime monitoring scheme, which is discussed in the Section 6.4.
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Figure 6.7: Percentage of anomalies detected for each week leading up to failure using OCSVM

6.3.1 Comparison of OCSVM result with other methods

As discussed in the Section 5.3, the OCSVM combines different statistical features to understand
the complex boundary between the healthy and anomalous operation of the turbine. However, it is inter
esting to compare the results obtained from the OCSVMmodel with the existing standard methodology
based on single statistical feature used in literature [96] [9] [109]. A common practice is to compare
the RMSE values for any chosen parameter computed during the training period to set thresholds for
identifying anomalies. The limitations associated with such an approach stems from the fact that only
one parameter is used to describe the error between the actual and predicted values over a duration
of time, which is multifarious and usually has a unique distribution associated with it.

To this end, thresholds based on the average RMSE and error standard deviation computed during
the training period are used, which could then be compared to the RMSE for the data 3 months prior
to failure. Additionally, the results obtained from these thresholds are also compared to the results
from OCSVM. Three different thresholds were used to compare the RMSE calculated for the faulty
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data; threshold 1 was simply the RMSE, threshold 2 was one standard deviation added to the RMSE,
and threshold 3 was 2 standard deviations above the RMSE. Figure 6.8 shows the comparison of the
percentage of anomalies in weeks leading up to failure detected by the SVM model and the anomalies
computed using the 3 simple thresholds based on 𝑅𝑀𝑆𝐸 and error standard deviation (𝑆𝑡𝑑) of the
healthy data.

Figure 6.8: Comparison of percentage of anomalies detected by OCSVM and standard statistical thresholds based on RMSE
and standard deviation (Std)

In general, the percentage of anomalies detected with each threshold shows an increasing trend
in the weeks leading up to turbine failure. However, it is worth mentioning that the large proportion
of detected anomalies throughout the 3 months of turbine operation could lead to a large number of
false alarms. As an example, the average percentage of anomalies for the first two months with each
threshold are 73.7%, 50.2% and 36.8%, whereas, the OCSVM model detects an average of 14.4%
anomalies for the same period. Such a high percentage of anomalies detected by the RMSE based
thresholds suggest that these approaches capture the small deviations between the observed and pre
dicted gearbox oil temperature values, caused by the ANN model and not the progression of the actual
fault. This means that such standard thresholds are more sensitive to the performance of the model.
This can be seen in the percentage of anomalies detected from ’12 weeks to failure’ to ’6 weeks to
failure’, which can be attributed to the deviation in ANN model’s predictions and are not an indication of
a gearbox failure. On the other hand, the SVM model detects a relatively low percentage of anomalies,
giving confidence that the increase in anomalies is indeed related to the fault. This comparative study
demonstrates the efficacy of using an SVM model over simple thresholding techniques. The OCSVM
combines different error features to describe the deviations between the NBM predictions and actual
output over a duration of time and is less sensitive to the model performance.

6.4 Realtime monitoring scheme
Once the anomalies have been detected by the OCSVM, the next task was to set a threshold that,

when exceeded, would be capable of determining the first clear sign of fault initiation before the func
tional failure of the machine occurs. To this end, a realtime monitoring scheme was developed. As
explained in Subsection 4.1.3, this monitoring scheme is based on the concept of the bathtub curve
and cumulative failure rate which increases linearly until the degradation becomes significant and is
then characterized by a deviation from linear behaviour. Such a linear progression can also be ob
served for the percentage of anomalies recorded for each week before failure as shown in Figure 6.7.
This can be intuitively explained from the observed trend of progression of anomalies as it captures the
degradation accumulating over a period of turbine operation as it approaches failure.
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The monitoring scheme developed in this project employs a simple linear regression model and
estimates confidence interval limits around the model fit using bootstrapping method as described in
Section 3.4. Such a scheme can be implemented in an online setting as, for each monitored week,
the regression model uses the previously recorded observation or a priori data to estimate its param
eters and develops a 95% confidence interval (CI) bound which provides an expected range of values
for the percentage of anomalies for the respective week. If the recorded percentage of anomalies for
that week falls within the expected CI bounds, the machine is considered to be in an operational state
without the urgent need for maintenance i.e the machine still has enough remaining useful lifetime.
However, if the recorded percentage of anomalies is above the upper threshold limit established by
the CI bounds, it would result in a maintenance alert and would be marked as the period when the
first signs of impending machine failure can be detected. As time progresses, the linear regression
model takes into account the last recorded values and updates its parameters and new CI bounds are
established, making the thresholds adaptive and robust. Furthermore, the 95% CI bounds account for
the uncertainties in anomaly detection pertinent to ML model performance and the unfiltered outliers in
the data.

The implementation of the developed realtime monitoring scheme is shown in Figure 6.9. In Fig
ure 6.9(𝑎), the week in monitoring (’5 weeks to failure’) is represented by the green marker and the
previously recorded observations (from 12 to 6 weeks to failure) are shown as blue markers. It can be
seen that the linear regression model fits well to the previously recorded data and the shaded region
depicts the 95% CI bounds estimated through bootstrapping. The reason behind the observed shape
of this shaded region is explained in Section 3.4. The percentage of anomalies logged in this week falls
within the expected CI bounds and therefore, the gearbox is expected to be working well and no urgent
maintenance is required. Figure 6.9(𝑏) refers to the ’4 weeks to failure’ as the week being monitored.
It can be seen that the model updates its parameters and its CI bounds as the anomaly data from ’5
weeks to failure’ is added to the past observations and is now represented in blue. The percentage
of anomalies logged 4 weeks before failure is above the upper threshold limit of the 95% CI bound.
This sets an alarm for maintenance and is identified as the first clear sign of incipient fault indicating a
significant change in degradation rate.

Realistically, once this alarm is set off, there would be no need for recording any more data as it
would potentially result in a turbine shutdown followed by further maintenance activities. However, due
to the availability of runtofailure data for the CART2 turbine, the monitoring scheme can be further
evaluated and can be seen in Figure 6.9(𝑐) and (𝑑). Figure 6.9(𝑐) shows the updated linear regres
sion model taking into account the log observed in 4 weeks before failure and it can be seen that the
upper limit of the established 95% CI reaches a value of 100% for the week of failure, hence, signifying
an expected potential breakdown of the gearbox in a month. It is worth mentioning that the observed
percentage of anomalies for 1 week before failure is found to be within the acceptable CI bounds which
could be classified as a missed alarm, however, it can be attributed to the missing data for weeks be
tween 4 and 1 week before failure. The effect of missing data is also visible as the width of the 95%
CI increases significantly from the previous analysis done with data from 4 weeks before the failure.
A similar observation can be made for Figure 6.9(𝑑), where the CI bounds again predict a potential
breakdown in the coming week (taking into account ’1 week to failure’ data) with the upper threshold
limit depicting 100% anomalies in a period of a week.

The developed realtime monitoring scheme shows good results in identifying the first clear signs of
incipient fault in the gearbox and sets off a maintenance alarm a month before the actual failure, which
provides enough lead time to plan and execute required maintenance activities. Another advantage of
such a scheme is that it can be implemented for a turbine with no runtofailure data. Additionally, while
implementing this scheme in a realworld scenario, it would be beneficial to specify an optimal number
of weeks prior to the week in monitoring to be used for modelling the linear regression fit. This could be
advantageous in reducing the computational requirement and visualize the trend of anomalies better.
Albeit its advantages, this monitoring scheme has some limitations. Firstly, its applicability is restricted
to failure modes of the gearbox where degradation accumulates over time and the trend of anomalies
can be observed. Secondly, not all failure modes follow the bathtub curve before failure, which means
that the linear progression observed in this case might not be the same for all failure cases.
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(a)

(b)

(c)

(d)

Figure 6.9: Realtime monitoring scheme implemented for monitored weeks (a) 5 weeks to failure (b) 4 weeks to failure
(Maintenance alert set off as the percentage of anomalies exceed the 95% CI bounds) (c) 1 week to failure and (d) 0 weeks to

failure (day of failure)
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6.5 Sensitivity study

One of the key features of the data used in this study is it’s highresolution. Indeed, the CART2
dataset utilized for this research comprises SCADA data sampled at 100 Hz frequency, rather than
averaged values over a 10min period, as is the current industry practice. This provided a unique op
portunity to investigate the potential of using highfrequency SCADA data for the purpose of condition
monitoring of wind turbines, specifically wind turbine gearbox. When using highfrequency SCADA
data, one can evidently think that there would be an effect of noise in such data, which is usually
smoothed by the averaging process over conventionally used 10min periods. However, such averag
ing effect would also result in a loss of information about the dynamic conditions that the wind turbine is
subjected to. In the context of wind turbine condition monitoring, such loss of information might lead to
false / missed alarms, therefore there is a clear need to understand the variation in information specific
to the gearbox fault which is missed due to the averaging effect. To this end, a sensitivity study with
varying SCADA sampling rates was carried out.

In order to conduct this sensitivity study, the developed framework for gearbox prognostics, as dis
cussed in Chapter 4 is implemented for varying sampling rates of SCADA data. As stated in Subsection
5.1.3, the framework was developed and implemented using data sampled at 1 Hz (one sample per
second, i.e. sampling period of 1 s). The sensitivity study was then carried out for both higher and lower
sampling periods. The different sampling rates considered in this study are presented in Table 6.2 with
the smallest sampling period of 0.01 s (sampling frequency of 100 Hz) and the largest of 10 min. The
number of data samples in healthy and faulty instances for each respective sampling period is also
shown. The table shows that the number of data samples varies drastically with different sampling pe
riods: approximately 17,000 times fewer observations for lowresolution 10min data when compared
to the 100 Hz dataset. Such a range of sampling periods provides a good basis for the analysis being
done. Nevertheless, it is worth mentioning that the number of samples for the high sampling periods
of 1 min, 5 min, and 10 min is quite low and this needs to be considered during the analysis. This
limitation stems from the CART2 data set itself. The turbine was only operated in periods when testing
and research was conducted, resulting in a low number of operational hours and a small amount of
data samples when aggregated for higher sampling periods.

The study focuses on two main objectives: firstly to investigate the variation in the performance
of the ANN model with varying data sampling periods and secondly  to assess the trend in the per
centage of anomalies detected by the OCSVM model in the operational period before failure. To do
so, the healthy and faulty data sets for each sampling period, based on their definitions mentioned in
Subsection 5.1.2, are firstly filtered using all steps described in Subsection 4.1.1. The healthy data is
then split into three sets used for the ANN model development namely, training, validation and testing
using the 701515 split ratio for each development phase respectively. The ANN model performance
is then evaluated by analysing 𝑅2 and 𝑅𝑀𝑆𝐸 for each phase of model development corresponding to
each sampling period. Afterwards, the error features as discussed in Section 5.3 are computed for the
healthy dataset on which the OCSVM model is trained. This model is then used to identify anomalies
in the data from the faulty dataset and its progression for weeks to failure is obtained. It is anticipated
that the percentage of anomalies detected for each operational week before the gearbox failure would
show a loss of information of its degradation as the sampling period increases, i.e. the averaging effect
negatively impacts the failure prediction time.

ANNbased NBM model performance for different sampling rates is computed and analysed. To
evaluate the accuracy of the predictions made by the ANN model, two metrics 𝑅2 and 𝑅𝑀𝑆𝐸 for differ
ent training datasets (from healthy data) with corresponding different time resolutions were computed.
Figure 6.10 shows these metrics for each phase of model development calculated with different sam
pling periods. Both metrics in Figure 6.10(a) and (b), show similar but opposite trends as the sampling
period increases, with 𝑅2 values showing a decreasing trend and 𝑅𝑀𝑆𝐸 showing an increasing trend.
A good ANN model performance is characterised by high 𝑅2 values (close to 1) and low RMSE values,
which can be observed for small sampling periods of 0.01 and 0.02s. For sampling periods between
1 to 30 s, the 𝑅2 values range between 0.9  0.95 with negligible variation below 20 s followed by a
slight decrease for 25 and 30s, whereas, there is a significant increase in 𝑅𝑀𝑆𝐸 values as the sampling
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Table 6.2: Summary of the number of data samples in healthy and faulty data sets for different sampling periods

Sampling period (s) Sampling frequency (Hz) Healthy data Faulty data

0.01 100 1,839,000 4,603,970

0.02 50 919,500 2,302,000

1 1 18,400 64,770

5 0.2 4,050 9,810

10 0.1 2,080 4,940

15 0.07 1,450 3,210

20 0.05 1,031 2,430

25 0.04 850 2,010

30 0.03 730 1,620

60 [1 min] 0.017 370 841

300 [5 min] 3.3x10−3 234 203

600 [10 min] 1.7x10−3 108 115

period increases from 1 s to 10 s and hardly varies between sampling periods of 10 to 30 s. This is
followed by an increasing trend for data sampled at intervals of 60 to 600 s. Similarly, a significant
decrease in 𝑅2 values for these sampling intervals can be seen. When analysed from the vantage
point of 1 s sampling period, with which the framework was initially developed, there is no significant
improvement in model performance when using data with lower sampling periods (0.01 and 0.02 s).
In fact, this poses a disadvantage while utilising SCADA data sampled at such high frequencies as
storing and operating large datasets would require extensive resources and computational power with
no major improvements in the ANN model performance. On the other hand, the ANN still shows good
performance for both metrics for data aggregated over periods of 5  30 s, which demonstrates the
ability of the neural network to learn valuable information from the data even with approximately 25
times fewer data samples when compared with 1 s sampled data.

Another interesting observation that can be drawn from Figure 6.10 is the variation in the metrics
calculated for each model development phase. The 𝑅2 and 𝑅𝑀𝑆𝐸 values for training, validation and
testing phases barely change for sampling periods less than 30 s, however, there are significant differ
ences observed when looked at sampling periods of 60 s and above. The metrics for the model training
phase being considerably higher (in case of 𝑅2) and low (in case of 𝑅𝑀𝑆𝐸) than the other two phases
is an indication of model overfitting to the training data and its inability to generalize its learning to the
testing dataset. This is due to the low number of data samples available for model training within these
sampling periods. Furthermore, to understand the distribution of error (Actual  Predicted), the error
standard deviation is calculated and presented in Figure 6.11. The observed trend aligns with the ones
observed previously with 𝑅2 and 𝑅𝑀𝑆𝐸, the lowest values for 0.01 s sampled data and the highest for
10min sampled data. The general increasing trend is marked by a significant change from 30 to 60 s.
A high value for standard deviation means that the prediction error is spread out along a wide range of
values resulting from higher deviations in the model prediction when compared with the actual values.
Once the ANN model is trained for all sampling periods, the error metrics as described in Table 5.7
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are calculated and used to train the OCSVM model to understand the boundary between healthy and
anomalous operation.

(a)

(b)

Figure 6.10: ANN model performance: (a) R2 and (b) RMSE for all model development phases for different SCADA data
sampling rates
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Figure 6.11: ANN model performance: Error standard deviation for different SCADA data sampling periods

Once both the models, ANNbased NBM and OCSVM were trained with healthy data correspond
ing to different sampling periods, the percentage of anomalies detected using the faulty dataset was
evaluated. Figure 6.12 shows the heatmap for the percentage of anomalies that were detected by
OCSVM for each week before failure corresponding to different sampling periods. As we move from
left to right, the percentage of anomalies recorded for each week before failure with different sampling
periods can be observed and the trend can be visualised as the colour gradient becomes darker. It can
be seen that for all of the different sampling periods, there is an increasing trend in the percentage of
anomalies detected as the turbine gearbox approaches failure. The percentage of anomalies progress
to 100% for the week of failure for all sampling periods except for high sampling intervals of 60 to 600
s. In fact, the percentage of anomalies detected when using data with these high sampling periods are
extremely low for any week before failure. This is the consequence of several factors such as:

• Poor ANN model performance due to a low number of data samples which leads to model over
fitting and lack of generalization.

• High range of prediction error values, which could lead the OCSVM model to misclassify the
anomalous operation of the gearbox as healthy.

• Loss of information about the condition of the gearbox because of the data averaging effects.

In contrast, the percentage of anomalies observed when using data sampled at low periods of 0.01
and 0.02 is quite high even 12 weeks before the failure. While this can be accredited to the fact that
there is more information available owing to the sampling frequency of the data, knowing that the high
frequency data often entails high noise, such high percentages could also be attributed to the outliers
/ noise in the data being misclassified as anomalies. In the latter case, this might even lead to false /
missed alarms. Lastly, even with lower sampling periods up to 30 s it can be observed that the averag
ing effect results in a loss of information depicted by the decrease in the percentage of anomalies when
the sampling period increases for any specific week before failure. Nevertheless, the data aggregated
for 30 s interval still shows the sudden increase in the percentage of anomalies progressing from 5 to 4
weeks before failure, as was seen with the 1Hz data. In fact, the realtime monitoring scheme detects
the impending failure (the observed percentage of anomalies for 4 weeks before failure were above the
95% CI bound) four weeks before it actually happened, setting off the alarm for maintenance. The re
sults of the monitoring scheme when implemented with SCADA data sampled at 30 s interval is shown
in Appendix B. This means that despite the averaging effect, the data still retains information about
the gearbox fault that can be extracted efficiently through the framework and failure can be predicted
a month in advance.
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Figure 6.12: Heatmap for the percentage of anomalies detected by OCSVM for different SCADA sampling rates for each week
before failure

To conclude, the sensitivity analysis has shown that the ANN model performance suffers as the
number of data samples available for training decreases. Poor performance was observed when the
sampling period of the dataset used is aggregated over periods of 60 to 600 s. This is due to the
overfitting of the model to the training data because of the low number of samples within the dataset.
ANN predicts rather well when the sampling period is between 1 to 30 s and going for a higher sampling
period (0.01 and 0.02 s) does not provide a good tradeoff between themodel performance and required
resources. As for the percentage of anomalies detected by the OCSVM, all sampling periods showed a
general increasing trend as the gearbox approached failure. While higher frequency data carries more
information about the condition of the gearbox, the larger percentage of anomalies observed could be
a consequence of outliers within the highresolution data, which are misclassified as anomalies by the
OCSVM. This could result in false / missed alarms. On the other hand, even considering the loss
of information due to the averaging effect, the data sampled at 30 s contained information about the
gearbox failure and was adequate to predict the failure a month before its occurrence. This means that
SCADA data sampled up to 30 s intervals can be used for the purpose of condition monitoring of wind
turbine. Nevertheless, no definitive statements could be made for any sampling interval above 30 s,
owing to the specifics of the dataset (i.e. low number of operational hours for the wind turbine) and,
consequently, the low number of samples when averaged over 1 to 10 min.
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Conclusion & Recommendations

Wind energy is an important driver in the energy transition with an ongoing increase in installed wind
power capacities across the globe, especially for offshore wind. As the dependence on wind energy
increases, the question about its reliability becomes more concerning. Failure of WT components can
lead to decreased availability of the turbine and in the case of offshore, would lead to extensive O&M
costs. To this end, condition monitoring of wind turbines can be employed to implement an intelligent
maintenance strategy so that necessary actions can be planned and downtime of WT is minimised.
CMS data systems used specifically to monitor the condition of wind turbine components employ ad
ditional sensors and requires substantial investments and expert engineers to interpret the information
within the data. On the other hand, almost all commercial wind turbines are installed with SCADA data
systems which are mostly used to monitor the performance of wind turbines. Although these systems
generate rich historical data and present themselves as a lowcost and reliable data source, their appli
cation for condition monitoring is still at an early stage. Hence, the problem statement of this research
stressed the need for use of SCADA data for condition monitoring of wind turbines. Of all the different
WT subassemblies, the gearbox is identified as one of the most critical components, concerning the
downtime associated with its failure.

The main objectives of this project were: (1) to develop a framework for detecting gearbox failures
using SCADA data that would provide early detection of fault ensuring a reasonable time period for
scheduling and executing required maintenance activities and (2) to perform a sensitivity study with
varying sampling rates of the SCADA data to determine an optimal sampling frequency which could be
used for condition monitoring purposes.

The framework developed in this project explored the implementation of a datadriven methodology
based on the NBM approach. The idea behind the approach was to emulate the normal behaviour of
the gearbox and analyse the real operation deviations from this behaviour to understand the inception
of a fault. To realise this gearbox prognostics framework, a combination of two ML models was used:
an artificial neural network (ANN)based NBM and a oneclass support vector machine (OCSVM). The
training, validation and testing of the ML models was carried out using SCADA data collected from the
Control Advanced Research Turbine (CART2) located in NREL’s Flatirons campus, Colorado, USA,
made available by the National Renewable Energy Laboratory (NREL). The dataset contained infor
mation of a gearbox failure that took place due to gearteeth misalignment in the planetary gearbox and
comprised of SCADA data sampled at 100 Hz, a higher frequency compared to the industry standard
of 10 min averages.

A 3layer feedforward ANN was trained using healthy operational data of the turbine so that it could
then be used to mimic the normal behaviour of the gearbox. ANN was able to understand the com
plex nonlinear relations between the input and output features. The model comprised of five input
features, namely wind speed, power output, highspeed shaft rotational speed, nacelle and ambient
temperature, which were utilised to predict one output / target feature  gearbox lubrication oil temper
ature. The neural network was trained using data collected between Jan  Oct 2008 (initial 10 month
period) i.e. when it was known that the turbine was operating in healthy condition and was implemented
utilizing data collected 4 months before failure (faulty data comprising of gearbox failure). During the
training phase, an additional data preprocessing approach  SMOGN  was implemented to improve
the model’s generalization capabilities to predict the temperature well in all operational power regions
of the turbine. The model performance in all the phases of model development  training, validation
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and testing  was evaluated using metrics such as root mean squared error (RMSE) and coefficient of
determination (R2). With the RMSE values for each development phase being lower than 0.1 and R2
values close to 0.95, the model performance was deemed satisfactory.

In order to detect the anomalous operation of the turbine before failure, an OCSVM model was
used. In order to understand the unique error distribution between the actual and ANN predicted val
ues, four different residual error features  maximum error, minimum error, 𝑅𝑀𝑆𝐸 and error distribution
 were computed. The model was trained on the healthy dataset and was able to learn the complex
decision boundary between the normal and anomalous operation of the turbine and was utilised to
identify anomalies in the faulty data for weeks leading up to failure. For each week of operation before
failure, the percentage of anomalies was calculated. The results showed a general increasing trend in
the anomaly rates as the turbine approached failure, with the first significant increase 4 weeks before
failure, leading up to 100% for the week of failure. Moreover, the results from the SVM model were
compared with standard approaches to evaluate residual errors based on thresholds set by the RMSE
and standard deviation values observed during the turbine’s healthy state. The comparative analysis
demonstrated not only the robustness of the SVM model in identifying anomalies related to the turbine
fault but also showed that simple statistical thresholds based solely on one metric could lead to a large
number of unwanted / false alarms.

Furthermore, a realtime monitoring scheme was developed to identify the first point of inception of
failure in the gearbox and set off a maintenance alarm through analysis of the progression of anomalies
observed in time before failure. Themonitoring scheme employed a simple linear regression model and
bootstrapping to estimate 95% CI threshold bounds for the percentage of anomalies observed for the
week in monitoring. These CI bounds were estimated to account for the uncertainties in the ML model
performance and outliers in the data. The monitoring scheme demonstrated good results in identifying
the first clear signs of incipient fault in the gearbox and predicted a functional failure of the gearbox a
month in advance, providing enough lead time to plan and execute maintenance activities. One of the
key features of this scheme was that it could update its parameter iteratively by taking into account the
percentage of anomalies recorded with each progressing week and set adaptive and robust thresh
olds. Another important advantage of using such an online monitoring method is that it could be used
for turbines with no available runtofailure data.

One of the most important aspects of the data used in this study was it’s highresolution and to un
derstand an optimal SCADA data sampling frequency, a sensitivity study was carried out. This included
training the ANN model with 11 training sets corresponding to different sampling periods ranging from
low values of 0.01 s (100 Hz) to data aggregated over 600 s (10 min) periods. The analysis for 𝑅2
and 𝑅𝑀𝑆𝐸 metrics showed that the ANN model performance suffers as the sampling period increases
due to the decrease in the number of samples available for training. In the case of an extremely low
number of training samples, the ANN model overfits to the training data. It was also found out that
SCADA sampled at high frequencies capture more information about the condition of the machine and
the averaging effect negatively affects the percentage of anomalies observed in weeks before the tur
bine failure. Nevertheless, with very high sampling rates (for 0.01 s and 0.02 s), the issue of noise in
the data becomes prominent, which might be misclassified as anomalies by the OCSVM model. De
spite the effects of averaging in data sampled at lower frequencies, it was found that with data sampled
over 30 s interval, the first clear signs of incipient fault could be observed and a fair prediction period
of 1 month could be made. Although the objective of the study was to determine an optimal SCADA
data sampling frequency for the purpose of condition monitoring, the results were not exhaustive as
the number of data samples available for training and testing the framework was too low for sampling
periods over 30 s. Additionally, the sensitivity study demonstrated the robustness of the developed
framework in effectively predicting the gearbox failure a month in advance.

Albeit the limitations posed by the dataset (time discontinuity and outliers caused due to testing new
control algorithms), the framework developed for the prognostics of WT gearbox failure was effective
in identifying fault characteristics a month before the actual failure occurred. However, if the data set
comprised of continuous periods of WT operation, there could have been the possibility to detect the
failure even before, hence, improving the lead time to conduct maintenance activities prior to the oc
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currence of a catastrophic failure and shutdown of the turbine.

To further realise the potential of the developed framework and taking into consideration, the short
comings of this study, the recommendations for future work are compiled as follows:

• Scalability of the framework. The framework implemented in this project was developed and
testing utilizing data from a wind turbine with a rated power of 650 kW. The scalability of this
framework should be assessed with data from higher power rated turbines.

• Analysis with variants of the ANN model. This project employed a simple ANN architecture to un
derstand the complex and nonlinear relationship between the input and output features, however,
there are available variants of ANN such as recurrent neural networks (RNN), Nonlinear auto
regressive model with exogenous inputs (NARX) which could provide better model performance,
however a tradeoff study between increased model complexity and performance improvements
must be done.

• Investigation of the hybrid modelling approach. This project investigated datadriven methods
using SCADA data for the prognosis of the gearbox. Although the ML models used showed
good results in predicting the gearbox failure a month in advance, a clear diagnosis for the failure
mode could not be made. This could be further investigated by developing a hybrid model which
combines the advantages of machine learning models with physicsbased models to identify the
root cause of the gearbox failure.

• Inclusion of more sensor signals indicative of the health condition of the turbine. In this study, an
understanding of gearbox physics and domain knowledge was used to determine the gearbox
lubrication oil temperature to be the most sensitive to gearbox failure. However, a more detailed
study using a variety of signals should be done to include more health indicators for the gearbox.

• Sensitivity study with a larger dataset. The sensitivity study with different SCADA data sampling
rates carried out in this project could only draw conclusions with data averaged over a 30 s period
due to the unique characteristics of this dataset. A fair comparative study should be carried out
such that the total number of data samples for each sampling period is sufficient for ANN to
perform well and not overfit to the training dataset. Such a study would diminish the effect of ML
model performance due to varying number of data samples and the loss of information due to
the averaging effect can be studied further, resulting in an optimal SCADA data frequency which
could then be implemented in the wind industry.



A
Neural network optimization

In this Appendix, the explanation for the optimization algorithm for the ANN is discussed and derived
mathematically [64]. The optimization of ANN involves two passes or processes: forward propagation
(feedforward pass) and backward propagation (backpropagation).

Forward propagation

Let there be a fully connected feedforward neural network that has 𝐿 layers and a predefined
number of neurons (can be any number). The activations of the neurons in a given layer 𝑙 are stored
in a vector 𝑎(𝑙), where the superscript denotes the layer. The connections (weights) from neurons in
the previous layer ((𝑙 − 1)) to the layer 𝑙 are stored in weight matrix 𝑊(𝑙) and the biases for that layer
are stored in the columnvector 𝑏𝑙. Furthermore, 𝑧(𝑙) is a vector that represents the input sum of all
neurons present in a layer 𝑙. Equations A.1 and A.2 show a simple forward pass [60].

𝑧(𝑙) = 𝑊(𝑙−1) ∗ 𝑎(𝑙−1) + 𝑏(𝑙−1) (A.1)

𝑎(𝑙) = 𝑓(𝑧(𝑙)) (A.2)

Figure A.1 shows the whole neural network and mapping of neurons from input vector 𝑥, to the
output activation vector 𝑎(𝐿). The connections leading into a specific neuron is shown in two colours in
two layers.

Figure A.1: Entire neural network visualised
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To better understand the notations used in the explanation ahead, the network computation is sum
marised in one mathematical expression. The Equation ref shows the formula for calculation 𝑛𝑡ℎ ele
ment of the output vector in the final layer.
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(A.3)

The notation 𝑤(𝑙)𝑢𝑣 denotes the connection from 𝑣𝑡ℎ neuron in layer (𝑙 − 1) to 𝑢𝑡ℎ neuron in layer (𝑙)
and 𝑏(𝑙)𝑢 is the bias of the 𝑢𝑡ℎ neuron in layer (𝑙).

The error observed for a neuron 𝑖 in layer 𝑙 is denoted by 𝛿(𝑙)𝑖 and is defined as how much the total
error changes when the input sum of the neuron is changed. This is computed by taking the derivative
of the cost function (𝐶) with respect to input sum (𝑧) for each neuron and is expressed by the following
equation:

𝛿(𝑙)𝑖 = 𝜕𝐶
𝜕𝑧(𝑙)𝑖

(A.4)

Backward propagation
After the feedforward pass, the error for each neuron is calculated. The next step is optimizing

the weights matrix to minimize loss, by the use of a backpropagation algorithm. The backpropagation
algorithm works by computing the gradient ∇(𝑙)𝑖𝑗 of the loss function (or objective function 𝐶) with respect
to each weight 𝑤(𝑙)𝑖𝑗 , propagating from the final layer, iterating backwards, one layer at a time. This is
advantageous in avoiding redundant calculations of immediate terms in the chain rule. The derivation
utilizes a conventional gradient descent technique to simplify the explanation. Furthermore, a classic
activation function is assumed.

The starting point is the derivative and the gradient is defined as:

∇(𝑙)𝑖𝑗 =
𝜕𝐶
𝜕𝑤(𝑙)𝑖𝑗

(A.5)

This Equation A.5 cannot be solved directly and therefore, need to be modified using two methods
to derive an equation that could be computed by the neural network model. This results in the following
equation:

∇(𝑙)𝑖𝑗 = 𝑊(𝑙+1)𝛿(𝑙+1) ⋅ ∗ (𝑎(𝑙)𝑖 (1 − 𝑎(𝑙)𝑖 )) ∗ 𝑎
(𝑙−1)
𝑗 (A.6)

The first method is based on the notion that the gradient can be expressed using 𝛿(𝑙)𝑖 :

∇(𝑙)𝑖𝑗 = 𝛿
(𝑙)
𝑖 ∗ 𝑎(𝑙−1)𝑗 (A.7)

The backpropagation algorithm applies chain rule to communicate the updates and pass information
to other nodes. This forms the second method which is based on the relation between adjacent error;
𝛿(𝑙)𝑖 and 𝛿(𝑙+1)𝑖 . It is expressed as:

𝛿(𝑙)𝑖 = 𝑊(𝑙+1)𝑇𝛿(𝑙+1) ⋅ ∗ (𝑎(𝑙)𝑖 (1 − 𝑎(𝑙)𝑖 )) (A.8)

Both these methods result in a general form of backpropagation and can be written as:

∇(𝑙)𝑖𝑗 = 𝑊(𝑙+1)𝑇𝛿(𝑙+1) ⋅ ∗ (𝑎(𝑙)𝑖 (1 − 𝑎(𝑙)𝑖 )) ∗ 𝑎
(𝑙−1)
𝑗 (A.9)
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Demonstration of Equation A.7

Previously, it was defined that:

∇(𝑙)𝑖𝑗 =
𝜕𝐶
𝜕𝑤(𝑙)𝑖𝑗

(A.10)

Following the chain rule for higher dimensions enables rewriting it to the following expression:

∇(𝑙)𝑖𝑗 =∑
𝑘

𝜕𝐶
𝜕𝑧(𝑙)𝑘

∗ 𝜕𝑧
(𝑙)
𝑘

𝜕𝑤(𝑙)𝑖𝑗
(A.11)

On the other hand:

𝑧(𝑙)𝑘 =∑
𝑚
𝑤(𝑙)𝑘𝑚 ∗ 𝑎

(𝑙−1)
𝑚 (A.12)

The following expression can be given as:

𝜕𝑧(𝑙)𝑘
𝜕𝑤(𝑙)𝑖𝑗

= 𝜕
𝜕𝑤(𝑙)𝑖𝑗

∑
𝑚
𝑤(𝑙)𝑘𝑚 ∗ 𝑎(𝑙−1) (A.13)

By employing the linearity rule of differentiation [(u + v)’ = u’ + v’], Equation A.13 can be written as:

𝜕𝑧(𝑙)𝑘
𝜕𝑤(𝑙)𝑖𝑗

=∑
𝑚

𝜕𝑤(𝑙)𝑘𝑚
𝜕𝑤(𝑙)𝑖𝑗

∗ 𝑎(𝑙−1)𝑚 (A.14)

𝑖𝑓 𝑘,𝑚 ≠ 𝑖, 𝑗, 𝜕𝑤(𝑙)𝑘𝑚
𝜕𝑤(𝑙)𝑖𝑗

∗ 𝑎(𝑙−1)𝑚 = 0 (A.15)

𝑖𝑓 𝑘,𝑚 = 𝑖, 𝑗,
𝜕𝑤(𝑙)𝑖𝑗
𝜕𝑤(𝑙)𝑖𝑗

∗ 𝑎(𝑙−1)𝑗 = 𝑎(𝑙−1)𝑗 (A.16)

Then for k = i:

𝜕𝑧(𝑙)𝑖
𝜕𝑤(𝑙)𝑖𝑗

= 𝜕𝑤𝑙𝑖𝑚
𝜕𝑤(𝑙)𝑖𝑗

∗ 𝑎(𝑙−1)𝑗 + ∑
𝑚≠𝑗

𝜕𝑤𝑙𝑖𝑚
𝜕𝑤𝑙𝑖𝑗

∗ 𝑎(𝑙−1)𝑗 = 𝑎(𝑙−1)𝑗 + 0 (A.17)

And, finally:

𝜕𝑧(𝑙)𝑖
𝜕𝑤(𝑙)𝑖𝑗

= 𝑎(𝑙−1)𝑗 (A.18)

Thus, the first expression of ∇(𝑙)𝑖𝑗 results in:

∇(𝑙)𝑖𝑗 =
𝜕𝐶
𝜕𝑧(𝑙)𝑖

∗ 𝑧(𝑙)𝑖
𝜕𝑤(𝑙)𝑖𝑗

(A.19)

Equivalent to:

∇(𝑙)𝑖𝑗 =
𝜕𝐶
𝜕𝑧(𝑙)𝑖

∗ 𝑎(𝑙−1)𝑗 (A.20)

Using Equation A.6 and A.17:

∇(𝑙)𝑖𝑗 = 𝛿
(𝑙)
𝑖 ∗ 𝑎(𝑙−1)𝑗 (A.21)



B
Realtime monitoring scheme

In this Appendix, the developed realtime monitoring scheme is employed with SCADA data ag
gregated over a 30 s time period. The purpose of implementing such a scheme within the gearbox
prognostics framework was to track the progression of anomalies in time and correctly identify the first
indication of failure inception in the gearbox. It is based on a simple linear regression model combined
with 95% CI bounds estimated using the bootstrapping method. Section 6.4, discussed in detail how
such a scheme could be implemented in an online setting. The results demonstrated its efficacy in
identifying the first signs of failure and alerting a maintenance alarm 4 weeks or 1 month before the
gearbox failure occurred. This analysis was carried out using SCADA data sampled at a high frequency
of 1 Hz, rather than 10min averaged values, which is the current industry practice.

To further understand the negative effects of averaging in SCADA data and its impact on condi
tion monitoring of the gearbox, a comprehensive sensitivity study was carried out, results of which
are discussed in detail in Section 6.5. SCADA data sampled at 30 s showed a similar trend for the
percentage of anomalies before failure as was observed with 1 s (1 Hz) data, although there was a
decrease in anomalies observed in a certain week. However, to verify the applicability of SCADA data
aggregated over a 30 s period for gearbox condition monitoring, the percentage of anomalies recorded
before failure were tracked using the realtime monitoring scheme and the first inception of failure was
identified. This is shown in Figure B.1. In Figure B.1(a), anomalies recorded for all days before 5
weeks to failure (monitored week) are used to compute the linear fit and the 95% CI bounds. In Figure
B.1(b), the anomalies observed for 4 weeks to failure exceed the upper CI bound and a maintenance
alert is set off. Similar to the results obtained with SCADA data sampled at 1 s (1 Hz), the first incipient
signs of gearbox failure are evident 4 weeks before the actual failure. When Figure B.1(c) and (d) are
compared with Figure 6.9(c) and (d), it can be seen that when the percentage of anomalies observed
4 weeks before failure is added for regression fit, the prediction bounds at 0 weeks to failure (day of
failure) do not indicate a functional failure (100% anomalies). Nevertheless, in a realworld scenario,
no data would be recorded after the maintenance alert is set off i.e. 4 weeks to failure. Therefore, it
can be concluded that even with SCADA data sampled over a 30 s period, failure of the gearbox can
be anticipated a month before failure.

79



80 B. Realtime monitoring scheme

(a)

(b)

(c)

(d)

Figure B.1: Realtime monitoring scheme implemented with SCADA data aggregated over 30 s for monitored weeks (a) 5
weeks to failure (b) 4 weeks to failure (Maintenance alert set off as percentage of anomalies exceed the 95% CI bounds) (c) 1

week to failure and (d) 0 weeks to failure (day of failure)
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