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WORKSHOP REPORT

The Dagstuhl Perspectives Workshop on
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Nicola Ferro, Norbert Fuhr, Gregory Grefenstette, Joseph A. Konstan, Pablo Castells,
Elizabeth M. Daly, Thierry Declerck, Michael D. Ekstrand, Werner Geyer,

Julio Gonzalo, Tsvi Kuflik, Krister Lindn, Bernardo Magnini, Jian-Yun Nie,
Raffaele Perego, Bracha Shapira, Ian Soboroff, Nava Tintarev, Karin Verspoor,

Martijn C. Willemsen, Justin Zobel

Abstract

This paper reports the findings of the Dagstuhl Perspectives Workshop 17442 on perfor-
mance modeling and prediction in the domains of Information Retrieval, Natural language
Processing and Recommender Systems. We present a framework for further research, which
identifies five major problem areas: understanding measures, performance analysis, making
underlying assumptions explicit, identifying application features determining performance,
and the development of prediction models describing the relationship between assumptions,
features and resulting performance.

1 Introduction

The IR field has always had a strong evaluation focus on the effectiveness of models and methods.
However, for many years, the validity of experiments has been regarded as being implicitly given
by following established experimentation procedures.

Internal validity refers to the fact that the conclusions derived from an experiment are actually
supported by the data. This topic has gained some attention recently, by putting more emphasis
on the reproducibility of the experiments [7] as well as on proper statistical methods [12].

External validity is the extent to which the results of a study can be generalized. In IR,
researchers usually apply their methods to a number of test collections. However, even if the
proposed approach yields performance improvements in each case, it is unclear for which other
applications this finding will also be true.

In Fall 2017, researchers from the areas of IR, natural language processing and recommender
systems met for a week-long workshop in Dagstuhl, Germany, for developing a research agenda for
the issue of performance modeling and prediction. The outcome of this workshop are described in
a Dagstuhl Manifesto [11]. In the remainder of this paper, we summarize the major findings of
this report from an IR point of view.
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2 Prediction Problems in IR

Current approaches to IR evaluation mean that predictability can be poor, in particular:

• Assumptions or simplifications made for experimental purposes may be of unknown or
unquantified validity; they may be implicit.

• Test collections tend to be specific, and to have assumed use-cases; they are rarely as
heterogeneous as ordinary search.

• Test environments rarely explore cases such as poorly specified queries, or the different uses
of repeated queries.

• Researchers typically rely on point estimates for the performance measures, instead of giving
confidence intervals.

• Highly correlated measures (e.g. MAP vs. nDCG are often reported as if they were indepen-
dent; while, on the other hand, measures reflecting different quality aspects (e.g. precision vs.
recall) are averaged (e.g. in the F-measure), thus obscuring their explanatory power.

• Current analysis tools are focused on sensitivity (differences between systems) rather than
reliability (consistency over queries).

• Summary statistics are used to demonstrate differences, but the differences remain unex-
plained. Averages are reported without analysis of changes in individual queries.

• Due to the gap between offline and online evaluation, offline predictions of changes in user
satisfaction continue to be poor because the mapping from metrics to user perceptions and
experiences is not well understood.

3 Performance Prediction Framework

In order to predict performance, a framework model was developed at the workshop (see figure
1). First we have to choose the performance criteria and define corresponding measures. When
performing experiments with different test collections and observing the system’s output and
the measured performance, we will carry out a performance analysis. For that, we will look at
violations of the assumptions underlying the method applied. Also, characteristics of the data and
tasks will have an important effect on the outcome. Finally, we aim at developing a performance
prediction model that takes these factors into account.

Once these tasks are well understood we can begin to try and predict performance in an unseen
situation if enough of the above still hold.

3.1 Measures

The definition of a metric relies on several alternatives and decisions, which happen before the
actual measurement takes place, also to avoid any post-hoc bias.



Figure 1: An overarching performance prediction framework

We first have to choose the criteria that reflect the goals of our evaluation, for instance relevance,
diversity, or novelty. However, as said before, the performance of a system is not only a matter
of goals but also of the “utility” delivered to users. Therefore, we need to identify/choose a
prototypical user behavior; for example, when ranking is involved, a stopping point, after which no
more recommended items or retrieved documents are considered, introduces a clear separation
between seen and unseen items, where only the former influence the measurement outcome. Instead
of a deterministic behavior, we might also assume a stochastic model for this aspect as done, for
example, by [3, 4, 15]. We also have to define the user’s preferences concerning the items seen, like
e.g. the total number of useful items, or the ratio between useful and useless items.

Finally, we have to choose an aggregation method like arithmetic or geometric mean, where
the former focuses on absolute differences, and the latter on relative changes, paying attention
that the aggregation method is admissible when considering the scale properties – ordinal, interval,
ratio scales – of a measure [5, 12]

Overall, we must be aware that each metric represents a specific user standpoint, and often
the standpoint may be context-dependent. Thus, an evaluation focusing on a single low-level
metric will either ignore many user standpoints, or represent an intransparent mixture of different
standpoints.

3.2 Performance Analysis

Reporting of averages and average improvements is often unhelpful, and is uninformative in terms
of explaining what system elements contributed to success, what data and queries the method is
applicable to, and for which data and queries the method fails. That is, instead of focusing on
statistically significant differences in the average from control to treatment, we need to move to



understanding the changes in specific tasks and task types, and to understanding the contributions
of individual system components.

In this context, researchers also should pay attention to the problems of multiple testing
and sequential testing: When performing multiple significance tests on the same data set, they
must adjust the significance level accordingly, using e.g. Bonferroni’s method1 [12]. Even more
problematic is the sequential testing case, where the same data is used by other researchers, who
have learned from previous results on the same test collection, and then perform significance tests
for their new method(s), not considering the large number of tests carried out before. As shown
in [2], this usually leads to totally random results. As a consequence, statistically meaningful
results cannot be expected from heavily re-used test collections. A similar statement might also
hold for multiple qualitative analyses on the same data set. Thus, re-use of a test collection is
problematic, which leads to the need for more (and more diverse) collections.

Another important viewing angle is the consideration of measures representing different user
standpoints: instead of focusing on universal performance, more emphasis should be put on
performance differences wrt. different metrics. E.g., in retrieval, many users will look at the top
ranking documents only (e.g. in Web search), while others are aiming at locating all potentially
relevant documents (e.g. patent search). Thus, instead of looking at overall performance only, it is
more interesting to identify methods that support specific user standpoints.

Classic failure analysis inspects individual tasks where performance is significantly altered, but
other data interrogation methods, such as systematic addition of noise, can illustrate the robustness
and vulnerabilities of the system that is under investigation.

3.3 Documenting and Understanding Assumptions

3.3.1 Role of assumptions

Any method or model is based on certain assumptions, some of which are explicit; usually, there is
an even larger number of implicit assumptions. The performance of a method in an application
depends mainly on the extent to which these assumptions are true in this setting. Thus, we have
to solve three problems:

• Identify the underlying assumptions (make implicit ones explicit).

• Devise methods for determining if or to what extent these assumptions are fulfilled in an
application.

• Develop a model that tells us how the violation of an assumption affects performance.

Only when we have answers to these three questions, we are able to make reasonable predictions.

3.3.2 Assumption categories

Assumptions come into play at many points in the design and evaluation of recommender, IR, and
NLP systems. At each point, there are at least two broad categories of assumptions: fundamental
assumptions and convenience assumptions. These two categories are transversal to different kinds of

1https://en.wikipedia.org/wiki/Multiple comparisons problem



assumptions which we can distinguish according to the role they play in data, algorithms/techniques,
evaluation protocols and metrics, and their implications on system performance and the validity of
research findings. Overall, they determine a taxonomy which we can use to systematically check
and make them explicit.

Convenience assumptions are simplifications (or approximations) intended to make problems
tractable, reduce their complexity and/or enable evolving some starting point theoretical expression
(e.g. a probability) into a computable form (counting things and doing math upon numbers).
Examples include the mutual feature independence assumption in Naive Bayes (of which pairwise
word independence in text IR can be seen as a particular case), whereby joint probabilities are
decomposed into products of simpler distributions; user, time and context independence as a means
to eliminate variables from IR and recommendation problems; or document relevance independence
assumption, which enables the definition of simple and easy to compute metrics such as precision.
Convenience assumptions may be violated, and yet the algorithm or the metric may still work
reasonably. On the other hand, performance differences between collections may be traced back to
the violation of certain assumptions.

Convenience assumptions typically represent an opportunity to define new research problems
consisting of the elimination of a particular simplifying assumption and dealing with the corre-
sponding complexity. An example is personalized IR, which takes the user variable back into the
problem and copes with it; or IR diversity, which removes the document relevance independence
assumption; or time-aware or context-aware IR, which do the same with time and context.

By fundamental assumptions we mean hypotheses that algorithms or metrics themselves build
upon they are intrinsic to the underlying model. For instance, content-based recommendation
assumes item features can partially explain user choices; IR language model algorithms assume
language similarity is related to relevance; most text IR models assume term frequency matters;
proximity search algorithms assume word order matters too; metrics like precision assume users
want to get relevant documents; average search length (rank of first relevant document) assumes
users need just one relevant document or item; recommendation diversity metrics may assume
people enjoy variety; novelty metrics assume users wish to be surprised; an experimental protocol
may assume each and every user has a non-empty set of training (or test) observations. When
fundamental assumptions fail to be met, the algorithm or the metric may no longer be effective or
valid. Content-based recommendation is as good as random if user choices are unrelated to item
features; a novelty metric is irrelevant if users are just willing to stick to familiar experiences; lack
of data for a single user may result in an undefined evaluation outcome.

Becoming aware of and understanding fundamental assumptions enables a better and more
consistent use of the tool (algorithm, metric, protocol) that builds upon them, and may prevent
unintentional misuse. It can also help detect spurious confounders (biases that cause the hypothesis
to hold for misleading reasons) and experimental flaws that can easily go unnoticed (e.g. a
recommendation algorithms accuracy skyrockets simply because we forgive it refusing to deliver
recommendations to certain users; depending on the characteristics of these users, this may result
in discriminatory quality of service).



3.3.3 Understanding Violations to Assumptions

A critical aspect in explaining and predicting performance is to understand whether and to what
extent the assumptions our methods are based upon have been complied with or violated.

This understanding should happen at both theoretical and experimental level. At theoretical
level, among the various assumptions, we should be able to differentiate those that are crucial
for a method and whose violations seriously hamper its application from those that are somehow
desirable. At experimental level, we should have techniques for assessing each assumption and
understand whether and how much it has been violated.

We need to develop commonly agreed scales to quantify how much an assumption has been
violated. However, given the wide range and diversity in the type of assumptions we have, we
should aim at developing assumption checking methods and scales that hold, at best, for families
of related assumptions rather than hoping for a single general solution where one-fits-all.

Then, we need to research on the relationship between the severity of departures from assump-
tions, quantified in the above mentioned scales, and the observed and predicted performances. The
final goal is to understand how much resilient are our methods to such violations and how much
this impacts on explanation, first, and prediction, after.

Violations of algorithm or technique assumptions are perhaps the easiest to assess: run the
algorithm on a data set that violates its assumption(s) and measure its performance and behavior.
Violations of evaluation and data assumptions are more challenging, as they undermine the tools
by which we measure the behavior of the system in the first place. To assess the impact of these
assumptions, we need techniques that allow us to peek behind the curtain and understand the
behavior of these components of the experimental process under a range of possible truths, in order
to relate their output to our confidence about the relationship of the data and evaluation to the
underlying truth and intended task.

An area we can take inspiration from is statistics and the notion of robustness in statistical
testing, meant as “insensitivity to small deviations from the assumptions” [13]. Robustness is
developed both a theoretical level, e.g. by studying it under a null and an alternative hypothesis [14],
and defining indicators such as, for example, the breakdown point, i.e. the proportion of incorrect
observations an estimator can handle before giving an incorrect result.

Furthermore, simulation and resampling are particularly promising tools for quantifying the
importance of assumptions to components of the information processing and evaluation pipeline.
Measuring results on different data sets is useful, but only provides a few data points regarding
the behavior of a method or evaluation technique, and does not change the relevant variables in
a controlled fashion; further, the data set’s relationship to underlying ground truth cannot be
controlled and may not be known. Simulation and resampling allows a range of possibilities —
some within assumptions, some outside — to be tested, and the relationship of data to truth
to be controlled, allowing us to precisely characterize the system response to targeted violations
of its assumptions. These experiments can take multiple forms, including wholly-synthetic data,
resampling of traditional data sets, and sampling of specialized data sets such as ratings collected
on complete or uniformly sampled sets of items. As one example, [18] employed simulation to
study the robustness of information retrieval evaluations to violations of statistical assumptions
about the underlying data sets and their topic distributions.



3.3.4 Increasing awareness in our community

There is a large variance on how assumptions are managed and on the perception itself of their
importance. A general recommendation is pushing in any possible way our community to a greater
awareness of the need for making assumptions explicit and clear. Inserting in all scientific works
a clear statement permitting a precise identification and a deeper understanding of the essential
assumptions made and their scope of validity should become a universal practice. To this regard
we recall the effort currently conducted in the IR community toward reproducibility of results [6,7]:
after a consciousness campaign last several years, we now have a reproducibility track in the
main IR conferences and reproducibility tasks have been just launched in the major evaluation
campaigns2.

The awareness on such an important aspect impacting the validity and reproducibility of results
can be disseminated and increased in several ways. A first recommendation is adding an explicit
reference to the clarity and completeness of assumptions made in the call for paper and the paper
review forms of all conferences. This can have the double effect of educating the reviewers to
reserve a particular attention to assumption clarity and, on the other hand, to increase author’s
awareness on them. Papers claiming results involving assumptions that are not explicitly voiced or
understood should not be deemed as solid since no strong conclusion can be drawn from them.
As a second step, after a systematization of assumptions and a greater understanding have been
reached, the emerging best practices can give origin to commonly accepted requirements to be
integrated in the call for papers of specific tracks.

It is significantly harder to test the importance of assumptions in user-facing aspects of the
system, such as the presentation of results or the task model, as it is prohibitively expensive
to simulate arbitrarily many versions of a system and put them before users. System utility
can be remarkably robust to violations of core assumptions — for example, e-commerce vendors
obtain great value from collaborative filtering techniques that assume items are functionally
interchangeable even when they clearly are not — but rigorous empirical data on this robustness is
difficult to obtain. However, measuring hidden factors (see [11]) might help explain why particular
versions of a system perform better, directly testing underlying assumptions.

3.4 Application features

One common feature of Natural Language Processing, Information Retrieval and Recommender
Systems is the wide space of data and task characteristics that have to be accounted for when
designing a system. Adapting existing systems to a new domain, a new data set, or a new task,
and then predicting their performance in this new setting is particularly challenging in our research
fields because there is always some degree of mismatch between testing and development conditions
(either in laboratory or real-world settings) used to create the existing systems and new application
area.

As a result, measuring only effect sizes and statistical significance is of little help for predicting
out-of-the-lab performance. Even moving between two test collections which apparently share the
same features often results in different experimental outcomes. In order to have predictive power,
evaluation methodologies need a much higher emphasis on explanatory analysis: why, where and

2http://www.centre-eval.org/

http://www.centre-eval.org/


how systems fail is more relevant than effect sizes on average measures.
In this section we begin by reviewing a few measurable characteristics that make prediction

possible but challenging in our research fields, and we then move to advocating explanatory
analysis.

3.4.1 Task & Data features

How will an existing method, algorithm or system perform under conditions different from the
ones in which it was tested? There are some easily identifiable features related to the data or the
task that, if changed, may affect predictability.

With respect to the task, some relevant characteristics are the language involved in the task.
Will the task be performed using monolingual or multilingual data. Will the output be in a different
language from the input (cross-linguistic)? Or is the task language independent? Are there the
necessary language resources for the task? Does the task involve some dialect for which these
resources have to be adapted? Is the data based on speech, on written text?

Another characteristic of the task is it dynamicity: are we dealing with a static collection,
or a stream of data? Is the task a one-off, ad-hoc task, or a long standing task, such as filtering
a news stream with a static query? Is the task offline, or online, performed with an active user?
Does the task change over time as the user performs it?

Task context also plays an important role in many situations: Current Web search engines
consider already user history, location, time and end device when computing the search result.
The same might be true for other types of tasks.

We can characterize the data as curated, for example scientific papers, or edited news stories,
or as naturalistic, for example, stemming from social media, or transcribed speech. In the latter
case, one can sometimes measure the expected error rate, such as the frequency of spelling errors,
or transcription errors. Many language processing tools were developed for curated language,
without such errors.

Another dimension of data is its connectedness or structure. Can each data item be
considered as a separate item, or are there links between items? For example, web pages link to
other web pages. A collection of movies can contain a series of implicitly linked sequels. Users in a
social network have both explicit and implicit connections to other users. Each data item can have
internal structure (metadata such as timestamps, hand-assigned classification codes, numerical
data; or internal structure, such as abstract, body, supplemental material).

With respect to (textual) data, some measurable features are: readability and comprehensibility;
domain; users’ expertise; how source and target data correlates; verifiability of answers; dependence
on assumptions to construct ground truth; richness of features; external validations; existence of
corner cases and stress factors; parameterizations that impact performance; quality of domain
resources (ontologies, dictionaries, taggers, etc.)

These characteristics, however, are not likely to be sufficiently predictive: even when they are
the same in the new application as in laboratory conditions, often components of the systems
perform differently. One of the main shortcomings of our experimental methodology is the lack of
adequate explanatory methods.



3.4.2 Bias and Scaling

Test collections are often not a representative sample of a larger population. Instead, they have
been compiled under certain restrictions (e.g. in IR test collections, rather specific or too general
topics are not considered). We need to understand the limitations and bias of our sampling
methodology across topics, documents, and systems. Can we determine when differences are due
to bias, or when we are sampling from separate distributions?

Another problem is scaling: methods doing well on small test collections might not work on
collections orders of magnitude larger, and vice versa.

3.5 Modeling Performance

Trying to explain and model the performance of systems over different datasets and tasks is a
preliminary yet indispensable step towards envisioning how to predict the performance of such
systems. However, this is often difficult to do due the lack of appropriate analysis techniques and
the need for careful experimental designs and protocols, which may be complex and demanding to
carry out.

There is therefore a need for further research providing us with the methods for analyzing
and decomposing the performance into those of the affecting factors, such as system components,
datasets, tasks, and more. These explanatory models will then constitute the basis for developing
predictive models.

Performance prediction can take different forms. We commonly wish to make an ordinal
prediction, of which of two systems will be superior for a kind of task over a class of collections.
For a single system, we might aim at an interval prediction, giving us a confidence interval for
a certain metric; the most simple case would be a prediction for another sample from the same
population. While these two approaches target at average performance, we may alternatively wish
to estimate risk or uncertainty , that is, predict a likelihood of failure.

3.5.1 Performance factor analysis in IR

In the case of IR, over the years, there have been examples of attempts to decompose performance
into constituting factors, based on the use of General Linear Mixed Models (GLMM) and ANalysis
Of VAriance (ANOVA).

[1, 17] have shown how to break down the performance of an IR system into a Topic and a
System effect, finding that the former has a much bigger impact than the latter.

By using a specific experimental design, [9, 10] also broke down the System effect into those of
its components – namely stop lists, stemmers, and IR models. They further demonstrated that
we are not actually evaluating these components alone, even when we change only one of them
and keep all the rest fixed. Rather, we are evaluating whole pipelines where these components are
inserted and with which they may have positive (or negative) interaction, boosting (or depressing)
their estimated impact.

The difficulty in estimating the Topic*System interaction effects is the lack of replicates for
each (topic, system) pair in a standard experimental setting. Therefore, [16] used simulation based
on distributions of relevant and not relevant documents to demonstrate the importance of the
Topic*System interaction effect. Very recently, [19] exploited random partitions of the document



corpus to obtain more replicates of each (topic, system) pair, obtaining an estimation of the
Topic*System interaction effect which allowed for improved precision in determining the System
effect.

Finally, [8] conducted preliminary studies on the effect of Sub-Corpora and the System*Sub-
Corpus, showing their impact and how they can be exploited to improve the estimation of the
System effect.

All these GLMMs are not connected yet, meaning that they tackle the problem separately
from different viewpoints but there is not yet a single model integrating all these facets. So a first
required step toward performance prediction is to unify all these explanatory models into a single
one. Then, the next step is to turn these models into predictive ones, e.g. by using some of the
features discussed in Section 3.4 to learn how to predict the factors described in these models.

4 Conclusion

Performance prediction in IR is a research problem that has been ignored for many years. In
this paper, we have presented a framework for starting research in this area. Some problems
might call for substantial resources before they can be addressed. For instance, the analysis of
performance-determining application features requires a larger number of more diverse testbeds.
Most of the problems, however, just ask for a more analytic approach. Instead of focusing only on
performance improvement/system tuning, researchers should aim at improving our understanding
of why, how and when the investigated methods work.
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