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GLOBAL OPTIMIZATION OF LOW-THRUST INTERPLANETARY 
TRAJECTORIES USING A MACHINE LEARNING SURROGATE 

Pablo Gómez Pérez,* Yuxin Liu,† and Kevin Cowan‡  

In this work, we propose a new method to approximate the cost function of 
Low-Thrust, Multiple-Gravity-Assist interplanetary trajectories using a Machine 
Learning surrogate. We identified the computation time required to obtain train-
ing data as the main limitation when using Machine Learning methods for this 
purpose so we present a strategy to build the surrogate with limited training data. 
We build an Online-Sequential Extreme Learning Machine Multi-Agent System 
(OS-ELM-MAS) surrogate due to its theoretical good performance when the 
training data is limited. In addition, we define a method to include the surrogate 
during the optimization process that can be used with any gradient-free algo-
rithm, and study the effect of several surrogate parameters on the optimization 
results. Finally, several interplanetary trajectories are optimized with and with-
out the surrogate. Employing the surrogate results in up to 12% lower fuel cost 
values after a fixed optimization time. The parameters that control the interac-
tion have to be carefully selected to achieve this improvement, and we show that 
the optimal value of these parameters can be narrowed down based on the char-
acteristics of the transfers. 

INTRODUCTION

Interplanetary missions are very attractive from a scientific point of view. However, the payload capacity

of these missions is severely limited by the large amounts of fuel required to reach bodies beyond the orbit of

Earth. Therefore, orbit optimization is a critical part of their design process. This is a very complex task, and

the difficulty is increased when incorporating propellant-saving advances such as the Gravity Assist (GA)

maneuvers and the Low-Thrust Propulsion (LTP). These advances allowed to reduce the fuel required for

interplanetary trajectories, but at the expense of an increase in the difficulty of the optimization problem.1, 2

This is an issue especially during the preliminary mission design phase, as a large number of alternatives

needs to be considered to make an informed decision regarding the mission objective.3 However, the long

time required to obtain a globally optimal solution means that suboptimal solutions are often considered.1, 4

This is not ideal as solutions that allow for higher payloads are missed.

As an alternative, Machine Learning (ML) methods can be used to approximate functions that are unknown

or very costly to evaluate. In previous work, ML methods have been proposed as surrogates for the cost

function during the optimization of interplanetary transfers using both chemical rockets and LTP. Artificial

Neural Networks (ANNs) were used to predict the optimal control at a given state when using LTP5, 6 and

to predict the fuel required to complete a whole transfer including an intermediate GA.7 Moreover, several

ML methods were tested to predict the fuel required to complete optimal transfers between asteroids8, 9 and

it was found that Gradient Boosting10 provided the best results. In addition, ML methods were used to
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estimate the fuel requirements of Multiple-Gravity-Assist Trajectories (MGATs) using traditional chemical

propulsion11, 12 and LTP.13

The methods proposed require large amounts of training data, and the interaction between the surrogate

and the optimization algorithm is not evaluated. The training data needs to be generated using the same cost

function that the surrogate is replacing, so the computation time saved by using the surrogate is expected

to be smaller than the computation time required to generate large amounts of training data. Moreover,

most previous work exclusively evaluates the overall accuracy of the approximation, but it does not evaluate

the interaction between the surrogate and the optimization algorithm. In the cases where such interaction

is studied, custom algorithms are proposed.11 Therefore, previous methods have limited applications in

the optimization of MGATs. In this work, we aim to provide a way to incorporate a ML surrogate in any

optimization algorithm with a very small computation time overhead. To achieve that objective, we selected

a specialized ML method and a studied the interaction between the surrogate and the optimization algorithm.

We tested the effects of this surrogate in the optimization using medium fidelity LTP models,2 but we expect

results to be extrapolatable to higher fidelity models.

The method we selected is a simplified version of the ANNs known as Extreme Learning Machine (ELM).14

This method has a low number of hyperparameters and a very fast training process. The simplicity of the

method permits the combination of models to reduce the total error while maintaining low training and pre-

diction times. Therefore, we proposed the use of an Extreme Learning Machine Multi-Agent System (ELM-

MAS)15 method to combine several ELM surrogates. To minimize the number of training points required,

the surrogate is trained online. This means that the surrogate is trained as the training data is generated and

predictions are made at the same time. This way, the surrogate can be trained with the cost function values

computed numerically during the optimization until the desired accuracy is reached. At that point, the surro-

gate replaces the numerical computation of the cost function, speeding up the optimization procedure. The

online version of the ELM is the Online-Sequential Extreme Learning Machine (OS-ELM).16 We presented

a combined used of the OS-ELM and ELM-MAS into the innovative Online-Sequential Extreme Learning

Machine Multi-Agent System (OS-ELM-MAS) method.

To test the speed-up achieved with the surrogate, we focused on the effects of the surrogate when used

in conjunction with an optimization algorithm. We identified a number of parameters that influence the

interaction between the online surrogate and the optimization process, and we propose a method to select

the most adequate values for these parameters. Finally, we used a Differential Evolution (DE)17 global

optimization algorithm in several MGATs cases and compared the results achieved with and without the

surrogate replacing the cost function. The final objective was to achieve an implementation of the surrogate

that does not require either fine tuning or previous training data and that can be used as an off-the-shelf tool

for preliminary trajectory design.

This paper is structured as follows. The first section describes the optimization problem considered. The

second section describes the numerical methods used to compute the fuel cost of the transfers. The third

section describes the ML method used to build the surrogate. The fourth section describes the methodology

used to evaluate the performance of the surrogate. The fifth section presents the results of the evaluation in

three different MGATs. Finally, the last section contains a summary of the conclusions reached in this work.

MULTIPLE-GRAVITY-ASSIST OPTIMIZATION PROBLEM

The optimization of MGATs is especially challenging as every leg between planetary encounters needs

to be optimized. This means that several optimization runs are required to compute a single trajectory.

Moreover, the optimal combination of planetary encounter dates and GA parameters needs to be determined.

A global search over these dates and parameters requires a large number of trajectory computations. Due

to the high computational cost of each trajectory optimization, the use of the surrogate can be especially

beneficial in these cases. This section defines in detail the optimization problem addressed in this work.
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Spacecraft Dynamics

We follow the most common approach in the literature and use a simplified dynamic model for the com-

putation of every individual transfer. In particular, we use the method of linked conics: we consider that

the only forces acting on the spacecraft during the interplanetary flight are the gravity of the Sun and the

thrust provided by the LTP system, and the planetary GAs are modeled as instantaneous changes in the ve-

locity of the spacecraft at the position of the planet. We define the state of the spacecraft with the vector

s = [rT ,vT ,m]T . The equations of motion are

ṙ = v, v̇ = − μ

|r|3 r +
T

m
, ṁ = − |T |

Ispg0
, (1)

where r is the position vector of the spacecraft, v its velocity vector, m its mass, T the thrust vector, Isp the

specific impulse of the spacecraft, and g0 = 9.806 65m s−2 and μ = 1.327 124 400 18× 1020 m3 s−2 are

respectively the standard gravity and gravitational parameter of the Sun.

Gravity Assist Computation

As mentioned before, the GAs are approximated as instantaneous changes in the velocity of the spacecraft.

Given an incoming velocity vector, vb, the change on velocity, ΔvGA, depends on the velocity of the planet,

V , the radius of the orbit at closest approach to the planet, ρ, the orbit plane angle, η with a reference plane,

and the gravitational parameter of the planet, μp. The velocity after the GA, va, is given by4

va = vb +ΔvGA (vb,V , η, ρ, μp) . (2)

Optimization Problem Formulation

In this work, we considered the single-objective global optimization problem of finding the most propellant-

efficient transfer between initial body p0 and final body pl for a given spacecraft. During the transfer, the

spacecraft encounters l − 1 intermediate bodies p1, . . . , pl−1. A GA is performed if the encounter is with a

planet, and the state remains unchanged if the encounter is with a body of negligible gravitational attraction

such as an asteroid. We consider that the sequence of bodies to visit during the transfer remains constant

for the whole optimization procedure. The characteristics of the spacecraft (i.e. initial mass, m0, maximum

thrust, Tmax, and specific impulse, Isp) are also considered fixed values during the optimization. A simple

Nuclear Electric Propulsion (NEP) propulsion model is implemented, but our conclusions are expected to be

extrapolatable to similar propulsion methods.

We consider a leg to be a segment of the trajectory between two consecutive body encounters, so the

whole transfer consists of l legs. Leg i† is defined by the initial state si0 = [riT0 ,viT
0 ,mi

0]
T , the final state

sif = [riTf ,viT
f ,mi

f ]
T , and the time of flight TOF i. We define the trajectory of the leg as the optimal

trajectory between the initial and final state. The value of mi
f is computed as

mi
f = mi

0 +

∫ TOF i

0

ṁdt . (3)

Note that ṁ ≤ 0. We define the cost function of the leg as the propellant mass fraction used during the leg:

J i
L = JL

(
si0, s

i
f ,TOF i

)
=

mi
0 −mi

f

mi
0

=

∫ TOF i

0

− ṁ

mi
0

dt =

∫ TOF i

0

|T (t)|
mi

0g0Isp
dt . (4)

†In this section, we use a superscript (�i) to indicate that a variable corresponds to leg i, an asterisk (�∗) to indicate an optimal

solution, a hat (�̂) to indicate a value estimated with a numerical optimization procedure, and a prime symbol (�′) to indicate the

subspace where a solution can be found.



5150

To find the optimal control policy T ∗i(t) that minimizes the cost function, we start by defining a general

value function of the form

g(t, s) = min
u

(∫ tf

0

j (s(t),u(t)) dt+ h(s(t))

)
and dynamics ṡ(t) = F (s(t),u(t)),

where u(t) is the control law. The optimal control is the solution of the Hamilton-Jacobi-Bellman equation:

ġ(s, t) = −min
u

(∇g(s, t) · F (s,u) + l(s,u)) , subject to g(s, tf ) = h(s). (5)

If F , j, and h are continuous and bounded, and s(t′) can be reached from s(0), then there is an optimal value

u∗, which is the solution of Equation (5) and unique.18 In our case, the relevant functions are

j =
|T |

mi
0g0Isp

, h = 0, tf = TOF i, u = T ,

and F is given by Equation (1). The relevant functions are continuous and bounded, so there is an unique

optimal control policy T ∗i which provides the optimal cost J∗iL .

However, there is no known general solution for Equation (5). Instead, a numerical optimization is used

to search for T ∗i when si0 and sif are known. A transcription method is used to define a problem in which

a local optimization algorithm can be applied. This process is explained in detail in the Leg Computation

section. In a general case, the result obtained is not the true T ∗i, as the numerical optimization is subject to a

series of additional constraints that make the problem tractable. Instead, an estimation of the optimal control

policy T̂ ∗i is provided by the local optimization procedure, which results in the leg cost used in practice:

Ĵ∗iL = JL(T̂
∗i) = J∗iL + εi, (6)

where εi is the difference between the actual optimal value of the cost function and the estimated one.

The value Ĵ∗iL depends on si0 and sif . However, the value of mi
f is not independent as it is given by

Equation (3). Moreover, taking into account that mi
0 = m

(i−1)
f and Equations (3) and (4), we get mi

0 =

m
(i−1)
0 (1−J

(i−1)
L ). Finally, the value of m

(1)
0 is constant for a problem. We define the vector of independent

state variables that define an individual leg as

li = [riT0 ,viT
0 ,mi

0, r
iT
f ,viT

f ,TOF i]T .

This vector can take any values liL ∈ L = R
14×1. However, the solution T ∗ only exists for values in L′ ⊂ L.

In practice, we consider L̂′ ⊆ L′, where a solution T̂ ∗ can be obtained. Finally, the overall cost function of

the transfer, J : L̂′T → R is the total propellant mass required:

J(lT ) =

l∑
i=1

Ĵ∗iL mi
0, where lT = [l0T , l1T , . . . , llT ]T ∈ L̂′T = (L̂′)l.

The outer optimization loop is the numerical procedure to obtain

l∗T = argmin
lT∈L̂′

T

J(lT ). (7)

The landscape of MGATs optimization problems usually contains a large number of local minima.2 There-

fore, a local optimizer is unlikely to converge to the global optimum, so we use a global optimizer.
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Global Optimization Algorithm

The global optimization algorithm is used to look for the solution to Equation (7). We selected a DE17

algorithm as global optimizer. In particular, we used the Pygmo version of the self-adaptive Differential
Evolution (pDE)†. This algorithm includes adaptation of all evolution parameters,and the only parameter that

needs to be selected when using this algorithm is the number of individuals per generation NI . This algorithm

can only handle box-bounding constraints on the optimization variables. However, the values of the elements

of lT are not independent of each other, and they are subject to non-linear constraints: the position of the

spacecraft at the time of the encounter with a body has to match that of the body and the velocities before

and after a GA are related through Equation (2). Notwithstanding, an analysis of the constraints allows the

definition of an alternative set of optimization variables that fulfill the constraints and are box bounded.

First, the position of the bodies can be obtained as a function of time from the body ephemeris. We define

Ri(t) as the position of body pi at time t. Given a departure date for the transfer, t0, we can compute the

position of each encounter with a body as

rif = ri+1
0 = Ri

⎛
⎝t0 +

i∑
j=1

TOF j

⎞
⎠ , and r10 = R0(t0). (8)

Equation (8) shows that the positions at the encounters are fully defined by t0 and the TOF i values, which can

be freely chosen. Therefore, we select these values as optimization variables. The lower and upper bounds

for each of them are defined based on expert knowledge for each individual test case. This is explained in

detail in the Test Setup section.

Second, the initial velocity of a leg depends on the final velocity of the previous one through Equation

(2). The computation of the new velocity also requires the value of the velocity of the planet and the GA

parameters η and ρ. The velocity of planet pi can be computed again from an ephemeris as Vi(t), while the

GA parameters at every encounter ηi and ρi can be freely chosen. The initial velocity of each leg is given by

vi+1
0 = vi

f +ΔvGA

⎛
⎝vi

f ,Vi

⎛
⎝t0 +

i∑
j=1

TOF j

⎞
⎠ , ηi, ρi

⎞
⎠ .

We use the values ηi and ρi as the optimization variables. For the GA orbit plane angle, the valid range is ηi ∈
[0, 2π], while the range of GA radii allowed is set on every individual case depending on the characteristics

of the planet encountered.

Finally, the values of v1
0 and vi

f are not constrained by the dynamics of the problem. However, problems of

scientific interest usually introduce constraints on the magnitude of the difference between the velocity of the

body and the spacecraft at some of the encounters, such as a rendezvous with zero velocity at the end of the

transfer, or the maximum departure velocity achievable with the available launchers. Therefore, we use the

relative velocity with respect to the planet, ṽ = v − V , as the optimization variable. We define the relative

velocity in spherical coordinates as

ṽ = v sin θ cosϕe1 + v sin θ sinϕe2 + v cos θe3 ,

where v, θ and φ are respectively the magnitude, polar angle and azimuth angle of the velocity. The orthonor-

mal base of vectors ek is defined so the first vector is parallel to the velocity of the planet, the second one is

parallel to the component of the position of the planet perpendicular to the velocity, and the third one as the

cross product of the previous two. The equations that define these vectors are

e1 =
V

|V | , e2 =
R− (R · e1) e1
|R− (R · e1) e1| , e3 = e1 × e2.

†https://esa.github.io/pygmo2/algorithms.html#pygmo.de1220 (accessed on May 13, 2020).
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We use this base to eliminate the interdependence between the GA dates and other GA parameters, as the

change in orbital energy is very similar for GAs with the same relative velocity and GA parameters at different

dates. The values of vi
f are defined by the parameters vi, θi and ϕi, and v1

0 is defined by v0, θ0 and ϕ0. We

limit the polar angle to values θi ∈ [π/2, 3π/2], as values outside that range would require orbits with large

inclinations. These orbits are assumed to be of no interest for the test cases considered. The azimuth angle

ϕi is allowed to take any value in [0, 2π]. Finally, the bounds of vi are defined based on the characteristic of

each individual problem.

The final decision vector of the optimization problem is

x = [t0, v0, θ0, ϕ0,TOF 1, v1, θ1, ϕ1, η1, ρ1, . . . ,TOF l, vl, θl, ϕl],

which is defined in a box-bounded subset X ⊂ R
6l+2. The procedure detailed in the previous lines allows the

definition the function f : X → LT and the bounds of X . The final cost function used for the optimization

is J ◦ f : X → R
†. However, LT 	⊂ L̂′T , so not all x values result in valid input values. We can only know

whether f(x) ∈ L̂′T after the function J(f(x)) is evaluated. This is a non-linear constraint that cannot be

eliminated. We handle this by assigning a weighted penalty to the cost of the invalid trajectories.

Use of Machine Learning Surrogate

The objective of the surrogate is to approximate a cost function so said cost function does not need to

be evaluated for every individual. In the optimization problem presented, there are three cost functions that

can be approximated: J(f(x)), J(lT ), or Ĵ∗L(l). We decide to use the surrogate to approximate Ĵ∗L(l) for

three reasons: the function shape is expected to be simpler, the dimension of the input vector is lower, and

it is evaluated m times for every evaluation of the other two candidate functions, increasing the number

of training points available. In addition, we decided to represent the state variables in l using modified

equinoctial elements.19

To minimize the number of training points required, the surrogate is trained online during the optimization.

This means that the surrogate is trained on the training data as the data is generated and at the same time

predictions are made with the surrogate. At the beginning of the global optimization, all points are computed

with the local optimization procedure. Surrogate predictions are made only when the expected error is below

a certain threshold, τ . When that point is reached, the cost function evaluations required by the global

optimization algorithm are done with the surrogate.

The error of the surrogate predictions is expected to decrease as more training points are used but to

increase when the optimization algorithm explores new areas of the input space where no training points

have been generated. To detect these increases in the error, the error is updated after a fixed number of

individuals predicted with the surrogate, Cn. If the error is computed once on the leg i of the individual j,

the next computation of the error will happen in the leg i+ 1 of the individual j + Cn. Higher τ values and

lower Cn values reduce the number of numerical evaluations of the cost function required, which decreases

the computation time, but also increases the error in the surrogate predictions, and vice versa.

LEG COMPUTATION

The optimization process described requires a method to compute the cost of each leg, Ĵ∗L(l). This section

describes the numerical method used for this purpose. The numerical method is a key part of this work

as the training data for the surrogate model is generated using this method. In addition, we evaluated the

performance of the optimization with the surrogate by comparing the results with the optimization using

exclusively the numerical method to compute the cost of the legs.

†The operator ◦ indicates function composition.
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Several options are available to compute the cost of the legs when LTP is used. The method used to

compute Ĵ∗L(l) determines the minimum error achievable with the surrogate. The ability of the ML surrogate

to approximate an arbitrary function is based on the Universal Approximation Theorem (UAT) for ELM.20

However, this theorem only holds when the values of the function to approximate are unique for each input

value. This is true for J∗L(l) as it is a solution of the Hamilton-Jacobi-Bellman equation. However, this is

not true for a general Ĵ∗L(l) as the solution can be affected by factors not considered in l such as the effect

of integration tolerances and the random initial state. To analyze the effect of this in the surrogate error, we

define the expected prediction error as

EPE = E
[
L
(
Ĵ∗SL (l), Ĵ∗L(l)

)]
,

where Ĵ∗SL (l) is the surrogate prediction at a point l and L(Ĵ∗SL (l), Ĵ∗L(l)) is a loss function that defines the

value of the error of a prediction at a point. We assume that the numerical procedure introduces a Gaussian

noise with standard deviation σs in the values of the predictions at a point corresponding to the effect of the

factors not considered in l. Considering the squared error loss L(Ĵ∗SL (l), Ĵ∗L(l)) = (Ĵ∗SL (l) − Ĵ∗L(l))
2, the

prediction error is bounded by10

EPE ≥ σ2
s . (9)

Estimating the actual value of σs is very difficult, as it requires to sample the value of L(Ĵ∗SL (l), Ĵ∗L(l)) at

a large number of points. However, Equation (9) indicates that σs value has to be as small as possible in order

to minimize the prediction error. This means that the numerical method to compute the cost of the legs should

be selected so the influence of factors not included in l is as low as possible. We achieve this by choosing

a method whose solution is independent of the initial guess. Therefore, we use a direct method for the leg

computation as they make possible to use a deterministic local optimization. Nonetheless, these methods

typically require a search trough several initial guesses when used as a standalone methods.3, 21 This makes

the result dependent on the initial guess, but we solve this problem by obtaining an initial guess with a lower

fidelity method whose solutions are independent of the initial guess. Shape-based methods are commonly

used for this purpose.1, 22 Therefore, the overall leg computation process is completely deterministic and not

dependent on the initial guess.

Shape-Based Method

Shape-based methods assume an analytical shape for the trajectory of the leg. The thrust required to follow

the shape is then computed and the cost function evaluated. These methods are usually the fastest option

when LTP is used.2 However, the trajectories obtained are not optimal as they are restricted to the shape

selected. We identify the Spherical23 shape-based method as the best option to obtain the initial guess for

the trajectory. This was based on the following set of requirements for the shape-based method: (1) it shall

produce three-dimensional trajectories, (2) it shall be able to fully match the initial and final state, (3) it shall

not require a numerical optimization. Shape-based methods provide different solutions depending one the

number of revolutions, nrev , selected for the trajectory. Therefore, the solution is not unique unless a nrev

value is selected. In this work, we selected the nrev corresponding to the Spherical shape-based solution with

the lowest fuel cost of all the possible solutions within a predetermined nrev range.

Direct Method

A direct method allows the transformation of the orbit optimization problem into a non-linear programming

problem. These methods are usually considered to be medium fidelity.2 We use a modified Sims-Flanagan

(SF) method,24 as we decided that an increase in the accuracy of the solution was preferable to shorter com-

putation times. This implementation uses the Sundman transformation, continuous thrust along the segments

instead of impulses at their middle points, and Taylor integration. The Sundman transformation is considered

beneficial for trajectories with a large difference of radii between initial and final state. Continuous thrust
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has the advantage of providing trajectories that are physically feasible, which is not granted with the impulse

approximation of the original SF implementation.25 However, trajectories can no longer be considered Kep-

lerian between impulses, although the increase in computation time is compensated in part by using Taylor

integration.

Once the initial guess is obtained with the shape-based method, the thrust values at each segment are

optimized using a local optimization algorithm. We selected the Sequential Least SQuares Programming

(SLSQP) algorithm from the nlopt package†. A SF result is considered valid if the thrust magnitude is below

Tmax during the whole trajectory and the discontinuities in the trajectory are below a given tolerance. In

some cases, the algorithm is unable to find a solution that fulfills all theses constraints. If that is the case,

lL 	∈ L̂′, the leg is considered unfeasible, and the transfer is discarded. However, the surrogate provides

numerical results even when evaluated at legs where the numerical evaluation fails to converge. One of the

main obstacles for the use of the surrogate is that these unfeasible legs are still used by the global optimization

algorithm, and the final transfer selected may not be a feasible one. Therefore, the convergence rate of the SF

computations influence the optimization results obtained when using the surrogate.

MACHINE LEARNING SURROGATE

As mentioned previously, we identified the ELM as a the most adequate ML method for the creation of the

surrogate. This sections presents the details of this method.

Review of Extreme Learning Machines

ELMs14 are based on ANNs with a single hidden layer. The peculiarity of this method is that the weights

between the input later and the hidden layer are initialized randomly when the model is created, and remain

frozen for the remaining of the training process. This allows the computation of the weights between the

hidden and the output layer by least squares regression. Therefore, the result is always optimal for the

training points in terms of Mean Squared Error (MSE). Moreover, the UAT is valid also for the ELM.20

The definition of an ELM requires an activation function, AF : R → R, which should be infinitely

differentiable in any interval,14 and a number of hidden units, NHU . The training data contains N pairs of

observations‡
(
l(i),y(i)

) ∈ R
nI×1×R

nO×1, where l(i) is the input vector at point i, y(i) is the output vector

at point i, and nI and nO are respectively the lengths of the input and target vectors. The training process

is the following one.14 First, the vectors aj ∈ R
1×nI∀j ∈ {1, . . . ,NHU } and b ∈ R

1×NHU are randomly

initialized. In our case, each element of the vectors is drawn from a random uniform distribution with range

[−1, 1]. Then, the hidden layer output matrix is computed as

H =

⎡
⎢⎣
AF

(
a1 · l(1) + b1

) · · · AF
(
aNHU · l(1) + bNHU

)
...

. . .
...

AF
(
a1 · l(N) + b1

) · · · AF
(
aNHU · l(N) + bNHU

)

⎤
⎥⎦ ,

where b1, . . . , bNHU are the elements of b. Finally, the optimal set of output weights can be computed as

β̂ =
(
HTH

)−1
HTY , where Y =

[
yT
(1) · · · yT

(N)

]T
. (10)

The prediction for a new input value l′ is computed as

ŷ′ =
[
AF (a1 · l′ + b1) · · · AF (aNHU · l′ + bNHU )

]
β̂.

†https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#slsqp (accessed May 13, 2020).
‡In this section, we use a subscript (�i) to indicate a variable associated with the hidden unit i of the ELM and a subscript enclosed

in parenthesis (�(i)) to indicate data from transfer i.
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The Online Sequential ELM

The online version of the ELM is the OS-ELM.16 The computation of the weights can be adapted to the

arrival of new training points so the weights always correspond to the MSE-optimal solution for the full set

of points trained. This is done by updating β̂ with a recursive least-squares formula.16 We consider only the

case in which new training points arrive one by one. The total number of training samples is arbitrary, and the

first N training samples are selected for initial training. First, the initial weights†, β̂(0) = β̂, are computed

with the N initial training samples as shown in Equation (10). The subsequent pairs of training points are(
l(k),y(k)

)
, where k indicates the position in which they arrive after the last point used for initial training.

The weights are updated as

β̂(k+1) = β̂(k) + P(k+1)H
T
(k+1)

(
y(k+1) −H(k+1)β̂(k)

)
,

where

H(k+1) =
[
AF

(
a1 · l(k+1) + b1

) · · · AF
(
aNHU · l(k+1) + bNHU

)]
,

P(k+1) = P(k) − P(k)H
T
(k+1)

(
I +H(k+1)P(k)H

T
(k+1)

)−1

H(k+1)P(k), and P(0) =
(
HTH

)−1
.

The initial training process, defined in Equation 10, requires the rank of H to be equal to NHU . In order

to do achieve this, it is necessary that N ≥ NHU . However, our tests show that the pDE algorithm tends to

generate the training points in groups of very similar input values. This causes the matrix inverse in Equation

(10) to be ill-conditioned. The use of this matrix results in very high numerical errors in some cases. However,

using N = 2NHU eliminates this problem as the chances of having at least NHU independent samples in

H is very high.

This requirement of a minimum number of training points is one of the main limitations of the OS-ELM

method. In general, a larger NHU means smaller surrogate error. However, this requires a larger number of

points for initial training. This is relevant in our implementation, as generating additional training points has

a high computation cost, and the surrogate cannot be used while these points are being generated.

OS-ELM Multi-Agent System

The training process of the OS-ELM is extremely fast compared to the time required to generate each

training point. In our tests, the update of an average OS-ELM surrogate took ∼0.6 s per data point, while

the computation of each point took ∼120 s. This can be exploited by combining the predictions of several

OS-ELM with different random initializations. The method used for the combination is know as the ensemble

method. We designed an ensemble method based on the ELM-MAS.15 This method uses a series of child

ELMs and a parent ELM. The children work as standard ELMs. However, the predictions of all of them are

used as inputs for the parent, whose output is a single corrected prediction for the output value. Therefore,

the input size for the parent ELM is NM × nO, where NM is the number of children. When training, the

children are first trained as usual and then the predictions on the training points are used as inputs for the

training of the parent.

The ELM-MAS does not consider the possibility of online training. However, we included that option by

replacing the ELMs with OS-ELMs. The initial training of the model is done as described for ELM-MAS.

The online training is done by updating the children as usual for a OS-ELM with each training point and then

using the updated prediction of the children at the point as input for the training of the parent OS-ELM. We

named this implementation of the model OS-ELM-MAS. To the best of our knowledge, this is the first time

the ELM-MAS has been used online. The use of OS-ELM-MAS proves to be beneficial in the cases tested as

it consistently achieves lower errors than the standard OS-ELM.

†To simplify the notation, we use a subscript enclosed in parenthesis (�(k)) to indicate data from transfer k after the first N transfers

in this and the following sections. This is equivalent to writing �(N+k) using the convention of the previous section.



5156

Error Estimation

In order to use the surrogate online as described, the error of the algorithm needs to be estimated in real

time during the optimization. We selected the Mean Absolute Error (MAE) as the error measure to decide

if the surrogate is accurate enough. The prequential error of a model26 is argued to be an adequate option

to estimate the performance when training online. This error estimation is computed from each point used

for training before training on it. As the model has not trained on the sample yet, the sample works as a

validation one. This way, the prequential error, Mk, works as an estimation of the validation error. We use

the implementation of the prequential error with fading factor, which is computed as

M(k) =
S(k)

D(k)
, where S(k) = ε(k) + αS(k−1), D(k) = 1 + αD(k−1),

α is the fading factor, and ε(k) =
∣∣ŷ(k) − y(k)

∣∣ is the prediction error on sample k. Our tests indicated that a

value α = 0.999 produces results close to the validation error as long as k > 20.

TEST SETUP

The objective of this work is to design a method to include a ML surrogate in the optimization of any

MGATs with LTP. In this section, we present the procedure we followed to evaluate whether the use of the

surrogate results in an improvement of the optimization results. In particular, we focus on the difference in

performance with respect to the optimization without the surrogate.

Test Cases

We selected three different cases that represent a variety of past and proposed missions to evaluate the

performance of the surrogate. These missions were selected based on three criteria: (1) the expected im-

provement when using a ML surrogate, (2) the availability of results using similar methods in the literature,

(3) the variety of number of legs, propulsion parameters and destinations. The cases matching these cri-

teria were the two first legs of the Dawn mission (Dawn),3 an Earth-Earth-Jupiter (EEJ) transfer,21 and an

Earth-Venus-Venus-Mercury-Mercury-Mercury (EVVMMM) transfer.21

The parameters of each case are selected based on the previous results3, 21 that we consider to use the most

similar optimization procedure to the one used in this work. In all cases, we use the same the range of de-

parture dates, the spacecraft parameters, and velocity constraints at the initial and final point of the trajectory

that were used for the optimization in the references. The range of numbers of revolutions considered for the

initial shape-based solution is set to nrev ∈ {0, 1, 2, 3}. The references do not specify this value but none

of the example trajectories completes more than 3 revolutions during a single leg. The TOF range allowed

for the intermediate legs was not specified in the references either. Instead, we use the ranges in which the

shape-based method could always find a solution during preliminary tests. Solutions outside these ranges

have a very high cost when a solution can be found, so they are not considered of interest. The numerical

values of the parameters described are shown in Table 1. Finally, all cases are computed with 10 segments in

each of the SF legs.21

Dawn The parameters of this transfer are shown in the first column of Table 1. The original spacecraft3 had

a Solar Electric Propulsion (SEP) system, but we modeled it as a NEP system instead. This case was selected

as an example of transfers to bodies whose orbit has a semi-major axis similar to that of the Earth.

EEJ The parameters of this transfer are shown in the second column of Table 1. We selected this case

because the low-thrust transcription method used in the reference21 was also SF, although thrust was ap-

proximated as an impulse at the midpoint of the segments and the Sundman transformation was not used.
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Table 1. Parameters of the cases tested.

Case Dawn3 EEJ21 EVVMMM21

Sequence Earth-Mars-Vesta Earth×2-Jupiter Earth-Venus×2-Mercury×3
Tmax (N) 0.368 2.26 0.34
Isp (s) 2620 6000 3200
m0 (kg) 2481 20 000 1300

t0 (MJD2000) 7305 to 8401 7305 to 10 958 7305 to 10 762
TOF 1 (d) 100 to 2000 100 to 1000 100 to 1500
TOF 2 (d) 100 to 2000 1000 to 3000 100 to 1500
TOF 3 to TOF 5 (d) − − 100 to 1500

v0 (km s−1) 0 to 3.5 0 to 2 0 to 1.925
v1 (km s−1) 0 to 9 0 to 15 0 to 9
v2 (km s−1) 0 0 0 to 9
v3 and v4 (km s−1) − − 0 to 9
v5 (km s−1) − − 0 to 0.5017

Therefore, an indication of the expected performance is available in the reference but results can not be di-

rectly compared. This case is an example of a transfer to an outer planet, and the final semi-major axis of the

orbit is several times larger than the initial.

EVVMMM The parameters of this transfer are shown in the third column of Table 1. This case is an

example of a transfer to an inner planet. In addition, it has a higher number of legs, which serves as a way to

evaluate the variations in the performance of the method with the number of legs.

Benchmark

For the evaluation of the improvement achieved when using the surrogate, we define a baseline optimization

as one that uses exclusively the numerical SF optimization to compute the propellant cost of each leg. The

central hypothesis of this work is that the optimization using the surrogate is faster than the baseline. We

define a benchmark to evaluate this hypothesis. Both the optimization with the surrogate and the baseline

are run for a fixed computation time, and the final results are compared. If the surrogate result is better,

we hypothesize it is due to the additional function evaluations that could be performed in the same time. If

the baseline result is better, the conclusion is that the errors introduced by the imperfect estimation by the

surrogate are too large for a successful optimization. For these tests, comparing optimizations for a fixed

computation time is considered a better measure than for a fixed number of SF computations. The reasons

are that there is a great variation on the computation time of the cost function between legs and the overhead

corresponding to surrogate training and predictions is also considered this way.

The pDE algorithm requires a population with NI individuals, which evolves in generations, and each

individual corresponds to one transfer. The performance measure is the propellant cost of the best individual

computed during the whole optimization. When using the surrogate, the optimization algorithm does not

report the true cost values, reporting instead the values estimated by the surrogate. To make a fair compari-

son, the true cost values of the individuals corresponding to the last population of the optimization with the

surrogate are computed again with the SF method. To account for that, extra time is reserved at the end of the

optimization with the surrogate. We set the run time to 3 d = 72 h, but there are small individual variations

as the pDE algorithm can only stop between generations. These variations are not considered to have an

important effect on the final results as the cost of the best individual only improves in a small proportion of

the generations computed. Therefore, the chances of one extra generation changing the result are low.
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Parameters Test

Two parameters are expected to affect the results obtained with the optimization procedure when the OS-

ELM-MAS is used: the error threshold, τ , and the number of transfers between updates of the error esti-

mation, Cn. Moreover, the pDE algorithm requires the definition of the number of individuals, NI , and the

random initial state of the algorithm affects the results. The high computation cost of each optimization run

is expected to limit the number of test runs that can be performed when applying this method to the optimiza-

tion of new missions. To solve this problem, we devised a procedure to search for the adequate values of the

parameters in a small number of trials. The procedure is described in the following lines and is applied in

each of the three test cases.

1. We run the optimization for several NI values and a fixed random initial state for the pDE, and the

most adequate NI value is selected. Simultaneously, we run the optimization using the surrogate with

the same random initial state and NI values. The initial values Cn = 4 and τ = 0.06 were selected by

estimating the order of magnitude of the expected errors. The results of these optimizations help define

the Cn and τ ranges to be tested in the next step.

2. Several combinations of Cn and τ values are selected based on the previous results to determine their

optimal values. In general, a large difference between the final value predicted by the surrogate and the

final value computed when reevaluating the final population with SF means Cn is too large. However,

small Cn values result in more SF computations, decreasing the speed of the optimization. When it

comes to τ , the objective is to select a value that includes most of the points so the surrogate is used

during most of the time, but that excludes error peaks. As mentioned before, we hypothesize that these

peaks correspond to points in which the optimization algorithm moves into a new area of the input

space. The values of Cn and τ that result in a better surrogate performance are used in the next step.

3. The optimization is repeated with the final Cn and τ combination and 6 different random initializations

for the pDE. All random initializations are used to obtain results both for the baseline and using the

surrogate. Then, we test the hypothesis that the means of the result with the surrogate and the baseline

are different with a paired t-test, which is described in the following section. The results obtained with

the 6 random initializations of the pDE algorithm are the samples used for the paired t-test.

Paired T-Test

The final result of an optimization, J∗, is defined as the best J value of any individual computed during

the optimization. As mentioned before, the final population obtained when using the surrogate is reevaluated

using the SF method. The values of the reevaluated population are the ones considered for the final result. In

addition, the cost values of the last generation before the initial training of the surrogate is completed are also

considered. Therefore, the final value for the optimization with the surrogate is the best individual among the

recomputed final population and the last population before the initial training is completed.

As the optimization results are stochastic, we consider J∗ to be a random variable with an unknown dis-

tribution. We evaluate the statistical significance of the results with the final parameter combination by per-

forming a statistical hypothesis test. The samples are pairs of results obtained using the surrogate and with

the baseline, using the same random initialization for the pDE in both cases. These can be regarded as two

dependent observations. The paired t-test27 can determine whether the mean of the results with the surrogate

is significantly different to the mean of the results with the baseline. This test assumes the difference between

the pairs of observations are normally distributed and the null hypothesis is that both means are equal. The

confidence value reported in the results corresponds to the confidence to reject the null hypothesis. If the

null hypothesis is not rejected, the conclusion is that using the surrogate has no effect on the optimization

procedure. In case it is rejected, the conclusion is that the surrogate is beneficial if the mean of the results

with the surrogate is lower, and that the surrogate is detrimental otherwise.
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Probability of Obtaining the Best Result with the Surrogate

The means of the results are not the only relevant information that can be obtained by analyzing the

distributions of the results. When designing a mission, it is common to repeat the optimization several

times to mitigate the effects of the random initialization of the optimization algorithm.3 Usually, the only

relevant result is usually the best one, as that is the trajectory followed in the end. Therefore, the probability

of obtaining with the surrogate the best overall result when the optimization is repeated is also considered a

relevant evaluation metric.

Assuming the Cumulative Distribution Function (CDF) of J∗, FJ∗(J), and its Probability Density Func-

tion (PDF), fJ∗(J), are known, the CDF and PDF of the best value after n tests are respectively28†

FJ∗
(1)
(J) = 1− (1− FJ∗(J))

n
, and fJ∗

(1)
=

dFJ∗
(1)

dJ
= nfJ∗ (1− FJ∗)

n−1
.

Therefore, the probability of obtaining a better overall value when using the surrogate is

P
(
J∗S(1) > J∗B(1)

)
= FJ∗S

(1)
−J∗B

(1)
(0) =

∫ 0

−∞

(∫ ∞

−∞
fJ∗S

(1)
(J)fJ∗B

(1)
(− (z − J)) dJ

)
dz, (11)

where superscript S refers to results with the surrogate and B to results with the baseline. We compute this

probability by assuming J∗S and J∗B follow normal distributions with the same mean, μJ∗ , and standard

deviation, σJ∗ , as the samples used for the paired t-test. The results give an estimation of the probability of

obtaining a better result with the surrogate when the optimization is repeated n times.

OS-ELM-MAS Architecture Parameters

The OS-ELM-MAS model has some parameters that have to be defined before surrogate is created. These

are know as architecture parameters, and are the following ones: the number of child OS-ELM and their num-

ber of hidden units, the number of hidden units of the parent OS-ELM, and the activation function. Typically,

the input and output data is normalized before passing it to the OS-ELM.16 We consider the normalization

procedure as an architecture parameter too. The architecture parameters selection aims to achieve an adequate

trade-off between prediction accuracy and lowest predicted value. The lowest predicted value is considered a

relevant measure because very low predictions are more likely to be selected by the optimization algorithm.

We selected the parameters by testing both accuracy and lowest predicted value when training in the data

from the legs computed during the optimization of the Dawn case with 20 individuals and no surrogate. This

training data is not representative of all the test cases, but it accurately represents a realistic situation in which

data for architecture selection is limited. The best combination is 16 child OS-ELMs with 128 hidden units

each, 64 hidden units in the parent OS-ELM, and the hyperbolic tangent as activation function. In addition,

all input and output variables are are scaled so their mean is 0 and their standard deviation is 1. The scaling

factors are determined with the initial training data.

Computational Implementation

We implemented the method described in Python. We used the Pykep package29 for the SF computations

and astrodynamics related operations such as ephemerides lookup, the Pygmo package30 for the optimization

tools, and the TensorFlow-OS-ELM package‡ for the OS-ELM implementation. Finally, we implemented the

spherical shape-based method using the Scipy tools§ and following the description in the literature.23

†In this case, J∗
(1)

refers to the best result among all the optimizations.
‡https://github.com/otenim/TensorFlow-OS-ELM (accessed May 13, 2020).
§https://www.scipy.org/ (accessed May 13, 2020).
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RESULTS

This section presents the results the results obtained for each of the three cases and an analysis of the

probability of obtaining a better result with the surrogate than with the baseline.

Dawn

The first step was to determine the adequate number of individuals for the pDE. In the Dawn case, we run

the optimization with NI ∈ {20, 50, 100}. The evolution of the results during the optimization can be seen

in Plot a) of Figure 1. From the results in the plot, it is clear that the case NI = 20 outperformed the other

two when the surrogate was not used. Therefore, this value was used for the remaining tests.
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Figure 1. Results of initial test of Dawn case: a) best value obtained as a function of
computation time and b) surrogate error estimation with NI = 20.

The second step was to determine the best Cn and τ . The results presented in Plot a) of Figure 1 indicate

that the difference between the value predicted by the surrogate and the actual best result was within a 10%
of the total cost. This value was considered to be accurate enough, so the value Cn = 4 was also considered

adequate. In the end, the values Cn ∈ {3, 4, 6} were also tested to analyze the effect of Cn in the final result.

When it comes to τ , the value selected was higher than the estimated error during most of the optimization

process, as shown in Plot b) of Figure 1. This indicates that the threshold was not useful to discriminate

most error outliers. However, it left out the highest peaks, so the initial guess was not considered completely

wrong. Therefore, the values selected to be tried were τ ∈ {0.060, 0.055}. All the combinations of the Cn

and τ values were tested. In addition, a test with τ = 0.050 was also performed to evaluate even lower

threshold values. However, this was not expected to provide good results so it was tested only with Cn = 4.

The final values of the optimization using the surrogate with the parameter combinations previously selected

are shown in Table 2.

The test case with τ = 0.055 and Cn = 4 reached the best overall result and a lower cost value than the

baseline. Therefore, this combination was used on the subsequent tests. The advantage of the optimization

with the surrogate with respect to the baseline can be seen in the results of Table 2: the number of J evalua-

tions in a fixed time is much larger with the surrogate. In addition, the best τ and Cn combination achieved

a low final MAE and kept a high SF convergence rate.

The third step was to determine the statistical significance of the results. A summary of results of the

tests for 6 random initializations of the pDE can be seen in Table 3. From the paired t-test results, we can
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Table 2. Relevant results of the optimization with the surrogate and various combinations of parame-
ters in the Dawn case. The final combination is shown in bold.

Cn 3 4 6 Baseline

τ 0.06 0.055 0.06 0.055 0.05 0.06 0.055

J∗ (kg) 676 609 656 579 713 674 687 609
Final MAE 0.0336 0.0318 0.0470 0.0300 0.0309 0.0435 0.0299 −
J evaluations 3560 3880 4360 4340 3660 5660 6200 920
SF evaluations 1337 1419 1302 1361 1365 1203 1337 1731
SF conv. rate 0.840 0.867 0.850 0.896 0.861 0.855 0.898 0.898

conclude that the mean value of the optimization with the surrogate was higher than the mean of the baseline.

Therefore, the surrogate is not recommended for an individual optimization. In addition, the best result we

found has a very similar cost to the best result in the literature.3

Table 3. Statistics of the results for the Dawn case.

Reference 3 Baseline Surrogate Confidencea

J∗(1) (kg) μJ∗ (kg) σJ∗ (kg) J∗(1) (kg) μJ∗ (kg) σJ∗ (kg) J∗(1) (kg)

534 656 27 609 686 63 579 −86%
a The confidence level is to reject the null hypothesis of the t-test (both means are equal). A negative confidence value indicates that the

mean of the baseline results is lower (i.e. better) than the mean using the surrogate.

Earth-Earth-Jupiter

As in the Dawn case, we started the tests for the EEJ case by running the optimization with NI ∈
{20, 50, 100}. The evolution of the results during the optimization can be seen in Plot a) of Figure 2. The

results show that NI = 20 outperformed the other two cases when the surrogate was not used. Therefore, the

value used in the remaining tests was NI = 20.
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Figure 2. Results of initial test of EEJ case: a) best value obtained as a function of
computation time and b)surrogate error estimation with NI = 20.
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low convergence rate when computing the legs with the SF method. This had two important consequences

when using the surrogate: the number of training points available was much lower as only converged points

could be used, and the chances of the surrogate selecting a valid transfer at the end of the optimization were

low. The evolution of the predicted best value in Plot a) of Figure 2 show that the surrogate prediction were

unrealistically optimistic. In some cases, the surrogate predicted negative propellant use. This was obviously

wrong but those results could not be immediately disregarded as the true cost was higher but it might still

be the best solution. The extreme values predicted could be mitigated by using lower Cn values. The values

tested were Cn ∈ {1, 2, 3, 4}.

When it comes to the τ value, the estimated MAE values were in general lower than in the Dawn case so

the threshold values considered were τ ∈ {0.06, 0.05, 0.04, 0.03}. The final values of the optimization using

the surrogate with the parameter combinations selected are shown in Table 4. Identical values were obtained

for different combinations because the MAE estimation reached values below all the thresholds very fast, so

it did no make any difference for the optimization.

The test case with τ = 0.03 and Cn = 3 reached the lowest cost, so those values were used in the

subsequent tests. However, the result with the surrogate was not better than the result of the baseline. This

can be explained by the small increase of J evaluations achieved when using the surrogate and the best

combination of parameters. Other combinations resulted in a larger increase in the J evaluations but at the

expense of a reduction in the SF convergence rate.

Table 4. Relevant results of the optimization with the surrogate and various combinations of parame-
ters in the EEJ case. The final combination is shown in bold.

Cn 1 2 3 4 Baseline

τ 0.06a,b 0.03 0.06a,b 0.03 0.06a 0.04 0.03 0.06a,b 0.03

J∗ (kg) 4884 4681 5215 4681 5288 5359 4674 5359 4807 4667
Final MAE 0.0306 0.0299 0.0206 0.0287 0.0311 0.0363 0.0297 0.0345 0.0305 −
J evaluations 1880 1040 2560 1000 3540 2920 1100 3540 1100 960
SF evaluations 1664 1863 1529 1856 1537 1475 1708 1351 1771 1824
SF conv. rate 0.424 0.513 0.607 0.531 0.362 0.382 0.506 0.420 0.506 0.528

a Results identical for τ = 0.05. b Results identical for τ = 0.04.

Finally, we evaluated the statistical significance of the results. The results of the test can be seen in Table

5. The results when the surrogate was used were almost identical to the ones of the baseline. We hypothesize

that the main reason for this was the low convergence of the SF results. The surrogate had a low number

of training points and the τ value needed to be very restrictive to avoid excessively optimistic predictions

on invalid points. As a consequence, the surrogate made predictions in very few cases, and had almost no

effect on the results. The best result obtained had a higher cost value than the best result in Reference 21.

However, results cannot be directly compared as different transcription methods were used in this work and

in the reference. Our solution is guaranteed to be feasible, while the one in the reference might not be.24

Table 5. Statistics of the results for the EEJ case.

Reference 21 Baseline Surrogate Confidencea

J∗(1) (kg) μJ∗ (kg) σJ∗ (kg) J∗(1) (kg) μJ∗ (kg) σJ∗ (kg) J∗(1) (kg)

2898 4669 129 4534 4675 135 4496 −10%
a The confidence level is to reject the null hypothesis of the t-test (both means are equal). A negative confidence value indicates that the

mean of the baseline results is lower (i.e. better) than the mean using the surrogate.

The second step was again to determine the best Cn and τ . This case had the particularity of having a
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Earth-Venus-Venus-Mercury-Mercury-Mercury

This case was different from the previous ones, as the number of legs of each transfer was 5 instead of 2.

This meant that we expected longer computation times per individual than in the previous case. Therefore, the

values NI ∈ {8, 20, 50}were used the number of leg computations per generation was roughly the same as in

the Dawn and EEJ cases. The evolution of the results during the optimization can be seen in Plot a) of Figure

3. In this case, the best result was obtained with NI = 20. However, both the NI = 20 and NI = 50 cases

required much longer computation times until the initial training of the surrogate was completed. This was a

combination of two factors: a lower convergence rate and longer time for the computation of each individual

point. This meant that only one generation was computed with the surrogate before the computation time

limit was reached when NI = 20 and NI = 50. Therefore, the value selected for the remaining tests was

NI = 8 as we considered that this value was more interesting because we could evaluate the effects of the

surrogate on the optimization.
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Figure 3. Results of initial test of EVVMMM case: a) best value obtained as a function
of computation time, and b) surrogate error estimation with NI = 8.

The next step was to determine the best Cn and τ values. When the surrogate was used, the error estimation

never reached values below τ = 0.06. Therefore, the information relative to the selection of surrogate

parameters obtained from this test was limited. The obvious conclusion was that a larger value of τ was

required. We decided to use τ ∈ {0.100, 0.140} for the subsequent tests. The value of Cn was more difficult

to determine as the effect of the surrogate predictions could not be evaluated. However, the convergence rate

was high, as in the Dawn case, and every leg required a longer computation time when computed with the SF

method. In the Dawn case, Cn = 4 resulted in the best performance, and higher Cn values mean fewer SF

computations per generation. Therefore, the values selected for the tests were Cn ∈ {4, 6, 8}.

The final values of the optimization using the surrogate with the parameters combinations selected are

shown in Table 6. The test case with τ = 0.100 and Cn = 4 reached a lower cost value than the baseline.

These results agreed with our expectations: as in the Dawn case, the value Cn = 4 seemed to be adequate to

estimate the error in real time, and τ = 0.100 was low enough to leave out the higher error cases but still use

the surrogate frequently enough to speed up the optimization. In addition, this combination achieved an in-

crease in the number of J evaluations while keeping a high SF convergence rate. Therefore, this combination

was used for the subsequent tests.

We evaluated again the statistical significance of the results. The results of the test can be seen in Table

7. We conclude that the mean value of the optimization with the surrogate was lower than the optimization

without the surrogate. In this case, the conditions were the most adequate for the use of the surrogate: each
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Table 6. Relevant results of the optimization with the surrogate and various combinations of parame-
ters in the EVVMMM case. The final combination is shown in bold.

Cn 4 6 8 Baseline

τ 0.10 0.14 0.10 0.14 0.10 0.14

J∗ (kg) 963 1066 1063 1066 1066 1066 1044
Final MAE 0.0881 0.0838 0.0937 0.0876 0.0898 0.0995 −
J evaluations 728 1240 336 1648 1568 1592 232
SF evaluations 698 662 744 670 685 644 1053
SF conv. rate 0.838 0.796 0.817 0.797 0.788 0.828 0.901

trajectory had a higher number of legs, which meant a larger computation time per individual, each leg had a

higher computation time than in the previous cases, and the convergence rate of the SF method was very high,

so chances of selecting an invalid trajectory when the surrogate was used were low. Nonetheless, the best

result obtained had a higher cost value than the best result in the reference.21 We hypothesize that the reason

was the different transcription method used in this work and in the reference. Our solution is guaranteed to

be feasible, while the one in the reference might not be feasible.24

Table 7. Statistics of the results for the EVVMMM case.

Reference 21 Baseline Surrogate Confidencea

J∗(1) (kg) μJ∗ (kg) σJ∗ (kg) J∗(1) (kg) μJ∗ (kg) σJ∗ (kg) J∗(1) (kg)

236 1088 68 998 1037 142 880 62%

a The confidence level is to reject the null hypothesis of the t-test (both means are equal). A negative confidence value indicates that the

mean of the baseline results is lower (i.e. better) than the mean using the surrogate.

Best Result Statistics

We use Equation (11) to estimate P (J∗S(1) > J∗B(1) )(n) assuming that both J∗S and J∗B follow a normal

distribution with the mean, μJ∗ , and the standard deviation, σJ∗ , presented in Tables 3, 5, and 7. The results

are shown in Figure 4. In the Dawn and EVVMMM cases, the use of the surrogate is the best option if several

random initializations are going to be used. However, the probability remains at around 50% independently

of the number of tests performed for the EEJ case. This is a logical result as the distributions of J∗S and J∗B

are almost identical in the EEJ. These conclusions agree with our experimental results, in which n = 6 and

the best results were obtained with the surrogate in all three cases.
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Figure 4. Probability of obtaining a better result when using the surrogate than with
the baseline as a function of the number of cases tested.
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CONCLUSIONS

The use of the surrogate during the optimization is always expected to be beneficial in the EVVMMM

case, decreasing the average propellant cost of the trajectories found at the end of a single optimization by

around 12%. This case was the most promising for the use of the surrogate due to the long computation time

required for each trajectory. The Dawn case was not expected to be as adequate for the use of the surrogate

because the cost function evaluations are faster, but the surrogate is also expected to be beneficial if more than

4 optimizations with different initializations are run for the same problem. Finally, the EEJ case has a very

low convergence rate for the SF method so the optimal strategy for the surrogate is to be very conservative

with the predictions, resulting in almost identical results to the baseline. This indicates that the surrogate is

more useful in cases with a large SF convergence rate and a large computation time per individual.

These results were obtained without adapting the OS-ELM-MAS architecture parameters to each case.

In fact, the architecture was selected based on data from the Dawn case and the surrogate showed a better

performance in the other two cases. This proved that the OS-ELM-MAS method can be applied to different

problems without having to adapt the parameters. This may potentially save an important amount of com-

putation time, as the data to test the parameters does not need to be generated, and repeated training with

different parameters combinations can be avoided. However, the tuning of the Cn and τ parameters was

required to achieve better results with the surrogate than with the baseline. Nonetheless, there seems to be a

relationship between the optimal parameters and the parameters of the transfers used for training. The proof

of this is that we managed to find a combination of parameters for which the surrogate had a better perfor-

mance than the baseline by testing a small number of carefully selected parameter combinations. This show

that the surrogate is beneficial if several optimizations are going to be performed for the same problem, as

the extra effort of finding the optimal parameters will be rewarded with a more optimal final result.
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