
ANANKE: a Q-Learning-Based Portfolio Scheduler
for Complex Industrial Workflows

Shenjun Ma

ANANKE: a Q-Learning-Based Portfolio Scheduler
for Complex Industrial Workflows

Master’s Thesis in Computer Science

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Shenjun Ma

16th June 2017

Author
Shenjun Ma

Title
ANANKE: a Q-Learning-Based Portfolio Scheduler for Complex Industrial Workflows

MSc presentation
22nd June 2017

Supervisors

Alexandru Iosup
Alexander Stegehuis

Graduation Committee
Prof. dr. ir. Dick H.J. Epema Delft University of Technology
Prof. dr. ir. Alexandru Iosup VU University Amsterdam
Alexander Stegehuis Shell and CGI
Assistant Prof. dr. ir. Alberto Bacchelli Delft University of Technology

Abstract

Complex workflows that process sensor data are useful for industrial infrastructure
management and diagnosis. Although running such workflows in clouds prom-
ises to reduce operational costs, there are still numerous scheduling challenges
to overcome. Such complex workflows are dynamic, exhibit periodic patterns,
and combine diverse task groupings and requirements. In this work, we propose
ANANKE, a scheduling system addressing these challenges. Our approach extends
the state-of-the-art in portfolio scheduling for datacenters with a reinforcement-
learning technique, and proposes various scheduling policies for managing com-
plex workflows. Portfolio scheduling addresses the dynamic aspect of the work-
load. Reinforcement learning, based in this work on Q-learning, allows our ap-
proach to adapt to the periodic patterns of the workload, and to tune the other
configuration parameters. The proposed policies are heuristics that guide the pro-
visioning process, and map workflow tasks to the provisioned cloud resources.
Through real-world experiments based on real and synthetic industrial workloads,
we analyze and compare our prototype implementation of ANANKE with a system
without portfolio scheduling (baseline) and with a system equipped with a standard
portfolio scheduler. Overall, our experimental results give evidence that a learning-
based portfolio scheduler can perform better (5–20%) and cost less (20–35%) than
the considered alternatives.

iv

Preface

This thesis has been produced as my final piece of work for my study at Delft
University of Technology as a master student in Computer Science. It was a very
gratifying journey and I am grateful that I made it.

Firstly, I would like to thank my university supervisor Prof. dr. ir. Alexandru
Iosup for his constant guidance during my research on the master thesis. It is the
knowledge and methodology he imparts inspired me to conduct my research in this
field. Moreover I want to thank Alexandru for encouraging me to strive for great
results and helping finish my master thesis in the end.

Secondly I want to thank Alexander Stegehuis who co-supervised me in Shell.
He gave me the opportunity to work on a very interesting project in a very pleasant
working environment. His guidance and knowledge helped me solve the technical
issues that I encountered. During my project I had many opportunities to consult
the experts in Shell, I want to thank Lennard Bakker for his patience and time.
To all other engineers that helped me getting started, and during the project many
thanks for your time.

In addition, many thanks to all the people in Distributed System group and
@Large research group. I would like to thank Ir. Laurens Versluis, Ir. Wing
Ngai and so many others for their valuable suggestions and feedback. I also want
to thank Ir. Alexey Ilyushkin and Ir. Vincent van Beek for their previous works
that my research relies on.

Furthermore, I want to thank the other members of the committee, Prof. dr. ir.
Dick H.J. Epema and Assistant Prof. dr. ir. Alberto Bacchelli, for their interest in
my research project.

Finally my thanks would go to my beloved family for their loving considerations
and great confidence in me all through last two years.

Shenjun Ma
Delft, The Netherlands
16th June 2017

v

vi

Contents

Preface v

1 Introduction 1
1.1 Problem Statement . 1

1.1.1 Workloads of Smart Connect Project 2
1.1.2 Portfolio Scheduling . 3
1.1.3 Research Questions . 3

1.2 Approach . 4
1.3 Main Contribution . 4
1.4 Reading Guidelines . 5

2 Background 7
2.1 Workload: Periodic Workflows with Deadlines 7
2.2 Processing Sensor Data in Practice: Three-Tiers Architecture . . . 8
2.3 Infrastructure: Cloud-Computing Resources 9
2.4 Q-Learning . 9
2.5 Portfolio Scheduling . 10

2.5.1 Four Steps of Portfolio Scheduling 10
2.5.2 Main Components of the Portfolio Scheduler 10

2.6 State of the Art in Tasks and Resource Management 11
2.6.1 Reinforcement Learning 12
2.6.2 Portfolio Scheduling . 12
2.6.3 General Workflow-Scheduling 13
2.6.4 Auto-Scaling in Cloud Computing Setting 13

3 ANANKE Requirements and Design 15
3.1 Architectural Requirements and Design Goals 15
3.2 Architecture Overview . 16
3.3 Components in the Master Node 16

3.3.1 Scheduler . 16
3.3.2 Workload manager . 17
3.3.3 Client manager . 17

3.4 Operational Flow in Master Node 18

vii

3.5 Components in Client Nodes . 18
3.5.1 Thread pool . 19
3.5.2 Thread manager . 21
3.5.3 Workflow manager . 21

3.6 Operational Flow in Client Node 22
3.7 The Q-Learning-Based Portfolio Scheduler 22

3.7.1 Adding a Portfolio Scheduler to the Architecture 22
3.7.2 Designing a Q-Learning-Based Approach 23
3.7.3 Integrating Q-Learning into the Portfolio Scheduler 25

4 The Configuration and Implementation of the ANANKE Prototype 27
4.1 The Goals . 27
4.2 The Configuration of Policy Combinations 27

4.2.1 Provisioning Policies . 28
4.2.2 Allocation: Workflow-Selection Policies 28
4.2.3 Allocation: Client-Selection Policies 29

4.3 Operational Flow for Selecting the Combination of Policies 29
4.4 Utility function as selection criteria 30
4.5 Implementation of the Decision Table 31

4.5.1 Decision Table implementation 32

5 Experiment Setup 37
5.1 The Goals . 37
5.2 Workload Settings . 37
5.3 Environment Configuration . 39
5.4 Metrics to Compare ANANKE and Its Alternatives 39

5.4.1 Application Performance 39
5.4.2 Resource Utilization . 40
5.4.3 Elasticity . 40

5.5 Auto-scalers Considered for Comparative Evaluation 41
5.5.1 Existing Baseline . 41
5.5.2 Elasticity Baselines . 41

6 Experimental Results 43
6.1 Overview . 44
6.2 Scheduler Impact on Workflow Performance 46
6.3 Evaluation of Elasticity and Resource Utilization 46
6.4 Decision Table Configuration Impact on Workflow Performance . 49

6.4.1 Different Configuration Setting in Determining State st . . 49
6.4.2 Different Configuration Setting in Determining Action at . 50
6.4.3 Policy Pool Size Impact on Workflow Performance 50

6.5 Analysis at 10× Larger Scale . 50
6.6 Analysis of Transition in Selected Combination of Policies 51

viii

7 Conclusion and Future Work 59
7.1 Conclusion . 59
7.2 Future Work . 60

ix

x

Chapter 1

Introduction

Many companies are currently deploying or migrating parts of their IT services to
cloud environments. To take advantage of key features of cloud computing such
as reduced operational costs and flexibility, the companies should effectively man-
age their increasingly sophisticated workloads. For example, the management of
large industrial infrastructures is often involved the usage of complex workflows
designed to analyze real-time sensor data [6]. Although the management of work-
flows and resources has already been studied for decades [46, 19, 45, 2, 27], pre-
vious works have mostly focused on scientific workloads [13, 34, 22, 3] which
differ from industrial applications. Moreover, historically, approaches which are
proven to be beneficial for processing scientific workloads have rarely been proven
to perform well, or have been even adopted, in industrial production environ-
ments [10, 26]. In contrast to the previous body of work, in this work, we focus
on production industrial workloads comprised of complex workflows, and pro-
pose ANANKE, a system for cloud resource management and dynamic scheduling
(RM&S) of complex workflows that balances performance and cost.

1.1 Problem Statement

Compared to scientific workloads, production workloads are more often to have
detailed and complex requirements. For example, production workloads may util-
ize different types of task groupings which can be represented as bags-of-tasks or
sub-workflows. Each group (or stage) could have a predefined deadline and could
operate with certain performance requirements. Production workloads also often
demonstrate notable recurrent patterns as some tasks could run periodically, e.g.,
when new data is acquired from sensors. Moreover, both the workloads and the
processing requirements evolve over time. Such requirements translate into a rich
set of Service Level Objectives (SLOs), which the RM&S system must meet while
also trying to reduce the operational costs.

1

Figure 1.1: Seven Levels of the Workload in Production. By the time this project
is completed, workflows for level 4–6 are under developed.

1.1.1 Workloads of Smart Connect Project

The Shell company has managed the “Smart Connect” project for decades. The
Shell engineers develop and maintain a real-time automated diagnosis and monit-
oring framework for the large assets (compressors) owned by the Shell company.
By analyzing the sensor data collected from the assets, the diagnosis and monit-
oring system can send alerts to the engineers if any mechanical failure happens.
Chronos is a sub-system of the entire diagnosis and monitoring framework and is
designed for managing resources and scheduling workloads. To correctly detect
any mechanical failure of the assets, several calculation jobs need to be produced.
These jobs can be grouped into seven levels.

In Figure 1.1, different levels of calculation jobs (workflows) are presented
(starting from Level 0). The calculations are dependent on the results of the upper
level calculations. Currently, Level 1, Level 2, and Level 3 calculations are being
used for the majority of assets. The resource consumption and make-span for each
level are not equal. Most of these calculations can be completed in a very short
space of time. However, some calculations may take significantly more time and
the completion time is unpredictable.
There are some patterns in the job’s arriving behaviors. A big amount of calcula-

2

Figure 1.2: Portfolio scheduler select different policy according to the workload
modes. [16]

tions has to be performed periodically and completed in a certain period (deadline).

1.1.2 Portfolio Scheduling

To fulfill dynamic SLOs and achieve cost savings, the cloud customer could em-
ploy dynamic scheduling techniques, such as portfolio scheduling. Derived from
the economic field [20], a portfolio scheduler is equipped with a set of policies,
each designed for a specific scheduling problem. The policy is selected dynamic-
ally, according to a user-defined rule and a feedback mechanism. Figure 1.2 depicts
how a portfolio scheduler switches policies dynamically and responses to the work-
load changing. By combining many policies, the portfolio scheduler can become
more flexible and adapt to dynamic workload better than its constituent policies.
Previous studies indicate that no single scheduler is able to address the needs of
diverse workloads [39, 43], and, in contrast, that a portfolio scheduler performs
well without external (in particular, manual) tuning [16, 17].

1.1.3 Research Questions

Although portfolio schedulers are promising for the context of complex workflows,
previous approaches [37, 42] lack by design the ability to use historical knowledge
in their selection. All these existing approaches prioritize the diversity of selec-
tion, and thus do not bias it towards approaches that have delivered good results in
the past. This approach works well for workloads without periodic behavior, but
may not deliver good results for industrial applications that focus on processing
real-time sensor data. Thus, to take advantage of historical information about the

3

system and the workload, three research questions arise in the context of complex
industrial workflows:

1. How to adapt the concept of portfolio scheduling to the RM&S framework
used on complex industrial workflows in production environment?

2. How to use learning technique based on historical information when per-
forming portfolio scheduling?

3. How to evaluate the learning-based portfolio scheduler, experimentally, through
a prototype?

1.2 Approach

To answer the research questions, we propose in this work to integrate a reinforcement-
learning technique, Q-learning [44], into a cloud-aware portfolio scheduler. A
Q-learning policy interacts with a system by applying an action to it, and learns
about the merits of the action from the system’s feedback (reward).

The Q-learning policy is trained by all the previous data including system states,
actions already made, and the reward value accordingly. The well-trained Q-learning
policy thus has the knowledge of historical information of the system and can use
the knowledge to make actions.

To evaluate our approach, we implement a prototype which can be integrated
into the existing RM&S frameworks and conduct real-world experiments. We ex-
plore the strengths and limitations of a Q-learning-based portfolio scheduler man-
aging diverse industrial workflows and cloud resources.

1.3 Main Contribution

Towards answering the research question, our main contribution is fourfold:

1. We design ANANKE, an RM&S architecture that integrates a reinforcement-
learning technique, Q-learning, into a portfolio scheduler (Chapter 3). This
enables portfolio schedulers operating in cloud environments to use histor-
ical information, and thus service periodic workloads.

2. We design and build a prototype of ANANKE, a scheduling system with a
learning-based portfolio scheduler as its core element (Chapter 4). The key
conceptual contribution of this design is the selection and design of schedul-
ing policies equipped by the portfolio. The prototype is now part of the
production environment at Shell, and evolves from the existing Chronos sys-
tem [6].

3. We evaluate our learning-based portfolio scheduler through real world exper-
iments (Chapter 6). Using the cloud-like experimental environment DAS-5 [7]

4

and workloads derived from a real industrial workflow, we analyze ANANKE’s
user-level and system-level performance, and elasticity (metrics defined in
Chapter 5). We also compare ANANKE with a baseline system and with a
portfolio-scheduling-only approach.

4. The material in this thesis, condensed, has been published as: S.Ma, A. S.
Ilyushkin, A. Iosup. ANANKE: a Q-Learning-Based Portfolio Scheduler
for Complex Industrial Workflows, International Conference on Autonomic
Computing 2017, Columbus, Ohio, USA, July 17-21, 2017.

1.4 Reading Guidelines

This thesis report has the following structure: In Chapter 2, we present the back-
ground knowledge and related works on industrial workflows, portfolio schedul-
ing, and Q-learning. In Chapter 3, we investigate the requirements and show a
design for using a learning-based portfolio scheduler with the current framework
(Chronos) in production. In Chapter 4, we elaborate the configuration and im-
plementation details of the ANANKE prototype. In Chapter 5, we present all the
environment, metrics and baselines configurations for the evaluation experiments.
In Chapter 6, we show the results of the experimental evaluation of ANANKE and
explain our findings in turns. In Chapter 7, we summarize the entire work and list
several possible future works.

5

6

Chapter 2

Background

In this chapter, we define the system model used in this work: workload, system ar-
chitecture, and system infrastructure. In practice, this model is already commonly
used in real-time infrastructure monitoring systems, such as the Chronos [6] system
in the “Smart Connect” project at Shell.

2.1 Workload: Periodic Workflows with Deadlines

In our model, a workload is a set of jobs, where each job is structured as a workflow
of several tasks with precedence constraints among them. Each workflow is aimed
for processing sensor data and has exactly three chained tasks: first, the workflow
selects the formula for calculations from a set predefined by engineers and reads
the related raw sensor data from the database. Second, it performs calculations by
applying the formula to the raw sensor data. Third, the workflow writes the results
back to the database and sends the completion signal. All the workflows in the
model contain these three steps and differ only in the formula used to calculate.

Workflows in our model are complex due to deadline constraints and periodical
arrivals, not due to task concurrency. Because such workflows are designed to pro-
cess real-time raw sensor data, they have strict requirements for the execution time.
Each workflow should be completed before its assigned deadline. The workflows
which can not accomplish that are considered expired. Moreover, each workflow
is executed periodically, as sensors continuously sample new data and the system
needs to update the database at runtime. The chain nature of the workflow means
that it does not have parallel parts, and thus requires only a single processing re-
source (e.g., CPU core or thread) for its execution.

7

Figure 2.1: Three-tiers architecture for processing workflows.

2.2 Processing Sensor Data in Practice: Three-Tiers Ar-
chitecture

In practice, infrastructure monitoring systems commonly use a tree-tiers architec-
ture to process sensor data. The three-tier architecture, which we depict in Fig-
ure 2.1, consists of a master node (label 1 in the figure), client nodes (2), and a
database (3). Raw sensor data is collected form the monitored facilities and stored
in the database. Engineers add to the system a set of workflows for processing
sensor data. These workflows are placed in the job bucket, which is maintained
by the workload manager (b) withing the master node. The client manager (c)
controls the set of client nodes and monitors their statuses. At the heart of the ar-
chitecture, the scheduler (a) is responsible for making allocation and provisioning
decisions. The scheduler selects appropriate workflows from the workload man-
ager and, through the client manager, allocates them to the client nodes.

The client nodes are responsible for running workflows. Every client node reads
raw data from the database, performs certain calculations specified in the assigned
workflow task, and writes the results back to the database. This model, however,
can also be applied for processing other workflow types (e.g., fork-join) with tasks
running in parallel. It will require an addition of a separate workflow partitioner
which will convert parallel parts into a set of independent chain workflows before
their addition to the job bucket. To display the states of the monitored infrastructure
and the diagnostics results back to the users the framework has a web interface.

8

2.3 Infrastructure: Cloud-Computing Resources

We model the infrastructure as an infrastructure-as-a-service (IaaS) cloud envir-
onment, either public or private. (The Chronos system is currently deployed in
a private cloud.) In this work, we assume that all resources are homogeneous,
and do not consider hybrid private-public cloud scenarios. In contrast with typ-
ical cloud resource models which usually operate on a per-VM basis, our model
uses the computing thread as the smallest working unit. Per-thread management
enables fine-grained control over resources. In our model, vertical scaling changes
the number of active threads within a node, whereas horizontal scaling changes the
number of active nodes.

Compared to popular public clouds, our resource model has certain differences.
The resources for our experiments are only on-demand instances, and not spot or
reserved instances. In public clouds such as Amazon AWS [1], instances take
some time to fully boot up [24]. However, to have better control over the emu-
lated environment, we use in practice preallocated nodes (zero-time booting) and
do not consider node booting times in our model. Because cloud-based cost mod-
els can be diverse and likely to change over time, as indicated by the current on-
demand/spot/reserved models of Amazon, and the new pricing of lambda (server-
less) computation of Amazon and Google, similarly to our older work [43] we use
in our model the total running time of all the active instances to represent the actual
resource cost and not the charged cost.

2.4 Q-Learning

Q-learning [44] is a typical reinforcement learning technique. In this work, we
study a reinforcement learning-based portfolio scheduler and implement a provi-
sioning policy according to the Q-learning algorithm. Figure 2.2 generally shows
the operational flow of the Q-learning algorithm. The Q-learning policy interacts
with the environment by applying an action and learning from the reward awarded
by the environment. The environment provides its state st at each time interval t.
The system applies an action at and receives a reward rt+1. At the same time, the
environment changes its state to st+1. The objective of the Q-learning technique
is to choose an optimal action to achieve the maximum reward in the long run.
The reward value is calculated by a user defined reward function. The Q-learning
policy maintains a decision table which maps actions on states. It considers an old
pair of state-action values and makes a correction based on the new feedback form
the environment.
In short, the core of the algorithm is a simple iterative value update. Each time
when a decision needs to be made, the Q-learning policy selects an action and thus
observes a reward along with a new state that depends on both the previous state
and the selected action. The decision table is updated by replacing the old value
with the new value.

9

Figure 2.2: Operational Flow of Q-Learning

2.5 Portfolio Scheduling

Portfolio scheduling is one of the strategies of optimizing workload scheduling.
It can dynamically select and use a scheduling policy, depending on the current
system and workload conditions, from a portfolio of multiple policies. In this
section, we present the necessary background knowledge of portfolio scheduling.

2.5.1 Four Steps of Portfolio Scheduling

As show in Figure 2.3, portfolio schedulers has four main steps [16]:

1. Creation: In this step, a set of policies is created (prepared) for the portfolio
scheduler.

2. Selection: In this step, the portfolio scheduler selects one of the scheduling
policies as the active policy.

3. Application: In this step, real actions are performed based on the active
policy (from the previous step).

4. Reflection: In this step, the portfolio scheduler analyzes the operation of the
last selection and application steps. The system parameter and the policy set
may also change.

2.5.2 Main Components of the Portfolio Scheduler

Figure 2.3 provides a high-level model of the portfolio scheduler. The workloads
are stored in a workflow queue. The workflows are executed by allocating re-

10

Figure 2.3: Portfolio schedulers follow a traditional process with four steps, cre-
ation (a), selection (b), application (c), and reflection (d).

sources to them; resources are provisioned using a combination of both allocation
policies and provision policies. For each period a combination of policies is used
during execution. The scheduler runs simulations based on the current system state
and workloads and determines which combination of policies to be used next. The
most important components in the model are the Simulator and the Selection cri-
teria.

The Simulator
The simulator is designed to generate simulation results (data) for each combin-

ation of policies. It needs to balance the accurate of the simulated results with the
runtime of the simulator. Deng et al. [17] use the DGSim [25] simulator which is
an event-driven simulator. Similar to previous work, we implement an event-driven
simulator based on CloudSim [9] to meet our requirements.

The Selection Criteria
The selection criteria usually is defined as a utility function. The utility func-

tion needs to balance user-oriented and system-oriented performance. The utility
function is used to evaluate each combination of policies with the simulated results
(data).

2.6 State of the Art in Tasks and Resource Management

We survey in this chapter a large body of related works on scheduling with rein-
forcement learning, on portfolio scheduling, on scheduling workflows, and on auto-
scaling in cloud computing settings. Relative to it, our work provides the first com-

11

prehensive study and real-world experimental evaluation of learning-based portfo-
lio scheduling for resource management and dynamic scheduling.

2.6.1 Reinforcement Learning

In this work, we use the Q-Learning technique (a typical and widely used reinforce-
ment learning) to do both horizontal and vertical scaling and integrates Q-learning
algorithm into an extended portfolio scheduler.

Closest to our work, Tesauro et al. [40] present a hybrid approach combining
reinforcement-learning and queuing models for resource allocation. Their RL (re-
inforcement learning) policy trains offline, while a queuing model policy controls
the system. Different from the authors’ approach, our work uses online training,
by taking advantage of the dynamic portfolio scheduling. Padala et al. [35] use
reinforcement learning technique to learn the application’s behavior and to design
a solution based on Q-learning to perform vertical scaling problems on the VMs
level. Compared with the authors’ work, we add portfolio scheduling, scale finer-
grained resources (threads in our work vs. VMs in theirs), and take both horizontal
and vertical scaling into account. Bu et al. [8] use reinforcement-learning to change
the configuration of VMs and resident applications (manage the resource in ver-
tical), whereas we add portfolio scheduling and solve both resource allocation and
workload scheduling.

Cui et al. [12] propose a workflow scheduling algorithm (policy) based on re-
inforcement learning for cloud computing platforms. The proposed scheduling
algorithm (policy) define the number of VMs as state space and the runtime of task
as immediate reward. The experimental evaluation shows the algorithm (policy)
can schedule multiple DAGs with multiple SLOs and improve resources utiliza-
tion. Peng et al. [36] apply reinforcement learning in job (workflow) scheduling
to optimize the makespan and average waiting time under the VM resource and
deadline constraints. Moreover, the authors propose an advanced queuing model
based on reinforcement learning [36] to optimize the job (workflow) response time.
Tong et al. [41] introduce reinforcement learning into task scheduling and propose
a Q-learning based policy for independent tasks. The proposed policy optimize the
tasks allocation by learning task arrival and execution patterns. Different from our
approach, Tong’s policy is designed for independent tasks instead of workflows.

2.6.2 Portfolio Scheduling

Although the general portfolio technique emerged in finance over 50 years ago [20],
portfolio scheduling has been adopted in cloud computing only in the past five
years—introduced simultaneously, by Intel [37] and by Kefeng et al. [17]. Our cur-
rent work extends a standard portfolio scheduler to support reinforcement learning
and to the significantly different workload—complex industrial workloads (pro-
cessing sensor data). Closest to our work, and not using reinforcement learning,
Kefeng et al. [16, 17] build a standard portfolio scheduler equipped only with

12

threshold-based policies and only focusing on scientific bags-of-tasks; and van
Beek et al. [42] focus on different optimization metrics (for risk management) and
workloads (business-critical, VM-based vs. job-based).

2.6.3 General Workflow-Scheduling

This body of work includes thousands of different approaches and domains. Closest
to our work, several scaling policies [29, 30, 38] take deadline constraints as their
main SLO.

Maciej et al. [29] develop and assess task scheduling and resource provisioning
algorithms which consider the deadline- and budget-based constraints. The authors
produce the evaluation via simulations using scientific workflow ensembles. Mao
et al. [30] present a VM-level approach for auto scaling resource and scheduling
general workflows. Shi et al. [38] also propose a resource provisioning and task
scheduling mechanism to process scientific workflow in the cloud. The presented
mechanism also takes budget and deadline constraints into account. Ilyushkin et
al. [23] create and analyze policies for scheduling of workflows with and without
know task running-time. Relative to our work, the authors focus on a different SLO
related with the task running-time instead of deadline constraints.

José Durillo et al. [18] propose MOHEFT, a Pareto-based list scheduling heur-
istic that provides the user with a set of trade-off optimal solutions, and apply the
proposed approach on the commercial public cloud (Amazon EC2) for multi-objective
workflow scheduling. Different from our approach, MOHEFT let users determine
the scheduling solution that better suits the requirements. Deelman et al. [15] in-
vesigate the design, development and evolution of the Pegasus Workflow Manage-
ment System, which maps abstract workflow descriptions onto distributed comput-
ing infrastructures. Pegasus has been heavily for scientific workflows in a wide
variety of domains. Compared with our system, Pegasus is design to map scientific
workflows on grid resource and doesn’t provide functions of resource scaling. Mas-
dari et al. [33] conduct a comprehensive survey and analysis of schemes schedul-
ing simple and scientific workflows on the cloud resource. However, schemes for
schedule complex industrial workflows are not considered in the authors’ work.

Our work considers complex industrial workflows (chain based workflows with
the deadline as the main SLO) and, simultaneously, resource provisioning, and
performs real-world experiments for evaluation.

2.6.4 Auto-Scaling in Cloud Computing Setting

In this work, we evaluate the elasticity of ANANKE and compare it with other auto
scalers. The related work in auto-scaling are listed as follow:

Marshall et al. [32] present many resource provisioning policies to match re-
source supply with demand. We embed some of their policies as part of the portfo-
lio used by ANANKE for auto-scaling, and in general extend their work through the
Q-learning and portfolio scheduling structure. Ilyushkin et al. [21] propose a de-

13

tailed comparative study of a set of auto-scaling algorithms. We use their system-
and user-oriented evaluation metrics to assess the performance of our auto-scaling
approach, but consider different workloads and thus supply and demand curves.
Mao et al. [31] present an auto-scaling mechanism to automatically scale comput-
ing instances based on workload information and performance desire and apply the
proposed mechanism on commercial public cloud resource. The focused SLOs are
workflow deadline and resource budget. Different to our approach, the author’s
mechanism achieves the requirements by scaling different types of VM instances.
Atrey et al. [5] propose a framework called BRAHMA, that learns workflow be-
havior to build a knowledge-base and leverages this information to perform intel-
ligent automated scaling decisions. Relative to our work, the author takes deadline
constrained requirement as the main SLO. However, the evaluation of BRAHMA
is through simulation and empirical observation which is a limitation. Arabnejad
et al. [4] design and implement a fuzzy rule-based system combined with a rein-
forcement learning algorithm for learning optimal elasticity policies. The proposed
system can efficiently scale VM-level cloud resources to meet QoS requirements
while reducing cloud provider costs by improving resource utilization. Different to
the author’s approach, our approach focus on thread level resource scaling.

14

Chapter 3

ANANKE Requirements and
Design

In this chapter, we present the design of our ANANKE system. First, we define the
architectural requirements and specify the design goals. Then, we explain all the
components of the system and discuss the design of our Q-learning-based portfolio
scheduler. We further show how to integrate the scheduler into the architecture
introduced in Chapter 2.2.

3.1 Architectural Requirements and Design Goals

The major architectural requirements (design goals) for ANANKE are:

1. The designed system must match the model proposed in Chapter 2.2. This
allows the new system to be backward compatible with the system currently
in operation and enables adoption in practice.

2. The system must implement elastic functionality, e.g., it must be able to
automatically adjust the number of allocated resources based on demand
changes.

3. The system should use portfolio scheduling, which shows promise in man-
aging mixed complex workloads [16].

4. The system should integrate Q-learning into the portfolio scheduler, to be
able to benefit from the historical information about the recurrent variability
of the processed workloads.

To determine these requirements, we investigate the characteristic of the workload
in production and the performance of the current system. Although a private cloud
environment is used for production, the develop team plan to migrate the system
to the public cloud. Considering the compatibility and the migration in the near
future, we derive the first two requirements. We also find there is a strong recurrent

15

pattern in the workloads due to the constant sampling rate of sensors. Consider-
ing the characteristic of workloads, we define the last two requirements. The last
two design goals are expected to improve application performance and increase
resource utilization, and constitute the main conceptual contribution of this work.

3.2 Architecture Overview

ANANKE extends the current Chronos system with the components and concepts
needed to achieve the design goals 2–4. Matching the model from Chapter 2.2
(goal 1), ANANKE has a three-tier architecture, and consists of a master node, cli-
ent nodes, and a database.
The master node is designed to monitor client nodes and make allocating/provisioning
decisions. The client node is mainly used to processes the calculation tasks. Figure
2.1 also indicates how the master node and the client node interact with each other.
The client node needs to continuously report its own status back to the master node
to synchronize master node with the latest status of the whole system. The mon-
itoring information sent by the client nodes contains both client’s resource utiliza-
tion and the workflow performance. Before the master node making a scheduling
decision, it checks all client nodes’ states. The master node then makes schedul-
ing/provisioning decision and allocate workflows to suitable clients.
After the client node receiving the provisioning command and allocated workflows,
it starts executing the workflows. Each client node retrieves related data for a cer-
tain workflow from the database and writes the results back to the database as long
as the calculation is completed. The details of components and operational flow
inside the master and client nodes will be discussed in the following sections.

3.3 Components in the Master Node

The master node of ANANKE consists of three major components: a scheduler, a
workload manager, and a client manager. Figure 2.1 depicts these components and
their communication pathways.

3.3.1 Scheduler

Scheduler (component a in Figure 2.1) is the most substantial component in master
node. Addressing design goals 3 and 4, the scheduler is a Q-learning-based port-
folio scheduler equipped with a set of policies: a Q-learning policy and also other,
simpler, threshold-based heuristic policies.
The portfolio scheduler has comprehensive knowledge about the whole system and
makes scheduling decision based on suitable policy combination. The output of the
portfolio scheduler is a set of policies defining how to provision resource and alloc-
ate workflow. In principle, a standard portfolio scheduler maintains a policy pool

16

and a utility function predefined by users. To select the optimal policy combin-
ation (provisioning and allocation policies), the scheduler running simulation for
each policy combination in the policy pool. Metrics of workflow performance and
resource utilization are collected during the simulation. Collected metrics are then
used to calculate a numerical value (score) for each policy combination according
to the utility function. The score indicates how suitable the policy combination is.
Portfolio scheduler selects the combination with the highest score as the optimal
one.
Q-learning-based portfolio scheduler is different with standard portfolio scheduler
in being equipped with a Q-learning provisioning policy. It adds a policy based
on the Q-learning algorithm in the policy pool and trains it during the simulation
process. Compared with standard portfolio scheduler, Q-learning-based portfolio
scheduler has the capability of learning from historical data.

3.3.2 Workload manager

The workload manager (component b in Figure 2.1) maintains the bucket of work-
flows, collects the information about the workflow performance, and updates the
status of every workflow. The workload manager maintains the bucket of work-
flows, collects the information about the workflow performance and updates the
status of every workflow. The workloads are predefined workflows. Engineers de-
ploy model files on the master node. All workflows are generated according to
these predefined model files. The workflow is continuously generated and stored
in the bucket. Workflows in the bucket are ready to be scheduled. The workload
manager uses the response and waiting time of a workflow, and the fraction of
completed/expired workflows, as key performance indicators when collecting the
metrics of workflows. The collected information along with resource utilization
information are sent to the scheduler. Workload manager then takes the policy
combination from the portfolio scheduler and selects eligible workflows according
to the allocating policy.

3.3.3 Client manager

The client manager (component c in Figure 2.1) is designed to communicate with
all client nodes and has two main functions.
First one is to collecting continuously per-client status (meta-data). The meta-data
can be customized by users according to allocating/provisioning policy’s require-
ments. In this project, the client manager collects resource utilization metrics (cur-
rent CPU load and the number of busy threads) and workflow performance metrics
(calculation result, the amount of allocated workflows which have not been ex-
ecuted). Client manager sends the per-client status to the portfolio scheduler.
The second function is sending to clients when needed commands (actions) and
tasks ready to be allocated. The client manager generates provisioning commands
(actions) according to provisioning policy given by the portfolio scheduler. The

17

command(action) along with eligible workflows will then be sent to the target cli-
ent node. So basically, the client manager is the interface connected to client nodes.

3.4 Operational Flow in Master Node

The master node makes a scheduling decision every 6 seconds. The client man-
ager, the workload manager, and portfolio scheduler cooperate with each other to
ensure the master node works functionally. How do all these components interact
is described as follow:

1. The workload manager and client manager first check resource utilization
metrics and workload information. These two components ensure that mas-
ter node has the latest knowledge of the whole system and send data to Q-
learning based portfolio scheduler for the next step.

2. As shown in Figure 2.1, resource utilization, and workload information are
the input of the Q-learning-based portfolio scheduler. Simulation and evalu-
ation are then performed based on the input data. To improve performance,
simulations are run in parallel. The output is the optimal policy combination
which is suitable for the current situation. The provisioning policy in the out-
put is used by client manager, and allocation policy is sent to the workload
manager.

3. The workload manager selects workflows and assigns them to target client
according to the allocation behavior defined in the policy combination. At
the same time, the client manager generates command messages according
to the provisioning policy. The command instructs the target client how to
change the current resource (lease, release or keep unchanged). Along with
the allocated workflow from the workload manager, action (provisioning)
command is sent to the target client.

3.5 Components in Client Nodes

The actual calculations are performed on client nodes. Figure 3.1 depicts the three
components of the client node: a thread pool, a thread manager, and a task manager.

The thread pool (component (a) in Figure 3.1) maintains a set of threads (smal-
lest working units, see Chapter 2.3). Each thread continuously fetches workflows
from the workflow manager and calls an external calculation engine from the en-
gine pool. The thread logic is completely determined by the workflow tasks and is
defined by developers. Each client node can execute multiple threads in parallel.
At each moment, a thread executes only a single workflow. We use the number of
active threads as the key metric to represent resource utilization.

18

Figure 3.1: Components of the client node.

The thread manager (b) receives provisioning commands from the master node
and adds and removes threads from the pool. It also reports the resource utilization
(the CPU load, and the ratio of busy to the total number of threads) back to the
master node, and continuously terminates idle threads.

The workflow manager (c) maintains a bucket of workflows allocated to the cli-
ent node. The workflow manager tracks workflow states and monitors the perform-
ance. It also computes the performance metrics and reports them back to the master
node. We define two metrics for our scheduler: the number of workflows stored in
the bucket normalized by the size of the bucket and the average completion time
for the last five executed workflows. We discuss the details of these components in
this section.

3.5.1 Thread pool

Thread pool (component a in Figure 3.1) maintains a set of threads (smallest work-
ing units, see Section 2.3). Changing resource configuration thus is modifying
the number of threads maintained by the threads pool. Each thread continuously
fetches workflows from the workflow manager and calls an external calculation

19

Figure 3.2: Finite-State Machines of the Workflow and Thread.

engine (CCE) from the engine pool.

The calculation engine (CCE) is just an application designed to calculate sensor
data; it defines all calculation steps. Different types of workflows are calculated by
different calculation engine. Currently, the Shell engineers have developed six cal-
culation engines and deployed them on each client node. After the calculations, it
writes the result to the database and returns a feedback message to the thread: Pro-
cessed OK means the calculation is completed successfully and Processed Error
means the calculation is failed.

In this project, the thread logic is completely determined by the workflow tasks
and is defined by developers. Once a thread is created, it will continuously ask the
task manager for eligible workflows and call CCE until it is terminated (stopped).
The life cycle of one thread has several states: Init indicates the current thread is
under initialization. Idle and Run shows if the current thread has called a CCE.
Stop means the current thread is about to be terminated. Figure 3.2 shows how one
state jumps to another state.

Each client node can execute multiple threads in parallel. At each moment, a
thread executes only a single workflow. The client node is assigned with a ”max
threads” property indicating the max amount of threads the threads pool can main-
tain. We use the number of active threads as the key metric to represent resource
utilization.

20

3.5.2 Thread manager

The thread manager (component b in Figure 3.1) receives provisioning commands
from the master node and adds and removes threads from the pool. It also reports
the resource utilization (the CPU load, and the ratio of busy to the total number of
threads) back to the master node, and continuously checks the active threads and
terminates idle threads.

As shown in Figure 3.1, the thread manager receives provisioning commands
form the master node. The command contains two pieces of instructions. First, it
defines whether the client should lease new threads, release current idle threads or
remain unchanged. Second, it defines the number of threads should be leased or
terminated if changes are needed. The thread manager performs the real modific-
ation on the thread pool according to the command. Another feature of the thread
manager is that it continuously checks active threads and terminate those have been
idle for more than a user-defined threshold value (we define the threshold to be 30
seconds in this work).

The thread manager also monitors the status of all active threads and resource
utilization metrics and send them back to master. The thread manager reports the
client’s status every 6 seconds. In this project, resource utilization metrics are CPU-
load and the ratio of the number of busy threads to the number of total threads.

3.5.3 Workflow manager

The workflow manager (component c in Figure 3.1) maintains a bucket of work-
flows allocated to the client node. The bucket has a ”maximum size” property
which represents the maximum amount of workflow it can stores. The value of this
property is set to two times of the size of the thread pool. The workflow manager
has two main functions: tracks the workflow states and monitoring the workflow
performance.
Each workflow has a ”state” property which can be Processed OK, Processed Er-
ror, Processing, Handed. The first two states mean the execution is finished. Pro-
cessed OK indicates the workflow is completed successfully. Processed Error in-
dicates the workflow is terminated because of errors. In this work, workflows ex-
ceeding the deadline and having exceptions during the execution are considered as
failed workflows. Processing means the workflow is being executed and Handed
means the task is waiting to be executed. Figure 3.2 shows the relations between
different states.

To clean up and maintain the buckets, the workflow manager removes workflows
whose status is Processed OK or Processed Error from the bucket. The work-
flow manager also drops all tasks which have not been executed for more than 4.5
minutes and notify the master node to reschedule these workflows. In this project,
task manager is set to do the cleaning every 6 seconds.

The task manager also computes the performance metrics and reports them back
to the master node. We define two metrics for our scheduler: the number of work-

21

flows stored in the bucket normalized by the size of the bucket and the average
completion time for the last five executed workflows.

3.6 Operational Flow in Client Node

To achieve better workflow performance, client node processes allocated work-
flows in parallel. To achieve that, components inside client node interacts as fol-
lows:

1. When the client node receives workflows and commands form the master
node, the thread manager creates or terminates threads according to the pro-
visioning command. At the same time, the workflow manager adds all the
allocated task to the local bucket and update related metrics.

2. To execute a task, idle threads will first ask the task manager for eligible
workflows. If the local bucket is not empty, the idle thread will be given a
workflow and then call the CCE to execute it. If the local bucket is empty,
the idle thread will sleep for 6 seconds and ask the workflow manager again.
At the time-point when the calculation is started and finished, the thread
changes its state and notify the thread manager. Each thread performs the
execution process continuously until it is terminated by the thread manager.

3. Each thread will receive a feedback form the CCE when the calculation is
done and change the state of the processed workflow accordingly. The state
change is reported to workflow manager.

4. Every 6 seconds, both the workflow manager and the thread manager send
the monitoring metrics back to the master node.

3.7 The Q-Learning-Based Portfolio Scheduler

Addressing design goals 3 and 4, in this section, we design a Q-learning-based
portfolio scheduler for complex industrial workflows in cloud (elastic) environ-
ments.

3.7.1 Adding a Portfolio Scheduler to the Architecture

Our design of the scheduler component of the master node is based on a portfo-
lio scheduler. Figure 3.3 depicts the main components of this design: similarly to
previous work [17], the portfolio scheduler consists of a policy Simulator, an Eval-
uation component, and a Decision Maker. The portfolio scheduler is equipped
with a set (portfolio) of policies; we describe our design of the portfolio in Sec-
tion 4.2. Periodically, the portfolio scheduler considers its constituent policies in
simulation and selects from them the most promising policy. The selection is done

22

Figure 3.3: Architecture of a Q-learning-based portfolio scheduler, part of the mas-
ter node. Data generated by each simulation is used as training data, to train the
decision table.

by the Decision Maker, which uses the utility estimated by the Evaluation com-
ponent to rank descendingly the policies, then selects the best-ranked policy. This
mechanism is versatile: different Utility functions have been used to focus on per-
formance [37, 17], risk [42], and multi-criteria optimization [16, 42].

3.7.2 Designing a Q-Learning-Based Approach

Inspired by the work proposed by Padala et al. [35], we design non-trivially a
provisioning policy based on Q-learning. Figure 3.4 shows the operational flow of
the Q-learning policy We define the state st at moment t as a tuple of the current
resource configuration, resource utilization, and the workflow performance: st =
(ut, vt, yt), where ut is the resource configuration (the total number of threads), vt
is the resource utilization, and yt is the application performance. We further define
the action the scheduler can take as at = (m, a), where m specifies the number of
threads to be scaled and a ∈ {up, down, none} is the action that grows, shrinks, or
does nothing to change the set of provisioned resources, respectively. The reward
function for the Q-learning policy is defined by the users and used by the Q-learning
algorithm to calculate the reward (the value) for the current state-action pair. In
ANANKE, we design the reward function to balance workflow performance and
resource usage based on a previous study [35]. Specifically, for every moment of
time t we define the reward function as:

23

Figure 3.4: The operational flow for Q-learning policy.

r(t) = f(st, at)× g(st, at), (3.1)

where f(st, at) calculates the score due to workflow performance and g(st, at)
represents the score due to resource utilization. Higher scores indicating better
user-experienced performance and resource utilization which are preferred. We
define the concave functions f(st, at) and g(st, at) as Padala’s work [35] as:

f(st, at) = sgn(1− pt)× e|1−pt|, (3.2)

g(st, at) = e1−max(vt,yt), (3.3)

where pt is the normalized application performance according to the SLO, ut is the
number of threads, vt is the ratio of busy to total number of threads (so, normal-
ized by ut), and yt is the average CPU load across clients. When calculating the
score for workflow performance, we use pt (average value of workflow’s response
time normalized by the deadline in this work) as the main metric. According to the
formula f(st, at), a smaller value of pt leads to a higher score. A lower response
time indicates that our system performs well in allocating workflows. To calculate
the score for resource utilization, we decide to use vt and yt. Formula g(st, at)
shows that lower value of vt and yt can lead to a higher score. In short, we would
like to observe that our system can use less resource to process the workflows. By
combining the workflow performance and resource utilization, the reword func-

24

tion can balance the trade-off between user-experienced performance and resource
utilization.

3.7.3 Integrating Q-Learning into the Portfolio Scheduler

All learning techniques use a learning and training process. Because ANANKE

is a real-time system, online training is more suitable for our case than offline
training. In our design, to train the Q-learning policy within a portfolio sched-
uler, the master node uses the simulation-based approach depicted in Figure 3.3.
Compared to a standard portfolio scheduler, our design supports online training
through a mechanism that feeds-back simulation data into a decision (learning)
table. The Q-learning policy uses the updated decision table in its decisions.
However, using only the feedbacks generated by applying the decisions of the
Q-learning policy itself ignores that other policies take decisions. To avoid this
problem, our Q-learning-based portfolio scheduler trains its decision table with
information from all policies, and from both real (applied decisions and real ef-
fects) and simulated (estimated decisions and effects) environments. Therefore,
this method allows to generate and use more training data in a shorter time, albeit
at the possible cost of accuracy (for simulated effects).

25

26

Chapter 4

The Configuration and
Implementation of the ANANKE
Prototype

Two ANANKE components require careful configuration and implementation, the
Q-learning-based portfolio scheduler and the Q-learning policy, respectively. We
explain in this chapter the selection of the portfolio policies, which we see as a con-
ceptual contribution. We also detail the process for constructing the decision table
for the Q-learning policy, which we see as an important technical contribution.

4.1 The Goals

Portfolio scheduler is an advanced scheduler which can be equipped with a vari-
ety of scheduling policies. ANANKE can also be tuned on a set of parameters to
meet different performance requirements. To meet the deadline constraint require-
ment, we tune ANANKE on several parameters and elaborate these configurations
which in the following sections. The configurations decision includes policy com-
binations equipping the portfolio scheduler, the utility function used in Q-learning
based portfolio scheduler. Besides the decision on configurations, there are details
need to be demonstrated when implementing the decision table which is the core
component of the Q-learning policy.

4.2 The Configuration of Policy Combinations

ANANKE is designed for both workflow allocation and resource provisioning. How-
ever, it is difficult to define the allocation and provisioning behavior in a single
policy. For this reason, ANANKE maintains a policy pool (a portfolio) consist-
ing of combinations of allocation and provisioning policies. An allocation policy
contains a workflow-selection policy, which selects the workflow to schedule next,

27

Table 4.1: Provisioning policies in our portfolio scheduler.
Name Operational Principle

AQTP Lease threads for the first n waiting workflows, if their waiting
time exceeds a pre-set threshold t.

ODA Lease n threads for waiting workflows in the bucket, until the
resource maximum is reached, with n = nw − ni, where nw
is the number of waiting tasks and ni is the number of idle
threads.

ODB Lease n threads for waiting workflows in the bucket until the
resource maximum is reached, with n = nw − nt, where nw
is the number of waiting tasks and nt is the total number of
threads.

Q-Learning Make a provisioning decision according to the current status
of the system, by retrieving an action from the decision table.

and a client-selection policy, which maps the selected workflows to client-nodes.
The provisioning policy decides on adding and/or removing of the resources. A
composite-policy is a combination of allocation and provisioning policies, that is
a triplet comprised of a provisioning policy, a workflow-selection policy, and a
client-selection policy. At runtime, the portfolio scheduler selects from the pool a
single combination of policies, as the active composite-policy. We design a port-
folio comprised of all the unique composite-policies (triplets) resulting from the
policies described as following:

4.2.1 Provisioning Policies

Provisioning policies can vary significantly in how aggressively they change the
number of resources. We select four significantly different provisioning policies,
adapt them to use threads as the smallest processing unit, and summarize their op-
eration in Table 4.1. ODA [16] is the most aggressive in the set, as it always ensures
that the system has enough idle resources for waiting workflows. ODB [16] is less
aggressive, as it just ensures that the system has enough resources, whether busy
or idle. AQTP [32] is the least aggressive policy in the set because it only considers
the needs of a subset of the waiting workflows. Last, our Q-learning policy
provides a trade-off between the other policies, by learning from the decisions
made by them.

4.2.2 Allocation: Workflow-Selection Policies

Which workflow to be selected next for execution is a typical question in multi-
workflow scheduling systems. We select four workflow-selection policies for our

28

Table 4.2: Workflow-selection policies in our portfolio scheduler.
Name Operational Principle

LCFS Last-Come, First-Served.

SWF Workflow with the Shortest Waiting time First.

CDF Workflow which is Closest to its Deadline First.

SEF Workflow with the Shortest Execution time First.

Table 4.3: Client-selection policies in our portfolio scheduler.
Name Operational Principle

LWTF A client with the Lowest workflow Waiting Time First.

LUF A client with the Lowest CPU Utilization First.

HITF A client with the Highest number of Idle Threads First.

SWWF A client with the Smallest number of Waiting Workflows First.

portfolio and summarize their operations in Table 4.2. Besides the typical LCFS
policy, the other policies use waiting time, time-to-deadline, or execution time as
criteria to select workflows from the waiting bucket. In particular, time-to-deadline
is often used in real-time systems.

4.2.3 Allocation: Client-Selection Policies

To map workflows to available resources, we select four client-selection policies
for our portfolio and summarize their operation in Table 4.3. LUF and HITF
use two different system-oriented metrics (the CPU usage and the number of idle
threads) to find the “most idle” client node. In contrast, LWTF and SWWF sort the
client nodes according to user-oriented metrics. LWTF allocates workflows to the
client nodes that can start processing the workflows the earliest. SWWF allocates
workflows to the client nodes which have the least workflows in their buckets.

4.3 Operational Flow for Selecting the Combination of
Policies

During the execution of workloads, the appropriate triplets of policies are chosen
by the scheduler automatically and output the selected one for next step (the actual
provisioning and allocation). In a single decision-making iteration, the portfolio
scheduler selects the combination of policies by applying the following steps in
sequence. First, the scheduler prepares the virtual environments for simulation.
It uses the current system state to build the virtual environments. Note that the

29

Table 4.4: Explanation for the symbols used in the utility function.
Symbol Description

k
k is the scaling factor for the total score whose value should in [1, 10n].

(n is the amount of metrics considered in the utility function)

α α is used to emphasize the urgency of the tasks. (α is user defined)

β β is applied to stress the efficiency of resource usage. (β is user
defined)

P Workflow throughput in one single simulation.

Pmax Estimated maximum value of workflow throughput in one single sim-
ulation.

Wavg Estimated average of workflow waiting time.

C Integration of CPU usage during one single simulation.

Cmax Estimated maximum value of integration of CPU usage during one
single simulation.

scheduler runs simulations for each triplet of the policies in an isolated virtual
environment. In this work, 48 same virtual environments are created at the be-
ginning of the simulation. Then, the scheduler clones the current workload and
loads the triplet of policies into each virtual environment. As shown in Figure 4.1,
the first three steps are the preparation for the simulation. During the simulation,
the equipped policies tuple is periodically applied until the workload is consumed
in each virtual environment. Metrics are also measured and recorded which are
used to evaluate different triplets in the evaluation step. In the evaluation, a score
is calculated for each triplet based on the recorded metrics. A user-defined utility
function (explained in Chapter 4.4) is used for the calculation. The decision maker,
therefore, ranks the triplets discerningly according to the scores calculated by the
evaluation component. The best-ranked triplet is selected. The selected triplet is
used for actual resource provisioning and workflows allocation.

4.4 Utility function as selection criteria

Users can define selection criteria as a utility function. The utility function is a
formula which evaluates the combination of policies by considering both user-
oriented metrics and system-oriented metrics. Thus we focus on task throughput
and CPU utilization which are combined in the following formula:

S = k × (
P

Pmax
)α × (

1

1 +Wavg
)α × (

C

Cmax
)β (4.1)

30

Table 4.5: Constant Values used in the Numerical Analysis
Metric Value
P 16.78 (workflows/s)
Pmax 17.1 (workflows/s)
Wavg 7.83 (s)
C 51.14 (%)
Cmax 82.94 (%)

k, α, and β are scaling factors. P is the workflow throughput. Wavg is the average
workflow waiting time. C is the CPU usage. α and β are used to balance these
three metrics. Table 4.4 gives the definitions of each notation used in the utility
function. The throughput is a standard metric which presents the capability of
processing tasks. Although a higher throughput is usually desired, it may result in
higher resource costs. Therefore, we also consider the CPU cost when evaluating
each pair of policies. Since we have the requirement to finish each workflow before
its deadline, we need to consider the waiting time of a workflow to have control
over the response time.

To analyse the relationship between S and the scaling factors (k, α and β), we
conduct the numerical analysis and show the result in Figure 4.2. We set P , Pmax,
Wavg, C and Cmax to the certain constant values listed in Table 4.5. Under this
condition, S is directly proportional to k and inversely proportional to α and β.

4.5 Implementation of the Decision Table

The key question when implementing the Q-learning policy is how to match ac-
tions and states. For this, we use a decision table stored in its cells state-action
weights, which are dynamically updated by the Q-learning policy. Figure 4.3 de-
picts an example of this table, with the states and actions defined as described in
section 3.7.2. The size of the decision table is determined by the size of the action-
state space (e.g., if the system has 10 actions and 10 possible states, the size of
the decision table is 10×10). To limit the size of the table (otherwise, the train-
ing may take infinite time), the values of ut, vt, yt are normalized between 0 to
1 and discretized (e.g., 10 possible steps), and m is given a maximum value that
limits the number of columns in the table. Before the training process starts, all
the state-action weights are initialized to zero. When making a decision at time t,
our policy finds the row which represents the current state st and , within the cell
values of that row, applies the provisioning action at with the highest weight. The
next moment, t+1, the scheduler updates the weight q of that cell to a new weight
q′:

q′(st, at) = q(st, at) + α(rt+1 + βh− q(st, at)), (4.2)

h = max
a

q(st+1, a), (4.3)

31

where α and β are the learning rate and the discount factor, respectively, rt+1 is
the reward caused by state-change, and h is the estimate of the optimal weight.

4.5.1 Decision Table implementation

The decision table should be well-trained for the Q-learning policy to make ac-
curate decisions. Intuitively, the bigger the size of the decision table the longer it
takes to fill it with data. The larger size of the table increases the training duration.
Moreover, the size of the policy pool also affects the training process. A small num-
ber of policies makes the training process longer as it generates less training data
during the simulation. Thus, it is possible that a poorly trained policy can cause
performance degradation. The size of decision table and the size of the policy pool
are the most important factors affecting the performance of a Q-learning-based
policy.

As mentioned in section 2.4, the Q-learning policy uses a decision table to store
and manage weights of the action-state pairs. The size of the decision table is de-
termined by the number of possible system states and actions. Figure 4.3 shows
an internal structure of the decision table maintained by the Q-learning-based port-
folio scheduler. Our experiments compare the following configurations: different
number of considered actions, a different number of considered system states, and
different sizes of the policy pool. All the related experiments are performed in the
private cloud environment. To evaluate the performance in this setup we use the
workflow waiting time normalized by the execution time. In this work, we apply
the following table configurations.

1. State having more information (MD) vs. State having less information
(LD)
The State function uses three metrics ut, vt, and yt. By definition, vt and yt
have upper boundaries, and ut doesn’t. ut in principle can take any positive
integer value or 0. To avoid ut becoming an infinite value, we normalize it by
the maximal number of threads nmax. The normalized configuration guar-
antees that the decision table converges after a finite number of iterations.
Therefore, we call the configuration with normalized ut as the state with less
data set (LD) and the opposite configuration (without the normalization) as
the state with more data set (MD).

2. 10 as the maximum action value (QA10) vs. 2n as the maximum action
value (QA2n)
More threads may be leased or terminated when the resource increases. As

mentioned in Chapter 3.7.2, the action is defined as at=(m,up|down|none).
It may take a large value of if the number of threads (nmax) becomes large.
We designed two approaches to avoid m increasing linearly with nmax. The
first approach is giving m a maximum value which is 10. It scales at most
ten threads in a single scaling operation. The second approach is using Equa-
tion 4.4 to restrict the value of m in the case that large resource is needed to

32

be scaled.

k =

k, for k < 10

10, for 10 ≤ k < 24

2i, for 2i ≤ k < 2i+1 (i ≥ 4)

(4.4)

3. Setting for policy size
The decision table is solely trained by the data generated during the simula-
tion. Since the simulation is based on policies, the more policies the sched-
uler has, the more data is generated. At the beginning of this section, we
also mentioned that the lack of training data might lead to a poorly trained
Q-learning policy. Based on these assumptions, we investigate the depend-
ency between the size of the policy pool and the application performance.
Table 4.6 demonstrates how the policy pool is constructed in this exper-
iment. Note, that the usage of different workflow selection policies may
cause fluctuations in the workflow waiting time. Thus, to minimize possible
side effects, we only use LCFS for the workflow selection.

Table 4.6: The policy pool configurations.
Policies Provisioning Policy Workflow

Selection
Client Selection

16 AQTP, ODA, ODB, QL LCFS LUF, HITF, LWTF,
SWWF

12 AQTP, ODA, ODB, QL LCFS LUF, HITF, LWTF

9 AQTP, ODB, QL LCFS LUF, HITF, LWTF

8 AQTP, ODA, ODB, QL LCFS LUF, HITF

6 AQTP, ODB, QL LCFS LUF, HITF

4 AQTP, ODA, ODB, QL LCFS HITF

3 AQTP, ODB, QL LCFS HITF

33

Figure 4.1: The operational flow for simulation, evaluation and policies selecting.

34

Figure 4.2: We set the P, Pmax,Wavg, C, Cmax to be constant values and conduct
numerical analysis for k, α, and β.

(0, none) (1, up) (3, down) (m, down)

(0, 0, 0)

(0.1, 0.1, 0.1)

(ut, vt, yt)

Figure 4.3: The decision table for the Q-learning policy. Columns represent actions
and rows represent states of the environment. Xs stand for the state-action weights
which are generated and updated at runtime.

Figure 4.4: The number of the decision table’s rows increases during the training
under the MD configuration.

35

Figure 4.5: The number of the decision table’s column increases during the training
under the QA2n configuration.

36

Chapter 5

Experiment Setup

In this chapter, we present our real-world experimental setup: in turn, the work-
loads, the resources, the metrics configuration, and the baselines used to compare
with ANANKE.

5.1 The Goals

During the experiment, we evaluate the comprehensive performance of ANANKE

under different cloud-based environment and study the impact of different decision
table configurations on workflow performance. To cover the study goals, we design
several experiments and catalog them into four groups. The first group contains
comparative experiments between ANANKE and current Chronos system for eval-
uating the user-interesting performance. The second group consists of comparative
experiments between 5 different auto-sclaers (including ANANKE) for elasticity
studying. The third group is composed of comparative experiments between 3 sets
of decision tables configurations and study the impact of different configurations
on workflow performance. The last group consists of comparative experiments on
large scale resource and evaluate ANANKE’s performance when managing larger
scale resources. The main goal of this chapter is to provide the detailed configura-
tion used to conduct the designed experiments.

5.2 Workload Settings

To measure and analyze the performance of the Q-learning-based portfolio sched-
uler in different conditions, we generate synthetic workloads that emulate the stat-
istical features of real workloads. (We cannot use the real workloads from the
Chronos production environment, due to the confidentiality agreements.) Each
workload is comprised of a set of workflows and an arrival process (pattern).

Individual workflows: After analyzing the original Chronos workloads, we cre-
ate six different types of synthetic workflows and parametrize them similarly to the

37

Table 5.1: The parametrization of synthetic workflows.
Synthetic workflow Execution time range (s) CPU usage (%)

Workflow 1 [5, 15] 20
Workflow 2 [5, 10] 20
Workflow 3 [5, 10] 15
Workflow 4 [5, 15] 5
Workflow 5 [10, 15] 15
Workflow 6 [10, 15] 5

Figure 5.1: Four different patterns: ED.5x and EI2x are dynamic workloads, PA6
and PA3 are static workloads. (The horizontal axis only shows a 190 s-cut from
every complete workload.)

real-world cases. As summarized by Table 5.1, each workflow differs in execution
time and CPU usage, rated on a baseline client node.

Complete workloads: We create four synthetic workloads with periodic or uni-
form arrival patterns, matching the behavior observed in real-world workloads (i.e.,
in production Chronos workloads). Each synthetic workload combines the six dif-
ferent types of synthetic workflows, using a uniformly random distribution to select
the type for each arrival. Figure 5.1 shows the recurrent patterns of workflow ar-
rival in the synthetic workloads. For the workloads with periodic (dynamic) arrival
patterns, ED.5x and EI2x, the workload consists of a sequential batch submis-
sion with ten batches/minute, where, respectively, the number of workflows in a
batch exponentially decreases by 0.5 and increases by 2 in geometric progression.
For the workloads with uniform (static) arrival patterns, PA3 and PA6, the arrival
rate is one workflow every 3 and 6 seconds, respectively.

38

5.3 Environment Configuration

Real-world infrastructure: We conduct real-world experiments with ANANKE on
the DAS-5 multi-cluster system, configured as a cloud environment using the ex-
isting DAS-5 capabilities [7]. For our experiments, we use 1 cluster of the six
available in DAS-5, and up to 50 homogeneous nodes of the 68 available nodes in
this cluster. Each node has Intel E5-2630v3 2.4GHz CPUs and 64 GB of RAM;
nodes are interconnected with 1 Gbit/s Ethernet links (conservatively, we do not
use the existing high-speed FDR InfiniBand links).

Cloud-deployment models: We conduct experiments using three cloud-deployment
models, each of which uses one master node, but different amounts and manage-
ment of client nodes. The private cloud mode uses three statically allocated client
nodes. This mode emulates the current production environment of the Chronos
system and represents standard practice in the industry. The public cloud mode
allows changing the number of client nodes during the experiment, from 1 to 5.
Using this configuration, we evaluate the elasticity of our scheduler. The scalabil-
ity mode allows changing the number of client nodes in a wider range, from 5 to 50,
allowing us to conduct experiments for the what-if scenario in which the system
load would increase by an order of magnitude.

Configuration of ANANKE components: The master node and client nodes are
deployed in DAS-5. We benchmark the client nodes, and determine that each client
node can maintain up to 70 threads. Correspondingly, we set the maximal bucket
size on a client node to 140, which means the client node can accumulate (queue)
load for twice its rated capacity.

5.4 Metrics to Compare ANANKE and Its Alternatives

To analyze ANANKE and its alternatives, we use a variety of operational metrics
focusing on application performance, resource utilization, and elasticity.

5.4.1 Application Performance

To quantify application performance, which is a user-oriented performance view,
we use throughput, the workflow waiting time, and the expiration rate. We define
throughput as the average number of completed workflows per second. The wait-
ing time of a workflow is the time between its arrival and the start of its first task
and the runtime is the time between the start of its first task and the completion of
its last. We look at slowdown in workflow response time, which for a workflow is
the fraction between the runtime, and the sum between the runtime and the wait
time. The expiration rate metric is the fraction of failed workflows, that is, work-
flows that did not complete before their deadlines, from the total number of eligible
workflows during the entire experiment.

39

Figure 5.2: The supply and demand curves illustrating the under- and over-
provisioning periods [21].

5.4.2 Resource Utilization

Resource utilization is an important aspect when evaluating a resource manage-
ment and dynamic scheduling (RMS) system. We use as metric the number of act-
ive (used) threads. Because each client node can run up to 70 threads in ANANKE, a
lower amount of threads (busy and idle) in the system leads to piece-wise linearly
lower operational costs. We sample and collects the number of active threads at
every decision-making time point. An overview analysis of the resource utilization
during the experiment is based on these data.

5.4.3 Elasticity

To evaluate elasticity, we adopt the metrics and comparison approaches introduced
in 2017 by the SPEC Cloud Group [21].

Supply and demand curves: The core elasticity metrics are based on the analysis
of discrete supply and demand curves. In this project, we define supply as the
current number of threads in the system. We define the demand as the current
number of running and waiting workflows, and when computing demand we only
consider those workflows near their deadlines [28]. (In particular, the near-deadline
workflows are those whose sum of waiting time and estimated running time is close
to the deadline).

Elasticity metrics: We adopt the suite of metrics proposed by the SPEC Cloud
Group [21], each of which characterizes a different facet of the mismatch between
supply and demand of resources. We use three classes of system-oriented elasti-
city metrics, related to accuracy, duration of incorrect provisioning, and instability
caused by elasticity decisions. The SPEC Cloud Group defines two accuracy met-

40

rics: the under-provisioning accuracy, defined as the average fraction by which the
demand exceeds the supply; and over-provisioning accuracy, defined as the aver-
age fraction by which the supply exceeds the demand. The Wrong-provisioning
Timeshare represents the fraction of the time of periods with inaccurate provision-
ing, either under- or over-provisioning, from the total duration of the observation.
The Instability represents situations when the supply and demand curves do not
change with the same speed, and is defined as the fraction of time the supply and
demand curves move in opposite directions or move towards each other. Accord-
ing to the definition, all the elasticity metrics mentioned above are between 0 to
1. Figure 5.2 shows how the mismatches between the supply and demand curves
cause under- and over-provisioning states.

Comparing multiple auto-scalers: To perform a comparison including all system-
and user-oriented metrics, we use the two numerical approaches proposed for use
by the SPEC Cloud Group [21]: Pairwise Comparison [14] and the Fractional
Difference Comparison [21]. In the pairwise comparison, for each auto-scaler,
we compare the value of each metric with the value of the same metric of all the
other auto-scalers. The auto-scaler which has better performance for a particular
comparison gains 1 point. If two auto-scalers perform equally well for the same
metric, both earn a half-point. Finally, auto-scalers are ranked by the sum of points
they have accumulated through pairwise comparisons. For the fractional difference
comparison, from all the obtained results we construct an ideal system, which for
each metric is ascribed the best performance observed among the compared sys-
tems. (The ideal system expresses a pragmatic ideal that may be closer to what
is achievable in practice than computation based on theoretical peaks, and likely
does not exist in practice.) Then, we compare each auto-scaler with the ideal case,
and accumulate for each metric the fractional difference between; the lower the
difference, the closer the real auto-scaler is the ideal. Last, we rank auto-scalers
inversely, such that the lowest accumulated value indicates the best auto-scaler.

5.5 Auto-scalers Considered for Comparative Evaluation

In our experiments, we analyze the elasticity of ANANKE and other auto-scalers.
We compare experimentally ANANKE with the following alternatives:

5.5.1 Existing Baseline

As the baseline for ANANKE, we experiment with the current Chronos system,
which is production-ready, does not meet design goals 3–4.

5.5.2 Elasticity Baselines

Elasticity can be achieved by both vertical scaling, that is, adding or removing
threads on existing client nodes, and horizontal scaling, that is, adding or removing
client nodes. Unlike ANANKE, which is elastic both horizontally and vertically,

41

Chronos is only horizontally elastic. To better assess ANANKE’s elasticity, we
implement a prototype and a set of baselines with diverse elasticity capabilities:

1. ANK-VH (full ANANKE): Vertical and horizontal auto-scaling by the Q-learning-
based portfolio scheduler.

2. ANK-V (partial ANANKE): Only vertical auto-scaling by the Q-learning-
based portfolio scheduler.

3. PS(-VR) (standard portfolio scheduling [16]): Vertical auto-scaling by the
standard portfolio scheduler, and (PS) no autoscaling or (PS-VR) horizontal
auto-scaling by the React policy [11]. React is a top-performing auto-scaler
for horizontal elasticity and workflows [21].

4. NoPS (Chronos): Only vertical auto-scaling, by a threshold-based scaling
policy.

5. Static (common in the industry): No auto-scaling, using only a fixed
amount of client nodes.

42

Figure 6.1: The expiration rate and the response time of expired workflows with
different workloads. (Lower values are better.)

Chapter 6

Experimental Results

In this chapter, we evaluate and validate the design choices we made for ANANKE

(in Chapter 3). As mentioned in Chapter 5, we use two dynamic and two static
workloads. Overall, our main experimental findings are:

1. The Q-learning-based portfolio scheduler shows better elasticity results com-
pared with the threshold-based auto-scaler common in today’s practice (NoPS).
Our horizontally and vertically elastic approach (ANK-VH) can save from
24% to 36% resources with at most 1.4% throughput degradation.

2. Compared with the standard portfolio scheduler, which may be adopted eas-
ily by the industry, under static workloads the Q-learning-based portfolio
scheduler has better user-oriented metrics.

3. Compared with the experimental PS-VR, the Q-learning-based portfolio sched-
uler reduces the performance degradation due to elasticity, and for our largest
experiments it outperforms PS-VR, but for small experiments it shows worse
overall elasticity performance when not tuned.

43

4. The Q-learning-based scheduler can be tuned to achieve a wide range of
performance and elasticity goals.

6.1 Overview

We conduct experiments from four aspects including evaluation of scheduler im-
pact, elasticity, decision table configuration impact and large scale performance.
The configurations of the experiments are listed in Table 6.1

Table 6.1: Overview of the experiments
Environment Workload Measured metrics #Policies Baselines

Scheduler Impact on Workflow Performance

private cloud
mode

ED.5x,
EI2x,
PA6,
PA3

expired rate,
workflow waiting time,
workflow response time

36
ANK-V,
PS,
NoPS

Evaluation of Elasticity and Resource Utilization

public cloud
mode

ED.5x,
EI2x,
PA6,
PA3

supply,
estimated demand,
workflow response time

36

PS-(VR),
ANK-VH,
ANK-V,
NoPS,
Static

Decision Table Configuration Impact on Workflow Performance

public cloud
mode

ED.5x,
EI2x,
PA6,
PA3

workflow waiting time
36,
3–16

ANK-VH

Analysis at 10× Larger Scale

scalability
mode

ED.5x,
EI2x,
PA6,
PA3

the number of threads 24
ANK-VH,
PS-(VR)

Analysis of Transition in the Selected Combination of Policies

private cloud
mode

ED.5x,
EI2x,
PA6,
PA3

the selected combination
of policies

36 ANK-VH

44

Figure 6.2: The normalized response time of the Q-learning-based portfolio sched-
uler (ANK-V) and of the standard portfolio scheduler (PS). Workload: (top pair of
plots) dynamic (ED.5x),(middle part of plots) dynamic (EI2x), and (bottom pair
of plots) static (PA3).

45

6.2 Scheduler Impact on Workflow Performance

We conduct experiments for this part using the private cloud mode and report here
only the expiration rate and the workflow waiting time as the main metrics indicat-
ing application performance.

Figure 6.1 depicts the results measured for ANANKE (ANK-V), for the system
using a standard portfolio scheduler (PS), and for the system without a portfolio
scheduler (NoPS). Both the Q-learning-based portfolio scheduler (ANK-V) and the
standard portfolio scheduler (PS) have very low expiration rates, much better than
the system without a portfolio scheduler. The portfolio scheduler leads to a few
expired tasks, with the ED.5x workload, but even then the average response time
of the expired workflows is closer to the deadline (indicated in the figure). Ac-
cordingly, both the Q-learning-based portfolio scheduler and the standard portfolio
scheduler can fulfill the deadline-constrained SLOs. Overall, we cannot observe
a significant difference between the Q-learning-based portfolio scheduler and the
standard portfolio scheduler in the expiration rate and in the response time degrad-
ation.

Figure 6.2 depicts a deeper analysis of the performance of the Q-learning-based
portfolio scheduler. For this, we compare the normalized workflow waiting times
achieved by our scheduler and the standard portfolio scheduler. We normalize the
workflow waiting time by the workflow execution time and calculate its cumulat-
ive average value; lower values indicate a better user-experienced performance.
Figure 6.2 shows the performance of our schedulers and of PS, for static (PA3)
and dynamic (ED.5x and EI2x) workloads, and correlated sub-plots depicting
the arrival of workflows in the system. The Q-learning-based portfolio scheduler
reduces the normalized waiting time by 5–20% compared with the standard portfo-
lio scheduler, especially at the begining of the experiment, with a static workload.
However, a similar performance improvement does not appear with the dynamic
workload—the standard portfolio scheduler even performs slightly better, reducing
the normalized waiting time by 0–8.3%. We explain this as follows. Because static
workloads exhibit strong recurring patterns, the Q-learning-based portfolio sched-
uler can make more precise scheduling decisions based on the information about
previous workloads and system statuses. The results indicate that the learning tech-
nique can help the portfolio scheduler make better decisions, for workloads with
strong recurring patterns.

6.3 Evaluation of Elasticity and Resource Utilization

To assess the elasticity, we conduct experiments in the public-cloud mode. As ex-
plained in Chapter 5, in an ideal case the supply should follow the envelope of the
demand. Figure 6.3 displays the supply and demand curves for each auto-scaler
under different workloads and highlights the one having the best performance
(where the supply and demand curves are close to each other) with a red box. The
Q-learning-based portfolio scheduler which uses only vertical scaling (ANK-V)

46

Table 6.2: Calculated metrics for all of the considered auto scalers under ED.5x
workload.

ED.5x aU aO tU tO i i′ Se V T

PS-(VR) 0.10 1.18 0.48 0.49 0.28 0.23 2.22 200 17.23
ANK-VH 0.28 0.30 0.71 0.26 0.44 0.27 2.69 181 15.39
ANK-V 0.05 4.94 0.31 0.67 0.38 0.25 1.69 274 17.65
NoPS 0.03 3.99 0.27 0.73 0.46 0.21 1.35 313 17.48
Static 0.02 11.06 0.28 0.73 0.68 0.30 1 349 17.35
Ideal 0.02 0.30 0.27 0.26 0.28 0.21 1 181 17.65

Table 6.3: Calculated metrics for all of the considered auto scalers under EI2x
workload.

EI2x aU aO tU tO i i′ Se V T

PS-(VR) 0.05 1.01 0.49 0.58 0.25 0.20 2.04 186 16.19
ANK-VH 0.22 0.39 0.65 0.28 0.36 0.24 2.77 161 16.19
ANK-V 0.01 3.51 0.13 0.83 0.25 0.39 1.73 249 16.24
NoPS 0.01 3.48 0.10 0.90 0.38 0.46 1.31 293 16.25
Static 0.01 13.08 0.13 0.88 0.33 0.65 1 348 16.23
Ideal 0.01 0.39 0.10 0.28 0.25 0.20 1 161 16.25

performs better with the ED.5x workloads. The Q-learning-based portfolio with
both horizontal and vertical scaling (ANK-VH) beats all the others under the other
three workloads. PS-(VR) often under-provisions which means that it can cause
serious performance degradation. NoPS and Static, on the contrary, signific-
antly over-provision the resources and guarantee good user-experienced perform-
ance at the cost of many idle resources. However, according to the requirements,
good performance for users with high resource costs is not our goal. Figure 6.3
gives an overview of elastic behavior of the considered auto-scales for various
configurations. To perform a comprehensive comparison including all system- and
user-oriented metrics, we use two numerical methods. We rank the policies using
the pairwise comparison method and the fractional difference comparison method
which are introduced in Chapter 5.4.3.

The comprehensive comparison is based on the metrics described in Chapter 5.4.3
which include over- and under-provisioning accuracy (aU , aO), over- and under-
provisioning timeshare (tU , tO), two types of instability (i, i′), the average work-
flow throughput (T), the average number of used threads (V), and the slowdown
in workflow response time (Se). Table 6.6 shows the comparison results. The best
auto-scaler for each workload is highlighted in bold. Considering all the combined
results generated by the described metric aggregation approaches, ANANKE out-
performs all the other configurations in both static and dynamic workloads. From
the results in Figure 6.2 and Table 6.6 we can conclude that the reduction in the
number of utilized resources often leads to the user-experienced performance de-

47

Table 6.4: Calculated metrics for all of the considered auto scalers under PA6
workload.

PA6 aU aO tU tO i i′ Se V T

PS-(VR) 0.04 0.42 0.35 0.60 0.20 0.37 1.41 171 16.86
ANK-VH 0.33 0.04 0.78 0.16 0.33 0.34 3.06 158 15.71
ANK-V 0.02 1.95 0.02 0.96 0.29 0.35 1.48 218 16.73
NoPS 0.00 2.21 0.02 0.98 0.32 0.44 1.12 224 16.81
Static 0.00 11.28 0 1.01 0.41 0.54 1 330 17.00
Ideal 0.00 0.04 0 0.16 0.20 0.34 1 158 17.00

Table 6.5: Calculated metrics for all og hte considered auto scalers under PA3
workload.

PA3 aU aO tU tO i i′ Se V T

PS-(VR) 0.06 0.40 0.44 0.50 0.30 0.37 1.39 169 16.78
ANK-VH 0.35 0.01 0.85 0.10 0.33 0.31 2.90 160 16.54
ANK-V 0.01 2.05 0.07 0.90 0.27 0.34 1.39 212 16.82
NoPS 0.00 2.06 0.02 0.99 0.23 0.43 1.09 228 16.78
Static 0 11.17 0 1.01 0.49 0.50 1 330 17.03
Ideal 0 0.01 0 0.10 0.23 0.31 1 160 17.03

Table 6.6: The results of the pairwise and fractional comparisons. The winners are
highlighted in bold.
Auto Scaler Pairwise (points) Fractional (frac.)

ED.5x EI2x PA6 PA3 ED.5x EI2x PA6 PA3

PS-(VR) 11 13 13 13 3.00 2.88 3.65 3.58
ANK-VH 17 16 19 15 2.89 2.70 1.80 1.94
ANK-V 20 22 15 19 6.78 5.53 4.00 3.95
NoPS 19 16 17.5 17 6.02 5.82 4.08 3.92
Static 13 13 15.5 16 13.44 15.91 14.51 14.46

gradation. Since our SLO requires workflows to meet their deadlines, further we
focus on the influence of the number of used threads on the user-experienced per-
formance. Because we can not observe a significant difference in workflow waiting
times between ANANKE and the standard portfolio scheduler, we measure changes
in the throughput to evaluate the user-experienced performance. For that, we se-
lected two metrics which are the throughput degradation in workflows per second
(compared with the Static case) and the number of used threads.

Figure 6.4 shows the results. Although PS-(VR) uses 48–52% less resources, it
also causes higher throughput degradation (–1.96 workflows per second at most).
ANK-VH has lower throughput degradation from –0.14 to –0.11 workflows per
second which is 0.68–0.8% of the baseline throughput and saves from 42.8% to

48

48.2% of resources. From the results shown in Figure 6.4, we can conclude that
taking the performance degradation and resource costs into account, the Q-learning-
based portfolio scheduler (which uses both horizontal and vertical auto-scaling)
allows to achieve the best user-experienced performance with the lowest resource
cost among all the four auto-scalers with static and dynamic workloads.

6.4 Decision Table Configuration Impact on Workflow Per-
formance

In this section, we discuss our findings of the trade-off between the configuration
of the decision table and the user-experienced performance.

We study this topic varying the number of actions, varying the number of system
states, and varying the size of the policy pool. All the related experiments are
performed in a private cloud setting. We use workflow waiting time normalized by
the execution time to represent the user-experienced performance.

6.4.1 Different Configuration Setting in Determining State st

To compare the impacts of different configurations of system states (stored in the
decision table) on user-experienced performance, we use LD, and MD configur-
ation setting mentioned in Chapter 4.5.1 and measure the workflow waiting time
and normalize it by the execution time. Figure 6.5 shows the normalized workflow
waiting time under different configuration settings. The Q-learning-based port-
folio scheduler with the LD configuration performs better than the one with the
MD configuration under a dynamic workload. Compared to the scheduler with
the MD configuration, the LD configuration reduces the workflow waiting time by
15.9% under the ED.5x workload. Under the EI2x workload, the LD configura-
tion reduces the workflow waiting time from 4.5% to 12%. However, for static
workloads, the difference in the measured metrics is less obvious. Comparing the
zoomed-in areas (between 360s and 480s), we can notice that the workflow waiting
time converge to the same value faster under a static workload. This observation
indicates that the state configuration also influences the convergence speed of the
the workflow waiting time.

We explain this as follows: Dynamic workloads can cause rapid changes in sys-
tem states. As a consequence, the size of the decision table with the MD config-
uration becomes larger as it allows more potential state values. A larger decision
table requires more time and data for its training and thus causes more inaccurate
scheduling decisions. Scheduler with LD configuration performs better under a dy-
namic workload. However, the system is more stable and the number of potential
state values is less if a static workload is given. No matter which state configura-
tion is used, the decision table can always be trained in a short period with a static
workload. Since there is no great difference between LD and MD configuration

49

in the training time, the user-experienced performances observed in LD and MD
cases are thus similar.

We can conclude from the observations that smaller value space of system state
leads to better performance under dynamic workloads.

6.4.2 Different Configuration Setting in Determining Action at

As the size of the state value space affects the user-experienced performance, in this
section, we investigate if varying the value space of action has a similar effect on
the workflow performance. The results are shown in Figure 6.6. We cannot observe
any significant differences in the normalized workflow waiting time. Taking four
workloads into account, the QA10 configuration reduces the normalized workflow
waiting time by 5.5%–9.7%. The normalized waiting time with different action
configurations has similar values for most of the experiment time. No matter which
type of workload is used, both action configurations have similar user-experienced
performance (normalized waiting time). Form Figure 6.6 we can conclude that
there is no strong correlation between the size of the action value space and the
workflow waiting time

6.4.3 Policy Pool Size Impact on Workflow Performance

The final hypothesis we would like to investigate is the influence of the policy
pool size on the user-experienced performance. We use the configurations from
Table 4.6. The smallest configuration uses three policies, and the largest config-
uration uses 16 polices. Figure 6.7 shows the dependency between the size of the
policy pool and the normalized workflow waiting time. Under the ED.5x and EI2x
workloads, no strong correlation between the normalized workflow waiting time
and the size of the policy pool can be found. Under the PA6 and PA3 workloads,
the normalized workflow waiting time is inversely proportional to the number of
policies. The bigger size of the policy pool leads to lower values of normalized
workflow waiting times. We can conclude that for static workloads the Q-learning-
based portfolio scheduler with bigger policy pool has a smaller workflow waiting
time. However, such a relation is not observed under a dynamic workload.

6.5 Analysis at 10× Larger Scale

Last, we show the performance of the Q-learning-based portfolio scheduler when
managing 10 times more resources—up to 50 nodes in the scalability mode (see
Chapter 5.3). We only use PS-(VR) as the baseline in this experiment. Fig-
ure 6.8 shows the supply and demand curves of two auto-scalers. Similarly to
what we have observed from the evaluation of elasticity, PS-(VR) experiences
problems: It fails to adjust the available number of resources quickly, to match
demand changes. ANK-VH shows better results: compared with PS-(VR), the

50

gap between the supply and demand curves for ANK-VH is (visibly) smaller. Over-
all, Figure 6.8 indicates that the Q-learning based portfolio scheduler is able to
deliver good elasticity properties, by provisioning mostly the required number of
resources, even at 10 times larger scale than the current practice.

6.6 Analysis of Transition in Selected Combination of Policies

As mentioned in Chapter 3.7, the Q-learning-based portfolio scheduler dynamic-
ally select the combination of policies. To analyze the transition in selected com-
bination of policies, we track the selected combination during the experiment and
present one particular result (under ED.5x workload) in Figure 6.9. According to
the observations, the Q-learning-based portfolio scheduler selects different com-
bination in runtime. We also find that not all the equipped policies have been used
in the experiment. As Figure 6.9 shows, 28 out of 36 policies-combinations have
been selected during the experiment. Similar results are also observed in the ex-
periments with EI2x, PA3, and PA6 workloads.

51

Figure
6.3:T

he
supply

and
dem

and
curvesforfive

differentauto-scalers,under(left)dynam
ic

and
(right)static

w
orkloads.T

he
“A

vailable
threads”

horizontalline
indicates

the
resource

lim
itof

350
threads.

T
he

bestperform
ance

for
each

w
orkload

is
highlighted

w
ith

a
red

box.

52

Figure 6.4: The average number of used threads during the experiment and the
average throughput degradation. The baseline is the static case without an auto-
scaler.

53

Figure 6.5: Normalized workflow waiting times for the state with more information
(MD) and the state with less information (LD) configurations. The arrow at the left
upper corner indicates that the lower value is better. The upper two cases use the
dynamic workloads; the bottom two use the static workloads.

Figure 6.6: Normalized workflow waiting time for QA10 and QA2n configura-
tions. The arrow at the right upper corner indicates that the lower value is better.
The upper two cases use the dynamic workloads; the bottom two use the static
workloads.

54

Figure 6.7: The vertical axis is the workflow waiting time normalized by the ex-
ecution time and the horizontal axis represents the size of the policy pool varying
from 3 to 16.

55

Figure 6.8: Comparison when auto-scaling at large scale between: (left) a simple
reactive mechanism, and (right) ANANKE.

56

Figure 6.9: Transition in Selected Combination of Policies when preforming
scheduling.

57

58

Chapter 7

Conclusion and Future Work

After all the elaborations of our design and the experimental evaluations. We
present the summary of our study and the research findings. In this Chapter, we
also discuss the potential future works.

7.1 Conclusion

Dynamic scheduling of complex industrial workflows is beneficial for compan-
ies when migrating to cloud environments. Current state-of-the-art approaches
which are based on portfolio scheduling do not take into account the periodic ef-
fects which are often observed in workflows. SLOs specific for complex industrial
workflows are also rarely addressed. To fill this gap, in this work we have explored
the integration of a learning technique into a cloud-aware portfolio scheduler. In
the problem statement we present three main questions that we investigate and an-
swer throughout this work:

1. How to adapt the concept of portfolio scheduling to the RM&S frame-
work used in production environment?
We study the current approach used by The Smart Connect Team and invest-
igate the functional and non-functional requirements. To answer the ques-
tion, We thus designed ANANKE, an architecture for RM&S that uses cloud
resources for its operation. ANANKE is a variant of the current framework
(Chronos) which can use portfolio scheduler to provisioning resource and
allocate workflows.

2. How to use the historical information when performing portfolio schedul-
ing?
To take advantage of the historical information, learning techniques can be
applied when performing scheduling. We investigate many learning tech-
niques used in task and resource management. We find Q-learning meet our
requirements and design a learning-based scheduling policy using the Q-
learning technique. We further present a design of a learning-base portfolio

59

scheduler which can be equipped with the Q-learning policy.

3. How to evaluate the adapted learning-based portfolio scheduler, experi-
mentally, through the implementation of a prototype?
We implement ANANKE as a prototype of the production environment at
Shell and conducted real-world experiments. We also design and select
various threshold-based heuristics as scheduling policies for the Q-learning
based portfolio scheduler. The experimental results allow us to analyze the
inter-dependencies between the parametrization of Q-learning and portfolio
scheduling, moreover, discover how the size of the decision table and the
size of the scheduling policy pool affects the performance. We also compare
ANANKE with its state-of-the-art and state-of-practice alternatives. In our
experiments, we use a diverse set of workloads derived from real industrial
workflows, and various metrics to characterize the performance and elasti-
city.

Our results demonstrate that using Q-learning policy in portfolio scheduler can
achieve better performance in user experience, resource utilization, and auto-scalability
under a static workload. When given workload with high fluctuation the difference
between the performance of learning based portfolio scheduler and stander portfo-
lio scheduler is not distinct. Moreover, we show our finding in the relation between
parameter setting and user-interested performance. The space size of decision table
and the size of policy pool influence the performance under a static workload. The
study focusing on the internal setting provides some instructions on using learning
based portfolio scheduler for various workload and different SLOs.

7.2 Future Work

In this work, We design and implement a learning-based portfolio scheduler adapt-
ing the concept of portfolio scheduling and reinforcement learning. There are four
different topics where we can extend our work.

1. Learning techniques
In this work, we only focus on Q-learning as the main learning technique for
a specified workload type (sensor data processing). However, other learn-
ing techniques are preferable if the workload or requirements change. In
the future, we plan to extend our work with considering other reinforcement
learning techniques, such as error-driven learning and temporal difference
learning. We tend to apply the learning-based portfolio scheduler with dif-
ferent learning techniques on an extended set of workloads and SLOs and
find the limitation of the learning based portfolio scheduler in different scen-
arios.

2. Simulator
The learning-base portfolio scheduler designed and implemented in this work

60

only use an event-driven based simulator. However, other types of simulator
such as time-driven based and data-driven based simulator can be adapted
to meet different time-constraint and accuracy requirements. In the further
work, we tend to apply other types of the simulator in portfolio scheduling
with learning techniques. By comparing the simulator impact on system-
oriental and user-oriental performance, we want to explore the use cases of
learning-based portfolio scheduler equipped with different type of simulator.

3. Optimizations of simulation
One of the limitations of the event-driven based simulator is that the simulat-
ing time increase with the size of workload linearly. In the 10× Larger Scale
experiment, we find that the simulation process becomes time-consuming
when intensive workloads are given due to the limitation of event-driven
based simulator. An additional mechanism is needed to control the simu-
lating time to meet time-constraint SLOs. We apply a simple mechanism
(reducing the size of police pool) to control the simulation time. There are
other advanced mechanisms can be applied to optimize the simulation and
reduce simulation time. However, reducing the simulation time may influ-
ence the accuracy of the final scheduling decision since fewer metrics and
data are considered during the simulation. As a consequence, the trade-off
between accuracy and simulating time need to be carefully considered. In
the future, we plan to apply different optimization mechanisms on portfo-
lio scheduler and speed up the decision-making time to meet more SLOs of
real-time systems.

4. Hybrid cloud environment
In this work, we evaluate ANANKE either on private cloud environment or
public cloud environment. However, hybrid environment combining private
and public cloud resource are also adapted in the industry to ensure the con-
fidentiality and reduce operational costs at the same time. Workflows in-
volving confidential data can be processed on the private cloud and other
workflows and be allocated on the public cloud resource. In the future, we
tend to adapt the learning based portfolio scheduler on hybrid cloud resource
and explore the limitation of the scheduler in this scenario.

61

62

Bibliography

[1] Amazon web services (AWS). https://aws.amazon.com.
[2] Saeid Abrishami, Mahmoud Naghibzadeh, and Dick H. J. Epema. Deadline-

constrained workflow scheduling algorithms for infrastructure as a service clouds.
Future Generation Comp. Syst., 29(1):158–169, 2013.

[3] Younsun Ahn and Yoonhee Kim. Auto-scaling of virtual resources for scientific
workflows on hybrid clouds. In HPDC, pages 47–52, 2014.

[4] Hamid Arabnejad, Pooyan Jamshidi, Giovani Estrada, Nabil El Ioini, and Claus Pahl.
An auto-scaling cloud controller using fuzzy q-learning - implementation in open-
stack. In ESOCC, pages 152–167, 2016.

[5] Ankita Atrey, Hendrik Moens, Gregory van Seghbroeck, Bruno Volckaert, and
Filip De Turck. BRAHMA: an intelligent framework for automated scaling of
streaming and deadline-critical workflows. In CNSM, pages 216–222, 2016.

[6] Graham Baird et al. Upgraded online protection and prediction systems improve
machinery health monitoring. Asset Management & Maintenance Journal, 27(2):16,
2014.

[7] Henri E. Bal, Dick H. J. Epema, Cees de Laat, Rob van Nieuwpoort, John W.
Romein, Frank J. Seinstra, Cees Snoek, and Harry A. G. Wijshoff. A medium-scale
distributed system for computer science research: Infrastructure for the long term.
IEEE Computer, 49(5):54–63, 2016.

[8] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. Coordinated self-configuration of
virtual machines and appliances using a model-free learning approach. IEEE Trans.
Parallel Distrib. Syst., 24(4):681–690, 2013.

[9] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and Ra-
jkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. SPE, 41(1):23–50,
2011.

[10] Steve J. Chapin, Walfredo Cirne, Dror G. Feitelson, James Patton Jones, Scott T.
Leutenegger, Uwe Schwiegelshohn, Warren Smith, and David Talby. Benchmarks
and standards for the evaluation of parallel job schedulers. In JSSPP, pages 67–90,
1999.

[11] Trieu C. Chieu, Ajay Mohindra, Alexei A. Karve, and Alla Segal. Dynamic scaling
of web applications in a virtualized cloud computing environment. In ICEBE, pages
281–286, 2009.

[12] Delong Cui, Wende Ke, Zhiping Peng, and Jinglong Zuo. Multiple dags workflow
scheduling algorithm based on reinforcement learning in cloud computing. In ISICA,
pages 305–311, 2015.

[13] Reginald Cushing, Spiros Koulouzis, Adam S. Z. Belloum, and Marian Bubak.
Prediction-based auto-scaling of scientific workflows. In (MGC, page 1, 2011.

63

[14] Herbert A David. Ranking from unbalanced paired-comparison data. Biometrika,
74(2):432–436, 1987.

[15] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny, and
R. Kent Wenger. Pegasus, a workflow management system for science automation.
FGCS, 46:17–35, 2015.

[16] Kefeng Deng, Junqiang Song, Kaijun Ren, and Alexandru Iosup. Exploring portfolio
scheduling for long-term execution of scientific workloads in iaas clouds. In SC,
pages 55:1–55:12, 2013.

[17] Kefeng Deng, Ruben Verboon, Kaijun Ren, and Alexandru Iosup. A periodic portfo-
lio scheduler for scientific computing in the data center. In JSSPP, pages 156–176,
2013.

[18] Juan José Durillo and Radu Prodan. Multi-objective workflow scheduling in amazon
EC2. Cluster Computing, 17(2):169–189, 2014.

[19] Marc Frı̂ncu, Stéphane Genaud, and Julien Gossa. Comparing provisioning and
scheduling strategies for workflows on clouds. In IPDPSW, pages 2101–2110, 2013.

[20] Bernardo A Huberman, Rajan M Lukose, and Tad Hogg. An economics approach to
hard computational problems. Science, 275(5296), 1997.

[21] Alexey Ilyushkin, Ahmed Ali-Eldin, Nikolas Roman Herbst, Alessandro Papado-
poulos, and Alexandru Iosup. An experimental performance evaluation of autoscal-
ing algorithms for complex workflows. In ACM/SPEC ICPE, 2017.

[22] Alexey Ilyushkin and Dick H. J. Epema. Towards a realistic scheduler for mixed
workloads with workflows. In CCGrid, pages 753–756, 2015.

[23] Alexey Ilyushkin, Bogdan Ghit, and Dick H. J. Epema. Scheduling workloads of
workflows with unknown task runtimes. In CCGrid, pages 606–616, 2015.

[24] Alexandru Iosup, Simon Ostermann, Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick H. J. Epema. Performance analysis of cloud computing services
for many-tasks scientific computing. IEEE TPDS, 22(6):931–945, 2011.

[25] Alexandru Iosup, Omer Ozan Sonmez, and Dick H. J. Epema. Dgsim: Comparing
grid resource management architectures through trace-based simulation. In Euro-
Par, pages 13–25, 2008.

[26] Dalibor Klusácek and Simon Tóth. On interactions among scheduling policies: Find-
ing efficient queue setup using high-resolution simulations. In Euro-Par, pages 138–
149, 2014.

[27] Li Liu, Miao Zhang, Yuqing Lin, and Liangjuan Qin. A survey on workflow man-
agement and scheduling in cloud computing. In CCGrid, pages 837–846, 2014.

[28] Shenjun Ma, Alexey Ilyushkin, Alexander Stegehuis, and Alexandru Iosup. Ananke:
a Q-Learning-Based Portfolio Scheduler for Complex Industrial Workflows: Exten-
ded Technical Report. Technical report, TU Delft. DS-2017-001.

[29] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski. Cost- and
deadline-constrained provisioning for scientific workflow ensembles in iaas clouds.
In SC, page 22, 2012.

[30] Ming Mao and Marty Humphrey. Auto-scaling to minimize cost and meet applica-
tion deadlines in cloud workflows. In SC, pages 49:1–49:12, 2011.

[31] Ming Mao, Jie Li, and Marty Humphrey. Cloud auto-scaling with deadline and
budget constraints. In GRID, pages 41–48, 2010.

[32] Paul Marshall, Henry M. Tufo, and Kate Keahey. Provisioning policies for elastic
computing environments. In IPDPS, pages 1085–1094, 2012.

[33] Mohammad Masdari, Sima ValiKardan, Zahra Shahi, and Sonay Imani Azar. To-
wards workflow scheduling in cloud computing: A comprehensive analysis. J. Net-
work and Computer Applications, 66:64–82, 2016.

64

[34] Simon Ostermann, Radu Prodan, and Thomas Fahringer. Dynamic cloud provision-
ing for scientific grid workflows. In GRID, pages 97–104, 2010.

[35] Pradeep Padala, Anne Holler, Lei Lu, A Parikh, M Yechuri, and X Zhu. Scaling of
cloud applications using machine learning. VMware Technical Journal, 2014.

[36] Zhiping Peng, Delong Cui, Yuanjia Ma, Jianbin Xiong, Bo Xu, and Weiwei Lin.
A reinforcement learning-based mixed job scheduler scheme for cloud computing
under SLA constraint. In CSCloud, pages 142–147, 2016.

[37] Ohad Shai, Edi Shmueli, and Dror G. Feitelson. Heuristics for resource matching in
intel’s compute farm. In JSSPP, pages 116–135, 2013.

[38] Jiyuan Shi, Junzhou Luo, Fang Dong, Jinghui Zhang, and Junxue Zhang. Elastic
resource provisioning for scientific workflow scheduling in cloud under budget and
deadline constraints. Cluster Comp., 19(1):167–182, 2016.

[39] Omer Ozan Sonmez, Nezih Yigitbasi, Saeid Abrishami, Alexandru Iosup, and Dick
H. J. Epema. Performance analysis of dynamic workflow scheduling in multicluster
grids. In HPDC, pages 49–60, 2010.

[40] Gerald Tesauro, Nicholas K. Jong, Rajarshi Das, and Mohamed N. Bennani. A
hybrid reinforcement learning approach to autonomic resource allocation. In ICAC,
pages 65–73, 2006.

[41] Zhao Tong, Zheng Xiao, Kenli Li, and Keqin Li. Proactive scheduling in distributed
computing - A reinforcement learning approach. JPDC, 74(7):2662–2672, 2014.

[42] Vincent van Beek, Jesse Donkervliet, Tim Hegeman, Stefan Hugtenburg, and Alex-
andru Iosup. Self-expressive management of business-critical workloads in virtual-
ized datacenters. IEEE Computer, 48(7):46–54, 2015.

[43] David Villegas, Athanasios Antoniou, Seyed Masoud Sadjadi, and Alexandru Iosup.
An analysis of provisioning and allocation policies for infrastructure-as-a-service
clouds. In CCGrid, pages 612–619, 2012.

[44] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-
4):279–292, 1992.

[45] Yi Wei, M. Brian Blake, and Iman Saleh. Adaptive resource management for service
workflows in cloud environments. In IPDPSW, pages 2147–2156, 2013.

[46] Li Yu and Douglas Thain. Resource management for elastic cloud workflows. In
CCGrid, pages 775–780, 2012.

65

