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Abstract - BMW’s new driving simulation center operates multiple motion-base simulators – each with a different
kinematic configuration – to serve various experiment use-cases and requirements of simulator users. The selec-
tion of a simulator for each experiment should ideally be based on their relative strengths and weaknesses. To
support this decision-making process, subjective and objective predictions of motion cueing quality can be used.
This paper provides an example comparison of four motion-base driving simulators. The kinematic configurations
of the simulators considered differed in the additional presence of a yaw-drive and/or a linear xy-drive. The com-
parison is made by calculating offline, optimization-based motion cueing with perfect prediction capabilities (the
‘Oracle’) for nine urban drives. A prediction of subjective motion incongruence ratings is made for each simulator.
In addition, an error type identification method is used (identifying scaling, missing cue, false cue and false di-
rection cue errors) and evaluated per simulator. As Oracle can fully utilize the available workspace, the employed
evaluation methods provide an insight in the fundamental capabilities of each simulator. Both the modelled ratings
and the error type analysis show the benefits of adding a xy-drive in urban use-cases: predicted ratings reduce
by 19% (i.e., better), while scaling and missing cue errors in the yaw rate are reduced when adding a yaw-drive.
The presence of both of these additional motion systems allow for practically one-to-one and therefore error-free
motion cueing. The proposed methods provide a straight-forward, yet insightful basis for simulator selection. The
presented methods can be extended towards the analysis of multiple motion cueing algorithms and/or other use-
cases for systematically selecting the best-suited motion cueing method.

Keywords: Motion cueing, simulator comparison, quality comparison, objective assessment.

1. Introduction
BMW has recently constructed a novel integrative
driving simulation center, hosting multiple driving
simulators with different kinematic configurations.
The centre is aimed at covering a wide scope of driv-
ing simulation use-cases. The availability of these
simulators opens up a new design problem, where
for any upcoming experiment or use-case to be per-
formed on a simulator, the best-suited method (mo-
tion cueing algorithm and simulator) must be se-
lected. In order to make informed choices in this se-
lection process, a reliable assessment of motion cue-
ing quality is needed. Due to the large scope of avail-
able motion cueing methods, an assessment method
preferably should allow for an ”off-site” analysis as
much as possible, to avoid having to test each mo-
tion cueing method on all available simulators.

Assessment methods of motion cueing methods can
be based on objective or subjective analyses. The lat-
ter refer to evaluations of the motion cueing given by
a driver and are only obtainable through on-site test-
ing in a simulator. Objective evaluations, on the other
hand, can be obtained without a driver. Typically,
these are metrics of motion cueing quality based on
the motion set-points of the simulator with respect to
the reference motion. Such evaluations can be per-
formed without the actual simulator and are there-

fore faster to obtain and use. This allows for a more
systematic assessment of the available motion cue-
ing methods. The main difficulty in finding and us-
ing objective metrics is that it is still not fully un-
derstood what entails good or bad motion cueing
(Casas-Yrurzum, et al., 2020). So far, no accepted
objective metrics have been found that can fully re-
place subjective evaluations.

In literature, recent work by Cleij, et al. (2018) helps
by providing a bridge between both assessment
types. In their presented method, subjects contin-
uously rate the perceived motion cueing through a
rating interface while passively being driven around,
such that a continuous rating signal is obtained. First
attempts by Ellensohn, et al. (2019b) and, more re-
cently, Kolff, et al. (2022) aimed at investigating the
relationship between the subjective ratings as given
by the participants and objective metrics. A differ-
ent method is to objectively analyze the error types
that occur in the motion cueing by the type of mo-
tion cueing mismatch. Examples of this are the anal-
ysis of false cues (Ariel and Sivan, 1984; Pham and
Nguyen, 2021; Salisbury and Limebeer, 2014) or
missing cues (Cleij, 2020). Here, it is generally ac-
cepted that false cues are more detrimental than a
missing cue, whereas an error due to scaled-down
motion is the least detrimental. Both predictions of
subjective ratings and error type evaluation methods
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may be used to select the best-suited simulator and
motion cueing algorithm (MCA), based on their mo-
tion cueing quality.

The goal of this paper is to compare four motion-base
simulators with different kinematic configurations us-
ing objective methods. For each simulator, an offline
optimization-based algorithm is used to calculate the
motion cueing output for nine reference drives in an
urban scenario. Based on subjective motion cueing
quality ratings, obtained from Kolff, et al. (2021), a
developed model from Kolff, et al. (2022) is used to
predict the continuous motion incongruence ratings
for the four simulators. Furthermore, an algorithm for
error type classification is presented and evaluated
for all four simulators as a purely objective analysis.
These analyses facilitate the understanding the fun-
damental differences per motion system configura-
tion. Secondly, it helps to answer the question which
simulator is best suited for urban use-cases.

The structure of this paper is as follows: Section 2
describes the background of the problem. Section 3
presents the simulators used for analysis and de-
scribes the evaluation methods, where section 4
presents its results. Points of discussion and further
steps are discussed in section 5. The paper is con-
cluded in section 6.

2. Problem Statement

2.1. Motion Cueing Trinity
Amongst users of motion-based driving simulators,
the proper and use-case-specific implementation and
testing of motion cueing is often considered to be one
of the most difficult tasks. Each considered motion
cueing solution can be characterized in a motion cue-
ing trinity (Figure 1), constituted of three elements:

1. the use-case, which can refer to the type of sce-
nario (such as urban, highway or rural), as well
as the type of experiment, such as the evaluation
of driving dynamics or human-machine-interaction
studies

2. the used motion cueing algorithm with its corre-
sponding configuration, such as the tuning param-
eters

3. the simulator’s motion system on which the motion
cues are generated.

The best possible motion cueing solution is only ob-
tained when the best combination of the three el-
ements of the trinity is selected. Such a selection
process typically starts with one or two of these el-
ements fixed. Note that this selection process is a
multi-dimensional design problem, in which all three
elements are related. For example, the benefits of a
more difficult to implement MCA may only be worth-
while for a particular combination of simulator and
use-case.

In all three building blocks of this trinity, recent devel-
opments extend the scope of options. In an attempt to
bring an increasing amount of on-road testing to the
simulated world, the amount of use-cases to be han-
dled in simulation has increased significantly. Sec-
ondly, the development of new MCAs, such as Model-
Predictive Control (MPC) algorithms (Dagdelen, et
al., 2009) enables moving away from the conser-
vative and difficult to tune Classical Washout Algo-
rithm (CWA). MPC often provides better cueing due

to its optimization-based strategy (Ellensohn, et al.,
2019a), although its added benefit in motion cueing
quality might not always be justified, considering the
additional complexity.

The availability of various driving simulators in-
creases the complexity of the design problem. It is
possible that, although MPC is capable of provid-
ing better motion cueing, its advantages might be
more or less pronounced on certain kinematic con-
figurations. Therefore, it is not necessarily true that a
one-size-fits-all solution for the available driving sim-
ulators exists. To make well-informed decisions, be-
ing able to better predict and systematically compare
how the various motion cueing solutions perform rel-
ative to each other is therefore necessary.

2.2. Predictions of Motion Cueing
Quality

An additional difficulty is that in the design stages of
an experiment – in which choices regarding the mo-
tion cueing solution have to be made – the actual so-
lution cannot be experienced in the simulator yet. In
this phase, little details of the experiment are known,
although the designer has to make an informed es-
timate on which combination would work out well.
For this reason, it is useful to develop measures that
can accurately predict the motion cueing quality as it
would be perceived by participants.

Cleij, et al. (2018) proposed a rating method, in
which participants give continuous motion incongru-
ence ratings (MIRs) based on the perceived motion
incongruences (PMIs). A motion incongruence is de-
fined as a perceived deviation from the expected
(real) vehicle motion. These MIRs are therefore indi-
cations of how participants think the motion they per-
ceive matches that of the real vehicle. Participants
are driven through an environment passively, rather
than driving themselves, so that they can fully focus
on the rating method. The rating is measured on a
scale from 0 to 10 and can be changed at any point
in time, resulting in a continuous rating signal. A value
of 0 indicates no mismatch at all, whereas the high-
est score of 10 indicates the worst motion cueing en-
countered in the experiment.

This subjective rating method has been implemented
in various studies to compare different types of algo-
rithms (Cleij, et al., 2019; Cleij, et al., 2018; Ellen-
sohn, et al., 2019a; Ellensohn, et al., 2020; 2019b;

Use-case

MCA

Simulator

Experiment

Figure 1: Motion cueing trinity, indicating the
multi-dimensional design problem.

-2- Strasbourg, 14-16 Sep 2022



DSC 2022 EuropeVR Kolff et al.

Van der Ploeg, et al., 2020). Recently, this method
was used in a realistic urban scenario (Kolff, et al.,
2021). The recorded continuous rating signals, hav-
ing a high temporal resolution, have been used in
Kolff, et al. (2022) to acquire a time-domain model,
relating predicted average ratings as function of the
errors in the motion cueing that are presented in the
simulator. Such predictions allow for an analysis of
incongruences, overall or in specific sections of inter-
est, to evaluate the strengths and weaknesses of the
motion cueing.

Extending MIR predictions by an analysis of the var-
ious types of errors that occur in the motion cueing,
fundamental strengths and weaknesses of the mo-
tion systems can be explicitly revealed. Therefore, in
the following sections, an analysis is performed in
which four state-of-the-art simulators are compared
with the same motion cueing algorithm (use-case
fixed, MCA fixed, simulator variable).

3. Methods

3.1. Simulators
For our comparison, four simulators are selected,
each with different motion systems:

• The Vega Vector (VV) (Cruden B.V., 2021, Figure
2a) is the smallest simulator under investigation
and consists of a 6-DoF hexapod (Stewart plat-
form) with an actuator stroke of 64 cm. Its main
novel feature is a cylindrical 220◦ LED-wall that al-
lows for high contrast visuals combined with high
brightness and vivid colors.

• The Sirius Vector (SV) (Cruden B.V., 2021, Figure
2b) has the same hexapod as the Vega Vector, but
has an additional ±175◦ yaw-drive underneath, re-
sulting in a 7-DoF system. The yaw-drive is es-
pecially useful for reproducing large yaw motion
ranges. The LED-wall is similar to the Vega Vec-
tor, but covers the full 360◦ horizontal field-of-view.

• The Ruby Space (RS) (VI-Grade, 2015, Figure 2c)
is a 9-DoF system (hexapod on tripod) that has
been used in a number of recent evaluation studies
(Ellensohn, et al., 2019a; Ellensohn, et al., 2020;
2019b; Kolff, et al., 2021). This simulator was used
for the acquisition of the continuous rating data
for the model development by Kolff, et al. (2022).
Its tripod can rotate ±25◦, but also has a 1.5 m
workspace in both x and y-directions.

• The Sapphire Space (SS) (Bosch Rexroth B.V.
(Since May 2022: Van Halteren Technologies B.V.)
and AVSimulation, 2021, Figure 2d) is BMW’s
largest simulator (9-DoF). Its XY-drive allows
movement over an area of 19.14 m × 15.7 m. Fur-
thermore, it includes a large 6-DoF hexapod (to-
tal stroke of 1.15 m) with a single DoF ±175◦ yaw-
drive on top. The visuals are projected by a full 360◦

projection system inside the enclosed dome.

3.2. Input Data Collection
Driving data are collected in a human-in-the-loop ex-
periment, where participants drive through an urban
environment in the Sapphire Space simulator. From
this experiment, nine drives are recorded. The driven
route is the same as in Kolff, et al. (2021), although
with one additional corner and traffic light at the end
of the scenario. The driven route is identical for all

participants, but due to differences in the driving style
(such as velocity and position in the lane), all drives
are inherently different. The acquired signals of the
nine drives therefore cannot be compared in the time-
domain, as the time at which certain maneuvers are
encountered differs per driver. For this reason, all
analyses are performed as a function of the along-
track distance:

a(t) =

N
∑

i

√

∆x2 + ∆y2, (1)

where ∆x2

i and ∆y2

i are the incremental distance per
unit time in the global coordinate system. Theoreti-
cally, even the along-track distance does not enable
a fully fair comparison, as maneuvers can be spaced
at different points in the along-track distance signals
per drive due to differences in lane position. However,
from visual inspection of the data, this effect may be
considered negligible.

3.3. Oracle Motion Cueing Algorithm

A comparison between the four simulators is made
using a non-real-time optimization-based cueing
strategy with infinite prediction horizon, here referred
to as Oracle. This MCA calculates the simulator’s mo-
tion that minimizes the cost function:

J =

N
∑

i=1

1

2
(y − ŷ)T Q(y − ŷ) +

N−1
∑

i=0

1

2
xT Sx, (2)

where y = [fx, fy, fz, ωx, ωy, ωz]T are the true mea-
sured specific forces and rotational rates at the driver
position to be reproduced by the algorithm. ŷ is the
actual output of the algorithm, with Q = diag(Qf , Qω)
the diagonal weight matrix for this reference track-
ing term. The second term is a state excitation pe-
nalization of the states x, pulling the simulator back
to its neutral state. Although, in principle, a washout
mechanism is not required for Oracle motion cue-
ing, it is still added to increase the convexity to the
optimization (Katliar, 2020). The state term consists
of the states of the various motion subsystems. Its
corresponding weighting matrix is a diagonal matrix
S ∈ R

n×n with n = 3×DoF, as it contains weights
for the position, velocity and acceleration signals of
each degree-of-freedom. The optimization further-
more used the system limits on position and accel-
eration level as hard constraints. The algorithm con-
tains the full non-linear kinematic descriptions of the
analyzed simulators and is based on the implemen-
tation of Ellensohn, et al. (2019b). The optimization
problems were programmed using CasADI (Anders-
son, et al., 2018) and optimized with IPOPT (Wächter
and Biegler, 2006).

The optimization is performed along all samples N =
t

dt
of each run, with t the duration of the run and dt

the sampling time, set to 10 ms. Oracle can calculate,
under these pre-defined weight settings, the optimal
simulator motion by minimizing the cost function in
Equation (2) for a set of reference driving data. As
the solution depends on the applied weights, we do
not claim that such optimization-based cueing can be
considered perfect and even the word optimal must
be used with caution. Furthermore, an optimal solu-
tion of Oracle is not necessarily synonymous with the
best possible subjective motion cueing quality.
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(a) Vega Vector. (b) Sirius Vector.

(c) Ruby Space. (d) Sapphire Space.

Figure 2: The four selected simulators for comparison. Pictures are property of BMW Group.

The Oracle algorithm and its output motion can only
be used in simulations where participants are driven
through the environment rather than driving them-
selves, as for real-time driving the future states are
inherently unknown. Due to the full exploitation of
future states, Oracle serves as a theoretical limit of
what simulators can achieve. The algorithm is there-
fore specifically suited to investigating system dif-
ferences, because it can fully exploit the available
workspace. To properly use Oracle as the quality
benchmark of a simulator, the corresponding weights
were tuned for each simulator, as shown in Table 1,
which were selected by a trial-and-error approach.
Note that the output weights for the rotational rates
were set ten times higher as the specific forces, as
various sources (Drop, et al., 2018; Katliar, 2020; Van
der Ploeg, et al., 2020) have shown this to result in a
good balance. The output weight of the yaw rate de-
viates and was set to 100, to emphasize the tracking
in this channel.

In total 36 Oracle outputs are generated: four sim-
ulator outputs for each of the nine reference drives.
An example of the outputs for one drive is given in
Figure 3(a-c). Note that visually the outputs for all
simulators match reasonably well with the reference
signals. The computational time per run differs per
simulator structure, ranging from ten minutes for the
Vega Vector up to one hour for the Sapphire Space.

3.4. Rating Prediction Model
To evaluate the motion cueing quality, a predic-
tion model of continuous motion incongruences was
used. Based on the previously performed offline rat-
ing experiment using continuous ratings on the Ruby
Space simulator (Kolff, et al., 2022), system identi-
fication of the rating data has shown that the rat-
ing behaviour of humans in urban scenarios can
be described by the delayed, low-pass filtered and
weighted combination of the longitudinal and lateral
specific force mismatches. Therefore, first the total
weighted error contribution is calculated:

E(t) = Wfx
(|fv

x − fs
x|) + Wfy

(|fv
y − fs

y |). (3)

The weights Wfx
and Wfy

weight the relative con-
tributions and are set to 1.17 and 1.63, respectively.
The predicted rating is calculated by simulating the
total weighted error E(t) with the transfer function:

Hx,y(jω) =
ωcx,y

jω + ωcx,y

e−jωτ , (4)

where τ = 0.008 s is the time delay constant and
ωc,y = 0.37 rad/s and ωc,x = 0.26 rad/s are the cut-off
frequencies for the y and x channels, respectively.
These parameters have been shown to well describe
the average measured rating signals of 50 partici-
pants (Kolff, et al., 2022).

As mentioned in section 3.2, the rating signals are
calculated for each of the nine runs, but cannot be
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Figure 3: Oracle outputs of the four simulators, compared to the vehicle data (input), for data set 2.

compared in the time domain directly. Therefore, the
time-domain ratings are converted to a function of the
along-track distance a(t), i.e., the ratings are interpo-
lated to an equidistant along-track distance.

3.5. Error Classification Algorithm

Supplementary to the rating prediction model, an
analysis is made of the different error types that can
occur due to the motion cueing. Four different error
types are considered: false direction cues, false cues,
missing cues, and scaling errors. A graphical exam-
ple of the interpretation of these types is shown in
Figure 4. The classifications are calculated for each

motion signal m ∈ {fx, fy, fz, ωx, ωy, ωz} and are de-
fined as:

• False direction cue error (4): Both simulator and
vehicle are moving above the threshold of percep-
tion p (such that ms > p and mv > p), but in oppo-
site directions. This is considered the worst error
possible.

• False cue error (3): The simulator is moving (ms >
p), where the vehicle is not (mv ≤ p).

• Missing cue error (2): The simulator produces no
motion (ms ≤ p), whereas the vehicle is (mv > p).

• Scaling error (1): The simulator moves (ms > p)
in the same direction as the vehicle (mv > p), but
either weakened or too strong. Because humans

Table 1: Output- and state weights used in the Oracle optimization, per simulator. Single values indicate identical values in each
direction.

Output weights State weights

Qfxfyfz
Qωxωyωz Sφθψ Sφ̇θ̇ψ̇ Sxyz Sẋẏż Sẍÿz̈ Sψt

Sψ̇t
Sxtyt Sẋtẏt

Sẍtÿt

Vega Vector 1 [10, 10, 100] 10 10 1 1 1 - - - - -

Sirius Vector 1 [10, 10, 100] 10 10 1 1 1 1 10 - - -

Ruby Space 1 [10, 10, 100] 10 10 1 1 1 1 10 0.04 0.04 0.04

Sapphire Space 1 [10, 10, 100] 10 10 1 1 1 1 10 0.01 0.01 0.01

Strasbourg, 14-16 Sep 2022 -5-
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can have a range of acceptable scaling factors that
they still consider as coherent, the scaling errors
are only defined if the simulator is moving at less
than 70% or more than 130% of the vehicle motion
(Van Leeuwen, et al., 2019).

• Correct cue (0): If none of the other error types are
detected, the cue is considered to be correct.

Note that the motion signals ms and mv refer to spe-
cific forces and rotational rates of the simulator and
vehicle, respectively. The error types are calculated
as signals (i.e., over time) for each of these sig-
nals separately, resulting in six separate classifica-
tions. Only one error type can be possible at each
time step. The error type perception thresholds are

p = 0.05 m/s
2

for the specific forces (Reymond and
Kemeny, 2000) and p = 3 deg/s for the rotational
rates (Reid and Nahon, 1985).

0 1 2 3 4

 Vehicle  Simulator

Figure 4: Example of the error types between vehicle and
simulator motion: No error (0), scaling error (1), missing cue
error (2), false cue error (3) and false direction cue error (4).

3.5.1. Error Area per Unit Time

To compare the contribution of the error types, the er-
ror area per unit time (EAT) is calculated. For exam-
ple, for a Type 1 (scaling) error in the specific force
channel fx, the EAT is defined as:

EAT1,fx
=

∫ T

0
|ǫ1(t)(fv

x (t) − fs
x(t))|dt

T
, (5)

where T is the total time of the drive. The signal ǫ1(t)
is a boolean signal that is either zero when there is
no error of such type, or one when that error type
is present. The EAT is calculated for each of the six
reference signals and for each of the five error type
separately, leading to 30 EATs. The EAT represents
how much of the reference signal is reproduced in-
correctly through the error type. It can be zero, in the
case where no of such errors are present in the sig-
nal. It is unbounded on the upper side, as there is no
single case that defines a ‘complete error’.

4. Results

4.1. Rating Prediction Model

First, the rating prediction model is used to estimate
the motion incongruence ratings for each simulator.
Figure 5 shows the predicted ratings as a function
of along-track distance a, where the curves indicate
the average across the nine drives. The spread in-
dicates one standard deviation from the mean. Note
that lower ratings indicate higher quality (Cleij, et al.,
2018). For each simulator, the root-mean square of
the rating signal is calculated. The Sapphire Space

overall performs best throughout the runs, with an
overall root-mean square of RMSSS = 0.50, while
for the Ruby Space this is RMSRS = 0.61. Note
that also when considering Figure 5, the differences
in RMS represent the differences in motion cueing
quality over time: Sapphire Space induces the low-
est ratings for all maneuvers, whereas Ruby Space is
second-best. The Vega Vector and Sirius Vector per-
form the worst (RMSV V = 0.68 and RMSSV = 0.69),
and produce nearly identical ratings. This can be ex-
plained by considering the yaw-rate error is not in-
cluded in the rating model, such that the Sirius Vector
shows no clear benefit in the calculated ratings.

4.2. Error Type Classifications
Figure 6 shows the distribution of the four error types
in terms of the EAT. In contrast with the predicted rat-
ings, the vertical specific force fz, roll rate ωx and
pitch rate ωy are included in the analysis as well,
to investigate the effect on these channels (such as
the dependency on tilt-coordination). When regard-
ing the longitudinal specific force fx, the four simula-
tors (denoted in the figure along the x-axis) show no
clear differences, indicating that these cues can be
reproduced well by a simple hexapod system. Fur-
thermore, there are no differences in the vertical spe-
cific force fz, as the route was completely flat.

On the other hand, a difference between simulators is
visible in the reproduction of the lateral specific force
fy. Although the Vega Vector, Sirius Vector, and Ruby
Space perform equally well in this channel, the Ruby
Space can do so while decreasing the false cues in
ωy by a factor of 2, indicating a reduced dependency
on tilt-coordination. By far the best performing simu-
lator in these two coupled channels is the Sapphire
Space, as its extensive motion capabilities of the xy-
drive allow for reducing the use of tilt-coordination
and therefore avoiding any false cue in ωy (and simi-
larly for ωx). This shows that even though differences
in the output of the motion cueing as presented in
Figures 3(a-c) might seem small, there is a profound
difference in how the motion cueing is spread-out
over the capabilities of the various motion systems.

The largest differences are visible in the yaw rate.
The Vega Vector (Denoted in the figure with VV),
clearly lacks the yawing ability as it has an average
EAT of 0.18 of the runs classified as a scaling er-
ror, 0.046 for a missing cue, followed by an EAT of
0.001 for false cues. The presence of the yaw-drive
for Sirius Vector (SV) decreases both scaling and
missing cue errors, i.e., it reproduces more yaw mo-
tion, but at the cost of slightly more false cues. By far
the best performing simulator is the Sapphire Space
(SS), with a low EAT in the false cue category; the
scaling, missing, and false direction cue errors are
zero.

5. Discussion
The results in this paper show that with ‘Oracle’
motion cueing, fundamental differences between the
motion systems of different motion-base driving sim-
ulators can be quantitatively compared. In the pre-
sented results, the main kinematic differences be-
tween the four simulators directly result in different
cueing capabilities. Although not included in the rat-
ing model, the largest differences in error types were
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Figure 5: Predicted motion incongruence ratings with standard deviations, calculated per simulator.
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Figure 6: Distributions of the error types, per simulator. Horizontal bars indicate the sum of the average error types of each
simulator. VV = Vega Vector, SV = Sirius Vector, RS = Ruby Space and SS = Sapphire Space.

found in the yaw rates. The amount of scaling and
missing cue errors in the motion cueing are strongly
reduced, as it is difficult to produce yaw motion using
only a hexapod (Vega Vector). To reduce the errors
in the yaw rate channel, a yaw-drive therefore has
a direct benefit for the urban use-case in question.
The Ruby Space does provide less false cues in the
roll- and pitch rate channels, but due to its limited tri-
pod rotation still has relatively large scaling errors in
the yaw rate. It could therefore be more suitable for a
use-case that requires fast translational motion, such
as lane changing, but less yaw motion. The bene-
fit of a (large) xy-drive is nevertheless clear, with the
Sapphire Space performing best in the ratings and all
channels of the error detection algorithm.

In the selection of a suitable simulator (and MCA) for
the presented use-case, it must be evaluated which
quality indicators are trusted. As we have presented
two different methods, the natural question arises as
to which method should be used, as both have var-
ious (dis)advantages. The modelled ratings provide
an intuitive prediction of cueing quality. It is easy to
rank motion cueing solutions (for example using the
RMS), while at the same time providing information of
the cueing quality over time. Arguably, the weakness
of this approach is that the model will only be sensi-
tive to errors in the channels on which the model was
constructed (i.e., the lateral and longitudinal specific
force error, in this case). An extended and better vali-
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dated model specific for a given use-case or scenario
would require collecting more subjective rating data.

The error classifications better show the distribution
of different cueing errors in the various channels.
However, the method itself provides little informa-
tion regarding the relative (subjective) importance of
these channels. It is therefore possible that an objec-
tive analysis of motion cueing quality requires mul-
tiple tools that supplement each other. In fact, the
presented use-case shows an example of this: the
continuous ratings show a ranking of the simula-
tors, while the error classifications further help un-
derstanding how these ratings are produced between
the different simulators and how the rating model can
be potentially improved.

To apply the presented methods in a selection pro-
cess for the full motion cueing trinity (see Section
2), different MCAs would have to be evaluated as
well. Although decreasing scaling and missing cue
errors can be achieved without increasing the amount
of false cues for Oracle, there is no guarantee that
this will be true for other MCA types, because an in-
crease in magnitude (i.e., less scaling) could also in-
crease the magnitude of false cues. Furthermore, we
expect that the amount of false direction cue errors
increases when using an non-optimization-based al-
gorithm. An example would be a classical washout
algorithm, where motion in the opposite direction is
common due to the linear washout and therefore gen-
erating a cue in the false direction. Future work could
therefore focus on extending the presented methods
by including various MCAs in the analysis, thereby
adding a degree-of-freedom to the design problem of
the motion cueing trinity framework, as indicated in
Figure 1. Only then can the best-suited motion cue-
ing solution for a full array of options be selected.

6. Conclusion
In this paper, an objective comparison between four
motion-base driving simulators is presented. A pre-
diction of subjective ratings is made, as well as an
objective assessment through a motion cueing error
type classification (separating scaling errors, missing
cues, false cues and false direction cue errors). The
simulator movement is calculated for each simulator
using an ‘Oracle’ algorithm (optimization-based with
infinite prediction horizon). The results show that both
the addition of a yaw-drive and xy-drive decrease
the false and missing cues in the related channels.
The presence of an xy-drive increases the predicted
subjective motion cueing quality. The combination of
predictions of motion incongruence ratings and the
error classification algorithm can form the basis of
a combined objective-subjective assessment method
of simulators, motion cueing algorithms, and use-
cases, such that the best-suited motion cueing so-
lution can be selected.
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