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A Bayesian Approach for Active Fault Isolation
With an Application to Leakage Localization in
Water Distribution Networks

Gert van Lagen, Edo Abraham™, and Peyman Mohajerin Esfahani

Abstract—This article proposes an active fault isolation
method for application to water distribution networks (WDNs)
to localize leaks. The method relies on the classification of
observed outputs to a discrete set of hypothetical faults. Due
to parametric uncertainties, the outputs are random vectors
that follow unknown probability distribution functions (PDFs).
The output PDFs corresponding to the considered faults are
approximated using smooth kernel density estimation (SKDE).
They are used to calculate the posterior probability of each
hypothesis, given the observed outputs, by applying Bayes’ rule.
The difficulty to classify observed outputs to the right fault comes
from the overlap between output PDFs. An active algorithm is
introduced that proactively minimizes the joint overlap between
the output PDFs by designing optimal control inputs. Due to
physical limitations on control inputs and depending on the inten-
sity of uncertainties, full separation, and hence fault isolation,
cannot be guaranteed for a single observed output. Therefore,
subsequent observations are used in an iterative framework,
where the posterior probabilities of the previous time step serve
as the prior probabilities for the next time step. The method is
applied to locate leaks in a benchmark WDN for different levels
of uncertainty in customer water demand and leakage magnitude.
Improvements in the performance are observed in comparison
to the best considered passive method from literature.

Index Terms— Bayesian classification, leak localization, sto-
chastic active fault diagnosis (AFD), water distribution networks
(WDNs).

I. INTRODUCTION

NE of the main challenges for water utilities is the

diagnosis and control of leakage from aging water
distribution networks (WDNSs). The early detection and man-
agement of leaks, in addition to reducing the cost in non-
revenue water and conserving energy, is critical to mitigate
deterioration of pipes and the surrounding infrastructure. Water
loss due to leakage varies between 5% and above 50% of

Manuscript received 6 November 2021; revised 8 April 2022;
accepted 12 August 2022. The work of Peyman Mohajerin Esfahani was
supported by the European Research Council (ERC) Grant TRUST-949796.
Recommended by Associate Editor G. Orosz. (Corresponding author:
Edo Abraham.)

Gert van Lagen is with Yunex Traffic,
The Netherlands (e-mail: gertvlagen@gmail.com).

Edo Abraham is with the Department of Water Management, Faculty
of Civil Engineering and Geosciences, Delft University of Technology,
2628 CN Delft, The Netherlands (e-mail: e.abraham @tudelft.nl).

Peyman Mohajerin Esfahani is with the Delft Center for Systems and
Control, Delft University of Technology, 2628 CD Delft, The Netherlands
(e-mail: p.mohajerinesfahani @tudelft.nl).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCST.2022.3201334.

Digital Object Identifier 10.1109/TCST.2022.3201334

2712 PN Zoetermeer,

the supplied volume, respectively, for well-managed and older
poorly maintained networks [1]. Leakage reduction beyond
the economically optimal level of about 15% [2] is further
motivated by stringent regulations and imminent risks. One
risk is a poorer water quality due to temporarily negative
pressures that allow intrusion of pollutants into the network,
potentially jeopardizing public health [3]. A further threat is
that very small leaks can gradually grow in size, eventually
into pipe bursts, which can render (a part of) the network
inoperable and result in damage to other infrastructure and also
economical losses due to flooded areas. Leaks are also known
to cause destructive and dangerous sink holes due to under-
ground soil erosion [4]. Finally, reducing the annual global loss
of 32 billion m? of potable water [5] will help alleviate the
water stress caused by the mutually reinforcing global issues
of rapid urbanization and increasing water scarcity.

Leakage analysis includes the fault diagnosis tasks of detec-
tion, isolation, identification, and estimation. These techniques,
respectively, involve the determination of whether or not a
leak is present, if so, to estimate its location, type, and magni-
tude [6]. This article focuses on leak localization techniques.

Different methods to locate leaks in WDNs have been
proposed in literature. The conventional deterministic tech-
niques include random and regular sounding surveys using
listening sticks and acoustic loggers, and step-testing of district
metered areas (DMAs) through gradual valve closures [7].
DMAs are subsystems that can be analytically isolated through
segregation of WDN by means of (dynamic) boundary valves
and metering the flows at remaining open connections [8],
[9]. More advanced deterministic methods such as leak noise
correlators, pig-mounted acoustic sensing, and gas-injection
techniques [10] are the most precise at locating leaks. However
all these techniques come with expensive equipment cost and
are man-hour intensive, and so are not scalable. In addition, the
suppression of leakage sound signatures by reduced pressures
in active pressure management has also made these methods
of limited application [7], [10].

To make those deterministic methods scalable, recent
approaches use model-based analysis to reduce the search
space. These methods use near real-time telemetry data from
pressure sensors and flow meters distributed over the net-
work and rely on a calibrated predictive hydraulic model.
Based on the observed residuals that reflect how pressure
measurements from the leaky reality deviate from the pre-
dicted pressure values in the absence of leakage, their aim
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is to designate a leak location from a discretized set of
possibilities through comparison to offline generated residual
signatures corresponding to the possible locations [11]. Recent
developments toward this problem apply machine learning
techniques such as k-nearest neighbors, neuro-fuzzy [12],
Bayesian classifiers [13], and Fisher discriminant analysis [14]
and Dempster—Shafer [15] to classify observed residuals to
one of the possible leak locations, which have shown best
results when applied over multiple time steps. Recently, there
are also some progress to leverage these tools to go beyond the
problem of detection to answer more complex questions such
as estimating the time and intensity of the leakage [16], [17].
Similarly, Steffelbauer ez al. [18] make use of the time-series
analysis for detecting the start time static and growing leaks,
and then model-based passive approaches for leak localization.

The difficulty to classify observed residuals to one of the
possible leak locations comes from the overlap between the
corresponding residual sets due to uncertainties, such that
leak isolation cannot be achieved under all possible observed
residuals. All these techniques in literature rely on nomi-
nal input—output data from the network, i.e., control input
strategies are not adapted to improve leak localization, which
we refer to as the passive fault diagnosis (PFD) methods.
As the joint overlap in residual space increases with growing
uncertainties, these PFD methods are of limited application.
Therefore, in this work we present a novel active fault
diagnosis (AFD) algorithm for faster and more reliable leak
isolation. Where pressure control inputs are usually regulated
at a minimum level using pressure regulating valves (PRVs)
[9], we show that they can also be optimized to enhance
active leakage isolation [19]. We will make use of output
observations directly, rather than the common residual obser-
vations used in literature that subtract two random “output”
variables, because composed random variables gain a higher
joint spread and hence, unnecessarily, stochastically deteriorate
the observed samples. We also introduce new control design
strategies for pressure inputs that minimize the probability of
misisolation, i.e., the overlap between output sets correspond-
ing to considered leak locations. The output sets are described
by probability distributions, which are estimated by means of
smooth kernel density estimation (SKDE) [20] through extrap-
olation of output realizations from Monte Carlo simulations.
Due to physical limitations and regulatory constraints, the
pressure control inputs to the network are bounded. Hence, it is
plausible that output sets cannot be fully separated, such that
isolation is not guaranteed. However, by iteratively applying
Bayes’ rule over consecutive time steps, leak isolation can be
improved in terms of reliability and speed compared with the
PFD methods in [12], [13], and [14]. At nighttime, when user
demand is low [21], the proposed AFD algorithm is applied
to a benchmark network for different degrees of uncertainty.
Its performance is compared with that of the best considered
PFD method proposed in [13] with the slight adaptation of
using the output space instead of the residual space.

This article is structured as follows. In Section II, the active
fault isolation problem is stated and a motivating example
for leak localization in a WDN is given. In Section III-A,
an AFD algorithm is proposed that solves the stated problem
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and is directly applicable to locating leaks in a WDN, which is
further elaborated in Section IV. In Section V, the simulation
experiments are presented with a benchmark WDN as a case
study, in which the AFD algorithm is tested for different
leak scenarios and compared against a PFD method. Finally,
conclusions are drawn and recommendations for future work
are given in Section VI.

II. PROBLEM STATEMENT AND MOTIVATING EXAMPLE

In this section, a class of models describing the steady-state
of a nonlinear system subject to possible faults are introduced.
Consider the set of algebraic equations

Model : Flx,u.d, K)=0
y=C(x)

where the function F models the steady-state of the system,
the signal x denotes the state of the system, u is the control
input, d denotes the natural disturbances that the system may
encounter, and y is the available measurement signal. We high-
light that the bold signals x, u, d, andy are time-varying and
take vector values from R™:, R™ R™ and R, respectively.
The parameter K = [K|, ..., K, ] € R"¥ is a constant vector
representing ng different possible faults, i.e., when the ith
component of K is nonzero (i.e., K; # 0), then the system is
in the ith faulty mode.

The set of algebraic equations (1) essentially describes
the input-output mapping between the variables (d,u; K)
and y. In this view, the output can be explicitly described
by y(d, u; K). For brevity, and with slight abuse of notation,
we may use the shorthand notation

y[i] =y(d,u; K;), ief{l,...,ng}

where yl'l denotes the output of the system (1) in the presence
of fault i, namely, when the only component of the vector K
that is not zero is K;. In this study, we treat (d; K;) as random
variables whose behavior follows a certain distribution from
which we have access to historical data or sample realizations.
We also reserve the symbol “~” for sample realizations of the
random variables, e.g., given realizations (d K ), we denote
an output realization y!! = y(d u; K; ). The aim of this study
is to address the followmg objective.

Problem 1 (Active Fault Isolation): Consider the system (1)
under a single fault i*, i.e., K; = 0 if and only if j # i*.
Given the measurement signal y and statistical information
of the natural disturbance d, synthesize a sequence of input
signal u and a diagnosis rule to maximize the probability of
identifying the fault type i*.

The relevance of Problem 1 is endorsed by the following
motivating example.

Example 1 (Leak Localization in WDN): Water enters a
WDN at n, inlets and is supplied to consumers abstracted
by ng nodes that are connected to the inlets through a network
of n, pipes. The steady-state of a WDN can be described by a
model of the form in (1), where the state x := [q h]T € R
consists of the flows ¢ € R"» through the pipes (in m?/s)
and the hydraulic heads A € R"% at the nodes (in mH,O).
The control inputs u are the inlet pressures of the network,

(1
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which are regulated using PRVs. The nodal consumer demands
act like natural disturbances d on the network and need
to be predicted using statistical information. The output of
the network consists of the measured part of the system’s
state, where usually n, < n,. Consider the WDN under the
presence of a single leak i* at one of the nx nodes, then,
active isolation of this fault parametrized by K involves the
synthesis of a sequence of control inputs # to maximize the
probability of identifying the fault type i * based on a sequence
of measurements y.

III. PROPOSED METHODOLOGY

In this section, we provide an AFD methodology built on
a Bayesian perspective, an approach in which Bayes’ theorem
is used to update the probability for a hypothesis as more
information is revealed to us. In the context of active fault
isolation, roughly speaking, the hypothesis is our current
belief about the probability of occurring for each fault (i e.,
K; # O) and the information is the output measurement y* =
y(d u; K;+) from the actual system, which is supposed to
be generated by an unknown fault mode i*. The proposed
active fault isolation in this study comprises two main steps:
1) update our belief upon receiving an output measurement y*
and 2) introduce an appropriate input signal u.

A. Bayesian Update of Hypotheses Probabilities

Recall that in the setting of this study we believe that the
system is faulty and that one of the modes i € {1,...,ng}
occurs. Looking at the problem from a Bayesian perspective,
it is then natural to define the hypothesis set H = {1, ..., ng}
along with a probability distribution IP representing our current
(prior) belief about hypothesis candidates. Formally speaking

P(i) := Prob(fault mode: i), i € H. 2)

Recall also that given an input signal u, the output of the
system under fault mode i, denoted by y!! = y(d,u; K;),
is a random variable whose distribution is induced by the
distributions of the variables (d; K;) through the algebraic
equations (1). With this in mind, we denote the (conditional)
distribution of the output measurements by

YW= y(d,u; K;) ~ P(dyli,u) = p(yli,w)dy  (3)

where p(y|i, u) represents the probability density function;
throughout this study, we assume such a density function
exists. Given the definitions in (2) and (3), the marginal density
distribution of the output measurement is

ng

> pGli. wP). )

j=1

p(ylu) =

Upon receiving a realization of the output y* under the input
signal u, one can update the prior belief concerning the
hypothesis candidates in (2) by means of Bayes’ theorem
through the relation

p(yli, w)P (i)
205 P wP ()

p(y*li,u)

PG D=

P(i[y*,u) = 5)

where the second equality follows from (4). The conditional
distribution P(i|y*, u) in (5) is also known as the posterior
distribution.

1) Approximation Techniques: Given the prior distribu-
tion (2), the key ingredient is the density function p(y*|i, u)
evaluated at the measurement y™; this quantity is also known
as likelihood in the statistics literature [22, Ch. 4.4]. As pointed
out earlier, this density function is essentially determined by
the distributions of (d; K;) through the system equations (1).
In general, the analytical description of this density is not
available and one has to resort to approximation techniques
for numerical purposes. For instance, for each hypothesis
i € H, given an input signal u, and M realizations (d,,, I/(\i,m),
m € {1, ..., M}, one can simulate the system (1) and compute
M output reahzatlons y[’](u), m € {1, ..., M}; note that these
realizations depend on the choice of u. A single realization
can be obtained by fixing u and i, generating a realization
of d and solving (1) for y. Now, since the required num-
ber of realizations for all the considered hypotheses scales
proportional to M X ng, it becomes computationally very
demanding to take a large M. Therefore, having a moderate
number of output samples {¥!'(#)}n<y, we use a kernel
function x : R™ x R"™ — R, to arrive at a smooth approx-
imation of the conditional probability density distribution
of y given (i, u)

- ‘
POl )~ o > (v, @) (©)
m=1
Considering the approximation scheme (6), the approximation
of the posterior distribution (5) then reduces to
P(i5",u) ~ — 2 K07 TR @)

S Do (55 I @) P ()
In the Section V, we will provide a specific example of such
kernels. Note that when the prior probability P(i) = 0, then
the posterior update (5) remains P(i[y*, u) = 0 irrespective of
the observation y*. In this light, another approximation idea
to practically improve the efficiency of the Bayesian update
rule (5) is to introduce a threshold, say ¢, and set the posterior
probability P(i[y*, u) to zero if P(i[y*,u) < ¢. In this way,
hypotheses with a close to zero belief are set to zero so that
they can be neglected in the next iteration, speeding up the
“knockout race.” This approximation can be mathematically
described as

P(i|y . u)/ > P(jIy*.u), iel
P(i|y*, u) < jel; (7
0, i¢l

where I, = {j € H : P(j|[y*,u) > ¢}. We note that
kernelization is not the only way to construct an expression
for unavailable distributions. Another strong candidate would
be the approximate Bayesian computation method, of which
more information can be found in [23].

B. Input Synthesis

This section focuses on synthesizing a feasible input
signal u at each time instant to generate an “optimal”
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measurement y* for the Bayesian update described in (5).
As a first step toward this goal, we need to formally define
such an optimal process. Intuitively speaking, a key feature
to isolate the fault modes is to separate the conditional
distribution P(dy|i, u) = p(y|i, u)dy from one another for all
i € H. Note that in an ideal setting where these distributions
have zero overlap, then in the posterior distribution update in
(5), the quantity p(¥*|i,u) = O for all i # i*. This means
that Bayes’ rule (5) immediately converges to the optimal
distribution fully supported on the true fault mode i*. In this
view, we first choose a distance function D(PP;,IP,) that
essentially captures the overlaps of two distributions Py and
Py, ie., D(Py,P;) > 0 and is zero if and only if P; = P5.
Given this distance function, we then introduce the objective
function

J@) = D" P@HDP(dyli,u), PAylj, u)P(j). ()
i,j=1

Our goal is to maximize the objective function (8), and
thus to reduce the similarity between the marginal distribu-
tions P(dyli, u) for i € H, over the admissible set of inputs
u € U. The cumulative overlap between marginal distribu-
tions is weighted with the belief about their corresponding
hypothesis candidates, such that the algorithm at any time
focuses on separating the hypotheses with highest belief. From
a computational perspective however, the function J in (8)
may not be convex and it is not computationally feasible to
solve max,p J (u) per se. Therefore, we propose the projected
gradient ascent update rule where at each iteration ¢, we only
require to compute the gradient (86J/0u)(u,) at a given u,.
More formally, we propose

oJ
up = Iy [”t + ﬂa(ut)} teN 9)

where Ily is the projected operation on the set U, and the
constant 7 is a prespecified stepsize. The key ingredient to
implement the input update (9) is the computation of (0.J/ou),
the gradient of the cost function. This quantity indeed entails
the behavior of the algebraic equations (1). We note that
the choice of the distant function D(IPy, IP;) is a degree of
freedom as long as the basic properties of a metric on the space
of distributions are fulfilled. In anticipation of the application
in the next section and for numerical purposes, we consider
the Hellinger distance defined as follows:

D[P, P)=1- / Vi) pa(y)dy.

The Hellinger distance (10) is qualified as a metric, as opposed
to the common KL-divergence measure. This metric is also
perceived as the stochastic analog of the Euclidean dis-
tance. The metric can therefore be implemented intuitively
and unambiguously, because the three basic axioms (iden-
tity of indiscernibles, symmetry, and the triangle inequality)
hold. Specifically, the symmetry axiom is important in this
application, because the degree of overlap does not change
with perspective between two overlapping spatial objects, i.e.,
D(Py, Py) = D(P, Py).

(10)
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Algorithm 1 Bayesian Based Active Fault Detection

Input: Uo, ]P(), m, Cv Pmax; tmax
Output: uy, Py

Ensure: t =1, P(i) = Py(i),vi € H
1: while meax]P(') < Pmax and ¢ < typae do

2:  Compute —(ut 1) using (11)

3:  Update control u; using (9)

4:  Measure real output ¥

5. for i € H do

6: Construct conditional distributions using (6)

7 Sequentially update posterior distribution
P(i|y7, ut) using (5) and (7)

8:  end for

9: t+t+1

10: end while

Proposition 1 (Cost Function Gradient): Let the cost func-
tion J(-) be defined as in (8) where the distance function
is (10).A Given u € U and realizations of random vari-
ables {d,,, Kin}, i € I, let the set (@), y@)lil : i €
I, 1 < m < M} be “M” measurements of the model (1).
Suppose « to be a kernel function and P(y|u) is approximated
by (6). Then

oJ 1
u =3 ZIP(I')(/ Vij (v u) + 75y, u)dy)lP(j) (11
i,j

where the function y; ; is defined as

> e (s yE,’,](u))( ZS’;( Fw)) Am)

Vij ot =

(v )\ M =
oyl aC (aF\'oF i = =
S = ox\ax ) oa En @ duu K).

Proof: The proof comprises the following steps.

1) Distance Function Gradient: Suppose pi(y|u)
and p,(y|u) are two input-dependent density functions.
Given distance function (10), we have by the chain rule

0
a—D(IEn(-), Pa()) =
u

1 | p2() a101() | p1() aPz()
i) p2()
2) Output Perturbations: Suppose y(u) is the solution

to (1). Then, given (d, K), we have

ay aC(x)(aF)“aF

ou ox ox ou

Now the proof follows from observations 1) and 2), the
description of the probability distribution (6) and (10). |

We close this section with Algorithm 1 summarizing the
proposed Bayesian approach comprising two pivotal steps of
the input synthesis (9) and the posterior update rule (5).
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IV. LEAKAGE LOCALIZATION IN A WDN

In this section, the proposed methodology is further speci-
fied for the application to active leak localization in a WDN
as described in Example 1. To this end, we first show how the
mathematical model of WDNs falls into this category.

A. Model of a WDN

For the case of a WDN, the hypothesis candi-
dates {1, ..., ng} correspond to possible leak locations at one
of the ng nodes. For a WDN at steady-state, the equations
describing the state x = [q h]T of the network under leak
mode i can be represented by substitution of

E(xl u,d, gl) =0

[i] (L] (A
FU(x" u,d, k") [g[” = L(x1; K1),

In (1), we have

EW(xl u,d, g) =0

Model" : { glil = L(x!1; K1) (12)
il = Cxli]
where following [24], the term El(.) takes the form:
. A ( [i]) A [i]
Iy — 11\q 2(q
E ()—[ AL o ||a®
A]()u 0 _
28 Kl R P ST

with leak magnitude gl’! in m?/s being a function of the
pressure p; (part of the state vector x!') in mH,O at the leak’s
location [25]. This yields

g =L(x" KW) = KWp?, p; = puge(hi —z). (14)

The diagonal matrix A, € R*»*"» consists of the elements

7—1
, J=1,...,n,

An(j, )= Rj"]&i]

with R; being the resistance coefficient of pipe j; see [26]
for further information. The matrices A, € R"*™ and
Ay € R™* ™ are the incidence matrices that denote the
connectivity between the n, unknown head nodes and the
n, nodes with regulated pressure heads u € U, respec-
tively. Using the Hazen—Williams (HW) energy loss model
to describe the friction of pipes to flow, we have v = 1.852,
R; = 10.670Lj/(C}'852D§'871) where L;, C;,and D; denote
the length in m, the unitless roughness coefficient, and the
diameter in m of pipe j, respectively, [26]. The parameters
describing the leak magnitude (p,,, g., z;, Ki, @) denote the
density of water in kg/m?>, gravity in m/s?, elevation head
z; in mH,O, and the discharge constant K; > 0 and 0 <
o < 1 are the parameters dependent on the leak size and pipe
material. Finally, y'l denotes the measured part of state x!’!
with C € R™*" With slight abuse of notation, we use Cx
instead of C(x), because in this specific application y is a
linear combination of x.

B. Specifications

Thanks to the WDN’s model built above, the proposed
methodology can now be applied for active leak localization
in a real WDN as described by (12). What complicates the
application is that in a real-world setting the amount of
leakage g is not known exactly. To mimic this situation,
we therefore assume that only an estimate of g is available.
For the M realizations needed to approximate the propagation
of parametric uncertainties (d, g) into output distribution
functions P(dyli,u), i € H, it is assumed that the nodal
demands are realizations &m from a Gaussian distribution I@’d.
The availability of g is mimicked by drawing a realization
from the uniform distribution g ~ Ug(g~, g") centered at
the actual leak magnitude g, i.e., (g~ + g7 /2) = g. Finally,
it is reasonably assumed that the parameters describing net-
work characteristics such as pipe diameter D; and roughness
coefficient C; are calibrated using historical data and are
time-invariant within fault detection time scales.

C. Input Synthesis

Recall that synthesizing a feasible input signal u using
the gradient ascent update rule as proposed in (9) iteratively
maximizes the cost function J(u) in (8). The key ingredient
is the computation of V,J(u,) which entails the behavior of
WDN as described by (12). From Proposition 1, it follows that
the only information needed to be able to compute (11) is to
know how to compute V,y and how to determine #.

Proposition 2 (WDN Cost Function Gradient): Suppose
that y'(u) is a realization of (12) under fault mode i. Then,
the sensitivity of a realization with respect to the input u is a
matrix R™*" defined as
[i1

o’ 0y
ouy "7 ouy, P
i .o . 198
Vay'le=1 0 ot = (ng[’]ah.) @ Vull
oyl oyl !
ouyp "7 Ouy,

KCSY & Si'[n, +1i]
where K = (0g/oh;) > 0, §g] € R™, and §l) € R™*" are
the sensitivities of the state x with respect to leak magnitude
g and the inputs u, respectively, i.e.,

. LT . ;
. o9 oh . 1.7
=2 gl = [V v

(15)

Remark 1 (Measurement Input Sensitivity): Note that due
to the Kronecker product, the term V,h; does not affect the
direction of v,,yg.’] but only its magnitude, which corresponds
to the intuition that changing inputs at different locations has
a different impact on A;.

Proof: Application of the chain rule to a
single element of V,yl!l vyields: (6y5?]/8uv) =
(8y5?]/6g)(8g/6hi)(8hi/8u,,), which comprises of the
following parts.

Y
6y_5] — st
og &
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2) As we assume an underlying leak model of the form
in (14), this unidentifiable derivative can be elaborated

as
i ag a—1
K = = puw8caKi(pwge(hi —z:))* >0
oh;
3)
oh; ; )
e Si[n, +1i;v].
Now the proof follows from 1), 2) and 3). |

D. Sensitivities

It is often claimed that the sensitivity matrix of the state
with respect to leak magnitude g “is extremely difficult to
calculate analytically” [11] because the nonlinear hydraulic
equations in (13) are implicit. In this article, the sensitivities
are computed analytically using the implicit function theorem,
which reduces the computational complexity and makes the
proposed approach tractable. In the following proposition,
we address when the sensitivities required in (15) can be
computed efficiently.

Proposition 3 (Analytical Description of §g], §,[j] ): Let x*
be a solution to algebraic equation (13) where the Jacobian
OFU/ox at x* is invertible, i.e., the equation is nondegenerate.
Then, the sensitivity matrices §i! and § in (15) can be
calculated via

j -1
. diag(y,)A 11 (§'1) Apn i1 pli
841 §01] :[ zAsz @") 0 [BY' BI).
Proof: Since the function FUl(.) is continuously differ-
entiable around such a solution x* [24, Appendix. 1], by the
implicit function theorem [27, Th. A.2], we have

oFi(yox  oFU()
ox og og
. 0011
NaA (@) An] || _[O
Al o ||| =|m
ag
——
Alil N B
where Ny = diag(y;), i = 1,...,n, and the only nonzero
element of vector I e R™ is IV1(j) = 1. Therefore,

sensitivity §g] can be computed by solving the n, linear
equations, i.e., §g] = A[i]\Bg].
Likewise, at the same steady-state solution x*, we can write

AFUI(. 4
( )Vux — _VuF[l]()
ox
Alilglil — pli)
u u
where Bl = LAOIO , and we obtain §l1 = Al\ Bl [ ]
Remark 2 (Computational complexity): The complexity of

the proposed algorithm is determined by solving n, X n, X
(M +1+4n,) linear algebraic equations where n,, is the number
of unknown nodes, n, is the number of the states including
all the flows and hydraulic heads, n, is the number of inlets,
and M is the number of realizations.
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Fig. 1. Benchmark Hanoi trunk network.

V. CASE STUDY

In this section, the proposed AFD method is numerically
evaluated by comparing to a PFD method under different levels
of demand uncertainty. It is assumed that no prior information
is available about where approximately the leak is located,
such that the initial belief is a uniform distribution over the
nodes.

A. Hanoi Network

To assess Algorithm 1, its performance is tested on the
benchmark Hanoi network [28] and compared against the
state-of-the-art PFD method introduced in [13] with the slight
difference that the output space is directly used here. This
is implemented using Algorithm 1 without the active control
rules, i.e., lines 2 and 3 are skipped. Fig. 1 shows a schematic
representation of this network, which is fed by two reservoirs.
This trunk model consists of 31 nodes connected by 33 pipes.
At nodes 14, 22, and 30, pressure loggers are installed. The
pressures at nodes 1 and 9 are controlled by means of PRVs,
which will be referred to as inputs u; and u,, respectively.
To demonstrate the algorithm’s ability to handle multiple
inputs,the default Hanoi network from [28] is extended with
an extra reservoir and PRV at node 9. The WDN contains
two trees (i.e., acyclic, connected subgraphs of the network):
9-10-11-12 and 19-20-21. Leaks at these nodes of equal
magnitude affect the pressure distribution across the looped
part of the network identically and are therefore not isolable.
Therefore, as is done in model reduction for WDNs [29], the
nodes in these trees are grouped into corresponding sets and
are represented by the root node of the tree nodes 9 and 19,
respectively. This prevents the algorithm from getting stuck in
an attempt to isolate nonisolable leaks.

The size of each time step during fault diagnosis is in the
order of minutes, such that steady-state can be considered and
dynamic subsecond processes can be neglected.

B. Simulation Setup

Since the real Hanoi network is not available to validate
the proposed AFD algorithm, we resort to simulating the
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TABLE I
LEAK MODEL CHARACTERISTICS
K a  pulkg/m®]  ge[m/s?]
0.0005 0.75 0.5 9.81

Fig. 2. Schematic representation of the simulation setup to mimic a real
implementation of the AFD algorithm on the Hanoi WDN for a single time
step.

hydraulics described via (1) for numerical purposes. To this
end, a single leak scenario is investigated where the node i*
is the location of the leak whose level of the leakage is
described by (14). In this setting, the leak parameters used
in the simulation experiments are listed in Table I.

The obtained model M;- is used as if it were the real
Hanoi network. Fig. 2 shows a schematic representation of
how inputs and outputs of the “real” network are imitated
and how these interact with the AFD method. The consumer
demands d, projected at the nodes of the “real” (M;-) network
are determined by

where b; is the base demand of the jth node, y; is the demand
multiplier at time step ¢, and §, is randomly drawn from
normal distribution &, ~ AN'(1, o4) [30].

The output at each time step is generated by solving the non-
linear hydraulic equation of M;- and obtaining its output y,.
The fault estimation (FE) block in Fig. 2 models the magnitude
estimation of leak g and predicts its value according to g, =
8 +§&, where §, ~ N(0, 64). The AFD block takes as input
the estimated leak magnitude £, and the output observation
¥, and based on these updates the input u, and likelihood
vector IP,. Within the AFD block, the leak magnitude prob-
ability distribution function (PDF) P, and output PDF P,
are estimated at each time step 7 and used for execution
of algorithm 1. The leak magnitude PDF is assumed to be
uniformly distributed around the estimated leak magnitude,
ie., g ~U(g—30,, 8+30,). The output PDF is estimated as
described in Section IV. For this setup, a Gaussian kernel was
used with bandwidth determination based on Scott’s rule [31].
The control inputs have the upper bound u,,,x and are lower
bounded by the required minimal service level pressure head
of 15 m at the critical point, node 30 in this case being the
node in the lowest pressure area of the network [9]. In any
case, the pressure at this critical point needs to be maintained
above its critical level. Therefore, depending on the scenario,
the inlet pressure heads u; and u, have a different lower
bound per steady-state. This is the reason that the inputs in
Fig. 3(b) (passive method) are not straight lines. Furthermore,
a constraint A, max is imposed on the input change rate due to
PRV’s characteristics. The leak magnitude is bounded by about
[0.02, 0.05] m3/s & [1.0,2.5%] of the mean total demand
between 0 A.M. and 5 A.M. All the necessary simulation

TABLE 11
SIMULATION CONSTANTS
M ¢ Umaz [mH2O] Pmax
80 5/10% 100 0.95
A'u.,Tnaz [mH2 O] n Og [m3/s] tmaz
5 50 0.003 60

constants are specified in Table II. Since the amount of
computing power required to perform the simulations depends
on M, its value has been minimized. Lower values for M make
that the PDF estimates are filled with gaps, such that the actual
output space is not covered. Likewise, the stepsize # is a design
parameter and has been optimized in such a fashion that the
gradient in (9) controls A, = 5(8J/du). Taking a too large #
makes that always A, = Ay, max, such that the gradient is in
fact out of play. On the other hand when # goes to zero, the
active algorithm becomes passive. The simulation experiments
were performed using the WNTR Python package [32] and
its built-in hydraulic solver.

C. Experiments and Scenarios

The following numerical experiments are set up and per-
formed five times for scenarios with different nodal demand
realizations.

1) i* is varied over all 26 considered leak locations, i.e., all
the classes of nodes where trees are aggregated into the
corresponding root nodes. The AFD algorithm is directly
compared with its PFD counterpart. The two algorithms
have identical initial conditions and are activated during
nighttime between 0 A.M. and 5 A.M. with a time step
of 5 min. The algorithms try to isolate the leak location
within this time frame.

2) Step 1) is repeated for two different values of
the demand distribution variance o4, namely, o; €
[0.01, 0.10].

To measure the performance of the AFD and PFD methods,
accuracy and average distance are used as metrics. Accuracy
is measured by the percentage of leaks that are classified
into correct leak location within the time frame of 0 A.M.
and 5 A.M. The average distance is the mean distance in
kilometers between the “as classified” and the actual leak
location i*, calculated using Dijkstra’s algorithm [33].

Remark 3: The experiments simulate fault diagnosis at
nighttime, because the ratio between leakage and total inflow
at the inlets is the largest in these hours [34]. Nodal consumer
demands are more predictable as well, i.e., have a lower vari-
ance, such that leaks to a lesser extend are getting obscured by
the increased uncertainty imposed by a higher variance [21].

D. Results

Fig. 3(a) and (b) shows the input and likelihood trajectories
resulting from a single AFD and PFD diagnosis with a leak
at node 1, i.e., i* = 1, and demand distribution variance o4 =
0.10. Fig. 4(a) and (b) shows similar trajectories for a leak
at node 6, i.e., i* = 6, under equal conditions. The spatial
distribution of the nodes is shown in Fig. 1. All the scenarios
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Fig. 3. Input and likelihood trajectories for a single experiment with initially
equal scenarios resulting from (a) AFD and (b) PFD diagnosis (i* = 1).

05:00

are equally initiated regarding demands and leak magnitude
estimation.

In both the cases (i* = 1, i* = 6) the AFD trajectories can
be roughly divided into two periods: 1) leak area selection and
2) isolation of the most likely leak node or location, described
below.

1) The pressures in the network are low and many hypothe-
ses are initially posed. The algorithm aims to fan-out
all the corresponding densely packed output PDFs by
increasing the control inputs, sometimes at the maximum
allowed rate. In this way, it aims to stepwise maximize
the objective function J(-) in (8).

2) In this period, many hypotheses have been rejected
based on a sequence of output measurements, and the
algorithm focuses on separating the output PDFs of
the remaining hypotheses. It is observed that the inputs
diverge due to their different effect on separating the
remaining output PDFs, i.e., (0J/0u;) and (6J/0u,)
diverge from each other. As the likelihood vector IP;
changes over time (line 7 in Algorithm 1), the vary-
ing dominant hypotheses determine the stagnation or
increase of the different inputs. This clearly demon-
strates the adaptive behavior of the AFD algorithm,
which determines the input directions based on the
“current belief.” When the hypotheses of two spatially
closely related nodes have both a high likelihood, it is
observed that the inputs tend to grow faster due to the
relative high overlap between their output PDFs. It can
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Fig. 4. Input and likelihood trajectories for a single experiment with initially
equal scenarios resulting from (a) AFD and (b) PFD diagnosis (i* = 6).
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be observed that as a rule of thumb, when output PDFs
of the most likely hypotheses at a certain time step have
little overlap, the inputs stagnate. In contrast, when the
dominant hypotheses have a high overlap of output PDFs
in the full output space, the input vector takes a step
in the direction in which maximum separation of the
output PDFs corresponding to the dominant hypotheses
is expected, that is, maximizing J with respect to u.

Comparing the trajectories of IP; between the PFD and
AFD in these two experiments shows that the PFD method
has a poorer performance in terms of speed, accuracy, and
decisiveness. The different hypotheses struggle for precedence,
but their corresponding output PDFs clearly have too much
overlap which makes that the PFD algorithm has no further
region selection. Of course this does not mean that the AFD
algorithm is superior in every experiment. Both the algorithms
are heavily dependent on the “separating quality” of observed
outputs at each time step. To show that the AFD algorithm
has an overall better performance than its PFD counterpart,
in Fig. 5 the accuracy and average distance time-lapse trajec-
tories over all 130 scenarios (26 experiments repeated with five
demand realizations) are plotted for the two different levels of
demand uncertainty (different values of oy).

The upper plot shows how the accuracy evolves over diag-
nosis time for different values of demand distribution variance
oq. Likewise, the lower plot shows the development over time
for the average “distance to actual leak” performance metric in
kilometers. Compared with the PFD algorithm, the accuracy of
the AFD algorithm is higher by 12% and 9% for the demand
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Fig. 5. Performance of the AFD and PFD methods over a 5-h diagnosis
period. The performance measures are averaged over all the experiments,
where leaks are placed at different nodes in each experiment. Two scenarios
with different levels of demand uncertainty are considered. (a) Accuracy in
finding exact leak nodes (%) and (b) average distance of nodes classified as
leak location to actual leak nodes (km).

variance values of 0.01 and 0.1, respectively. Similarly, the
average distance is lower for AFD by, respectively, 0.37 and
0.75 km. Finally, the mean diagnosis time for AFD is 117 and
164 min, whereas the PFD takes 45 and 50 min longer,
respectively.

E. Robustness of the Proposed AFD Algorithm

Algorithm 1 depends on a number of parameter choices
as inputs, whose values are presented in Table II. Some of
these are hyperparameters as their value controls the Bayesian
learning process of the algorithm. Here, we investigate the sen-
sitivity of the AFD’s performance to some of these parameter
choices.

1) Hyperparameter M: The parameter M denotes the num-
ber of realizations sampled to construct probability density
functions corresponding to the different hypotheses as in
(6). As such it affects how well we estimate the output
distributions at each iteration, and therefore the overall perfor-
mance of the algorithm. We performed closed-loop simulations
of our AFD algorithm for hyperparameter M; for each M
in {10, 20, 40, 60, 80, 100, 120}, the algorithm’s performance
was tested using different performance metrics. Table III
shows performance for the diagnosis with respect to M, while
the other parameters in Table II were fixed. As an example,
a leak at node 3 is simulated and the algorithm is tested with
15 closed-loop experiments to assess its average performance

TABLE III

SENSITIVITY ANALYSIS FOR PARAMETER M. AS AN EXAMPLE, A LEAK
AT NODE 3 IS SIMULATED, WITH 15 CLOSED-LOOP EXPERIMENTS TO
ASSESS THE ALGORITHM’S AVERAGE PERFORMANCE AND VARI-
ANCES IN PERFORMANCE; 15 EXPERIMENTS WERE FOUND TO
BE SUFFICIENT, a Posteriori, TO GET CONVERGENCE FOR
THESE PERFORMANCE METRICS

M 10 20 40 60 80 100 120

Accuracy (%] 27 13 7 11 31 15 25
Average distance [km] 22 1.7 14 1.0 11 12 1.1
SDgistance [km] 2.0 1.3 09 07 09 06 0.6

and variances in performance; 15 experiments were found,
a posteriori, to be sufficient to show convergence in these
performance metrics shown in Table III.

From this example analysis in Table III, we can observe the
following regarding the sensitivity of performance to M.

1) The average distance between the node classified as
leaky and the actual leaky node i* drops with increasing
M. After M > 60, it stagnates at ~ 1 km distance for
this network example. The variance Vargigance Of this
metric also saturates beyond M = 80.

2) When M is increased, the algorithms takes more itera-
tions to reject hypotheses, because the overlap of output
PDF’s increases with M. The result is that the algorithm
converges slower with increasing M.

3) When M is small (eg. M = 10), the algorithm converges
very fast and its results can therefore be qualified as
quick guesses with outliers far outside the neighborhood
of i*.

4) M largely affects the computation speed because the
WDN needs to be simulated M times, at each iteration of
the AFD algorithm and for each hypothesis with nonzero
“belief.” However, it is also important to emphasize
that these network simulations between hypothesis and
control updates are fully parallelizable (for loop in
lines 5-8 of Algorithm 1); network simulations can be
done in parallel across the different hypotheses with
nonzero “belief” and across the M samples made for
each hypothesis.

From similar simulations over many leaks, we can conclude
that the proposed AFD algorithm was found to be robust to this
hyperparameter values since a sufficiently large M value could
be found to ascertain good performance in terms of distance
to actual leak and with low variance of this performance. For
the network example in this article, and as also depicted in
Table III, M = 80 (the value selected for the experiments in
Table II) gives a good trade-off between computational burden
and performance.

2) Other (Hyper)Parameters: As shown in Fig. 5, the
uncertainty of nodal demands o, has a big impact on the
performance of the algorithm as it accounts for the uncertainty
within the system under normal operations, even without a
leak. Unlike for M, o, has little impact on the algorithm
convergence rate but rather does affect its ability to find the
accurate leak location or proximity to it. As diurnal demand
uncertainty becomes larger, the impact of a leak on the
measured output variable y* falls within normal operations,
and therefore its identification becomes less accurate and less
precise in distance to actual leak.
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Other parameters in Table II did not affect the algorithm
performance or were controlled design or system parameters.
These are as follows.

1) ¢: This hyperparameter can always be set sufficiently
close to zero and could be controlled to have no influ-
ence on the algorithm’s performance. It has an influence
on the computational speed, since hypotheses that have
a belief lower than zeta get set to zero, after which
the belief vector is renormalized. This is because at
each iteration, the algorithm has to construct the PDF’s
of all unrejected hypotheses. However, this burden is
fully parallelizable and so can be mitigated with parallel
computational resources.

2) Umax : this parameter comes from regulatory constraints
on system pressure and only sets a maximum on the
input vector, such that the pressure in a physical WDN
does not exceed its maximum allowable pressure.

3) pmax: this parameter is used as a stopping criterion;
whenever the belief of a single hypothesis exceeds pmax,
set to 0.95 here; the algorithm terminates and qualifies
that node to be the leaky one.

4) Aumax: this parameter limits the stepsize in u in a
single control time step. This often comes from pressure
control valve operational constraints.

5) #n: this hyperparameter determines how active the algo-
rithm is. When chosen close to zero, the active algorithm
converges to its passive counterpart. So it does not
directly make the algorithm robust but rather controls
it to be more or less active.

6) o,: this is a design parameter for the experiments.

7) tmax: this is a design parameter for the experiments.

VI. CONCLUSION AND FUTURE DIRECTIONS

A tractable active fault isolation method is proposed for a
class of nonlinear models subject to faults and applied to locate
leaks in a WDN with uncertain user demands and unknown
leak magnitude. The method relies on the classification of
output observations to a discrete set of hypotheses. The
uncertainties are captured by output PDFs which are used to
iteratively update the posterior probability of each hypothesis
in a Bayesian framework. The AFD algorithm proactively
minimizes the joint overlap between output PDFs by designing
optimal control inputs. A new numerically scalable approach
for synthesizing such control inputs on the fly is derived. The
performance is tested for two levels of demand uncertainty and
compared with the PFD counterpart method. Improvements of
the performance metrics accuracy and average distance as well
as diagnosis speed are observed. It can be concluded that the
AFD method is more reliable and faster compared with its
state-of-the-art PFD counterpart. It is further shown that the
AFD algorithm updates the inputs in an economical way, i.e.,
the inputs are only adjusted when this is in favor of the objec-
tive. The robustness of the AFD algorithm was also tested,
showing that the hyperparameter values could be selected
appropriately to guarantee good performance. The number of
output realizations of the system, sampled to estimate the out-
put probability density functions corresponding to the different
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hypotheses, was shown as the main hyperparameter that affects
the performance and computational burden. We note that the
number of system simulations required at each iteration, which
grows linearly with number of realizations sampled and num-
ber of hypothesis not yet rejected, is fully parallelizable and
may not be burdensome even for large number of realizations
sampled. Future follow-up studies are encouraged to study
optimal sensor and input placement to facilitate AFD.
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