
SYSTEMATIC INTEGRATION OF URBAN
FARMING INTO URBAN METABOLISMS
Waste As A Resource For Urban Food Production

Eren Gozde Anil
5263557

Delft University of Technology

Master of Architecture

Building Technology Track

Graduation Project Report (P4)

Delft University of Technology
MSc. Architecture, Urbanism and Building Sciences
Building Technology Graduation Studio AR3B025
Eren Gozde Anil | 5263557
June 2022
Mentors: Andrew Jenkins | Climate Design & Sustainability
 Michela Turrin | Design Informatics

As the global population rise, climate conditions get more and more unpredictable, natural resources
deplete; cities need to take action in order to sustain healthy living conditions as well as to ensure
food safety. Currently, cities are solely dependent on external sources and suburban areas for natural
resources and food as well as waste management. This linear metabolism results in cities consuming
60-80% of natural resources and producing 50% of waste globally. (Tsui et al., 2021) This problem can
be overcome by introducing urban farming into cities by utilising waste and underused space as a
resource for urban food production. Waste can be circulated in the city in order to generate a network
of waste producing functions and farms.

There are urban farming systems which can digest waste and produce supplements for urban food
production. However, the quest of choosing an urban farming system based on existing vacant spaces
and waste f lows is a complicated task. The complexity is a result of variables in the equation which may
effect decision making such as different systems, waste types, vacant space characteristics as well as
the size of spaces and the quantity of available waste. Moreover, in sites consisting of numerous vacant
spaces and waste sources decision making is even more complex and laborious. If human designers
were to perform this task then they would need to iterate countless times for each vacant space, each
waste source close to it and each potential urban farming systems. However, when it comes iterating
and repeating the same steps, computers are explicitly faster, time-efficient and error free. Therefore
a decision making tool which can assist designers to choose urban farming systems based on existing
conditions can be a practical resource.

This paper investigates how to integrate urban farming into cities by utilising under-used spaces and
existing waste sources via using a decision making tool. The design rules and the methodology are
formed based on literature review regarding different farming systems, varying waste f lows and
computational approaches. A prototype of the tool is generated and tested on 2 case studies in order
to showcase the potential of such an approach combining food production with waste management.

Keywords: urban farming, decision making tool, waste as a resource, urban farming systems

Abstract

This 8 months long adventure on working with this project made me grateful to a lot of people for their
guidance and support along the way. I would like to use this opportunity to thank my dear mentors
Andrew Jenkins and Michela Turrin who guided and supported me all along the project. I am indebted
to my mentors for making these 8 months the greatest I had in TU Delft.
Urban farming and urban waste f lows were new to me when I started this graduation topic. And thanks
to Andrew Jenkins, my interest in the topic never faded instead it rised even more. I am truly grateful
for all the tutoring sessions and the guidance as well as the constant encouragement.

To be completely honest, there were times I was unsure how to start and which way to go with the
decision making tool. I would like to thank Michela Turrin to guide me out of the puzzle by questioning
and making my ideas surface. I am more than grateful for all the eye-opening and inspiring tutoring
sessions.

It is undoubtably true that, I gave never-ending speeches on my graduation project to all my family
members and close friends in order to understand and deal with the puzzle I had in my hands. I would
like to thank my family for supporting and always believing in me through out my education and
especially all along my graduation year. I would like to thank my close friends who were here studying
with me and to the ones who were there for me virtually.

Lastly, I would like to thank TU Delft’s The Architectural Engineering + Technology department for
giving me the opportunity to work on innovative topics and creating the grounds for an eye-opening
experience and a great learning environment. There were times I questioned my decision with doing a
masters in Building Technology. However looking back I am more than gratified and thankful.

Acknowledgements

TABLE OF CONTENTS | pg.6 TABLE OF CONTENTS | pg.7

TABLE OF CONTENTS

1.0 Research Framework .. 11

Sub-problems: ..12
Objective: ...12
Sub-objectives ..12
Research Question ..12
Sub Research Question: ...12
Background Questions: ...13
Final Product: ...13
Research Scope: ..13
Research Approach & Methodology: ..14
Glossary ...17

2. Literature review ... 19

2.1 Current Food System & Challenges ...19
2.2 Urban Farming ..20
2.3 Urban Farming Systems ...22

2.3.1 SOIL-BASED AGRICULTURE ..22
2.3.2 WATER-BASED AGRICULTURE ...22

Hydroponics ...23
Aquaponics ..23

2.3.3.Soilless Agriculture Techniques ...24
NFT..24
Water Culture ...24
Media Beds ...25
Aeroponics ...25
Plant Factories ..26

2.3.4 Mushroom Farm ...26
2.3.5 Vermicomposting ..28

2.4 Waste Flows in Cities ...28
2.4.1 CO2 ..29
2.4.2 Water ...30

Rainwater ...30
Blackwater ...31

2.4.3 Organic Waste ...31
Food and Agricultural Waste ..31
Spent Coffee Grounds ..31
Other Waste (Paper, Cardboard, Sawdust)32

2.4.4 Residual Heat ...32
2.5 Decision-Making Tool & Approaches ...33

2.5.1 Demand for Decision Making Tools ..33
2.5.2 Computational Design Categories ..34

Grammars ..34
Generative Design Algorithms ...35

2.6 Conclusions ..36

3.0 Outline Of Design Task.. 39

3.1 Description of Design Problem ...39

4.0 Data Collection ... 43

4.1 Prototype ..43
4.1.1 Simplified Calculations For Waste Demands And Yields43
4.1.2 Analysis Framework ..43
4.1.3 Representation of Data ..45

4.2 Automated Data Collection (Waste Output Points, Vacant Spaces)46
4.2.1 Drone Footage & Machine Learning ...46
4.2.2 ArcGIS Platform ..46
4.2.3 Waste Audits ...47
4.2.4 Manual Data Collection And Input ...48

5.0 Step by Step Decision Making ... 51

5.1 Data Preparation ...51
5.2 Decision Making Stages ..52

5.2.1 Stage 1 Assign Systems ..53
Data Processing ...53
Necessary Datasets ...53
Data Processing ..55
Applying Design Rules ..55
Assigning Food Production Systems ...56
Assigning Food-Producing Supplementary Systems56
Assigning Supplementary Systems ...57

5.2.2 Stage 2 & 3 Increase Radius ..57
5.2.3 Stage 4 Occupy All ..58
5.2.4 Stage 5 Illustrating The Results ..59

5.3 User Interaction (Representative) ...59
Data Input: ...60
Design:...60
Design Panels ...62
Customisation ..62
Breakdown of Results: ...62
Responsive to Future Changes (In theory)...65
Software as a Service (In theory) ..65
Foodcycle’s Role in Design Process ...65
Transportation of Waste and Supplements From Source To Farm65

6.0 Case Studies ... 69

6.1 TU Delft Case Study ..69
6.1.1 Site Analysis ...69

Vacant Spaces ...69
Waste Outputs ..70
Sawdust ..71

TABLE OF CONTENTS | pg.8 TABLE OF CONTENTS | pg.9

Paper ...71
Rainwater ...71
Residual Heat ...71
Vacant Space & Waste Output Nodes ..73

6.1.2 Case Study Settings ...73
6.1.3 Case Study Conclusions ...73

6.2 East Capitol Farm, Washington DC ..76
6.2.1 Case Study Settings ...76
6.2.2 Case Study Conclusions ...77

7.0 Conclusions & Areas of Further Development 79

Comparison With Other Tools ..81
Further development ..82
Graduation process ...84

8.0 Reflection ... 84

Ethical Issues & Societal impact ...85
Mentor Feedback ..85
Self Development ..86

Bibliography .. 88

Appendix A Urban Farming Systems ..98
Appendix B Computational Approaches ...128
Appendix C Methodology & User Interface ...138
Appendix D Waste Quantities & Yields ..210
Appendix E TU Delft Analysis ..220
Appendix F TU Delft Decisions ..254
Appendix G Ward 7 Analysis & Decisions ..276
Appendix H Technical Details ..281

1.0 Research Framework | pg.11

01
RESEARCH FRAMEWORK

1.0 RESEARCH FRAMEWORK

Introduction

The global population is estimated to rise by 50% by 2050 compared to 2013 (Graamans, 2021), resulting
in increased food demand. Extreme weather conditions such as drought and higher temperatures are
expected and to overcome these challenges climate change brings, agriculture should be climate-proof
in order to adapt to extreme weather conditions and become resistant to plagues (Roggema, 2009). In
other sources, it is stated that current food supply networks are robust to random failures however
they are vulnerable to targeted cascading disturbances (Graamans, 2021) and climate change due to
changes in CO2 levels, precipitation, temperatures, rainfall variability, pests, and diseases (Fresco,
2009). Therefore climate-resilient, f lexible, and sustainable agricultural systems should be introduced
which are productive, responsive to change, and resource-efficient as advocated by Fresco (2009).
Roggema & Keeffe asserts that otherwise, a food crisis may happen if this vulnerable, dependent
system fails (2014). Other challenges food production faces are land scarcity and dependency on rural
areas for food as stated in the same paper. Urban farming is a promising solution to overcome these
challenges regarding land scarcity and food security by providing alternative spaces to grow crops.
On the other hand, cities lost their place in the chain to contribute to sustainability as the urban areas
are dependent on delta areas for energy supplies and to global food supply chains (Roggema & Keeffe,
2014). Food is imported to the cities from various locations by passing through many stakeholders
consuming energy to store and transport and food is wasted on the way due to poor storage conditions.
Moreover, the urban metabolism is based on linear processes such as consumption of energy, natural
resources, food, and land while producing waste, greenhouse gas emissions. As reported by Tsui
et al. cities consume 60-80% of natural resources while producing 50% of waste and emitting 75%
greenhouse gas globally (2021). By introducing urban farming, cities can regain their influence on
sustainability, and the loops of urban metabolism can be closed.

In this paper, a systematic way of integrating urban farming into urban metabolisms by utilising waste
as a resource will be discussed. Existing vacant spaces within or on the buildings are proposed to
be used as potential urban farming locations as cities tend to be dense urban areas with little or no
available space. There is no one size fits all solution to close the loop, design problems are location
specific and multifaceted as there are various types of urban farming systems which require different
resources and are capable of utilising different kinds of waste in addition to generating different
outputs. Consequently, a decision-making tool is proposed as a solution to this multifaceted problem.
The decision-making tool is designed to support designers to choose the most suitable urban farming
system depending on existing factors such as vacant spaces, waste f lows within an urban development
in the early stages of design. Various waste types, including CO2, organic waste, black water, rainwater,
residual heat, are covered in the following sections and each is assessed in terms of their potential and
feasibility to be used as an input for the urban farm. This urban development can be a neighbourhood,
a university campus or a specific region within the urban fabric. During the decision making, the aim
of the intervention is considered and the most suitable system is proposed to the designer by the tool.

Problem Statement

Cities consume 60-80% of natural resources while producing 50% of waste and emitting 75% greenhouse
gas globally (Tsui et al., 2021). Demands of the city are supplied externally resulting in a dependent
system that is not resilient to f luctuations. Demands and waste f lows of cities follow a linear process
line resulting in high GHG emissions, making the 2050 goals (European Commission, 2020) become
unachievable if a change in the design of urban metabolism is not made. Integrating urban farming
as part of an urban metabolism has the potential to close the loop of some organic materials and
resources within the urban environment however vast amounts of waste types and urban farming
systems complicate the decision making process.

1.0 Research Framework | pg.12 1.0 Research Framework | pg.13

Sub-problems:

The primary needs of a city are clean water, energy, materials and food. Food is imported from outside
resulting in energy consumption and waste due to transportation, storage conditions, in addition, to
complete dependency on external factors and global supply chains which are vulnerable to climate
conditions. Secondly, cities are currently dependent on delta areas for energy supplies. By 2050,
renewable energy sources should replace conventional ones (Ministry of Economic Affairs, 2017) and to
do so waste energy can be utilised and repurposed. Thirdly, global water demand is expected to exceed
supply by 40% within 20 years (UNEP, 2014 as cited in Gondhalekar & Ramsauer, 2017) Clean water is a
crucial factor for the future city therefore water-efficient systems should be integrated into proposed
urban farms. Moreover, in agriculture burning fossil fuels is common practice to increase CO2 levels
in the greenhouses (Bao et al., 2018), however alternative circular solutions must be found. Lastly, the
design problem of introducing an urban farm utilising waste as an input in urban metabolisms is a
complex multifaceted problem that requires prior knowledge.

Objective:

Making a shift to a more resilient, less dependent urban metabolism can be achieved by introducing
urban farming systems to urban development by utilising the waste f lows as resources for the urban
farm. A suitable urban farming system is highly dependent on the location, the situation demands,
existing spaces, and existing waste f lows. The objective of this thesis is to provide a decision-making
strategy, therefore a decision-support tool of urban farming systems utilising various waste streams
from the site with the main aim of closing the loop within the urban metabolism.

Sub-objectives

While designing the decision-making tool the following aspects should be paid attention to:

The loop of waste f lows including water, energy, food should be closed by using the urban farming
system as a hub of resource utilisation and exchange.

Proposed urban farming systems should introduce alternative food supply points in addition to global
supply chains.

A decision-making tool guiding designers to choose urban farming systems should be developed.

Research Question

This thesis aims to answer the following questions:
In which situations can different urban farming systems employ different
urban waste f lows in order to promote the circularity of food production and
resources in urban contexts by augmenting the design process with decision
support systems?

Sub Research Question:

Which kind of waste f lows are viable to be utilised by the urban farm?

Which kinds of urban farming systems are suitable to repurpose the urban waste f lows including
water, CO2, heat, organic waste?

How can urban farming systems be combined and have a symbiotic relationship to close the loop
within the urban metabolism?

Which computational approaches are feasible to construct the decision-making tool serving the
purpose of generating a network of inputs, outputs, and urban farming systems (operators) with given
criteria and rules to design?

Background Questions:

What are the commonly practised indoor farming strategies and are there any limits to these systems?
What kind of effects does CO2 have on crops?
What are common practices to increase CO2 levels in the greenhouses?
What kind of measures should be taken when utilising black water as an input for the urban farm for
the sake of public safety?
What kind of measures should be taken to ensure the safety of collected rainwater?
Is there any risk of using rainwater for the irrigation of crops without processing it?
What are the potential benefits of utilising rainwater for irrigation?
Which kinds of wastes are suitable as substrates for mushroom production?
What kind of mushrooms can be grown in different kinds of waste?
What are the potential advantages of mushroom production?
Which kinds of wastes are suitable for vermiculture?
What are the potential advantages of vermiculture?
How can residual heat from the urban farm be utilised or stored to heat buildings?
What are the challenges of the present food supply system?

Final Product:

The final product of the thesis is a decision-making tool to support designers to choose fitting urban
farming systems to existing conditions such as vacant spaces, waste f lows in the vicinity, and project
goals like maximum food production, research or holistic food production. The tool will be tested on
case studies including TU Delft Campus as the primary case study while the site of Urban Greenhouse
Challenge in Washington is the secondary case study. The outcomes will be illustrated by using the
decision-making tool on 3d models of the locations.

Research Scope:

The proposed strategy or design method is constructed to be used for an urban setting such as a
neighbourhood, a university campus, or a region within the city.

The decision-making tool will be designed to be applicable for various locations and circumstances
however these circumstances only include temperate climates as including warmer climates may
introduce complications to design.

Load-bearing capacity is one of the bounding conditions when working with existing vacant spaces.
Roofs tend to have a lower load-bearing capacity than intermediate f loor levels. Consequently, the
weight of the system has to be considered; however for the development of the decision-making tool,
the load-bearing capacity of the structures will not be calculated. Instead lighter systems will be
suggested for spaces with potentially lower load-bearing capacities, and heavier systems for spaces
that may have higher load-bearing capacities.

The main purpose of the decision-making tool is not to design the whole system but to make suggestions

1.0 Research Framework | pg.14 1.0 Research Framework | pg.15

regarding the urban farming system(s) to use.

Urban farming has the potential to make a social impact by improving the psychological well-being
of nearby inhabitants, decreasing food prices, providing job opportunities, improving the health and
well being of the community, and increasing community sense. However, only quantifiable benefits
are in the scope of the thesis, the rest will be treated as secondary results. These include amount of
waste that can be used as resource and amount of food which can be produced in the farms

In this project, vacant spaces are defined as spaces which do not have any designated purpose.
Therefore, parking lots, sports fields and already utilised roofs are not treated as vacant.

Waste sources which are in the scope of the research are food waste, spent coffee grounds, paper,
sawdust, CO2, rainwater and heat.

It should be noted that the software or tools which are mentioned in the following sections are the ones
that are used for this research and they can be replaced by any other tool if needed. However, the logic
and methodology behind these steps remain the same.

A prototype of the decision making tool is developed based on the set design rules and methods
however data collection is done manually due to time and resource restrictions.

Waste quantities, vacant space sizes, waste demands of systems and yields are calculated based on
simplified calculations disregarding environmental factors.

Waste sources included in case studies are not assessed in terms of life cycle. Some of the waste sources
are already being used as an input by other industries. However, these are still included in the decision
making for research purposes.

Research Approach & Methodology:

The research has three main components: literature review, decision-making criteria & rules, and
case studies to test the decision-making tool as illustrated in figure 1.1.

Literature Review: A literature review is conducted in order to construct the database of different
urban farming systems, their inputs, and outputs. Secondly, literature is studied to assess the potentials
and feasibility of different urban waste f lows (organic waste, black water, rainwater, heat, CO2) to
be utilised as inputs for urban farms. Thirdly, various computational approaches, their advantages,
disadvantages, and suitability to the research are investigated.

Based on the literature review, a database of each urban farming system, its inputs, outputs, and
system overview is constructed in order to assist the decision-making process. Suggested systems
consisting of waste f lows, urban farming systems, and agricultural produce are based on literature
review and the applicability of the interventions are validated by reference projects.

Formulation of Criteria & Rules: Following the literature review, the aforementioned database of
urban farming systems, inputs, and outputs is formed to guide the formulation of rules. Criteria and
rules are formed in such a way that an urban farming system will be suggested by the decision-making
tool based on what kinds of waste f lows and vacant spaces are present. These rules also encompass
other characteristics of the spaces such as solar exposure and structural capacity. Criteria and rules
to decide on a system depending on existing waste f lows, available space, and project goals are

formulated in order to provide guidelines for decision making

Case Studies: To test and develop the decision-making tool 2 case studies are conducted. Case study
locations are selected from temperate climates and each case study has a different scale in order
to validate the feasibility of using the tool fro varying sizes of projects. The first and primary case
study indicating the performance of the decision-making tool will be TU Delft Campus. The second
case study will be the site of the Urban Greenhouse Challenge in Washington DC. Data regarding
available space and existing waste potential will be collected. The decision-making tool will be tested
on the aforementioned case studies to prove the validity of the tool and to highlight the potential of
integrating urban farming into cities.

In order to develop the decision-making tool Rhino for 3D modelling and illustration of results visually,
Python, Jupyter Notebook, and Grasshopper for implementing the decision-making criteria & rules
are used. However, it should be noted that the logic and methodology behind decision making is not
software specific, therefore the same methodology can be used with other softwares.

In Phase 1 literature review results are unveiled. There are 5 main topics investigated in the literature
review: (2.1) Current Food System & Challenges, (2.2) Urban Farming, (2.3) Urban Farming Systems,
(2.4) Waste Streams In The City, (2.5) Computational Approaches. The literature review will be followed
by (2.6) Conclusions of Literature Review and (3) Outline of Design Task.

In Phase 2, consisting of decision-making criteria & rules of the decision-making tool is investigated.
This is followed by Phase 3: Case Studies and Phase 4: Conclusions. These chapters are followed by
reflection, bibliography and appendix.

1.0 Research Framework | pg.16 1.0 Research Framework | pg.17

Literature Review

Constructing Decision Making Tool

Case Studies | Testing

Conclusions

Waste Types
potential uses
e�ects on crops
viability as a resource

input | operator | output

Database

waste - urban farming system rlationship
vacant space - urban farming system relationship
relationship between systems
design ambitions

Formulation of Criteria & Rules

approach types
advantages & disadvantages
applicability to graduation project

Computational Approaches
system types
growing substrate
required resources
required supplements (if applicable)
outputs
required equipment

Urban Farming Systems

vacant space
available waste
design ambitions

Case Studies | Analysis

Figure 1.1 Research Methodology

Ph
as
e
1

Ph
as
e
2

Ph
as
e
3

Glossary

Urban Metabolism: Body of systems which consume and/or produce natural resources (including air,
food, household waste) either in pure or used form, Collection of systems which control waste f lows
in the city

City: A portion of the city for example a neighbourhood, a campus

Waste flows: Stream of resources consist of water, air, heat, and organic(household) waste

Existing Conditions: including vacant space, available waste (air, household waste, heat, water)

Food Production Systems: Mushroom Production, NFT, Media Bed, Raised Bed, Water Culture, Plant
Factory, Aeroponics
Systems which only produce food including mushrooms, soft fruits and leafy greens.

Food Producing Supplementary Systems: Aquaculture
Systems which produce supplements in addition to food.
Aquaculture produces fish (food) and nutrient-dense water (supplement for some systems)

Supplementary Systems: Vermiculture
Systems which only produce supplementary items but no food items.
Vermiculture produces fertiliser and worms (fish food) which are both supplements for some systems
rather than human food sources.

Supplementary Items: These are resources which are produced by some uf systems and can be used
by other uf systems for the sake of symbiotic design.

Critical Items: Resources which are a must for a system to function

Non Critical Items: Resources which can be substituted externally or are not a must for that system to
function. These differ from supplementary items as these cannot be produced by uf systems.
Rainwater, CO2, Excess Heat

Non Transferable Items: CO2, Heat, Rainwater

These resources are only used if they are available in the same building as the vacant space.
Infrastructure needs to be added for these resources to be transferred.

Search Radius: Search radius is the distance between each vacant space and waste sources around it.

Symbiosis Rate: This number defines how symbiotic the design is in terms of use of waste as a resource
Symbiosis Rate = (Found Resources/Needed Resources)

UF: Urban Farming

DM: Decision Making Tool

2. Literature review | pg.19

02
LITERATURE REVIEW

2. LITERATURE REVIEW

2.1 Current Food System & Challenges

In the current setup of urban environments, there is a range of issues with the design of the urban
metabolism. Tsui et al. relate urban metabolisms to material and waste f lows. (2021). Similarly, urban
metabolism refers to a collection of systems that consume and/or produce natural resources either in a
pure or used form in this paper. In urban metabolisms, there are critical issues such as public health,
healthy food access, green space, air and water quality, economic development, and community
engagement (Ackerman, 2012). Some of these issues can relate to the dependency, vulnerability,
linearity of the system in addition to food security concerns.

Modern cities are dependent on the global food network for food distribution (Graamans, 2021), and
rely on delta areas and rural parts of the countries for energy supplies and resources (Roggema &
Keeffe, 2014). The dependency of cities on rural areas and global supply chains has a negative effect
on the robustness and resilience of the system. Current food supply networks are resilient to random
failures however the supply chains are fragile under cascading disruptions (Graamans, 2021). Climate
change, rising temperatures, CO2 levels, precipitation patterns pose potential risks to food production
(Fresco, 2009), in addition to weather extremes, epidemics, pandemics, agroterrorism, f loods and
decreasing air quality (Graamans, 2021). Therefore, f luctuations in food production can take place
as a reaction to changing environmental factors as Fresco reports (2021). The risks include lower
food quality, disruptions in sourcing, transporting, and distribution in addition to reduced access to
produce (Graamans, 2021). Meanwhile, according to Roggema & Keeffe, a food crisis may happen if
this vulnerable system faces a failure (2014). Vulnerability of food supply is not only a valid issue for
developing countries, but it also appears as even a more urgent issue among lower-income groups who
may not have the economic power or savings to withstand the effects of such failure (Fresco, 2009).
Consequently, in order to ensure food security, alternative food suppliers can be introduced not to
sustain the whole city but to implement additional options of suppliers.

Secondly, urban metabolisms are based on linear processes including consumption of energy, food,
space, and production of waste and greenhouse gas emissions. Cities consume 60-80% of natural
resources supplied by rural areas, produce 50% of waste which are either sent to landfills or incinerated
and emit 75% of greenhouse gasses (Tsui et al., 2021). Moreover, according to Roggema & Keeffe, cities
lost their place in sustainability as food is supplied globally from rural areas (2014). The linearity of
consumption and production can be mitigated by introducing circular economy strategies including
local/urban manufacturing, production of goods from local sources, recycling, repurposing, urban
manufacturing to minimise dependency on global supply chains as Tsui asserts (2021). In conclusion,
linear urban metabolisms can evolve into closed loops by introducing local suppliers and utilising the
waste f lows as resources.

Taking into consideration the aforementioned rising concerns and problems of the current food supply
systems and urban metabolism there are necessary actions to take and solutions to deliver. Food
systems should be redesigned to be adaptable to changing temperatures, water, nutrient conditions,
new pests, and diseases in addition to being climate-resilient, f lexible (Fresco, 2009). Since produce
is imported from various locations and passed through many stakeholders on the way, 40% of losses
occur after harvest during processing, marketing, and storage as discussed in the same paper. Possible
solutions to previously mentioned problems include bringing agriculture and food production back
into the urban environments and cradle to cradle type of approach which supports the utilisation
of waste from an operation as a resource for another operation (Fresco, 2009). The same paper also
suggests incorporating multifunctional uses of land and food systems including using recirculation
and storage of water, energy, CO2, and heat storage in aquifers. Lehmann also advocates that it is
crucial to link the function of cities and rural areas together to integrate natural and healthy food

2. Literature review | pg.20 2. Literature review | pg.21

systems to the urban environments in which people garden and farm locally, compost agricultural
and kitchen waste, and grow community vegetables (2011). To sum up, bringing agriculture back into
the city is a possible solution proposed by several authors to battle risks of the food crisis, lower
greenhouse gas emissions, ensure circularity within urban metabolism and decrease dependency on
external factors and global supply chains. In the following chapter, urban farming, its environmental
and social benefits as well as urban framing’s potential to close the loop will be discussed.

CITY

CITY

inputs outputs

inputs

recycled

recycled

goods

energy

reduced
polution &
wastes

food

renewable

goods

energy

emissions
(CO2, NO2, SO2)

inorganic
wastes
(land�ll)

organic
wastes
(land�ll,
sea dumping)

food

coal
oil
nuclear

organic
waste

inorganic
waste

outputs

Figure 2.1 Linear Metabolisms of Cities (Top), Circular Metabolisms of Cities (Bottom)
(redrawn from “Cities for A Small Planet” by R.Rogers & P. Gumuchdjian, 1997, p.31)

Figure 2.2 Achieving Circular Metabolisms Through Adopting Urban Farming
(adapted from “Cities for A Small Planet” by R.Rogers & P. Gumuchdjian, 1997, p.31)

CITY

inputs

recycled

recycled

goods

energy

reduced
polution &
wastes

food

renewable

organic
waste

inorganic
waste

outputs

UR

BAN FARMIN
G

2.2 Urban Farming

Urban farming refers to growing crops and livestock within urban environments. In this paper,
the focus will be on the growing of crops in cities, or in other words the scope of the research is
urban agriculture. In this section, urban agriculture will be discussed as a promising solution to the
aforementioned challenges inclusive of its potential environmental and social benefits and its ability
to close resource loops.

To begin with, urban agriculture has several social benefits including the potential to improve
physical health, psychological well-being, financial security and community development in addition
to ecological advantages. Integrating agriculture within the cities can improve access to healthy
food, promote the consumption of vegetables, introduce green space and consequently improve air
quality (Jenkins & Keeffe, 2017). From a psychological well-being point of view, the presence of natural
features can assist stress relief, micro restoration of nearby inhabitants simply by being exposed to
greenery, potentially reduce depression and anxiety according to the same paper. Jenkins & Keeffe
state that urban agriculture has potential economic benefits such as providing new job opportunities,
shortening the distribution chain, lowering food prices, and making use of vacant spaces (2017). Even
though urban agriculture may not cover all or even the majority of the food demand of major cities, it

can make a positive impact on food security (Ackerman, 2012). As asserted by the same author, urban
agriculture is an attractive solution for some neighborhoods with low access to produce, low income,
high obesity, and diabetes rates, and comparatively more vacant spaces (2012). The same article
also discusses that urban agriculture can benefit society by enhancing community development
by empowering the local stakeholders, transforming neglected spaces into public resources which
provide opportunities for social interaction, promote self-sufficiency and engagement of young people
in such neighbourhoods. To sum up, since urban agriculture has a potential to increase food security
by introducing an additional supply in neglected urban areas (Ackerman, 2012), it is a promising
solution to increase the quality of life in cities and it may overcome the challenges of future.

On the other hand, in addition to societal impact urban agriculture can make a significant environmental
impact. Introducing agriculture to cities, reduces the food miles and consequently decreases the
carbon footprint of food production (Jenkins & Keeffe, 2017). Another benefit of urban agriculture is
making use of vacant sites in cities since more land will be needed to feed the global population with
a healthy diet. Most urban areas have a considerable amount of vacant space for food production such
as empty lots or rooftops (Ackerman, 2012). Technological advancements in food production can also
be utilised in urban settings. For example, higher yields can be achieved by hydroponic systems in
comparison to other growing methods (Rorabaugh et al., 2002 as cited in Ackerman, 2012). Yields can
be ten times higher than field-grown crops depending on the crop types as mentioned in the same
source. Therefore, high yield production which can be offered by advancing greenhouse technology
is a possible solution to growing demands (Ackerman, 2012). In addition, with such advancements,
food can be produced year-round and be supplied to the customers with freshness as stated in the
same article. Furthermore, according to Lehmann, the concept of waste should be diminished by
switching to a closed-loop system where waste is recycled, repurposed, composted (2011). Sustainable
waste management should be adopted which corresponds to utilising waste as a resource (Lehmann,
2011). In addition to the direct environmental benefits, urban agriculture has the potential to close
the loop in urban metabolisms including water, energy, waste f lows if additional systems are utilised
(Jenkins & Keeffe, 2017). Meanwhile, the energy balance can be optimised by introducing exchange,
storage, and exergy principles as explained by Lehmann (2011). For instance, heat accumulated in the
urban farms can be used to heat nearby buildings consequently energy sources can be decentralised
as advised in the same article. In addition to heat, Jenkins & Keeffe suggest that rainwater can be
harvested and wastewater can be utilized as fertilizer (2017). Waste f lows in the urban metabolism
consist of heat, food, organic waste, black water, rainwater will be discussed in section 2.4 along with
each waste f low’s potential to be integrated into urban farming to close the loop.

2. Literature review | pg.22 2. Literature review | pg.23

2.3 Urban Farming Systems

There are various urban agriculture systems including soil-based agriculture, water-based agriculture,
mushroom farms, vermiculture and different soilless agriculture techniques including NFT, deep
water culture, media beds and plant factories. In this section, each system and technique will be
described along with their advantages, disadvantages and some examples.

2.3.1 SOIL-BASED AGRICULTURE

Soil-based agriculture inherently utilises soil as growing a medium. Soil is essentially a mixture
consisting of decomposed organic matter, nutrients, minerals, and microorganisms that promote plant
growth (Jenkins, 2018). However, nutrients do not remain within the soil and over time soil can be
deprived of these nutrients due to excessive agricultural activity (Jenkins, 2018). Therefore it is crucial
for agriculture to replenish the composition of soil by supplementing it with nitrogen, phosphorus and
potassium as stated in the same paper. Even though soil-based agriculture is a conventional method
of growing plants, integrating it into the cityscape is troublesome due to several factors. Firstly, in
many cities soil is contaminated due to previous industrial activity, bleaching fields and chemical
dumps (Jenkins, 2018). Even though industrial activities usually do not take place within the cities
anymore, Jenkins states that soil is exposed to atmospheric transportation of contaminants due to
vehicle emissions, industrial discharge and waste incineration (2018). Consequently, if the soil is to be
selected as a growing medium in the city, contaminant levels should be studied to see whether they
are within the safety threshold provided by the government (Jenkins, 2018). Furthermore, technically
soil-based agriculture can be an approach to urban farming if the soil is not contaminated or raised
beds are utilised as a growing technique however available space on ground level in cities is limited
(Jenkins, 2018). Rooftops or vacant spaces within the buildings can be an alternative approach however
soil-based agriculture may result in higher dead loads than what the existing structure is actually
capable of supporting safely according to the same author (2018). In conclusion, soil-based agriculture
may not be the optimal solution to integrate agriculture into urban environments however raised beds
will remain as an option for the sake of developing the decision-making tool as they have the potential
to be utilised in some cases.

2.3.2 WATER-BASED AGRICULTURE

An alternative to soil-based agriculture is water-based agriculture which is a soilless growing method.
This type of food production is carried out by hybridised food systems which utilise technical products
including mechanical pumps, glass, plastic to grow crops in nutrient-rich water (Jenkins, 2018). Water-
based agriculture has advantages over soil-based growing methods. These advantages include shorter
harvest cycles, more productive food production systems, 4-10 times higher crop yields and maximised
production (Ackerman, 2012; Jenkins, 2018). In such systems, roots of the crops are in direct contact
with a nutrient-dense solution either by adding the solution into an inert medium such as gravel, sand,
vermiculite, perlite, coco coir, by suspending the roots into the solution or by spraying the roots with
nutrient-dense solution periodically as explained in the same paper. In this method, the nutrients are
delivered to plants’ roots through water (Jenkins, 2018). According to Jenkins, crops’ roots are directly
in contact with nutrient solution therefore crops do not need to exert energy to acquire nutrients
and instead they can produce mass resulting in higher productivity of systems (2018). In addition, as
asserted in the same paper, with such systems the need to replace the soil in order to maintain the
soil structure, fertility and to diminish the negative effects of pests is eliminated. With water-based
agriculture systems lettuce, radishes, carrots, potatoes, f lowers can be grown however some specific
systems are more suitable for growing certain crops due to varying root structures (Jenkins, 2018).
Moreover, another advantage of water-based agriculture is that it can be utilised in non-arable regions
(Jenkins, 2018) which makes it a preferable approach to growing crops in urban environments.

Hydroponics

Hydroponics is a system consisting of a water reservoir, water pump and plants in a tray which are
supplied with mineral salts added to water automatically or manually (Jenkins, 2018). Nutrient-rich
water is pumped to the crops from the reservoir, then water falls back to the reservoir due to gravity
and this cycle is repeated until the nutrients in the water are depleted as described in the same paper.
In order to replenish the nutrient levels in the reservoir, nutrients are supplemented regularly as stated
by Jenkins (2018). These systems are lightweight in comparison to soil-based agriculture therefore
implementation of water-based agriculture into the urban fabric is comparatively more realistic and
achievable as discussed in the same source. Even though water within the system needs to be discarded
regularly along with unutilised nutrients, these systems use less water than soil-based growing
techniques as explained by the same author. Moreover, since water-based agriculture takes place
in a protective environment, it is resilient to climate conditions consequently these systems impact
food security positively (Jenkins, 2018). On the other hand, even though hydroponics have superior
benefits compared to traditional soil-based agriculture, some downsides are also present. Firstly, it is
dependent on depleting fossil fuels for nutrients’ sourcing while nutrient and water use is inefficient
as water is discarded along with unutilised nutrients (Jenkins, 2018). Besides, human intervention is
necessary for a stable system growing crops continuously as remarked in the same paper. Even though
there are disadvantages to such a system, its advantages over soil-based agriculture make hydroponics
a viable approach to grow food in cities.

Aquaponics

Another water-based food production method is aquaponics. In aquaponic systems, similar types of
equipment to hydroponic systems are used however instead of a reservoir a fish tank is introduced to
the system in addition to a filter (Jenkins, 2018). According to Jenkins, such a system benefits from the
symbiosis between fish, bacteria and plants consequently it is a holistic approach to food production
that is dependent on the naturally occurring nitrogen cycle (2018). The same paper notes that this
symbiosis is initiated by waste ammonia that is produced by fish. This filtration system enables waste
produced by fish to be utilised by crops as nutrients since nitrate is a form of nitrogen that can be
absorbed by plants as explained in the same source. Conversion of fish solid wastes to nutrients is a
slow process therefore these solids should be separated from the water supply (Jenkins, 2018). After
the removal of solids, they can be repurposed as fertilisers for soil-based agriculture purposes as
stated by the same author (2018). Furthermore, inputs to the system include fish food and calcium
(Jenkins, 2018). Similar to any other system, aquaponics has advantages and disadvantages which will
be explained next.

Aquaponics has many benefits environmentally, financially and from a food production perspective.
Thanks to the symbiosis between fish and bacteria, well being of fish increases, bacteria populations
thrive, excellent water quality is achieved and crops grow with high yields (Jenkins, 2018). Moreover,
since the nutrient demands of crops to grow are supplied by the fish, such a system is not dependent
on fossil fuels or manmade expensive fertilisers resulting in lower operational costs according to the
same source. Aquaponic systems are 10-15% more productive than hydroponic systems and with the
same costs, they can produce 17 kg tilapia and 8 tomato plants while hydroponics can produce only
a few tomato plants as reported in the same article. In addition to higher yields, these systems are
less susceptible to developing diseases (Jenkins, 2018). From an environmental point of view, water
is used more efficiently as it does not have to be discarded typically, less water is used in total even
though initial water demand is high to supply the fish tank and water is only lost due to evaporation
and transpiration which can be overcome by minimising the water-air contact or by condensing
transpiration as discussed in the same article. Another advantage of aquaponics is that human

2. Literature review | pg.24 2. Literature review | pg.25

interaction is minimised as a result of benefiting from natural cycles (Jenkins, 2018). Aquaponics can
take place in indoor, closed environments just like hydroponics which eliminates the potential harm
climate conditions can have on food production as discussed in the same source. In terms of viability
to introduce into urban environments, it is an applicable method to grow food in cities since it is
considered as a lightweight system (Jenkins, 2018). Nevertheless, aquaponics has some disadvantages,
some of which can be overcome. Firstly, it is a heavier system compared to hydroponics however
as Jenkins demonstrated the fish tank and crop growth can take place in different locations within
the building (2018). Secondly, water becomes acidic over time and to overcome this issue it can be
supplemented with naturally occurring pH buffers such as eggshells and chalk (Jenkins, 2018). Thirdly,
fish should be supplied with fish food which is usually produced industrially and dependent on fossil
fuels as mentioned previously, however it can be also supplied by vermiculture according to Jenkins
(2018) which will be explained further in section 2.3.5. Lastly, aquaponics is a more complex system
than hydroponics (Jenkins, 2018) however its benefits once it is set up is inevitable as previously
discussed. Therefore aquaponics remains as a preferable urban farming method for the development
of this research.

2.3.3.Soilless Agriculture Techniques

Hydroponics and aquaponics are soilless agriculture methods however their nutrient delivery systems
can be designed in 4 different ways for both systems including NFT, water culture, media beds
and aeroponics. Each growing technique will be explained in this section with its advantages and
disadvantages.

NFT

With Nutrient Film Technique (NFT), crops are placed in a channel that supplies a thin layer of
nutrient-rich water to the roots of the crops (Jenkins, 2018). The design of the system can be done in
different ways. One approach is a cascading system in which slightly inclined channels are stacked to
grow low leaf crops like lettuce, radish and peas (Jenkins, 2018). In this system, nutrient-dense water
is pumped to the highest end of the top channel and it exits at the lowest point of the top channel
with gravity to enter the channel below and circulate until the lowest point of the system to reach
the reservoir as described in the same paper. Another design is an A-frame which is oriented in the
east-west direction to make better use of space and minimise overshadowing (Jenkins, 2018). Both
the cascading system and A-frames are suitable for growing lettuce, strawberry, spinach and herbs as
noted in the same source. These systems are scalable however there are dimensioning limitations to
adhere to (see appendix A.8 for details). Another limitation of such a system is that only quick-growing
short term crops can be grown as long term crops with larger root systems can block the nutrient f low
within the channels (Jenkins, 2018). Advantages of NFT include f lexibility to grow food horizontally or
vertically either on rooftops or on facades according to the same paper. It is considerably lightweight
compared to soil-based systems therefore it is potentially suitable for structures with lower load-
bearing capacities (Jenkins, 2018). Lastly, according to Jenkins, the channels can be covered with
plates with holes in them to minimise water loss due to evaporation (2018). To sum up, due to the
lightweight of the system and potential efficient use of space NFT is a viable growing technique for
smaller crops in urban environments

Water Culture

Water culture is another growing technique which utilises a larger body of water than the nutrient
film technique to grow plants. In such a system, the roots of the crops are suspended in nutrient-
rich water about 300mm, while the plants are supported with a f loating raft above water (Jenkins,
2018). Nutrient-rich water is pumped from one end of the raceway, moves along the raceway to deliver

necessary nutrients for crop growth, and exits the system at the end of the raceway to the reservoir as
described in the same paper.

Similar to the other growing techniques, water culture has advantages, disadvantages and limitations.
To begin with, advantages of water culture include easy maintenance and handling since when crops
are ready to be harvested, they can be removed from one end and new crops can be placed from the
other end of the raceway creating an effective conveyor belt-like production system (Jenkins, 2018).
Secondly, even if one raceway fails due to any kind of complication the rest would keep functioning
optimally therefore the system’s resilience is high as stated in the same source. In addition, according
to the same author the water can be heated or kept cool to improve the productivity of food production
depending on the climate (2018). Similar to NFT, water culture is suitable for growing crops with
smaller root structures like lettuce, spinach, herbs as explained by the same author. On the other
hand, such a system consisting of a large body of water is comparatively heavier than NFT therefore it
is most suitable to be used on ground level (Jenkins, 2018). However, depending on the context, water
culture may have the potential to be integrated into urban fabric therefore this technique will remain
as an option while developing the decision-making tool.

Media Beds

Another alternative soilless agriculture technique is media beds. This system utilises a type of
substrate to grow crops and allow for growing plants with bigger root structures (Jenkins, 2018).
There are a variety of media that can be utilised (See appendix A.10 for details). These systems are
scalable therefore the bed can be any size but a minimum of 300mm depth is needed (Jenkins, 2018).
An advantage of media beds is that utilisation of media allows for root anchorage and growing bigger
plants without having a heavy soil-based growing system according to the same author. However,
media beds are heavier than systems utilising NFT (Jenkins, 2018), therefore consideration should be
given when or where to use this system.

There are two types of delivery systems to supply nutrients: ebb & flow and gravity-based trickle
systems. Within a media bed with an ebb & flow system, media is periodically f looded and drained,
consequently, each piece of media is submerged and supplied with nutrient solution (Jenkins, 2018). On
the other hand, in a gravity-based trickle system, as Jenkins describes, there are multiple water outlets
at the surface, and nutrient solution is continuously dripped (2018). This is a simpler method than ebb
& flow however it does not ensure supplying each particle with nutrient-rich solution (Jenkins, 2018).
Even though there are disadvantages to the system and to both nutrient delivery techniques, bigger
crops like tomatoes can be grown with media beds. Since growing bigger crops with NFT or water
culture is not feasible, media beds will be included in the decision-making tool to cover demands for
growing bigger crops.

Aeroponics

The last system to discuss within the soilless growing techniques chapter is aeroponics. This system
consists of a watertight box which plants are placed in and supported, equipped with a high-pressure
nozzle under each plant to spray nutrient-rich mist to the roots directly (Jenkins, 2018). Aeroponics
can be set up both horizontally and vertically as stated in the same article. Water is lost only through
transpiration as a result of a watertight outer shell supporting the crown of plants according to the
same author (2018). Such a system is not commercially used and most common for labs even though
it has low water and energy use as stated in the same source. Even though commercial examples of an
aeroponic system are limited, this technique will be included in the further steps of the thesis for the
sake of constructing a universal decision-making tool.

2. Literature review | pg.26 2. Literature review | pg.27

Figure 2.3 Mushroom Cultivation in Bags by
Smallhold
Smallhold. (n.d.)from https://www.smallhold.com/
about

Figure 2.4 Mushroom Cultivation in Bags by
Cycloponics
The Cave in Paris. (n.d.). Cycloponics. from http://
cycloponics.co/galerie/

Plant Factories

Another common approach to growing crops indoors is plant factories. Plant factories are not
techniques or methods of food production. They are indoor production setups with controlled,
sterile environments (Jenkins, 2018). The environmental controls include air composition, humidity,
ventilation, air temperature, nutrient solution, light intensity as reported in the same paper. The use
of artificial lighting allows the growing trays to be stacked with high-density production in mind
(Jenkins, 2018). In plant factories using water culture hydroponics with shallow trays is common
according to the same author.

There are significant advantages of a plant factory. The nutritional value of crops can be increased
as a result of controlled environment (Graamans, 2021) Water use efficiency is significantly higher
in closed systems due to two main reasons: Firstly, productivity is increased due to climate control
with higher CO2 concentrations as Graamans stated (2021). Secondly, it is possible to collect and reuse
transpired water condensing at the cooling element as asserted in the same source. For instance, in a
glass greenhouse with moderate climate control, 3.2 MJ kg-1 of energy and 9.3 l kg-1 of water are needed
for the production of lettuce meanwhile in an open field in Italy the numbers are 2.9 MJ kg-1 and 24.0
l kg-1 respectively as reported in the same source. Jenkins adds that plant factories are not dependent
on climate or external factors as they are indoors with high climate control and produce high-quality
crops with high hygiene levels, low bacterial growth which extends the shelf life (2018). In the same
source, it is mentioned that crops smaller than 300 mm are preferable in such settings to maximise
vertical production. As an advantage of utilising artificial lighting, there is no location limitation for
plant factories since natural light is not a determining factor (Jenkins, 2018). Although plant factories
have many advantages over less controlled food production environments; their dependency on
equipment such as air conditioning units, air, circulation fans, CO2 supply units, nutrient solutions
supply units, environmental control units and artificial lighting is considered as a disadvantage by
Jenkins since all these systems consume energy in addition to high capital investments due to air
handling units and artificial lighting (2018). In addition, plant factories are referred to as a less holistic
approach for food production compared to other systems in the same paper. Even though there is no
location limitation for building plant factories, stacked shelves cause higher loads to be carried by the
structure (Jenkins, 2018), consequently, whether it is feasible to integrate plant factories into or on
existing buildings is questionable. However, for the sake of research purposes, plant factories will be
included in the decision-making tool as an alternative in case the conditions require such a system.

2.3.4 Mushroom Farm

Mushrooms are another product urban farms can produce and they can be cultivated in waste products.
Many Fungi are naturally capable of cycling organic matter and nutrients by decomposing waste, and
as a result, they produce edible mushrooms (Dorr et al., 2021). This organic waste is converted into
a nutrient-rich matter known as spent mushroom substrate which can be used as fertilizer for soil-
based agriculture. (Dorr et al., 2021). There are 4 main components of mushroom cultivation such as
preparing the substrate, incubation, fruiting and harvesting (see appendix A.3 for details).

Firstly, preparing the substrate includes mixing the substrate and sterilising it (Dorr et al., 2021;
GroCycle, 2021). Mushrooms can be grown in various waste-based substrates. The substrate options
include manure, spent coffee grounds, wood chips (Dorr et al., 2021), straw, pellets, cardboard, sugar
cane, paper, coconut husk (GroCycle, 2021) depending on the variety of mushrooms. For instance,
oyster mushrooms (Pleurotus ostreatus), can be grown on some waste materials such as grape marc
from wineries, waste from olive oil mills and coffee ground waste from brewing (Dorr et al., 2021). Some
of the mentioned waste substrates are easily accessible in urban conditions such as cardboard, paper,

coffee grounds and wood chips, therefore these substrates will be included as potential resources
in the later stages of research. The mycelium and substrate mixture is pasteurised and placed into
plastic bags (Dorr et al.) or in reusable buckets (GroCycle, 2021) for incubation. Incubation should be
done in a dark environment since light triggers mushrooms to fruit before it is required as explained
in the same source (see appendix A.3 for details). One way of fruiting mushrooms is cutting holes in
the bag or bucket and spraying them daily for high humidity levels as described in the same source
as shown in figures 2.3 and 2.4. The last step is harvesting the mushrooms once they are ready to be
picked. Mushrooms can be harvested several times from the same mixture (Dorr et al., 2021). Due to
mushrooms’ capability to grow in waste substrates and due to the fact that there are examples of such
practices mushroom production is a potential urban farming system.

One real-life example of using vacant spaces is mushroom farms started by Cycloponics. They specialise
in building farms in unused spaces in cities including an abandoned underground parking lot in Paris
called Cave. The same company also built urban farms in cellars of old buildings and a former bunker
built in 1878 by the Germans. Another example is Smallhold which aims to grow everywhere possible
by providing micro-farming solutions in addition to large scale urban farms. Project locations include
warehouses, restaurants, supermarkets where the mushroom farm is placed above the aisles or the
bar.

To sum up, mushrooms can be cultivated in several waste-based substrates in dark environments
which can be found in the existing urban fabric. Besides, there is a range of potential waste sources
present in cities which can be used as substrates. Therefore for this research, integrating mushroom
farms by utilising waste as a resource is a viable option and will be further investigated in section 2.4.3
with potential wastes and their applications.

https://www.smallhold.com/about
https://www.smallhold.com/about
 http://cycloponics.co/galerie/
 http://cycloponics.co/galerie/

2. Literature review | pg.28 2. Literature review | pg.29

2.3.5 Vermicomposting

Vermicomposting is a method that naturally decomposes waste as earthworms and microorganisms
mineralise organic waste and convert them into nutrient-rich organic matter (Sharma & Garg, 2019). The
outputs of the system are vermicompost and earthworms according to the same paper. Vermicompost
can be used as a soil conditioner with many advantages over chemical fertilisers as it will be discussed
in the next paragraph. The second product of vermicompost, earthworms, can be used for medicine,
or as fish food (Sharma & Garg, 2019; Jenkins, 2018). Sharma & Garg notes that vermicomposting takes
place in an aerobic environment and is dependent on the symbiotic relationship between earthworms
and organisms (2019). Metabolic activities that earthworms perform, turn the waste mixture into
vermicast and then to vermicompost which is a nutrient-rich product as stated in the same article.
Important environmental factors for vermicomposting include moisture, temperature, pH range and
Carbon/Nitrogen ratio (See appendix A.2 for other factors). According to Sharma & Garg, feeding
rate and growing density are also influential factors for earthworm growth and consequently for
vermicomposting (2019).

Moreover, vermicomposting has many advantages and benefits including producing fertilizers as
a byproduct, simply benefiting from natural cycles between earthworms and microorganisms and
utilising waste. According to Sharma & Garg, it is an eco-friendly and zero waste management method,
which consumes less energy, produces less GHG at lower costs compared to traditional compost, and
reduces pathogen levels in waste (2019). In addition, Abbasi et al. report that vermicomposting is a clean
process by nature that requires less energy and material than other biotreatment methods and most
importantly all the nutrients in the waste mixture returns to soil (2015). Vermicomposting can take
place with a range of organic waste types however for this research kitchen waste, paper, food waste
(Sharma & Garg, 2019) will be taken into account as resources. Another benefit of vermicomposting
is the vermicompost it produces which has more available nutrients than the initial waste mixture
(Garg et al., 2006) and when used as fertilizer influences plant growth positively (Sharma & Garg,
2019). When compared to chemical fertilisers and compost, plants gave the highest yields when aided
with vermicompost (Yang et al.,2015 as cited in Sharma & Garg, 2019). Vermicompost has the potential
to be used in nearby soil-based urban farms or to be sold local gardens and small scale horticulture
operations.

As discussed previously, vermicomposting is an effective, low-cost method for waste management
that has secondary benefits such as producing high-quality fertilizer and fish food. In addition
waste types which can be a substrate to vermicomposting such as paper, kitchen waste can be easily
accessed in urban areas while agriculture waste can be provided by nearby urban farms potentially.
Moreover, extra earthworms can be used as fish food for a nearby aquaculture system. In conclusion,
vermicompost will be included in the later stages of research and design as a viable supplementary
method to be integrated into urban metabolisms.

As a conclusion of the literature review on different urban farming systems, vermicomposting,
mushroom production, NFTs, water culture, media beds, aeroponics, raised beds and plant factories
are included as urban farming systems in the later stages of this research.
Waste Streams In the City

2.4 Waste Flows in Cities

Cities consume food and natural resources supplied by rural areas and after consumption transfer
their waste out of the city for waste management purposes including incineration, landfills and
waste management facilities. Therefore city metabolisms are based on linear processes. As Tsui et

al. report linearity of consumption and production can be replaced by circular economy strategies by
repurposing waste (2021). Waste produced within the city can be repurposed to feed urban farms in
order to contribute to the circular economy. Some of the waste types produced in the city include CO2,
black water, organic waste, residual heat if not stored or repurposed and rainwater if not collected. In
this chapter different waste types and their potentials to be used as resources for urban farming will
be discussed and conclusions will be derived regarding the suitability of each waste type to integrate
into urban farming.

2.4.1 CO2

Carbon dioxide is a greenhouse gas that is emitted by people, burning fossil fuels and industrial
activities. More than 80% of global greenhouse gas emissions need to be cut to keep the temperature
rise under 2C by 2050 while lands should be used efficiently to compensate for the growing food demand
(Bao et al., 2018). Integrating urban farming into urban metabolisms by utilising vacant spaces, has
the potential to tackle both of these problems since it increases the land-use efficiency, shortens the
transportation path food takes. As Bao et al. report CO2 is the most important carbon source for plant
growth via photosynthesis and is a limiting factor to plant growth in indoor farms with sufficient
light, water and nutrients (2018). Every square meter of an indoor farm can sequester 15 times more
CO2 from the atmosphere than in an open field and 50 times more than a forest according to the same
source. Therefore urban farms can be designed to be exchange hubs of CO2 and can lower carbon
emissions.

Higher CO2 concentrations in urban farms have advantages in terms of productivity. Increasing CO2
concentration from 400 to 1000 ppm influences plant growth rate and increases the yield of f lowers and
vegetables by 21-61% (Bao et al., 2018). According to the same authors, Carbon Dioxide enrichment is a
common practice in agricultural activities to increase yields and productivity, shortening growth time
(2018). Carbon enrichment can be supplied by a range of sources. Most commonly CO2 concentrations
are increased by burning fossil fuels such as natural gas, directly from CO2 tanks, f lue gas from
heating systems and liquid CO2 (Bao et al., 2018; Blom et al., 2012). During summertime plants grow
robustly therefore CO2 demands are high while heating demands are low (Bao et al., 2018) resulting in
inefficient use of natural gas.

Moreover, indoor CO2 concentrations should be monitored carefully for growth productivity and
human health as CO2 concentrations above 5000 ppm cause dizziness (Blom et al., 2012). Concentrations
ranging between 400-1000 ppm stimulates plant growth (Bao et al., 2018), after exceeding 1000 ppm
photosynthesis plateaus (Blom et al., 2012) while in a tightly clad greenhouse with little or no ventilation,
concentration can drop below 200 ppm which significantly hinders plant growth (Blom et al., 2012). In
another article, it is reported that supplemented CO2 concentrations should be 600-1000 ppm for leafy
vegetables and 1000-1500 ppm for fruit vegetables under sufficient light, humidity and temperature
conditions (Xin et al., 2015). The same authors report that carbon enrichment has other benefits such
as increased vitamin and sugar content in fruit crops; better quality and appearance of crops; higher
resistance to diseases and pests; and longer harvesting periods (2015). The research results from 166
articles revealed that yield increase of 93.37%, enhanced resistance to disease and pests by 41.57% and
advanced maturity period by 48.80% with fruit vegetables such as cucumber, tomato, chili, zucchini,
eggplant and strawberry (Xin et al., 2015). CO2 enrichment has many advantages and a potential to
be integrated into urban farming however CO2 sources used in conventional farms do not augment
circularity and due to fossil fuel use, it is not sustainable in the long term. Nevertheless, there is
an alternative source for CO2 to supplement urban farms which is readily available within urban
environments due to respiration. In public assembly rooms, CO2 concentrations can reach 2500 ppm
(4500 mg/m3) (Persily & Polidoro, 2020). According to ASHREA standards, indoor CO2 levels should
not exceed outdoor levels by more than 600 ppm, while outdoor concentration is 380 ppm in most

2. Literature review | pg.30 2. Literature review | pg.31

cases (Prill, 2000). In addition, CO2 levels should be kept below 1000 ppm (1800 mg/m3) in schools and
800 ppm (1440 mg/m3) in offices (Prill, 2000). Therefore such places with high CO2 concentrations
should be ventilated for indoor air quality, usually, the ventilation output is exhausted to outside.
However, it can be used for carbon enrichment of the urban farm as exemplified by ICTA RTG Lab. In
this example, air from the laboratories which contain heat and high CO2 concentration is fed into the
Rooftop Garden (RTG) (Sanyé-Mengual et al., 2014). RTG Lab is designed to use CO2 concentration in
the residual air from offices and laboratories as carbon enrichment and the f lows will be monitored
by sensors as explained in the same paper. To conclude, as increasing CO2 levels in urban farms has
positive effects on the crops CO2 will be treated as potential waste which can be sourced from crowded
indoor spaces within the site to be used as a nutrient source for the crops.

2.4.2 Water

Water is another urban waste f low that will be investigated to be used as a resource for urban farms. In
this section, rainwater, blackwater and their potentials to be integrated into farming will be discussed.
As pathogens can be ingested by consumption of raw crops irrigated with contaminated water such as
rainwater and reclaimed water (Ortells, 2015), the risks and strategies will be illustrated.

Rainwater

To begin with, rainwater provides an essentially clean water source and has environmental benefits
over utilising water supplied by municipalities. In this section, its benefits, risks and strategies to
overcome potential risks. Water is essential for agriculture however considering growing water scarcity
alternative solutions should be developed. Water scarcity is a growing global problem that affects the
world including the North Western Hemisphere as well as arid North African and Middle Eastern
countries (Lundy et al., 2018). The same author reports that rainwater use is widely considered as a
viable and sustainable practice to conserve water resources (2018). In another source, it is added that
rainwater harvesting can contribute to sustainability in agricultural practices and increase resilience
against drought (Dile et al. 2013 as cited in Macias-Corral & Sanchez-Cohen, 2019). Rainwater has
been used for irrigation for a long time and it has advantages such as being nearly sodium-free, soft
water, containing certain crop nutrients thus reducing the need for fertilisers, being decentralised
and off-grid water supply, better stormwater management, reducing water runoff (Deng, 2021). On the
contrary, pollutants in the water challenge the practice as they may pose risks to crops, farmers’ and
consumers’ well-being as asserted in the same paper. The quality of water collected from roofs is worse
than the quality of rainwater itself as Hofman-Caris et al. states (2018). Rainwater quality is affected
by the material, age and design of the catchment surface, geographic location, precipitation patterns,
pollutant loadings and storage conditions (Deng, 2021). According to Campisano et al., several studies
illustrated that with the first f lush majority of contaminants accumulated on the catchment surface
are washed off during the beginning of rainfall (2017). Therefore first f lushing can be practised to
improve the quality of harvested water. It can also be improved in the storage tank by increasing pH,
sedimentation of particles and precipitation of heavy metals (Campisano et al., 2017). In the same
article, it is stated that these treatment processes can improve the quality significantly and lead to
compliance with potable water standards. Opaque tanks which are periodically maintained should
be used for storage to battle algal growth (Deng, 2021). Moreover, debris capture with filters and post
storage treatments can be utilised to improve the quality (Campisano et al., 2017). According to the
same authors, regular maintenance such as cleaning the catchment surface, gutters, storage tank,
filters, first f lush diverters, debris screens significantly improve water quality (2017). Since there are
possible strategies to ensure the safety of utilising rainwater for irrigation, it remains as a viable
method.

Blackwater

Another waste f low within urban environments is blackwater however there are potential risks of
irrigating crops with reclaimed water. Human exposure can take place through the consumption of
crops or occupational exposure (Ortells, 2015). In developing countries wastewater is used for irrigation
of crops due to water scarcity and economic reasons while in developed countries it is seen as an
environmentally sustainable, economical practice in addition to being a way to battle water scarcity
as explained in the same paper. According to Ortells, even though wastewater is treated by secondary
or tertiary wastewater treatment, it can contain pathogens (2015). Ortells investigated the risks of
consuming lettuce irrigated with secondary and tertiary treated wastewater containing norovirus in
Spain (2015). Results showed that lettuce internalises norovirus and the virus can reach the edible
parts of the crop under laboratory conditions (Ortells, 2015). However, as reported by the same author
risks are not known for using reclaimed water for irrigation in open field conditions consequently
further research is needed (2018). Meanwhile, The German Federal Institute for Risk Assessment (BFR)
states that only drinking quality water should be used for the irrigation of crops which are consumed
raw (2020). In conclusion, black water is decided to be left outside of this project’s scope as it may pose
risks to human health by consumption or occupational exposure.

2.4.3 Organic Waste

Food and Agricultural Waste

Food is supplied to cities from outside as discussed before and leaves the city to be discarded in
the form of food waste if not consumed. Food waste consists of any food and inedible parts of food
which are removed from the supply chain to be recovered or disposed of (Ostergren et al., 2014 as
cited in Pharino, 2021). In the European Union, food service generated almost 11 million tons of food
waste including both edible and inedible parts during 2021 (FUSIONS, 2016 as cited in Pharino, 2021).
According to a FAO estimate one third of food produced is lost or wasted globally (Muneer & Narula,
2021). This waste can be repurposed by utilising it as a resource for some urban farming systems to
achieve circularity as opposed to linear processes.

Different kinds of food waste can be suitable for different purposes including vermicomposting and
mushroom production. Kitchen and food waste are nutrient-rich, readily non-toxic and biodegradable
waste types suitable for vermicomposting (Sharma & Garg, 2019). In addition, agricultural waste such
as crop residues, leaf litter, sawdust can be vermicomposted according to the same paper. Sharma
& Grag states that fruit and vegetable waste, crop residues and agricultural waste can be used as
bulking substrates to balance the carbon content (2019). As discussed in Section 2.2, vermicomposting
has many advantages including fish food and fertiliser production therefore utilizing food waste as
a resource has the potential to feed fish, provide nutrients for soil-based agriculture as well as waste
management.

Spent Coffee Grounds

Coffee waste is another waste f low present in urban metabolisms. As a result of coffee consumption
6 million tons of spent coffee grounds are generated globally in a year (Machado, Rodriguez-Jasso,
Teixeira, & Mussatto, 2012 as cited in Mirón-Mérida et al., 2021). According to several sources, using
spent coffee grounds is a quick and inexpensive way of growing mushrooms (Mirón-Mérida et al., 2021;
GroCycle, 2021). With spent coffee grounds oyster mushrooms can be grown (Dorr et al.). As exemplified
with a mushroom farm in Paris, 30 tonnes of spent coffee grounds are collected from nearby supply
points such as cafes in 2018 and spent mushroom substrate is sold to farmers as fertilisers (Dorr et

2. Literature review | pg.32 2. Literature review | pg.33

Figure 2.5 Mushroom Production Flow by Dorr et al., 2021

al.). The same authors report that, on the farm, the substrate is made from spent coffee grounds with
wood chips, agricultural lime and mycelium (Dorr et al., 2021). According to the same source, 8728 kg
of mushrooms were harvested only in 2018. Spent coffee grounds can be collected from nearby cafes,
coffee vending machines, restaurants to be used as a substrate in urban mushroom farms and this
approach will be incorporated into urban farming systems in later stages of the project.

Other Waste (Paper, Cardboard, Sawdust)

There are other waste f lows in an urban setting including paper waste, cardboard, and potentially
sawdust. These waste products can be utilized for mushroom cultivation and vermicomposting. Paper
waste can be used as a bulking substrate for vermicompost to balance carbon content (Sharma & Garg,
2019), in addition, can be utilised in mushroom cultivation substrate (Sayner, 2020). For mushroom
substrates, even though there are a wide range of waste options, readily available fibrous materials
rich in carbon, lignin and cellulose with low nitrogen content should be favoured (Sayner, 2020).
The material selection includes paper, cardboard and sawdust (Sayner, 2020; Dorr et al., 2021). In
the previously mentioned mushroom farm in Paris, sawdust is mixed into the substrate (Dorr et al.,
2021) In conclusion, other types of waste such as paper, cardboard, sawdust which can be found
in urban environments will be introduced as potential waste f lows for growing mushrooms and
vermicomposting in this project.

2.4.4 Residual Heat

Heat accumulates in greenhouses as a result of solar exposure, this residual energy is usually discarded
by ventilation in order to keep the indoor temperatures suitable for crops. However, it can be extracted
and used as a heat source for surrounding spaces. Rooftop greenhouses can serve as renewable energy
sources instead of relying on gas for heating (ten Caat et al., 2021). Ten Catt et al. aimed to unite the
simultaneous differences between supply and demand by utilizing synergetic systems, direct heat
exchange and cascading in addition to storage of energy (2021). In the same article, it is illustrated that
thermal energy from an 850 square meter greenhouse can heat 47 dwellings. In the synergistic energy
system, a rooftop greenhouse is incorporated in order to act as a solar collector in the summertime
and collect thermal energy while heating itself during winter time to provide a high-temperature
energy source for the dwellings (ten Caat et al., 2021). In the same system, aquifer thermal energy
storage (ATES) is suggested to tackle mismatches between supply and demand. The system works by
extracting excess thermal energy through the f loor cooling system therefore heat is carried in a water
medium to heat a city block which operates on low temperatures as explained in the same source.
In this system, a supermarket exchanges energy by utilising an air-water heat exchanger to heat the
greenhouse by increasing the temperature of the water coming from ATES during the winter months

(ten Caat et al., 2021). On the contrary, in the summertime, cold water stored in winter is used to cool
the greenhouse (ten Caat et al., 2021). In the same paper, it is noted that if the main goal is to grow
food then the carbon footprint of such a system integrated into the heat grid would increase carbon
footprint due to electricity use for artificial lighting and heat pumps. However, according to ten Caat
et al., if the production of food is rather considered as a byproduct, urban rooftop greenhouses can
be a potential solution to heating (2021) There are other examples of utilising residual heat from
greenhouses to heat dwellings including the RTG-Lab. In this farm, warmer air from the building
heats the greenhouse when the temperature is lower than 15C during the night and winter months
while lower temperature air from offices and laboratories cools the farm down when the temperature
is above 30C in summertime (Sanyé-Mengual et al., 2014). Another example is built in Naaldwijk,
Netherlands, where 800 houses are heated by the greenhouses nearby (Urban Blue Grids, n.d.). Surplus
heat from greenhouses is stored underground in summer, and stored heat is used for heating dwellings
and the greenhouses in the wintertime as explained in the same source. In conclusion, due to the
existence of excess heat in urban conditions, it will be used as a potential energy source for the urban
farms and for dwellings depending on the circumstances and season during the development of this
project.

After assessing the potentials of various types of urban waste in order to integrate waste f lows into
urban farming it is concluded that some waste types have more potential than others. For this research
and the development of the decision-making tool CO2, rainwater, excess heat, organic waste including
kitchen waste, agricultural waste, paper, sawdust and spent coffee grounds will be incorporated into
related urban farming systems.

2.5 Decision-Making Tool & Approaches

The last facet of the project to discuss is the computational aspects. The need for a decision-making
tool or a support system in addition to computational approaches will be discussed. There are various
computational approaches, each of them is suitable for different purposes while they have various
advantages and disadvantages to them. In this chapter, different computational approaches, their
advantages, disadvantages and suitability to the project will be described.

2.5.1 Demand for Decision Making Tools

This project aims to develop a decision making support tool for designers who aspire to integrate
urban farming with existing urban waste f lows in order to close the loop and to make a shift towards
symbiotic urban metabolisms. The decision-making tool is needed because there is a range of diverse
requirements including soft requirements and hard requirements as Chatzikonstantinou states (2021).
In the same article, it is mentioned that cities are one of the most complex human-made arrangements
and this complex nature of design calls for tools to support decision-making processes. According
to Chatzikonstantinou, the complexity of design challenges human cognition as the problem’s
complexity increases (2021). Nouran advocates that there is a logical leap in design processes (Kroes,
Peter and Meijers, Anthonie, 2006 as cited in Nourian, 2017) and adds that the relation between forms
and function are not one dimensional (Nourian, 2017). Consequently, decision making is dependent
on intuition and reasoning leaps as discussed in the same article. Nouran states that design is about
analysis, synthesis and evaluation in addition to advocating that basing design decisions on scientific
knowledge and environmental consequences of design decisions (2017). In another source, it is stated
that a systematic approach to design space exploration should be utilized in order to decide on optimal
solutions (Chatzikonstantinou, 2021). In conclusion, a decision-making tool supports designers to
make systematic and science-based design decisions while eliminating the logical leap.

2. Literature review | pg.34 2. Literature review | pg.35

2.5.2 Computational Design Categories

In computational design, there are main categories of approaches including parametric design,
performance-based generative design, generative design and algorithmic design. Even though there
are discussions about what these terms exactly correspond to, Caetano et al. describe them as follows:
In parametric design, there is a numerical or quantifiable factor forming one of a set that defines
a system while “parametric” relates to parameter or parameters (Caetano et al., 2020). Secondly,
generative design is described as a design paradigm that employs algorithmic descriptions that are
less manual than parametric design as described in the same source. Caetano et al. assert that in
such design systems, the system executes encoded instructions until the criteria are satisfied (2020).
Moreover, performance-based generative design refers to systems where designers set a performance
target and an algorithm finds the best fitting solutions for achieving the design goal (Caetano et al.,
2020). The same authors consider algorithmic design generative as well since it employs algorithms to
generate models (2020). In this project, a generative design approach will be employed in addition to
a rule-based decision-making strategy which refers to a system executing operations based on design
rules through “if-then” statements (Cubukcuoglu et al., 2019).

Grammars

Several types of grammars are explored since they can provide ways or approaches of applying rules
to make decisions. A grammar has a set of rules that apply repeatedly to an initial object to produce
a final object (Duarte, 2005). According to Stouffs et al., it can also be seen as a language where each
generation starts with an object and rules to achieve new objects which only contain from a terminal
vocabulary (2001). For instance, a rewriting rule is based on “lhs --> rhs”, where lhs refers to the similar
object to be recognised while rhs specifies the manipulation that object will undergo as exemplified
in the same source. In the same article, it is explained that a rule applies to an object’s part if the lhs
matches that object and the matching part is replaced according to rhs rule.

There are several kinds of grammars including colour, graph, shape, sortal, parallel, discursive,
parametric grammars. To begin with, a colour grammar by definition uses colours as descriptive
elements which can represent materials or different features. (Knight 1989 as cited in Gu & Behbahani,
2018). Such a grammar can be used for the project to represent different urban farming systems on a
3D model to represent the outcomes visually. Secondly, Gu & Behbahani asserts that graph grammars
represent shapes or forms topologically which reflect the interrelations within the design both
structurally and functionally (2018). As explained in the same article, graph grammars follow two
approaches: geometric and semantic. The geometric approach corresponds to a correlation between
graph-topological and shape-geometrical vertices and edges (Gu & Behbahani, 2018). In the semantic
approaches, graph’s nodes refer to the semantics of shapes as explained by Gu & Behbahani (2018). For
instance, in a building, the nodes represent spaces, while edges can represent adjacency or opening
between them as explained in the same article. The simplicity and abstractness of graphs is an advantage
(Gu & Behbahani, 2018). In this project, graph grammars can be used to define the relationships between
different urban farming systems and supply points as graphs can be used to specify interrelations
and hold data regarding the vertices. Furthermore, shape grammars are based on shape rules which
define a set of spatial transformations of shapes and they are especially powerful with modularity and
mass customization of design (Gu & Behbahani, 2018). However, in this project shapes do not have any
significance therefore shape grammars are not suitable. Moreover, Stouffs & Krishnamurti states that
the main problem with grammars is the matching problem and determining when the lhs match the
requirements (2001). The same authors introduce “sorts” as a set of similar models and mention that
abstract shapes or descriptions can be given as sorts to optimize the manageability and flexibility of
the grammar (2001). Sortal grammars relate to sorts and matching the sort descriptions (Stouffs &

Krishnamurti, 2001). Sortal grammars can be used to define which location has which attributes to it
to match the design rules for this project. Gu & Behbahani describe parallel grammars as algebraic
approaches to implement shape grammars where each rule is applied to determine a different aspect of
design simultaneously (2018). Discursive grammars are parallel parametric grammars with heuristics
to manage rule selection and heuristics are semantic descriptions such as design goals or criteria,
which can act as parameters for applying the rules according to the same paper. Discursive grammar
consists of programming and design grammar where the programming grammar forms the design
briefs based on data given by users and designing grammar gives the rules for design generation
while heuristic leads the designs towards a solution matching the design brief (Duarte, 2005). Such a
parallel approach might be useful to apply rules to generate designs in this project due to the parallel
nature of the grammar. Lastly, with parametric grammars a set of shapes and their transformations
are generalized as one generic shape with parameters to adjust the shape according to design rules
(Gu & Behbahani, 2018). Such grammars offer f lexibility to design as mentioned in the same article
however it does not correspond to this project. Last but not least, with parametric grammars a set of
shapes and their transformations are generalised as one generic shape with parameters to adjust the
shape according to design rules (Gu & Behbahani, 2018). Such grammars offer f lexibility to design as
mentioned in the same article however it does not correspond to this project. In conclusion, colour
grammars, sortal grammars, graph grammars and potentially discursive grammars can be utilised to
develop the decision-making tool for this project.

Generative Design Algorithms

In order to select the most fitting range of approaches to work with, a variety of practices are researched
including generative design algorithms. These include replacement, evolution and agent interaction
mechanisms.

Replacement mechanisms are defined as where a part of a design is replaced by another to generate
variations based on rules (Gu & Behbahani, 2018). Shape grammars are examples of these in addition
to L-system algorithms which utilize symbols to generate a design with repeating patterns such as
plant modelling and street design as explained in the same article. Another replacement algorithm is
parametric combination which refers to replacements affecting only the dimensions and proportions
of the objects instead of the entire entity of shapes (Gu & Behbahani, 2018).

The second generative design algorithm is evolution mechanisms which match the design alternatives
to a set of fitness functions where after each step the fittest alternative is given (Gu & Behbahani,
2018). Genetic algorithms are examples of such a mechanism (Gu & Behbahani, 2018) and evolutionary
algorithms mimic natural selection to evolve and adapt (Lian et al., 2010). As stated by Lian et al.
evolutionary algorithms are suitable for multi-objective optimization problems which have Pareto-
optimal solutions where the solution is a set of compromised solutions (2010). Even though evolutionary
algorithms are powerful tools for multiobjective optimization problems, the necessary population
size and generation size usually demand a tremendous amount of computing resources according to
the same article. The demand for large computing resources makes such an approach unattainable for
this project’s scope.

Lastly, another generative design algorithm is agent interactions which are based on how the agents in
the design space interact with the context and other related elements (Gu & Behbahani, 2018). Cellular
automata, swarm intelligence and space colonizations are examples of agent interaction mechanisms.
However, these approaches do not correspond to this project by nature. In addition to previously
discussed approaches, some other approaches are also explored to see the best fitting approaches to
combine and utilise for the development of the decision-making tool. (See appendix B.1 for others and
details)

2. Literature review | pg.36 2. Literature review | pg.37

Waste Flow Input

Vacant Space
Input

Structural
Capacity

3D Model of Site Convert Data

Inputs

Outputs

Decision Making

Apply Rules System Selection Convert Data

Graph Grammar Colour Grammar

Sortal Grammar

Discursive Grammar

if ... then ...

Illustrate Results
on 3D Model

Solar Exposure

Solar Analysis

a == a

Waste Flow Input

Vacant Space
Input

Structural
Capacity

3D Model of Site Convert Data

Inputs

Outputs

Decision Making

Apply Rules System Selection Convert Data

Graph Grammar Colour Grammar

Sortal Grammar

Discursive Grammar

if ... then ...

Illustrate Results
on 3D Model

Solar Exposure

Solar Analysis

a == a

Figure 2.6 Decision Making Process & Computational Approaches (see appendix B.2)

2.6 Conclusions

In this research, due to the previously given reasoning 9 urban farming systems will be used including
different hydroponic systems, aquaponics, mushroom cultivation, vermicomposting and raised beds.
And these systems will be fed by existing waste f lows including CO2, rainwater, heat and organic
waste when possible. In order to compile the data from the literature review regarding the potential
integration of urban waste into urban farming systems, a database is created during the research. In
this database inputs, outputs and different types of systems are shown. Each different-coloured dot
represents a different kind of system configuration with varying inputs and outputs. Afterwards, this
table is used to convert the data into an input-operator-output format. Input refers to waste that can be
utilised, necessary supplements, growing media while output refers to the main product of the system
and byproducts. Operator refers to the system in terms of growing method, technique, type of the
system whether it is for food production or a supplementary system and system characteristics (see
appendix A.2 - A.10). This data is used to develop the design criteria and rules in later stages.

As discussed previously, some computational approaches are more suitable to employ for the
development of the decision-making tool due to their inherent capabilities and the limited time and
computational resources of the project. These approaches include colour, graph, sortal grammar and
rule-based design in addition to potential environmental simulations as shown in figure 2.6. To begin
with, solar analysis can be used to determine the vacant spaces solar exposure if an assumption is not
made. Secondly, graph grammars are utilized to create the relations between vacant spaces, potential
urban farming systems to occupy those spaces and supply points while each node holds information
about the vacant space and supply points such as waste output, structural capacity, solar exposure.
Edges between nodes define the relation between the nodes whether there is waste or supply exchange
with directions of the exchange if a directional graph is employed. Sortal grammars are useful to
match the design rules to existing conditions. For instance, each node can hold an attribute key and
its value and if that value matches the design criteria an urban farming system can be assigned to
that node. Lastly, colour grammars are used to represent different urban farming systems suggested
by the decision-making tool on the site model.To sum up, a combination of different approaches are
employed to develop the decision-making tool as the design problem requires various steps with
different characteristics to be followed to make a decision.

3.0 Outline Of Design Task | pg.39

03
DESIGN TASK

3.0 OUTLINE OF DESIGN TASK

3.1 Description of Design Problem

The objective of this thesis is to integrate waste f lows into urban farming systems systematically in
order to holistically integrate waste streams with food production in urban contexts. The main output
of this thesis will be a decision-making tool that will assist designers to select and combine the most
fitting urban farming systems to the existing conditions such as available waste f lows, vacant spaces
and to the requirements given by the stakeholders. The tool aims to maximise the symbiosis within
urban environments by perceiving farms as exhange hubs for waste f lows and food. When selecting
an urban farming system to achieve symbiosis in urban environments, there are a set of questions to
ask in order to make viable solutions:

- Where are possible locations to build urban farms? (Vacant Spaces)
 - How high or low is the solar exposure of these spaces?
 - Do these vacant spaces have high load-bearing capacities or should lightweight systems be
 chosen?
- What are the waste f lows and their sources within the site? (Waste Types & Sources)
- What is the main aim of building an urban farm on the given site? (Project Goals)
- What kind of urban farming systems correspond to the existing conditions and requirements?
(Production Method)
 - What are the inputs of this system?
 - Can the inputs be sourced from waste f lows or by another urban farm?
 - What are the outputs of this system including byproducts?
 - Does the selected system correspond to existing waste f lows, characteristics of vacant space
 and to project aims?

The decision-making tool is designed to guide the designers towards the optimal options depending
on a set of variables and the relationship between these variables. These variables are product types,
byproducts, production method, production characteristics, inputs to the system, vacant spaces,
their locations, load-bearing capacity of the supporting structures, solar exposure of the spaces, their
distance to existing waste f lows, their distance to vacant spaces and demands given by stakeholders.
As illustrated in figure 3.1, the selection of urban farming systems is dependent on these variables
and their interrelations. The selection may seem rather simple for one vacant space and a set of
existing conditions, however, there might be multiple vacant spaces. The multitude of available
spaces complicates the design problem as it introduces the possibility to build a network of urban
farming systems serving each other as illustrated in figure 3.1 (see appendix A.1-A.10). Consequently,
combinations of urban farming systems depend on a range of circumstances including the distance
between waste output and vacant space which can utilize the waste. To conclude, in order to guide
designers who may not have the theoretical or practical knowledge regarding urban farming systems
through a multi-layered, complex design task a decision-making tool is a practical design equipment.

The decision-making tool is based on inputs, operators and outputs. Inputs are the needs of the urban
farming system to function which corresponds to waste f lows in the site as resources. Operators refer
to urban farming systems including their production method, nutrient delivery technique, mechanical
equipment and design characteristics. Outputs are products of urban farms including byproducts.
Table 3.2, illustrates these inputs, operators and outputs. After filling out the table with data acquired
from the literature review, each system’s inputs, system characteristics and outputs are gathered.
Each different coloured dot represents a different system with different inputs, and systems’ designs
and outputs. One system’s output can be another system’s input therefore the relationship and distance
between two systems will be taken into account for design. The decision-making rules and criteria

3.0 Outline Of Design Task | pg.40 3.0 Outline Of Design Task | pg.41

Waste Flows Distance to Vacant Space

Viable Distance

Not Viable

Waste Types

Rainwater

CO2

Organic Waste - Kitchen

Organic Waste - Agriculture

Organic Waste - Co�ee

Other Waste

Heat

Requirement Focus

Job Opportunities

Food Production

Research (?)

Residual Heat

Requirements

Urban Farming
Systems

Produce Type

Pr
od

uc
e

Ty
pe

Vegatables (small roots)

Vegatables (big roots)

Fish

Mushrooms

Worms

By- Product

Fertiliser

Nutrients (�sh waste)

Agricultural Waste

Residual Heat

Production Method

Vermiculture

Mushroom Cultivation

Hydroponics - NFT

Hydroponics - Water Culture

Hydroponics - Aeroponics

Hydroponics - Media Bed - EBB & Flow

Hydroponics - Media Bed - Trickle

Aquaponics - NFT

Aquaponics - Water Culture

Aquaponics - Aeroponics

Aquaponics - Media Bed - EBB & Flow

Aquaponics - Media Bed - Trickle

Soil Based Agriculture - Raised Beds

Plant Factory

Production Characteristics

Vertical

Horizontal

A Frame

Stacked

Inputs

Water

Fertiliser

Nutrients

Fish Food

Solar Exposure

Soil

Media

CO2

Heat

Organic Waste - Kitchen & Agri. Waste

Organic Waste - Co�ee Waste

Other Waste - Saw Dust, Paper Shreds

Space Type

Roof

Facade

Basement
Ground Level
Intermediate Level

Structural Capacity
Low

High

Can Be Improved

Adequate

Solar Exposure

Fully Exposed

Low Solar Exposure

None

Distance to Input Source
Viable Distance

Not Viable

In
te

rr
ac

tio
n

Be
tw

ee
n

Sy
st

em
s

Av
ai

la
bl

e
In

pu
t

Se
le

ct
io

n
of

 S
ys

te
m

Lo
ad

 B
ea

ri
ng

 C
ap

ac
ity

Sy
st

em
 S

et
up

Produce Selection

Allowable Weight

Location A Waste By-Product

Main Product Main Product

Location B

Location C

Location D

Figure 3.1 Interrelation of Variables

Growing
Technique

Design
Characteristic System Type Bi-ProductMain ProductMediumSupplementWasteSpace

Roo�op

Facade

Intermediate
Floor

Ground Floor

Basement

Food Waste

Co�ee Waste

Fertilser

Nutrient
Solution

Other Waste

Food Waste

Co�ee Waste

Other Waste

Clay Balls

CO2

Calcium

Lime Bath*

Soil

Water

Fish Tank
Water

Air

Aeroponics

EBB & Flow

Gravity
Trickle

Water
Culture

Raised Beds

Compost

Spawning

NFT

Aquaculture

Horizontal

Fish Tank

Tank

Food
Production

Supplementary

Food
Producing

Supplementary

Vertical

Modular
Frame

Stacked
System

Worms

Small Crops

Large Crops

Fish

Mushrooms

Fertiliser

Heat

Food Waste

Fish Tank
Water

Spent
Mushroom
Substrate

Rainwater

* Lime Bath is used for pasteurization of substrate.

Heat

Hydroponic - Media BedHydroponic - Water CultureHydroponic - NFT

AeroponicsRaised BedAquaculture

Plant FactoryMushroomVermiculture

Table 3.2 Urban Farming Systems (see appendix A.1)

Growing
Technique

Design
Characteristic System Type Bi-ProductMain ProductMediumSupplementWasteSpace

Roo�op

Facade

Intermediate
Floor

Ground Floor

Basement

Food Waste

Co�ee Waste

Fertilser

Nutrient
Solution

Other Waste

Food Waste

Co�ee Waste

Other Waste

Clay Balls

CO2

Calcium

Lime Bath*

Soil

Water

Fish Tank
Water

Air

Aeroponics

EBB & Flow

Gravity
Trickle

Water
Culture

Raised Beds

Compost

Spawning

NFT

Aquaculture

Horizontal

Fish Tank

Tank

Food
Production

Supplementary

Food
Producing

Supplementary

Vertical

Modular
Frame

Stacked
System

Worms

Small Crops

Large Crops

Fish

Mushrooms

Fertiliser

Heat

Food Waste

Fish Tank
Water

Spent
Mushroom
Substrate

Rainwater

* Lime Bath is used for pasteurization of substrate.

Heat

Hydroponic - Media BedHydroponic - Water CultureHydroponic - NFT

AeroponicsRaised BedAquaculture

Plant FactoryMushroomVermiculture

are developed according to this database prior to programming the decision-making tool. Decision
making has mainly 4 steps: Data Collection, Data Preparation & Processing, Applying Design Rules
and Illustrating Design Decisions. These steps are followed in order to reach results. Lastly, in order
to ensure a wide range of applicability of the tool, it is tested on several case studies.

3.0 Outline Of Design Task | pg.42 4.0 Data Collection | pg.43

04
DATA COLLECTION

In order to make a decision, 3 main categories of information need to be collected such as urban
farming systems, vacant spaces and waste outputs. Each category has sub-categories within itself.
For vacant spaces, their location, size, structural capacity, and solar exposure should be known. On
the other hand, for waste outputs, the sourcing location, waste type and quantity are enough. Lastly,
even though data regarding inputs and outputs of systems and the suitability of the system for existing
conditions are gathered previously, in order to quantify the decision making waste demands and yields
of each system should be calculated.

4.1 Prototype

4.1.1 Simplified Calculations For Waste Demands And Yields

The amount of waste each system needs to use for production is calculated in a simplified manner.
These calculations are done for each system and its inputs per square meter. (See appendix D.1 for
calculations) It should be noted that these calculations are done only to provide a basis for further
steps and they do not take environmental conditions or phenomena into account.

Secondly, yields of different systems per square meter are calculated in order to quantify the food
production potentials. These calculations are based on simple geometry since the crop yields
are highly dependent on environmental factors including light, CO2 levels and temperature. The
minimum distance between different crops and stacking of production trays are prominent factors
in these calculations as illustrated in table 4.1. For instance, tomato plants need to be planted with
60 cm distance between each plant horizontally while this distance for lettuce is 30 cm according to
agriculture websites. (RHS, n.d.) For stacked systems, the vertical distance between trays is 30 cm
based on a vertical farm example. (Viscon Group, 2021) It should be noted that these distances differ
from crop to crop and from species to species while such standards are not established formally and
are commonly based on experience.

4.0 DATA COLLECTION

System Name Horizontal/Vertical Crop Type Fruit Yield Annual Annual Fruit Yield (kg)

Plant Factory Vertical Lettuce 624.5555556 87.43777778

Raised Bed Horizontal Lettuce 89.22222222 12.49111111

Raised Bed Horizontal Dwarf Bush Cherry
Tomato - 2.7

Aeroponics Vertical Lettuce 89.22222222 12.49111111

NFT Vertical Lettuce 713.7777778 99.92888889

Water Culture Horizontal Lettuce 89.22222222 12.49111111

Media Bed Horizontal Lettuce 89.22222222 12.49111111

Media Bed Horizontal Beefsteak Tomato 256.1403509 89.64912281

Table 4.1 Yields of Different Systems (see appendix D.3 for details)

4.1.2 Analysis Framework

In order to provide guidelines and methodology for the site analysis, a data collection framework is
formed. In this framework, what kind of data to collect regarding vacant spaces, and waste outputs
are highlighted in addition to interpretations of collected data. Firstly, while collecting data about
vacant spaces, their orientation and location in the building (if applicable) should be noted down in
order to make interpretations about their structural capacity and solar exposure as given in table 4.2.
The structural capacity of spaces is assumed to be low, mediocre or high based on the location in the
building or outside. It is assumed that rooftops have low structural capacity, while intermediate f loor

4.0 Data Collection | pg.44 4.0 Data Collection | pg.45

Location Data Interpretation 1 Interpretation 2

Location A Basement stuctural capacity : high (3) solar exposure : low (1)

Location B Ground Floor stuctural capacity : high (3)

Location C Ground Floor Outdoor stuctural capacity : high (3)

Location D Intermediate stuctural capacity : medium (2)

Location E Rooftop stuctural capacity : low (1) solar exposure : high (3)

Location F Facade stuctural capacity : low (1)

North solar exposure : low (1)

North East solar exposure : low (1)

East solar exposure : adequate (2)

South East solar exposure : high (3)

South solar exposure : high (3)

South West solar exposure : high (3)

West solar exposure : adequate (2)

North West solar exposure : low (1)

Table 4.2 Analysis Framework for Vacant Spaces (see appendix E.0 for details)

Table 4.3 Analysis Framework for Waste Sources (see appendix E.0 for details)

Location Data Interpretation 1 Quantity Information

Location G Cafeteria Organic Waste : Food serving ... people

Location H Cafe/Restaurant Organic Waste : Food serving ... people

Location I Agricultural Activity Organic Waste : Food

Location J Wood Workshop Other Waste : Wood Chips

Location K School & Offices Other Waste : Paper

Location L Paper Waste Bins Other Waste : Paper

Location M Espresso Bar Organic Waste : Coffee serving ... people

Location N Conference Hall CO2 serving ... people

Location O Classroom CO2 serving ... people

Location P Meeting Room CO2 serving ... people

Location R Metal/ Sloped Roof Rainwater surface area

Location S Sloped Roof Rainwater surface area

Location T Supermarket Excess Heat Source

Location U Datacenter Excess Heat Source

levels have medium load-bearing capacity. Lastly, spaces on the ground floor or in basements are
considered spaces with high load-bearing capacity.

Solar exposure is another factor that effects decision making. Data regarding solar exposure of spaces
can be acquired by running a solar analysis however due to time restrictions solar exposure of spaces
is determined based on their orientation and location within the building if applicable. Therefore,
basements have low solar exposure while rooftops have high exposure. In intermediate f loor levels’
and outdoor spaces solar exposure is determined by their orientation. North, North-East, and North-
West facing spaces have the least exposure while South, South-East, and South-West facing spaces
have the most. East or West oriented spaces are considered to have medium levels of sunlight.

Secondly, waste output sources are based on existing functions on-site as shown in table 4.3. For
example, if there is a restaurant it will be regarded as a food waste source while the existence of
conference halls indicates residual CO2.

Lastly, the project aims such as research, holistic food production, and producing the maximum
amount of crops can be determined through communication with the stakeholders and some systems
can be prioritised over others based on the project aim. (See appendix A.14) For instance, if the project
aim is research then systems such as plant factories and aeroponics should be prioritised. If the
driving force of the project is producing maximum amount of food, systems with higher productivity
should be prioritised during decision making. These systems include stacked systems such as plant
factories, NFTs, aeroponics and potentially media beds. Lastly, if the most important factor behind
urban farming is holistic food production, system decisions should be based on the symbiosis rate in
order to ensure use of existing waste resources. For research reasons in this project, the project aim is
assumed to be holistic food production while developing and testing the prototype.

4.1.3 Representation of Data

There are 3 main data categories to be collected: vacant spaces, waste outputs and urban farming
systems. Each category holds information related to the corresponding category. Vacant spaces and
waste outputs are represented by nodes and these nodes deliver data about sizes, structural capacity,
solar exposure and waste quantity, waste type respectively in addition to the locations of these nodes.
For the sake of simplicity, vacant space sizes and waste quantities are simplified to be represented
ranging from 1 to 3 as shown in figure 4.1. The ranges for vacant space sizes and waste quantities are
calculated in such a way that simplified values for both data sets correspond to each other. Both waste
quantities and vacant spaces’ sizes are represented by a range between 1 and 3. Firstly, waste demands
per square meter of each urban farming system for each required waste type are calculated. Then the
vacant space sizes are divided into ranges of minimum and maximum values based on the distribution
of surface areas. These minimum and maximum values defining each range are multiplied with
waste demands per square meter for each waste type required by each urban farming system. This
multiplication establishes the ranges for waste quantities as shown in table 4.4. Lastly, real waste
quantities are simplified by checking whic range the quantity corresponds to. If a waste type can be
used by different systems and if the quantities needed for these systems vary, then the maximum
demand is taken into account since the rest will fall under the maximum quantity.

Table 4.4 Rainwater Demand of Different Systems (see appendix D.1 for other waste types)

for each waste type and each system:
Minimum Waste Demand = (waste demand per m2) x (range min)
Maximum Waste Demand = (waste demand per m2) x (range max)

Rainwater
(W6) L/m2 Range 1 (kg)

(0 - 200 m2)
Range 2 (kg)
(200 - 1000 m2)

Range 3 (kg)
(1000 m2- above)

Plant Factory 600 0 120000 120000 600000 600000 above

Raised Bed 2600 0 520000 520000 2600000 2600000 above

Aeroponics 1306.902544 0 261381 261380.5088 1306902.544 1306902.544 above

NFT 1633.62818 0 326726 326725.636 1633628.18 1633628.18 above

Water Culture 7800 0 1560000 1560000 7800000 7800000 above

Media Bed 3120 0 624000 624000 3120000 3120000 above

Vermicompost 0.8125 0 163 162.5 812.5 812.5 above

Mushrooms 548.4375 0 109688 109687.5 548437.5 548437.5 above

4.0 Data Collection | pg.46 4.0 Data Collection | pg.47

Building Data

Vacant Spaces

Waste Output
Points

Footprint

Height

Ground

Roof

Other

Food

Co�ee

Paper

Heat

Sawdust

CO2

Rainwater

Site Model

Vacant Space
Nodes
(Coordinates)

Waste Output
Nodes
(Coordinates)

XLSX.

XLSX.

XLSX.

XLSX.

XLSX.

XLSX.

XLSX.

Shape�le

XLSX.

Restaurant/
Cafe

Co�ee Machine/
Espresso Bar

School/ O�ce
Building

Supermarket/
Datacenter

Wood
Workshop

Meeting &
Conference
Rooms

Sloped Roof

Quantities

Variables Data Source Mediator Data Final Format

Extra Information

Figure 4.2 Automated Data Collection

4.2 Automated Data Collection (Waste Output Points, Vacant Spaces)

In this research, data collection is done manually however in theory there are ways to collect data
regarding waste sources and vacant spaces. These alternative methods are using drone footage&machine
learning and ArcGIS.

4.2.1 Drone Footage & Machine Learning

Drones can be used to detect vacant spaces or occupied spaces. After conducting a drone led site
survey, the footage can be analysed by a deep learning platform in order to provide information
regarding vacant spaces, their location, and size. Similar technology is provided by a company called
Nanonets to detect defects in wind turbines, people walking in an aerial view, diseases on agricultural
fields, predicting yields of the field and for many other detection purposes. Another technological
advancement which could relate to the mapping of vacant spaces is AMP (Automated Mapping Platform)
by Woven Planet Holdings. Currently, it is used to collect data on streets, traffic lights or curbs in order
to train AI Trucks. To conclude from these examples, machine learning models can be trained in order
to detect and map vacant spaces.

4.2.2 ArcGIS Platform

Another platform which holds information regarding the built environment is the ArcGIS Platform.
There are a few possible uses for ArcGIS in this research. The first one is to build a 3D Model by using
building footprints and building heights data. This set of data can be exported from ArcGIS in .xls
format. The shapefile can be used to draw the building footprints while the building heights data can
be used to extrude the buildings by using Grasshopper as shown in figure 4.2. Another use for ArcGIS
is to determine vacant spaces by excluding layers of data such as parking lots, roads, and buildings.
This way the location of potential vacant spaces can be mapped. The last potential use of the same tool
is to map the location of waste sources. For example data regarding the location of restaurants can
be gathered to map the food waste sources on site. The functions to look for can be based on the site
analysis framework. (See appendix E.0)

Figure 4.1 Vacant Space Characteristics Represented by Ranges (1-2-3)

4.2.3 Waste Audits

The last data set the decision-making tool needs to run is the quantities of waste. This information is
used to determine whether a waste source is enough to be used for an urban farming purpose taking
place in a vacant space with the current size. How the vacant space size relates to waste quantities will
be explained further in the following section. As per UN Sustainable Development Goal 12, reducing
food waste by half is advised (United Nations Environment Programme, 2021). And to do so, food waste
produced by restaurants should be audited at the retail and consumer levels as advised in the same
source. The methodology of auditing is given in the Global Chemicals and Waste Indicator Review
Document (United Nations Environment Programme, 2021). There are various ways of waste auditing
suggested in the same document. One of them is directly weighing the waste after separating it. By
using a smart scale, the measurements can be logged into a spreadsheet to be used in the coming
stages of decision making. Such measurement tools are widely available in the market for household
and industrial uses.

4.0 Data Collection | pg.48 4.0 Data Collection | pg.49

4.2.4 Manual Data Collection And Input

Another method to collect the data is rather a low-tech data collection technique. Data regarding vacant
spaces, waste sources and quantities can be collected and inputted manually. In this research, data
collection regarding waste sources and vacant spaces is conducted this way due to time and resource
limitations.

To begin with, manual detection of waste sources is done by mapping the restaurants, espresso bars,
sloped roofs, data centres, supermarkets, conference halls, model making spaces, and carpentry
ateliers for different waste types based on the analysis framework. Data regarding waste quantities
needs to be available or be assumed based on the available data. Secondly, the location of vacant spaces
are mapped by checking a satellite view and identifying different uses of space such as greenery,
parking lot, building for ground floor level; and PV panels, mechanical equipment, and skylights on
the roof level. If there are vacant spaces below ground such as basements or if there are underused
spaces in buildings like attics, these need to be detected by simply viewing the f loor plans of buildings
and during a site survey.

4.0 Data Collection | pg.50 5.0 Step by Step Decision Making | pg.51

05
STEP BY STEP DECISION MAKING

5.0 STEP BY STEP DECISION MAKING

Identifier Coordinates Size Building Location Orientation Tag Node Type

V0 {2020.580643,
387.391529, 0} 31174.53666 outside outside S V0 vacant space

V1 {935.001269,
534.594454, 0} 23824.09908 outside outside N V1 vacant space

V2
{766.997201,
400.341737,

12.0}
9665.369642 3me roof S V2 vacant space

Identifier Coordinates Source Waste Type Quantity Tag Node Type Waste

WO0 {940.159971,
709.345779, 0} V27 W7 1732320 WO0 waste heat

WO1 {274.847735,
547.422372, 0} BK W2 592000 WO1 waste sawdust

WO2 {304.212084,
575.947739, 0} BK W1 938 WO2 waste food

Table 5.1 Example of Vacant Space Data

Table 5.2 Example of Waste Data

5.1 Data Preparation

After collecting the data, the next step is to prepare it into a format which can be used by the decision-
making tool. In this step, information regarding vacant spaces, waste sources, waste sources within
a certain distance from vacant spaces and vacant spaces within a certain distance from other vacant
spaces is assembled and stored.

Firstly, after mapping the waste sources in Rhino or any other CAD software, an identifier should be
given to the waste output point. In this research waste output points are named with “WO+(integer)”.
These identifiers and the coordinates of waste sources are exported to an excel sheet using a
grasshopper component. Afterwards, the building names of these sources, waste types and quantities
are filled into the spreadsheet.

Secondly, in order to fill in the data regarding vacant spaces boundaries of these spaces should be
drawn and be recognised by a Grasshopper component. The vacant spaces are sorted from largest to
smaller vacant spaces. Sizes should be sorted here in order to prioritise the largest space first instead
of coming to a point where resources are used for small pieces of land rather than more efficient
larger spaces. Then, similar to waste sources identifiers are given to vacant spaces in the form of
“V+(integer)”.These identifiers, sizes of spaces and their coordinates are exported to a spreadsheet.
In the spreadsheet, the building names of these spaces, their locations in the building and their
orientations are filled in. In the table below, the aforementioned spreadsheets and data types to be
filled are illustrated. (Table 5.1 & 5.2)

5.0 Step by Step Decision Making | pg.52 5.0 Step by Step Decision Making | pg.53

���������������������

�������������
��	�������

�������������
��	�������������������

�������������
��	������

�������������
��	�������

Figure 5.1 Decision Making Stages (See appendix C.2-C.7 for details) Figure 5.2 Necessary Datasets of Vacant Spaces, Waste and Urban Farming Systems (left to right)

{ UF1 :{ type: Supplementary, weight: 3, solar demand: 1, inputs: [food waste, rainwater, sawdust, paper],
supplement: None, output: [fish food, fertiliser]}}

Another dataset that needs to be exported from the geometrical relations of nodes is the nearby waste
nodes for each vacant space under a set radius. This dataset is needed in order to exchange waste
within given limits and to decrease the distance waste needs to travel from the source to the farm.
First, all the connections between vacant space nodes and waste nodes are drawn. Afterwards, the
lengths of connections are sorted and the ones shorter than a certain length are filtered. The reason
behind sorting is to use the waste source closest to the space first. Lastly, the start points’ coordinates
are matched to vacant spaces’ coordinates while end points’ coordinates are matched to waste outputs’
coordinates in order to have pairs of vacant spaces and waste source’s identifiers for each connection.
Similarly, connections between vacant spaces themselves are drawn, sorted and filtered. However,
to establish nearby vacant spaces for each vacant space since there will be double lines, duplicate
lines need to be removed. Finally, these datasets are exported to a text file in the form of a list. In this
project, for prototyping reasons the datasets are exported from Grasshopper to Python and further
steps are taken in the Python environment.

5.2 Decision Making Stages

Overall, there are 4 stages of decision making which mainly correspond to varying design rules. As
illustrated in figure 5.1, the first 3 stages are quite similar except for the gradually increasing search
radius. The search radius is defined by the maximum horizontal distance waste needs to travel from
source to farm. The search radius is kept as short as possible in order to decrease the distance between
farm and waste. The 2nd and 3rd stages are optional and can be user-defined depending on the project.
The 4th stage is also optional and the main aim of this stage is to assign a system to each vacant space
regardless of the found items. The rules for these stages will be explained in the next sections

5.2.1 Stage 1 Assign Systems

Data Processing

After having all the necessary datasets of vacant spaces, waste outputs, nearby waste sources, and
nearby vacant spaces ready; the next step is to process the datasets. In this step, there are 4 main
steps: simplifying space’s sizes and waste quantities, determining potential food production systems
for each space, making a list of nearby waste f lows for each space and making a list of found and
missing waste sources for every potential system of each vacant space. (See appendix C.4 for details)

Necessary Datasets

Urban Farming Systems

This dataset represents different urban farming systems in the scope of research such as Vermicompost,
Agriculture Mushroom Production, NFT, Media Bed, Raised Bed, Water Culture, Plant Factory, and
Aeroponics. The systems’ characteristics like solar demands and weight are included after simplifying
them. This simplification relates to the structural capacity and solar exposure of spaces. Therefore,
heavier systems need spaces with higher structural capacity or systems with high solar exposure
demands should be placed in locations receiving sufficient sunlight. Systems’ inputs, outputs and
supplement demands are listed. Lastly, the nature of the system is indicated relating to whether
that system is a food production system, food-producing supplementary system or a supplementary
system. Food production systems refer to systems which only produce food including mushrooms,
soft fruits and leafy greens. Food producing supplementary systems refer to systems which produce
supplements in addition to food. Aquaculture is an example of food-producing supplementary system
since it produces fish and nutrient-dense water which is a supplement for hydroponic systems. Lastly,
supplementary systems refer to systems that only produce supplements but not edible produce. For
instance, vermicompost systems produce fertiliser and worms, none of which are advised to be
consumed by humans.

5.0 Step by Step Decision Making | pg.54 5.0 Step by Step Decision Making | pg.55

Figure 5.3 Overview of Design Rules

Vacant Spaces

Vacant spaces data set includes identifiers, coordinates, building, size, location in the building and
orientation. During the data processing step, vacant spaces’ sizes should be simplified by using the
predefined ranges. These ranges can be defined by assessing the distribution of surface areas. Spaces’
location in the building and orientation are used to assign integers ranging from 1 to 3 to structural
capacity and solar exposure as further explained in section 4.1.2.

Waste Sources

The waste sources dataset holds information regarding the coordinates, source building, waste type
and quantity. Waste quantities are simplified from real data to integers ranging from 1 to 3 for research
purposes. These ranges and calculations were previously described in section 4.1.3.

Nearby Waste:

This list of space-waste pairs represents nearby waste sources for each vacant space. The first identifier
is for vacant spaces while the second identifier represents waste sources. A number of nearby waste
pairs can be imported with varying search radii and be used to increasing the search radius step by
step.

Nearby Vacant Spaces:

This list of vacant space pairs represents neighbouring vacant spaces around each vacant space. This
dataset is used during decision making for food-producing supplementary and supplementary systems.

Data Processing

Step 1. Determining Potential Food Production Systems

Whether a food production system is suitable for a space depends on structural capacity and solar
exposure of space. In this step, potential food production systems are added to a list corresponding to
respective vacant space if solar exposure of space is equal to solar demands of the system and if the
structural capacity of space is bigger than or equal to the weight of the system as illustrated in figure
5.3. (See appendix C.2-C.7 for f low charts)

Step 2. Nearby Waste Sources

At this stage, the dataset of space-waste source pairs is available however the format of data needs to be
converted to a format which is easier to access and follow. Therefore a list of nearby waste sources for
each vacant space is made based on the aforementioned data set. In addition, since transferring some
waste types such as CO2, residual heat and rainwater would require a vast amount of infrastructure,
these waste types are used only if their sources are in the same building as the vacant space. Otherwise,
the connection should be removed from the pairs list.

Step 3. Found & Missing Resources

This is the last dataset which needs to be created based on potential food production systems and
nearby waste sources. In this data set, the type of found and missing waste inputs for each potential
system for each vacant space is given along with the sources of found waste types. Missing and found
items for each system are based on their inputs given in the urban farming systems list. In the next
step, whether the found items are enough in quantity for vacant spaces is assessed. To do so, this task is
divided into two steps. First, whether the space’s size and found item’s size correspond to each other is
checked. If the quantity and size are equal to each other the waste type and source are added to the list
of enough waste sources, and the same is done for the rest of the list. Then, whether different sources
of the same waste type can be combined is checked. If the sum of waste quantities is equal to vacant
space size, these waste sources and types are added to enough waste list. If none of these conditions
can be satisfied, since there is not enough waste for the space these waste types are removed from the
found list and added to the list of the missing items.

Waste source size = Vacant Space Size
or

sum(Waste source size) = Vacant Space Size

The last step is to sort the potential urban farming systems for each space based on the symbiosis rate.
Symbiosis rate is found items over total demand. By doing so, it is ensured that the system with the
most found items will be prioritised.

Symbiosis Rate = (Enough Waste) / ((Enough Waste) + (Missing items))

Applying Design Rules

In order to, assign urban farming systems to vacant spaces a layered approach is followed. Food
production systems are assigned first, followed by food-producing supplementary systems and
supplementary systems respectively. This approach is adopted since it corresponds to the inputs
and outputs of different system categories. To explain it further, supplementary systems provide
supplements for food-producing supplementary systems while food-producing supplementary systems

{ V1 :{ location: (15,20,0), tag: V1, building: BK, size: 3, structure: 3, solar:1, node: vacant}}

{ WO1 :{ location: (17,28,0), tag: WO1, building: BK, size: 3000, type: sawdust, node: waste}}

5.0 Step by Step Decision Making | pg.56 5.0 Step by Step Decision Making | pg.57

provide supplements to food production systems. By starting from the food production systems it is
ensured that a supplementary or food-producing supplementary system will not get assigned if there
is no demand for the corresponding supplement.

Assigning Food Production Systems

The system selection starts with food production systems and a previously created list of spaces,
potential systems, found and missing items are used in this step. The tool iterates over vacant spaces
and potential systems to apply the design rules. There are two restrictions in this step. The first one is
the maximum number of missing resources which is currently set to 2. This is a preference which can
be decided by the designer and will be illustrated in section 5.3. The second rule is regarding critical
items. Critical items are defined by resources which are a must for a system to function. For instance,
food waste is essential for vermicomposting while spent coffee grounds, paper waste and sawdust
are necessary for mushroom production. Other waste types such as CO2, rainwater, and excess heat
can be either compensated by the grid or chosen not to be supplied. While applying the rules hardest
criteria to satisfy come first then the rules are eased gradually. For example, first, the tool looks for a
potential system which does not have any missing items, then potential systems with 1 missing item
and lastly 2 missing items. If there are missing items then a system can only be assigned if none of
those missing items are critical items. After assigning a system, the used waste sources should be
stored in order to not use them for another system in the coming system selections. In addition, a new
list of waste source-space pairs is created which represents the waste exchange between respective
nodes. The design rules for assigning food production systems are given below.
(See appendix C.2-C.7 for f low charts)

 1. Assign a system if there are no missing items
 a) Add used waste outputs to the “used source” list
 b) Create new connections between space and used waste sources
 2. Assign a system if there is one missing item
 2.1 If the missing item is not a critical item
 2.2 If found items are not already used by another space
 a) Add used waste outputs to the “used source” list
 b) Create new connections between space and used waste sources
 c) Store missing items
 3. Assign a system if there are two missing items
 3.1. If none of the missing items is a critical item
 3.2. If found items are not already used by another space
 a) Add used waste outputs to the “used source” list
 b) Create new connections between space and used waste sources
 c) Store missing items

After running through all these rules, assigned systems and corresponding spaces are carried to the
next step to assign food-producing supplementary systems. Systems which got assigned a farming
system will be referred to as occupied spaces in the coming steps.

Assigning Food-Producing Supplementary Systems

In this step, whether there is a demand for nutrient-dense water is assessed for each occupied space.
The necessary inputs for the system that can produce nutrient-dense water are determined. Neighbours
of the space are evaluated in terms of size. If the size of the neighbour is equal to the size of the space
and if the neighbour can accommodate the needed system in terms of structural capacity and solar
exposure, the neighbour is added to the list of potential spaces to provide nutrient-dense water to the

initial space. All of the needed resources should be found nearby for the food-producing supplementary
system to get assigned to the neighbour space therefore the nearby waste sources for the potential
space are checked. Used waste sources should be stored and new space-space pairs should be added
to the list of connections to represent the resource exchange. (See appendix C.2-C.7 for f low charts)

 1. If assigned UF systems need “nutrient-dense water”, make a list of occupied spaces, supplement
 demand, potential UF system to produce that supplement and inputs of potential UF system
 2.If vacant spaces near supplement-needing UF can accommodate potential UF system add them
 to the potential source list
 3. For each potential source check if all the inputs of the potential UF system can be found nearby
 3.1 If yes and if missing items are not critical
 a) Assign a potential UFf system to that vacant space
 b) Create new connections between UF and potential source
 c) Create new connections between potential sources and waste sources
 d) Add used waste outputs to the “used source” list
 3.2 If no
 a) Continue with the next potential source

After this step, occupied spaces and assigned systems are used in the next step to assign supplementary
systems.

Assigning Supplementary Systems

In this step, whether there is a demand for fertiliser or fish food is assessed for each occupied space.
The necessary inputs for the system that can produce these outputs are stored. Neighbours of the space
are evaluated in terms of size. If the size of the neighbour is equal to the size of the space and if the
neighbour can accommodate the needed system in terms of structural capacity and solar exposure,
the neighbour is added to the list of potential spaces to provide supplements to the initial space. All
of the necessary items need to be available nearby for the supplementary system to get assigned to
the neighbour space therefore the nearby waste sources for the potential space are checked. Used
waste sources should be stored and new space-space pairs should be added to the list of connections to
represent the resource exchange. (See appendix C.2-C.7 for f low charts)

1. If assigned uf systems need “ fertiliser” or “ fish food”, make a list of occupied spaces, supplement
demand, potential uf system to produce that supplement and inputs of potential uf system
2. If vacant spaces near supplement-needing uf can accommodate potential uf system add them to
the potential source list
3. For each potential source check if input of the potential uf system can be found nearby

3.1 If there is no missing item
 a) Assign potential uf system to that vacant space
 b) Create new connections between uf and potential source
 c) Create new connections between potential source and waste sources
 d) Add used waste outputs to “used source” list
3.2 If no

 a) Continue with the next potential source

5.2.2 Stage 2 & 3 Increase Radius

After going through the first stage of decision making, unoccupied nodes can be carried to stage 2
to run the same decision-making rules however with an increased radius. Stage 2 can be followed by

5.0 Step by Step Decision Making | pg.58 5.0 Step by Step Decision Making | pg.59

stage 3 to increase the search radius even more. The search radius can be increased as many times as
needed. And for each stage with an increased radius, nearby waste and nearby vacant space datasets
should be altered according to the determined search radius. This alteration can be done only by
changing the maximum length. (See appendix C.2-C.7 for f low charts)

1. Exclude connections between spaces & waste sources from the list if they are not in the
same building
2. Exclude connections if the waste source or the vacant space is already used
3. List waste sources within the desired radius for each system

5.2.3 Stage 4 Occupy All

Stage 4 is an optional stage dependent on the user and project. If the goal is to occupy all the vacant
spaces then this stage can be run if not Stage 5 Analysis can be started. The previously described
layered approach is still valid in this stage however the design rules are eased. However, theoretically,
the rules for supplementary systems can be tailored to assign a system only if all the critical items
are found regardless of missing items. This feature is currently missing in the prototype, but it could
be a good addition to the decision making strategy as it adheres to the principle of assigning systems
only if the critical items can be found. The overview of rules for stage 4 is listed below. (See appendix
C.2-C.7 for f low charts)

Step 0: Preparation

1. Exclude connections between spaces & waste sources from the list if they are not in the same
building
2. Exclude connections if the waste source or the vacant space is already used
3. List waste sources within the maximum distance for each system
4. Identify potential systems for each space based on structural capacity & solar exposure
5. Make a list of found waste sources for each space and for each potential system for the respective
space
6. Make a list of missing waste sources for each space and for each potential system for the respective
space
7. Sort potential systems for each space based on how symbiotic that system would be within the
context

(Found items) / ((Found items) + (Missing items))

Step 1: Assign Food Production System

1. Assign a system if there is a found item
a) Add used waste outputs to the “used source” list
b) Create new connections between space and used waste sources

2. Assign a system if there is only 1 non-critical missing item
a) Add used waste outputs to the “used source” list
b) Create new connections between space and used waste sources

Step 2: Assign Food-Producing Supplementary System

1. Assign a system if the demanded items match the found items
a) Add used waste outputs to the “used source” list
b) Create new connections between space and used waste sources

2. Assign a system and supply demanded items externally

Step 3: Assign Supplementary System

1. Assign a system if all the inputs are found
a) Add used waste outputs to the “used source” list
b) Create new connections between space and used waste sources

2. Assign a system if there is one missing item and the missing item is not critical (In Theory)
a) Add used waste outputs to the “used source” list
b) Create new connections between space and used waste sources

3. Assign a system and supply demanded items externally (Prototype)

5.2.4 Stage 5 Illustrating The Results

After making design decisions, the last step is to illustrate the results both numerically and visually.
Numerical analysis is done to quantify the yields, and amount of waste used and to give a breakdown of
assigned systems. Yields can be calculated by utilising the previously mentioned yield of each system
per square meter and multiplying the value by the space size to give an idea of the food production
potential in a simplified way. The total amount of used waste can be easily calculated by using the
waste quantities inputted initially and the used waste list.

Visualisation is done in order to visually express which system is assigned to which space and to show
different waste exchanges. To do so separate lists need to be formed. A list of vacant spaces along with
their identifiers, coordinates and assigned systems is formed. This data is exported to the same file
which was previously used to map the vacant spaces and waste outputs in the preferred visualisation
platform. In this case, Grasshopper is used to visualise the data. The newly imported coordinates
are matched with the initial ones to locate the vacant spaces to the corresponding surface. Since
urban farming systems are represented by “UF+(integer)”, the integer is used to differentiate between
different systems. Afterwards, different urban farming systems are represented by different colours.
In order to, visualise the waste exchange, pairs of waste and vacant space along with the waste type
being exchanged should be put in a list and be exported in a text file. This file is read with a custom
made component by using Python in Grasshopper to identify start and endpoints and the waste type.
After defining the start and end points a line is drawn between them. The waste types are represented
in different colours.

5.3 User Interaction (Representative)

Even though the decision-making tool is composed of a set of technical reasonings, the interaction
between the designer and the tool has a significant value. The tool should be easy to operate and be
f lexible for various project parameters. The methodology and the prototype created within the scope of
this research can run in the background to make decisions. However, since the prototype is currently a
combination of Grasshopper and Python script, it is difficult for designers to operate without any coding
experience. To make the decision making clear and less intimidating a representative user interface,
called Foodcyle, is designed. The user interface is simply used to translate designer demands to design
parameters. There are mainly 5 panels in the interface: Data Input, Design, Analysis, Customisation
and Adaptability.

5.0 Step by Step Decision Making | pg.60 5.0 Step by Step Decision Making | pg.61

Data Input:

The data regarding the site, vacant spaces and waste outputs are defined and quantified in this panel.
The data input starts with defining the site and its boundaries. The second step is to define what can
be considered a vacant space including different f loor levels, and limitations regarding the distance
from buildings. In the same panel, the data collection method is picked. There are 3 different ways
of collecting data as previously described in section 4.2. ArcGIS, drone footage and manual input
are these data collection methods and they can be combined to work together. If manual input is
selected, then the footprints of spaces are selected on the satellite view by clicking on them. Therefore,
collaborations between satellite view providers and GIS Data providers are needed to have access to
an aerial view and to draw footprints respectively. After defining and locating the vacant spaces waste
outputs are defined. In this panel, which waste types to include and how to collect that data are chosen
by the designer. ArcGIS data can be used to identify waste sources based on the previously mentioned
analysis framework in section 4.1.2. If the manual data input method is selected than the designer
needs to drop pins to the location of waste outputs and fill in necessary information including waste
type, building name and waste quantity. This means that the data regarding waste needs to be collected
or estimated beforehand. The estimation can be done based on the estimation guidelines mentioned in
section 4.1.1. (See appendix D.1).

Design:

The design stage starts with a questionnaire asking about the design rules and the preferences of the
designer. On the right-hand side of the screen, a brief explanation is given regarding the terminology.
The question and reasoning behind each question are given below. (See appendix H.6 for ther relation
between script and the questionnaire)

 What is the aim of the project?
 Holistic Food Production
 Research
 Maximum Productivity

The driving force behind this question is defining the prioritisation of urban farming systems. For instance,
for maximum productivity, stacked systems should be prioritised over other indoor food production systems.
Raised beds can be one of the last systems to use since they are usually used outdoors and all year round food
production is challenged by environmental factors. For research purposes, plant factories and aeroponics
can be the first systems in the list and have priority over other systems. Finally, in this research holistic
food production is the main purpose therefore systems that can be easily integrated into urban contexts are
prioritised over others. (See appendix E.0 for prioritisation)

 Should all the waste sources be found for food production systems?
 Only Critical Items
 Both Critical and Non-Critical Items

This question is asks the user to determine the criteria to assign a system. Critical items are necessary resources
for a system to work properly. If a critical item is missing then that system cannot be assigned to that space.
Non-critical resources can be supplied externally. Looking for both critical and non-critical items limits the
decision making however it can be a useful option if the aim is 100% off-the-grid urban farms in terms of
providing resources.

 How many missing resources are acceptable?
 Insert number
If in the previous question, the “only critical items” option is chosen, then systems can get assigned even with
missing items. This question is defining the number of items that can be missing.

 Should all the waste sources be found for food-producing supplementary systems?
 Not Important
 Yes
This question refers what happens if the input of aquaculture is missing. There is only one item needed for
aquaculture and that item is non-critical. Therefore the answer to this question determines whether a system
can be assigned if that one input is missing.

 Should all the waste sources be found for supplementary systems?
 Only Critical Items
 Both Critical and Non-Critical Items
The response to this question determines whether a vermicompost system can be assigned if a non-critical item
is missing. If only the critical items option is selected, the response to this question is 1 by default. If only the
critical items option is selected, the number of items that can be missing is 1 by default. Therefore, there is no
need to ask how many items can be missing.

 How far can the waste sources be from vacant spaces?
 Insert Number
The response to this question determines the initial maximum distance between waste sources and vacant
spaces as well as vacant space to vacant space connections.

 Can this distance be increased if there are vacant spaces left?
 Yes
 No
This question relates to the stages after the first stage and questions whether the initial search radius can be
increased if there are unoccupied spaces. According to the response, the maximum length filter in the data
preparation stage should be adjusted.

 What is the maximum distance waste sources can travel?
 Insert Number
This number is the maximum search radius.

 How many steps should there be until it reaches the maximum value?
 Insert Number
After defining the minimum and maximum, the radius can be increased gradually based on the step count
determined by the designer.

 Is there a possibility to add infrastructure to transfer CO2, heat and rainwater?
 Yes
 No
This question relates to the data processing stage where CO2, heat, and rainwater connections are excluded
from the pairs list if the waste sources and vacant spaces are not in the same building.

5.0 Step by Step Decision Making | pg.62 5.0 Step by Step Decision Making | pg.63

 Should all the vacant spaces be occupied even if there are not any found items?
 Yes
 No
The last question adds another stage to decision making, previously described as stage 4 where all the vacant
spaces are occupied by an urban farming system regardless of found items but based on the number of missing
items. If this feature is activated then the average symbiotic rate goes down however full potential of the site
is utilised for higher yields.

Design Panels

After the questionnaire, there are multiple pages to visualise the design decisions. Assigned systems
are visualised in plan view in addition to the waste exchange between nodes. The plans can be viewed
closely by zooming in. Each consequent page relates to the search radius and whether all the vacant
spaces are occupied. The symbiosis rate and yields for each assigned system can be viewed by clicking
on the vacant space. Similarly, the type and quantity of used waste sources can be viewed. On these
panels, design rules can be viewed and modified. After modifying the rules, Foodcyle needs to run
again to redesign. (See appendix C.8 for user interface)

Customisation

There might be scenarios where more than one system is suitable for the same space. In that case
by default, the system highest on the list is assigned to vacant spaces. However, in this panel, those
possible options can be provided along with advantages and disadvantages to let the designer decide.

Instead of giving a definitive urban farming solution to the designer, the decision-making tool gives
a range of potential systems so that the designer can make informed decisions regarding the system
selection based on the information given such as symbiosis percentage, food production rates of urban
farming systems per m2 and simplicity of systems. The symbiosis percentage is based on how many of
the needed inputs are found while the food production rates are based on previosly shown table 4.1. By
default, the decision-making tool will suggest the option with the highest symbiosis percentage if the
project aim is holistic food production in urban contexts.

The designer might prefer to change the assigned system to another system for aesthetical or practical
purposes. In order to entertain such scenarios, in this panel, the user can change one system to another
and the tool responds to that change by redesigning the site based on the change with the default
setting. The tool can give a warning prior to redesigning if that system is challenging structurally
or due to solar exposure of the space. If the site is redesigned, the tool can give an overview of what
would change if the initially suggested system is swapped in terms of average symbiotic rate, the total
amount of used waste, number of exchanges and yields.

Breakdown of Results:

After the decisions are set, an analysis of the system selections and waste use is provided which can be
used as an indicator of design performance. Each waste type and how much of it is used is visualised
with pie charts. How many of which urban farming system is assigned is visualised in addition to
the yields of different products such as mushrooms, fish, leafy greens, soft fruits and earthworms.
Finally, a comparison of what percentage of the residents’ needs can be compensated by these farms
is roughly calculated in order to quantify the impact in an easily understandable way.

Figure 5.4 User Interface: Questionnaire (top), Design Panels (bottom) (see Appendix C.1 for other pages)

Questions 4/14

NEXT

Design Questionnaire

What is the aim of the project?

Holistic Food
ProductionResearch Maximum

Productivity

How many missing resources is acceptable?

21 3

Should all the waste sources be found for food producing
supplementary systems?

Should all the waste sources be found for food
production systems?

Only Critical
Items

Both Critical
and Non-Critical

Items

Only Critical
Items

Both Critical
and Non-Critical

Items

Holistic Food
Production

Uf systems are
sorted according to
ease of application
in existing urban

contexts.
All of the vacant
spaces will be

occupied based on
the number of

missing items even
if there is not any

found item.
Critical Items:

Resources which are
a must for a system

to function
Vermiculture: Food
waste, sawdust,

paper

Initial Search
Radius

NEXT

Designing

Increased
Search Radius

Increased
Search Radius

0 500

Number of Vacant
Spaces:

... spaces

Maximum 2 missing
resources

Min. 1 found
resource

Critical Items
Cannot Be Supplied
Externally

Average Symbiosis
Rate:
... %

Number of Used Waste
Sources:

... sources

5.0 Step by Step Decision Making | pg.64 5.0 Step by Step Decision Making | pg.65

Responsive to Future Changes (In theory)

The built environment is not static and subject to change therefore the decision-making tool can be
used to evaluate the effect of removing one or more waste sources or vacant spaces. In this panel,
the designer removes the waste sources. The tool can give a warning if the resources cannot be
compensated for. If it can, it recommends which waste output to use instead.

Software as a Service (In theory)

As previously mentioned, data can be collected by using drone footage with deep learning or using
ArcGIS. These features relate to the data collection method preference in the interface. Deep learning
can potentially be a feature of the decision-making tool however access to drones might be challenging
for a designer. If drone footage is selected it could be included in a plan where employees operate the
drone and data collection can be provided by Foodcycle upon request. If GIS data is selected and if
the data is readily available then GIS maps can be used within the interface without requiring any
former GIS experience. Apart from these methods, the decision-making tool can be open source. In
conclusion, Foodcycle can be more than a decision-making tool by providing service.

Foodcycle’s Role in Design Process

Foodcycle is designed to give a set of options regarding urban farming systems based on existing
conditions. Therefore, it cannot be used on its own as a design tool but a strong collaboration between
the tool and designers is needed. The tool is aimed to be used for otherwise laborious tasks such as
iterating numerously over the vacant spaces, potential systems and nearby waste sources. As illustrated
in figure 5.6, the design process starts with getting the project and followed by defining project goals.
These can be holistic food production, maximum food production or research. These goals change
the prioritisation of systems as described in section 4.1.2. Afterwards, Foodcycle is used, the design
rules are decided on and these rules are customised until the parties are satisfied with the results.
Since the tool does not design the farm itself, specialists need to design the buildings, the systems and
prepare the business plan. These tasks can be performed by using other decision making tools such
as Agritecture Designer or Delphy QMS. A comparison between these and Foodcycle will be made in
chapter 7. During the design of the buildings, a participatory design approach can be taken which
encourages stakeholders to engage in the design. Last step is to build the farms and operate them.

Transportation of Waste and Supplements From Source To Farm

Even though, how the farms operate is not within the scope of this research the journey of waste
is foreseen. Transportation of water, CO2 and heat should be done using pipes and mechanical
systems. However, some waste types like food waste, spent coffee grounds, paper and sawdust can
be transported rather simply between locations. The journeyof waste starts with producing the waste
either by having a sandwich or a cup of coffee from the cafe, or being handed a piece of f lyer or making
a wooden model in the maquette hall. All these activities simply produce waste at some point along the
duration of the activity. These different types of waste can be separated and collected as illustrated in
figure 5.7. Since the corresponding farms to feed the waste into are designed to be in a limited radius,
these waste containers can be transported easily with a bike or an electric bike. Using containers
instead of plastic bags can be beneficial by reducing the plastic waste. Depending on the nature of the
farm, waste may need to be mixed, sterilised or precomposted. These processes can take place in the
farm. Next step is to use the waste as a resource for the farms whether it is mushroom production or
vermicompost. The journey of waste ends when it is utilised but a new cycle starts when the products
of the farms are used.

Figure 5.5 User Interface: Customisation (top), Response To Future Changes (bottom)

NEXT

Customisation

Average
Symbiosis
Percentage:
...% -> ...%

Food Yield :
... kg -> ...%

Number of Vacant Spaces:
... spaces ->... spaces

Change UF
System

Tip! Click on the
system to chenge it

Warning! The system
you picked is too

heavy for a rooftop

Vermiculture
Aquaculture
Mushroom

NFT
Mediabed

Water Culture
Raised Bed

Plant Factory
AeroponicsCurrent System = NFT

Selected System = Water
Culture

NEXT

Future Changes

Average
Symbiosis
Percentage:
...% -> ...%

Food Yield :
... kg -> ...%

Number of Vacant Spaces:
... spaces ->... spaces

Removing Waste
Source

Tip! Click on the
node to remove it

click!
Warning! The waste
source you removed
provides a critical

resource.
The productivity
will be affected
significantly!

Waste source cannot be
replaced!

5.0 Step by Step Decision Making | pg.66 5.0 Step by Step Decision Making | pg.67

5. Growing and Picking Produce

3. Cycling with Waste

1. Producing waste

6. Selling and Consuming

4. Processing the Waste

2. Collecting and Seperating Waste

Figure 5.7 Journey of Waste

4. Detailed Design

Figure 5.6 Design Process Using Foodcycle

2. Using Foodcycle

0. Getting the Project

5. Operating & Cultivating

3. Agreeing on a Concept

1. Defining Project Goals

6.0 Case Studies | pg.69

06
CASE STUDIES

The decision-making tool is designed to work for a wide range of locations with temperate climates.
Therefore, the tool can be used universally in order to make urban farming decisions as long as the
necessary data is available. Since this research aims to use waste sources on-site instead of sending
them away to landfills, incineration or repurposing facilities, the effects of using waste for farming
need to be illustrated. Consequently, one primary case study and 1 secondary case study are conducted.
The primary case study is TU Delft Campus while the secondary case study is Urban Greenhouse
Challenge’s site in Washington.

6.1 TU Delft Case Study

TU Delft Campus is selected as the primary case study to test and assess the results parallel to
the Climate Action Programme of the university. TU Delft aims to be carbon neutral, circular and
contributing to the quality of life by 2030. (Sustainability at TU Delft, n.d.) Integrating urban farming
into the campus while using campus waste f lows as resources for the farms has the potential to serve
as a waste management strategy and food production strategy in addition to increasing the biodiversity
on campus and potentially providing social impact. These farms can provide job opportunities, and
increase food safety. However, to what extent these farms can provide for Delft and reduce waste
needs to be assessed.

6.1.1 Site Analysis

The research regarding the campus started with the site analysis in order to determine the vacant
spaces and waste outputs. The data collected in this part is used for decision making afterwards.

Vacant Spaces

The analysis regarding vacant spaces is done by using a manual data collection method. A satellite
view of the campus is utilised in order to determine vacant rooftops and ground floor areas. Vacant
spaces are defined as spaces which do not have any other designated purpose. In order to determine
these on the map, non-vacant spaces are mapped first such as buildings, sports fields, parking lots,
bike storage, roads, canals, and other site-specific functions.

Criteria For Roof Tops:

To begin with, rooftops are mapped and assessed based on their availability. For a rooftop to be
considered vacant, there are a few criteria:
 It should be a f lat roof
 It should not be used for any other purpose including:
 Solar energy collection
 Mechanical equipment
 Skylights

Criteria For Ground Floor:

After mapping the non-vacant spaces with designated functions, it is concluded that there are a lot
of green vacant spaces on the campus. The question “Should all greenery be productive greenery?” is
asked. Therefore a new criteria needed to be introduced which defines in what conditions greenery
can be considered vacant. In order to limit the green areas included as vacant spaces, only green areas
which are a maximum of 30 meters away from the buildings are defined as vacant. The reason behind
this criteria is to place urban farms where the users can see and interact with them rather than placing
them away from users.

6.0 CASE STUDIES

6.0 Case Studies | pg.70 6.0 Case Studies | pg.71

Figure 6.1 Radiant Vicinity Map (10m - 20m - 30 m)

Total Food Waste = (Food Waste kg per Capita) x (Faculty Population)
Faculty Waste = (Total Food Waste) x (Time in School %)

Table 6.1 Sawdust Output of BK

Total Coffee Waste = (Faculty Population) x Daily Coffee Consumption Per Student x School Year x Spent
Coffee Grounds per Cup

Saw Dust Annual Waste Volume (m3/
year) Sawdust Density Annual Sawdust (kg/year)

BK 16 210 kg/m3 3360

Total Paper Waste = (Food Paper kg per Capita) x (Faculty Population)
Faculty Waste = (Total Paper Waste) x (Time in School %)

Annual Rainwater Harvest (L) = Annual Rainfall (mm) x Roof Area (m2)

Waste Outputs

The next dataset that needs to be gathered is waste outputs including their locations and quantities.
This part of the analysis is based on the site analysis framework described in section x. Cafeterias,
coffee parlours, model making spaces, conference halls, sloped roofs, data centres, and supermarkets
are mapped. Information regarding food and coffee establishments is based on the Food&Beverage
map of the campus. Conference halls’ locations and people capacities are based on Education Spaces
Viewer provided online by the university. After determining the locations of waste sources the next
step is to determine the quantities of waste. Regarding the quantities, two methods are followed. The
first one is contacting the catering providers directly while the second method is assuming the waste
quantities based on simple calculations. It should be noted that some waste sources are not included
as including them would overcomplicate the data collection. For instance, there are multiple coffee
machines in each building on campus and these coffee machines are not included in the analysis. In
addition, even though cafeterias also serve coffee they are considered as food waste sources only.
If these simplifications are not made quantities of waste produced by each output point need to be
known since assuming waste quantities for each coffee machine would be a major challenge.

Food Waste

Food waste is described previously as edible and non-edible parts of the crops therefore it covers
kitchen waste and agricultural waste. However, in this analysis, only food waste from cafeterias is
taken into account. Some of the data regarding the quantities are collected by contacting the catering
company of the Faculty of Architecture & the Built Environment and Aula Cafeterias, Cirfood. Cirfood
only started auditing waste a few years ago coinciding with the start of the Covid-19 pandemic.
Therefore, the data does not reflect the reality as the campus and cafeterias were closed for a while. In
order to, have realistic numbers as much as possible the maximum quantities are utilised. In addition
to these two cafeterias, there are smaller food joints. The food waste regarding these are assumed
based on the faculty population estimations, the time students are expected to spend on campus and
municipal waste quantities per capita provided by Statline. For some locations such as X (TU Delft’s
Sports and Activity Center), food trucks or independent enterprises, it was not possible to assume or
reach data therefore these locations are not included in further steps. (See appendix E.10 and E.11 for
details)

Coffee Waste

According to the food and beverages map, there is at least one espresso bar in each faculty and there
are a few other cafes in the Faculty of Architecture & the Built Environment, Aula, Pulse and Central
Library. For the smaller coffee parlors in faculty buildings, Pulse and Central Library it is assumed
that everyone would have 1.5 cups of coffee a day. And 11 grams of coffee grounds are used per cup
(Biobean,2019) And faculty buildings are assumed to be used for 5 days during 40 week-long education
period.

Sawdust

Sawdust from the Model Hall in Architecture and Built Environment faculty (BK) is collected and sent
to companies to make pressed wood products. According to the officials in the model hall, 2 20L bags
of sawdust are collected per week during the school year. This volume corresponds to 3360 kg sawdust
annualy as illustrated in table 6.1. Even though, this waste product on the campus is valorised and
used for another purpose it is included in the analysis for research purposes.

Paper

Paper waste quantities are estimated based on the population of each faculty, the time students
are expected to spend on campus and municipal data on paper waste per capita. According to the
statistics, 37 kg of paper waste was produced per capita in 2019. (Statistics Netherlands, 2021) Even
though there are multiple paper waste bins in each faculty, only one waste source is placed in the
building to simplify the calculations.

Rainwater

Rainwater can be collected by roofs and in this research only sloped existing roofs are considered as
rainwater sources. The surface areas of roofs are multiplied by the average rainfall in Delft which is
900mm per annum. (Geodan, n.d.)

Residual Heat

There are two residual heat sources on campus one is a supermarket while the other one is a data
centre. The amount of heat emitted by the supermarket is based on the electricity demand of 401
kWh/m2 for cooling, assuming a COP of 3. These values are multiplied by the surface area of the
supermarket to calculate the total cooling load which corresponds to the residual heat. (Tess Blom,
2018) The Delft Data Center Group produces 31.050GJ (8625 MWh) heat annually as calculated by the
same author.

6.0 Case Studies | pg.72 6.0 Case Studies | pg.73

Figure 6.2 TU Delft Vacant Space Nodes (see appendix E.9 for the complete map)

Figure 6.3 TU Delft Waste Output Nodes (see appendix E.11 for the complete map)

Table 6.2 Total Yield of Leafy Greens Table 6.3 Average Symbiosis Rate At Each Stage

Food Waste (W1) Sawdust (W2) Paper Waste (W3) Coffee Waste (W4)

CO2 (W5) Rainwater (W6) Residual Heat (W7)

Not Used Waste

Used Waste

Table 6.4 Used Waste Quantities & Percentage

Vacant Space & Waste Output Nodes

After collecting the data all the vacant spaces and waste sources are mapped to start the decision-
making process as shown in figures 6.2 and 6.3. In this stage, identifiers are given to nodes and
spreadsheets are filled in after exporting the identifier and location data in xls. format. Then the
waste quantities are filled into the spreadsheet. (See appendix E.9-E.12 for complete tables) These
datasets are used for decision making.

6.1.2 Case Study Settings

Prior to running the tool, a set of decisions need to be made including search radius, whether the
search radius can be increased and how many times as well as whether all the vacant spaces should be
occupied. For the TU Delft Campus case, a search radius of 100 m, 200 m and 500 m are used. During
the first 3 stages, a system is assigned only if a minimum of one resource is found, with a maximum
of 2 missing non-critical resources. Foodcycle is run 3 times while the search radius is increased step
by step. It is observed that not all the spaces are occupied. Therefore to illustrate the food production
potential of the campus, stage 4 design rules are applied. In stage 4, Foodcycle looks for at least one
found resource first. If there is a found item and if the missing resources are not critical for that
system’s productivity, the system gets assigned to the vacant space. And the decision-making tool runs
again to assign food-producing supplementary and supplementary systems. Lastly, as there were still
unoccupied spaces left, the rules are eased even more and a system is assigned even if there are no
found resources based on the number of missing items. Foodcycle proceeds to assign food-producing
supplementary and supplementary systems. After this stage, the yields, system decisions and used
waste quantities are calculated.

6.1.3 Case Study Conclusions

The last stage is to illustrate the decisions both visually and quantitatively. During the first stage, 13
vacant spaces are occupied and 29 waste exchange connections are created within a 100 m radius.

Daily Production of Leafy
Greens 22811.24356

Recommended Daily Fruit
& Vegetable Consumption

(kg)
0.25 (RIVM, 2017)

People # 91244.97425

Delf Population 103581 (Statistiek, n.d.)

Stage Symbiosis Rate % of
Decisions

Stage 1 (100 m) 52.56410256

Stage 2 (200 m) 50

Stage 3 (500 m) 50

Stage 4 (500 m + occupy all) 13.1969697

Total 17.88

Vacant RooftopVacant Ground Floor

0 %

6.0 Case Studies | pg.74 6.0 Case Studies | pg.75

Figure 6.4 Assigned Systems and Distribution of Produced Crops

Figure 6.5 Stage 4 Design Decisions (See appendix F.1-F.8 for the full map and each stage) Figure 6.6 TU Delft Campus Producing Food

Food production as an attraction

Food production as a part of daily lifeFood production as greenery

The majority of the systems assigned are NFTs, while mostly CO2 is used as a resource. The average
symbiosis rate is close to 53% in this stage relating to how much of the necessary waste sources are
found for assigned farms. On the other hand, in stage 2, 1 vacant space is occupied additionally while
3 more waste exchange connections are created within a 200 m radius. In this stage, a mushroom farm
is assigned while coffee waste is exchanged. In the 3rd stage, another mushroom farm is assigned.
After easing the design rules, mostly raised beds are assigned to ground-floor spaces since raised
beds only have one input which can be supplied externally. In the 2nd and 3rd stages symbiosis rates
of decisions made in the respective stages decrease to 50% however after stage 4 it drops drastically
to 17%. (see Table 6.3) By utilising the decision-making tool, 125 vacant spaces are used for farming
purposes reaching a total of 22.18 hectares. The most assigned urban farming system is NFTs with
62 farming locations while raised beds are second on the list with 40 locations due to the lightweight
of NTFs and limited waste demands of raised beds as illustrated in figure 6.4. Other than these, 9

vermicomposting areas, 2 aquaculture spaces, 9 mushroom production areas and 1 plant factory are
suggested. By covering almost 22 hectares of the campus, enough vegetables for almost 88% of the Delft
population can be produced at TU Delft Campus as shown in Table 6.2. These numbers are based on
daily fruit and vegetable consumption recommendations by the government. Lastly, while producing
food, more than 50% of waste of each waste type, except sawdust, can be used on campus. (see Table
6.4) Lastly, from a more architectural point of view more productive greenery can be incorporated to
the campus encouraging people’s engagement with food production as illustrated in figure 6.6. Food
production can even function as an attraction in some cases and increase awareness.

Aquaponics

Water Culture

Media Bed

Mushroom Farm

Plant Factory

Raised Bed

NFT

Aquaculture

Vermicompost

1 2 3

6.0 Case Studies | pg.76 6.0 Case Studies | pg.77

WO5 WO3 V5

V4

V3

V2

V1

V0 V6

WO0

WO7

WO6

WO5
WO4

WO3

WO2
WO1

Figure 6.4 Ward 7 Vacant Space & Waste Output Nodes (see appendix G.1 for The Complete Map) Figure 6.5 Ward 7 Design Decisions In Stage 1 (top) and Stage 2 (bottom)

6.2 East Capitol Farm, Washington DC

As a second case study Urban Greenhouse Challenge’s site is selected. The challenge is organised by
Wageningen University and this year focuses on making a social impact through urban farming in
Ward 7 of Washington DC. Ward 7 is one of the most underprivileged wards in the city in terms of
social-economic status as well as food security. Since the site is not fully developed and not an existing
condition, the analysis is based on TU Delft’s student team’s design taking place in the competition.
The waste quantities are not available therefore simplified waste quantities are estimated first.

6.2.1 Case Study Settings

In this case study, the preferences are kept the same as in the primary case study. Therefore, the
maximum amount of missing resources is 2, while at least 1 resource should be found in the first stage.
Since there are not many waste sources around only one search radius of 700 m is tested. Since this is
a relatively small site and it is based on a design concept, the rule regarding non-transferable items is
lifted. With a 700 m search radius, the furthest waste sources can be included in the decision making.
After running the tool it is observed no waste exchanges are generated, due to a mismatch of waste
quantities and vacant space sizes. In order to assess the full potential of the site, the waste quantities
are manipulated to match most of the vacant space sizes.

6.2.2 Case Study Conclusions

As a result of decision-making, NFT systems are assigned to 3 locations in stage 1. In this stage, a
total of 3 waste exchanges are generated carrying rainwater to NFTs. After the “occupy all the spaces”
feature is activated, 2 farms with raised beds are generated with dependency on the external supply
of water. 2 locations are not assigned any system due to their solar exposure. Their solar exposure
is medium (2) due to their orientation which is only sufficient for aquaponics. However, aquaponics
cannot be assigned to those spaces by the prototype because the sizes of the supplement-needing
spaces are not in the same range as the available spaces. Even if the design rule regarding vacant space
and waste source size is eased further adjustments need to be done to relax the design rules since all
the resources should be available nearby to assign food-producing supplementary and supplementary
systems. It can be concluded that Foodcycle works better with bigger data sets with many waste sources
of different types and quantities in addition to vacant spaces with varying characteristics.

7.0 Conclusions & Areas of Further Development | pg.79

CONCLUSIONS & AREAS OF FURTHER
DEVELOPMENT

07

7.0 CONCLUSIONS & AREAS OF FURTHER DEVELOPMENT
In the previous chapters, the research framework, the literature review, the design task and
methodology and case studies are described. Testing Foodcycle on case studies of different scales lead
to some findings. Firstly, Foodcycle generates a more complex network with bigger data sets due to
strict design rules and availability of waste. If the tool is utilised for a smaller data set with fewer vacant
spaces and fewer waste sources then the design rules need to be eased. Otherwise, a network may not
be generated mainly due to the disproportion between waste quantities and space sizes. However, for
a larger set of data like TU Delft Campus since there are more possibilities the design rules do not
obstruct the decision making instead they ensure viable solutions. Secondly, as demonstrated by TU
Delft Campus case study urban settings have the potential to produce vast quantities of food while
using readily available waste sources. If underutilised spaces are employed as potential urban farms,
22 tonnes of leafy vegetables can be produced on campus which is enough for 88 % of Delft on daily
basis. Lastly, one of the most noteworthy findings of this research is if the design rules are too strict,
they do not allow for decision-making. Therefore, either these rules need to be eased gradually with
each stage of decision making or these rules should be customised for the context. For instance, in
the Washington site, there are not many waste sources nor many vacant spaces. Therefore aiming
to match space sizes to quantities obstructs the decision making. For such cases, this rule can be
eased by looking for waste quantities bigger than space size to ensure enough resources. It should be
noted that the design rules described in chapter 3 are established in order to ensure efficient use of
resources and are based on a simplified representation of space characteristics and waste quantities.

Foodcycle is designed to choose an urban farming system based on existing conditions such as waste
f lows and underused spaces, as well as to generate a network of farms. It does what it is aimed for
efficiently and fast. Another strength is that the reasoning behind each decision can be tracked. From
a technical point of view, even if the tools used for Foodcycle such as python and grasshopper become
outdated in the future, the methodology remains valid. And the same methodology can be used in the
background of the userinterface. Currently, the prototype gives 1 system option for each vacant space
however with further developments it can be designed to give a set of options to let the designer make
an informed decision.

Due to the time constraints and the scope of the project, there are aspect which Foocycle does not
consider as listed in figure 7.1. For instance, financial concerns are not considered even though they are
largely influential in projects. Currently, it gives a breakdown of how much food can be produced and
how much of the existing was is repurposed on site. However, it should be noted that these calculations
are simplified and assumes that 100% of the vacant space’s area is used for food production and
weather conditions are always optimal for food production. Therefore prior to designing the spaces
themselves, a more precise calculation can be done. Moreover, the decision-making tool does not
optimise the network but iterates over spaces, systems and wastes to assign a system. Therefore, the
next system decision is always influenced by the previous decisions. There might be a more symbiotic
design however the prototype does not look for the best design currently. It is undoubtful that further
improvements are needed in certain areas as shown in figure 7.1. However, all of the improvements
can be done as an addition to the tool with ease.

To conclude, such a combined approach to waste management and food production has potential
as demonstrated by the TU Delft case study. The aforementioned potential includes social impact,
valorisation of the vast amount of waste on-site, reducing food miles and reducing emissions associated
with food production and consumption. By addressing the weaknesses of Foodcycle, it can be improved
and be carried to the next level.

7.0 Conclusions & Areas of Further Development | pg.80 7.0 Conclusions & Areas of Further Development | pg.81

Figure 7.1 SWOT Analysis of the approach

Comparison With Other Tools

In order to have an understanding of what Foodcycle is capable of and where it is lacking, it is compared
to 2 online decision making tools. First one is Agritecture Designer, which is a tool mostly focused on
developing business plans and comparing financial benefits of different concepts. The second tool is
Delphy’s QMS Tool which is available for different crops and is aimed to be used during the detailed
design phase. Lighting, CO2, climate requirements are factored in to guide designers towards the most
feasible design option. However, these tools aims are completely different than Foodcycle’s goal. As
illustrated in figure 7.2, there are features that Foodcycle is lacking however its features relate to the
purpose off the tool and differ from existing tools. All these 3 tools are used in different stages of
design. Foodcycle is used in preliminary stages while Agritecture Designer and Delphy are used in
later stages of design. It is also possible to use these 3 tools together for a data backed design process.

Figure 7.2 Comparing Foodcycle

7.0 Conclusions & Areas of Further Development | pg.82

Further development

As previously mentioned, the methodology and the prototype can be improved in many ways. Firstly,
the real sizes, structural capacity, solar exposure and waste quantities can be used instead of simplified
ranges. This would complicate the data collection process and decision making however would result
in more realistic scenarios. In addition, the current lifecycle of each waste stream can be assessed
prior to decision making. If a waste stream is already being valorised, it does not need to be included
in the dataset. Secondly, an optimisation algorithm can be introduced to generate the most symbiotic
design. In addition, the design rules for all kinds of urban farming systems can be eased gradually as
discussed previously. This would increase the generated waste exchange connections. Waste products
of urban farms should be included in the decision making in order to valorise agricultural waste.
This would significantly increase the number of vermicompost on-site if the conditions are suitable.
In addition, dividing waste into smaller portions can be one of the design decisions the user takes
while using the tool. The search radius rule can be improved by drawing the maximum distance
from the periphery of the space instead of from the geometric center of the space. This improvement
would result in better search results when it comes to nearby waste as it excluded the space itself and
includes a larger area of search. Lastly, in order to quantify the environmental benefits, an extensive
life cycle assessment can be conducted based on existing conditions including waste management,
food production and consumption compared to the design generated by the decision-making tool.

It should be noted that, after carefully reviewing the maps, a visualisation error was detected. Even
though while assigning food production systems, the created connection seem correct, there is an
error with the waste exchange points in the maps. This error seems to be only occurring in Stage
4. Therefore the connections visualised in stage 4 do not match with reality and waste f lows do not
reach where they are intended to be used. Due to time constraints the main source of the error could
not be detected and the error could not be fixed. It should be noted that each software naturally has
some errors and mistakes in the beginning and these errors can be fixed along the way with updated.
Consequently, in the future, reviewing the decisions once again is recommended as well as testing
Foodcycle on multiple cases to detect and possible mistakes.

REFLECTION

08

8.0 Reflection | pg.84 8.0 Reflection | pg.85

Making a shift to a more resilient, less dependent urban metabolism can be achieved by introducing
urban farming systems to urban development by utilising the waste f lows as resources for the urban
farm. A suitable urban farming system is highly dependent on the location, the situation demands,
existing space, and existing waste f lows. Creating such a network of waste f lows and deciding according
to existing conditions gets complicated for humans brains to handle especially when the datasets are
big. In order to assist designers on this quest a decision making tool is needed. The objective of this
thesis is to provide a decision-making strategy, therefore a decision-making tool for urban farming
systems utilising various waste streams from the site with the main aim of creating a network of waste
and resources while increasing the symbiosis in urban contexts

Graduation process

This research aims to bridge climate design & sustainability to design informatics by searching for a
solution to a sustainable design problem by employing a computational design approach. In building
technology track, we are trained to approach design problems methodologically and provide clear
arguments for design decisions. This research relates to the aforementioned teachings within the
program as it provides guidelines for a well built methodological approach rather than an intuition-
based design approach.

As per the objective of this research, a decision making strategy is designed to address the problem of
integrating urban farming solutions into urban contexts by seeing waste f lows and vacant spaces as
resources. The decision making strategy has both theoretical and realised parts due to time constraints
within the scope of the graduation project. During the design process, a design by research approach is
employed to design the decision-making tool. Literature review findings are used to formulate design
rules. Then these design rules are applied to a case study in order to illustrate the results.

The decision-making tool is tested on the TU Delft Campus after collecting data regarding waste f lows
and vacant spaces on campus. The decision-making tool suggested varying urban farming systems for
86% of the vacant spaces and over half of the waste quantities of each waste type are used for farming
purposes on the campus. In total 33 hectares of space are used for farming of various kinds including
vermiculture, aquaculture, mushroom production, soft fruits and leafy vegetable production. As
a result of intensive farming on campus enough vegetables for 88% of the Delft population can be
produced only on TU Delft Campus by using rooftops and empty ground floor areas. As the objective
of the research is to develop a methodological approach using waste f lows for urban farming and
create a network of waste and resource exchange in urban contexts, after analysing the results of
incorporating such a strategy it can be concluded that the research succeeded within its scope and
the given timeframe. It should be noted that some aspects of decision making are either simplified or
suggested theoretically.

The main outcome of the project is the decision making strategy to assist designers in the quest of
making decisions regarding urban farming systems and existing site conditions. Firstly, the technology
for data collection methods that are theoretically suggested to be used for this strategy exists however
they should be modified to fit this specific purpose. Secondly, for research purposes, some of the data
used by the decision-making tool are simplified. Therefore, further improvements are necessary to
achieve precise results. On the other hand, if simplified results are satisfactory then the decision-
making tool can be used for preliminary design purposes. Or if the decision-making tool is developed
further to include automated data collection by using drones, GIS and deep learning and to be used
within a user interface while allowing for user interaction, the decision-making tool can be used in
practice. In addition, the features the tool does not have currently, should be addressed. These features
include using agricultural waste, fertiliser from mushroom farming. In the future, rainwater can be

8.0 REFLECTION
suggested to be harvested from the roof of the assigned farms since currently only sloped roofs are
taken into account for rainwater harvesting. Lastly, due to time constraints a data error in the stage 4
could not be fixed, this error sould be revisited and solved before use. Thankfully, it is observed that
the error only hinders the visualisation of waste exchange in stage 4. Finaly, it should be noted that
such errors may happen with any software or program therefore Foodcycle should be tested on more
case studies to detect any possible mishap.

Ethical Issues & Societal impact

During the preliminary stages of this project, one of the most prominent driving forces of the research
was making a societal impact by improving food security and the socio-economical state of nearby
inhabitants. However, social impact is challenging to quantify and address with a building technology
project as it falls outside of the scope of the master’s program. In addition, due to business-related
reasons, food produced on urban farms is not always more accessible than others economically even
though food accessibility is one of the potential benefits of urban farms. Due to time constraints and
knowledge limitations on the subject, social aspects are acknowledged as potential benefits of urban
farms and disregarded as a primary outcome.

Both urban farming and decision-making strategy are topics of interest and they are widely discussed.
This research delivers innovation by combining these popular subjects to achieve symbiosis in
the built environment by seeing urban waste as a resource for urban farms. In addition, it aims to
make a positive impact by finding innovative solutions to improve the well-being of the planet while
benefiting society. One of the main problems this project tackles is the sustainable development of
cities and urban farming in the cities by employing principles of considering waste as a resource.
This way, consumption of valuable natural resources can be decreased for the sake of a healthy
planet and sustainable development goals. Meanwhile, this research foresees social impact as food
security issues can potentially be addressed by integrating farming into cities. Even though due to
the project scope and timing, the social benefits of such an approach are perceived as a secondary
benefits, the potential to improve food security was one of the driving forces starting this research.
However, looking at the results of the TU Delft Campus case study, and recognising the quantity of
food which could be grown on campus it can be concluded that by growing such a magnitude of food,
food accessibility, security and availability can be improved. Moreover, this research aims to provide
guidelines for designers who may not be experts in urban farming, different systems or waste, to make
decisions to ensure sustainability and circularity of built environments. Therefore, it can potentially
increase the commonality of utilising urban farming as an exchange hub of waste and food. Secondly,
the decision-making tool can make suggestions based on the design rules which would be too complex
for human cognition to tackle such as rules regarding waste quantities, and vacant space sizes. By using
the tool to develop a plan for urban farming, the data regarding yields, and used waste quantities can
be reached quickly In addition, the results of applying different rules can be compared theoretically.

Urban farming is a multifaceted topic that corresponds to technical aspects of agriculture as well as the
built environment since it inherently aims to integrate food production into cities. Due to the complex
nature of cities, urban farming should be also considered as an architectural solution rather than
purely agricultural. Urban farming can contribute to and potentially improve the sustainability and
biodiversity of cities if integrated and designed carefully which falls under the scope of architecture,
building technology and design.

8.0 Reflection | pg.86

Mentor Feedback

During the mentor meetings, both my mentors Andy Jenkins and Michela Turrin gave constructive
criticism to carry the project further. There were times aspects I failed to think about or simply
missed were pointed out. By paying attention to those aspects, I believe that my graduation project
is improved significantly thanks to my mentors. During the design of the decision-making tool since
I was mostly working in Python language and the design rules are complex to grasp immediately,
from time to time it was difficult to communicate the decision-making process. One of the prominent
comments on my project was to explain the ideas clearly and to design an user interface in order to
help the audience imagine how the tool can be used. In order to make the process easier to understand
for anyone regardless of their background, I designed a representative user interface in addition to
highlighting the logic behind each step and explaining them step by step. In this part of the project,
how the decisions are made, and the rules are presented clearly.

Self Development

During the last 8 months, I gained experience and knowledge regarding different urban farming
systems, waste sources, different ways of dealing with waste, designing methodologies and putting
methodologies to test.

First of all, when I started my graduation project, I was not knowledgeable about different food
production systems or how they work. In the beginning, it was partially clear to me that waste can
be used as a resource for food production however I only learned how it can be used during the
literature review. As a result of working on a decision-making methodology, I realised that especially
with different parameters to consider, the rules behind decision making can get quite complex. It
is possible to say that decision making is a puzzle with many dimensions. Solving that puzzle with
computational approaches is a challenging yet viable option since an artificial mind can iterate over
the same rules many times and it would give the same results as long as the rules are set. However,
even though the rules should be set and all scenarios should be thought through these rules should
not be too strict. Otherwise, system selection is only done in perfect conditions that do not reflect the
reality of working with existing conditions. Lastly, in addition to technical and academic knowledge,
I had the chance to put my coding skills, which I developed earlier this year, to the test. Since a large
portion of the prototype is developed using Python, I learned how to divide tasks or rules into smaller
components in a logical order. And to be completely honest, by doing so I eventually understood how
to work with Grasshopper which I aspired to learn for many years. Therefore overall, I believe that this
project taught me about both academic and practical aspects which will be useful in the near future.

09
BIBLIOGRAPHY

Bibliography | pg.88 Bibliography | pg.89

BIBLIOGRAPHY
10” 12 Foot Channel. (n.d.). Cropking Incorporated. Retrieved May 11, 2022, from https://cropking.

com/catalog/cha9/10-12-foot-channel

Abbasi, S. A., Hussain, N., Tauseef, S. M., & Abbasi, T. (2018). A novel FLippable Units Vermireactor
Train System FLUVTS for rapidly vermicomposting paper waste to an organic fertilizer.
Journal of Cleaner Production, 198, 917–930. https://doi.org/10.1016/j.jclepro.2018.07.040

Abbasi, S. A., Nayeem-Shah, M., & Abbasi, T. (2015). Vermicomposting of phytomass: Limitations of
the past approaches and the emerging directions. Journal of Cleaner Production, 93, 103–114.
https://doi.org/10.1016/j.jclepro.2015.01.024

Ackerman, K. (2012). 7 - Urban agriculture: Opportunities and constraints. In F. Zeman
(Ed.), Metropolitan Sustainability (pp. 118–146). Woodhead Publishing. https://doi.
org/10.1533/9780857096463.2.118

Ahmad Zakil, F., Xuan, L. H., Zaman, N., Alan, N. I., Salahutheen, N. A. A., Sueb, M. S. M., & Isha,
R. (2022). Growth performance and mineral analysis of Pleurotus ostreatus from various
agricultural wastes mixed with rubber tree sawdust in Malaysia. Bioresource Technology
Reports, 17, 100873. https://doi.org/10.1016/j.biteb.2021.100873

All About Growing Dwarf Tomatoes Guide and Q&A. (n.d.). Bountiful Gardener. Retrieved May 11,
2022, from https://www.bountifulgardener.com/growing-dwarf-tomatoes/

Bao, J., Lu, W.-H., Zhao, J., & Bi, X. T. (2018). Greenhouses for CO2 sequestration from atmosphere.
Carbon Resources Conversion, 1(2), 183–190. https://doi.org/10.1016/j.crcon.2018.08.002

Baras, T. (2018, June 7). The Quality Standards for Hydroponic Lettuce. Urban Ag News. https://
urbanagnews.com/blog/exclusives/the-quality-standards-for-hydroponic-lettuce/

Beirao, J. N., Nourian Ghadi Kolaee, P., & Mashhoodi, B. (2011). Parametric urban design: An
interactive sketching system for shaping neighborhoods. ECAADe 2011: Proceedings of the
29th Conference on Education and Research in Computer Aided Architectural Design in
Europe "Respecting Fragile Places", Ljubljana, Slovenia, 21-24 September 2011.
https://repository.tudelft.nl/islandora/object/uuid%3A23079c5f-d0ea-40e1-af1c-800c85b294c0

Biobean. (2019, August 28). The significant value of spent coffee grounds. Bio-Bean. https://www.bio-
bean.com/news-post/the-significant-value-of-spent-coffee-grounds/

Blom, T. (2018). Delft in Transition: Towards a sustainable energy system for Dutch Municipalities.
https://repository.tudelft.nl/islandora/object/uuid%3Aedefd4bb-ec6f-4e4e-947b-2161552cd9f9

Blom, T. J., Straver, W. A., Ingratta, F. J., Khosla, S., & Brown, W. (2012). Carbon Dioxide In
Greenhouses. Ontario Ministry of Agriculture, Food and Rural Affairs. http://www.omafra.
gov.on.ca/english/crops/facts/00-077.htm

Bundesinstitut Für Risikobewertung. (2020). Reclaimed waste water: Preventing bacterial pathogens
on fresh fruit and vegetables: BfR Opinion No 021/2020 of 21 April 2020. https://doi.
org/10.17590/20200624-073439

Caetano, I., Santos, L., & Leitão, A. (2020). Computational design in architecture: Defining
parametric, generative, and algorithmic design. Frontiers of Architectural Research, 9(2),
287–300. https://doi.org/10.1016/j.foar.2019.12.008

Calculating the Amount of Rainwater Capturable from Your Roof. (2018, June 14). National Poly
Industries. https://www.nationalpolyindustries.com.au/2018/06/14/calculating-the-amount-
of-rainwater-capturable-from-your-roof/

Campisano, A., Butler, D., Ward, S., Burns, M. J., Friedler, E., DeBusk, K., Fisher-Jeffes, L. N.,
Ghisi, E., Rahman, A., Furumai, H., & Han, M. (2017). Urban rainwater harvesting systems:
Research, implementation and future perspectives. Water Research, 115, 195–209. https://doi.
org/10.1016/j.watres.2017.02.056

Chance, E., Ashton, W., Pereira, J., Mulrow, J. S., Norberto, J., Derrible, S., & Guilbert, S. (2021). The
Plant—An experiment in urban food sustainability. https://doi.org/10.25417/uic.17159402.v1

Chatzikonstantinou, I. (2021). Architectural Design Performance Through Computational
Intelligence: A Comprehensive Decision Support Framework. https://doi.org/10.4233/
uuid:b0661996-af2d-4bd2-9127-48c678435f68

Chunkao, K., Nimpee, C., & Duangmal, K. (2012). The King’s initiatives using water hyacinth to
remove heavy metals and plant nutrients from wastewater through Bueng Makkasan
in Bangkok, Thailand. Ecological Engineering, 39, 40–52. https://doi.org/10.1016/j.
ecoleng.2011.09.006

CO2 Meter. (2015). CO2 Calculator for Grow Room or Indoor Greenhouse. CO2 Meter. https://www.
co2meter.com/blogs/news/41003521-co2-calculator-for-grow-room-or-indoor-greenhouse

Cubukcuoglu, C., Kirimtat, A., Ekici, B., Tasgetiren, F., & Suganthan, P. N. (2019). Evolutionary
Computation for Theatre Hall Acoustics. In S. Datta & J. P. Davim (Eds.), Optimization in
Industry: Present Practices and Future Scopes (pp. 55–83). Springer International Publishing.
https://doi.org/10.1007/978-3-030-01641-8_4

Cycloponics. (n.d.). Cycloponics—We Farm the Underground. Cycloponics. Retrieved January 18,
2022, from http://cycloponics.co/

DC Health Matters. (n.d.). DC Health Matters: Demographics :: Ward :: Ward 7 ::
Population. Retrieved May 11, 2022, from https://www.dchealthmatters.org/
demographicdata?id=131494§ionId=935

de Peyster, E. (2014). How much water does my food garden need? University of California
Agriculture and Natural Resources. Retrieved May 11, 2022, from https://sonomamg.ucanr.
edu/files/185639.pdf

Delft (Municipality, Zuid-Holland, Netherlands)—Population Statistics, Charts, Map and Location.
(n.d.). Retrieved May 11, 2022, from https://www.citypopulation.de/en/netherlands/admin/
zuid_holland/0503__delft/

https://cropking.com/catalog/cha9/10-12-foot-channel
https://cropking.com/catalog/cha9/10-12-foot-channel
https://doi.org/10.1016/j.jclepro.2018.07.040
https://doi.org/10.1016/j.jclepro.2015.01.024
https://doi.org/10.1533/9780857096463.2.118
https://doi.org/10.1533/9780857096463.2.118
https://doi.org/10.1016/j.biteb.2021.100873
https://www.bountifulgardener.com/growing-dwarf-tomatoes/
https://doi.org/10.1016/j.crcon.2018.08.002
https://urbanagnews.com/blog/exclusives/the-quality-standards-for-hydroponic-lettuce/
https://urbanagnews.com/blog/exclusives/the-quality-standards-for-hydroponic-lettuce/
https://repository.tudelft.nl/islandora/object/uuid%3A23079c5f-d0ea-40e1-af1c-800c85b294c0
https://www.bio-bean.com/news-post/the-significant-value-of-spent-coffee-grounds/
https://www.bio-bean.com/news-post/the-significant-value-of-spent-coffee-grounds/
https://repository.tudelft.nl/islandora/object/uuid%3Aedefd4bb-ec6f-4e4e-947b-2161552cd9f9
http://www.omafra.gov.on.ca/english/crops/facts/00-077.htm
http://www.omafra.gov.on.ca/english/crops/facts/00-077.htm
https://doi.org/10.17590/20200624-073439
https://doi.org/10.17590/20200624-073439
https://doi.org/10.1016/j.foar.2019.12.008
https://www.nationalpolyindustries.com.au/2018/06/14/calculating-the-amount-of-rainwater-capturable-from-your-roof/
https://www.nationalpolyindustries.com.au/2018/06/14/calculating-the-amount-of-rainwater-capturable-from-your-roof/
https://doi.org/10.1016/j.watres.2017.02.056
https://doi.org/10.1016/j.watres.2017.02.056
https://doi.org/10.25417/uic.17159402.v1
https://doi.org/10.4233/uuid
https://doi.org/10.4233/uuid
https://doi.org/10.1016/j.ecoleng.2011.09.006
https://doi.org/10.1016/j.ecoleng.2011.09.006
https://www.co2meter.com/blogs/news/41003521-co2-calculator-for-grow-room-or-indoor-greenhouse
https://www.co2meter.com/blogs/news/41003521-co2-calculator-for-grow-room-or-indoor-greenhouse
https://doi.org/10.1007/978-3-030-01641-8_4
http://cycloponics.co/
https://www.dchealthmatters.org/demographicdata?id=131494§ionId=935
https://www.dchealthmatters.org/demographicdata?id=131494§ionId=935
https://sonomamg.ucanr.edu/files/185639.pdf
https://sonomamg.ucanr.edu/files/185639.pdf
https://www.citypopulation.de/en/netherlands/admin/zuid_holland/0503__delft/
https://www.citypopulation.de/en/netherlands/admin/zuid_holland/0503__delft/

Bibliography | pg.90 Bibliography | pg.91

Deng, Y. (2021). Pollution in rainwater harvesting: A challenge for sustainability and resilience of
urban agriculture. Journal of Hazardous Materials Letters, 2, 100037. https://doi.org/10.1016/j.
hazl.2021.100037

Density of Sawdust. (n.d.). Retrieved May 11, 2022, from https://www.aqua-calc.com/page/density-
table/substance/sawdust

Dorr, E., Koegler, M., Gabrielle, B., & Aubry, C. (2021). Life cycle assessment of a circular, urban
mushroom farm. Journal of Cleaner Production, 288, 125668. https://doi.org/10.1016/j.
jclepro.2020.125668

Duarte, J. P. (2005). A discursive grammar for customizing mass housing: The case of Siza’s houses
at Malagueira. Automation in Construction, 14(2), 265–275. https://doi.org/10.1016/j.
autcon.2004.07.013

Edwards, C. A., & Dominguez, J. (2010). Biology and ecology of earthworm species used for
vermicomposting. Vermiculture Technology: Earthworms, Organic Waste and Environmental
Management, 25–37.

Engineering ToolBox, (2004). Carbon Dioxide Emission from People vs. Activity. [online] Available at:
https://www.engineeringtoolbox.com/co2-persons-d_691.html

Engineering Toolbox. (n.d.). Carbon Dioxide Emission from People vs. Activity. Retrieved May 11,
2022, from https://www.engineeringtoolbox.com/co2-persons-d_691.html

European Commission. (2020). 2050 long-term strategy. https://ec.europa.eu/clima/eu-action/climate-
strategies-targets/2050-long-term-strategy_en

Fong, J., & Hewitt, P. (n.d.). Six Easy Steps to Setting Up a Worm Bin—Cornell Composting. Cornell
Composting. Retrieved May 11, 2022, from http://compost.css.cornell.edu/worms/steps.html

Fresco, L. O. (2009). Challenges for food system adaptation today and tomorrow. Environmental
Science & Policy, 12(4), 378–385. https://doi.org/10.1016/j.envsci.2008.11.001

Fresh Tomato Weights (Ultimate Guide With Charts & Calculator). (2021, September 16). Weigh
School. https://weighschool.com/tomato-weights/

 from https://www.smallhold.com/about

Fun facts about compost worms. (n.d.). Compost Community. Retrieved May 11, 2022, from https://
www.compostcommunity.com.au/fun-facts.html

Fun facts about compost worms. (n.d.). Compost Community. Retrieved May 11, 2022, from https://
www.compostcommunity.com.au/fun-facts.html

Furlong, C., Rajapaksha, N. S., Butt, K. R., & Gibson, W. T. (2017). Is composting worm availability the
main barrier to large-scale adoption of worm-based organic waste processing technologies?
Journal of Cleaner Production, 164, 1026–1033. https://doi.org/10.1016/j.jclepro.2017.06.226

Gallego-Alarcón, I., Fonseca, C. R., García-Pulido, D., & Díaz-Delgado, C. (2019). Proposal and
assessment of an aquaculture recirculation system for trout fed with harvested rainwater.
Aquacultural Engineering, 87, 102021. https://doi.org/10.1016/j.aquaeng.2019.102021

Garg, P., Gupta, A., & Satya, S. (2006). Vermicomposting of different types of waste using Eisenia
foetida: A comparative study. Bioresource Technology, 97(3), 391–395. https://doi.org/10.1016/j.
biortech.2005.03.009

Geodan. (n.d.). Klimaateffectatlas. Retrieved May 11, 2022, from https://www.klimaateffectatlas.nl/
en/

Geurts, M., van Bakel, A. M., van Rossum, M., de Boer, E., & Ocke, M. C. (2016). Food consumption
in the Netherlands and its determinants, Background report to ‘What’s on our plate? Safe,
healthy and sustainable diets in the Netherlands. (p. 72). RIVM. https://www.rivm.nl/
bibliotheek/rapporten/2016-0195.pdf

Gillette, B. (n.d.). How to Space Tomato Plants. The Spruce. Retrieved May 11, 2022, from https://
www.thespruce.com/how-to-space-tomato-plants-5219656

Gondhalekar, D., & Ramsauer, T. (2017). Nexus City: Operationalizing the urban Water-Energy-Food
Nexus for climate change adaptation in Munich, Germany. Urban Climate, 19, 28–40. https://
doi.org/10.1016/j.uclim.2016.11.004

Graamans, L. (2021). STACKED: The building design, systems engineering and performance analysis
of plant factories for urban food production. A+BE | Architecture and the Built Environment,
05, 1–266. https://doi.org/10.7480/abe.2021.05.5666

Graamans, L., Baeza, E., van den Dobbelsteen, A., Tsafaras, I., & Stanghellini, C. (2018). Plant
factories versus greenhouses: Comparison of resource use efficiency. Agricultural Systems,
160, 31–43. https://doi.org/10.1016/j.agsy.2017.11.003

GroCycle. (2021). Free Workshop: Starter Guide To Mushroom Farming | GroCycle—YouTube. https://
www.youtube.com/watch?v=icKeO-kyiGk&feature=emb_imp_woyt

Gu, N., & Behbahani, P. A. (2018). Shape Grammars: A Key Generative Design Algorithm. In B.
Sriraman (Ed.), Handbook of the Mathematics of the Arts and Sciences (pp. 1–21). Springer
International Publishing. https://doi.org/10.1007/978-3-319-70658-0_7-1

Hamilton, D. W. (2017, February 1). The Basics of Vermicomposting—Oklahoma State University.
Oklahoma State University. https://extension.okstate.edu/fact-sheets/the-basics-of-
vermicomposting.html

Herr, C. M., & Ford, R. C. (2016). Cellular automata in architectural design: From generic systems
to specific design tools. Automation in Construction, 72, 39–45. https://doi.org/10.1016/j.
autcon.2016.07.005

https://doi.org/10.1016/j.hazl.2021.100037
https://doi.org/10.1016/j.hazl.2021.100037
https://www.aqua-calc.com/page/density-table/substance/sawdust
https://www.aqua-calc.com/page/density-table/substance/sawdust
https://doi.org/10.1016/j.jclepro.2020.125668
https://doi.org/10.1016/j.jclepro.2020.125668
https://doi.org/10.1016/j.autcon.2004.07.013
https://doi.org/10.1016/j.autcon.2004.07.013
https://www.engineeringtoolbox.com/co2-persons-d_691.html
https://www.engineeringtoolbox.com/co2-persons-d_691.html
https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2050-long-term-strategy_en
https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2050-long-term-strategy_en
http://compost.css.cornell.edu/worms/steps.html
https://doi.org/10.1016/j.envsci.2008.11.001
https://weighschool.com/tomato-weights/
https://www.smallhold.com/about
https://www.compostcommunity.com.au/fun-facts.html
https://www.compostcommunity.com.au/fun-facts.html
https://www.compostcommunity.com.au/fun-facts.html
https://www.compostcommunity.com.au/fun-facts.html
https://doi.org/10.1016/j.jclepro.2017.06.226
https://doi.org/10.1016/j.aquaeng.2019.102021
https://doi.org/10.1016/j.biortech.2005.03.009
https://doi.org/10.1016/j.biortech.2005.03.009
https://www.klimaateffectatlas.nl/en/
https://www.klimaateffectatlas.nl/en/
https://www.rivm.nl/bibliotheek/rapporten/2016-0195.pdf
https://www.rivm.nl/bibliotheek/rapporten/2016-0195.pdf
https://www.thespruce.com/how-to-space-tomato-plants-5219656
https://www.thespruce.com/how-to-space-tomato-plants-5219656
https://doi.org/10.1016/j.uclim.2016.11.004
https://doi.org/10.1016/j.uclim.2016.11.004
https://doi.org/10.7480/abe.2021.05.5666
https://doi.org/10.1016/j.agsy.2017.11.003
https://www.youtube.com/watch?v=icKeO-kyiGk&feature=emb_imp_woyt
https://www.youtube.com/watch?v=icKeO-kyiGk&feature=emb_imp_woyt
https://doi.org/10.1007/978-3-319-70658-0_7-1
https://extension.okstate.edu/fact-sheets/the-basics-of-vermicomposting.html
https://extension.okstate.edu/fact-sheets/the-basics-of-vermicomposting.html
https://doi.org/10.1016/j.autcon.2016.07.005
https://doi.org/10.1016/j.autcon.2016.07.005

Bibliography | pg.92 Bibliography | pg.93

Hirneisen, K., Sharma, M., & Kniel, K. (2012). Human Enteric Pathogen Internalization by Root
Uptake into Food Crops. Foodborne Pathogens and Disease, 9, 396–405. https://doi.
org/10.1089/fpd.2011.1044

Ho, C.-O., Nie, T., Su, L., Yang, Z., Schwegler, B., & Calvez, P. (2021). Graph-based algorithmic design
and decision-making framework for district heating and cooling plant positioning and
network planning. Advanced Engineering Informatics, 50, 101420. https://doi.org/10.1016/j.
aei.2021.101420

Hofman, J. A. M. H., & Paalman, M. (2014). Rainwater harvesting, a sustainable solution for urban
climate adaptation? (Wageningen University & Research - Library). KWR Watercycle
Research Institute. https://edepot.wur.nl/345625

Hofman-Caris, R., Bertelkamp, C., de Waal, L., van de Brand, T., van der AA, R., & van der Hoek, P.
(2018). Rainwater harvesting in the Netherlands: Useful or not? Water Solutions, 3, 9.

 https://pure.qub.ac.uk/en/studentTheses/building-integrated-technical-food-systems

Jenkins, A. (2018). Building Integrated Technical Food Systems.

Jenkins, A., & Keeffe, G. (2017). The Integration of Urban Agriculture and the Socio-economic
Landscape of Future Cities. https://www.researchgate.net/publication/325763933_The_
Integration_of_Urban_Agriculture_and_the_Socio-economic_Landscape_of_Future_Cities

Jenkins, A., & Keeffe, G. (2019). Reduction in building energy use as a result of food production
within a double-skinned glazed facade. https://www.researchgate.net/publication/337236203_
Reduction_in_building_energy_use_as_a_result_of_food_production_within_a_double-
skinned_glazed_facade

LeBoeuf, J. (2013). Tomato plant spacing research. Ontario Ministry of Agriculture, Food and Rural
Affairs. http://www.omafra.gov.on.ca/english/crops/hort/news/hortmatt/2013/12hrt13a4.htm

Lehmann, S. (2011). Transforming the City for Sustainability: The Principles of Green Urbanism.
Journal of Green Building, 6(1), 104–113. https://doi.org/10.3992/jgb.6.1.104

Leni, G., Caligiani, A., & Sforza, S. (2021). Chapter 40 - Bioconversion of agri-food waste and by-
products through insects: A new valorization opportunity. In R. Bhat (Ed.), Valorization of
Agri-Food Wastes and By-Products (pp. 809–828). Academic Press. https://doi.org/10.1016/
B978-0-12-824044-1.00013-1

Li, D., Liu, H., Qiao, Y., Wang, Y., Cai, Z., Dong, B., Shi, C., Liu, Y., Li, X., & Liu, M. (2013). Effects of
elevated CO2 on the growth, seed yield, and water use efficiency of soybean (Glycine max
(L.) Merr.) under drought stress. Agricultural Water Management, 129, 105–112. https://doi.
org/10.1016/j.agwat.2013.07.014

Lian, Y., Oyama, A., & Liou, M.-S. (2010). Progress in design optimization using evolutionary
algorithms for aerodynamic problems. Progress in Aerospace Sciences, 46(5), 199–223.
https://doi.org/10.1016/j.paerosci.2009.08.003

Lundy, L., Revitt, M., & Ellis, B. (2018). An impact assessment for urban stormwater use.
Environmental Science and Pollution Research, 25(20), 19259–19270. https://doi.org/10.1007/
s11356-017-0547-4

Macias-Corral, M. A., & Sanchez-Cohen, I. (2019). Rainwater harvesting for multiple uses: A farm-
scale case study. International Journal of Environmental Science and Technology, 16(10),
5955–5964. https://doi.org/10.1007/s13762-018-02200-7

Magdy, H., & Eldaly, H. (2020). Applying Swarm Intelligence in Architectural Design. In S. Kamel,
H. Sabry, G. F. Hassan, M. Refat, A. Elshater, A. S. A. Elrahman, D. K. Hassan, & R. Rashed
(Eds.), Architecture and Urbanism: A Smart Outlook (pp. 77–87). Springer International
Publishing. https://doi.org/10.1007/978-3-030-52584-2_6

Martínez-Carrera, D., Aguilar, A., Martínez, W., Bonilla, M., Morales, P., & Sobal, M. (2000).
MUSHROOM CULTIVATION ON COFFEE PULP Commercial production and marketing of
edible mushrooms cultivated on coffee pulp in Mexico. https://doi.org/10.1007/978-94-017-
1068-8_45

Mcintosh, J. (2021). How to Grow Butterhead (Buttercrunch) Lettuce. The Spruce. https://www.
thespruce.com/how-to-grow-and-care-for-buttercrunch-lettuce-4767592

Ministerie van Economische Zaken, L. en I. (2009). Policy Agenda for Sustainable Food Systems—
Parliamentary document—Government.nl Ministerie van Algemene Zaken. https://www.
government.nl/documents/parliamentary-documents/2009/11/17/policy-agenda-for-
sustainable-food-systems

Ministry of Economic Affairs. (2017). Energy Agenda: Towards a low-carbon energy supply - Report
- Government.nl [Rapport]. Ministerie van Algemene Zaken. https://www.government.nl/
documents/reports/2017/03/01/energy-agenda-towards-a-low-carbon-energy-supply

Mirón-Mérida, V. A., Barragán-Huerta, B. E., & Gutiérrez-Macías, P. (2021). Chapter 9 - Coffee waste:
A source of valuable technologies for sustainable development. In R. Bhat (Ed.), Valorization
of Agri-Food Wastes and By-Products (pp. 173–198). Academic Press. https://doi.org/10.1016/
B978-0-12-824044-1.00009-X

Muneer, A. M., & Narula, S. A. (2021). Chapter 30—Sustainability of agri-food supply chains through
innovative waste management models. In R. Bhat (Ed.), Valorization of Agri-Food Wastes and
By-Products (pp. 591–605). Academic Press. https://doi.org/10.1016/B978-0-12-824044-1.00039-8

Nanonets. (2018). Use Machine Learning APIs with Drones. https://nanonets.com/drone/?utm_
source=Medium.com&utm_campaign=Object%20Detection%20on%20Aerial%20Imagery%20
using%20Drones%20with%20Deep%C2%A0Learning

National Institute for Public Health and the Environment (RIVM). (n.d.). Food consumption in the
Netherlands and its determinants, Background report to ‘What’s on our plate? Safe, healthy
and sustainable diets in the Netherlands. 72.

https://doi.org/10.1089/fpd.2011.1044
https://doi.org/10.1089/fpd.2011.1044
https://doi.org/10.1016/j.aei.2021.101420
https://doi.org/10.1016/j.aei.2021.101420
https://edepot.wur.nl/345625
https://pure.qub.ac.uk/en/studentTheses/building-integrated-technical-food-systems
https://www.researchgate.net/publication/325763933_The_Integration_of_Urban_Agriculture_and_the_Socio-economic_Landscape_of_Future_Cities
https://www.researchgate.net/publication/325763933_The_Integration_of_Urban_Agriculture_and_the_Socio-economic_Landscape_of_Future_Cities
https://www.researchgate.net/publication/337236203_Reduction_in_building_energy_use_as_a_result_of_food_production_within_a_double-skinned_glazed_facade
https://www.researchgate.net/publication/337236203_Reduction_in_building_energy_use_as_a_result_of_food_production_within_a_double-skinned_glazed_facade
https://www.researchgate.net/publication/337236203_Reduction_in_building_energy_use_as_a_result_of_food_production_within_a_double-skinned_glazed_facade
http://www.omafra.gov.on.ca/english/crops/hort/news/hortmatt/2013/12hrt13a4.htm
https://doi.org/10.3992/jgb.6.1.104
https://doi.org/10.1016/B978-0-12-824044-1.00013-1
https://doi.org/10.1016/B978-0-12-824044-1.00013-1
https://doi.org/10.1016/j.agwat.2013.07.014
https://doi.org/10.1016/j.agwat.2013.07.014
https://doi.org/10.1016/j.paerosci.2009.08.003
https://doi.org/10.1007/s11356-017-0547-4
https://doi.org/10.1007/s11356-017-0547-4
https://doi.org/10.1007/s13762-018-02200-7
https://doi.org/10.1007/978-3-030-52584-2_6
https://doi.org/10.1007/978-94-017-1068-8_45
https://doi.org/10.1007/978-94-017-1068-8_45
https://www.thespruce.com/how-to-grow-and-care-for-buttercrunch-lettuce-4767592
https://www.thespruce.com/how-to-grow-and-care-for-buttercrunch-lettuce-4767592
http://Government.nl
https://www.government.nl/documents/parliamentary-documents/2009/11/17/policy-agenda-for-sustainable-food-systems
https://www.government.nl/documents/parliamentary-documents/2009/11/17/policy-agenda-for-sustainable-food-systems
https://www.government.nl/documents/parliamentary-documents/2009/11/17/policy-agenda-for-sustainable-food-systems
http://Government.nl
https://www.government.nl/documents/reports/2017/03/01/energy-agenda-towards-a-low-carbon-energy-supply
https://www.government.nl/documents/reports/2017/03/01/energy-agenda-towards-a-low-carbon-energy-supply
https://doi.org/10.1016/B978-0-12-824044-1.00009-X
https://doi.org/10.1016/B978-0-12-824044-1.00009-X
https://doi.org/10.1016/B978-0-12-824044-1.00039-8
https://nanonets.com/drone/?utm_source=Medium.com&utm_campaign=Object%20Detection%20on%20Aerial%20Imagery%20using%20Drones%20with%20Deep%C2%A0Learning
https://nanonets.com/drone/?utm_source=Medium.com&utm_campaign=Object%20Detection%20on%20Aerial%20Imagery%20using%20Drones%20with%20Deep%C2%A0Learning
https://nanonets.com/drone/?utm_source=Medium.com&utm_campaign=Object%20Detection%20on%20Aerial%20Imagery%20using%20Drones%20with%20Deep%C2%A0Learning

Bibliography | pg.94 Bibliography | pg.95

Nayak, A., & Bhushan, B. (2021). Chapter 10 - Valorization of coffee wastes for effective recovery of
value-added bio-based products: An aim to enhance the sustainability and productivity of
the coffee industry. In R. Bhat (Ed.), Valorization of Agri-Food Wastes and By-Products (pp.
199–218). Academic Press. https://doi.org/10.1016/B978-0-12-824044-1.00040-4

Nelson, M., & Wolverton, B. C. (2011). Plants+soil/wetland microbes: Food crop systems that also
clean air and water. Advances in Space Research, 47(4), 582–590. https://doi.org/10.1016/j.
asr.2010.10.007

Nourian, P. (2017). Configraphics Graph Theoretical Methods for DesignandAnalysis of
Spatial Configurations. In BK BOOKS. https://books.bk.tudelft.nl/press/catalog/book/
isbn.9789461867209

NSW Government. (2021). Ventilation in greenhouses. Department of Primary Industries. https://
www.dpi.nsw.gov.au/agriculture/horticulture/greenhouse/structures-and-technology/
ventilation

Ortells, S. (2015). Health Impact Assessment of New Urban Water Concepts. https://repository.tudelft.
nl/islandora/object/uuid%3A0e41d07b-9f44-4220-aaac-e22c73c5074a

Persily, A., & Polidoro, B. J. (2020, January 28). Residential Application of an Indoor Carbon Dioxide
Metric. AIVC. https://www.aivc.org/resource/residential-application-indoor-carbon-dioxide-
metric

Pharino, C. (2021). Chapter 31 - Food waste generation and management: Household sector. In R.
Bhat (Ed.), Valorization of Agri-Food Wastes and By-Products (pp. 607–618). Academic Press.
https://doi.org/10.1016/B978-0-12-824044-1.00045-3

Prill, R. (2000). Why Measure Carbon Dioxide Inside Buildings? Washington State University
Extension Energy Program. https://www.energy.wsu.edu/documents/co2inbuildings.pdf

Rassmann, L. (2015, September 16). The Future of Farming Plants Roots in Newark. NJTV News
Archive. https://www.njspotlightnews.org/news/uncategorized/the-future-of-farming-plants-
roots-in-newark/

Roggema, R. (2009). Adaptation to Climate Change: A Spatial Challenge. https://doi.org/10.1007/978-1-
4020-9359-3

Roggema, R. E., Keeffe, G., & Hogeschool Van Hall Larenstein (Eds.). (2014). Why we need small cows
: ways to design for urban agriculture. VHL University of Applied Sciences.

Sanyé-Mengual, E. (2015). Sustainability assessment of urban rooftop farming using an
interdisciplinary approach. https://doi.org/10.13140/RG.2.1.1346.6089

Sanyé-Mengual, E., Llorach-Massana, P., Sanjuan-Delmás, D., Oliver-Solà, J., Josa, A., Montero, J., &
Rieradevall, J. (2014). The ICTA-ICP Rooftop Greenhouse Lab (RTG-Lab): Closing metabolic
f lows (energy, water, CO 2) through integrated Rooftop Greenhouses (pp. 693–701). https://
doi.org/10.13140/RG.2.1.5016.7206

Sayner, A. (2020). A Complete Guide to Mushroom Substrates. GroCycle. https://grocycle.com/
mushroom-substrate/

Sayner, A. (2021, May 31). How to Grow Mushrooms in a Bag. GroCycle. https://grocycle.com/grow-
mushrooms-in-a-bag/

Schets, F. M., Italiaander, R., van den Berg, H. H. J. L., & de Roda Husman, A. M. (2009). Rainwater
harvesting: Quality assessment and utilization in The Netherlands. Journal of Water and
Health, 8(2), 224–235. https://doi.org/10.2166/wh.2009.037

Sharma, K., & Garg, V. K. (2019). Chapter 10 - Vermicomposting of Waste: A Zero-Waste Approach
for Waste Management. In M. J. Taherzadeh, K. Bolton, J. Wong, & A. Pandey (Eds.),
Sustainable Resource Recovery and Zero Waste Approaches (pp. 133–164). Elsevier. https://
doi.org/10.1016/B978-0-444-64200-4.00010-4

Shields, T. (2017, February 16). Mushroom Grow Bags: The Ultimate Guide. FreshCap Mushrooms.
https://learn.freshcap.com/growing/mushroom-grow-bags-the-ultimate-guide/

Smallhold. (n.d.). Smallhold. Retrieved January 18, 2022,

Statistiek, C. B. voor de. (n.d.). Bevolking; geslacht, leeftijd, nationaliteit en regio, 1 januari
[Webpagina]. Centraal Bureau voor de Statistiek. Retrieved May 11, 2022, from https://www.
cbs.nl/nl-nl/cijfers/detail/84727NED?q=delft%20population

StatLine—Municipal waste; quantities. (n.d.). Retrieved May 11, 2022, from https://opendata.cbs.nl/
statline/#/CBS/en/dataset/83558ENG/table?ts=1648633605354

Stouffs, R., & Krishnamurti, R. (2001). Sortal grammars: A framework for exploring grammar
formalisms. In Quality, Reliability, and Maintenance (ed. G.J. McNulty), pp. 367-370,
Professional Engineering Publishing, Bury St. Edmunds, UK, 2000.

Sustainability at TU Delft. (n.d.). TU Delft. Retrieved May 11, 2022, from https://www.tudelft.nl/
sustainability

Teleszewski, T., & Gładyszewska-Fiedoruk, K. (2019). The concentration of carbon dioxide in
conference rooms: A simplified model and experimental verification. International Journal
of Environmental Science and Technology, 16(12), 8031–8040. https://doi.org/10.1007/s13762-
019-02412-5

ten Caat, N., Graamans, L., Tenpierik, M., & van den Dobbelsteen, A. (2021). Towards Fossil Free
Cities—A Supermarket, Greenhouse & Dwelling Integrated Energy System as an Alternative
to District Heating: Amsterdam Case Study. Energies, 14(2), 347. https://doi.org/10.3390/
en14020347

ten Caat, N., Tillie, N., & Tenpierik, M. (2021). Pig Farming vs. Solar Farming: Exploring Novel
Opportunities for the Energy Transition. In R. Roggema (Ed.), TransFEWmation: Towards
Design-led Food-Energy-Water Systems for Future Urbanization (pp. 253–280). Springer
International Publishing. https://doi.org/10.1007/978-3-030-61977-0_12

https://doi.org/10.1016/B978-0-12-824044-1.00040-4
https://doi.org/10.1016/j.asr.2010.10.007
https://doi.org/10.1016/j.asr.2010.10.007
https://books.bk.tudelft.nl/press/catalog/book/isbn.9789461867209
https://books.bk.tudelft.nl/press/catalog/book/isbn.9789461867209
https://www.dpi.nsw.gov.au/agriculture/horticulture/greenhouse/structures-and-technology/ventilation
https://www.dpi.nsw.gov.au/agriculture/horticulture/greenhouse/structures-and-technology/ventilation
https://www.dpi.nsw.gov.au/agriculture/horticulture/greenhouse/structures-and-technology/ventilation
https://repository.tudelft.nl/islandora/object/uuid%3A0e41d07b-9f44-4220-aaac-e22c73c5074a
https://repository.tudelft.nl/islandora/object/uuid%3A0e41d07b-9f44-4220-aaac-e22c73c5074a
https://www.aivc.org/resource/residential-application-indoor-carbon-dioxide-metric
https://www.aivc.org/resource/residential-application-indoor-carbon-dioxide-metric
https://doi.org/10.1016/B978-0-12-824044-1.00045-3
https://www.energy.wsu.edu/documents/co2inbuildings.pdf
https://www.njspotlightnews.org/news/uncategorized/the-future-of-farming-plants-roots-in-newark/
https://www.njspotlightnews.org/news/uncategorized/the-future-of-farming-plants-roots-in-newark/
https://doi.org/10.1007/978-1-4020-9359-3
https://doi.org/10.1007/978-1-4020-9359-3
https://doi.org/10.13140/RG.2.1.1346.6089
https://doi.org/10.13140/RG.2.1.5016.7206
https://doi.org/10.13140/RG.2.1.5016.7206
https://grocycle.com/mushroom-substrate/
https://grocycle.com/mushroom-substrate/
https://grocycle.com/grow-mushrooms-in-a-bag/
https://grocycle.com/grow-mushrooms-in-a-bag/
https://doi.org/10.2166/wh.2009.037
https://doi.org/10.1016/B978-0-444-64200-4.00010-4
https://doi.org/10.1016/B978-0-444-64200-4.00010-4
https://learn.freshcap.com/growing/mushroom-grow-bags-the-ultimate-guide/
https://www.cbs.nl/nl-nl/cijfers/detail/84727NED?q=delft%20population
https://www.cbs.nl/nl-nl/cijfers/detail/84727NED?q=delft%20population
https://opendata.cbs.nl/statline/#/CBS/en/dataset/83558ENG/table?ts=1648633605354
https://opendata.cbs.nl/statline/#/CBS/en/dataset/83558ENG/table?ts=1648633605354
https://www.tudelft.nl/sustainability
https://www.tudelft.nl/sustainability
https://doi.org/10.1007/s13762-019-02412-5
https://doi.org/10.1007/s13762-019-02412-5
https://doi.org/10.3390/en14020347
https://doi.org/10.3390/en14020347
https://doi.org/10.1007/978-3-030-61977-0_12

Bibliography | pg.96 Bibliography | pg.97

The Effects of Too Much CO2 In a Grow Room. (2021, July 16). Atlas Scientific. https://atlas-scientific.
com/blog/effects-of-too-much-co2-in-grow-room/

Tocchetto, D., Rubenstein, M., Nelson, M., & Al-Asadi, J. (2022). Chapter 11 - Circular economy in
the Mesopotamian Marshes: The Eden in Iraq Wastewater Garden Project. In A. Stefanakis
& I. Nikolaou (Eds.), Circular Economy and Sustainability (pp. 181–198). Elsevier. https://doi.
org/10.1016/B978-0-12-821664-4.00006-6

Topology Optimization. (n.d.). TU Delft. Retrieved January 22, 2022, from https://www.tudelft.
nl/3me/over/afdelingen/precision-and-microsystems-engineering-pme/research/structural-
optimization-and-mechanics-som/som-research/topology-optimization

Tsui, T., Peck, D., Geldermans, B., & van Timmeren, A. (2021). The Role of Urban Manufacturing for a
Circular Economy in Cities. Sustainability, 13(1), 23. https://doi.org/10.3390/su13010023

TU Delft. (n.d.-a). Education Space Viewer. Retrieved May 11, 2022, from https://esviewer.tudelft.nl/

TU Delft. (n.d.-b). Statistieken TU Delft 2015. Retrieved May 11, 2022, from https://issuu.com/tudelft-
mediasolutions/docs/statistieken-tudelft-2015

United Nations Environment Programme (2021). Global Chemicals and Waste Indicator Review
Document. Nairobi. https://wedocs.unep.org/bitstream/handle/20.500.11822/36753/GCWIR.
pdf?sequence=3&isAllowed=y

United Nations Environment Programme (2021, May 12). Indicator 12.3.1(b). UNEP - UN Environment
Programme. http://www.unep.org/explore-topics/sustainable-development-goals/why-do-
sustainable-development-goals-matter/goal-12-3

United States Environmental Protection Agency. (2002). Wastewater Technology Fact Sheet: The
Living Machine. 7. https://www3.epa.gov/npdes/pubs/living_machine.pdf

Urban Green Blue Grids. (n.d.). Hoogeland, Naaldwijk, The Netherlands | Urban green-blue grids.
Retrieved January 18, 2022, from https://www.urbangreenbluegrids.com/projects/hoogeland-
naaldwijk-the-netherlands/

Van den Dobbelsteen, A., Martin, C. L., Keeffe, G., Pulselli, R. M., & Vandevyvere, H. (2018). From
Problems to Potentials—The Urban Energy Transition of Gruž, Dubrovnik. Energies, 11(4),
922. https://doi.org/10.3390/en11040922

Vertical Grow Racks For Indoor Farming. (n.d.). Pipp Horticulture. Retrieved May 11, 2022, from
https://pipphorticulture.com/

Viscon Group. (2021, February 24). Cultivation of lettuce in end-packaging. Viscon Group. https://
viscongroup.eu/news/cultivation-of-lettuce-in-end-packaging/

Wang, X., Song, Y., & Tang, P. (2020). Generative urban design using shape grammar and block
morphological analysis. Frontiers of Architectural Research, 9(4), 914–924. https://doi.
org/10.1016/j.foar.2020.09.001

Wilson, R. J. (1996). Introduction to graph theory . Prentice Hall. https://www.maths.ed.ac.
uk/~v1ranick/papers/wilsongraph.pdf

Woven Planet Holdings. (2021). Automated Mapping Platform. Woven Planet. https://woven-planet.
global/

Wu, Y., Zhang, N., Wang, J., & Sun, Z. (2012). An integrated crop-vermiculture system for treating
organic waste on fields. European Journal of Soil Biology, 51, 8–14. https://doi.org/10.1016/j.
ejsobi.2012.03.005

Xin, M., Shuang, L., Yue, L., & Qinzhu, G. (2015). Effectiveness of gaseous CO2 fertilizer application
in China’s greenhouses between 1982 and 2010. Journal of CO2 Utilization, 11, 63–66. https://
doi.org/10.1016/j.jcou.2015.01.005

Xu, L., Yang, S., Zhang, Y., Jin, Z., Huang, X., Bei, K., Zhao, M., Kong, H., & Zheng, X. (2020). A
hydroponic green roof system for rainwater collection and greywater treatment. Journal of
Cleaner Production, 261, 121132. https://doi.org/10.1016/j.jclepro.2020.121132

https://atlas-scientific.com/blog/effects-of-too-much-co2-in-grow-room/
https://atlas-scientific.com/blog/effects-of-too-much-co2-in-grow-room/
https://doi.org/10.1016/B978-0-12-821664-4.00006-6
https://doi.org/10.1016/B978-0-12-821664-4.00006-6
https://www.tudelft.nl/3me/over/afdelingen/precision-and-microsystems-engineering-pme/research/structural-optimization-and-mechanics-som/som-research/topology-optimization
https://www.tudelft.nl/3me/over/afdelingen/precision-and-microsystems-engineering-pme/research/structural-optimization-and-mechanics-som/som-research/topology-optimization
https://www.tudelft.nl/3me/over/afdelingen/precision-and-microsystems-engineering-pme/research/structural-optimization-and-mechanics-som/som-research/topology-optimization
https://doi.org/10.3390/su13010023
https://esviewer.tudelft.nl/
https://issuu.com/tudelft-mediasolutions/docs/statistieken-tudelft-2015
https://issuu.com/tudelft-mediasolutions/docs/statistieken-tudelft-2015
https://wedocs.unep.org/bitstream/handle/20.500.11822/36753/GCWIR.pdf?sequence=3&isAllowed=y
https://wedocs.unep.org/bitstream/handle/20.500.11822/36753/GCWIR.pdf?sequence=3&isAllowed=y
http://www.unep.org/explore-topics/sustainable-development-goals/why-do-sustainable-development-goals-matter/goal-12-3
http://www.unep.org/explore-topics/sustainable-development-goals/why-do-sustainable-development-goals-matter/goal-12-3
https://www3.epa.gov/npdes/pubs/living_machine.pdf
https://www.urbangreenbluegrids.com/projects/hoogeland-naaldwijk-the-netherlands/
https://www.urbangreenbluegrids.com/projects/hoogeland-naaldwijk-the-netherlands/
https://doi.org/10.3390/en11040922
https://pipphorticulture.com/
https://viscongroup.eu/news/cultivation-of-lettuce-in-end-packaging/
https://viscongroup.eu/news/cultivation-of-lettuce-in-end-packaging/
https://doi.org/10.1016/j.foar.2020.09.001
https://doi.org/10.1016/j.foar.2020.09.001
https://www.maths.ed.ac.uk/~v1ranick/papers/wilsongraph.pdf
https://www.maths.ed.ac.uk/~v1ranick/papers/wilsongraph.pdf
https://woven-planet.global/
https://woven-planet.global/
https://doi.org/10.1016/j.ejsobi.2012.03.005
https://doi.org/10.1016/j.ejsobi.2012.03.005
https://doi.org/10.1016/j.jcou.2015.01.005
https://doi.org/10.1016/j.jcou.2015.01.005
https://doi.org/10.1016/j.jclepro.2020.121132

Appendix A Urban Farming Systems

Appendix B Computational Approaches

Appendix C Methodology & User Interface

Appendix D Waste Quantities & Yields

Appendix E TU Delft Analysis

Appendix F TU Delft Decisions

Appendix G Ward 7 Analysis & Decisions

Appendix H Technical Detail

10
APPENDIX APPENDIX A

URBAN FARMING SYSSTEMS

Appendix A | pg.100 Appendix A | pg.101

Appendix A | Urban Farming Systems

A.1 Table of Systems (to be updated)

Growing
Technique

Design
Characteristic System Type Bi-ProductMain ProductMediumSupplementWasteSpace

Roo�op

Facade

Intermediate
Floor

Ground Floor

Basement

Food Waste

Co�ee Waste

Fertilser

Nutrient
Solution

Other Waste

Food Waste

Co�ee Waste

Other Waste

Clay Balls

CO2

Calcium

Lime Bath*

Soil

Water

Fish Tank
Water

Air

Aeroponics

EBB & Flow

Gravity
Trickle

Water
Culture

Raised Beds

Compost

Spawning

NFT

Aquaculture

Horizontal

Fish Tank

Tank

Food
Production

Supplementary

Food
Producing

Supplementary

Vertical

Modular
Frame

Stacked
System

Worms

Small Crops

Large Crops

Fish

Mushrooms

Fertiliser

Heat

Food Waste

Fish Tank
Water

Spent
Mushroom
Substrate

Rainwater

* Lime Bath is used for pasteurization of substrate.

Heat

Hydroponic - Media BedHydroponic - Water CultureHydroponic - NFT

AeroponicsRaised BedAquaculture

Plant FactoryMushroomVermiculture

Appendix A | pg.102 Appendix A | pg.103

Notes:
- Carbon/Nitrogen ratio of 30:1 is favourable and mixing bulking substrate with waste is a viable
approach (Sharma % Grag, 2019).
- Moisture should be between 50-90% while the temperatures vary depending on the earthworms
species (Dominguez & Edwards, 2010).
- Temperature should range between 15-25 C for growth, below 10 C feeding slows down and under 4 C
cocooning and growth stops (Dominguez & Edwards, 2010).

Growing Technique

Compost

Design Characteristic

Tank

Input

System Type

Supplementary

Vermiculture

Bi-Product

Fertiliser

Main Product

Worms

Outputs

Medium

Food Waste

Other Waste

Supplement

Waste

Food Waste

Other Waste

Rainwater

Space

Basement

Ground Floor

Inputs

A.2 Vermiculture

- Prior to vermicomposting, waste should be mixed with bulking substrate to balance carbon content
and to overcome negative effects of toxic substances in waste (Sharma & Garg, 2019).
- Bulking substrate can be sourced from vermicomposting, composting, dry leaves or agricultural
waste (Sharma & Garg, 2019).
- After mixing the bulking substrate and waste, the mixture should be precomposted to remove
toxic gasses to earthworms, and to eliminate anaerobic conditions as explained by the same authors
(Sharma & Garg, 2019).

Appendix A | pg.104 Appendix A | pg.105

Growing Technique

Spawning

Design Characteristic

Horizontal

Vertical

System Type

Food Production

Mushroom

Bi-Product

Spent Mushrooom
Substrate

Main Product

Mushrooms

Outputs

Medium

Other Waste

Co�ee Waste

Supplement

Lime Bath *

Waste

Co�ee Waste

Other Waste

Rainwater

Space

Basement

Ground Floor

Intermediate Floor

Inputs

Notes:
- Preparing the substrate includes mixing the substrate and sterilising it (Dorr et al., 2021; GroCycle,
2021).
- The mixture is placed into plastic bags (Dorr et al.) or in reusable buckets (GroCycle, 2021) for
incubation.
- Incubation takes place after the substrate mixture and mushroom spawned are mixed in a cultivation
container (GroCycle, 2021).
- Incubation should be done in a dark environment since light triggers mushrooms to fruit before it is
required as explained in the same source.
- The spawn-substrate mixture should incubate for 2 weeks at 70% relative humidity while room
temperature is 17C(Dorr et al., 2021).

A.3 Mushroom Production

- Afterwards it should spend 7 weeks at 93% relative humidity and 16.5C room for fruiting (Dorr et al.,
2021).
- Temperature requirements for fruiting depend on the mushroom variety and ranges between 10-32
C (GroCycle, 2021).
- One way of fruiting mushrooms is cutting holes in the bag or bucket and spraying them daily for high
humidity levels as described in the same source (GroCycle, 2021).
- Harvesting takes place in the previously mentioned 7 weeks where mushrooms are harvested several
times before the substrate loses its nutrient content (Dorr et al., 2021).

Appendix A | pg.106 Appendix A | pg.107

Growing Technique

Hydroponics

Design Characteristic

Stacked System

System Type

Food Production

Plant Factory

Bi-Product

Heat

Food Waste

Main Product

Small Crops

Outputs

Medium

Water

Fish Tank Water

Supplement

Nutrient Solution

Waste

CO2

H

Space

Ground Floor

Basement

Inputs

Rainwater

Notes:
- The nutrient solution should be changed periodically, close attention should be given to keep the
system stable and if some pathogens enter the systems all the crops should be discarded (Jenkins,
2018).
- Crops smaller than 300 mm are preferable in such settings to maximise vertical production (Jenkins,
2018).

A.4 Plant Factory (to be updated)

Appendix A | pg.108 Appendix A | pg.109

Growing Technique

Aquaculture

Design Characteristic

Fish Tank

System Type

Food Producing
Supplementary

Aquaculture

Bi-Product

Fish Tank Water

Nutrient Solution

Main Product

Fish

Outputs

Medium

Water

Supplement

Fish Food

Calcium

Waste

Egg Shells (pH)

Space

Ground Floor

Basement

Inputs

Heat

Notes:
- Ammonia is essentially toxic to fish if it accumulates within the tank however it is first converted to
nitrite then to nitrate by nitrobacter and nitrosomonas bacterias within the filtration system (Jenkins,
2018).
- The filtration medium should be a highly porous material such as expanded clay pellets or balls
(Jenkins, 2018).

A.5 Aquaculture

Appendix A | pg.110 Appendix A | pg.111

Growing Technique

Raised Bed

Design Characteristic

Horizontal

System Type

Food Production

Raised Bed

Bi-Product

Food Waste

Main Product

Small Crops

Large Crops

Outputs

Medium

Soil

Supplement

Fertiliser

Waste

CO2

Rainwater

Space

Ground Floor

Inputs

Notes:
- They can be designed in many shapes and sizes
- Raised beds seperate the growing medium from contaminated soil by using impervious membranes
(Jenkins, 2018)
- They offer elevated food production (Jenkins, 2018).

A.6 Raised Beds (to be updated)

Appendix A | pg.112 Appendix A | pg.113

Growing Technique

Aeroponics

Design Characteristic

Horizontal

Vertical

Modular Frames

System Type

Food Production

Aeroponics

Bi-Product

Food Waste

Main Product

Small Crops

Outputs

Medium

Air

Supplement

Nutrient Solution

Waste

CO2

Heat

Space

Ground Floor

Roo�op

Intermediate Floor

Inputs

Rainwater

Notes:
- High pressure nozzles under each plant spray nutrient rich mist to the roots directly (Jenkins, 2018).
- Crops are placed in a watertight box and their crowns are supported by the outer shell of the box
(Jenkins, 2018).
- This system is not commonly used for conventional food production but it is used in laboratories
(Jenkins, 2018).

A.7 Aeroponics (to be updated)

Appendix A | pg.114 Appendix A | pg.115

Growing Technique

Nutrient Film Technique

Design Characteristic

Vertical

Horizontal

Modular Frame

System Type

Food Production

Hydroponic - NFT

Bi-Product

Food Waste

Main Product

Small Crops

Outputs

Medium

Fish Tank Water

Water

Supplement

Nutrient Solution

Waste

CO2

Heat

Space

Roo�op

Facade

Intermediate Floor

Ground Floor

Basement

Inputs

Rainwater

Notes:
- Total length of the growing channels should not exceed 15 meters in order to supply the last crop
within the system with sufficient nutrient concentration (Jenkins, 2018)
- Each growing channel should be shorter than 4.6 m (Jenkins, 2018).
- To ensure adequate water f low the channels should have a minimum inclination of 2% as stated by
the same author (Jenkins, 2018).

A.8 Hydroponics - NFT (to be updated)

Appendix A | pg.116 Appendix A | pg.117

Growing Technique

Water Culture

Design Characteristic

Horizontal

System Type

Food Production

Hydroponic - Water Culture

Bi-Product

Food Waste

Main Product

Small Crops

Outputs

Medium

Fish Tank Water

Water

Supplement

Nutrient Solution

Waste

CO2

Heat

Space

Basement

Ground Floor

Inputs

Rainwater

Notes:
- Roots of the crops are suspended in nutrient rich water about 300mm, while the plants are supported
with a f loating raft above water (Jenkins, 2018).
- Nutrient rich water is pumped from one end of the raceway, it moves along the raceway to deliver
necessary nutrients for crop growth, and exits the system at the end of the raceway to the reservoir
(Jenkins, 2018).
- The water can be heated or kept cool to improve productivity of food production depending on the
climate (Jenkins, 2018).

A.9 Hydroponics - Water Culture (to be updated)

Appendix A | pg.118 Appendix A | pg.119

Growing Technique

EBB & Flow

Gravity Trickle

Design Characteristic

Horizontal

Vertical

Modular Frame

System Type

Food Production

Hydroponic - Media Bed

Bi-Product

Food Waste

Main Product

Small Crops

Large Crops

Outputs

Medium

Fish Tank Water

Water

Clay Balls

Supplement

Nutrient Solution

Waste

CO2

Heat

Rainwater

Space

Basement

Intermediate Floor

Facade

Ground Floor

Inputs

Notes:
- These systems are scalable therefore the bed can be any size but minimum 300mm deep (Jenkins,
2018).
- While selecting the growing media good water retention, drainage, sufficient root oxygenation should
be considered (Jenkins, 2018).
- In addition the media should not decompose or alter the chemical composition of nutrient solution
according to the same source(Jenkins, 2018).

A.10 Hydroponics - Media Beds (to be updated)

Appendix A | pg.120 Appendix A | pg.121

A.11 Potential Interrelation of Systems (to be updated)

Medium

Water

Growing Technique

Aquaculture

Design Characteristic

Fish Tank

System Type

Food Production

Aquaculture

Bi-Product

Fish Tank Water

Main Product

Fish

Social Impact

Supplement

Fish Food

Calcium

Waste

Egg Shells (pH)

Space

Ground Floor

Basement

Job Opportunity

Lower Food Price

Food Availability

Growing Technique

Compost

Design Characteristic

Tank

Input

System Type

Supplementary

Vermiculture

Bi-Product

Fertiliser

Main Product

Worms

Medium

Food Waste

Other Waste

Waste

Food Waste

Other Waste

Rainwater

Space

Basement

Ground Floor

Growing Technique

Nutrient Film Technique

Design Characteristic

Vertical

Horizontal

Modular Frame

System Type

Food Production

Hydroponic - NFT

Bi-Product

Food Waste

Main Product

Small Crops

Social Impact

Medium

Fish Tank Water

Water

Supplement

Nutrient Solution

Waste

CO2

Heat

Heat

Space

Roo�op

Facade

Intermediate Floor

Ground Floor

Basement

Job Opportunity

Lower Food Price

Food Availability

Appendix A | pg.122 Appendix A | pg.123

System Name Sytem Number Min. Structural
Capacity Solar Exposure Waste Inputs Supplement System Type Outputs

Vermiculture

UF1 High (3) Low (1) Food Waste
(W1) None Supplementary Fish Food (S5)

Sawdust
(W2) Fertiliser (S4)

Paper
(W3)

Rainwater
(W6)

Aquaculture

UF2 High (3) Medium (2) Residual Heat
(W7) Fish Food (S5)

Food-
Producing

Supplementary
Fish

Nutrient
Dense

Water (S2)

Mushroom

UF3 Medium (2) Low (1) Sawdust
(W2) None Food

Production
Oyster

Mushrooms

Paper
(W3) Fertiliser (S4)

Coffe Waste
(W4)

Rainwater
(W6)

NFT

UF4 Low (1) High (3) CO2
(W5)

Nutrient
Dense

Water (S2)

Food
Production Leafy Greens

Rainwater
(W6)

Agricultural
Waste

Residual Heat
(W7)

Media Bed

UF5 Low (1) High (3) CO2
(W5)

Nutrient
Dense

Water (S2)

Food
Production Soft Fruits

Rainwater
(W6) Leafy Greens

Residual Heat
(W7)

Agricultural
Waste

A.12 Table of System Characteristics

Legend
Waste Types Waste Number

Organic Waste : Food W1

Other Waste : Saw Dust W2

Other Waste : Paper W3

Organic Waste : Coffee W4

CO2 W5

Rainwater W6

Excess Heat Source W7

Supplement Type Supplement Number

Lime Bath S1

Nutrient Solution S2

Egg Shells S3

Fertiliser S4

Fish Food S5

Calcium S6

Output Types Output Number

Small Crops O1

Large Crops O2

Mushroom O3

Fish Food (Worms) S5

Fish O4

Heat W7

Food Waste W1

Fertilser

(SMS/Vermicompost)

S4

Nutrient Solution (Fish Tank

Water)

S2

System Name Sytem
Number

Min.
Structural
Capacity

Solar
Exposure Waste Inputs Supplement System Type Outputs

Raised Bed

UF6 High (3) High (3) Rainwater
(W6) Fertiliser (S4) Food

Production Soft Fruits

Leafy Greens

Agricultural
Waste

Water Culture

UF7 High (3) High (3) CO2
(W5)

Nutrient
Dense

Water (S2)

Food
Production Leafy Greens

Rainwater
(W6)

Agricultural
Waste

Residual Heat
(W7)

Plant Factory

UF8 High (3) Low (1) CO2
(W5)

Nutrient
Dense

Water (S2)

Food
Production Leafy Greens

Rainwater
(W6)

Agricultural
Waste

Residual Heat

Aeroponics

UF9 Low (1) High (3) CO2
(W5)

Nutrient
Dense

Water (S2)

Food
Production Leafy Greens

Rainwater
(W6)

Agricultural
Waste

Residual Heat
(W7)

Appendix A | pg.124 Appendix A | pg.125

A.13 System Characteristics

Waste Input

W2
W3
W6
S4

System Output

S4
S5

UF1 - Vermiculture

Waste Input

W7
S3
S5
S6

System Output

O4
S2

UF2 - Aquaculture

Waste Input

W2
W3
W4
W6
S1

System Output

O3
S4

UF3 - Mushroom

Waste Input

W5
W6
W7
S2

System Output

O1
W1

UF4 - NFT

Waste Input

W6
S4

System Output

O1
O2
W1

Uf6 - Raised Bed

Waste Input

W5
W6
W7
S2

System Output

O1
W1

UF7 - Water Culture

Waste Input

W5
W6
S1

System Output

O1
W1
W7

UF8 - Plant Factory

Waste Input

W5
W6
W7
S2

System Output

O1
W1

UF9 - Aeroponics

Waste Input

W5
W6
W7
S2

System Output

O1
O2
W1

UF5 - Media Bed

Appendix A | pg.126 Appendix A | pg.127

Project Aims /
Prioritisation Holistic Food Production Maximum Productivity Research

Supplementary Vermiculture Vermiculture Vermiculture

Food Producing
Supplementary Aquaculture Aquaculture Aquaculture

1 Mushroom Plant Factory Plant Factory

2 NFT NFT Aeroponics

3 Media Bed Media Bed Mushroom

4 Raised Bed Mushroom NFT

5 Water Culture Aeroponics Media Bed

6 Plant Factory Raised Bed Raised Bed

7 Aeroponics Water Culture Water Culture

A.14 PROJECT AIMS AND SYSTEM PRIORITISATION

Appendix B Computational Approaches

Appendix B Computational Approaches | pg.128 Appendix B Computational Approaches | pg.129

Approach Name Description Advantage Common ApplicationsWhy or Why Not
Suitable?

Generative Design

Shape Grammar

Parallel Grammar

Parametric
Grammar

Graph Grammar

Colour Grammar

Sortal Grammar

Discursive
Grammar

Heuristics

Suitable Not Suitable Maybe Out of Scope

In GD approaches, a�er
starting the generative
process, the system executes
encoded instructions until
the stop criterion is satis�ed.

The main components of a
shape grammar are shape
rules that specify a set of
spatial transformations of
shapes.

An algebraic approach to
implementing a shape
grammar interpreter, where
each rule set addresses a
di�erent aspect of the
design, and together they
are applied simultaneously

A selection of shapes and
their transformations are
generalized as one generic
shape with parameterized
features that can be adjusted
according to a number of
criteria and constraints

The shapes here are
represented as a collection of
vertices that are connected
by edges. In the semantic
approach, the graph’s nodes
are associated with the
semantics of shapes.

Uses colors as descriptive
elements. A

abstracts shapes (or
descriptions) as sorts to
optimize the manageability
and �exibility of the
grammar.

is a parallel parametric
grammar with additional
heuristics for managing rule
selection.

Heuristics are used to
choose a rule for application
at each step of the design
generation or to constraint
choice to a small number of
rules

GD-based methods can
generate complex outputs
even from simple algorithmic
descriptions

(C
ae

ta
no

 e
t a

l.,
 2

02
0)

(C
ae

ta
no

 e
t a

l.,
 2

02
0)

(C
ae

ta
no

 e
t a

l.,
 2

02
0)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)
(G

u
&

 B
eh

ba
ha

ni
, 2

01
8)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)
(G

u
&

 B
eh

ba
ha

ni
, 2

01
8)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)
(S

to
u�

s a
nd

Kr

is
hn

am
ur

ti,
 2

00
1)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)
(G

u
&

 B
eh

ba
ha

ni
, 2

01
8)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)
(G

u
&

 B
eh

ba
ha

ni
, 2

01
8)

(D
ua

rt
e,

 2
00

5)

(D
ua

rt
e,

 2
00

5)

(D
ua

rt
e,

 2
00

5)
(M

ag
dy

 &
 E

ld
al

y,
 2

02
0)

(M
ag

dy
 &

 E
ld

al
y,

 2
02

0)
(G

u
&

 B
eh

ba
ha

ni
, 2

01
8)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)

shape grammars are especially
powerful when dealing with
modularity
e�cient for reducing costs in
mass customization of design

set of rules running together
to ensure all the rules are
satis�ed
simultaneous application of
criteria

simplicity and abstractness
represent shapes or forms in a
topological manner
re�ects interrelations
direction of connections
shortest path
weight of connection

represent design attributes
other than the actual colors,
for example, materials,
building elements

Sorts o�er a
representational �exibility
where each sort additionally
speci�es its own match
relation as a part of its
behavior.

can give weights to criteria
A set of heuristics to guide
generation towards designs
that match the program

choosing the �ttest option
based on weight/importance
of zone
comparison of choices

autonomous way of
satisfying criterias

related to shapes and
geometric entities

applied with shape
grammars

doesnt include criteria
full�lment
or rules of selection

networks
spatial con�guration
connectivity

can be used to represent
di�erent systems
hydroponics - shades of blue
etc.

useful for matchin/selecting
criteria
if X space has X label = x
then apply some rule

can give weights to criteria
set of grammars for decision
making and selecting the
best �tting option based on
criteria

spatial con�guration
form �nding
rule based design decisions

form �nding

spatial con�guration

visually rich rule based
design
spatial con�guration
form �nding
any attribute which can be
represented with color

urban design generation
describing attributes

space con�guration
decision making based on
criteria

APPENDIX B COMPUTATIONAL APPROACHES

B.1 Suitability of Different Approaches

Performance
Based Generative
Design

the designer sets a
performance target, and an
algorithm nds design
solutions that best
approximate the desired
goal.

facade design
climate design

Approach Name Description Advantage Common ApplicationsWhy or Why Not
Suitable?

Replacement

L - System

Parametric
Combination /
Associative
Geometry

Evolution

Evolutionary
Algorithms (EA)

Agent Interraction

Swarm Intelligence

Cellular Automata

a part of design is replaced
with another to generate
new alternatives, usually
based on certain rules.

components in L-systems are
mainly symbols (or symbolic
geometries).
Another dierence is that
L-systems predominantly
feature multiple rule
selection in each step.

In parametric combination,
the replacement aects
features such as the
proportions and dimensions
of the design rather than the
entire entity of shapes or
components

The design alternatives are
matched against a set of
tness functions in each
step; the next step continues
from the “ttest” alternatives
for maximal optimization.
genetic algorithms is a
evolutionary mechanism

evolutionary algorhytmns
mimic natural selection and
natural genetics in which a
biological population evolves
over generations to adapt to
an environmnet by selection
crossover and random
mutation

agent interaction, a society
of agents navigate through
the design space and
generate design alternatives
based on their interactions
with the context and other
related elements

Swarm intelligence agents
are working and living
together according to a set
of rules.
These rules control the way
they interact with each
other

collection of "colored" cells
on a grid of specied shape
that evolves through a
number of discrete time
steps according to a set of
rules based on the states of
neighboring cells.

L-systems suitable for
design situations with small
components repeating in
patterns over a relatively
large extent.

ttest / optimal solution is
given

suitable for multi objective
optimisation

An obvious advantage of
such a method is that the
generated outcomes can be
closely aligned to the
requirement and context,
minimizing the need for
post-design evaluation.

achieving design aims
(when used with
optimization algorithms),
applying the strategy of
learn and respond to
provide alternatives, and
generating alternatives for a
design by managing the
design process.

potential complex outcome
simplicity of CA
maechanism
Adaptation of CA
rulesAdaptation of CA cell
shapes and scale

related to geometry and
repeated patterns

related to geometric
attributes

inreased requirement in
computation
resources...

They can be visually or
spatially restricted because
their design space is
geometrically limited (e.g.,
rigid grids for cellular
automata).

most common in spatial
conguration

patterns generated across
entire CA cell lattices are
o�en intricate and di�cult
to predict

plant modelling
street design

form nding

 best order of rooms,
 open spaces,
directions,
 view,
 privacy and
modules conguration.

spatial conguration
form
structural elements

Suitable Not Suitable Maybe Out of Scope

(C
ae

ta
no

 e
t a

l.,
 2

02
0)

(H
er

r &
 F

or
d,

 2
01

6)

(H
er

r &
 F

or
d,

 2
01

6)

(H
er

r &
 F

or
d,

 2
01

6)

(M
ag

dy
 &

 E
ld

al
y,

 2
02

0)

(M
ag

dy
 &

 E
ld

al
y,

 2
02

0)

(M
ag

dy
 &

 E
ld

al
y,

 2
02

0)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)
(G

u
&

 B
eh

ba
ha

ni
, 2

01
8)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)

(G
u

&
 B

eh
ba

ha
ni

, 2
01

8)

(L
ia

n
et

 a
l.,

 2
01

0)

(L
ia

n
et

 a
l.,

 2
01

0)

(L
ia

n
et

 a
l.,

 2
01

0)

Appendix B Computational Approaches | pg.130 Appendix B Computational Approaches | pg.131

Surrogate Modeling

Approach Name Description Advantage Common ApplicationsWhy or Why Not
Suitable?

Topology
Optimisation

Algorithmic
Design

Machine Learning

Arti�cial Neural
Networks

Feed Forward
Networks

Radial Basis
Function Networks

Random Forests

Based on mathematical
optimization algorithms,
it is a systematic yet also
highly creative design
method, with a wide
variety of industrial
applications.

“set of mathematical
instructions or rules that
[...] will help calculate an
answer to a problem.”

this �eld is concerned
with how to construct
computer programs that
automatically improve
with experience

similar to neural system
in living organisms
knowladge is stored in
the weights of
connections and
learning occurs by
adaptation of these
weights

connection between
adjacent layers
connections between any
layer to the next one
the neuron in each layer
receives a weighted
summation of the output of
each neuron in the previous
layer as input
have two layers
1st layer: radial basis
functions that acts as
pattern detectors at the
input space
2nd layer: forms the output
pf the network hrough a
linear combination of the
rbf outputs

prediction model based on
ensembles of decision trees
decision trees = hypotheses
created by constructing a
binary tree with simple
decision functions at the
internal nodes and output
lvl of leaves

Support Vector
Machines

baed on principle of
structural risk minimization
which enable better
prediction generilization
while enabling limiting of
the number of learning
patterns

appliaction in the �eld of
machine learning in
optimizatio problems where
repeated sampling of the
objective function is
nontrivial due to
computational complexity

if supplemented in another
algorithms, faster
calculation

daylight
performance,energy
consumption,visual comfort
complex optimisation
problems

they can approximate
any continuous function

allows linear least squares
techniques to be used to
determine the output
weights
without resorting to non
linear optimization(which
may be costly)

 complex functions may
require vast networks
for e�cienct
approximation

structral design

Suitable Not Suitable Maybe Out of Scope

(C
ae

ta
no

 e
t a

l.,
 2

02
0)

(T
op

ol
og

y
O

pt
im

iz
at

io
n,

 n
.d

)
(C

ha
tz

ik
on

st
an

tin
ou

,
 2

02
1)

(C
ha

tz
ik

on
st

an
tin

ou
,

 2
02

1)
(C

ha
tz

ik
on

st
an

tin
ou

,
 2

02
1)

(C
ha

tz
ik

on
st

an
tin

ou
,

 2
02

1)

(C
ha

tz
ik

on
st

an
tin

ou
,

 2
02

1)

(C
ha

tz
ik

on
st

an
tin

ou
,

 2
02

1)

(C
ha

tz
ik

on
st

an
tin

ou
,

 2
02

1)
(C

ha
tz

ik
on

st
an

tin
ou

,
 2

02
1)

(C
ha

tz
ik

on
st

an
tin

ou
,

 2
02

1)

(C
ha

tz
ik

on
st

an
tin

ou
,

 2
02

1)

(C
ha

tz
ik

on
st

an
tin

ou
,

 2
02

1)

(C
ha

tz
ik

on
st

an
tin

ou
,

 2
02

1)

Approach Name Description Advantage Common ApplicationsWhy or Why Not
Suitable?

Parametric Design

Rule Based
Decision Making

“a numerical or other
measurable factor
forming one of a set that
de�nes a system or sets
the conditions of its
operation,”

In other words, the
decisions regarding the
distribution of the
neighborhood functions
are based on “if-then”
rules considering design
goals,

parameter input
rule based

rule based

use of parameters to
design

rules can be
implemented to design
the best option satisfying
the rules

form �nding
anything that can be
designed with
parameters

Rule Based Decision
Making

Suitable Not Suitable Maybe Out of Scope

(C
ae

ta
no

 e
t a

l.,
 2

02
0)

(C
ub

uk
cu

og
lu

 e
t a

l.,
 2

01
9)

(C
ub

uk
cu

og
lu

 e
t a

l.,
 2

01
9)

(C
ub

uk
cu

og
lu

 e
t a

l.,
 2

01
9)

(C
ae

ta
no

 e
t a

l.,
 2

02
0)

(C
ae

ta
no

 e
t a

l.,
 2

02
0)

(C
ae

ta
no

 e
t a

l.,
 2

02
0)

Appendix B Computational Approaches | pg.132 Appendix B Computational Approaches | pg.133

Waste Flow Input

Vacant Space
Input

Structural
Capacity

3D Model of Site Convert Data

Inputs

Outputs

Decision Making

Apply Rules System Selection Convert Data

Graph Grammar Colour Grammar

Sortal Grammar

Discursive Grammar

if ... then ...

Illustrate Results
on 3D Model

Solar Exposure

Solar Analysis

a == a

B.2 Draft Decision Making Process & Computational Approaches

Appendix B Computational Approaches | pg.134 Appendix B Computational Approaches | pg.135

B.3 Graph Based Approach for District Heating

(A) Geographical information input including road network, river, green areas and building
blocks
(B) Load center and site location candidates
(C) Graph’s nodes and edges.by Ho et al., 2021

Good Performing Network Designs
Different pipeline colours represent pipe diameters
by Ho et al., 2021

http://edges.by

Appendix B Computational Approaches | pg.136 Appendix C Methodology & User Interface | pg.137

Appendix C Methodology & User Interface

APPENDIX C METHODOLOGY & USER INTERFACE

��������������������������������

����������������

���������������������

��������������������

�

�

�

Appendix C Methodology & User Interface | pg.138 Appendix C Methodology & User Interface | pg.139

Building Data

Vacant Spaces

Waste Output
Points

Footprint

Height

Ground

Roof

Other

Food

Co�ee

Paper

Heat

Sawdust

CO2

Rainwater

Site Model

Vacant Space
Nodes

Waste Output
Nodes

XLSX.

XLSX.

XLSX.

XLSX.

XLSX.

Shape le

XLSX.

Restaurant/
Cafe

Co�ee Machine/
Espresso Bar

School/ O�ce
Building

Supermarket/
Datacenter

Wood
Workshop

Meeting &
Conference
Rooms

Sloped Roof

Quantities

Variables Data Source Mediator Data Final Format

Extra Information

C.1 Automated Data Collection

Appendix C Methodology & User Interface | pg.140 Appendix C Methodology & User Interface | pg.141

C.2 Data Flow

Appendix C Methodology & User Interface | pg.142 Appendix C Methodology & User Interface | pg.143

���������������������������������

����������
�
�	�	�����

���
�����
�	�	�����

��	��	��������	�� ����	
����
�

�	������
�� �����
��
��������������
����
������

�����	��
�
���
�������
�������
��

�	������
�� �����
��
��������������
����
�������

�	������
�� �����
��
��������������
����
�������

�	������
�� �������
����
���
����
��

����������
�������������

���
��

��	��	������

���
�����
���

�

�����	��
�

��
�	�
�

���������
�����	�

������
�������

��
�	�
�

����
���
���

���
��

�	�

�����	��
�

���
����

���
�����	�

�����
���	��	���
�����	��

�
����	�
����
����

�������	��

�
�� �����
���������
�����	���
�����	
����
�

����	�����
�����������
�����

����	�����
����
����������

�	������
�������
�		�����	�
��

���	���

�	�������������
��
�
�� ���
��������

����
�

����
���
���

�
����	�
����
����

����������������
�

�	
�����

����������
�����

���
����������

� C.3 Data Collection & Interpretation

Appendix C Methodology & User Interface | pg.144 Appendix C Methodology & User Interface | pg.145

�������
�������

����������

�������
������
����
���

������
	������

����������

����������
����������

�����������	��
������������������

�����
��������������

���������������������

����	������������
����������������
������������

�����������	��
������������������
���������������

����������������

�����������	��
�������������
���������������

�����

�����������
���������	��
�������������

��������������
���������

��������������
	���������������

�������	�����
�������

��������������
��������	�����

�������

��������������������������������
������ �����	����������������������

�����������������

����������������������
���

�������������������������
��������������������������

�����

�������
����	��
���������������������������
�������������������������

�������������������

����������

�����������
�������������������

	������
����������������
�������������	��

���������������

������������������������������ �����������������������������

���

������	������� C.4 Data Processing

Appendix C Methodology & User Interface | pg.146 Appendix C Methodology & User Interface | pg.147

������������������

�������������������

��	��������������

�������	��������������

������������������

�������������������

��	��������������

������������������������	����	������������������������������	����	��������������

�������	��������������

�������

�������

�������

�������

�������

�������

�������

�������

�������������������

��	��������������

�������	��������������

�������������������������������������
�������������������������������������

���������������������

�������
���	����	���������������

�����������������
����	����

 �������� ��������	��������

�������
���	����	������

����������������������
�����������������

��������
����������������������

�����������������

��������������
������������������

��	��
����	���������

����������������������

�����������������
����

������������������

�����������������
���� C.5 Applying Design Rules

Appendix C Methodology & User Interface | pg.148 Appendix C Methodology & User Interface | pg.149

������������

������������� �������������

��
	����������
��������

������
����
�
�����
������������	��
��

�����
����������������������������

��� ���� �������������
���
�����
�����������������

������
�
�����
�����
����	��
����������������

��
�������������

��
	����������
��������

��
������

���	���		 ���������������

����������

��
��������������
��
�������		 �����	

�
������������
������
��
��������	��
��������������� �
������� ��������������	��
���

��
�����	� ��	���	�

�	�������

���
��

����	��
��

���
�� �� �����	�

���������

���������

�����	���
�����������
��

��
��
��
��

�

��
��
��
��

�

��

	
��
���
��
��
��
���

�

��

	
��
���
��
��
��
���

�

��
 �
��
�
��

�
��

�
�

�
��
��
��
��
��
��

�
��������
�����������������
���

 C.6 Visualising

Appendix C Methodology & User Interface | pg.150 Appendix C Methodology & User Interface | pg.151

���������������������

�������������
��	�������

�������������
��	�������������������

�������������
��	������

�������������
��	�������

�

 C.7 Stages

Appendix C Methodology & User Interface | pg.152 Appendix C Methodology & User Interface | pg.153

������������������������

����

����

����

���	�������������
���������������

��������	������
������������������������������

���������������������
�������������������������	�������

���	�������������
���������������������������	�����
������������������������������

���������������������
���������������	���������������

�������������
�������������������������	�������

����������������	������������������

���	�������������
����������������������������	������
������������������������������

���������������������
����������������������	������������

�������������
�������������������������	�������

����������������	������������������

����������������	������������������

�����������������������
 �����������������������

��	��
����������������������

�����������������������
 �����������������������

����������������������
������������������

�������������	�����������	�������

����������������������
������������������

��	��
����������������������

�����������������������
 �����������������������

�������������	�����������	�������

����������������������������������
����������������������

�����������������������
 �����������������������

����������������������
������������������

�������������	�����������	�������

���	�������������������������������� �����������
�����������������������������������

�����������������������������������	������
���������	�����������������������

��������������������������������
����
������������	�����������������������
��������������������������������������

�

�

�

 C.7 Flowchart

Appendix C Methodology & User Interface | pg.154 Appendix C Methodology & User Interface | pg.155

�� ���

�� ���

�� ���

�� ���

�������������������������

���
�	���������������������������������

������������������������������
����������
�	��

���
�	���
�������������������������

��������������������������������������

����������������������������������
����������������� ��������������

��
���

��������������������������

��������������������������

������������������������������������

��������������������������������������

����������������������������������
����������������������������

����������������������������
��������������������������������

��������������� ������������ �

���

��

��

��

�������������������������

���
�������������������
�	�������������������������������

���������
�	��
������������������������������

�

�

�

�

����������������������������������	

 C.7 Flowchart

Appendix C Methodology & User Interface | pg.156 Appendix C Methodology & User Interface | pg.157

���
���������������
��	��������
�������������������������

���������	�������
������������������
���������������������
��
����������������������������

����������������������

�� ���

�� ���

�� ���

�� ���

�������
������������������

��	�������
�
����������������
���������

�� ��������
��������������������
��������
�	����

���	�����
��
���������������
����
�

��������������������������������������

�����������������������������
����
���������������������������������

���
��
����
������������������������������������

���������������������������

���������������������������

������������������������������������

���������������������������������������

�

��������������������������������
������������������
���������

�����������������������������
����������������������������������

��
���������������������������

���

�

����������������������������
�����������������

�

�������������������������������
���������������������

�

����
���������������������
�����������

��
�����������
�
���������

�

�

��

��

 C.7 Flowchart

Appendix C Methodology & User Interface | pg.158 Appendix C Methodology & User Interface | pg.159

�������������������������

�����������
	��������
����������������
������������

�����������
	�������
�����������������
��������������������

�����������
	��������
����������������
������������

�����������
	�������
�����������������
��������������������

��

��

��

������������������������	

 �����������������

 �����������������

����������������������������������

����������������������������������

����������������������������������

��� �

�

����������������

�����������������������������
���

�����������������������������
���

����������������

�

����������������	�����������������������
���������� ���	�����

��
������������������������������	����

���	���������������������������������
���������������������������	

����������������	�����������������������
���������� ���	�����

����������������	�����������������������
���������� ���	�����

��
������������������������������	����

���	���������������������������������
���������������������������	

������������������������

���

���

������������������������

������������������������

 C.7 Flowchart C.7 Flowchart

Appendix C Methodology & User Interface | pg.160 Appendix C Methodology & User Interface | pg.161

��

����������������������������������

�����������������������
��
����
�������	���

����������	
�����������
��

����������
��������������������
����	���

���
����������������
��

�����������������������
��
����
�������	���

����������	
�����������
��

����������
��������������������
����	���

���
����������������
��

���������
���������
��

�����������
���������
��

����������
�����������������
���� �������������������������������
�������������

�����������������������	�
����������������

��������������
	��
����

 C.7 Flowchart

Appendix C Methodology & User Interface | pg.162 Appendix C Methodology & User Interface | pg.163

C.8 User Interface

Please wait while we are restarting the kernels ...

Welcome To FoodCycle!

FoodCycle

Appendix C Methodology & User Interface | pg.164 Appendix C Methodology & User Interface | pg.165

Start New Open File

FoodCycle

Help Me

click!

Appendix C Methodology & User Interface | pg.166 Appendix C Methodology & User Interface | pg.167

Tip! Drag Corners
To Rseize Boundary

Box

Location

NEXT

TU Delft

Boundary

Coordinates :
x , y , z Area : ... m2 Elevation Difference

: ... m

Boundary

Site Selection

Appendix C Methodology & User Interface | pg.168 Appendix C Methodology & User Interface | pg.169

Include Spaces
For Farming:

NEXT

Ground Floor
Parking Lots
Greenery
Bike Storage
Empty Lots
All

Distance Limit
From Buildings:
100 m
200 m
300 m

Roof Top
No PV
No Skylight
NO Mechanical
Equipment

Indoor
Basement
Attic
Other

Drone Footage
Manual Input

GIS Data
Data Colection Method:

Defining Vacant Spaces

Appendix C Methodology & User Interface | pg.170 Appendix C Methodology & User Interface | pg.171

Include Spaces
For Farming:

NEXT

Ground Floor

Roof Top

Indoor

Vacant Space Data

Tip! Click on the
areas to include

Drone Footage
Manual Input

GIS Data
Data Colection Method:

click!

Appendix C Methodology & User Interface | pg.172 Appendix C Methodology & User Interface | pg.173

Include Waste
Types:

NEXT

Defining Waste Flows

Coffee Waste
Food Waste
Paper Waste
Sawdust
CO2
Excess Heat
Rainwater
Harvesting

GIS Data Import
Manual Input

Data Colection Method:

Appendix C Methodology & User Interface | pg.174 Appendix C Methodology & User Interface | pg.175

Include Waste
Types:

NEXT

Waste Flows Data

Coffee Waste
Food Waste
Paper Waste
Sawdust
CO2
Excess Heat
Rainwater
Harvesting

GIS Data Import
Manual Input

Data Colection Method:

Waste Type: ...
Quantity: ... kg
Building: ...

Waste Type: ...
Quantity: ... kg
Building: ...

Waste Type: ...
Quantity: ... kg
Building: ...

Tip! Drop Pin &
Fill In The Details
For Manual Input

Add Waste Source

Remove Waste Source

Appendix C Methodology & User Interface | pg.176 Appendix C Methodology & User Interface | pg.177

Questions 4/14

NEXT

Design Questionnaire

What is the aim of the project?

Holistic Food
ProductionResearch Maximum

Productivity

How many missing resources is acceptable?

21 3

Should all the waste sources be found for food producing
supplementary systems?

Should all the waste sources be found for food
production systems?

Only Critical
Items

Both Critical
and Non-Critical

Items

Only Critical
Items

Both Critical
and Non-Critical

Items

Holistic Food
Production

Uf systems are
sorted according to
ease of application
in existing urban

contexts.
All of the vacant
spaces will be

occupied based on
the number of

missing items even
if there is not any

found item.
Critical Items:

Resources which are
a must for a system

to function
Vermiculture: Food
waste, sawdust,

paper

Appendix C Methodology & User Interface | pg.178 Appendix C Methodology & User Interface | pg.179

Questions 8/14

NEXT

Design Questionnaire

hould all the waste sources be found for supplementary systems?

Only Critical
Items

 Both Critical
and Non-Critical

Items

Can this distance be increased if there are vacant
spaces left?

Yes

Food Production
Systems:

Systems which only
produce food in-

cluding mushrooms,
soft fruits and
leafy greens.

Food Producing Sup-
plementary Systems:
Systems which pro-
duce supplements in
addition to food.
Supplementary Sys-

tems:
Systems which only
produce supplemen-
tary items but no

food items.

No

What is the maximum distance waste sources can
travel?

100 [m]

How far can the waste sources be from vacant spaces?

500 [m]

Appendix C Methodology & User Interface | pg.180 Appendix C Methodology & User Interface | pg.181

Questions 11/14

NEXT

Design Questionnaire

Can search radius be increased if there are vacant spaces left?

Yes!No

Is there a possibility to add infrastructure to transfer CO2, heat and
Rainwater?

Yes!No

Search Radius:
Search radius is

the distance
between each vacant

space and waste
sources around it.
Non Transferable

Items:
CO2, Heat,
Rainwater

These resources are
only used if they
are available in
the same building

as the vacant
space.

10 2

How many times?

Appendix C Methodology & User Interface | pg.182 Appendix C Methodology & User Interface | pg.183

Questions 14/14

NEXT

Design Questionnaire

How many steps should there be until it reaches
the maximum value?

3 42

Should all the vacant spaces be occupied even if there are not any
found items?

Yes!No

Yes!No

Search Radius:
Search radius is

the distance
between each vacant

space and waste
sources around it.
Non Transferable

Items:
CO2, Heat,
Rainwater

These resources are
only used if they
are available in
the same building

as the vacant
space.

How Is there a possibility to add infrastructure to transfer CO2,
heat and rainwater?

Appendix C Methodology & User Interface | pg.184 Appendix C Methodology & User Interface | pg.185

Initial Search
Radius

NEXT

Designing

0 100 500

Maximum 2 missing
resources

Min. 1 found
resource

Critical Items
Cannot Be Supplied
Externally

Increased
Search Radius

Increased
Search Radius

Number of Vacant
Spaces:

... spaces

Number of Used Waste
Sources:

... sources

Average Symbiosis
Rate:
... %

Appendix C Methodology & User Interface | pg.186 Appendix C Methodology & User Interface | pg.187

Initial Search
Radius

NEXT

Designing

0 100 500

Maximum 2 missing
resources

Min. 1 found
resource

Critical Items
Cannot Be Supplied
Externally

Increased
Search Radius

Increased
Search Radius

Number of Vacant
Spaces:

... spaces

Number of Used Waste
Sources:

... sources

Average Symbiosis
Rate:
... %

Appendix C Methodology & User Interface | pg.188 Appendix C Methodology & User Interface | pg.189

Initial Search
Radius

NEXT

Designing

0 100 500

Increased
Search Radius

0 200 500

Increased
Search Radius

Number of Vacant
Spaces:

... spaces

Maximum 2 missing
resources

Min. 1 found
resource

Critical Items
Cannot Be Supplied
Externally

Average Symbiosis
Rate:
... %

Number of Used Waste
Sources:

... sources

Appendix C Methodology & User Interface | pg.190 Appendix C Methodology & User Interface | pg.191

Initial Search
Radius

NEXT

Designing

0 100 500

Increased
Search Radius

0 200 500

Increased
Search Radius

Number of Vacant
Spaces:

... spaces

Maximum 2 missing
resources

Min. 1 found
resource

Critical Items
Cannot Be Supplied
Externally

Average Symbiosis
Rate:
... %

Number of Used Waste
Sources:

... sources

Appendix C Methodology & User Interface | pg.192 Appendix C Methodology & User Interface | pg.193

Initial Search
Radius

NEXT

Designing

Increased
Search Radius

Increased
Search Radius

0 500

Number of Vacant
Spaces:

... spaces

Maximum 2 missing
resources

Min. 1 found
resource

Critical Items
Cannot Be Supplied
Externally

Average Symbiosis
Rate:
... %

Number of Used Waste
Sources:

... sources

Appendix C Methodology & User Interface | pg.194 Appendix C Methodology & User Interface | pg.195

Initial Search
Radius

NEXT

Designing

Increased
Search Radius

Increased
Search Radius

0 500

Number of Vacant
Spaces:

... spaces

Maximum 2 missing
resources

Min. 1 found
resource

Critical Items
Cannot Be Supplied
Externally

Average Symbiosis
Rate:
... %

Number of Used Waste
Sources:

... sources

Appendix C Methodology & User Interface | pg.196 Appendix C Methodology & User Interface | pg.197

Initial Search
Radius

NEXT

Designing

Increased
Search Radius

Increased
Search Radius

0 500

Number of Vacant
Spaces:

... spaces

Maximum 2 missing
resources

Min. 1 found
resource

Critical Items
Cannot Be Supplied
Externally

Assign a system to
every vacant space

Average Symbiosis
Rate:
... %

Number of Used Waste
Sources:

... sources

Appendix C Methodology & User Interface | pg.198 Appendix C Methodology & User Interface | pg.199

Initial Search
Radius

NEXT

Designing

Increased
Search Radius

Increased
Search Radius

0 500

Number of Vacant
Spaces:

... spaces

Maximum 2 missing
resources

Min. 1 found
resource

Critical Items
Cannot Be Supplied
Externally

Assign a system to
every vacant space

Average Symbiosis
Rate:
... %

Number of Used Waste
Sources:

... sources

symbiosis 50%

symbiosis 75%

Appendix C Methodology & User Interface | pg.200 Appendix C Methodology & User Interface | pg.201

Initial Search
Radius

NEXT

Designing

Increased
Search Radius

Increased
Search Radius

0 500

Number of Vacant
Spaces:

... spaces

Maximum 2 missing
resources

Min. 1 found
resource

Critical Items
Cannot Be Supplied
Externally

Assign a system to
every vacant space

Average Symbiosis
Rate:
... %

Number of Used Waste
Sources:

... sources

Appendix C Methodology & User Interface | pg.202 Appendix C Methodology & User Interface | pg.203

NEXT

Conclusions

Food Waste :
4237 / 131542

[kg/year]

Sawdust :
592000 / 592000

[kg/year]

Paper :
812601 / 812601

[kg/year]

Spent Coffee Ground :
13020 / 201040

[kg/year]

CO2 :
1962 / 3979
[kg/year]

Rainwater :
41050300 / 49116800

 [L/year]

Excess Heat :
44000000 / 45732320

 [kWh/year]

3.2 % 100 % 100 %

49.31 % 83.58 % 96.21 %

64.76 %

SawdustFood Waste

Unused
Used

Paper Spent Coffee
Grounds

Excess HeatCO2 Rainwater

Appendix C Methodology & User Interface | pg.204 Appendix C Methodology & User Interface | pg.205

NEXT

Conclusions

Used Waste Types
Pie Chart

UF Systems Pie
Chart

Food Production
Pie Chart

Enough Vegetables to
Feed 72093 People

(Daily)

Delft Population :
101,030

250 gr Fruit & Veg

90 % of Delft
Population

Rainwater

Heat

CO2

Sawdust

Paper

Coffee Waste

Food Waste

Soft Fruıts

Leafy Greens

Mushrooms

Fısh

Worms

Aeroponics

Plant Factory

Water Culture

Raised Beds

Mediabeds

NFT

Mushroom Farm

Aquaculture

Vermicompost

9

5

13

3

1

7

8

42

20

1 1

67

Appendix C Methodology & User Interface | pg.206 Appendix C Methodology & User Interface | pg.207

NEXT

Customisation

Average
Symbiosis

Percentage:
...% -> ...%

Food Yield :
... kg -> ...%

Number of Vacant Spaces:
... spaces ->... spaces

Change UF
System

Tip! Click on the
system to chenge it

Warning! The system
you picked is too

heavy for a rooftop

Vermiculture
Aquaculture
Mushroom

NFT
Mediabed

Water Culture
Raised Bed

Plant Factory
AeroponicsCurrent System = NFT

Selected System = Water
Culture

Appendix C Methodology & User Interface | pg.208 Appendix C Methodology & User Interface | pg.209

NEXT

Future Changes

Average
Symbiosis

Percentage:
...% -> ...%

Food Yield :
... kg -> ...%

Number of Vacant Spaces:
... spaces ->... spaces

Removing Waste
Source

Tip! Click on the
node to remove it

click!
Warning! The waste
source you removed
provides a critical

resource.
The productivity
will be affected
significantly!

Waste source cannot be
replaced!

Appendix C Methodology & User Interface | pg.210 Appendix D Waste Quantities & Yields | pg.211

Appendix D Waste Quantities & Yields

APPENDIX D WASTE QUANTITIES & YIELDS

D.1 WASTE DEMAND OF EACH UF SYSTEM (PER M2)
FOOD WASTE (W1)

SAWDUST (W2)

PAPER WASTE (W3)

System Worm Count Worm Weight
(gr) Daily Feed (gr) Total Worm

Weight (gr)
Daily Waste
(grams)

Annual Waste
(kg/m2)

Growth Time
(Week)

Vermicompost 19528 0.25 0.125 4882 2441 890.965 7

System Area (cm2) Volume (cm2) Paper Demand (gr) use length (Weeks) Annual Paper Demand
(kg)

Vermicompost 10000 (irrelevant) 3125 1 162.5

Mushroom
Production

10000 281250 337500 9 1950

System Area (cm2) Volume (cm2) Paper Demand (kg) use length (Weeks) Annual Paper Demand
(kg)

Mushroom
Production 10000 281250 59.0625 9 341.25

Worm Weight Per
Square Foot (Pound/

Sq Foot)

Worm Weight Per m2
(gr/m2)

Worm Weight Per M2
(kg/m2) Weight Of 1 Worm (gr) Area (cm2) Worm Count

1 pound 4882 4.882 0.25 10000 19528

Worm weight & feed (Fun Facts about Compost Worms, n.d.)
Worm population density (Biernbaum, 2014)

Vermicompost example (Fong & Hewitt, n.d.)
substrate to water ratio (Sayner, 2021)
grow bag dimensions (Shields, 2017)
saw dust density (Density of Sawdust, n.d.)

Annual Demand = Demand per use x (52/use length)

Annual Demand = Demand per use x (52/use length)
Vermicompost
example_volume = 40 x 60 x 20 = 48000 cm3 = 0.048 m3
50 pages of newspaper added
newspaper page = 40 - 50 g/m2
newspaper size = 60 x 50 cm
50 pages of newspaper = 0.60 x 0.50 x 50 x 50 = 750 gr

Vermicompost Bin
Sizes = 100 x 100 x 20 = 0.2 m3

x = 3125 gr paper
y = 0.03125 gr water

direct proportion

Mushroom Production:
Substrate + Water = Volume of Bag
x = water
y = substrate
cultivation bag : 100 x 100 x 45 cm
volume of Bag = 100 x 100 x 45 = 450000
sawdust density = 0.21
paper density = 1.2

x+y = 450000
x/y=60/100

x = 168750 cm3 water
y = substrate = 281250 cm3

density = weight/volume
sawdust:
0.21 = sawdust weight / 281250
sawdust weight = 59.0625 kg
paper:
1.2 = paper weight / 281250
paper weight = 337.5 kg

in 0.048 m3 750 gr paper 75 gr water

in 0.2 m3 x ? y ?

Appendix D Waste Quantities & Yields | pg.212 Appendix D Waste Quantities & Yields | pg.213

COFFEE WASTE (W4)

CO2 (W5)

System Area (cm2) Volume (Cm3) ppm CO2 Demand (M3) Air Exchange Rate
(1/h) (kg/h) Time (h) CO2 Demand

(kg/year)

Plant Factory 10000 4000000 1000 0.004 0.03333333333 0.2208 18 1450.656

Aeroponics 10000 4000000 1000 0.004 0.03333333333 0.2208 18 1450.656

NFT 10000 4000000 1000 0.004 0.03333333333 0.2208 18 1450.656

Water Culture 10000 4000000 1000 0.004 0.03333333333 0.2208 18 1450.656

Media Bed 10000 4000000 1000 0.004 0.03333333333 0.2208 18 1450.656

System Area Of Farm (m2) Annual Mushroom(kg/m2) Substrate - Yield Ratio Annual SCG (kg/m2)

Mushroom Productıon 10000 125 1.14 142

CO2 Demand Calculation (The Effects of Too Much CO2 In a Grow Room, 2021)
CO2 Demand Calculation (CO2Meter, 2015)
Air Exchange Rate (NSW Government, 2021)

substrate - yield ratio based on Table 2 (Martínez-Carrera et al., 2000)

(Room Volume) x (ppm/1000000) = (CO2 Volume)
(CO2 Volume) x (Density) / (Air Exchange Rate) = (CO2 Demand) kg/h

(CO2 Demand per hour) x time x 365 = Annual CO2 Demand

(Annual Yield)x (Ratio) = (Annual SCG Demand)

RAINWATER (W6)

EXCESS HEAT (W7)

System Area (cm2) Depth (Cm) Volume (Cm3) Water Demand
(L) Notes Use Period

(Weeks)
Annual Water
Demand(L)

Plant Factory 10000 600 per year 52 weeks 600

Raised Bed 10000 2.5 25000 25 per week 52 2600

Aeroponics 10000 50.26548246

based on 20%
less water use
compared to
other hydoro-

ponics

2 1306.902544

NFT 10000 - 62831.85307 62.83185307 circulated
water 2 1633.62818

Water Culture 10000 30 300000 300 circulated
water 2 7800

Media Bed 10000 30 300000 120 circulated
water 2 3120

Vermicompost 10000 20 200000 0.03125 2 0.8125

Mushrooms 10000 45 450000 168.75 60% hydration 16 548.4375

System Area (cm2) Heat Demand(mj)

Plant Factory 10000 1000

Plant Factory Water Demand (Graamans et al., 2018)
Raised Bed Water Demand (de Peyster, 2014)
Aeroponics Water Demand Compared To Other Systems (Rassmann, 2015)
* evaporation and transpiration are not taken into consideration in these calculations

Plant Factory Heat Demand (Graamans et al., 2018)

NFT Water Demand
pipe length = 1 m x 8 rows = 8 m
pipe radius = 5 cm
Volume = (pi) (5) x (5) x (800)

Media Bed Water Demand
volume(m3) / 1000 = volume (L)
40% water
water volume = (volume/1000)*0.4

Water Culture Water Demand
container volume = water demand

Aeroponics
20 % less water use compared to
hydroponic systems
NFT WATER DEMAND x 0.8 = water
demand

Appendix D Waste Quantities & Yields | pg.214 Appendix D Waste Quantities & Yields | pg.215

D.2 SIMPLIFICATION OF VACANT SPACE SIZES & WASTE QUANTITIES

RANGES FOR VACANT SPACE SIZE

Waste Demand Ranges

Vacant Space Size Range 1 (m) Range 2 (m) Range 3 (m)

Min (m2) 0 200 1000

Max (m2) 200 1000 ...

Food Waste
(W1) kg/m2 Range 1 (kg)

(0 - 200 m2)
Range 2 (kg)
(200 - 1000 m2)

Range 3 (kg)
(1000 m2- above)

Vermicompost 918.5225 0 183704.5 183704.5 918522.5 918522.5 above

Sawdust (W2) kg/m2 Range 1 (kg)
(0 - 200 m2)

Range 2 (kg)
(200 - 1000 m2)

Range 3 (kg)
(1000 m2- above)

Mushroom
Production 59.0625 0 11812.5 11812.5 59062.5 59062.5 above

Paper (W3) kg/m2 Range 1 (kg)
(0 - 200 m2)

Range 2 (kg)
(200 - 1000 m2)

Range 3 (kg)
(1000 m2- above)

Vermicompost 162.5 0 32500 32500 162500 162500 above

Mushroom
Production 337.5 67500 67500 67500 337500 337500 above

Spent Coffee
Grounds (W4) KG/m2 Range 1 (kg)

(0 - 200 m2)
Range 2 (kg)
(200 - 1000 m2)

Range 3 (kg)
(1000 m2- above)

Mushroom 141 0 28200 28200 141000 141000 above

CO2 (W5) kg/m2 Range 1 (kg)
(0 - 200 m2)

Range 2 (kg)
(200 - 1000 m2)

Range 3 (kg)
(1000 m2- above)

Plant Factory 10 0 2000 2000 10000 10000 above

Aeroponics 96.7104 0 19342.08 19342.08 96710.4 96710.4 above

NFT 96.7104 0 19342.08 19342.08 96710.4 96710.4 above

Water Culture 96.7104 0 19342.08 19342.08 96710.4 96710.4 above

Media Bed 96.7104 0 19342.08 19342.08 96710.4 96710.4 above

for each waste type and each system:
Minimum Waste Demand = (waste demand per m2) x (range min)
Maximum Waste Demand = (waste demand per m2) x (range max)

Residual Heat
(W7) MJ/m2 Range 1 (kg)

(0 - 200 m2)
Range 2 (kg)
(200 - 1000 m2)

Range 3 (kg)
(1000 m2- above)

Plant Factory 1000 0 200000 200000 1000000 1000000 above

Rainwater
(W6) L/m2 Range 1 (kg)

(0 - 200 m2)
Range 2 (kg)
(200 - 1000 m2)

Range 3 (kg)
(1000 m2- above)

Plant Factory 600 0 120000 120000 600000 600000 above

Raised Bed 2600 0 520000 520000 2600000 2600000 above

Aeroponics 1306.902544 0 261380.5088 261380.5088 1306902.544 1306902.544 above

NFT 1633.62818 0 326725.636 326725.636 1633628.18 1633628.18 above

Water Culture 7800 0 1560000 1560000 7800000 7800000 above

Media Bed 3120 0 624000 624000 3120000 3120000 above

Vermicompost 0.8125 0 162.5 162.5 812.5 812.5 above

Mushrooms 548.4375 0 109687.5 109687.5 548437.5 548437.5 above

Appendix D Waste Quantities & Yields | pg.216 Appendix D Waste Quantities & Yields | pg.217

D.3 YIELD OF EACH UF SYSTEM (PER M2)

System Name Horizontal/Vertical Crop Type Fruit Yield Annual Annual Fruit Yield (kg)

Plant Factory Vertical Lettuce 624.5555556 87.43777778

Raised Bed Horizontal Lettuce 89.22222222 12.49111111

Raised Bed Horizontal Dwarf Bush Cherry Tomato - 2.7

Aeroponics Vertical Lettuce 89.22222222 12.49111111

NFT Vertical Lettuce 713.7777778 99.92888889

Water Culture Horizontal Lettuce 89.22222222 12.49111111

Media Bed Horizontal Lettuce 89.22222222 12.49111111

Media Bed Horizontal Beefsteak Tomato 256.1403509 89.64912281

Product
weight

range min.
(gr)

weight
range max.

(gr)

tank density
kg/m2

tank volume
L

tank volume
m3

number of
fish

total kg of
fish max

average kg
of fish per

m2

small fish 0 100 20 750 0.75 150 15 15 15

medium fish 100 250 25 750 0.75 75 7.5 18.75 13.125

big fish 250 450 30 750 0.75 50 12.5 22.5 17.5

LEAFY GREENS & SOFT FRUITS

FISH

Values and formulas retrieved from “Building Integrated Technical Food Systems. by Jenkins, A. (2018).”
https://pure.qub.ac.uk/en/studentTheses/building-integrated-technical-food-systems

Butterhead Lettuce Horizontal Distance (The Royal Horticultural Society, n.d.)
Butterhead Lettuce Vertical Distance (Viscon Group, 2021)
Butterhead Lettuce Growth Time (Mcintosh, 2021)
Butterhead Lettuce Weight (Baras, 2018)
Dwarf Bush Cherry Tomato Horizontal Distance (LeBoeuf, 2013)
Dwarf Bush Cherry Tomato Growth Time (All About Growing Dwarf Tomatoes Guide and Q&A, n.d.)
Dwarf Bush Cherry TomatoWeight (“Fresh Tomato Weights (Ultimate Guide With Charts & Calculator),” 2021)
Beefsteak Tomato (Gillette, 2022)
Beefsteak Tomato Weight (“Fresh Tomato Weights (Ultimate Guide With Charts & Calculator),” 2021)
NFT Channel Depth (Cropking, n.d)
Plant Factory Tray Depth (Pipp Horticulture, n.d.)

Product Daily Food (kg/m2) Daily Worm Count Annual Worm Count/
m2

Worm Count (per 6
weeks)

Available Worm Count
(Fish Food) (per 6

weeks)

small fish 0.15 600 219000 25200 19504.21407

medium fish 0.0875 350 127750 14700 19504.21407

big fish 0.05833333333 236 86140 9912 19504.21407

FISH FOOD DEMAND

Small fish (0g-100g) should be fed 3% of their body weight daily (Jenkins, 2018)
Medium fish (100g-250g) should be fed 2% of their body weight daily (Jenkins, 2018)
Large fish (250g-450g) should be fed 1% of their body weight daily (Jenkins, 2018)
1/3 of food can be worms (Jenkins, 2018)
1 worm weights 0.25 grams (Compost Community,n.d.)

Worm Weight per square foot (Fun Facts about Compost Worms, n.d.)

Different Systems Crop Characteristics System Sizes Yield (Plants) Yield(Fruits)

System Name Horizontal/
Vertical Crop Type Horizontal

Distance
Vertical
Distance

Equipment
Size

Number of
Fruits Growth Time Crop

weight(gr) Area (cm2) Height (cm) Horizontal Vertical #Stacked
Racks 1 Level Stacked Yield(Fruits) Fruit Yield

Annual
Annual Fruit
Yield (kg)

Plant Factory Vertical Lettuce

30
(The Royal
Horticultural
Society, n.d.)

30 10 1 45 140 10000 300 30 40 7 11 77 77 624.5555556 87.43777778

Raised Bed Horizontal Lettuce 30 - - 1 45 140 10000 300 30 - - 11 - 11 89.22222222 12.49111111

Raised Bed Horizontal
Dwarf Bush
Cherry
Tomato

60 - - 90 57 15 10000 300 60 - - 2 - 180 - 2.7

Aeroponics Vertical Lettuce 30 30 - 1 45 140 10000 300 30 - - 11 - 11 89.22222222 12.49111111

NFT Vertical Lettuce 30 30 7.5 1 45 140 10000 300 30 37.5 8 11 88 88 713.7777778 99.92888889

Water Culture Horizontal Lettuce 30 - - 1 45 140 10000 300 30 - - 11 - 11 89.22222222 12.49111111

Media Bed Horizontal Lettuce 30 - - 1 45 140 10000 300 30 - - 11 - 11 89.22222222 12.49111111

Media Bed Horizontal Beefsteak
Tomato

60 - - 20 57 350 10000 300 60 - - 2 - 40 256.1403509 89.64912281

WORMS

worm weight per
square foot (pound/

sq foot)

worm weight per m2
(gr/m2)

worm weight per m2
(kg/m2) weight of 1 worm (gr) area (cm2) worm count

1 pound 4882 4.882 0.25 10000 19528

Appendix D Waste Quantities & Yields | pg.218 Appendix E TU Delft Analysis | pg.219

Appendix E TU Delft Analysis

APPENDIX E TU DELFT ANALYSIS

E.0 ANALYSIS FRAMEWORK

VACANT SPACE CHARACTERISTICS

VACANT SPACE CHARACTERISTICS

Location Data Interpretation 1 Interpretation 2

Location A Basement stuctural capacity : high (3) solar exposure : low (1)

Location B Ground Floor stuctural capacity : high (3)

Location C Ground Floor Outdoor stuctural capacity : high (3)

Location D Intermediate stuctural capacity : medium (2)

Location E Rooftop stuctural capacity : low (1) solar exposure : high (3)

Location F Facade stuctural capacity : low (1)

North solar exposure : low (1)

North East solar exposure : low (1)

East solar exposure : adequate (2)

South East solar exposure : high (3)

South solar exposure : high (3)

South West solar exposure : high (3)

West solar exposure : adequate (2)

North West solar exposure : low (1)

Location Data Interpretation 1 Quantity Information

Location G Cafeteria Organic Waste : Food serving ... people

Location H Cafe/Restaurant Organic Waste : Food serving ... people

Location I Agricultural Activity Organic Waste : Food

Location J Wood Workshop Other Waste : Wood Chips

Location K School & Offices Other Waste : Paper

Location L Paper Waste Bins Other Waste : Paper

Location M Espresso Bar Organic Waste : Coffee serving ... people

Location N Conference Hall CO2 serving ... people

Location O Classroom CO2 serving ... people

Location P Meeting Room CO2 serving ... people

Location R Metal/ Sloped Roof Rainwater surface area

Location S Sloped Roof Rainwater surface area

Location T Supermarket Excess Heat Source

Location U Datacenter Excess Heat Source

Appendix E TU Delft Analysis | pg.220 Appendix E TU Delft Analysis | pg.221

E.1 Aerial View

Appendix E TU Delft Analysis | pg.222 Appendix E TU Delft Analysis | pg.223

E.2 Building Footprints

Appendix E TU Delft Analysis | pg.224 Appendix E TU Delft Analysis | pg.225

Available PV Panels Sky Light

Mechanical
Equipment

Parking Lot Sloped Roof

E.3 Analysis of Rooftops’ Availability

Appendix E TU Delft Analysis | pg.226 Appendix E TU Delft Analysis | pg.227

Sports Fields Bike Storage Canals

Parking Lot Cemetery Greenery

E.4 Analysis of Ground Floor Availability

Appendix E TU Delft Analysis | pg.228 Appendix E TU Delft Analysis | pg.229

10 m 20 m 30 m Greenery

E.5 Radiant Map Showing Vicinity To Buildings

Appendix E TU Delft Analysis | pg.230 Appendix E TU Delft Analysis | pg.231

Overlapping Greenery

E.6 Overlapping Greenery And Radiant Map

Appendix E TU Delft Analysis | pg.232 Appendix E TU Delft Analysis | pg.233

Available Ground
Floor Area

Available Rooftop

E.7 Vacant Spaces

Appendix E TU Delft Analysis | pg.234 Appendix E TU Delft Analysis | pg.235

Available Ground
Floor Area Nodes

Available Rooftop
Nodes

Waste Output
Nodes

WO1

E.8 Nodes

Appendix E TU Delft Analysis | pg.236 Appendix E TU Delft Analysis | pg.237

E.9 Sorted Vacant Space Nodes

V10

V0

V1

V2

V3

V4

V5

V6

V7
V8

V9

V11

V12

V13

V14

V15

V16

V17
V18

V19

V20

V21

V22

V23

V24

V25

V26

V27

V28

V29

V30

V31

V32

V33

V34

V35

V36

V37

V38

V39

V40

V41

V42
V43

V44

V45

V46

V47

V48

V49

V50

V51

V52

V53

V54

V55

V56

V57

V58V59

V60

V61 V62

V63

V64

V65

V66

V67

V69

V70
V71

V72

V73

V74

V75

V76

V77

V78

V79

V80

V81

V82

V83

V84

V85
V86

V87V88

V89

V90

V91 V92

V93

V94

V95

V96

V97

V98

V99

V100

V101

V102

V103

V104

V105
V106

V107

V108

V109

V110

V111
V112

V113V114
V115

V116

V117

V118

V119

V120

V121

V122

V123

V124

V125

V126

V127

V128

V129

V130

V131

V132

V133

V134

V135

V136

V137

V138

V139

V140

V141

V142

V143

V144

V145

V68

Vacant Rooftop

Vacant Ground Floor

Appendix E TU Delft Analysis | pg.238 Appendix E TU Delft Analysis | pg.239

Identifier Coordinates Size Building Location Orientation Tag Node Type

V0 {2020.580643,
387.391529, 0} 31174.53666 outside outside S V0 vacant space

V1 {935.001269,
534.594454, 0} 23824.09908 outside outside S V1 vacant space

V2
{766.997201,
400.341737,

12.0}
9665.369642 3me roof S V2 vacant space

V3 {254.491041,
556.132177, 0} 8429.633469 BK basement S V3 vacant space

V4 {1770.13761,
751.608275, 0} 8272.572478 outside outside S V4 vacant space

V5 {1189.499865,
487.345394, 0} 8061.2872 outside outside E V5 vacant space

V6 {336.903473,
621.882305, 0} 6439.317191 outside outside S V6 vacant space

V7 {2237.009725,
595.715597, 0} 6015.400281 outside outside E V7 vacant space

V8 {826.49752,
584.987928, 12} 5436.112064 AS roof S V8 vacant space

V9 {1886.407729,
148.985643, 0} 4880.694962 outside outside S V9 vacant space

V10 {1238.274556,
660.86452, 0} 4720.707857 outside outside S V10 vacant space

V11 {1491.382251,
454.896508, 0} 4436.905613 outside outside S V11 vacant space

V12 {2104.099002,
708.543263, 12} 3912.406602 hollandptc roof S V12 vacant space

V13 {725.481226,
475.783652, 0} 3860.805254 outside outside E V13 vacant space

V14 {707.801875,
734.33, 0} 3795.550842 outside outside S V14 vacant space

V15 {1172.021866,
212.417878, 0} 3414.20724 outside outside SW V15 vacant space

V16 {1745.277986,
603.305799, 0} 3321.599943 outside outside SW V16 vacant space

V17 {1456.101959,
681.594694, 0} 3035.067605 outside outside S V17 vacant space

V18 {1360.266072,
674.2871, 0} 2707.049732 outside outside S V18 vacant space

E.10 Vacant Space Characteristics Identifier Coordinates Size Building Location Orientation Tag Node Type

V19 {1467.87926,
462.26593, 12} 2570.605398 X roof S V19 vacant space

V20 {1967.622502,
719.121831, 0} 2542.354255 outside outside E V20 vacant space

V21 {1187.069112,
247.773475, 0} 2541.191524 outside outside NE V21 vacant space

V22 {1102.010609,
565.395898, 12} 2440.648879 CEG roof S V22 vacant space

V23 {759.513592,
338.631234, 0} 2245.407526 outside outside NW V23 vacant space

V24 {1136.901105,
469.397271, 12} 2167.980456 EEMCS2 roof S V24 vacant space

V25 {854.301619,
678.271942, 12} 2144.104305 TNO roof S V25 vacant space

V26 {1765.662254,
759.761065, 12} 2139.318657 V26 roof S V26 vacant space

V27 {976.861624,
685.9273, 12} 2111.030067 V27 roof S V27 vacant space

V28 {575.482159,
536.19563, 0} 2093.170986 outside outside S V28 vacant space

V29 {1275.73311,
395.652487, 0} 1954.974543 outside outside N V29 vacant space

V30 {1325.122739,
368.657999, 0} 1942.882355 outside outside S V30 vacant space

V31 {2082.810089,
143.808595, 0} 1921.86682 outside outside SE V31 vacant space

V32 {1833.647815,
454.916946, 0} 1665.10129 outside outside S V32 vacant space

V33 {1747.573228,
649.592317, 0} 1658.479829 outside outside SE V33 vacant space

V34 {1014.438887,
173.231638, 0} 1610.590794 outside outside W V34 vacant space

V35 {2072.329024,
544.690135, 0} 1597.51193 outside outside SW V35 vacant space

V36 {2231.559493,
182.612876, 12} 1578.782096 Radex roof S V36 vacant space

V37 {1932.550756,
615.437238, 0} 1572.935303 outside outside N V37 vacant space

V38 {1307.476123,
361.299511, 12} 1501.150494 V38 roof S V38 vacant space

Appendix E TU Delft Analysis | pg.240 Appendix E TU Delft Analysis | pg.241

Identifier Coordinates Size Building Location Orientation Tag Node Type

V39 {1307.476123,
447.714593, 12} 1501.150494 V39 roof S V39 vacant space

V40 {2252.746342,
255.457019, 12} 1354.283896 datacenter roof S V40 vacant space

V41 {1860.04359,
309.245812, 0} 1340.761573 outside outside N V41 vacant space

V42 {1856.896197,
600.868463, 0} 1288.877422 outside outside S V42 vacant space

V43 {2110.090435,
589.321934, 0} 1275.764993 outside outside S V43 vacant space

V44 {1021.549269,
560.580277, 12} 1233.523908 CEG roof S V44 vacant space

V45 {1886.971833,
696.66426, 0} 1231.775195 outside outside W V45 vacant space

V46 {1856.612474,
718.585648, 0} 1153.400093 outside outside S V46 vacant space

V47 {2087.886501,
604.053783, 12} 1148.748086 AS(reactor) roof S V47 vacant space

V48 {1689.948378,
626.657299, 0} 1130.80954 outside outside S V48 vacant space

V49 {1859.611528,
454.743545, 0} 1091.599357 outside outside S V49 vacant space

V50 {1348.321473,
397.432156, 0} 1060.91461 outside outside NE V50 vacant space

V51 {1056.358892,
242.452808, 12} 1055.834638 TNO2 roof S V51 vacant space

V52 {1959.42501,
268.942099, 12} 1044.105087 AE roof S V52 vacant space

V53 {992.176817,
659.846045, 0} 1034.014055 outside outside S V53 vacant space

V54 {942.191497,
230.737664, 12} 950.174407 windtunnellab roof S V54 vacant space

V55 {1355.143487,
445.71046, 0} 937.010293 outside outside N V55 vacant space

V56 {2063.13655,
604.053783, 0} 886.901096 outside outside N V56 vacant space

V57 {1196.644963,
359.892335, 12} 886.221007 V57 roof S V57 vacant space

V58 {1146.306081,
340.595763, 12} 886.221007 V58 roof S V58 vacant space

Identifier Coordinates Size Building Location Orientation Tag Node Type

V59
{1196.644963,
321.299191,

12.0}
886.221007 V59 roof S V59 vacant space

V60 {1196.644963,
282.706047, 12} 886.221007 V60 roof S V60 vacant space

V61 {1096.806179,
359.892335, 12} 886.221007 V61 roof S V61 vacant space

V62 {1146.306081,
302.002619, 12} 886.221007 V62 roof S V62 vacant space

V63 {1096.806179,
321.299191, 12} 886.221007 V63 roof S V63 vacant space

V64 {1096.806179,
282.706047, 12} 886.221007 V64 roof S V64 vacant space

V65 {1365.642899,
548.590606, 0} 884.459846 outside outside S V65 vacant space

V66 {1916.474869,
254.754857, 0} 871.979286 outside outside N V66 vacant space

V67 {953.203195,
436.507943, 0} 849.661333 outside outside S V67 vacant space

V68 {257.114541,
548.516607, 9} 817.90353 BK intermediate S V68 vacant space

V69 {1927.641057,
698.019698, 12} 816.51212 V69 roof S V69 vacant space

V70 {1886.441857,
745.460984, 0} 784.696363 outside outside E V70 vacant space

V71 {1170.88866,
730.078854, 12} 782.431852 EEMCS roof S V71 vacant space

V72 {1944.840175,
199.245266, 12} 741.899806 AE roof S V72 vacant space

V73 {1144.065167,
767.895521, 0} 735.651059 outside outside SE V73 vacant space

V74 {2001.02806,
641.807945, 12} 734.14002 AS(reactor) roof S V74 vacant space

V75 {886.807134,
318.03995, 12} 731.337236 ProcessEnergy roof S V75 vacant space

V76 {1965.81471,
682.498542, 0} 694.035302 outside outside S V76 vacant space

V77 {1892.075078,
556.457122, 0} 669.748444 outside outside W V77 vacant space

V78 {709.0206,
201.34272, 12} 641.94746 V78 roof S V78 vacant space

Appendix E TU Delft Analysis | pg.242 Appendix E TU Delft Analysis | pg.243

Identifier Coordinates Size Building Location Orientation Tag Node Type

V79 {885.322889,
592.55806, 12} 636.567695 AS roof S V79 vacant space

V80 {1781.529949,
145.808698, 0} 619.178938 outside outside S V80 vacant space

V81 {2000.503935,
702.969141, 0} 603.53602 outside outside SW V81 vacant space

V82 {2283.175338,
205.215859, 0} 566.432602 outside outside S V82 vacant space

V83 {930.622033,
413.865393, 0} 560.237079 outside outside E V83 vacant space

V84 {1776.14714,
490.752615, 0} 559.772953 outside outside S V84 vacant space

V85 {2059.209388,
641.807945, 12} 549.393913 AS(reactor) roof S V85 vacant space

V86 {1964.556238,
648.939287, 0} 545.514563 outside outside N V86 vacant space

V87 {1120.540968,
243.71128, 12} 513.135634 V87 roof S V87 vacant space

V88 {985.884456,
239.935863, 12} 506.800626 TNO2 roof S V88 vacant space

V89 {2204.207461,
138.013049, 0} 501.818741 outside outside S V89 vacant space

V90 {2061.039097,
567.558093, 0} 494.8345 outside outside W V90 vacant space

V91 {1162.070546,
243.291789, 12} 475.829477 V91 roof S V91 vacant space

V92 {1202.341653,
243.291789, 12} 475.829477 V92 roof S V92 vacant space

V93 {1089.079166,
302.020486, 0} 473.013918 outside outside E V93 vacant space

V94
{1180.528137,
402.278761,

12.0}
443.450548 EEMCS2 roof S V94 vacant space

V95 {1200.66369,
302.439976, 0} 439.227209 outside outside E V95 vacant space

V96 {1265.429833,
771.166212, 0} 436.388609 outside outside E V96 vacant space

V97 {1273.333716,
711.489837, 12} 402.637612 Bouwcampus roof S V97 vacant space

V98 {986.590205,
767.909158, 0} 388.062522 outside outside E V98 vacant space

Identifier Coordinates Size Building Location Orientation Tag Node Type

V99 {1199.824709,
341.872101, 0} 387.139367 outside outside E V99 vacant space

V100 {291.760006,
614.43794, 0} 373.210485 outside outside S V100 vacant space

V101 {1090.757129,
341.872101, 0} 371.653793 outside outside E V101 vacant space

V102 {1886.95046,
725.286593, 12} 367.430454 V102 roof S V102 vacant space

V103 {1905.40805,
199.664757, 12} 360.391556 AE roof S V103 vacant space

V104 {1144.871428,
321.736548, 0} 338.570974 outside outside E V104 vacant space

V105 {1272.371848,
232.305328, 0} 338.339612 outside outside E V105 vacant space

V106 {749.263449,
220.917178, 12} 329.297226 Inholland roof S V106 vacant space

V107 {2265.186467,
137.043157, 0} 319.677165 outside outside S V107 vacant space

V108 {2120.187284,
479.884539, 12} 315.342612 V108 roof S V108 vacant space

V109 {1936.138471,
576.098149, 0} 307.896866 outside outside S V109 vacant space

V110 {1379.786215,
389.69404, 12} 306.192045 X roof S V110 vacant space

V111 {1119.240678,
202.74666, 0} 285.118209 outside outside W V111 vacant space

V112 {727.310526,
191.879847, 0} 273.904622 outside outside NW V112 vacant space

V113 {2118.089831,
203.440173, 12} 265.366439 catalysislab roof S V113 vacant space

V114 {1198.128771,
203.891088, 0} 248.228987 outside outside W V114 vacant space

V115 {1951.552026,
218.541838, 12} 237.914738 AE roof S V115 vacant space

V116 {1310.048145,
768.8042, 0} 221.053856 outside outside S V116 vacant space

V117 {1969.590126,
481.562501, 12} 216.798046 V117 roof S V117 vacant space

V118
{1969.590126,
443.808339,

12.0}
216.798046 V118 roof S V118 vacant space

Appendix E TU Delft Analysis | pg.244 Appendix E TU Delft Analysis | pg.245

Identifier Coordinates Size Building Location Orientation Tag Node Type

V119 {946.871822,
752.133997, 0} 209.055258 outside outside E V119 vacant space

V120 {1219.960262,
670.333312, 0} 202.72025 outside outside S V120 vacant space

V121 {618.830102,
518.897005, 12} 199.632282 donercompany roof S V121 vacant space

V122 {204.792622,
650.197759, 12} 192.161373 bouwpub roof S V122 vacant space

V123 {1154.60924,
203.113098, 0} 191.032928 outside outside W V123 vacant space

V124 {916.249002,
632.57915, 0} 185.826896 outside outside S V124 vacant space

V125 {1879.819118,
481.562501, 12} 177.380219 V125 roof S V125 vacant space

V126 {1937.378834,
653.267983, 0} 177.133105 outside outside S V126 vacant space

V127 {1891.150962,
585.077942, 12} 166.899954 V127 roof S V127 vacant space

V128 {1879.819118,
442.549867, 12} 158.375196 V128 roof S V128 vacant space

V129 {381.049617,
522.281747, 12} 149.579037 boathouse roof S V129 vacant space

V130 {747.219077,
278.590871, 0} 147.355996 outside outside S V130 vacant space

V131 {1261.070349,
712.282381, 12} 137.962393 Bouwcampus roof S V131 vacant space

V132 {2145.817746,
580.142814, 0} 137.293697 outside outside S V132 vacant space

V133 {1884.449721,
616.882019, 12} 133.566698 V133 roof S V133 vacant space

V134 {2005.255424,
549.436989, 0} 107.033708 outside outside S V134 vacant space

V135 {2134.449968,
197.567304, 12} 105.583464 catalysislab roof S V135 vacant space

V136
{1042.515699,
455.973569,

12.0}
103.471795 EEMCS2 roof S V136 vacant space

V137 {995.532742,
719.833214, 0} 84.466771 outside outside S V137 vacant space

V138 {599.151462,
516.677845, 12} 83.121305 stud roof S V138 vacant space

Identifier Coordinates Size Building Location Orientation Tag Node Type

V139 {995.532742,
743.744183, 0} 73.908425 outside outside S V139 vacant space

V140 {2282.543163,
287.235901, 0} 56.943728 outside outside S V140 vacant space

V141 {2071.945855,
622.930864, 12} 54.199511 roof outside S V141 vacant space

V142 {1881.287336,
372.668171, 0} 47.626941 outside outside S V142 vacant space

V143 {964.490431,
752.972978, 0} 45.752834 outside outside E V143 vacant space

V144
{1886.95046,
605.731746,

12.0}
22.524472 V144 roof S V144 vacant space

V145 {753.644985,
766.359989, 0} 17.542418 outside outside S V145 vacant space

Appendix E TU Delft Analysis | pg.246 Appendix E TU Delft Analysis | pg.247

E.11 Waste Source Nodes

WO85

WO84

WO83

WO82

WO81

WO80

WO79
WO78

WO77WO76
WO75

WO74

WO73

WO72

WO71

WO70

WO69

WO68

WO67

WO66

WO65

WO64

WO63 WO62

WO61

WO60

WO59

WO58WO57WO56

WO55WO54

WO53

WO52
WO51

WO50
WO49

WO48

WO47 WO46
WO45

WO44

WO43

WO42

WO41

WO40

WO39

WO38

WO37

WO36

WO35

WO34
WO33

WO32 WO31
WO30

WO29

WO28

WO27WO26

WO25

WO24

WO23

WO22

WO21

WO20

WO19
WO18

WO17WO16

WO15

WO14

WO13
WO12

WO11

WO10

WO9

WO8

WO7

WO6
WO5

WO4

WO3

WO2

WO1

WO0

WO86

Vacant Rooftop

Vacant Ground Floor

Appendix E TU Delft Analysis | pg.248 Appendix E TU Delft Analysis | pg.249

Identifier Coordinates Source Waste Type Quantity Tag Node Type Waste

WO0 {940.159971,
709.345779, 0} V27 W7 1732320 WO0 waste heat (units MJ)

WO1 {274.847735,
547.422372, 0} BK W2 3360 WO1 waste sawdust (units

kg)

WO2 {304.212084,
575.947739, 0} BK W1 938 WO2 waste food (units kg)

WO3 {284.076531,
481.981824, 0} BK W3 50412.011 WO3 waste paper (units kg)

WO4 {190.949597,
634.676436, 0} BK W4 40142.31698 WO4 waste coffee (units kg)

WO5 {253.034219,
609.506994, 0} BK W5 170.2 WO5 waste co2 (units kg)

WO6 {207.729225,
598.600236, 0} BK W5 92 WO6 waste co2

WO7 {207.729225,
560.007093, 0} BK W5 72.68 WO7 waste co2

WO8 {289.9494,
507.990247, 0} BK W5 55.2 WO8 waste co2

WO9 {686.787594,
718.574574, 0} Lib W3 477438.75 WO9 waste paper

WO10 {692.240973,
685.434809, 0} Lib W4 2864.4 WO10 waste coffee

WO11 {708.181619,
620.833243, 0} Aula W4 14857.68302 WO11 waste coffee

WO12 {684.27065,
614.540883, 0} Aula W1 11474 WO12 waste food

WO13 {657.003755,
631.740001, 0} Aula W6 5.26E+06 WO13 waste rainwater

(units L)

WO14 {808.020403,
359.910033, 0} 3me W3 84960.3727 WO14 waste paper

WO15 {841.579659,
378.367624, 0} 3me None 0 WO15 waste None

WO16 {621.347046,
528.964782, 0} donercompany None 0 WO16 waste None

WO17 {751.38916,
533.159689, 0} foodtrucks None 0 WO17 waste None

WO18 {757.68152,
565.460472, 0} AS W5 48.3 WO18 waste co2

E.12 Waste Source Data Identifier Coordinates Source Waste Type Quantity Tag Node Type Waste

WO19 {654.486811,
593.985839, 0} Aula W5 151.8 WO19 waste co2

WO20 {663.715606,
565.460472, 0} Aula W5 151.8 WO20 waste co2

WO21 {682.173196,
541.130012, 0} Aula W5 107.64 WO21 waste co2

WO22 {694.757917,
567.138434, 0} Aula W5 107.64 WO22 waste co2

WO23 {697.274861,
595.663801, 0} Aula W5 460 WO23 waste co2

WO24 {788.723832,
565.460472, 0} AS W5 60.72 WO24 waste co2

WO25 {788.723832,
602.375652, 0} AS None 0 WO25 waste None

WO26 {857.520305,
565.460472, 0} AS W5 69.92 WO26 waste co2

WO27 {886.045672,
565.460472, 0} AS W5 92 WO27 waste co2

WO28 {538.287889,
341.032952, 0} TPM W4 5558.820744 WO28 waste coffee

WO29 {538.70738,
316.283001, 0} TPM W6 2.81E+06 WO29 waste rainwater

WO30 {538.70738,
284.401709, 0} TPM W4 5558.820744 WO30 waste coffee

WO31 {649.033432,
294.049995, 0} ID W4 8359.677183 WO31 waste coffee

WO32 {613.376723,
293.630504, 0} ID None 0 WO32 waste None

WO33 {604.567418,
357.81258, 0} ID W4 8359.677183 WO33 waste coffee

WO34 {681.753705,
357.81258, 0} ID W3 37659.26004 WO34 waste paper

WO35 {682.173196,
417.799749, 0} ID W5 57.96 WO35 waste co2

WO36 {663.715606,
364.943922, 0} ID W1 1017.817839 WO36 waste food

WO37 {758.520502,
435.418358, 0} 3me W6 8.70E+06 WO37 waste rainwater

WO38 {682.173196,
396.825214, 0} ID W5 47.84 WO38 waste co2

Appendix E TU Delft Analysis | pg.250 Appendix E TU Delft Analysis | pg.251

Identifier Coordinates Source Waste Type Quantity Tag Node Type Waste

WO39 {682.173196,
378.367624, 0} ID W5 58.88 WO39 waste co2

WO40 {728.736663,
453.456457, 0} 3me W4 18859.67192 WO40 waste coffee

WO41 {771.944204,
401.859102, 0} 3me W5 115.46 WO41 waste co2

WO42 {246.741859,
572.172323, 0} BK W6 9.77E+06 WO42 waste rainwater

WO43 {771.944204,
375.850679, 0} 3me W5 77.28 WO43 waste co2

WO44 {771.944204,
354.876145, 0} 3me W5 62.1 WO44 waste co2

WO45 {771.944204,
337.257536, 0} 3me W5 62.1 WO45 waste co2

WO46 {673.783382,
329.706703, 0} ID None 0 WO46 waste None

WO47 {633.512276,
329.706703, 0} ID None 0 WO47 waste None

WO48 {1008.117463,
461.00729, 0} EEMCS2 W4 10324.13698 WO48 waste coffee

WO49 {1076.494445,
436.257339, 0} EEMCS2 W5 151.34 WO49 waste co2

WO50 {1110.053701,
436.257339, 0} EEMCS2 W5 90.62 WO50 waste co2

WO51 {1141.934993,
436.257339, 0} EEMCS2 W5 64.4 WO51 waste co2

WO52 {1179.689155,
436.257339, 0} EEMCS2 W5 64.4 WO52 waste co2

WO53 {1173.816286,
460.587799, 0} EEMCS2 W3 46508.89631 WO53 waste paper

WO54 {1008.117463,
570.074869, 0} CEG W1 1761.467199 WO54 waste food

WO55 {1068.524122,
570.074869, 0} CEG W5 164.68 WO55 waste co2

WO56 {964.909922,
569.655379, 0} CEG W5 155.48 WO56 waste co2

WO57 {1037.901302,
571.333341, 0} CEG W5 124.2 WO57 waste co2

WO58 {1105.858794,
575.528248, 0} CEG W5 124.2 WO58 waste co2

Identifier Coordinates Source Waste Type Quantity Tag Node Type Waste

WO59 {1089.079166,
458.909836, 0} EEMCS2 W6 1.18E+07 WO59 waste rainwater

WO60 {1176.33323,
566.299453, 0} CEG W5 92.92 WO60 waste co2

WO61 {1141.096012,
604.053615, 0} CEG W5 50.14 WO61 waste co2

WO62 {1131.028235,
635.095926, 0} CEG W5 50.14 WO62 waste co2

WO63 {1085.723241,
633.417964, 0} CEG W5 55.2 WO63 waste co2

WO64 {1072.299539,
609.926485, 0} CEG W5 57.5 WO64 waste co2

WO65 {1103.34185,
611.604448, 0} CEG W4 14467.51726 WO65 waste coffee

WO66 {1133.545179,
568.816397, 0} CEG W3 65174.28635 WO66 waste paper

WO67 {1106.697775,
641.807777, 0} CEG W6 1.07E+07 WO67 waste rainwater

WO68 {1225.413641,
700.955965, 0} Bouwcampus W5 51.52 WO68 waste co2

WO69 {1395.726861,
455.973401, 0} X None 0 WO69 waste None

WO70 {1355.455755,
447.583588, 0} X None 0 WO70 waste None

WO71 {1731.738904,
633.417964, 0} WO71 None 0 WO71 waste None

WO72 {1171.718832,
731.159295, 0} EEMCS W1 1256.997198 WO72 waste food

WO73 {1172.138323,
751.714338, 0} EEMCS W4 10324.13698 WO73 waste coffee

WO74 {2065.234004,
423.253128, 0} AS2 W4 10028.18125 WO74 waste coffee

WO75 {1918.412262,
341.032952, 0} fellowship W1 1220.963626 WO75 waste food

WO76 {1890.306386,
340.613461, 0} fellowship W5 52.44 WO76 waste co2

WO77 {1956.585915,
340.613461, 0} fellowship W5 57.96 WO77 waste co2

WO78 {1918.412262,
286.499162, 0} AE W4 11199.13654 WO78 waste coffee

Appendix E TU Delft Analysis | pg.252 Appendix E TU Delft Analysis | pg.253

Identifier Coordinates Source Waste Type Quantity Tag Node Type Waste

WO79 {1893.662311,
299.503374, 0} AE W3 50450.6557 WO79 waste paper

WO80 {1922.187678,
234.062826, 0} AE W5 133.4 WO80 waste co2

WO81 {1922.187678,
205.537459, 0} AE W5 64.4 WO81 waste co2

WO82 {2254.004814,
255.456851, 0} datacenter W7 8625000 WO82 waste heat

WO83 {1277.849977,
395.147251, 0} compostbin None 0 WO83 waste None

WO84 {1008.117463,
432.481923, 0} EEMCS2 W1 1256.997198 WO84 waste food

WO85 {938.062517,
361.587996, 0} education W5 147.2 WO85 waste co2

WO86 {938.062517,
294.469485, 0} education W5 123.28 WO86 waste co2

Appendix F TU Delft Decisions

Appendix F TU Delft Decisions | pg.254 Appendix F TU Delft Decisions | pg.255

APPENDIX F TU DELFT DECISIONS

F.1 Stage 1 Assigned Systems

UF1 Vermiculture UF6 Raised Beds

UF2 Aquaculture UF7 Deep Water Culture

UF3 Mushroom Farm UF8 Plant Factory

UF4 NFT UF9 Aeroponics

UF5 Media Beds

N

Appendix F TU Delft Decisions | pg.256 Appendix F TU Delft Decisions | pg.257

F.2 Stage 1 Connections

W1 Foodwaste W6 Rainwater

W2 Sawdust W7 Residual Heat

W3 Paper Waste S2 Nutrient Dense Water

W4 Spent Coffee Grounds S4 Fertiliser

W5 CO2 S5 Fish Food

N

Appendix F TU Delft Decisions | pg.258 Appendix F TU Delft Decisions | pg.259

F.3 Stage 2 Assigned Systems

UF1 Vermiculture UF6 Raised Beds

UF2 Aquaculture UF7 Deep Water Culture

UF3 Mushroom Farm UF8 Plant Factory

UF4 NFT UF9 Aeroponics

UF5 Media Beds

N

Appendix F TU Delft Decisions | pg.260 Appendix F TU Delft Decisions | pg.261

F.4 Stage 2 Connections

W1 Foodwaste W6 Rainwater

W2 Sawdust W7 Residual Heat

W3 Paper Waste S2 Nutrient Dense Water

W4 Spent Coffee Grounds S4 Fertiliser

W5 CO2 S5 Fish Food

N

Appendix F TU Delft Decisions | pg.262 Appendix F TU Delft Decisions | pg.263

F.5 Stage 3 Assigned Systems

UF1 Vermiculture UF6 Raised Beds

UF2 Aquaculture UF7 Deep Water Culture

UF3 Mushroom Farm UF8 Plant Factory

UF4 NFT UF9 Aeroponics

UF5 Media Beds

NN

Appendix F TU Delft Decisions | pg.264 Appendix F TU Delft Decisions | pg.265

F.6 Stage 3 Connections

W1 Foodwaste W6 Rainwater

W2 Sawdust W7 Residual Heat

W3 Paper Waste S2 Nutrient Dense Water

W4 Spent Coffee Grounds S4 Fertiliser

W5 CO2 S5 Fish Food

N

Appendix F TU Delft Decisions | pg.266 Appendix F TU Delft Decisions | pg.267

F.7 Stage 4 Assigned Systems

UF1 Vermiculture UF6 Raised Beds

UF2 Aquaculture UF7 Deep Water Culture

UF3 Mushroom Farm UF8 Plant Factory

UF4 NFT UF9 Aeroponics

UF5 Media Beds

N

Appendix F TU Delft Decisions | pg.268 Appendix F TU Delft Decisions | pg.269

F.8 Stage 4 Connections

W1 Foodwaste W6 Rainwater

W2 Sawdust W7 Residual Heat

W3 Paper Waste S2 Nutrient Dense Water

W4 Spent Coffee Grounds S4 Fertiliser

W5 CO2 S5 Fish Food

N

Appendix F TU Delft Decisions | pg.270 Appendix F TU Delft Decisions | pg.271

F.9 Statistics

Size (m2) System Symbiosis
Rate

Which stage
did the space
get occupied?

Produce Produce 2 Yield (kg/
year)

Yield 2 (kg/
year)

V0 31174 UF6 0 4 small veg big veg 389675 84169.8

V1 23824 UF1 1 4 worm 116022.88

V10 4720 UF6 0 4 small veg big veg 59000 12744

V100 373 UF2 1 4 fish 5595

V102 367 UF4 0 4 small veg 36663.3

V103 360 UF4 0 4 small veg 35964

V106 329 UF4 0 4 small veg 32867.1

V107 319 UF6 0 4 small veg big veg 3987.5 861.3

V108 315 UF4 0 4 small veg 31468.5

V109 307 UF6 0 4 small veg big veg 3837.5 828.9

V11 4436 UF6 0 4 small veg big veg 55450 11977.2

V110 306 UF4 0 4 small veg 30569.4

V112 273 UF3 0.75 4 mushroom 34125

V113 265 UF4 0 4 small veg 26473.5

V115 237 UF4 0 4 small veg 23676.3

V116 221 UF6 0 4 small veg big veg 2762.5 596.7

V117 216 UF4 0 4 small veg 21578.4

V118 216 UF4 0 4 small veg 21578.4

V12 3912 UF4 0 4 small veg 390808.8

V120 202 UF6 0 4 small veg big veg 2525 545.4

V121 199 UF4 0 4 small veg 19880.1

V122 192 UF4 0 4 small veg 19180.8

V123 191 UF1 1 4 worm 930.17

V124 185 UF1 1 4 worm 900.95

V125 177 UF4 0 4 small veg 17682.3

V126 177 UF1 1 4 worm 861.99

V127 166 UF4 0 4 small veg 16583.4

V128 158 UF4 0 4 small veg 15784.2

V129 149 UF4 0 4 small veg 14885.1

V130 147 UF6 0 4 small veg big veg 1837.5 396.9

V131 137 UF4 0.333333333 1 small veg 13686.3

V132 137 UF6 0 4 small veg big veg 1712.5 369.9

V133 133 UF4 0 4 small veg 13286.7

V134 107 UF1 1 4 worm 521.09

V135 105 UF4 0 4 small veg 10489.5

V136 103 UF4 0.5 1 small veg 10289.7

V137 84 UF6 0 4 small veg big veg 1050 226.8

V138 83 UF4 0 4 small veg 8291.7

V139 73 UF6 0 4 small veg big veg 912.5 197.1

V14 3795 UF6 0 4 small veg big veg 47437.5 10246.5

V140 56 UF6 0 4 small veg big veg 700 151.2

V141 54 UF6 0 4 small veg big veg 675 145.8

V142 47 UF6 0 4 small veg big veg 587.5 126.9

V144 22 UF4 0 4 small veg 2197.8

V145 17 UF6 0 4 small veg big veg 212.5 45.9

TU DELFT YIELDS
Size (m2) System Symbiosis

Rate

Which stage
did the space
get occupied?

Produce Produce 2 Yield (kg/
year)

Yield 2 (kg/
year)

V15 3414 UF6 0 4 small veg big veg 42675 9217.8

V16 3321 UF6 0 4 small veg big veg 41512.5 8966.7

V17 3035 UF6 0 4 small veg big veg 37937.5 8194.5

V18 2707 UF6 0 4 small veg big veg 33837.5 7308.9

V19 2570 UF4 0 4 small veg 256743

V2 9665 UF4 0.666666667 1 small veg 965533.5

V21 2541 UF3 0.5 3 mushroom 317625

V22 2440 UF4 0.666666667 1 small veg 243756

V23 2245 UF3 0.5 2 mushroom 280625

V24 2167 UF4 0.666666667 1 small veg 216483.3

V25 2144 UF4 0 4 small veg 214185.6

V26 2139 UF4 0 4 small veg 213686.1

V27 2111 UF4 0.333333333 1 small veg 210888.9

V28 2093 UF1 1 4 worm 10192.91

V29 1954 UF3 0.5 4 mushroom 244250

V3 8429 UF8 1 1 small veg 736694.6

V30 1942 UF6 0 4 small veg big veg 24275 5243.4

V31 1921 UF6 0 4 small veg big veg 24012.5 5186.7

V32 1665 UF6 0 4 small veg big veg 20812.5 4495.5

V33 1658 UF6 0 4 small veg big veg 20725 4476.6

V35 1597 UF6 0 4 small veg big veg 19962.5 4311.9

V36 1578 UF4 0 4 small veg 157642.2

V37 1572 UF3 0.4 4 mushroom 196500

V38 1501 UF4 0 4 small veg 149949.9

V39 1501 UF4 0 4 small veg 149949.9

V4 8272 UF6 0 4 small veg big veg 103400 22334.4

V40 1354 UF4 0.333333333 1 small veg 135264.6

V41 1340 UF3 0.4 4 mushroom 167500

V42 1288 UF6 0 4 small veg big veg 16100 3477.6

V43 1275 UF6 0 4 small veg big veg 15937.5 3442.5

V44 1233 UF4 0.333333333 1 small veg 123176.7

V46 1153 UF6 0 4 small veg big veg 14412.5 3113.1

V47 1148 UF4 0 4 small veg 114685.2

V48 1130 UF6 0 4 small veg big veg 14125 3051

V49 1091 UF6 0 4 small veg big veg 13637.5 2945.7

V5 8061 UF2 1 1 fish 120915

V50 1060 UF3 0.5 4 mushroom 132500

V51 1055 UF4 0 4 small veg 105394.5

V52 1044 UF4 0 4 small veg 104295.6

V53 1034 UF1 1 4 worm 5035.58

V54 950 UF4 0 4 small veg 94905

V55 937 UF3 0.5 4 mushroom 117125

V56 886 UF3 0.4 4 mushroom 110750

V57 886 UF4 0 4 small veg 88511.4

V58 886 UF4 0 4 small veg 88511.4

V59 886 UF4 0 4 small veg 88511.4

V6 6439 UF1 1 4 worm 31357.93

V60 886 UF4 0 4 small veg 88511.4

Appendix F TU Delft Decisions | pg.272 Appendix F TU Delft Decisions | pg.273

Area (m2) Area (hectares)

TOTAL 221817 22.1817

#spaces Area (hectares) Area (m2) Percentage %

small veg 103 16.4374 164374 74.1034276

big veg 40 9.1413 91413 41.21099826

worm 9 3.4785 34785 15.68184585

mushroom 11 1.4224 14224 6.412493181

fish 2 0.8434 8434 3.802233373

Produce Number Annual Production (kg) Daily Production (kg)

worm 677611800 169402.95 464.1176712

fish 506040 126510 346.6027397

mushroom 11853333 1778000 4871.232877

small veg 59472170 8326103.9 22811.24356

big veg 76177500 1142662.5 3130.582192

Daily Production of Leafy
Greens 22811.24356

Recommended Daily Fruit
& Vegetable Consumption

(kg)
0.25 (RIVM, 2017)

People # 91244.97425

Delf Population 103581 (Statistiek, n.d.)

Stage Symbiosis Rate % of
Decisions

Stage 1 (100 m) 52.56410256

Stage 2 (200 m) 50

Stage 3 (500 m) 50

Stage 4 (500 m + occupy all) 13.1969697

Total 17.88

Used Quantity Left Quantity Used Percentage

Food Waste (W1) 16967 1955 89.66811119

Sawdust (W2) 0 3360 0

Paper Waste (W3) 766093 46508 94.27664992

Coffee Waste (W4) 106308 54590 66.07167274

CO2 (W5) 2013 1966 50.59060065

Rainwater (W6) 41050300 8066500 83.5769024

Residual Heat (W7) 10357320 0 100

TU DELFT WASTE USE

Size (m2) System Symbiosis
Rate

Which stage
did the space
get occupied?

Produce Produce 2 Yield (kg/
year)

Yield 2 (kg/
year)

V61 886 UF4 0 4 small veg 88511.4

V62 886 UF4 0 4 small veg 88511.4

V63 886 UF4 0 4 small veg 88511.4

V64 886 UF4 0 4 small veg 88511.4

V65 884 UF6 0 4 small veg big veg 11050 2386.8

V66 871 UF3 0.333333333 1 mushroom 108875

V67 849 UF6 0 4 small veg big veg 10612.5 2292.3

V68 817 UF4 0.333333333 4 small veg 81618.3

V69 816 UF4 0 4 small veg 81518.4

V71 782 UF4 0 4 small veg 78121.8

V72 741 UF4 0.333333333 1 small veg 74025.9

V73 735 UF1 1 4 worm 3579.45

V74 734 UF4 0 4 small veg 73326.6

V75 731 UF4 0 4 small veg 73026.9

V76 694 UF6 0 4 small veg big veg 8675 1873.8

V78 641 UF4 0 4 small veg 64035.9

V79 636 UF4 0.333333333 4 small veg 63536.4

V8 5436 UF4 0.333333333 1 small veg 543056.4

V80 619 UF6 0 4 small veg big veg 7737.5 1671.3

V81 603 UF6 0 4 small veg big veg 7537.5 1628.1

V82 566 UF6 0 4 small veg big veg 7075 1528.2

V84 559 UF6 0 4 small veg big veg 6987.5 1509.3

V85 549 UF4 0 4 small veg 54845.1

V86 545 UF3 0.4 4 mushroom 68125

V87 513 UF4 0 4 small veg 51248.7

V88 506 UF4 0 4 small veg 50549.4

V89 501 UF6 0 4 small veg big veg 6262.5 1352.7

V9 4880 UF6 0 4 small veg big veg 61000 13176

V91 475 UF4 0 4 small veg 47452.5

V92 475 UF4 0 4 small veg 47452.5

V94 443 UF4 0 4 small veg 44255.7

V97 402 UF4 0 4 small veg 40159.8

Appendix F TU Delft Decisions | pg.274 Appendix G Ward 7 Analysis & Decisions | pg.275

Appendix G Ward 7 Analysis & Decisions

WARD 7 VACANT SPACE NODES

WARD 7 WASTE SOURCE NODES

Identifier Coordinates Size Building Location Orientation Tag Node Type

V0 {-803.904692,
34.790488, 0} 916.723679 V0 outside S V0 vacant space

V1 {-724.997122,
-1.092597, 0} 833.367616 V1 outside S V1 vacant space

V2 {-743.096854,
48.585595, 0} 831.022338 V2 outside S V2 vacant space

V3 {-778.018835,
6.722332, 0} 668.658545 V3 outside S V3 vacant space

V4 {-757.014994,
25.984151, 0} 625.125626 V4 outside S V4 vacant space

V5 {-673.392951,
50.552091, 0} 427.509633 V5 outside E V5 vacant space

V6 {-664.923643,
35.208772, 0} 267.734853 V6 outside NE V6 vacant space

Identifier Coordinates Source Waste Type Quantity Tag Node Type Waste

WO0 {-689.802413,
23.741236, 0} cafe W6 3 WO0 waste rainwater

WO1 {-683.915012,
28.756529, 0} cafe W1 3 WO1 waste food

WO2 {-677.172337,
23.553906, 0} cafe W4 3 WO2 waste coffee

WO3 {-697.587895,
50.744049, 0} community W6 3 WO3 waste rainwater

WO4 {-820.161616,
49.441107, 0} makers W6 3 WO4 waste rainwater

WO5 {-811.057505,
51.355828, 0} makers W2 3 WO5 waste sawdust

WO6 {-1266.789423,
45.775932, 0} school1 W3 3 WO6 waste paper

WO7 {-1201.863458,
141.943154, 0} school1 W3 3 WO7 waste paper

APPENDIX G WARD 7 ANALYSIS & DECISIONS

Appendix G Ward 7 Analysis & Decisions | pg.276 Appendix G Ward 7 Analysis & Decisions | pg.277

G.1 Vacant Space & Waste Output Nodes

WO5 WO3 V5

V4

V3

V2

V1

V0 V6

WO0

WO7

WO6

WO5
WO4

WO3

WO2
WO1

Appendix G Ward 7 Analysis & Decisions | pg.278 Appendix G Ward 7 Analysis & Decisions | pg.279

G.2 Stage 1

G.3 Stage 2

size system produce produce2 yield yield2

V0 916 UF4 small veg 91508.4

V1 833 UF4 small veg 83216.7

V2 831 UF4 small veg 83016.9

V3 668 UF6 small veg big veg 8350 1803.6

V4 625 UF6 small veg big veg 7812.5 1687.5

Number Annual Produce (kg) DailyProduce (kg)

worm 0 0 0

fish 0 0 0

mushroom 0 0 0

small veg 1956460 273904.5 750.4232877

big veg 1077500 16162.5 44.28082192

Daily Production of Leafy
Greens (kg) 750.4232877

Recommended Daily Fruit
& Vegetable Consumption

(kg)
0.25 (RIVM, 2017)

People # 3002

Ward 7 Population 77456
(DC Health Matters, n.d.)

G.4 UGC Yields

Appendix G Ward 7 Analysis & Decisions | pg.280 Appendix H Technical Details | pg.281

Appendix H Technical Details

see Foodcycle’s Github for the scripts

H.1 SCRIPT INCLUDING DATA PROCESSING STAGE 1 AND DATA EXPORT

- IMPORT TOOLS -

APPENDIX H TECHNICAL DETAILS

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

In []:

#Import Tools
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
import json
import requests
import openpyxl

Gives adjacency dictionary (not mine)
edge_dict={}
def create_edge_dict(graph):
 for i, n in G.adjacency():
 # print("i is",i)
 # print("n is",n)
 edge_dict[i] = list(n)
 return edge_dict

Gives duplicate items in a list (not mine)
def list_duplicates(seq):
 seen = set()
 seen_add = seen.add
 # adds all elements it doesn't know yet to seen and all other to seen_twice
 seen_twice = set(x for x in seq if x in seen or seen_add(x))
 # turn the set into a list (as requested)
 return list(seen_twice)

#(https://www.geeksforgeeks.org/python-merge-two-lists-into-list-of-tuples/)
def merge(list1, list2):

 merged_list = []
 for i in range(max((len(list1), len(list2)))):

 while True:
 try:
 tup = (list1[i], list2[i])
 except IndexError:
 if len(list1) > len(list2):
 list2.append('')
 tup = (list1[i], list2[i])
 elif len(list1) < len(list2):
 list1.append('')
 tup = (list1[i], list2[i])
 continue

 merged_list.append(tup)
 break
 return merged_list

function to check whether the list is empty or not
def is_list_empty(list):
 # checking the length

https://github.com/erengozdeanil/Foodcycle

Appendix H Technical Details | pg.282 Appendix H Technical Details | pg.283

- IMPORT DATA & PREPARE FOR PROCESSING -

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

Stage 0 | Preperation of Data

In []:

 if len(list) == 0:
 # returning true as length is 0
 return True
 # returning false as length is greater than 0
 return False

Retrieve data regarding vacant spaces from excel file
from openpyxl import load_workbook
workbook = load_workbook(filename="Node_Information_TU.xlsx")
workbook.sheetnames
worksheet for vacant spaces
sheet1 = workbook.worksheets[0]
worksheet for waste sources
sheet2 = workbook.worksheets[1]

Create dictionary based on excel worksheet
vacant_spaces={}
for value in sheet1.iter_rows(min_row=2, values_only=True):
 for index,item in enumerate(value):
 vacant_spaces[value[0]]={}
 vacant_spaces[value[0]]["location"]=value[1]
 vacant_spaces[value[0]]["tag"]=value[6]
 vacant_spaces[value[0]]["building"]=value[3]
 vacant_spaces[value[0]]["size_real"]=int(value[2])
 vacant_spaces[value[0]]["loc_building"]=value[4]
 vacant_spaces[value[0]]["orientation"]=value[5]
 vacant_spaces[value[0]]["node_type"]=value[7]

Interpret Data
#Rules:
#structure (roof:1,ground:3,outside:3,basement:3,intermediate:2)
#solar (roof:3,
basement:1
ground & S,SW,SE:3,
ground $ E,W:2
ground $ N,NE,NW:1
outside & S,SW,SE:3,
outside $ E,W:2
outside $ N,NE,NW:1
intermediate & S,SW,SE:3,
intermediate & E,W:2
intermediate & N,NE,NW:1
#size (0-100 size:1)
(101-500 size:2)
(500-... size:3)

Simplify vacant space characteristics
for space in vacant_spaces:
 if vacant_spaces[space]["loc_building"]=="roof":
 vacant_spaces[space]["structure"]=1
 vacant_spaces[space]["solar"]=3
 if vacant_spaces[space]["loc_building"]=="basement":
 vacant_spaces[space]["structure"]=3
 vacant_spaces[space]["solar"]=1

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

 if (vacant_spaces[space]["loc_building"]=="ground") and (((vacant_spaces[space]
["orientation"])=="S") or ((vacant_spaces[space]["orientation"])=="SE") or
((vacant_spaces[space]["orientation"])=="SW")):
 vacant_spaces[space]["solar"]=3
 vacant_spaces[space]["structure"]=3
 if (vacant_spaces[space]["loc_building"]=="ground") and (((vacant_spaces[space]
["orientation"])=="N") or ((vacant_spaces[space]["orientation"])=="NE") or
((vacant_spaces[space]["orientation"])=="NW")):
 vacant_spaces[space]["solar"]=1
 vacant_spaces[space]["structure"]=3
 if (vacant_spaces[space]["loc_building"]=="ground") and (((vacant_spaces[space]
["orientation"])=="E") or ((vacant_spaces[space]["orientation"])=="W")):
 vacant_spaces[space]["solar"]=2
 vacant_spaces[space]["structure"]=3
 if (vacant_spaces[space]["loc_building"]=="intermediate") and (((vacant_spaces[space]
["orientation"])=="S") or ((vacant_spaces[space]["orientation"])=="SE") or
((vacant_spaces[space]["orientation"])=="SW")):
 vacant_spaces[space]["solar"]=3
 vacant_spaces[space]["structure"]=2
 if (vacant_spaces[space]["loc_building"]=="intermediate") and (((vacant_spaces[space]
["orientation"])=="N") or ((vacant_spaces[space]["orientation"])=="NE") or
((vacant_spaces[space]["orientation"])=="NW")):
 vacant_spaces[space]["solar"]=1
 vacant_spaces[space]["structure"]=2
 if (vacant_spaces[space]["loc_building"]=="intermediate") and (((vacant_spaces[space]
["orientation"])=="E") or ((vacant_spaces[space]["orientation"])=="W")):
 vacant_spaces[space]["solar"]=2
 vacant_spaces[space]["structure"]=2
 if (vacant_spaces[space]["loc_building"]=="outside") and (((vacant_spaces[space]
["orientation"])=="S") or ((vacant_spaces[space]["orientation"])=="SE") or
((vacant_spaces[space]["orientation"])=="SW")):
 vacant_spaces[space]["solar"]=3
 vacant_spaces[space]["structure"]=3
 if (vacant_spaces[space]["loc_building"]=="outside") and (((vacant_spaces[space]
["orientation"])=="N") or ((vacant_spaces[space]["orientation"])=="NE") or
((vacant_spaces[space]["orientation"])=="NW")):
 vacant_spaces[space]["solar"]=1
 vacant_spaces[space]["structure"]=3
 if (vacant_spaces[space]["loc_building"]=="outside") and (((vacant_spaces[space]
["orientation"])=="E") or ((vacant_spaces[space]["orientation"])=="W")):
 vacant_spaces[space]["solar"]=2
 vacant_spaces[space]["structure"]=3

Simplify vacant spaces' sizes based on predefined ranges
for space in vacant_spaces:
 if vacant_spaces[space]["size_real"]<=200:
 vacant_spaces[space]["size"]=1
 if (vacant_spaces[space]["size_real"]>200) and (vacant_spaces[space]
["size_real"]<=1000) :
 vacant_spaces[space]["size"]=2
 if (vacant_spaces[space]["size_real"]>1000):
 vacant_spaces[space]["size"]=3

Remove orientation,loc_building,size_real since these will not be used anymore
for space in vacant_spaces:
 vacant_spaces[space].pop("orientation")
 vacant_spaces[space].pop("size_real")

Appendix H Technical Details | pg.284 Appendix H Technical Details | pg.285

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

In []:

In []:

 vacant_spaces[space].pop("loc_building")

Retrieve waste sources
Create dictionary based on excel worksheet
wastes={}
for value in sheet2.iter_rows(min_row=2, values_only=True):
 for index,item in enumerate(value):
 wastes[value[0]]={}
 wastes[value[0]]["location"]=value[1]
 wastes[value[0]]["tag"]=value[5]
 wastes[value[0]]["type"]=value[3]

Retrieve connections between vacant spaces within radius=x
url1="https://raw.githubusercontent.com/erengozdeanil/UF-
DecisionMaker/main/Edges_vacant100.txt"
resp1 = requests.get(url1)
edges1 = json.loads(resp1.text)
#converts nested lists into a list of tuples
nearby_space100 = [tuple(i) for i in edges1]

Retrieve connections between vacant spaces and waste sources within radius=x with
identifiers
url1="https://raw.githubusercontent.com/erengozdeanil/UF-
DecisionMaker/main/Edges_try1.txt"
resp1 = requests.get(url1)
edges1 = json.loads(resp1.text)
#converts nested lists into a list of tuples
nearby_waste100 = [tuple(i) for i in edges1]

In the excel sheet there were unnecessary/empty waste output points
Remove empty points
for waste in wastes:
 for couple in nearby_waste100:
 if wastes[waste]["type"]=="None":
 if waste in couple:
 print(couple, "removed")
 nearby_waste100.remove(couple)
 (couple,"removed")

Retrieve node information regarding waste sources
workbook = load_workbook(filename="Node_Information_TU.xlsx")
workbook.sheetnames
sheet1 = workbook.worksheets[0]
sheet2 = workbook.worksheets[1]
wastes={}
for value in sheet2.iter_rows(min_row=2, values_only=True):
 for index,item in enumerate(value):
 if value[4]!=0:
 wastes[value[0]]={}
 wastes[value[0]]["location"]=value[1]
 wastes[value[0]]["source"]=value[2]
 wastes[value[0]]["tag"]=value[5]

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

 wastes[value[0]]["type"]=value[3]
 wastes[value[0]]["quantity"]=int(value[4])
 wastes[value[0]]["node_type"]="waste"

Assign ranges to quantities
for waste in wastes:
 if wastes[waste]["type"]=="W1":
 if wastes[waste]["quantity"]<= 183705:
 wastes[waste]["size"]=1
 if (wastes[waste]["quantity"]>183705) and (wastes[waste]["quantity"]<=918523):
 wastes[waste]["size"]=2
 if wastes[waste]["quantity"]>918523:
 wastes[waste]["size"]=3
 if wastes[waste]["type"]=="W2":
 if wastes[waste]["quantity"]<= 67500:
 wastes[waste]["size"]=1
 if (wastes[waste]["quantity"]>67500) and (wastes[waste]["quantity"]<=337500):
 wastes[waste]["size"]=2
 if wastes[waste]["quantity"]>337500:
 wastes[waste]["size"]=3
 if wastes[waste]["type"]=="W3":
 if wastes[waste]["quantity"]<= 11813:
 wastes[waste]["size"]=1
 if (wastes[waste]["quantity"]>11813) and (wastes[waste]["quantity"]<=59063):
 wastes[waste]["size"]=2
 if wastes[waste]["quantity"]>59063:
 wastes[waste]["size"]=3
 if wastes[waste]["type"]=="W4":
 if wastes[waste]["quantity"]<= 28200:
 wastes[waste]["size"]=1
 if (wastes[waste]["quantity"]>28200) and (wastes[waste]["quantity"]<=141000):
 wastes[waste]["size"]=2
 if wastes[waste]["quantity"]>141000:
 wastes[waste]["size"]=3
 if wastes[waste]["type"]=="W5":
 if wastes[waste]["quantity"]<= 19342:
 wastes[waste]["size"]=1
 if (wastes[waste]["quantity"]>19342) and (wastes[waste]["quantity"]<=96710):
 wastes[waste]["size"]=2
 if wastes[waste]["quantity"]>96710:
 wastes[waste]["size"]=3
 if wastes[waste]["type"]=="W6":
 if wastes[waste]["quantity"]<= 1560000:
 wastes[waste]["size"]=1
 if (wastes[waste]["quantity"]>1560000) and (wastes[waste]["quantity"]<=7800000):
 wastes[waste]["size"]=2
 if wastes[waste]["quantity"]>7800000:
 wastes[waste]["size"]=3
 if wastes[waste]["type"]=="W7":
 if wastes[waste]["quantity"]<= 200000:
 wastes[waste]["size"]=1
 if (wastes[waste]["quantity"]>200000) and (wastes[waste]["quantity"]<=1000000):
 wastes[waste]["size"]=2
 if wastes[waste]["quantity"]>1000000:
 wastes[waste]["size"]=3

Appendix H Technical Details | pg.286 Appendix H Technical Details | pg.287

- STAGE 1 -

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

Stage 1 | Search Radius = 100 m

Data Processing

In []:

Remove real quantitis from the list since we will not use it again
for waste in wastes:
 wastes[waste].pop("quantity")

#Dictionary of urban farming systems
 # UF1: Vermiculture, UF2: Aquaculture, UF3: Mushroom, UF4: NFT, UF5: Medai Beds, UF6:
Raised Beds, UF7: Water Culture, UF8: Plant Factory, UF9: Aeroponics
 # "S" : supplementary system, "F" : food production system
 # 3 : high, 2 : medium, 1 : low, 0 : none
uf_systems = {
"UF1":{"tag":"UF1","type":"S","weight":3,"solar":1,"in":
["W1","W2","W3","W6"],"supplement":None,"out":["S4","S5"]},
"UF2":{"tag":"UF2","type":"SF","weight":3,"solar":2,"in":["W7"],"supplement":["S5"],"out":
["O4","S2"]},
"UF3":{"tag":"UF3","type":"F","weight":2,"solar":1,"in":
["W2","W3","W4","W6"],"supplement":None,"out":["O3","S4"]},
"UF4":{"tag":"UF4","type":"F","weight":1,"solar":3,"in":["W5","W6","W7"],"supplement":
["S2"],"out":["O1","W1"]},
"UF5":{"tag":"UF5","type":"F","weight":1,"solar":3,"in":["W5","W6","W7"],"supplement":
["S2"],"out":["O1","O2","W1"]},
"UF6":{"tag":"UF6","type":"F","weight":3,"solar":3,"in":["W6"],"supplement":["S4"],"out":
["O1","O2","W1"]},
"UF7":{"tag":"UF7","type":"F","weight":3,"solar":3,"in":["W5","W6","W7"],"supplement":
["S2"],"out":["O1","W1"]},
"UF8":{"tag":"UF8","type":"F","weight":3,"solar":1,"in":["W5","W6"],"supplement":
["S2"],"out":["O1","W1","W7"]},
"UF9":{"tag":"UF9","type":"F","weight":1,"solar":3,"in":["W5","W6","W7"],"supplement":
["S2"],"out":["O1","W1"]}
}

critical_items=["W1","W2","W3", "W4"]
non_critical_items=["W5","W6","W7"]

Make a dictionary of vacant spaces and potential uf systems based on structural capacity
& solar exposure
Rule 1: Solar exposure of space == Solar exposure demand of system
Structural capacity of space >= Weight of space
Size of space == Quantity of waste

v_potential = {}
for k,v in vacant_spaces.items():
 uf_list=[]
 for j,y in uf_systems.items():
 if (vacant_spaces[k]["structure"])>=(uf_systems[j]["weight"]) and
(vacant_spaces[k]["solar"])==(uf_systems[j]["solar"]) and (uf_systems[j]["type"]=="F"):
 v_potential[k]={}
 uf_list.append(uf_systems[j]["tag"])
 v_potential[k]["tag"]=vacant_spaces[k]["tag"]
 v_potential[k]["UF"]=uf_list

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

In []:

Rule 2: If CO2, Heat and Rainwater are not in the same building as the vacant space,
they cannot be used.
Remove if vacant space is in a different building than the waste source (only for CO2,
Heat and Rainwater)
for couple_count in range(len(nearby_waste100)):
 for couple in nearby_waste100:
 for index,item in enumerate(couple):
 if couple[1] in wastes:
 if vacant_spaces[couple[0]]["building"]!=wastes[couple[1]]["source"]:
 print(couple,vacant_spaces[couple[0]]["building"],wastes[couple[1]]
["source"],wastes[couple[1]]["type"])
 if (wastes[couple[1]]["type"]=="W5") or (wastes[couple[1]]
["type"]=="W6") or (wastes[couple[1]]["type"]=="W7"):
 if couple in nearby_waste100:
 print(couple,wastes[couple[1]]["type"])
 print("removed",couple,wastes[couple[1]]
["type"],vacant_spaces[couple[0]]["building"],wastes[couple[1]]
["source"],wastes[couple[1]]["type"])
 nearby_waste100.remove(couple)
 else:
 print(couple,"not in nearby_waste100")

Draw Graph with nodes and edges with coordinates
G=nx.Graph()
for i,j in vacant_spaces.items():
 G.add_node(i)
G.add_edges_from(nearby_waste100)
nx.draw(G, with_labels=True, node_size=10)

Create a dictionary with vacant spaces and waste outputs them
new_waste_dict = create_edge_dict(G)
waste_dict = {}
for i,k in new_waste_dict.items():
 if i in vacant_spaces:
 waste_dict[i]=k

#List of dictionaries we will use:
print(v_potential)
print(waste_dict)
print(uf_systems)

Add needed inputs for each potential system into the v_potential dictionary
v_potential_dict={}
for i,k in v_potential.items():
 v_potential_dict[i]={}
 potential_systems = v_potential[i]["UF"]
 for item in potential_systems:
 v_potential_dict[i][item] = uf_systems[item]["in"]

Searching For Inputs
Make a dictionary of found items nearby for each potential uf system
found_dict={}
for i,k in v_potential_dict.items():

Appendix H Technical Details | pg.288 Appendix H Technical Details | pg.289

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

In []:

 found_dict[i]={}
 for system,demanded in k.items():
 found_dict[i][system]={}
 found_dict[i][system]["found"]={}
 found_dict[i][system]["source"]={}
 found=[]
 source=[]
 for waste in waste_dict[i]:
 if waste in wastes:
 for each in demanded:
 available = wastes[waste]["type"]
 source2 = wastes[waste]["tag"]
 print(i,wastes[waste])
 source_size = wastes[waste]["size"]
 if each == available:
 found.append(available)
 source.append(source2)
 found_dict[i][system]["found"]=found
 found_dict[i][system]["source"]=source

Make a dictionary of missing items for each potential uf system
for i,system in found_dict.items():
 for uf in system:
 missing=[]
 found_dict[i][uf]["missing"]={}
 for x,y in uf_systems.items():
 for item in uf_systems[x]["in"]:
 if uf == x:
 missing.append(item)
 found_dict[i][uf]["missing"]=missing

In the dictionary missing items also contain found items
for i,k in found_dict.items():
 for system in k:
 for item in (found_dict[i][system]["found"]):
 if item in found_dict[i][system]["missing"]:
 missing_list=found_dict[i][system]["missing"]
 missing_list.remove(item)

Reach sizes of duplicate items
for i,k in found_dict.items():
 for system in k:
 found_items=found_dict[i][system]["found"]

Add a new list to the found dict -> for 1 waste source matching the size of space
waste quantity == vacant space size
for space in found_dict:
 for system in found_dict[space]:
 found_dict[space][system]["enough waste"]=[]
 found_dict[space][system]["enough source"]=[]
 for item in found_dict[space][system]["source"]:
 if wastes[item]["size"]==vacant_spaces[space]["size"]:
 if found_dict[space][system]["enough waste"]==[]:

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

In []:

 print(space,system,item,wastes[item]["type"],"1")
 found_dict[space][system]["enough waste"].append(wastes[item]["type"])
 found_dict[space][system]["enough source"].append(wastes[item]["tag"])
 found_dict[space][system]["found"].remove(wastes[item]["type"])
 found_dict[space][system]["source"].remove(wastes[item]["tag"])
 break
 elif found_dict[space][system]["enough waste"]!=[]:
 for waste in found_dict[space][system]["enough waste"]:
 if wastes[waste]["type"]!=wastes[item]["type"]:
 print(space,system,item,wastes[item]["type"],"2")
 found_dict[space][system]["enough waste"].append(wastes[item]
["type"])
 found_dict[space][system]["enough source"].append(wastes[item]
["tag"])
 found_dict[space][system]["found"].remove(wastes[item]
["type"])
 found_dict[space][system]["source"].remove(wastes[item]
["tag"])

Make a dictionary holding each vacant space& found and repeating waste type & waste
sources corresponding to found items
duplicate_items={}
for space,potential in found_dict.items():
 duplicate_items[space]={}
 for system, k in potential.items():
 if len(found_dict[space][system]["found"])> 1:
 found_items3=found_dict[space][system]["found"]
 sources=[]
 for index,items in enumerate(found_items3):
 duplicate_items[space][items]={}
 count=found_items3.count(items)
 if count>1:
 items_str=str(items)
 sources.append(found_dict[space][system]["source"][index])
 duplicate_items[space][items]["matching sources"]=sources

Check if the total size of found waste matches the vacant space size
sum (waste quantity) == vacant space size
satisfying_duplicate={}
not_enough_waste={}
for space, k in duplicate_items.items():
 print(space)
 satisfying_duplicate[space]={}
 not_enough_waste[space]={}
 for key,value in k.items():
 print(key)
 satisfying_duplicate[space][key]={}
 not_enough_waste[space][key]={}
 waste_matched=[]
 not_matched=[]
 if duplicate_items[space][key]!=[]:
 for m,n in duplicate_items[space][key].items():
 matched=duplicate_items[space][key][m]

Appendix H Technical Details | pg.290 Appendix H Technical Details | pg.291

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

In []:

 found_new=[]
 for items in matched:
 found_new.append(items)
 waste_matched.append(wastes[items]["size"])
 if sum(waste_matched)==vacant_spaces[space]["size"]:
 print(space,vacant_spaces[space]["size"], waste_matched, "add to
found list and remove from missing")
 print(found_new, "is found")
 print(waste_matched)
 satisfying_duplicate[space][key]=found_new
 break
 else:
 # print(sum(waste_matched),"And",vacant_spaces[space]
["size"],items)
 not_matched.append(items)
 print(not_matched,"is not matched")
 not_enough_waste[space][key]=not_matched

Remove duplicate items if they are also in satisfying_duplicate items list until there
is only one of each waste type left
for space,potential in found_dict.items():
 for system in potential.keys():
 for key, value in satisfying_duplicate.items():
 for waste in value.keys():
 if key==space:
 if len(found_dict[space][system]["found"])>0:
 print("there are found items")
 if len(satisfying_duplicate[key][waste])>0:
 print("there are satisfying duplicate items")
 if waste in found_dict[space][system]["found"]:
 print(waste,"is in found dict",space,system)
 found_items = found_dict[space][system]["found"]
 found_dict[space][system]["enough
waste"].append(waste)
 for item in satisfying_duplicate[key][waste]:
 found_dict[space][system]["enough
source"].append(item)
 found_dict[space][system]["source"].remove(item)
 for found_range in range(len(found_items)):
 for found in found_items:
 print(found_items,space,system)
 counter=found_items.count(found)
 print(waste,counter,space,system)
 if counter>1:
 print(found,"REMOVED",space,system)
 found_items.remove(found)

Remove duplicate items from "found list" if they are not in satisfying_duplicate items
list
for space in found_dict.keys():
 for system in found_dict[space].keys():
 found_items = found_dict[space][system]["found"]
 missing_items = found_dict[space][system]["missing"]

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

Assign Food Production Systems

In []:

 duplicate=list_duplicates(found_items)
 for key, value in satisfying_duplicate.items():
 for waste in value.keys():
 if key==space:
 for found in found_items:
 if found in duplicate:
 print("duplicate",space,found,system)
 if satisfying_duplicate[space][found]==[]:
 print("duplicate not satisfying",space,found,system)
 found_items.remove(found)
 if found not in missing_items:
 missing_items.append(found)
 if (found in missing_items) and (found in found_items):
 found_items.remove(found)
for space in found_dict:
 for system in found_dict[space]:
 source=found_dict[space][system]["source"]
 for index,item in enumerate(source):
 waste=wastes[item]["type"]
 if waste in found_dict[space][system]["found"]:
 print("found",space,item,waste)
 else:
 source.remove(item)
 print(item,"removed from",space,system,waste)

Add symbiosis percentage to found_dict
for space in found_dict:
 for system in found_dict[space]:
 found_dict[space][system]["circularity"]=[]
 found=len`(found_dict[space][system]["enough waste"])
 missing=len(found_dict[space][system]["missing"])
 total=found+missing
 found_dict[space][system]["circularity"]=found/total

Make a copy of found dict, sort system based on circularities
sorted_dict={}
for space in found_dict:
 system=sorted(found_dict[space], key=lambda x: (found_dict[space][x]['circularity']),
reverse=True)
 sorted_dict[space]={}
 for item in system:
 values={}
 values=(found_dict[space][item])
 sorted_dict[space][item]=values

Check if the criteria is satisfied
Rule 3: Assign a system if there are at least 1 found item
Rule 4: Assign a system if there is no missing items
Rule 5: Assign a system if there is one missing item which is not critical
Rule 6: Assign a system if there is two missing items which are not critical
Rule 7: If a found waste source is already used, it cannot be used again
Rule 8: If a critical item is missing, that system cannot be asigned

Appendix H Technical Details | pg.292 Appendix H Technical Details | pg.293

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

occupied={}
used_waste=[]
used_waste_source=[]
used_waste_source_temp=[]
new_edges=[]
occupied_dict={}

for space in sorted_dict:
 print("looking for", space)
 print("for",space,sorted_dict[space],"is possible")
 occupied_dict[space]={}
 occupied_dict[space]["system"]={}
 occupied_dict[space]["found"]={}
 occupied_dict[space]["source"]={}
 occupied_dict[space]["missing"]={}
 for index,system in enumerate(sorted_dict[space]):
 print("looking for system", system)
 occupied[space]={}
 occupied[space]["system"]={}
 found_list=sorted_dict[space][system]["enough waste"]
 sources_list=sorted_dict[space][system]["enough source"]
 missing_list=sorted_dict[space][system]["missing"]
 print(len(missing_list),"is length for",space,system)

 if len(occupied[space]["system"])==0:
 print(space,"is not occupied run for",system)
 if len(missing_list)==0:
 for source in sources_list:
 if source in used_waste_source:
 print(used_waste_source,"is used",space,system)
 pass
 elif source not in used_waste_source:
 print(used_waste_source,"is used",space,system)
 occupied[space]["system"]=system
 occupied_dict[space]["system"]=system
 occupied_dict[space]["found"]=sorted_dict[space][system]["enough
waste"]
 occupied_dict[space]["source"]=sorted_dict[space][system]["enough
source"]
 for items in found_list:
 used_waste.append(items)
 used_waste_source.append(source)
 edge_tuple=(source,space)
 new_edges.append(edge_tuple)
 print("no missing items:", space, system, "assign")
 if len(occupied[space]["system"])>0:
 print(space,system,"will break")
 break
 elif len(missing_list)==1:
 print("one item",system,space)
 for missing in missing_list:
 if missing in non_critical_items:
 print("one non critical item",missing,system,space)
 for source in sources_list:
 if source not in used_waste_source:
 print("Used Non Critical Source",source)
 occupied[space]["system"]=system

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

Create New List To Be Used In Next Steps

In []:

 occupied_dict[space]["system"]=system
 occupied_dict[space]["found"]=sorted_dict[space][system]
["enough waste"]
 occupied_dict[space]["source"]=sorted_dict[space][system]
["enough source"]
 occupied_dict[space]["missing"]=sorted_dict[space][system]
["missing"]
 for items in found_list:
 used_waste.append(items)
 used_waste_source.append(source)
 edge_tuple=(source,space)
 new_edges.append(edge_tuple)
 print("one non critical missing items:", space, system,
"assign")
 else:
 print(source,"already used")
 else:
 print(space,"critical item missing:",missing,"for",system)
 if len(occupied[space]["system"])>0:
 print(space,system,"will break")
 break
 elif len(missing_list)==2:
 print("two items",system,space)
 for missing in missing_list:
 print("two items",missing)
 if missing in non_critical_items:
 print("two items",missing,"not critical")
 for source in sources_list:
 if source not in used_waste_source:
 print("Used Non Critical Source",source)
 occupied[space]["system"]=system
 occupied_dict[space]["system"]=system
 occupied_dict[space]["found"]=sorted_dict[space][system]
["enough waste"]
 occupied_dict[space]["source"]=sorted_dict[space][system]
["enough source"]
 occupied_dict[space]["missing"]=sorted_dict[space][system]
["missing"]
 for items in found_list:
 used_waste.append(items)
 print("two non critical missing items:", space,
system,"assign")
 print(space,occupied_dict[space])
 used_waste_source.append(source)
 edge_tuple=(source,space)
 new_edges.append(edge_tuple)
 else:
 print(space,"critical item missing:",missing,"for",system)
 if len(occupied[space]["system"])>0:
 print(space,system,"will break")
 break

Add circularity & outputs to occupied_dict
for space in occupied_dict:

Appendix H Technical Details | pg.294 Appendix H Technical Details | pg.295

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

Assign Food Producing Supplementary Systems

Prepare Data

In []:

 occupied_dict[space]["circularity"]={}
 occupied_dict[space]["outputs"]={}
 occupied_dict[space]["supplements"]={}
 if len(occupied_dict[space]["system"])!=0:
 system=occupied_dict[space]["system"]
 outputs=(uf_systems[system]["out"])
 supplements=uf_systems[system]["supplement"]
 occupied_dict[space]["circularity"]=sorted_dict[space][system]["circularity"]
 occupied_dict[space]["supplements"]=supplements
 occupied_dict[space]["outputs"]=outputs

Remove empty spaces from occupied_dict
remove=[]
for space in occupied_dict:
 if len(occupied_dict[space]["system"])==0:
 remove.append(space)
for items in remove:
 occupied_dict.pop(items)

Remove occupied spaces from found_dict
remove2=[]
for space in sorted_dict:
 if space in occupied_dict:
 remove2.append(space)
for items in remove2:
 sorted_dict.pop(items)

Look for a system that can supply needed supplement ("S2" = nutrient dense water)
Put the findings in a dictionary
v_supplement_fs={}
for space in occupied_dict:
 v_supplement_fs[space]={}
 v_supplement_fs[space]["supplement"]={}
 v_supplement_fs[space]["fs_system"]={}
 v_supplement_fs[space]["supplement"]={}
 v_supplement_fs[space]["supplement source"]={}
 v_supplement_fs[space]["fs_demand"]={}
 v_supplement_fs[space]["fs_demand source"]={}
 v_supplement_fs[space]["potential source"]={}
 supplement=occupied_dict[space]["supplements"]
 if supplement!=None:
 for item in supplement:
 if item=="S2":
 for i in uf_systems:
 out=uf_systems[i]["out"]
 if "S2" in out:
 print("maybe",space, i,uf_systems[i]["in"])
 v_supplement_fs[space]["fs_system"]=i
 v_supplement_fs[space]["supplement"]=item
 v_supplement_fs[space]["fs_demand"]=uf_systems[i]["in"]
 else:
 v_supplement_fs[space]["fs_system"]={}

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

In []:

We created a dictionary for spaces which need supplement to store system, supplementing
neighbor and supplement type for each space found what kind of system and supplement and
input is necessary
Check the neighbors of supplement needing space to see if there is a potential neighbor
with the same size, enough structural capacity and same solar exosure
Rule 8: (supplement needing space's size) == (its neighbors size)
Rule 9: (neighbor's solar exposure) == (needed system's solar exposure)
Rule 10: (neighbor's structural capacity) >= (needed system's weight)
for space in v_supplement_fs:
 potential=[]
 for space2,neighbor in nearby_space100:
 if space==space2:
 if v_supplement_fs[space]["fs_system"]!=None:
 if (len(v_supplement_fs[space]["supplement source"])==0) and
(len(v_supplement_fs[space]["fs_system"])!=0):
 system=v_supplement_fs[space]["fs_system"]
 print(system,"system")
 print(vacant_spaces[space]["size"],vacant_spaces[neighbor]["size"])
 if (vacant_spaces[space]["size"]==vacant_spaces[neighbor]["size"]) and
(vacant_spaces[neighbor]["structure"]>=uf_systems[system]["weight"]) and
(vacant_spaces[neighbor]["solar"]>=uf_systems[system]["solar"]):
 potential.append(neighbor)
 v_supplement_fs[space]["potential source"]=potential
 elif space==neighbor:
 print(neighbor,space2,"reverse is available")
 if v_supplement_fs[space]["fs_system"]!=None:
 if (len(v_supplement_fs[space]["supplement source"])==0) and
(len(v_supplement_fs[space]["fs_system"])!=0):
 print(space2,"is available")
 system=v_supplement_fs[space]["fs_system"]
 if (vacant_spaces[space]["size"]==vacant_spaces[space2]["size"])
and (vacant_spaces[space2]["structure"]>=uf_systems[system]["weight"]) and
(vacant_spaces[space2]["solar"]>=uf_systems[system]["solar"]):
 potential.append(space2)
 print(potential)
 print(space,potential)
 print(space,"matches",space2,"and",system)
 v_supplement_fs[space]["potential source"]=potential
 else:
 print("structure",space,vacant_spaces[space2]
["structure"],system,uf_systems[system]["weight"])
 print("sun",space,vacant_spaces[space2]
["solar"],system,uf_systems[system]["solar"])
 else:
 print(space,space2,"not available",v_supplement_fs[space]
["fs_system"],"no need for supplement")

Check if potential sources have necessary waste sources nearby
Rule 11: For food producing supplementary systems all the items should be found
for space in v_supplement_fs:
 potential=v_supplement_fs[space]["potential source"]
 if len(v_supplement_fs[space]["supplement source"])==0:
 for vacant in potential:

Appendix H Technical Details | pg.296 Appendix H Technical Details | pg.297

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

 nearby_list=waste_dict[vacant]
 print(nearby_list)
 for nearby in nearby_list:
 print(vacant, nearby,"is",wastes[nearby]["type"])
 if nearby not in used_waste_source:
 if wastes[nearby]["size"]==vacant_spaces[space]["size"]:
 print(nearby,"not used")
 if v_supplement_fs[space]["fs_demand"]==wastes[nearby]["type"]:
 print("for",space,vacant,"is potential and has",nearby,"as a
source of",wastes[nearby]["type"])
 v_supplement_fs[space]["supplement source"]=vacant
 print(v_supplement_fs[space]["supplement source"])
 v_supplement_fs[space]["fs_demand source"]=nearby
 print(v_supplement_fs[space]["fs_demand source"])
 used_waste_source.append(nearby)
 edge_tuple1=(nearby,vacant)
 edge_tuple2=(vacant,space)
 new_edges.append(edge_tuple1)
 new_edges.append(edge_tuple2)
 if len(v_supplement_fs[space]["supplement source"])>0:
 break
 elif v_supplement_fs[space]["fs_demand"]!=wastes[nearby]["type"]:
 v_supplement_fs[space]["supplement source"]=vacant
 print(v_supplement_fs[space]["supplement source"])
 v_supplement_fs[space]["fs_demand source"]="supply externally"
 print(v_supplement_fs[space]["fs_demand source"])
 used_waste_source.append(nearby)
 edge_tuple1=(nearby,vacant)
 edge_tuple2=(vacant,space)
 new_edges.append(edge_tuple1)
 new_edges.append(edge_tuple2)
 if len(v_supplement_fs[space]["supplement source"])>0:
 break

 if len(v_supplement_fs[space]["supplement source"])>0:
 break

Add newly assigned food-producing supplementary systems to the "occupied nodes" list
for space in v_supplement_fs:
 if len(v_supplement_fs[space]["fs_system"])!=0:
 if (len(v_supplement_fs[space]["supplement source"])!=0) and
(v_supplement_fs[space]["fs_demand source"]!="supply externally"):
 occ=v_supplement_fs[space]["supplement source"]
 occupied_dict[occ]={}
 occupied_dict[occ]["found"]=v_supplement_fs[space]["fs_demand"]
 occupied_dict[occ]["system"]=v_supplement_fs[space]["fs_system"]
 system=occupied_dict[occ]["system"]
 occupied_dict[occ]["source"]=v_supplement_fs[space]["fs_demand source"]
 occupied_dict[occ]["supplements"]=uf_systems[system]["supplement"]
 occupied_dict[occ]["circularity"]=1
 elif v_supplement_fs[space]["fs_demand source"]=="supply externally":
 occ=v_supplement_fs[space]["supplement source"]
 occupied_dict[occ]={}
 occupied_dict[occ]["found"]=None
 occupied_dict[occ]["system"]=v_supplement_fs[space]["fs_system"]

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

Assigning Supplementary Systems

In []:

 system=occupied_dict[occ]["system"]
 occupied_dict[occ]["source"]=v_supplement_fs[space]["fs_demand source"]
 occupied_dict[occ]["supplements"]=uf_systems[system]["supplement"]
 occupied_dict[occ]["circularity"]=0

Make a dictionary of source: waste type: size: receiver:tuple
network_dict={}
for source,space in new_edges:
 type_list=[]
 network_dict[source]={}
 network_dict[source]["type"]={}
 network_dict[source]["size"]={}
 network_dict[source]["receiver"]={}

for source,space in new_edges:
 network_dict[source]["receiver"]=space
 if source in wastes:
 network_dict[source]["type"]=wastes[source]["type"]
 network_dict[source]["size"]=wastes[source]["size"]
 elif source in vacant_spaces:
 network_dict[source]["size"]=vacant_spaces[source]["size"]
 network_dict[source]["type"]=occupied_dict[source]["found"]

Make a dictionary of source: waste type: size: receiver:tuple
network_dict={}
for source,space in new_edges:
 type_list=[]
 network_dict[source]={}
 network_dict[source]["type"]={}
 network_dict[source]["size"]={}
 network_dict[source]["receiver"]={}

for source,space in new_edges:
 network_dict[source]["receiver"]=space
 if source in wastes:
 network_dict[source]["type"]=wastes[source]["type"]
 network_dict[source]["size"]=wastes[source]["size"]
 elif source in vacant_spaces:
 network_dict[source]["size"]=vacant_spaces[source]["size"]
 network_dict[source]["type"]=occupied_dict[source]["found"]

Now we have food supplying supplementary systems
We still need to check if these systems need supplements ("S4" fish food or "S5"
fertiliser)
for space in occupied_dict:
 system=occupied_dict[space]["system"]
 value=uf_systems[system]["supplement"]
 if value!=None:
 for supplement in value:
 if (supplement=="S5") or (supplement=="S4"):
 v_supplement_fs[space]={}
 v_supplement_fs[space]["supplement"]=supplement

Appendix H Technical Details | pg.298 Appendix H Technical Details | pg.299

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

In []:

 for uf in uf_systems:
 for out in uf_systems[uf]["out"]:
 if supplement == out:
 v_supplement_fs[space]["fs_system"]=uf
 v_supplement_fs[space]["fs_demand"]=uf_systems[uf]["in"]
 v_supplement_fs[space]["supplement source"]={}
 v_supplement_fs[space]["fs_demand source"]={}
 v_supplement_fs[space]["potential source"]={}

Make a potential list of vacant spaces around the supplement needing space
Rule 12: (supplement needing space's size) == (its neighbors size)
Rule 13: (neighbor's solar exposure) == (needed system's solar exposure)
Rule 14: (neighbor's structural capacity) >= (needed system's weight)
for space in v_supplement_fs:
 potential=[]
 for space2,neighbor in nearby_space100:
 if (space==space2):
 if (len(v_supplement_fs[space]["supplement source"])==0) and
(len(v_supplement_fs[space]["fs_system"])!=0):
 system=v_supplement_fs[space]["fs_system"]
 if (vacant_spaces[space]["size"]==vacant_spaces[neighbor]["size"]) and
(vacant_spaces[neighbor]["structure"]>=uf_systems[system]["weight"]) and
(vacant_spaces[neighbor]["solar"]>=uf_systems[system]["solar"]):
 potential.append(neighbor)
 v_supplement_fs[space]["potential source"]=potential
 else:
 print(space,vacant_spaces[neighbor]
["structure"],system,uf_systems[system]["weight"])
 else:
 print(space,neighbor,"not available",v_supplement_fs[space]
["fs_system"],"no need for supplement")
 elif space==neighbor:
 if (len(v_supplement_fs[space]["supplement source"])==0) and
(len(v_supplement_fs[space]["fs_system"])!=0):
 print(space2,"is available")
 system=v_supplement_fs[space]["fs_system"]
 if (vacant_spaces[space]["size"]==vacant_spaces[space2]["size"]) and
(vacant_spaces[space2]["structure"]>=uf_systems[system]["weight"]) and
(vacant_spaces[space2]["solar"]>=uf_systems[system]["solar"]):
 potential.append(space2)
 v_supplement_fs[space]["potential source"]=potential
 else:
 print("structure",space,vacant_spaces[space2]
["structure"],system,uf_systems[system]["weight"])
 print("sun",space,vacant_spaces[space2]
["solar"],system,uf_systems[system]["solar"])
 print("size",vacant_spaces[space]["size"]==vacant_spaces[space2]
["size"])
 else:
 print(space,space2,"not available",v_supplement_fs[space]["fs_system"],"no
need for supplement")

Check if potential sources have necessary waste sources around

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

In []:

Rule 15: For supplementary systems all the items should be found
for space in v_supplement_fs:
 potential=v_supplement_fs[space]["potential source"]
 if len(v_supplement_fs[space]["supplement source"])==0:
 for vacant in potential:
 found=[]
 found_source=[]
 nearby_list=waste_dict[vacant]
 for nearby in nearby_list:
 if nearby not in used_waste_source:
 if wastes[nearby]["size"]==vacant_spaces[space]["size"]:
 found.append(wastes[nearby]["type"])
 found_source.append(nearby)
 if v_supplement_fs[space]["fs_demand"]==found:
 v_supplement_fs[space]["supplement source"]=vacant
 v_supplement_fs[space]["fs_demand source"]=found_source
 for x in found_source:
 used_waste_source.append(x)
 edge_tuple1=(x,vacant)
 new_edges.append(edge_tuple1)
 edge_tuple2=(vacant,space)
 new_edges.append(edge_tuple2)
 if len(v_supplement_fs[space]["supplement source"])>0:
 # print(space,system,"will break")
 break
 if len(v_supplement_fs[space]["supplement source"])>0:
 # print(space,system,"will break2")
 break

Add newly assigned supplementary systems to the "occupied nodes" list
for space in v_supplement_fs:
 occupied_dict[occ]["outputs"]={}
 if len(v_supplement_fs[space]["fs_system"])!=0:
 if (len(v_supplement_fs[space]["supplement source"])!=0):
 occ=v_supplement_fs[space]["supplement source"]
 occupied_dict[occ]={}

 occupied_dict[occ]["found"]=v_supplement_fs[space]["fs_demand"]
 occupied_dict[occ]["system"]=v_supplement_fs[space]["fs_system"]
 system=v_supplement_fs[space]["fs_system"]
 occupied_dict[occ]["source"]=v_supplement_fs[space]["fs_demand source"]
 occupied_dict[occ]["outputs"]=v_supplement_fs[space]["supplement"]
 occupied_dict[occ]["supplements"]=uf_systems[system]["supplement"]
 occupied_dict[occ]["circularity"]=1

Make a dictionary of source: waste type: size: receiver:tuple
network_dict={}
for source,space in new_edges:
 type_list=[]
 network_dict[source]={}
 network_dict[source]["type"]={}
 network_dict[source]["size"]={}
 network_dict[source]["receiver"]={}

Appendix H Technical Details | pg.300 Appendix H Technical Details | pg.301

- PREPARE DATA FOR EXPORT & EXPORT -

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

Preparation For Increasing The Search Radius

In []:

for source,space in new_edges:
 network_dict[source]["receiver"]=space
 if source in wastes:
 network_dict[source]["type"]=wastes[source]["type"]
 network_dict[source]["size"]=wastes[source]["size"]
 elif source in vacant_spaces:
 network_dict[source]["size"]=vacant_spaces[source]["size"]
 network_dict[source]["type"]=occupied_dict[source]["outputs"]

print(network_dict)

for space in occupied_dict:
 if occupied_dict[space]["system"]==None:
 occupied_dict.remove(space)

Export still vacant spaces, list of used waste sources, list of still available waste
sources to be used in next stage after increasing search radius
vacant_spaces2=vacant_spaces.copy()

for space in occupied_dict:
 vacant_spaces2.pop(space)

file = "vacant spaces_bigger radius.txt"
with open(str(file), 'w') as outfile:
 try:
 json.dump(vacant_spaces2, outfile)
 print(file + " has been updated successfully")
 except:
 print("Problem with updating file")

wastes2={}

for waste in wastes:
 if waste not in used_waste_source:
 wastes2[waste]={}
 wastes2[waste]["location"]=wastes[waste]["location"]
 wastes2[waste]["source"]=wastes[waste]["source"]
 wastes2[waste]["tag"]=wastes[waste]["tag"]
 wastes2[waste]["type"]=wastes[waste]["type"]
 wastes2[waste]["size"]=wastes[waste]["size"]
 wastes2[waste]["node_type"]=wastes[waste]["node_type"]

file = "available waste 2.txt"
with open(str(file), 'w') as outfile:
 try:
 json.dump(wastes2, outfile)
 print(file + " has been updated successfully")
 except:
 print("Problem with updating file")

file = "used waste.txt"
with open(str(file), 'w') as outfile:
 try:

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

Data Preparation For Visualisation

In []:

In []:

 json.dump(used_waste_source, outfile)
 print(file + " has been updated successfully")
 except:
 print("Problem with updating file")

Combine wastes and vacant_spaces
workbook = load_workbook(filename="coordintes_xyz.xlsx")
workbook.sheetnames
sheet1 = workbook.worksheets[0]
sheet2 = workbook.worksheets[1]

new_edges2=[]
for space in network_dict:
 sources=(network_dict[space]["receiver"])
 tuples=(space,sources)
 new_edges2.append(tuples)

Update locations in dictionary based on excel worksheet
This step needs to be done because the type of data for coordinates is "string" in the
excel sheets
"strings" cannot be read in grasshopper as coordinates
coordinate_list1=[]
for value in sheet1.iter_rows(min_row=2, values_only=True):
 for index,item in enumerate(value):
 coordinate=(value[0],value[1],value[2])
 coordinate_list1.append(coordinate)

for index1,space in enumerate(vacant_spaces):
 for index2,coordinate in enumerate(coordinate_list1):
 if index1==index2:
 vacant_spaces[space]["location"]=coordinate_list1[index2]

workbook = load_workbook(filename="Node_Information_TU.xlsx")
workbook.sheetnames
sheet1 = workbook.worksheets[0]
sheet2 = workbook.worksheets[1]
wastes2={}
for value in sheet2.iter_rows(min_row=2, values_only=True):
 for index,item in enumerate(value):
 wastes2[value[0]]={}
 wastes2[value[0]]["location"]=value[1]
 wastes2[value[0]]["source"]=value[2]
 wastes2[value[0]]["type"]=value[3]
 wastes2[value[0]]["quantity"]=value[4]
 wastes2[value[0]]["tag"]=value[5]
 wastes2[value[0]]["node_type"]="waste"

workbook = load_workbook(filename="coordintes_xyz.xlsx")
workbook.sheetnames
sheet1 = workbook.worksheets[0]
sheet2 = workbook.worksheets[1]

Appendix H Technical Details | pg.302 Appendix H Technical Details | pg.303

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

In []:

Export Decisions

Construct coordinates from x,y,z values
coordinate_list2=[]
for value in sheet2.iter_rows(min_row=2, values_only=True):
 for index,item in enumerate(value):
 coordinate=(value[0],value[1],value[2])
 coordinate_list2.append(coordinate)

for index1,space in enumerate(wastes2):
 for index2,coordinate in enumerate(coordinate_list2):
 if index1==index2:
 # print(index2,coordinate,space)
 wastes2[space]["location"]=coordinate_list2[index2]

combined_dict=vacant_spaces.copy()
combined_dict.update(wastes2)

coordinates=[]
Make a coordinate list for new_edges [(coordinates1,coordinates2),
(coordinates1,coordinates2),(coordinates1,coordinates2)]
for item in new_edges2:
 # print(item)
 coordinate_tuple=(combined_dict[item[0]]["location"],combined_dict[item[1]]
["location"])
 print(item,coordinate_tuple)
 coordinates.append(coordinate_tuple)

Make a dictionary of waste exchanges (start point, end point, waste type)
export_edges_dict={}
for index,couple in enumerate(coordinates):
 export_edges_dict[index]={}
 export_edges_dict[index]["coordinate"]=couple

export_edges_dict={}
for index,waste in enumerate(network_dict):
 export_edges_dict[index]={}
 export_edges_dict[index]["type"]=network_dict[waste]["type"]
 export_edges_dict[index]["connection"]=coordinates[index]

Make a dictionary of all spaces, systems, coordinates, symbiotic rates
export_dict={}
for space in vacant_spaces:
 export_dict[space]={}
 export_dict[space]["location"]={}
 export_dict[space]["system"]={}
for space in vacant_spaces:
 if space in occupied_dict:
 export_dict[space]["system"]=occupied_dict[space]["system"]
 export_dict[space]["location"]=combined_dict[space]["location"]
 export_dict[space]["circularity"]=occupied_dict[space]["circularity"]
 else:
 export_dict[space]["system"]=None
 export_dict[space]["location"]=None

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

1. INCREASING RADIUS

In []:

Export occupied nodes and connections to be visualised in Grasshopper
file = "occupied nodes.txt"
with open(str(file), 'w') as outfile:
 try:
 json.dump(export_dict, outfile)
 print(file + " has been updated successfully")
 except:
 print("Problem with updating file")

file = "new_edges.txt"
with open(str(file), 'w') as outfile:
 try:
 json.dump(new_edges, outfile)
 print(file + " has been updated successfully")
 except:
 print("Problem with updating file")

file = "new_edges_dict.txt"
with open(str(file), 'w') as outfile:
 try:
 json.dump(export_edges_dict, outfile)
 print(file + " has been updated successfully")
 except:
 print("Problem with updating file")

file = "coordinates.txt"
with open(str(file), 'w') as outfile:
 try:
 json.dump(coordinates, outfile)
 print(file + " has been updated successfully")
 except:
 print("Problem with updating file")

Appendix H Technical Details | pg.304 Appendix H Technical Details | pg.305

- IMPORT TOOLS -

H.2 INCREASING RADIUS

- REPEAT STAGE 1 STEPS -

development level 10.1 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.1%20Delft.html[5/9/2022 10:17:45 PM]

In []:

In []:

In []:

 # checking the length
 if len(list) == 0:
 # returning true as length is 0
 return True
 # returning false as length is greater than 0
 return False

Import data from previous stage regarding unoccupied spaces, used waste sources,
available waste sources and occupied spaces
url = "https://raw.githubusercontent.com/erengozdeanil/UF-
DecisionMaker/main/vacant%20spaces_bigger%20radius.txt"
resp = requests.get(url)
vacant_spaces = json.loads(resp.text)

url = "https://raw.githubusercontent.com/erengozdeanil/UF-
DecisionMaker/main/available%20waste%202.txt"
resp = requests.get(url)
wastes = json.loads(resp.text)

url = "https://raw.githubusercontent.com/erengozdeanil/UF-
DecisionMaker/main/occupied%20nodes.txt"
resp = requests.get(url)
occupied_nodes = json.loads(resp.text)

url = "https://raw.githubusercontent.com/erengozdeanil/UF-
DecisionMaker/main/used%20waste.txt"
resp = requests.get(url)
used_waste_source = json.loads(resp.text)

Retrieve connections between vacant spaces within radius=x
url1="https://raw.githubusercontent.com/erengozdeanil/UF-
DecisionMaker/main/Edges_vacant200.txt"
resp1 = requests.get(url1)
edges1 = json.loads(resp1.text)
#converts nested lists into a list of tuples
nearby_space300 = [tuple(i) for i in edges1]

#Retrieve connections within radius=x with identifiers
url1="https://raw.githubusercontent.com/erengozdeanil/UF-
DecisionMaker/main/Edges_try2.txt"
resp1 = requests.get(url1)
edges1 = json.loads(resp1.text)
#converts nested lists into a list of tuples
nearby_waste300 = [tuple(i) for i in edges1]

Make a new list composed of occupied nodes only
occupied={}
for space in occupied_nodes:
 if occupied_nodes[space]["system"]!=None:
 occupied[space]={}
 occupied[space]["system"]=occupied_nodes[space]["system"]

development level 10.1 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.1%20Delft.html[5/9/2022 10:17:45 PM]

In []:

In []:

In []:

In []:

Make new lists of connections excluding used waste sources and occupied spaces
nearby_waste200=[]
for index,couple in enumerate(nearby_waste300):
 if couple[0] not in occupied:
 nearby_waste200.append(couple)

nearby_waste100=[]
for index,couple in enumerate(nearby_waste200):
 if couple[1] in wastes:
 nearby_waste100.append(couple)

nearby_space200=[]
for index,couple in enumerate(nearby_space300):
 if couple[0] not in occupied:
 nearby_space200.append(couple)

nearby_space100=[]
for index,couple in enumerate(nearby_space200):
 if couple[1] in vacant_spaces:
 nearby_space100.append(couple)

If a used waste source is in the list, remove it
for count in range(len(nearby_waste100)):
 for couple in nearby_waste100:
 if couple[1] in used_waste_source:
 # print(couple)
 nearby_waste100.remove(couple)

for couple in nearby_waste100:
 if couple[1] in used_waste_source:
 print(couple)

Remove empty waste sources from wastes list
for waste in wastes:
 for couple in nearby_waste100:
 if wastes[waste]["type"]=="None":
 if waste == couple[1]:
 print(couple, "removed")
 nearby_waste100.remove(couple)
 (couple,"removed")
print(nearby_waste100,len(nearby_waste100))

workbook = load_workbook(filename="Node_Information_TU.xlsx")
workbook.sheetnames
sheet1 = workbook.worksheets[0]
sheet2 = workbook.worksheets[1]
wastes={}
for value in sheet2.iter_rows(min_row=2, values_only=True):
 for index,item in enumerate(value):
 if value[4]!=0:

Appendix H Technical Details | pg.306 Appendix H Technical Details | pg.307

- IMPORT TOOLS -

- DATA PROCESSING -

H.3 OCCUPY ALL NODES

development level 10.3 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.3%20Delft.html[5/9/2022 10:50:41 PM]

In []:

Assign a food production system
Rule 1: If there are found item(s)
Rule 2: If none of the missing items are critical
new_edges=[]
occupied_dict={}
for space in sorted_dict:
 occupied_dict[space]={}
 occupied_dict[space]["system"]={}
 occupied_dict[space]["found"]={}
 occupied_dict[space]["source"]={}
 occupied_dict[space]["missing"]={}
 for system in sorted_dict[space]:
 if len(sorted_dict[space][system]["found"])!=0:
 for missing in sorted_dict[space][system]["missing"]:
 if missing in non_critical_items:
 occupied_dict[space]["system"]=system
 occupied_dict[space]["found"]=(sorted_dict[space][system]["found"])
 occupied_dict[space]["missing"]=sorted_dict[space][system]["missing"]
 occupied_dict[space]["source"]=sorted_dict[space][system]["source"]
 occupied_dict[space]["circularity"]=sorted_dict[space][system]
["circularity"]
 for items in sorted_dict[space][system]["found"]:
 used_waste_source.append(source)
 edge_tuple=(source,space)
 new_edges.append(edge_tuple)
 if len(occupied_dict[space]["system"])!=0:
 break

Assign a food production system even if there are not any found items
Rule 3: If there is one missing item that is not critical
Rule 4: If there are two missing items that are not critical
for space in sorted_dict:
 for system in sorted_dict[space]:
 if len(occupied_dict[space]["system"])==0:
 if len(sorted_dict[space][system]["found"])==0:
 if len(sorted_dict[space][system]["missing"])==1:
 for missing in sorted_dict[space][system]["missing"]:
 if missing in non_critical_items:
 print(space)
 occupied_dict[space]["system"]=system
 occupied_dict[space]["found"]=None
 occupied_dict[space]["missing"]=sorted_dict[space][system]
["missing"]
 occupied_dict[space]["source"]="supply externally"
 if len(occupied_dict[space]["system"])!=0:
 break

 if len(sorted_dict[space][system]["missing"])==2:
 for missing in sorted_dict[space][system]["missing"]:
 if missing in non_critical_items:
 print(space)
 occupied_dict[space]["system"]=system
 occupied_dict[space]["found"]=None
 occupied_dict[space]["missing"]=sorted_dict[space][system]
["missing"]

development level 10.3 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.3%20Delft.html[5/9/2022 10:50:41 PM]

Create New List To Be Used In Next Steps

In []:

Assign Food Producing Supplementary Systems

In []:

 occupied_dict[space]["source"]="supply externally"
 if len(occupied_dict[space]["system"])!=0:
 break

Add circularity & outputs to occupied_dict
for space in occupied_dict:
 occupied_dict[space]["circularity"]={}
 occupied_dict[space]["outputs"]={}
 occupied_dict[space]["supplements"]={}
 if len(occupied_dict[space]["system"])!=0:
 system=occupied_dict[space]["system"]
 outputs=(uf_systems[system]["out"])
 supplements=uf_systems[system]["supplement"]
 occupied_dict[space]["supplements"]=supplements
 occupied_dict[space]["outputs"]=outputs
 occupied_dict[space]["circularity"]=sorted_dict[space][system]["circularity"]

Remove empty spaces from occupied_dict
remove=[]
for space in occupied_dict:
 if len(occupied_dict[space]["system"])==0:
 remove.append(space)
for items in remove:
 occupied_dict.pop(items)

Remove occupied spaces from found_dict list
remove2=[]
for space in sorted_dict:
 if space in occupied_dict:
 remove2.append(space)
print(len(remove))
for items in remove2:
 sorted_dict.pop(items)

Look for a system that can supply needed supplement ("S2" Nutrient Dense Water)
Put the findings in a dictionary
v_supplement_fs={}
for space in occupied_dict:
 v_supplement_fs[space]={}
 v_supplement_fs[space]["supplement"]={}
 v_supplement_fs[space]["fs_system"]={}
 v_supplement_fs[space]["supplement"]={}
 v_supplement_fs[space]["supplement source"]={}
 v_supplement_fs[space]["fs_demand"]={}
 v_supplement_fs[space]["fs_demand source"]={}
 v_supplement_fs[space]["potential source"]={}
 supplement=occupied_dict[space]["supplements"]
 if supplement!= None:
 for item in supplement:
 if item=="S2":
 for i in uf systems:

Appendix H Technical Details | pg.308 Appendix H Technical Details | pg.309

development level 10.3 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.3%20Delft.html[5/9/2022 10:50:41 PM]

In []:

 out=uf_systems[i]["out"]
 if "S2" in out:
 v_supplement_fs[space]["fs_system"]=i
 v_supplement_fs[space]["supplement"]=item
 v_supplement_fs[space]["fs_demand"]=uf_systems[i]["in"]
 else:
 v_supplement_fs[space]["fs_system"]=None

We created a dictionary for spaces which need supplement to store system, supplementing
neighbor and supplement type for each space found what kind of system and supplement and
input is necessary
Check the neighbors of supplement needing space to see if there is a potential neighbor
Rule 5: (supplement needing space's size) == (its neighbors size)
Rule 6: (neighbor's solar exposure) == (needed system's solar exposure)
Rule 7: (neighbor's structural capacity) >= (needed system's weight)
for space in v_supplement_fs:
 potential=[]
 if space in vacant_spaces:

 for space2,neighbor in nearby_space100:
 if neighbor in vacant_spaces:
 if space==space2:
 if (v_supplement_fs[space]["supplement source"]==None) and
(len(v_supplement_fs[space]["fs_system"])!=0):
 # print(neighbor,"is available")
 system=v_supplement_fs[space]["fs_system"]
 print(system,"system")
 print(vacant_spaces[space]["size"],vacant_spaces[neighbor]
["size"])
 if (vacant_spaces[space]["size"]==vacant_spaces[neighbor]["size"])
and (vacant_spaces[neighbor]["structure"]>=uf_systems[system]["weight"]) and
(vacant_spaces[neighbor]["solar"]>=uf_systems[system]["solar"]):
 potential.append(neighbor)
 # print(space,potential)
 v_supplement_fs[space]["potential source"]=potential
 elif space==neighbor:
 print(neighbor,space2,"reverse is available")
 if (v_supplement_fs[space]["supplement source"]==None) and
(len(v_supplement_fs[space]["fs_system"])!=0):
 print(space2,"is available")
 system=v_supplement_fs[space]["fs_system"]
 if (vacant_spaces[space]["size"]==vacant_spaces[space2]
["size"]) and (vacant_spaces[space2]["structure"]>=uf_systems[system]["weight"]) and
(vacant_spaces[space2]["solar"]>=uf_systems[system]["solar"]):
 potential.append(space2)
 print(potential)
 print(space,potential)
 print(space,"matches",space2,"and",system)
 v_supplement_fs[space]["potential source"]=potential
 else:
 print("structure",space,vacant_spaces[space2]
["structure"],system,uf_systems[system]["weight"])
 print("sun",space,vacant_spaces[space2]
["solar"],system,uf_systems[system]["solar"])
 else:

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

occupied={}
used_waste=[]
used_waste_source=[]
used_waste_source_temp=[]
new_edges=[]
occupied_dict={}

for space in sorted_dict:
 print("looking for", space)
 print("for",space,sorted_dict[space],"is possible")
 occupied_dict[space]={}
 occupied_dict[space]["system"]={}
 occupied_dict[space]["found"]={}
 occupied_dict[space]["source"]={}
 occupied_dict[space]["missing"]={}
 for index,system in enumerate(sorted_dict[space]):
 print("looking for system", system)
 occupied[space]={}
 occupied[space]["system"]={}
 found_list=sorted_dict[space][system]["enough waste"]
 sources_list=sorted_dict[space][system]["enough source"]
 missing_list=sorted_dict[space][system]["missing"]
 print(len(missing_list),"is length for",space,system)

 if len(occupied[space]["system"])==0:
 print(space,"is not occupied run for",system)
 if len(missing_list)==0:
 for source in sources_list:
 if source in used_waste_source:
 print(used_waste_source,"is used",space,system)
 pass
 elif source not in used_waste_source:
 print(used_waste_source,"is used",space,system)
 occupied[space]["system"]=system
 occupied_dict[space]["system"]=system
 occupied_dict[space]["found"]=sorted_dict[space][system]["enough
waste"]
 occupied_dict[space]["source"]=sorted_dict[space][system]["enough
source"]
 for items in found_list:
 used_waste.append(items)
 used_waste_source.append(source)
 edge_tuple=(source,space)
 new_edges.append(edge_tuple)
 print("no missing items:", space, system, "assign")
 if len(occupied[space]["system"])>0:
 print(space,system,"will break")
 break
 elif len(missing_list)==1:
 print("one item",system,space)
 for missing in missing_list:
 if missing in non_critical_items:
 print("one non critical item",missing,system,space)
 for source in sources_list:
 if source not in used_waste_source:
 print("Used Non Critical Source",source)
 occupied[space]["system"]=system

Appendix H Technical Details | pg.310 Appendix H Technical Details | pg.311

development level 10.3 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.3%20Delft.html[5/9/2022 10:50:41 PM]

Assigning Supplementary Systems

In []:

In []:

 system=occupied_dict[occ]["system"]
 occupied_dict[occ]["source"]=v_supplement_fs[space]["fs_demand source"]
 occupied_dict[occ]["supplements"]=uf_systems[system]["supplement"]
 occupied_dict[occ]["circularity"]=0

for space in v_supplement_fs:
 if (v_supplement_fs[space]["supplement source"])!={}:
 if (v_supplement_fs[space]["fs_system"])!={}:

 if len(v_supplement_fs[space]["supplement source"])!=0:
 occ=v_supplement_fs[space]["supplement source"]
 occupied_dict[occ]={}
 print(occupied_dict)
 occupied_dict[occ]["found"]=v_supplement_fs[space]["fs_demand"]
 occupied_dict[occ]["system"]=v_supplement_fs[space]["fs_system"]
 occupied_dict[occ]["source"]=v_supplement_fs[space]["fs_demand source"]
 occupied_dict[occ]["circularity"]=1

Now we have food supplying supplementary systems
We still need to check if these systems need supplements ("S4" fish food or "S5"
fertiliser)
for space in occupied_dict:
 system=occupied_dict[space]["system"]
 value=uf_systems[system]["supplement"]
 if value!=None:
 for supplement in value:
 if (supplement=="S5") or (supplement=="S4"):
 v_supplement_fs[space]={}
 v_supplement_fs[space]["supplement"]=supplement
 for uf in uf_systems:
 for out in uf_systems[uf]["out"]:
 if supplement == out:
 v_supplement_fs[space]["fs_system"]=uf
 v_supplement_fs[space]["fs_demand"]=uf_systems[uf]["in"]
 if len(v_supplement_fs[space]["fs_system"])>0:
 break
 v_supplement_fs[space]["supplement source"]={}
 v_supplement_fs[space]["fs_demand source"]={}
 v_supplement_fs[space]["potential source"]={}

Make a potential list of vacant spaces around the supplement needing space
Rule 12: (supplement needing space's size) == (its neighbors size)
Rule 13: (neighbor's solar exposure) == (needed system's solar exposure)
Rule 14: (neighbor's structural capacity) >= (needed system's weight)
for space in v_supplement_fs:
 potential=[]
 if space in vacant_spaces:
 if neighbor in vacant_spaces:
 for space2,neighbor in nearby_space100:
 if space2 in vacant_spaces:
 if (space==space2):
 print(space2,neighbor)

development level 10.3 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.3%20Delft.html[5/9/2022 11:09:03 PM]

In []:

 if (len(v_supplement_fs[space]["supplement source"])==0) and
(v_supplement_fs[space]["fs_system"]!=None):
 system=v_supplement_fs[space]["fs_system"]
 if (vacant_spaces[space]["size"]==vacant_spaces[neighbor]
["size"]) and (vacant_spaces[neighbor]["structure"]>=uf_systems[system]["weight"]) and
(vacant_spaces[neighbor]["solar"]>=uf_systems[system]["solar"]):
 potential.append(neighbor)
 v_supplement_fs[space]["potential source"]=potential
 else:
 print(space,vacant_spaces[neighbor]
["structure"],system,uf_systems[system]["weight"])
 else:
 print(space,neighbor,"not available",v_supplement_fs[space]
["fs_system"],"no need for supplement")
 elif space==neighbor:
 print(neighbor,space2,"reverse is available")
 if (v_supplement_fs[space]["supplement source"]=={}) and
((v_supplement_fs[space]["fs_system"])!=None):
 system=v_supplement_fs[space]["fs_system"]
 if (vacant_spaces[space]["size"]==vacant_spaces[space2]
["size"]) and (vacant_spaces[space2]["structure"]>=uf_systems[system]["weight"]) and
(vacant_spaces[space2]["solar"]>=uf_systems[system]["solar"]):
 potential.append(space2)
 v_supplement_fs[space]["potential source"]=potential
 else:
 print("structure",space,vacant_spaces[space2]
["structure"],system,uf_systems[system]["weight"])
 print("sun",space,vacant_spaces[space2]
["solar"],system,uf_systems[system]["solar"])
 print("size",vacant_spaces[space]
["size"]==vacant_spaces[space2]["size"])
 else:
 print(space,space2,"not available",v_supplement_fs[space]
["fs_system"],"no need for supplement")

Check if potential sources have necessary waste sources around
Rule 15: For supplementary systems all the items should be found
for space in v_supplement_fs:
 potential=v_supplement_fs[space]["potential source"]
 if len(v_supplement_fs[space]["supplement source"])==0:
 for vacant in potential:
 nearby_list=waste_dict[vacant]
 for nearby in nearby_list:
 if nearby not in used_waste_source:
 if wastes[nearby]["size"]==vacant_spaces[space]["size"]:
 if v_supplement_fs[space]["fs_demand"]==wastes[nearby]["type"]:
 v_supplement_fs[space]["supplement source"]=vacant
 v_supplement_fs[space]["fs_demand source"]=nearby
 used_waste_source.append(nearby)
 edge_tuple1=(nearby,vacant)
 edge_tuple2=(vacant,space)
 new_edges.append(edge_tuple1)
 new_edges.append(edge_tuple2)
 if len(v_supplement_fs[space]["supplement source"])>0:
 break

Appendix H Technical Details | pg.312 Appendix H Technical Details | pg.313

- PREPARE DATA FOR EXPORT & EXPORT -

H.4 STATISTICS

development level 10.3 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.3%20Delft.html[5/9/2022 11:09:03 PM]

In []:

In []:

 elif v_supplement_fs[space]["fs_demand"]!=wastes[nearby]["type"]:
 v_supplement_fs[space]["supplement source"]=vacant
 v_supplement_fs[space]["fs_demand source"]="supply externally"
 used_waste_source.append(nearby)
 edge_tuple1=(nearby,vacant)
 edge_tuple2=(vacant,space)
 new_edges.append(edge_tuple1)
 new_edges.append(edge_tuple2)
 if len(v_supplement_fs[space]["supplement source"])>0:
 break
 if len(v_supplement_fs[space]["supplement source"])>0:
 break

Add newly assigned supplementary systems to the "occupied nodes" list
for space in v_supplement_fs:
 if (v_supplement_fs[space]["fs_system"])!=None:
 if len(v_supplement_fs[space]["supplement source"])!=0:
 occ=v_supplement_fs[space]["supplement source"]
 occupied_dict[occ]={}
 occupied_dict[occ]["found"]=v_supplement_fs[space]["fs_demand"]
 occupied_dict[occ]["system"]=v_supplement_fs[space]["fs_system"]
 system=v_supplement_fs[space]["fs_system"]
 occupied_dict[occ]["source"]=v_supplement_fs[space]["fs_demand source"]
 occupied_dict[occ]["outputs"]=v_supplement_fs[space]["supplement"]
 occupied_dict[occ]["supplements"]=uf_systems[system]["supplement"]
 occupied_dict[occ]["circularity"]=1
 elif v_supplement_fs[space]["fs_demand source"]=="supply externally":
 occ=v_supplement_fs[space]["supplement source"]
 occupied_dict[occ]={}
 occupied_dict[occ]["found"]=None
 occupied_dict[occ]["system"]=v_supplement_fs[space]["fs_system"]
 system=occupied_dict[occ]["system"]
 occupied_dict[occ]["source"]=v_supplement_fs[space]["fs_demand source"]
 occupied_dict[occ]["supplements"]=uf_systems[system]["supplement"]
 occupied_dict[occ]["outputs"]=v_supplement_fs[space]["supplement"]
 occupied_dict[occ]["circularity"]=0

for space in sorted_dict:
 for system in sorted_dict[space]:
 if space not in occupied_dict:
 if len(sorted_dict[space][system]["found"])==0:
 # if len(sorted_dict[space][system]["missing"])==3:
 for missing in sorted_dict[space][system]["missing"]:
 if missing in non_critical_items:
 print(space)
 occupied_dict[space]={}
 occupied_dict[space]["system"]=system
 occupied_dict[space]["found"]=None
 occupied_dict[space]["missing"]=sorted_dict[space][system]
["missing"]
 occupied_dict[space]["source"]="supply externally"
 occupied_dict[space]["circularity"]=0
 if len(occupied_dict[space]["system"])!=0:

development level 10.4 UGC

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.4%20UGC.html[5/9/2022 10:53:21 PM]

In []:

In []:

Import Tools
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
import json
import requests
import openpyxl

Retrieve data regarding vacant spaces
from openpyxl import load_workbook
workbook = load_workbook(filename="Node_Information_UGC1.xlsx")
workbook.sheetnames
sheet1 = workbook.worksheets[0]
sheet2 = workbook.worksheets[1]

Create dictionary based on excel worksheet
vacant_spaces={}
for value in sheet1.iter_rows(min_row=2, values_only=True):
 for index,item in enumerate(value):
 vacant_spaces[value[0]]={}
 vacant_spaces[value[0]]["location"]=value[1]
 vacant_spaces[value[0]]["tag"]=value[6]
 vacant_spaces[value[0]]["building"]=value[3]
 vacant_spaces[value[0]]["size_real"]=int(value[2])
 vacant_spaces[value[0]]["loc_building"]=value[4]
 vacant_spaces[value[0]]["orientation"]=value[5]
 vacant_spaces[value[0]]["node_type"]=value[7]

#interpret data
#Rules:
#structure (roof:1,ground:3,outside:3,basement:3,intermediate:2)
#solar (roof:3,
basement:1
ground & S,SW,SE:3,
ground $ E,W:2
ground $ N,NE,NW:1
outside & S,SW,SE:3,
outside $ E,W:2
outside $ N,NE,NW:1
intermediate & S,SW,SE:3,
intermediate & E,W:2
intermediate & N,NE,NW:1
#size (0-100 size:1)
(101-500 size:2)
(500-... size:3)

for space in vacant_spaces:
 if vacant_spaces[space]["loc_building"]=="roof":
 vacant_spaces[space]["structure"]=1
 vacant_spaces[space]["solar"]=3
 if vacant_spaces[space]["loc_building"]=="basement":
 vacant_spaces[space]["structure"]=3
 vacant_spaces[space]["solar"]=1Loading [MathJax]/extensions/Safe.js

Appendix H Technical Details | pg.314 Appendix H Technical Details | pg.315

development level 10.4 UGC

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.4%20UGC.html[5/9/2022 10:53:21 PM]

 if (vacant_spaces[space]["loc_building"]=="ground") and (((vacant_spaces[space]
["orientation"])=="S") or ((vacant_spaces[space]["orientation"])=="SE") or
((vacant_spaces[space]["orientation"])=="SW")):
 vacant_spaces[space]["solar"]=3
 vacant_spaces[space]["structure"]=3
 if (vacant_spaces[space]["loc_building"]=="ground") and (((vacant_spaces[space]
["orientation"])=="N") or ((vacant_spaces[space]["orientation"])=="NE") or
((vacant_spaces[space]["orientation"])=="NW")):
 vacant_spaces[space]["solar"]=1
 vacant_spaces[space]["structure"]=3
 if (vacant_spaces[space]["loc_building"]=="ground") and (((vacant_spaces[space]
["orientation"])=="E") or ((vacant_spaces[space]["orientation"])=="W")):
 vacant_spaces[space]["solar"]=2
 vacant_spaces[space]["structure"]=3
 if (vacant_spaces[space]["loc_building"]=="intermediate") and (((vacant_spaces[space]
["orientation"])=="S") or ((vacant_spaces[space]["orientation"])=="SE") or
((vacant_spaces[space]["orientation"])=="SW")):
 vacant_spaces[space]["solar"]=3
 vacant_spaces[space]["structure"]=2
 if (vacant_spaces[space]["loc_building"]=="intermediate") and (((vacant_spaces[space]
["orientation"])=="N") or ((vacant_spaces[space]["orientation"])=="NE") or
((vacant_spaces[space]["orientation"])=="NW")):
 vacant_spaces[space]["solar"]=1
 vacant_spaces[space]["structure"]=2
 if (vacant_spaces[space]["loc_building"]=="intermediate") and (((vacant_spaces[space]
["orientation"])=="E") or ((vacant_spaces[space]["orientation"])=="W")):
 vacant_spaces[space]["solar"]=2
 vacant_spaces[space]["structure"]=2
 if (vacant_spaces[space]["loc_building"]=="outside") and (((vacant_spaces[space]
["orientation"])=="S") or ((vacant_spaces[space]["orientation"])=="SE") or
((vacant_spaces[space]["orientation"])=="SW")):
 vacant_spaces[space]["solar"]=3
 vacant_spaces[space]["structure"]=3
 if (vacant_spaces[space]["loc_building"]=="outside") and (((vacant_spaces[space]
["orientation"])=="N") or ((vacant_spaces[space]["orientation"])=="NE") or
((vacant_spaces[space]["orientation"])=="NW")):
 vacant_spaces[space]["solar"]=1
 vacant_spaces[space]["structure"]=3
 if (vacant_spaces[space]["loc_building"]=="outside") and (((vacant_spaces[space]
["orientation"])=="E") or ((vacant_spaces[space]["orientation"])=="W")):
 vacant_spaces[space]["solar"]=2
 vacant_spaces[space]["structure"]=3

Interpret size based on predefined ranges
for space in vacant_spaces:
 if vacant_spaces[space]["size_real"]<=200:
 vacant_spaces[space]["size"]=1
 if (vacant_spaces[space]["size_real"]>200) and (vacant_spaces[space]
["size_real"]<=1000) :
 vacant_spaces[space]["size"]=2
 if (vacant_spaces[space]["size_real"]>1000):
 vacant_spaces[space]["size"]=3

Retrieve waste sources
Create dictionary based on excel worksheet
wastes={}
for value in sheet2.iter_rows(min_row=2, values_only=True):

development level 10.4 UGC

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.4%20UGC.html[5/9/2022 10:53:21 PM]

In []:

 for index,item in enumerate(value):
 wastes[value[0]]={}
 wastes[value[0]]["location"]=value[1]
 wastes[value[0]]["tag"]=value[5]
 wastes[value[0]]["type"]=value[3]

workbook = load_workbook(filename="Node_Information_UGC1.xlsx")
workbook.sheetnames
sheet1 = workbook.worksheets[0]
sheet2 = workbook.worksheets[1]
wastes={}
for value in sheet2.iter_rows(min_row=2, values_only=True):
 for index,item in enumerate(value):
 if value[4]!=0:
 wastes[value[0]]={}
 wastes[value[0]]["location"]=value[1]
 wastes[value[0]]["source"]=value[2]
 wastes[value[0]]["tag"]=value[5]
 wastes[value[0]]["type"]=value[3]
 wastes[value[0]]["quantity"]=int(value[4])
 wastes[value[0]]["node_type"]="waste"

Assign ranges to quantities
for waste in wastes:
 if wastes[waste]["type"]=="W1":
 if wastes[waste]["quantity"]<= 183705:
 wastes[waste]["size"]=1
 if (wastes[waste]["quantity"]>183705) and (wastes[waste]["quantity"]<=918523):
 wastes[waste]["size"]=2
 if wastes[waste]["quantity"]>918523:
 wastes[waste]["size"]=3
 if wastes[waste]["type"]=="W2":
 if wastes[waste]["quantity"]<= 67500:
 wastes[waste]["size"]=1
 if (wastes[waste]["quantity"]>67500) and (wastes[waste]["quantity"]<=337500):
 wastes[waste]["size"]=2
 if wastes[waste]["quantity"]>337500:
 wastes[waste]["size"]=3
 if wastes[waste]["type"]=="W3":
 if wastes[waste]["quantity"]<= 11813:
 wastes[waste]["size"]=1
 if (wastes[waste]["quantity"]>11813) and (wastes[waste]["quantity"]<=59063):
 wastes[waste]["size"]=2
 if wastes[waste]["quantity"]>59063:
 wastes[waste]["size"]=3
 if wastes[waste]["type"]=="W4":
 if wastes[waste]["quantity"]<= 28200:
 wastes[waste]["size"]=1
 if (wastes[waste]["quantity"]>28200) and (wastes[waste]["quantity"]<=141000):
 wastes[waste]["size"]=2
 if wastes[waste]["quantity"]>141000:
 wastes[waste]["size"]=3
 if wastes[waste]["type"]=="W5":
 if wastes[waste]["quantity"]<= 19342:

Appendix H Technical Details | pg.316 Appendix H Technical Details | pg.317

development level 10.4 UGC

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.4%20UGC.html[5/9/2022 10:53:21 PM]

In []:

In []:

In []:

 wastes[waste]["size"]=1
 if (wastes[waste]["quantity"]>19342) and (wastes[waste]["quantity"]<=96710):
 wastes[waste]["size"]=2
 if wastes[waste]["quantity"]>96710:
 wastes[waste]["size"]=3
 if wastes[waste]["type"]=="W6":
 if wastes[waste]["quantity"]<= 1560000:
 wastes[waste]["size"]=1
 if (wastes[waste]["quantity"]>1560000) and (wastes[waste]["quantity"]<=7800000):
 wastes[waste]["size"]=2
 if wastes[waste]["quantity"]>7800000:
 wastes[waste]["size"]=3
 if wastes[waste]["type"]=="W7":
 if wastes[waste]["quantity"]<= 200000:
 wastes[waste]["size"]=1
 if (wastes[waste]["quantity"]>200000) and (wastes[waste]["quantity"]<=1000000):
 wastes[waste]["size"]=2
 if wastes[waste]["quantity"]>1000000:
 wastes[waste]["size"]=3

Import Used Waste List
url1="https://raw.githubusercontent.com/erengozdeanil/UF-
DecisionMaker/main/used%20waste_ugc.txt"
resp1 = requests.get(url1)
used_waste1 = json.loads(resp1.text)

Import Space & System List
url = "https://raw.githubusercontent.com/erengozdeanil/UF-
DecisionMaker/main/occupied%20nodes_ugc.txt"
resp = requests.get(url)
occupied_nodes1 = json.loads(resp.text)

url = "https://raw.githubusercontent.com/erengozdeanil/UF-
DecisionMaker/main/occupied%20nodes4_ugc.txt"
resp = requests.get(url)
occupied_nodes2 = json.loads(resp.text)

Combine occupied spaces list from all of the previous stages
occ_space={}
vacant=[]
x1=[]
x2=[]
x3=[]
x4=[]
for space in occupied_nodes1:
 if occupied_nodes1[space]["system"]==None:
 continue
 else:
 x1.append(space)
 occ_space[space]={}
 occ_space[space]["size"]=vacant_spaces[space]["size_real"]
 occ_space[space]["system"]=occupied_nodes1[space]["system"]

development level 10.4 UGC

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.4%20UGC.html[5/9/2022 10:53:21 PM]

In []:

In []:

for space in occupied_nodes2:
 if occupied_nodes2[space]["system"]==None:
 continue
 else:
 x2.append(space)
 occ_space[space]={}
 occ_space[space]["size"]=vacant_spaces[space]["size_real"]
 occ_space[space]["system"]=occupied_nodes2[space]["system"]

for space in vacant_spaces:
 if space not in occ_space:
 vacant.append(space)

#Yields per m2
UF1 :
uf1_product="worm"
uf1_yield=4.87
UF2 :
uf2_product="fish"
uf2_yield=15
UF3 :
uf3_product="mushroom"
uf3_yield=125
UF4 :
uf4_product="small veg"
uf4_yield=99.9
UF5 :
uf5_product="small veg"
uf5_product2="big veg"
uf5_yield=12.5
uf5_yield2=89.6
UF6 :
uf6_product="small veg"
uf6_product2="big veg"
uf6_yield=12.5
uf6_yield2=2.7
UF7 :
uf7_product="small veg"
uf7_yield=12.5
UF8 :
uf8_product="small veg"
uf8_yield=87.4
UF9 :
uf9_product="small veg"
uf9_yield=12.5

For each occupied space multiply space' size with (yield per m2) based on the system
for space in occ_space:
 occ_space[space]["produce"]=None
 occ_space[space]["produce2"]=None
 occ_space[space]["yield"]=None
 occ_space[space]["yield2"]=None
 if occ_space[space]["system"]=="UF1":

Appendix H Technical Details | pg.318 Appendix H Technical Details | pg.319

development level 10.4 UGC

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.4%20UGC.html[5/9/2022 10:53:21 PM]

In []:

 occ_space[space]["produce"]=uf1_product
 occ_space[space]["yield"]=occ_space[space]["size"]*uf1_yield
 if occ_space[space]["system"]=="UF2":
 occ_space[space]["produce"]=uf2_product
 occ_space[space]["yield"]=occ_space[space]["size"]*uf2_yield
 if occ_space[space]["system"]=="UF3":
 occ_space[space]["produce"]=uf3_product
 occ_space[space]["yield"]=occ_space[space]["size"]*uf3_yield
 if occ_space[space]["system"]=="UF4":
 occ_space[space]["produce"]=uf4_product
 occ_space[space]["yield"]=occ_space[space]["size"]*uf4_yield
 if occ_space[space]["system"]=="UF5":
 occ_space[space]["produce"]=uf5_product
 occ_space[space]["yield"]=occ_space[space]["size"]*uf5_yield
 occ_space[space]["produce2"]=uf5_product2
 occ_space[space]["yield2"]=occ_space[space]["size"]*uf5_yield2
 if occ_space[space]["system"]=="UF6":
 occ_space[space]["produce"]=uf6_product
 occ_space[space]["yield"]=occ_space[space]["size"]*uf6_yield
 occ_space[space]["produce2"]=uf6_product2
 occ_space[space]["yield2"]=occ_space[space]["size"]*uf6_yield2
 if occ_space[space]["system"]=="UF7":
 occ_space[space]["produce"]=uf7_product
 occ_space[space]["yield"]=occ_space[space]["size"]*uf7_yield
 if occ_space[space]["system"]=="UF8":
 occ_space[space]["produce"]=uf8_product
 occ_space[space]["yield"]=occ_space[space]["size"]*uf8_yield
 if occ_space[space]["system"]=="UF9":
 occ_space[space]["produce"]=uf9_product
 occ_space[space]["yield"]=occ_space[space]["size"]*uf9_yield

For each waste type sum used waste quantities
yields={}
worm=[]
fish=[]
mushroom=[]
smallveg=[]
bigveg=[]
for space in occ_space:
 yields["worm"]={}
 yields["fish"]={}
 yields["mushroom"]={}
 yields["small veg"]={}
 yields["big veg"]={}
 if occ_space[space]["produce"]=="worm":
 worm.append(occ_space[space]["yield"])
 if occ_space[space]["produce"]=="fish":
 fish.append(occ_space[space]["yield"])
 if occ_space[space]["produce"]=="mushroom":
 mushroom.append(occ_space[space]["yield"])
 if occ_space[space]["produce"]=="small veg":
 smallveg.append(occ_space[space]["yield"])
 if occ_space[space]["produce2"]=="big veg":
 bigveg.append(occ_space[space]["yield"])

development level 10.4 UGC

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.4%20UGC.html[5/9/2022 10:53:21 PM]

In []:

In []:

Add total used waste quantities to a list
worm_kg=sum(worm)
fish_kg=sum(fish)
mushroom_kg=sum(mushroom)
smallveg_kg=sum(smallveg)
bigveg_kg=sum(bigveg)

for product in yields:
 yields[product]["number"]=[]
 yields[product]["weight"]=[]
 if product=="worm":
 yields["worm"]["weight"]=worm_kg
 worm_count=int(worm_kg/0.00025)
 yields["worm"]["number"]=worm_count
 if product=="fish":
 yields["fish"]["weight"]=fish_kg
 yields["fish"]["number"]=int(fish_kg/(0.25))
 if product=="mushroom":
 yields["mushroom"]["weight"]=mushroom_kg
 yields["mushroom"]["number"]=int(mushroom_kg/(0.15))
 if product=="small veg":
 yields["small veg"]["weight"]=smallveg_kg
 yields["small veg"]["number"]=int(smallveg_kg/(0.14))
 if product=="big veg":
 yields["big veg"]["weight"]=bigveg_kg
 yields["big veg"]["number"]=int(bigveg_kg/(0.015))
print(yields)

Export data to excel
import pandas as pd
df = pd.DataFrame.from_dict(occ_space, orient='index') # convert dict to dataframe
df.to_csv('UGC space system yield.csv') # write dataframe to file

import pandas as pd
df = pd.DataFrame.from_dict(yields, orient='index') # convert dict to dataframe
df.to_csv('UGC yields.csv') # write dataframe to file

Appendix H Technical Details | pg.320 Appendix H Technical Details | pg.321

Vacant Spaces &
Waste Nearby
Radius = 100
Radius = 200
Radius = 500

Vacant
Spaces &

Waste
Data Input Id

en
ti

�e
rs

Co
lo

r C
od

in
g

Ex
po

rt
 D

at
a

Im
po

rt
 R

es
ul

ts

Visualising Results
Stage by Stage

Radius = 100
Radius = 200
Radius = 500

H.5 Grasshopper Script

Appendix H Technical Details | pg.322 Appendix H Technical Details | pg.323

Questions 4/14

NEXT

Design Questionnaire

What is the aim of the project?

Holistic Food
ProductionResearch Maximum

Productivity

How many missing resources is acceptable?

21 3

Should all the waste sources be found for food producing
supplementary systems?

Should all the waste sources be found for food
production systems?

Only Critical
Items

Both Critical
and Non-Critical

Items

Only Critical
Items

Both Critical
and Non-Critical

Items

Holistic Food
Production

Uf systems are
sorted according to
ease of application
in existing urban

contexts.
All of the vacant
spaces will be

occupied based on
the number of

missing items even
if there is not any

found item.
Critical Items:

Resources which are
a must for a system

to function
Vermiculture: Food
waste, sawdust,

paper

Questions 4/14

NEXT

Design Questionnaire

What is the aim of the project?

Holistic Food
ProductionResearch Maximum

Productivity

How many missing resources is acceptable?

21 3

Should all the waste sources be found for food producing
supplementary systems?

Should all the waste sources be found for food
production systems?

Only Critical
Items

Both Critical
and Non-Critical

Items

Only Critical
Items

Both Critical
and Non-Critical

Items

Holistic Food
Production

Uf systems are
sorted according to
ease of application
in existing urban

contexts.
All of the vacant
spaces will be

occupied based on
the number of

missing items even
if there is not any

found item.
Critical Items:

Resources which are
a must for a system

to function
Vermiculture: Food
waste, sawdust,

paper

H.6 Questionnaire - Script

Questions 4/14

NEXT

Design Questionnaire

What is the aim of the project?

Holistic Food
ProductionResearch Maximum

Productivity

How many missing resources is acceptable?

21 3

Should all the waste sources be found for food producing
supplementary systems?

Should all the waste sources be found for food
production systems?

Only Critical
Items

Both Critical
and Non-Critical

Items

Only Critical
Items

Both Critical
and Non-Critical

Items

Holistic Food
Production

Uf systems are
sorted according to
ease of application
in existing urban

contexts.
All of the vacant
spaces will be

occupied based on
the number of

missing items even
if there is not any

found item.
Critical Items:

Resources which are
a must for a system

to function
Vermiculture: Food
waste, sawdust,

paper

Questions 4/14

NEXT

Design Questionnaire

What is the aim of the project?

Holistic Food
ProductionResearch Maximum

Productivity

How many missing resources is acceptable?

21 3

Should all the waste sources be found for food producing
supplementary systems?

Should all the waste sources be found for food
production systems?

Only Critical
Items

Both Critical
and Non-Critical

Items

Only Critical
Items

Both Critical
and Non-Critical

Items

Holistic Food
Production

Uf systems are
sorted according to
ease of application
in existing urban

contexts.
All of the vacant
spaces will be

occupied based on
the number of

missing items even
if there is not any

found item.
Critical Items:

Resources which are
a must for a system

to function
Vermiculture: Food
waste, sawdust,

paper

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

Stage 1 | Search Radius = 100 m

Data Processing

In []:

Remove real quantitis from the list since we will not use it again
for waste in wastes:
 wastes[waste].pop("quantity")

#Dictionary of urban farming systems
 # UF1: Vermiculture, UF2: Aquaculture, UF3: Mushroom, UF4: NFT, UF5: Medai Beds, UF6:
Raised Beds, UF7: Water Culture, UF8: Plant Factory, UF9: Aeroponics
 # "S" : supplementary system, "F" : food production system
 # 3 : high, 2 : medium, 1 : low, 0 : none
uf_systems = {
"UF1":{"tag":"UF1","type":"S","weight":3,"solar":1,"in":
["W1","W2","W3","W6"],"supplement":None,"out":["S4","S5"]},
"UF2":{"tag":"UF2","type":"SF","weight":3,"solar":2,"in":["W7"],"supplement":["S5"],"out":
["O4","S2"]},
"UF3":{"tag":"UF3","type":"F","weight":2,"solar":1,"in":
["W2","W3","W4","W6"],"supplement":None,"out":["O3","S4"]},
"UF4":{"tag":"UF4","type":"F","weight":1,"solar":3,"in":["W5","W6","W7"],"supplement":
["S2"],"out":["O1","W1"]},
"UF5":{"tag":"UF5","type":"F","weight":1,"solar":3,"in":["W5","W6","W7"],"supplement":
["S2"],"out":["O1","O2","W1"]},
"UF6":{"tag":"UF6","type":"F","weight":3,"solar":3,"in":["W6"],"supplement":["S4"],"out":
["O1","O2","W1"]},
"UF7":{"tag":"UF7","type":"F","weight":3,"solar":3,"in":["W5","W6","W7"],"supplement":
["S2"],"out":["O1","W1"]},
"UF8":{"tag":"UF8","type":"F","weight":3,"solar":1,"in":["W5","W6"],"supplement":
["S2"],"out":["O1","W1","W7"]},
"UF9":{"tag":"UF9","type":"F","weight":1,"solar":3,"in":["W5","W6","W7"],"supplement":
["S2"],"out":["O1","W1"]}
}

critical_items=["W1","W2","W3", "W4"]
non_critical_items=["W5","W6","W7"]

Make a dictionary of vacant spaces and potential uf systems based on structural capacity
& solar exposure
Rule 1: Solar exposure of space == Solar exposure demand of system
Structural capacity of space >= Weight of space
Size of space == Quantity of waste

v_potential = {}
for k,v in vacant_spaces.items():
 uf_list=[]
 for j,y in uf_systems.items():
 if (vacant_spaces[k]["structure"])>=(uf_systems[j]["weight"]) and
(vacant_spaces[k]["solar"])==(uf_systems[j]["solar"]) and (uf_systems[j]["type"]=="F"):
 v_potential[k]={}
 uf_list.append(uf_systems[j]["tag"])
 v_potential[k]["tag"]=vacant_spaces[k]["tag"]
 v_potential[k]["UF"]=uf_list

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

occupied={}
used_waste=[]
used_waste_source=[]
used_waste_source_temp=[]
new_edges=[]
occupied_dict={}

for space in sorted_dict:
 print("looking for", space)
 print("for",space,sorted_dict[space],"is possible")
 occupied_dict[space]={}
 occupied_dict[space]["system"]={}
 occupied_dict[space]["found"]={}
 occupied_dict[space]["source"]={}
 occupied_dict[space]["missing"]={}
 for index,system in enumerate(sorted_dict[space]):
 print("looking for system", system)
 occupied[space]={}
 occupied[space]["system"]={}
 found_list=sorted_dict[space][system]["enough waste"]
 sources_list=sorted_dict[space][system]["enough source"]
 missing_list=sorted_dict[space][system]["missing"]
 print(len(missing_list),"is length for",space,system)

 if len(occupied[space]["system"])==0:
 print(space,"is not occupied run for",system)
 if len(missing_list)==0:
 for source in sources_list:
 if source in used_waste_source:
 print(used_waste_source,"is used",space,system)
 pass
 elif source not in used_waste_source:
 print(used_waste_source,"is used",space,system)
 occupied[space]["system"]=system
 occupied_dict[space]["system"]=system
 occupied_dict[space]["found"]=sorted_dict[space][system]["enough
waste"]
 occupied_dict[space]["source"]=sorted_dict[space][system]["enough
source"]
 for items in found_list:
 used_waste.append(items)
 used_waste_source.append(source)
 edge_tuple=(source,space)
 new_edges.append(edge_tuple)
 print("no missing items:", space, system, "assign")
 if len(occupied[space]["system"])>0:
 print(space,system,"will break")
 break
 elif len(missing_list)==1:
 print("one item",system,space)
 for missing in missing_list:
 if missing in non_critical_items:
 print("one non critical item",missing,system,space)
 for source in sources_list:
 if source not in used_waste_source:
 print("Used Non Critical Source",source)
 occupied[space]["system"]=system

Appendix H Technical Details | pg.324 Appendix H Technical Details | pg.325

Questions 4/14

NEXT

Design Questionnaire

What is the aim of the project?

Holistic Food
ProductionResearch Maximum

Productivity

How many missing resources is acceptable?

21 3

Should all the waste sources be found for food producing
supplementary systems?

Should all the waste sources be found for food
production systems?

Only Critical
Items

Both Critical
and Non-Critical

Items

Only Critical
Items

Both Critical
and Non-Critical

Items

Holistic Food
Production

Uf systems are
sorted according to
ease of application
in existing urban

contexts.
All of the vacant
spaces will be

occupied based on
the number of

missing items even
if there is not any

found item.
Critical Items:

Resources which are
a must for a system

to function
Vermiculture: Food
waste, sawdust,

paper

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

Create New List To Be Used In Next Steps

In []:

 occupied_dict[space]["system"]=system
 occupied_dict[space]["found"]=sorted_dict[space][system]
["enough waste"]
 occupied_dict[space]["source"]=sorted_dict[space][system]
["enough source"]
 occupied_dict[space]["missing"]=sorted_dict[space][system]
["missing"]
 for items in found_list:
 used_waste.append(items)
 used_waste_source.append(source)
 edge_tuple=(source,space)
 new_edges.append(edge_tuple)
 print("one non critical missing items:", space, system,
"assign")
 else:
 print(source,"already used")
 else:
 print(space,"critical item missing:",missing,"for",system)
 if len(occupied[space]["system"])>0:
 print(space,system,"will break")
 break
 elif len(missing_list)==2:
 print("two items",system,space)
 for missing in missing_list:
 print("two items",missing)
 if missing in non_critical_items:
 print("two items",missing,"not critical")
 for source in sources_list:
 if source not in used_waste_source:
 print("Used Non Critical Source",source)
 occupied[space]["system"]=system
 occupied_dict[space]["system"]=system
 occupied_dict[space]["found"]=sorted_dict[space][system]
["enough waste"]
 occupied_dict[space]["source"]=sorted_dict[space][system]
["enough source"]
 occupied_dict[space]["missing"]=sorted_dict[space][system]
["missing"]
 for items in found_list:
 used_waste.append(items)
 print("two non critical missing items:", space,
system,"assign")
 print(space,occupied_dict[space])
 used_waste_source.append(source)
 edge_tuple=(source,space)
 new_edges.append(edge_tuple)
 else:
 print(space,"critical item missing:",missing,"for",system)
 if len(occupied[space]["system"])>0:
 print(space,system,"will break")
 break

Add circularity & outputs to occupied_dict
for space in occupied_dict:

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

occupied={}
used_waste=[]
used_waste_source=[]
used_waste_source_temp=[]
new_edges=[]
occupied_dict={}

for space in sorted_dict:
 print("looking for", space)
 print("for",space,sorted_dict[space],"is possible")
 occupied_dict[space]={}
 occupied_dict[space]["system"]={}
 occupied_dict[space]["found"]={}
 occupied_dict[space]["source"]={}
 occupied_dict[space]["missing"]={}
 for index,system in enumerate(sorted_dict[space]):
 print("looking for system", system)
 occupied[space]={}
 occupied[space]["system"]={}
 found_list=sorted_dict[space][system]["enough waste"]
 sources_list=sorted_dict[space][system]["enough source"]
 missing_list=sorted_dict[space][system]["missing"]
 print(len(missing_list),"is length for",space,system)

 if len(occupied[space]["system"])==0:
 print(space,"is not occupied run for",system)
 if len(missing_list)==0:
 for source in sources_list:
 if source in used_waste_source:
 print(used_waste_source,"is used",space,system)
 pass
 elif source not in used_waste_source:
 print(used_waste_source,"is used",space,system)
 occupied[space]["system"]=system
 occupied_dict[space]["system"]=system
 occupied_dict[space]["found"]=sorted_dict[space][system]["enough
waste"]
 occupied_dict[space]["source"]=sorted_dict[space][system]["enough
source"]
 for items in found_list:
 used_waste.append(items)
 used_waste_source.append(source)
 edge_tuple=(source,space)
 new_edges.append(edge_tuple)
 print("no missing items:", space, system, "assign")
 if len(occupied[space]["system"])>0:
 print(space,system,"will break")
 break
 elif len(missing_list)==1:
 print("one item",system,space)
 for missing in missing_list:
 if missing in non_critical_items:
 print("one non critical item",missing,system,space)
 for source in sources_list:
 if source not in used_waste_source:
 print("Used Non Critical Source",source)
 occupied[space]["system"]=system

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

Stage 1 | Search Radius = 100 m

Data Processing

In []:

Remove real quantitis from the list since we will not use it again
for waste in wastes:
 wastes[waste].pop("quantity")

#Dictionary of urban farming systems
 # UF1: Vermiculture, UF2: Aquaculture, UF3: Mushroom, UF4: NFT, UF5: Medai Beds, UF6:
Raised Beds, UF7: Water Culture, UF8: Plant Factory, UF9: Aeroponics
 # "S" : supplementary system, "F" : food production system
 # 3 : high, 2 : medium, 1 : low, 0 : none
uf_systems = {
"UF1":{"tag":"UF1","type":"S","weight":3,"solar":1,"in":
["W1","W2","W3","W6"],"supplement":None,"out":["S4","S5"]},
"UF2":{"tag":"UF2","type":"SF","weight":3,"solar":2,"in":["W7"],"supplement":["S5"],"out":
["O4","S2"]},
"UF3":{"tag":"UF3","type":"F","weight":2,"solar":1,"in":
["W2","W3","W4","W6"],"supplement":None,"out":["O3","S4"]},
"UF4":{"tag":"UF4","type":"F","weight":1,"solar":3,"in":["W5","W6","W7"],"supplement":
["S2"],"out":["O1","W1"]},
"UF5":{"tag":"UF5","type":"F","weight":1,"solar":3,"in":["W5","W6","W7"],"supplement":
["S2"],"out":["O1","O2","W1"]},
"UF6":{"tag":"UF6","type":"F","weight":3,"solar":3,"in":["W6"],"supplement":["S4"],"out":
["O1","O2","W1"]},
"UF7":{"tag":"UF7","type":"F","weight":3,"solar":3,"in":["W5","W6","W7"],"supplement":
["S2"],"out":["O1","W1"]},
"UF8":{"tag":"UF8","type":"F","weight":3,"solar":1,"in":["W5","W6"],"supplement":
["S2"],"out":["O1","W1","W7"]},
"UF9":{"tag":"UF9","type":"F","weight":1,"solar":3,"in":["W5","W6","W7"],"supplement":
["S2"],"out":["O1","W1"]}
}

critical_items=["W1","W2","W3", "W4"]
non_critical_items=["W5","W6","W7"]

Make a dictionary of vacant spaces and potential uf systems based on structural capacity
& solar exposure
Rule 1: Solar exposure of space == Solar exposure demand of system
Structural capacity of space >= Weight of space
Size of space == Quantity of waste

v_potential = {}
for k,v in vacant_spaces.items():
 uf_list=[]
 for j,y in uf_systems.items():
 if (vacant_spaces[k]["structure"])>=(uf_systems[j]["weight"]) and
(vacant_spaces[k]["solar"])==(uf_systems[j]["solar"]) and (uf_systems[j]["type"]=="F"):
 v_potential[k]={}
 uf_list.append(uf_systems[j]["tag"])
 v_potential[k]["tag"]=vacant_spaces[k]["tag"]
 v_potential[k]["UF"]=uf_list

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

In []:

We created a dictionary for spaces which need supplement to store system, supplementing
neighbor and supplement type for each space found what kind of system and supplement and
input is necessary
Check the neighbors of supplement needing space to see if there is a potential neighbor
with the same size, enough structural capacity and same solar exosure
Rule 8: (supplement needing space's size) == (its neighbors size)
Rule 9: (neighbor's solar exposure) == (needed system's solar exposure)
Rule 10: (neighbor's structural capacity) >= (needed system's weight)
for space in v_supplement_fs:
 potential=[]
 for space2,neighbor in nearby_space100:
 if space==space2:
 if v_supplement_fs[space]["fs_system"]!=None:
 if (len(v_supplement_fs[space]["supplement source"])==0) and
(len(v_supplement_fs[space]["fs_system"])!=0):
 system=v_supplement_fs[space]["fs_system"]
 print(system,"system")
 print(vacant_spaces[space]["size"],vacant_spaces[neighbor]["size"])
 if (vacant_spaces[space]["size"]==vacant_spaces[neighbor]["size"]) and
(vacant_spaces[neighbor]["structure"]>=uf_systems[system]["weight"]) and
(vacant_spaces[neighbor]["solar"]>=uf_systems[system]["solar"]):
 potential.append(neighbor)
 v_supplement_fs[space]["potential source"]=potential
 elif space==neighbor:
 print(neighbor,space2,"reverse is available")
 if v_supplement_fs[space]["fs_system"]!=None:
 if (len(v_supplement_fs[space]["supplement source"])==0) and
(len(v_supplement_fs[space]["fs_system"])!=0):
 print(space2,"is available")
 system=v_supplement_fs[space]["fs_system"]
 if (vacant_spaces[space]["size"]==vacant_spaces[space2]["size"])
and (vacant_spaces[space2]["structure"]>=uf_systems[system]["weight"]) and
(vacant_spaces[space2]["solar"]>=uf_systems[system]["solar"]):
 potential.append(space2)
 print(potential)
 print(space,potential)
 print(space,"matches",space2,"and",system)
 v_supplement_fs[space]["potential source"]=potential
 else:
 print("structure",space,vacant_spaces[space2]
["structure"],system,uf_systems[system]["weight"])
 print("sun",space,vacant_spaces[space2]
["solar"],system,uf_systems[system]["solar"])
 else:
 print(space,space2,"not available",v_supplement_fs[space]
["fs_system"],"no need for supplement")

Check if potential sources have necessary waste sources nearby
Rule 11: For food producing supplementary systems all the items should be found
for space in v_supplement_fs:
 potential=v_supplement_fs[space]["potential source"]
 if len(v_supplement_fs[space]["supplement source"])==0:
 for vacant in potential:development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

 nearby_list=waste_dict[vacant]
 print(nearby_list)
 for nearby in nearby_list:
 print(vacant, nearby,"is",wastes[nearby]["type"])
 if nearby not in used_waste_source:
 if wastes[nearby]["size"]==vacant_spaces[space]["size"]:
 print(nearby,"not used")
 if v_supplement_fs[space]["fs_demand"]==wastes[nearby]["type"]:
 print("for",space,vacant,"is potential and has",nearby,"as a
source of",wastes[nearby]["type"])
 v_supplement_fs[space]["supplement source"]=vacant
 print(v_supplement_fs[space]["supplement source"])
 v_supplement_fs[space]["fs_demand source"]=nearby
 print(v_supplement_fs[space]["fs_demand source"])
 used_waste_source.append(nearby)
 edge_tuple1=(nearby,vacant)
 edge_tuple2=(vacant,space)
 new_edges.append(edge_tuple1)
 new_edges.append(edge_tuple2)
 if len(v_supplement_fs[space]["supplement source"])>0:
 break
 elif v_supplement_fs[space]["fs_demand"]!=wastes[nearby]["type"]:
 v_supplement_fs[space]["supplement source"]=vacant
 print(v_supplement_fs[space]["supplement source"])
 v_supplement_fs[space]["fs_demand source"]="supply externally"
 print(v_supplement_fs[space]["fs_demand source"])
 used_waste_source.append(nearby)
 edge_tuple1=(nearby,vacant)
 edge_tuple2=(vacant,space)
 new_edges.append(edge_tuple1)
 new_edges.append(edge_tuple2)
 if len(v_supplement_fs[space]["supplement source"])>0:
 break

 if len(v_supplement_fs[space]["supplement source"])>0:
 break

Add newly assigned food-producing supplementary systems to the "occupied nodes" list
for space in v_supplement_fs:
 if len(v_supplement_fs[space]["fs_system"])!=0:
 if (len(v_supplement_fs[space]["supplement source"])!=0) and
(v_supplement_fs[space]["fs_demand source"]!="supply externally"):
 occ=v_supplement_fs[space]["supplement source"]
 occupied_dict[occ]={}
 occupied_dict[occ]["found"]=v_supplement_fs[space]["fs_demand"]
 occupied_dict[occ]["system"]=v_supplement_fs[space]["fs_system"]
 system=occupied_dict[occ]["system"]
 occupied_dict[occ]["source"]=v_supplement_fs[space]["fs_demand source"]
 occupied_dict[occ]["supplements"]=uf_systems[system]["supplement"]
 occupied_dict[occ]["circularity"]=1
 elif v_supplement_fs[space]["fs_demand source"]=="supply externally":
 occ=v_supplement_fs[space]["supplement source"]
 occupied_dict[occ]={}
 occupied_dict[occ]["found"]=None
 occupied_dict[occ]["system"]=v_supplement_fs[space]["fs_system"]

Appendix H Technical Details | pg.326 Appendix H Technical Details | pg.327

Questions 8/14

NEXT

Design Questionnaire

hould all the waste sources be found for supplementary systems?

Only Critical
Items

 Both Critical
and Non-Critical

Items

Can this distance be increased if there are vacant
spaces left?

Yes

Food Production
Systems:

Systems which only
produce food in-
cluding mushrooms,
soft fruits and
leafy greens.

Food Producing Sup-
plementary Systems:
Systems which pro-
duce supplements in
addition to food.
Supplementary Sys-

tems:
Systems which only
produce supplemen-
tary items but no

food items.

No

What is the maximum distance waste sources can
travel?

100 [m]

How far can the waste sources be from vacant spaces?

500 [m]

Questions 8/14

NEXT

Design Questionnaire

hould all the waste sources be found for supplementary systems?

Only Critical
Items

 Both Critical
and Non-Critical

Items

Can this distance be increased if there are vacant
spaces left?

Yes

Food Production
Systems:

Systems which only
produce food in-

cluding mushrooms,
soft fruits and
leafy greens.

Food Producing Sup-
plementary Systems:
Systems which pro-
duce supplements in
addition to food.
Supplementary Sys-

tems:
Systems which only
produce supplemen-
tary items but no

food items.

No

What is the maximum distance waste sources can
travel?

100 [m]

How far can the waste sources be from vacant spaces?

500 [m]

Questions 8/14

NEXT

Design Questionnaire

hould all the waste sources be found for supplementary systems?

Only Critical
Items

 Both Critical
and Non-Critical

Items

Can this distance be increased if there are vacant
spaces left?

Yes

Food Production
Systems:

Systems which only
produce food in-

cluding mushrooms,
soft fruits and
leafy greens.

Food Producing Sup-
plementary Systems:
Systems which pro-
duce supplements in
addition to food.
Supplementary Sys-

tems:
Systems which only
produce supplemen-
tary items but no

food items.

No

What is the maximum distance waste sources can
travel?

100 [m]

How far can the waste sources be from vacant spaces?

500 [m]

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

In []:

Rule 15: For supplementary systems all the items should be found
for space in v_supplement_fs:
 potential=v_supplement_fs[space]["potential source"]
 if len(v_supplement_fs[space]["supplement source"])==0:
 for vacant in potential:
 found=[]
 found_source=[]
 nearby_list=waste_dict[vacant]
 for nearby in nearby_list:
 if nearby not in used_waste_source:
 if wastes[nearby]["size"]==vacant_spaces[space]["size"]:
 found.append(wastes[nearby]["type"])
 found_source.append(nearby)
 if v_supplement_fs[space]["fs_demand"]==found:
 v_supplement_fs[space]["supplement source"]=vacant
 v_supplement_fs[space]["fs_demand source"]=found_source
 for x in found_source:
 used_waste_source.append(x)
 edge_tuple1=(x,vacant)
 new_edges.append(edge_tuple1)
 edge_tuple2=(vacant,space)
 new_edges.append(edge_tuple2)
 if len(v_supplement_fs[space]["supplement source"])>0:
 # print(space,system,"will break")
 break
 if len(v_supplement_fs[space]["supplement source"])>0:
 # print(space,system,"will break2")
 break

Add newly assigned supplementary systems to the "occupied nodes" list
for space in v_supplement_fs:
 occupied_dict[occ]["outputs"]={}
 if len(v_supplement_fs[space]["fs_system"])!=0:
 if (len(v_supplement_fs[space]["supplement source"])!=0):
 occ=v_supplement_fs[space]["supplement source"]
 occupied_dict[occ]={}

 occupied_dict[occ]["found"]=v_supplement_fs[space]["fs_demand"]
 occupied_dict[occ]["system"]=v_supplement_fs[space]["fs_system"]
 system=v_supplement_fs[space]["fs_system"]
 occupied_dict[occ]["source"]=v_supplement_fs[space]["fs_demand source"]
 occupied_dict[occ]["outputs"]=v_supplement_fs[space]["supplement"]
 occupied_dict[occ]["supplements"]=uf_systems[system]["supplement"]
 occupied_dict[occ]["circularity"]=1

Make a dictionary of source: waste type: size: receiver:tuple
network_dict={}
for source,space in new_edges:
 type_list=[]
 network_dict[source]={}
 network_dict[source]["type"]={}
 network_dict[source]["size"]={}
 network_dict[source]["receiver"]={}

Appendix H Technical Details | pg.328 Appendix H Technical Details | pg.329

Questions 8/14

NEXT

Design Questionnaire

hould all the waste sources be found for supplementary systems?

Only Critical
Items

 Both Critical
and Non-Critical

Items

Can this distance be increased if there are vacant
spaces left?

Yes

Food Production
Systems:

Systems which only
produce food in-

cluding mushrooms,
soft fruits and
leafy greens.

Food Producing Sup-
plementary Systems:
Systems which pro-
duce supplements in
addition to food.
Supplementary Sys-

tems:
Systems which only
produce supplemen-
tary items but no

food items.

No

What is the maximum distance waste sources can
travel?

100 [m]

How far can the waste sources be from vacant spaces?

500 [m]

Questions 8/14

NEXT

Design Questionnaire

hould all the waste sources be found for supplementary systems?

Only Critical
Items

 Both Critical
and Non-Critical

Items

Can this distance be increased if there are vacant
spaces left?

Yes

Food Production
Systems:

Systems which only
produce food in-

cluding mushrooms,
soft fruits and
leafy greens.

Food Producing Sup-
plementary Systems:
Systems which pro-
duce supplements in
addition to food.
Supplementary Sys-

tems:
Systems which only
produce supplemen-
tary items but no

food items.

No

What is the maximum distance waste sources can
travel?

100 [m]

How far can the waste sources be from vacant spaces?

500 [m]

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

Data Preparation For Visualisation

In []:

In []:

 json.dump(used_waste_source, outfile)
 print(file + " has been updated successfully")
 except:
 print("Problem with updating file")

Combine wastes and vacant_spaces
workbook = load_workbook(filename="coordintes_xyz.xlsx")
workbook.sheetnames
sheet1 = workbook.worksheets[0]
sheet2 = workbook.worksheets[1]

new_edges2=[]
for space in network_dict:
 sources=(network_dict[space]["receiver"])
 tuples=(space,sources)
 new_edges2.append(tuples)

Update locations in dictionary based on excel worksheet
This step needs to be done because the type of data for coordinates is "string" in the
excel sheets
"strings" cannot be read in grasshopper as coordinates
coordinate_list1=[]
for value in sheet1.iter_rows(min_row=2, values_only=True):
 for index,item in enumerate(value):
 coordinate=(value[0],value[1],value[2])
 coordinate_list1.append(coordinate)

for index1,space in enumerate(vacant_spaces):
 for index2,coordinate in enumerate(coordinate_list1):
 if index1==index2:
 vacant_spaces[space]["location"]=coordinate_list1[index2]

workbook = load_workbook(filename="Node_Information_TU.xlsx")
workbook.sheetnames
sheet1 = workbook.worksheets[0]
sheet2 = workbook.worksheets[1]
wastes2={}
for value in sheet2.iter_rows(min_row=2, values_only=True):
 for index,item in enumerate(value):
 wastes2[value[0]]={}
 wastes2[value[0]]["location"]=value[1]
 wastes2[value[0]]["source"]=value[2]
 wastes2[value[0]]["type"]=value[3]
 wastes2[value[0]]["quantity"]=value[4]
 wastes2[value[0]]["tag"]=value[5]
 wastes2[value[0]]["node_type"]="waste"

workbook = load_workbook(filename="coordintes_xyz.xlsx")
workbook.sheetnames
sheet1 = workbook.worksheets[0]
sheet2 = workbook.worksheets[1]

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

Preparation For Increasing The Search Radius

In []:

for source,space in new_edges:
 network_dict[source]["receiver"]=space
 if source in wastes:
 network_dict[source]["type"]=wastes[source]["type"]
 network_dict[source]["size"]=wastes[source]["size"]
 elif source in vacant_spaces:
 network_dict[source]["size"]=vacant_spaces[source]["size"]
 network_dict[source]["type"]=occupied_dict[source]["outputs"]

print(network_dict)

for space in occupied_dict:
 if occupied_dict[space]["system"]==None:
 occupied_dict.remove(space)

Export still vacant spaces, list of used waste sources, list of still available waste
sources to be used in next stage after increasing search radius
vacant_spaces2=vacant_spaces.copy()

for space in occupied_dict:
 vacant_spaces2.pop(space)

file = "vacant spaces_bigger radius.txt"
with open(str(file), 'w') as outfile:
 try:
 json.dump(vacant_spaces2, outfile)
 print(file + " has been updated successfully")
 except:
 print("Problem with updating file")

wastes2={}

for waste in wastes:
 if waste not in used_waste_source:
 wastes2[waste]={}
 wastes2[waste]["location"]=wastes[waste]["location"]
 wastes2[waste]["source"]=wastes[waste]["source"]
 wastes2[waste]["tag"]=wastes[waste]["tag"]
 wastes2[waste]["type"]=wastes[waste]["type"]
 wastes2[waste]["size"]=wastes[waste]["size"]
 wastes2[waste]["node_type"]=wastes[waste]["node_type"]

file = "available waste 2.txt"
with open(str(file), 'w') as outfile:
 try:
 json.dump(wastes2, outfile)
 print(file + " has been updated successfully")
 except:
 print("Problem with updating file")

file = "used waste.txt"
with open(str(file), 'w') as outfile:
 try:

Appendix H Technical Details | pg.330 Appendix H Technical Details | pg.331

Questions 11/14

NEXT

Design Questionnaire

Can search radius be increased if there are vacant spaces left?

Yes!No

Is there a possibility to add infrastructure to transfer CO2, heat and
Rainwater?

Yes!No

Search Radius:
Search radius is
the distance

between each vacant
space and waste

sources around it.
Non Transferable

Items:
CO2, Heat,
Rainwater

These resources are
only used if they
are available in
the same building
as the vacant

space.

10 2

How many times?

Questions 11/14

NEXT

Design Questionnaire

Can search radius be increased if there are vacant spaces left?

Yes!No

Is there a possibility to add infrastructure to transfer CO2, heat and
Rainwater?

Yes!No

Search Radius:
Search radius is
the distance

between each vacant
space and waste

sources around it.
Non Transferable

Items:
CO2, Heat,
Rainwater

These resources are
only used if they
are available in
the same building
as the vacant

space.

10 2

How many times?

NUMBER OF STEPS DEFINE NUMBER OF STAGES

Stage 1 : radius = 100m

Stage 2 : radius = 200m

Stage 3 : radius = 500m

Stage 4 : radius = 500m occuppy all nodes

Stage 5 : statistics

Questions 11/14

NEXT

Design Questionnaire

Can search radius be increased if there are vacant spaces left?

Yes!No

Is there a possibility to add infrastructure to transfer CO2, heat and
Rainwater?

Yes!No

Search Radius:
Search radius is
the distance

between each vacant
space and waste

sources around it.
Non Transferable

Items:
CO2, Heat,
Rainwater

These resources are
only used if they
are available in
the same building
as the vacant

space.

10 2

How many times?

Questions 11/14

NEXT

Design Questionnaire

Can search radius be increased if there are vacant spaces left?

Yes!No

Is there a possibility to add infrastructure to transfer CO2, heat and
Rainwater?

Yes!No

Search Radius:
Search radius is
the distance

between each vacant
space and waste

sources around it.
Non Transferable

Items:
CO2, Heat,
Rainwater

These resources are
only used if they
are available in
the same building
as the vacant

space.

10 2

How many times?

Stage 1 : radius = 100m

Stage 2 : radius = 200m

Stage 3 : radius = 500m

Stage 4 : radius = 500m occuppy all nodes

Stage 5 : statistics

development level 10.0 Delft

file:///C/Users/ereng/OneDrive/Desktop/New%20folder/development%20level%2010.0%20Delft.html[5/9/2022 9:42:21 PM]

In []:

In []:

Rule 2: If CO2, Heat and Rainwater are not in the same building as the vacant space,
they cannot be used.
Remove if vacant space is in a different building than the waste source (only for CO2,
Heat and Rainwater)
for couple_count in range(len(nearby_waste100)):
 for couple in nearby_waste100:
 for index,item in enumerate(couple):
 if couple[1] in wastes:
 if vacant_spaces[couple[0]]["building"]!=wastes[couple[1]]["source"]:
 print(couple,vacant_spaces[couple[0]]["building"],wastes[couple[1]]
["source"],wastes[couple[1]]["type"])
 if (wastes[couple[1]]["type"]=="W5") or (wastes[couple[1]]
["type"]=="W6") or (wastes[couple[1]]["type"]=="W7"):
 if couple in nearby_waste100:
 print(couple,wastes[couple[1]]["type"])
 print("removed",couple,wastes[couple[1]]
["type"],vacant_spaces[couple[0]]["building"],wastes[couple[1]]
["source"],wastes[couple[1]]["type"])
 nearby_waste100.remove(couple)
 else:
 print(couple,"not in nearby_waste100")

Draw Graph with nodes and edges with coordinates
G=nx.Graph()
for i,j in vacant_spaces.items():
 G.add_node(i)
G.add_edges_from(nearby_waste100)
nx.draw(G, with_labels=True, node_size=10)

Create a dictionary with vacant spaces and waste outputs them
new_waste_dict = create_edge_dict(G)
waste_dict = {}
for i,k in new_waste_dict.items():
 if i in vacant_spaces:
 waste_dict[i]=k

#List of dictionaries we will use:
print(v_potential)
print(waste_dict)
print(uf_systems)

Add needed inputs for each potential system into the v_potential dictionary
v_potential_dict={}
for i,k in v_potential.items():
 v_potential_dict[i]={}
 potential_systems = v_potential[i]["UF"]
 for item in potential_systems:
 v_potential_dict[i][item] = uf_systems[item]["in"]

Searching For Inputs
Make a dictionary of found items nearby for each potential uf system
found_dict={}
for i,k in v_potential_dict.items():

	1.0 Research Framework
	Sub-problems:
	Objective:
	Sub-objectives
	Research Question
	Sub Research Question:
	Background Questions:
	Final Product:

	Research Scope:
	Research Approach & Methodology:
	Glossary
	2.3 Urban Farming Systems
	2.3.1 SOIL-BASED AGRICULTURE
	2.3.2 WATER-BASED AGRICULTURE
	Hydroponics
	Aquaponics

	2.3.3.Soilless Agriculture Techniques
	NFT
	Water Culture
	Media Beds
	Aeroponics
	Plant Factories

	2.3.4 Mushroom Farm
	2.3.5 Vermicomposting

	2.4 Waste Flows in Cities
	2.4.1 CO2
	2.4.2 Water
	Rainwater
	Blackwater

	2.4.3 Organic Waste
	Food and Agricultural Waste
	Spent Coffee Grounds
	Other Waste (Paper, Cardboard, Sawdust)

	2.4.4 Residual Heat
	2.5 Decision-Making Tool & Approaches
	2.5.1 Demand for Decision Making Tools
	2.5.2 Computational Design Categories
	Grammars
	Generative Design Algorithms

	2.6 Conclusions
	3.0 Outline Of Design Task
	4.1 Prototype
	4.1.1 Simplified Calculations For Waste Demands And Yields
	4.1.2 Analysis Framework
	4.1.3 Representation of Data

	4.2 Automated Data Collection (Waste Output Points, Vacant Spaces)
	4.2.1 Drone Footage & Machine Learning
	4.2.2 ArcGIS Platform
	4.2.3 Waste Audits
	4.2.4 Manual Data Collection And Input

	5.0 Step by Step Decision Making
	5.2 Decision Making Stages
	5.2.1 Stage 1 Assign Systems
	Data Processing
	Necessary Datasets
	Data Processing
	Applying Design Rules
	Assigning Food Production Systems
	Assigning Food-Producing Supplementary Systems
	Assigning Supplementary Systems

	5.2.2 Stage 2 & 3 Increase Radius
	5.2.3 Stage 4 Occupy All
	5.2.4 Stage 5 Illustrating The Results

	5.3 User Interaction (Representative)
	Data Input:
	Design:
	Design Panels
	Customisation
	Breakdown of Results:
	Responsive to Future Changes (In theory)
	Software as a Service (In theory)
	Foodcycle’s Role in Design Process
	Transportation of Waste and Supplements From Source To Farm

	6.1 TU Delft Case Study
	6.1.1 Site Analysis
	Vacant Spaces

	Vacant Space & Waste Output Nodes
	Residual Heat
	Paper
	Sawdust
	Waste Outputs
	6.1.2 Case Study Settings
	6.1.3 Case Study Conclusions
	Rainwater

	6.2 East Capitol Farm, Washington DC
	6.2.1 Case Study Settings
	6.2.2 Case Study Conclusions

	7.0 Conclusions & Areas of Further Development
	Comparison With Other Tools
	Further development
	Graduation process

	8.0 Draft Reflection
	Ethical Issues & Societal impact
	Mentor Feedback
	Self Development

	Bibliography
	Appendix A Urban Farming Systems

