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Wiener-Hopf Method for b-Modulation
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Abstract: A numerical method for the generation of fiber inputs in nonlinear frequency
division multiplexing (NFDM) systems based on b-modulation is provided. The method is
parallelizable, does not suffer from error propagation, and converges exponentially.
OCIS codes: 060.2330, 000.4430.

1. Introduction

A few years ago, Yousefi and Kschischang [1] proposed to utilize nonlinear Fourier transforms (NFTs) for data trans-
mission in optical fiber. Their concept, called nonlinear frequency division multiplexing (NFDM), allows to account
for the Kerr nonlinearity in a simple, analytical way. Since then, the field has grown significantly [2]. Early NFDM
systems suffered from slowly decaying tails in the time domain, which was one of several key factors that limits spec-
tral efficiency. Recently, it has been shown that this problem can be resolved using a concept called b-modulation [3],
which provides precise control over the temporal support of the generated signals. (An alternative, but mathemati-
cally more involved approach based on periodic NFTs has just been proposed in [4].) Several experiments [5, 6] and
simulations [7] furthermore show that b-modulation is less sensitive to noise than earlier NFDM systems.

While b-modulation now allows to generate signals without detrimental tails, it has been observed that the per-
formance of b-modulation decreases as the signal duration increases in relation to the memory of the channel [8].
In [5, 8], this effect has been attributed to growing signal-noise interactions; as a theoretical justification, a lower
bound on capacity [9] that decreases with signal energy is cited in [5]. This bound, however, is not for b-modulation,
but for conventional NFT-based systems that modulate the reflection coefficient. It is also a lower bound that might be
very loose [9, p. 5]. The signal-noise interaction hypothesis also does not explain why b-modulation systems currently
achieve peak performance for signal durations that are much shorter than those in conventional systems, which suffer
from signal-noise interactions as well. Hence, other factors might currently be limiting signal duration in b-modulation.

We conjecture that numerical problems during the computation of the time-domain representation of the fiber input
from the b-coefficient are currently a major limiting factor when signal durations are increased within b-modulation
systems. (Similar effects are known in the literature on fiber Bragg gratings [10].) Numerically efficient algorithms
are, with the exception of the Toeplitz inner bordering (TIB) method, all based on the so-called layer peeling principle.
Layer peeling has the drawback that already reconstructed samples are reused in the reconstruction of later samples.
Numerical errors therefore start to accumulate – in the worst case, exponentially fast. We remark that the TIB method
is implicitly reusing already reconstructed samples as well and therefore also suffers from error propagation. At this
point, it is not known how strong the impact of numerical error propagation on the performance of b-modulation
employing current algorithms actually is. The key missing ingredient to answer this question is a reliable baseline
method that does not suffer from numerical error propagation. Such a method is derived in this paper.

2. Wiener-Hopf Method for b-modulation

The most popular approaches to compute inverse NFTs are solving Gelfand-Levithan-Marcenko (GLM) integral equa-
tions, Riemann-Hilbert problems, and layer-peeling techniques [1,2]. In this paper, we instead utilize a formulation of
the b-modulation problem as a standard (matrix) Wiener-Hopf problem that is given in the book [11].

Theory Let q(t), where t ∈ R denotes time, denote the complex envelope of a fiber input signal. The NFT of this
signal is defined in terms of the scattering coefficients a(ξ ) := a(∞,ξ ) and b(ξ ) := b(∞,ξ ), ξ ∈R, defined by (e.g., [1])

∂

∂ t

[
φ1(t,ξ )
φ2(t,ξ )

]
=

[
− jξ q(t)
−q∗(ξ ) jξ

][
φ1(t,ξ )
φ2(t,ξ )

]
,

[
a(t,ξ )
b(t,ξ )

]
:=
[

e− jξ tφ1(t,ξ )
e jξ tφ2(t,ξ )

]
−→

[
1
0

]
for t→−∞.
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The NFT contains two parts: a continuous spectrum and a discrete spectrum. Typically, the reflection coefficient
b(ξ )/a(ξ ) is used to describe the continuous spectrum, and conventional NFDM systems embed data in it [2]. Re-
cently, it was proposed to embed data in b(ξ ) instead [3]. The advantages of this approach are explicit control over the
temporal support of the generated q(t) and less sensitivity w.r.t. noise [5–8]. The b-modulation problem is to generate
the correct fiber input q(t) from a given b(ξ ) in which data has been embedded. Let B(τ) :=

∫
∞

−∞
b(ξ )e jξ τ dξ

2π
denote

the inverse Fourier transform of b(ξ ).1 We consider, with t fixed, the matrix Wiener-Hopf problem [11, Eq. II-2.53]

Ω+(t,τ)+Φ(t,τ)+
∫

∞

0
Ω+(t,τ ′)Φ(t,τ− τ

′)dτ
′ = 0, τ ≥ 0, Φ(t,τ) :=

[
0 −B∗(−τ +2t)

−B(τ +2t) 0

]
. (1)

The fiber input q(t) that corresponds to the given b(ξ ) is then found from the relation [11, Eqs. II-2.51+II-2.58]

Ω+(t,0)
[

1 0
0 −1

]
−
[

1 0
0 −1

]
Ω+(t,0) =

[
0 q(t)

−q∗(t) 0

]
. (2)

We emphasize that the time t is constant in this problem. Hence, the Wiener-Hopf problem can be solved for different
times in parallel. Moreover, there will be no error propagation between different times as in layer peeling methods.

Numerical Method We first truncate the integral in (1) at L > 0 and discretize the result using Clenshaw-Curtis
quadrature. The quadrate nodes τm and weights wm, where m = 1,2, . . . ,N, have been found with the chebpts function
in Chebfun [12]. The resulting equation is then evaluated at τ = τn, which leads us to the linear system

Ω̃+(t,τn)+Φ(t,τn)+
N−1

∑
m=0

wmΩ̃+(t,τm)Φ(t,τn− τm) = 0, n,m = 1,2, . . . ,N ⇐⇒ X(I +A) = B, (3)

where I is an identity matrix, A := [wmΦ(t,τn − τm)]
N
m,n=1 is a block matrix, and X := [Ω̃+(t,τn)]

N
n=1 and B :=

[Φ(t,τn)]
N
n=1 are block row vectors. The linear system in the right hand side of (3) is solved for X = B(I +A)−1,

which provides us numerical approximations Ω̃+(t,τn) ≈ Ω+(t,τn). In order to recover q(t) via (2), we require an
estimate of Ω+(t,0). Note that τ1 6= 0. We hence use linear extrapolation to obtain this estimate, i.e., Ω̃+(t,0) :=
−τ2

τ1−τ2
Ω̃+(t,τ1)+

−τ1
τ2−τ1

Ω̃+(t,τ2). We substitute Ω̃+(t,0) for Ω+(t,0) in (2), and solve the resulting equation for q(t).
The error of our numerical method has two components: a truncation error, and a discretization error. The discretiza-

tion error decays exponentially with N if B(τ) is smooth. The overall error follows this trend until the truncation error,
which is controlled through the truncation parameter L, becomes dominant and creates an error floor.

Comparison With Other Methods The only other method for the inverting continuous spectrum that is immune to
error propagation and converges exponentially seems to be the Riemann-Hilbert approach in [14]. From a technical
point of view, it is similar to our method; the Wiener-Hopf problem used here arises as a reformulation of a Riemann-
Hilbert problem [11]. Similar to [14], we (implicitly) use Chebychev polynomials, which results in rapid convergence.
The method in [14] however works on the reflection coefficient b(ξ )/a(ξ ) instead of B(τ); in b-modulation, however
the latter is of prime interest. (It is possible to recover a(ξ ) from b(ξ ), but this introduces another source of error.)

3. Numerical Example

We consider the example B(τ) = j
2π

sin(0.49π)sech(τ/2−1). The exact solution is known to be q(t) = 0.49 jsech(t−
1). Fig. 1 (left) compares the performance of the proposed method with that of the software library FNFT [13] (version
0.2.1, with N samples and temporal support [−T

2 ,
T
2 ]) for various configurations. The plots confirm that the proposed

method indeed converges exponentially until an error floor due to truncation and/or finite machine precision is hit. The
algorithm in FNFT is a second-order method and thus converges much slower, but note that its numerical complexity
is much lower as well: O(N log2 N) floating point operators instead of O(N3) for the proposed method. FNFT also
hits error floors. At this point, it is interesting to look at the signal generated by FNFT in Fig. 1 (right). The algorithm
in FNFT is a layer peeling procedure that suffers from propagation of numerical errors. It starts generating q(t) at
a large t and then proceeds to other values. The error floor indeed occurs on the left side of the signal, which is
reconstructed later. However, by extending the temporal support, we are able to suppress the error floor. Thus, at least
in this very specific example, error propagation does not seem to be a limiting factor for the layer peeling method in
FNFT. However, this does not mean that numerical error propagation does not play a role in more realistic scenarios.

1The precise definition of the NFT varies slightly throughout the literature. Some formulas used here differ slightly from [11] for this reason.
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Fig. 1. Left: Sum of errors in q(t) at the grid points closest to t ∈{−2,0.5,2.5}. Right: Time-domain.

4. Conclusion and Outlook

The proposed numerical Wiener-Hopf method for performing b-modulation is simple but can achieve very high pre-
cision. Since it does not suffer from error propagation, we plan to use it to analyze the impact of error propagation
on other numerical methods in scenarios that are more realistic than the analytical example considered in this paper.
Since Wiener-Hopf methods parallelize naturally, we also want to investigate fast implementations in the future.
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