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Abstract

Cross-modal person re-identification is the task to re-identify a person which was sensed
in a first modality, like in visible light (RGB), in a second modality, like depth. Therefore,
the challenge is to sense between inputs from separate modalities, without information
from both modalities at the same time step. Lately, the scientific challenge of cross-modal
person re-identification between depth and RGB is getting more and more attention due
to the needs of intelligent vehicles, but also interested parties in the surveillance domain,
where sensing in poor illumination is desirable.

Techniques for cross-modal person re-identification have to solve several concurrent
tasks. First, techniques have to be robust against variations in the single modalities.
Occurring challenges are viewpoint changes, pose variations or variations in camera
resolution. Second, the challenge of re-identifying a person has to be solved across the
modalities within a heterogeneous network of RGB and depth cameras.

At the present day, work in cross-modal re-identification between infrared images
and RGB images exist. At the same time almost no work was done in re-identification
between depth images and visible light images. The objective of this work is to fill this
gap by comparing the performance of different techniques for cross-modal re-identification
of persons. The main contributions of this work are two-fold.

First, different deep neural network architectures for cross-modal re-identification of
persons between depth and visible light are investigated and compared.

Second, a new technique for cross-modal person re-identification is presented. The
technique is based on two-step cross-distillation and allows to extract similar features
from the depth and visible light modality. Therefore, the task of matching persons sensed
between depth and visible light is facilitated and can be solved with higher accuracy.

Within the evaluation, it was possible to report state-of-the-art results for two relevant
datasets for cross-modal person re-identification between depth and RGB. For the BIWI
RGBD-ID dataset the pre-existing state-of-the-art was improved by more than 15% in
mean average precision. Additionally, it was possible to validate the performance of the
method with the RobotPKU dataset.

Although the method was successfully applied in cross-modal person re-identification
between depth and RGB, it was shown that in another modality combinations, like RGB
and infrared, the technique in its current definition cannot be considered state-of-the-art.

Finally, it is possible to give a lookout on the implications of the results for the
intelligent vehicles domain. For a successful deployment in this area more thorough
datasets have to be developed and the performance on sparse depth maps, as provided
by lidars or radars, have to be investigated.



Acknowledgements

I would like to express my very great appreciation to Eric Granger, Amran Bhuyian and
Julian Kooij for the great support within the emergence of this research. Especially, I
want to thank for the great collaboration within the writing of the paper "A Cross-Modal
Distillation Network for Person Re-identification between Depth and RGB" which was
built upon this thesis. Additionally, I want to thank them for making my research visit
in Montreal possible. In this context I also want to thank all students in LIVIA which
made my stay exceptional professionally as well as personally.

Furthermore, I want to thank Nicola Schwarz, Daniel Hurst and Felix Heppeler for
reviewing my work and Julian Herrmann for kindly providing me with the Latex fonts
for PowerPoint.



Master Thesis Cross-modal person re-identification

List of Figures
1 Peter’s elephantnose fish [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Illustration of the cross-modal person re-identification system based on

RGB (query) and depth (gallery set) modalities. . . . . . . . . . . . . . . 2
3 Challenges in Person Re-identification (from left to right): low resolution,

occlusion, viewpoint changes, pose and illumination variations and similar
appearance of different people [4]. . . . . . . . . . . . . . . . . . . . . . . . 2

4 Examples for a sensor set for autonomous driving from Hyundai [8]. . . . 3
5 Left: Situation at time step t; Right: Situation at time step t+ 1. The

green and red dots are moving objects. . . . . . . . . . . . . . . . . . . . . 3
6 Single-modal re-identification: Embedding from the same input to a com-

mon feature space. Top and bottom image on the left indicating the same
person. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

7 Cross-modal re-identification: Embedding from different input spaces to a
common feature space. Left and right bottom from the same person. . . . 6

8 Example for an residual layer [56]. . . . . . . . . . . . . . . . . . . . . . . 10
9 Structure of Resnet18 and Resnet50 residual layers are introduced around

each block of two layers [56]. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10 Illustration of the triplet loss [68]. . . . . . . . . . . . . . . . . . . . . . . . 12
11 Transfer learning scheme in Gupta et al. [77]. . . . . . . . . . . . . . . . . 14
12 Extraction dimensions for the eigen-depth. (a) RGB image; (b) depth

point cloud; (c) within voxel feature extraction; (d) between voxel feature
extraction [78]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

13 Scheme in Wu et al. [78]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
14 Input manipulation for zero-padding [83]. . . . . . . . . . . . . . . . . . . 16
15 Two-stream network as defined by Ye et al. [85]. . . . . . . . . . . . . . . 17
16 Scheme of Generative Adversarial Training for cross-modal re-identification

[86]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
17 Exemplary structure of an one-stream neural network network [83]. . . . . 19
18 Zero-padding network. Visualization of domain-specific and shared nodes

[83]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
19 Two step training scheme and inference for the proposed cross-distillation

network. Step I involves training of a CNN for single-modal re-identification.
In step II, the knowledge from the first modality is transferred to the
second modality. During inference, query and gallery images different
modalities produce feature embeddings and matching scores for cross-
modal re-identification. This figure is exemplary of a transfer from depth
to RGB, and a inference with RGB as query and depth as gallery. The
modalities can be interchanged in both cases. . . . . . . . . . . . . . . . . 21

20 Example images from BIWI [87]. First and third image from the RGB
modality. Second and fourth image from the depth modality. Images are
coupled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

21 Example images from RobotPKU dataset [88]. First and third image from
the RGB modality. Second and fourth image from the depth modality. . . 26

22 Example images from SYSU RGB-IR Re-ID dataset. Top images from
visible light modality, bottom images from infrared modality [83]. . . . . . 26



Master Thesis Cross-modal person re-identification

23 Problematic nature of using solely CMC curve for measurements. While
CMC is 1 for all cases, AP additionally captures recall (in (c) only 0.71
accuracy). Green is same person image, red is other person. Source: [34]. 29

24 Example deconvolution results with guided backpropagation. Source: [82]. 29
25 Loss curves for successful trainings with triplet and softmax loss. . . . . . 31
26 Loss curves for unsuccessful training of triplet loss . . . . . . . . . . . . . 31
27 Single-modality networks: Gradient images for BIWI with Resnet18 and

softmax loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
28 Single-modality networks: Gradient images for RobotPKU with Resnet18

and softmax loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
29 One-stream networks: Gradient images for BIWI with Resnet18 and

softmax loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
30 One-stream networks: Gradient images for RobotPKU with Resnet18 and

softmax loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
31 Overview over mAP performance for BIWI dataset with cross-distillation

network. Only cross-modal tasks are reported. . . . . . . . . . . . . . . . . 46
32 Cross-distillation networks: Gradient images for BIWI for Resnet18 and

softmax loss baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
33 Overview over mAP performance for RobotPKU dataset with cross-

distillation network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
34 Cross-distillation networks: Gradient images for RobotPKU with a baseline

trained with Resnet18 and softmax loss. . . . . . . . . . . . . . . . . . . . 49
35 Analysis of influence of embedding layer and embedding size on the perfor-

mance of the cross-modal distillation network with Resnet50 and softmax
loss on the BIWI dataset. Transfer from depth to RGB. Reported are
RGB as query and depth as gallery (left), depth as query and RGB as
gallery (middle) and single-modal performance in depth (right). . . . . . . 51

36 Analysis of influence of embedding size on the performance of the cross-
modal distillation network with Resnet18 and triplet loss on the BIWI
dataset. Transfer from depth to RGB. Reported are RGB as query and
depth as gallery, depth as query and RGB as gallery, and single-modal
performance in depth in the same chart . . . . . . . . . . . . . . . . . . . 51

37 Analysis of influence of embedding layer and embedding size on the perfor-
mance of the cross-modal distillation network with Resnet50 and softmax
loss on the RobotPKU dataset. Transfer from depth to RGB. Reported
are RGB as query and depth as gallery (left), depth as query and RGB as
gallery (middle) and single-modal performance in depth (right). . . . . . . 52

38 Comparison of activation maps for single-modal networks (2nd column),
one-stream network (3rd column) and cross-modal distillation network
(4th column) for the BIWI dataset. Original images in the left column. . . 58

39 SYSU-IR, Single-modal network visible light images: Examples for query
images and corresponding gallery images with lowest distance . . . . . . . 68

40 SYSU-IR, Single-modal network infrared images: Examples for query
images and corresponding gallery images with lowest distance. . . . . . . . 68

41 SYSU-IR, One-stream network: Examples for query images (RGB) and
corresponding gallery images (infrared) with lowest distance. . . . . . . . . 69

42 SYSU-IR, Cross-modal distillation network from infrared to RGB (triplet
loss): Examples for query images (RGB) and corresponding gallery images
(infrared) with lowest distance. . . . . . . . . . . . . . . . . . . . . . . . . 69



Master Thesis Cross-modal person re-identification

43 BIWI, Single-modal network visible light images: Examples for query
images and corresponding gallery images with lowest distance . . . . . . . 70

44 BIWI, Single-modal network depth images: Examples for query images
and corresponding gallery images with lowest distance. . . . . . . . . . . . 70

45 BIWI, One-stream network: Examples for query images (RGB) and corre-
sponding gallery images (depth) with lowest distance. . . . . . . . . . . . . 71

46 BIWI, Cross-modal distillation network from depth to RGB (softmax
loss): Examples for query images (RGB) and corresponding gallery images
(depth) with lowest distance. . . . . . . . . . . . . . . . . . . . . . . . . . 71

47 RobotPKU, Single-modal network visible light images: Examples for query
images and corresponding gallery images with lowest distance . . . . . . . 72

48 RobotPKU, Single-modal network depth images: Examples for query
images and corresponding gallery images with lowest distance. . . . . . . . 72

49 RobotPKU, One-stream network: Examples for query images (RGB) and
corresponding gallery images (depth) with lowest distance. . . . . . . . . . 73

50 RobotPKU, Cross-modal distillation network from depth to RGB (softmax
loss): Examples for query images (RGB) and corresponding gallery images
(depth) with lowest distance. . . . . . . . . . . . . . . . . . . . . . . . . . 73



Master Thesis Cross-modal person re-identification

List of Tables
1 Overview over the datasets. For BIWI and RobotPKU: Modality 1 (M1)

is RGB, Modality 2 (M2) is Depth. For SYSU-IR: Modality 1 (M1) is
RGB, Modality 2 (M2) is infrared. . . . . . . . . . . . . . . . . . . . . . . 27

2 Average test set accuracy of different deep neural network architectures in
the single-modal task for the BIWI dataset. . . . . . . . . . . . . . . . . . 33

3 Average test set accuracy of the different deep neural network architectures
in the single-modal task for the RobotPKU dataset. . . . . . . . . . . . . 35

4 Average test set accuracy of the different deep neural network architectures
in the single-modal task for the SYSU-IR dataset. . . . . . . . . . . . . . . 36

5 One-stream network, BIWI: Performance in test set. All possibilities for
populating Query (Q) and Gallery (G) are reported. . . . . . . . . . . . . 39

6 One-stream network, RobotPKU: Performance in test set. All possibilities
for populating Query (Q) and Gallery (G) are reported. . . . . . . . . . . 40

7 One-stream network, SYSU: Performance in test set. All possibilities for
populating Query (Q) and Gallery (G) are reported. . . . . . . . . . . . . 41

8 Zero-padding network, BIWI: Performance in test set. All possibilities for
populating Query (Q) and Gallery (G) are reported. . . . . . . . . . . . . 42

9 Zero-padding network, RobotPKU: Performance in test set. All possibilities
for populating Query (Q) and Gallery (G) are reported. . . . . . . . . . . 43

10 Zero-padding network, SYSU: Performance in test set. All possibilities for
populating Query (Q) and Gallery (G) are reported. . . . . . . . . . . . . 44

11 BIWI: Results for cross-modal distillation networks, Baseline loss (Step I)
is Softmax loss and distillation loss (Step II) is MSE. Variations in Transfer
direction, Feature extractor (FE) between Resnet18 (R18) and Resnet50
(R50). Reported are all possibilities to populate Query (Q) and Gallery
(G) with RGB and depth (D) . . . . . . . . . . . . . . . . . . . . . . . . . 45

12 BIWI: Results for cross-modal distillation networks, Baseline loss (Step I)
is Triplet loss and distillation loss (Step II) is MSE. Variations in Transfer
direction, Feature extractor (FE) between Resnet18 (R18) and Resnet50
(R50). All possibilities to populate Query (Q) and Gallery (G) with RGB
and depth (D) are reported. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

13 RobotPKU: Results for cross-modal distillation networks, Baseline loss
(Step I) is softmax loss and distillation loss (Step II) is MSE. Variations in
Transfer direction, Feature extractor (FE) between Resnet18 (R18) and
Resnet50 (R50). All possibilities to populate Query (Q) and Gallery (G)
with RGB and depth (D) are reported. . . . . . . . . . . . . . . . . . . . . 47

14 RobotPKU: Results for cross-modal distillation networks, Baseline loss
(Step I) is Triplet loss and distillation loss (Step II) is MSE. Variations in
Transfer direction, Feature extractor (FE) between Resnet18 (R18) and
Resnet50 (R50). All possibilities to populate Query (Q) and Gallery (G)
with RGB and depth (D) are reported. . . . . . . . . . . . . . . . . . . . . 48

15 SYSU: Results for cross-modal distillation networks, Baseline loss (Step I)
is softmax loss and distillation loss (Step II) is MSE. Variations in Transfer
direction, Feature extractor (FE) between Resnet18 (R18) and Resnet50
(R50). All possibilities to populate Query (Q) and Gallery (G) with RGB
and Infrared (I) are reported . . . . . . . . . . . . . . . . . . . . . . . . . 49



Master Thesis Cross-modal person re-identification

16 SYSU: Results for cross-modal distillation networks, Baseline loss (Step I)
is Triplet loss and distillation loss (Step II) is MSE. Variations in Transfer
direction, Feature extractor (FE) between Resnet18 (R18) and Resnet50
(R50). All possibilities to populate Query (Q) and Gallery (G) with RGB
and infrared (I) are reported. . . . . . . . . . . . . . . . . . . . . . . . . . 50

17 Average accuracy of state-of-the-art and proposed networks for different
scenarios on the BIWI dataset. For results from [5] no detailed information
on the evaluation procedure was given. As the single-gallery shot is used,
this paper reports conservative accuracy indicators a comparison is still
possible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

18 Average accuracy of state-of-the-art and proposed architecture for different
scenarios on the RobotPKU dataset. . . . . . . . . . . . . . . . . . . . . . 55

19 State-of-the-art table for SYSU, including results from this work . . . . . 55
20 Results BDTR in SYSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



Master Thesis Cross-modal person re-identification

Contents

1 Introduction 1

2 Related work 5
2.1 The re-identification task . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Techniques for re-identification in single modalities . . . . . . . . . . . . . 7

2.2.1 Person re-identification . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1.1 Conventional approaches . . . . . . . . . . . . . . . . . . 7
2.2.1.2 Deep Learning Methods . . . . . . . . . . . . . . . . . . . 8
2.2.1.3 Incorporating depth . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Training of feature extractors for re-identification . . . . . . . . . . 9
2.2.2.1 CNN Feature Extractor: Residual network (Resnet) . . . 9
2.2.2.2 Softmax Loss . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2.3 Metric Losses . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Techniques for cross-modal re-identification . . . . . . . . . . . . . . . . . 12
2.3.1 Re-identification as domain adaptation . . . . . . . . . . . . . . . . 12
2.3.2 Re-Identification in RGB-Depth . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Re-identification in RGB-Infrared . . . . . . . . . . . . . . . . . . . 15

2.4 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Methods for cross-modal person re-identification 19
3.1 One-stream neural network . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Zero-padding neural network . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 A cross-modal distillation network . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Step I – Training of the baseline network . . . . . . . . . . . . . . . 20
3.3.2 Step II – Cross-Distillation . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Datasets, experimental methodology and experimental details 24
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 BIWI RGBD-ID Dataset . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 RobotPKU RGBD-ID dataset . . . . . . . . . . . . . . . . . . . . . 25
4.1.3 SYSU RGB-IR Re-ID . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.4 Other Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Measures of performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Probe/Query vs. Gallery/Target set . . . . . . . . . . . . . . . . . 27
4.2.2 Single-gallery shot vs. multi-gallery shot . . . . . . . . . . . . . . . 28
4.2.3 Cumulative Matching Characteristics (CMC) . . . . . . . . . . . . 28
4.2.4 Mean Average Precision (mAP) . . . . . . . . . . . . . . . . . . . . 28
4.2.5 Deconvolution of neural networks . . . . . . . . . . . . . . . . . . . 29

4.3 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Details on Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Details on Training procedures . . . . . . . . . . . . . . . . . . . . 31



Master Thesis Cross-modal person re-identification

5 Experimental Results 33
5.1 Optimization in single-modal re-identification . . . . . . . . . . . . . . . . 33

5.1.1 BIWI RGBD-ID dataset . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.2 RobotPKU dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.3 SYSU RGB-IR dataset . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Optimization in cross-modal re-identification . . . . . . . . . . . . . . . . 38
5.2.1 One-stream neural network . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1.1 BIWI RGBD-ID dataset . . . . . . . . . . . . . . . . . . . 38
5.2.1.2 RobotPKU dataset . . . . . . . . . . . . . . . . . . . . . 39
5.2.1.3 SYSU RGB-IR dataset . . . . . . . . . . . . . . . . . . . 41
5.2.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.2 Zero-padding neural network . . . . . . . . . . . . . . . . . . . . . 42
5.2.2.1 BIWI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.2.2 RobotPKU . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2.3 SYSU-IR . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.3 Cross-modal distillation network . . . . . . . . . . . . . . . . . . . 44
5.2.3.1 BIWI RGBD-ID . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.3.2 RobotPKU . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.3.3 SYSU-IR . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3.4 The embedding layer . . . . . . . . . . . . . . . . . . . . . 50
5.2.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Comparison to state-of-the-art methods . . . . . . . . . . . . . . . . . . . 54

6 Conclusions 57

Appendices 66

A BDTR 66

B Splits of the datasets 66
B.1 BIWI RGBD-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.2 RobotPKU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.3 SYSU RGB-IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

C Visualizations for different techniques 68

D Paper "A Cross-Modal Distillation Network for Person Re-identification
in RGB-Depth" 74



Master Thesis Cross-modal person re-identification

1 Introduction
In psychology and neuroscience, cross-modal object re-identification refers to ’the ability
to recognize an object, previously inspected with one modality like vision, via a second
modality like touch’ [1].

For instance, Peter’s elephantnose fish is a weakly electric fish which can be found
in African freshwater (see figure 1). The fish does not have a complex mammalian
brain structure, but it is able to use its vision and its active electric sense for object
recognition. In 2016 Schumacher et al. [2] were able to prove that if the fish was trained
to discriminate two objects with only one of the two senses, it was subsequently able to
succeed in the same task with the other sense. The authors proposed that the fish may
have learned low-level features to associate electric and visual input through analyzing
other environmental objects in the past. In fact, the fish is capable of cross-modal object
re-identification, despite its simple brain structures [2].

Figure 1: Peter’s elephantnose fish [3].

A lot of current research in computer vision is performed in mutual evaluation of two
or more modalities, like object detection with RGB and depth (RGB-D) information.
Nevertheless, in the future the importance of performing visual tasks across modalities
will rise.

In this work a specific cross-modal task will be investigated, which is cross-modal
person re-identification between sensors with focus on RGB and depth inputs. The
problem is defined as having a gallery person image from one modality, like a visible light
image, and having query person images from another modality, like depth images. The
task is to correctly match query and gallery images from the same person in a defined
search space. An example for this setup can be seen in figure 2.

The task of re-identification of persons in a single modality was investigated a lot in
recent years. The main challenges are pose differences, lighting variations and camera
resolution differences within images of a single person instance. For the cross-modal task
additionally a common sensing between two heterogeneous sensor modalities is needed.
This adds another challenge to the task and underlines the need for robust techniques for
the specific challenge.

In surveillance, re-identification of an object or person is crucial as a consistent
observation through its occurrence in a relevant area is desired. Therefore, several often
non-overlapping sensors have to be analyzed such that the same object can be re-identified
reliably. Nowadays, these Closed Circuit Television (CCTV) systems are mostly realized
with several cameras sensing in the RGB modality. The re-identification task within a
CCTV with visible light cameras involves challenging person re-identification situations.
An excerpt of those situations are visualized in figure 3. From left to right the challenges

1
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Figure 2: Illustration of the cross-modal person re-identification system
based on RGB (query) and depth (gallery set) modalities.

of low resolution, occlusion, viewpoint changes, pose and illumination variations and
similar appearance of different person instances are shown.

Zhuo et al. [5] describe that these systems additionally have problems in dark
environments, since appearance features are not sensible with visible light cameras in
these surroundings. Therefore, a potential solution can be to use a depth capturing device
in dark environments, while still relying on RGB cameras in light settings [5]. Especially
the recent progress in lidar technology makes depth measurements a feasible alternative
to infrared cameras in these cases [6, 7].

Also in environment sensing of intelligent vehicles, cross-modal re-identification of
persons is relevant. A typical design of a sensor set for an autonomous car can be seen
in figure 4. In this example, none of the sensors is taking into account a full 360 degree
view. For example a camera sensor is only used for frontal view, whereas lidars cover
the front as well as the sides of the car. Hence, sensor information which is available
for different views from the car is a combination of one or more modalities with another
combination of modalities. To get a thorough understanding of the environment, the
vehicles seeks to be able to sense between sensor modalities to minimize uncertainties.

An exemplary situation where cross-modal re-identification can can be beneficial for
the environment sensing of a vehicle can be seen in figure 5. Here, the vehicle is equipped
with a front-facing camera and a side-facing lidar. An obstacle avoids that the sensors are

Figure 3: Challenges in Person Re-identification (from left to right): low
resolution, occlusion, viewpoint changes, pose and illumination variations
and similar appearance of different people [4].
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Figure 4: Examples for a sensor set for autonomous driving from Hyundai
[8].

overlapping. In the scene two objects, e.g. pedestrians, are moving in the environment of
the car. In time step t the green object is visible in the camera domain and no object is
visible in the lidar domain. In time step t+ 1 one object is visible in the lidar domain
and none in the camera domain. To identify the red object in the lidar domain as a
new object gives several advantages. First, it is known, that the green object is still
behind the obstacle and has to be considered when taking a left turn. Second, assuming
a movement model for the objects, it is known that there is no prior information about
the movement patterns of the red object, as it was not seen before.

Figure 5: Left: Situation at time step t; Right: Situation at time step t+ 1.
The green and red dots are moving objects.

The research questions of the thesis can be defined as follows:
"How and how well can the cross-modal person re-identification task between RGB

and depth be solved?"
This question is complemented by an additional research questions:
"Is it possible to develop generic techniques for person re-identification between modal-
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ities and how well do they generalize to different modality combinations, like infrared
images and visible light images?"

To answer these questions in chapter 2 related work on the topic is presented. Fol-
lowing the most relevant approaches in the found literature, in chapter 3 three neural
network techniques for solving the task of cross-modal person re-identification will be
presented. Two of those techniques are extracted from related literature on RGB-infrared
re-identification and one technique is a contribution of this work. In chapter 4 relevant
datasets and evaluation measures which are vital for the understanding of this work will
be discussed and, subsequently, experimental details will be analyzed. In chapter 5 results
of the experiments in this work will be investigated. Therefore, in chapter 5.1 networks
for single-modal re-identification will be presented and evaluated. This chapter acts as
the baseline and comparison point for the subsequent chapters. Chapter 3 is the main
part of this work. Here, the presented neural network methods will be presented and
evaluated. In chapter 5.3 the methods will be compared and placed in a wider context by
comparing the results with external work. Finally, in chapter 6 conclusions on the results
will be made. Based on this, an outlook on the implications for the intelligent vehicles
community and future work will be given.
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2 Related work
As not a lot of work concerning the task of cross-modal re-identification of persons exists,
it is necessary to take a look at related subject areas to obtain a full understanding for the
challenges and its solutions space. Therefore, first, an introduction to the general single-
modal re-identification task will be given, which will be extended with an introduction
to cross-modal re-identification (section 2.1). After this, a look at the literature for
re-identification in single modalities will be taken in chapter 2.2. Therefore, an condensed
overview of techniques for person re-identification in single-modalities will be given in
section 2.2.1. The analysis shows that deep neural networks are the current state-of-the-
art for single-modal sensing. Therefore, a look at common losses and architectures for
training of neural networks will be taken in section 2.2.2.

Finally, the literature for cross-modal re-identification will be investigated in section
2.3. Therefore, the task of cross-modal re-identification will be interpreted as an domain
adaptation task and the solution space will be discussed (section 2.3.1). Furthermore,
existing literature for cross-modal re-identification between depth and visible light images
of persons will be discussed in section 2.3.2 and existing literature from cross-modal
person re-identification between infrared and visible light, which got more attention from
the scientific community recently will be investigated 2.3.3.

2.1 The re-identification task
Gong et al. [9] describe a re-identification task metaphorically as, firstly, ‘finding needles
in haystacks’ and, secondly, ‘connecting the dots’. What they pin as ’finding the needles’
is the scientific challenge of object detection. For this task many successful approaches
exist. Before 2012 these methods were mainly based on hand-crafted features, like Haar
Cascades for face detection [10] or contour and intensity features for pedestrians [11].
Since around 2012 deep-learning based methods like Faster R-CNN or R-FCN are more
successful and mostly the state-of-the-art in the area [12, 13]. For the re-identification
task in this work no deeper insights into object detection algorithms will be given and the
objects of interest are assumed to be detected. For further insights into object detection
please refer to the mentioned literature.

For the re-identification task, most methods are based on bounding boxes. However,
to minimize the influence of background clutters it can be beneficial to have a more exact
instance segmentation. For this work, bounding box labels are assumed to be provided
for all datasets. Starting from this point Gong et al. define the re-identification pipeline
for computer vision as follows [9]:

1. Extraction of features which are descriptive from the raw pixel input.

2. Construction of a descriptor or a representation based on the extracted features.

3. Definition of probe and gallery images and matching of those by hands of the
descriptors or representations.

A visualization of this pipeline in a single-modal task can be seen in figure 6. In a
single-modal task the re-identification pipeline starts in the same input space χ which is,
in the given example, an RGB colour input of persons. Given are a query image x̂ with
label ŷ and a set of gallery images x1, · · · , xM with labels y1, · · · , yM . Query as well as
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Figure 6: Single-modal re-identification: Embedding from the same input
to a common feature space. Top and bottom image on the left indicating
the same person.

Figure 7: Cross-modal re-identification: Embedding from different input
spaces to a common feature space. Left and right bottom from the same
person.

gallery images are mapped to a latent embedded space with a function F (x). Ideally, the
function F (x) is designed such that the embedding F (xi) of image xi with the same label
as the query ŷ = yi is close to the embedding F (x̂) of query image x̂ in the latent space
and the embedding F (xi) of image xi with a different label as the query ŷ 6= yi is far in
the latent space.

The label of the corresponding person in the gallery for query x̂ is then assigned to
the individual corresponding to the closest embedded gallery image î, i.e.

ŷ = yî where î = argmin
i

d(F (x̂), F (xi)). (1)

where d is the distance metric for the embedding. In general different distance metrics are
applicable. In the exemplary visualization in figure 7, the deployed metric is Euclidean
distance. In single-modal re-identification, both query x̂ ∈ χ and gallery images xi ∈ χ
are from the same input space χ.

In figure 7 a scheme for cross-modal re-identification is given. The main difference to
the single-modal task is, that query x̂ ∈ χs and gallery images xi ∈ χt are extracted from
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a different feature space. Therefore, it is necessary to define a second mapping function
G(x) which maps to the same latent embedded space as F (x), to be able to find î. In
the scheme (see figure 7) the query image is from the RGB modality and the gallery
images are from the depth modality. However, the assignment of query and gallery to
the modalities depth and RGB is to be varied.

In general, the core difference of a re-identification task to a standard classification
task in machine learning is that classes, like e.g. specific persons, which have to be
classified at test time, are not part of the training set. Therefore, re-identification tasks
can be defined as zero-shot learning tasks [14].

2.2 Techniques for re-identification in single modal-
ities

Research for re-identification of different objects was advancing heavily in recent years
and a lot of scientific work was published [15, 16, 17, 18]. It turned out that specific
neural network architectures and training schemes are in the core applicable for several
re-identification tasks in computer vision, like faces, person or vehicles in a similar manner.
As the focus of this work is person re-identification an overview of scientific work in
re-identification of persons in single modalities will be presented in the following.

It turns out, that the current state-of-the-art in person re-identification are deep
neural network. As these techniques will be used in the latter parts of this work in the
following several neural network ingredients which are proven to be applicable for person
re-identification will be presented. Hence, it is no exhaustive discussion of neural network
building blocks, but very specific to the case of re-identification. For a more detailed
overview on definitions and mathematical formulations for neural networks in general
please refer to [19].

2.2.1 Person re-identification
As the focus of this work is on person re-identification the most important ideas for this
task in single modalities will be presented in the following. The biggest challenges in
Person re-identification are the problem of different viewpoints, changing orientation of
persons and changing lighting conditions. Additionally, especially in long-termed tasks,
appearance changes through different clothing is a challenging characteristic of person
re-identification [20].

In this chapter, first, a view on conventional approaches for person re-identification
will be discussed. Afterwards, ideas for neural network based approaches will be shown.
Additionally, a separate view on the depth domain will be taken. The most recent survey
for single-modal person re-identification dates to 2016 and can be found in [20].

2.2.1.1 Conventional approaches
Conventional approaches for person re-identification from a single modality can be
categorized into two main groups - direct methods based on hand-crafted descriptors or
learned features and metric learning based approaches. Direct methods for re-identification
are mainly devoted to the search of the most discriminant features, or combinations
thereof, to design a powerful descriptor or signature for each individual regardless of the
scene. In contrast, in metric learning methods, a dataset of different labeled individuals
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is used to jointly learn the features and the metric space to compare them, in order to
guarantee a high re-identification rate.

Due to the non-rigid structure of the human body, it is difficult to model the appearance
of the whole body for re-identification. Instead it is more robust to model the appearance
focusing on salient parts or meaningful parts of the body. Most of the direct method
based re-identification approaches rely on the local meaningful parts, e.g. horizontal
stripes [21, 22], triangular graphs, concentric rings [23], symmetry-driven structures [24],
pictorial structure [25], meaningful body-parts [26] and horizontal patches [27]. Different
features such as color based features [28, 26], textures [29, 30, 31], edges [31], Haar-like
features [32], interest points [33] and Biologically Inspired Features (BIF) [33] and different
combination of those features such as Bag-of-Words (BoW) [34], Weighted Histogram
of Overlapping Strips (WHOS) [35], and Local Maximal Occurrence (LOMO) [21] from
those local regions have proven to be useful to achieve better re-identification accuracy.
Given the handcrafted features, another stream of direct method based re-identification
approaches learns the feature importance based on the salient feature analysis of each
individual [36, 37, 26] , or by exploiting the coherence among different features on a
manifold space [38].

Metric learning based approaches usually find a mapping from feature space to a new
space in which feature vectors from image pairs of the same individual are closer than
feature vectors from different image pairs. Commonly used metric learning techniques
that are adopted for re-identification include Mahalanobis metric learning [39], Large
Margin Nearest Neighbor Learning (LMNN) [60], Logistic Discriminant Metric Learning
(LDML) [60], Kernel Canonical Correlation Analysis (KCCA) [46], keep it simple and
straight forward metric learning (KISSME) [39] and Cross-view Quadratic Discriminant
Analysis (XQDA) [21] .

2.2.1.2 Deep Learning Methods
Similar to other vision applications, there has been a growing number of deep learning
based re-identification approaches [40, 41, 42, 43, 44, 45, 49, 48]. One stream of works
for person re-identification is using the ideas from Siamese CNN with either two [40, 41,
42, 48, 43, 44] or three branches [45, 49, 50] for pairwise verification loss or combination
of both [51]. Another stream of works is based on softmax loss to obtain an generalized
embedding layer [52, 53]. These losses will are considered fundamental ingredients to
neural networks for re-identification and will be presented in more detail in chapter
2.2.2.2. Some of those approaches use their own network architectures, by proposing
new layers [41] or by fusing features from different body parts with a multi-scale CNN
structure [42, 54]. Some other [45, 55, 50] use the pre-trained or different variants of
pre-trained models (e.g. Resnet [56]) which often obtain great re-identification accuracy.

2.2.1.3 Incorporating depth
Several works [61, 59], have identified the fact that theoretically methods based purely
on RGB appearance can be problematic for re-identification purposes due to changing
appearance of pedestrians. Therefore, a solution can be to use depth information for the
classification.

The solutions which are incorporating depth can be divided into two approaches.
Those solely relying on one image [62, 63] and those taking into account several images
to leverage spatio-temporal behaviour [64, 65, 66, 67].
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Early single-image depth-based studies relied on the extraction of anthropometric
and soft-biometrics from 3D human skeleton [62, 63]. Other approaches were analyzing
the 3D point-clouds of humans by hand-crafted features, like arm length and torso width
or by RGB based features like SIFT or SURF [64]. Other approaches were built upon
incorporating spatio-temporal information for the re-identification. Already in the mid-
2000ers several researchers tried to extract gait information from pedestrians, leveraging
the skeleton information which can be extracted by hands of a Kinect camera. From the
given skeleton information over time different hand-crafted features were extracted and
matched by techniques, like k-Nearest Neighbor. It was shown, that gait is unique for
each person [64, 65].

Due to the success of the methods, researchers in the deep learning era incorporated
the gait information within recurrent neural networks. Karianakis et al. [66] presented a
recurrent neural network for the re-identification task, which is based on the features of
a 3D input convolutional neural network. These features are combined by a recurrent
neural network which weights the input frames with a temporal attention unit technique
[66]. In contrast, Haque et al. [67] formulate an attention-based recurrent neural network
which identifies small discriminative regions of a human body for describing a human
identity [67].

2.2.2 Training of feature extractors for re-identification
In chapter 2.2.1 it was shown, that current approaches for re-identification are mainly
built upon deep neural networks. Historically, algorithms for re-identification were mainly
developed for face re-identification. Hardly surprising, with the rise of neural networks the
most important breakthroughs were achieved in this area. Nowadays, face re-identification
surpassed the human performance and the successful techniques are transferred to other
re-identification tasks, like person or vehicle re-identification [68, 71, 72]. In fact, several
building blocks for neural networks for re-identification have proven to be applicable
for several of the tasks. Also most of literature found in section 2.2.1.2 relies on these
building blocks. Therefore, in the following a feature extractor architecture with two
variants and several loss functions for training will be presented. These are the building
blocks for the neural networks in the later chapters.

The overview of convolutional neural networks and corresponding losses in the fol-
lowing is not exhaustive and crafted to the applications later in this work. For further
information please refer to [19]. In the following a feature extractor architecture based
on a convolutional neural network as well as two loss functions are presented.

2.2.2.1 CNN Feature Extractor: Residual network (Resnet)
One of the most successful convolutional neural network architectures for feature extraction
are residual networks. Soon after the first success of convolutional neural networks the
scientific community realized, that it was necessary to have deeper networks to avoid
overfitting to datasets. However, stacking more layers in a network led to the vanishing
gradient problem. A vanishing gradient occurs, when back-propagating through a lot of
layers with repeated multiplications. This makes the gradient infinitesimally small and
meaningful learning is not possible anymore.

The core idea of residual networks which was introduced by He et al. [56] is to use
identity shortcut connections to skip layers in the network. An example for such a skip
connection can be seen in image 8. The connections are applied in several layers and
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Figure 8: Example for an residual layer [56].

lead to the capability of training much deeper neural networks successfully. In this work
mainly a more shallow Resnet with 18 layers (Resnet18) and a deeper Resnet with 50
layers (Resnet50) will be considered to analyze the effect of varying the depth of networks.
The exact structure of the two networks can be seen in figure 9. Residual layers are
introduced around each block in the figure. Additionally, He et al [56] presented Resnets
with 34, 101 and 152 layers. For the sake of compactness of this work, those will not be
further considered.

Figure 9: Structure of Resnet18 and Resnet50 residual layers are introduced around
each block of two layers [56].

2.2.2.2 Softmax Loss
The first loss to be presented is the softmax loss as used in [73]. During training the
softmax loss optimizes the probability of training images x1, · · · , xM to belong to a
corresponding label y1, · · · , yM , where C different classes are existent in the training set.

Softmax loss is generally used for classification tasks and, therefore, has to be re-
interpreted for usage in zero-shot learning for re-identification. Instead of using the
probability outputs of the softmax layer as in classification tasks, for the usage in re-
identification a preceding layer has to be interpreted as an embedding layer. The idea is
that this embedding layer optimized with many person instances generalizes to generic
features. Therefore, this embedding layer enables to compare person instances which
were not part of the training set and, hence, can be used for zero-shot learning.

In most previous work the penultimate layer before the softmax classification layer is
used as the embedding layer [73, 74]. Here, the embedding is defined as F (xi) = z1, · · · , zn
where n is the size of the embedding layer which can be chosen freely. Therefore, the
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softmax loss is defined as

Lsoft1 = −
1

N

N∑

i=1

log

(
eW(yi)

F (xi)+b

∑C
j=1 e

W(j)F (xi)+b

)
, (2)

where W are the weights and b is the bias of the penultimate layer. The subscripts of W
indicates the subset of weights which map to the corresponding embedding feature of the
classification nodes. N corresponds to the batch size.

In this work an additional way of extracting an embedding from a network optimized
with the softmax loss will be investigated. Here, the values of the classification layer
before fed into the softmax loss are defined as the embedding. Therefore, the embedding
is defined as F (xi) = z1, · · · , zC . Due to its definition, this embedding can only have
the size of the classes in the training set C. The softmax loss for this interpretation is
defined as

Lsoft2 = −
1

N
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
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i
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z
(j)
i


 . (3)

The embeddings obtained from the softmax are not inherently trained to be optimized
within a certain metric. Hence, different metrics like L1 or L2, or even a second metric
learning step can be deployed. To reduce the complexity in this work, in the following
solely the Euclidean distance will be evaluated as a metric. Also further ideas of enhancing
the performance of softmax loss, like center loss [72] will not be further investigated.

2.2.2.3 Metric Losses
Already in 2005, Chopra et al. [75] presented a Siamese neural network structure which
is optimized by hands of the contrastive loss. The general idea of mapping input images
into common subspaces, e.g. in a space for Euclidean loss, is described in this paper. The
contrastive loss is based on comparing the Euclidean distance between the embeddings
F (xi) and F (xj) of two images xi and xj . The loss seeks to find an embedding of the
images such that a small distance is obtained for the embeddings of two images of the
same class and a big distance for the embeddings of two images of different classes. For
both images the function F with shared parameters W is used and, hence, the network
is evaluated in parallel. Therefore, theoretically, the network consists of two identical
networks with one cost function, which makes it ’Siamese’ [75]. The last layer which is
directly optimized through the loss is considered the embedding for the face.

In 2015 Schroff et al. [68] presented an expansion to the contrastive loss, the triplet
loss. A big point of criticism for the use of softmax for obtaining the features was, that it
only encourages the separability of features for seen objects and, therefore, is indirect
and inefficient for unseen objects. They even state, that "one has to hope that the
bottleneck representation generalizes well to new objects" and, additionally, criticize the
high-dimensionality of the embedding features of most papers at that point in time. For
the triplet loss at each training step three images are evaluated, an anchor image xai ,
a positive image xpi and a negative image xni . Anchor and positive are images of the
same person, while the negative corresponds to a different person. Defining F (x) as the
embedding function the goal is to match the constraint

d(F (xai )− F (xpi )) + α < d(F (xai )− F (xni )). (4)
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Figure 10: Illustration of the triplet loss [68].

This means the distance d of embeddings of two images of the same person has to be
smaller than the distance of the embedding of the anchor to the image of the other person
by a margin α. Therefore, the authors argue that the loss enforces a margin between
each pair of faces, which should lead to a better embedding. The optimization constraint
is also illustrated in figure 10. The constraint can be reformulated as a loss function as

Ltrip = −
1

M

M∑

i=1

[d(F (xai ), F (x
p
i )|)− d(F (xai )− F (xni )) + α] (5)

where M is the number of parallel evaluations of the triplet loss within one batch. In
most publications the Euclidean distance is taken as the measure for d.

Additionally, several authors suggest that some effort has to be taken to choose
the right triplets for training [75, 45]. Too easy triplets lead to very slow convergence
and very difficult triplets lead to numerical instability. In this work, the most difficult
triplets within each batch will be used for training. This method, does not find the most
difficult triplets over the whole training set, but semi-hard triplets. Hence, the training
is more stable. The main advantage of using the triplet loss is, that the last feature
layer is directly optimized to develop features which are separable in Euclidean space.
Hence, trained with a sufficiently big dataset a network optimized with the triplet loss is
inherently capable of embedding and re-identifying previously unseen objects.

2.3 Techniques for cross-modal re-identification
Whilst the scientific community focused heavily on person re-identification in a single
modality (see previous chapter), the task of cross-modal re-identification, which is
the actual challenge approached in this work, was mainly neglected. Cross-modal re-
identification can be classified as a domain adaptation task. In chapter 2.3.1 an analysis
of how the task can be defined in this context and which possibilities this definition
introduces will be given. Additionally, very recent work was published on cross-modal
re-identification of persons between RGB and depth as well as RGB and infrared. This
work will be presented in the following.

2.3.1 Re-identification as domain adaptation
To classify the task of cross-modal re-identification in the context of domain adaptation
it is necessary to take a look at several definitions and notations in the domain. Ds is
defined as the source domain, while Dt is the target domain. A domain D consists of a
feature space χ and a probability distribution P (χ). To each domain belongs a task, like
object detection or re-identification. The task in the source domain is noted as T s, while
the task in the target domain is denoted T t. In traditional machine learning Ds = Dt and
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T s = T t holds. Therefore, domains and tasks are the same. The definition for transfer
learning is, that either Ds 6= Dt and T s 6= T t.

Finally, domain adaptation is defined as T s = T t and Ds 6= Dt. Following the
definition for D, there are two categories for domain adaptation. These are homogeneous
and heterogeneous domain adaptation. Homogeneous domain adaptation is defined as an
identical feature space χs = χt with a difference in the data distributions P (X)s = P (X)t.
On the other hand heterogeneous domain adaptation is defined as non-equivalence of
features spaces χs 6= χt. Additionally, the dimensions of the feature space can differ.
Homogeneous as well as heterogeneous domain adaptation can be subdivided in supervised,
semi-supervised and unsupervised domain adaptation.

Cross-modal person re-identification is a domain transfer task in two different domains
Ds 6= Dt and with a common re-identification task T s = T t. Additionally, the feature
spaces are different, as it handles two different modalities and, therefore, χs 6= χt. As labels
are available it is a supervised domain adaption. Hence, cross-modal re-identification can
be defined as supervised heterogeneous domain adaptation [76]. However, the cross-modal
task is to sense across two domains and, therefore, solve the tasks T s and T t in a common
space. In general, the goal of domain adaptation is to solve task T t in the target domain
and use the knowledge obtained in the source domain. Therefore, the general definition
is not asking for a common solution of both tasks and cross-modal re-identification is
even more complex than general heterogeneous domain adaptation.

Wang et al. [76] find, that not much work was focused on heterogeneous domain
adaptation so far and even state, that "special and effective methods of heterogeneous
domain adaptation have not been proposed." [76]. The existing methods are mostly
performed similar to approaches for homogeneous domain adaptation. The implication for
this work is, that there is a need for new techniques for heterogeneous domain adaptation
which make use of the specific properties of the contained modalities. In chapter 5.2.3 a
new technique will be presented.

As existing solutions the authors define adversarial approaches, reconstruction-based
approaches and discrepancy-based approaches. Adversarial approaches are mainly focused
on unsupervised tasks like transferring knowledge from unlabeled face images to sketches.
Reconstruction-based approaches are also based on generative adversarial networks (GAN)
for reconstruction of the two different domains.

For discrepancy-based approaches a work was found which is relevant for this work
as it is concerned with sensing between RGB and depth. Gupta et al. [77] presented
a method for "Cross Modal Distillation for Supervision Transfer". Their goal is to use
learned representations from large datasets in a certain modality for classification in a
paired modality with limited labeled data. An example usage of the authors is transferring
the capabilities of a CNN object classificator in RGB to the corresponding depth images.
The method is based on the availability of large amounts of unlabeled coupled images
from both modalities.

The modality with a lot of labeled data is defined as Ds whereas the modality with
few labeled data is Dt. The corresponding mapping functions (in this case mostly neural
networks) are F (x) and G(x). The authors propose a learning scheme where the mapping
output of a mid-level layer of each image xi,m1 from modality Ds is supposed to match the
mapping for the coupled image xi,m2 from Dt (see figure 11). Therefore, a mid-level layer
is fixed for the optimization and the previous layers are optimized with the unlabeled
training data from the second domain. The optimization itself is achieved by a mean
squared error loss between the two modalities to minimize the Euclidean distance. This
approach is used as a pre-training procedure. After the mid-level layers converged to a
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similar embedding for both modalities, the mid- to high-level layers are unfrozen and the
network is trained as in a single-modal task.

The authors find that mid-level layers of a network are best suited for freezing and
learning the transfer.

Figure 11: Transfer learning scheme in Gupta et al. [77].

The described training procedure gives a starting point for connecting the modalities
depth and RGB. The method which will be developed in this work will expand this idea
to make it usable for cross-modal re-identification.

2.3.2 Re-Identification in RGB-Depth
The work which was done on cross-modal re-identification in RGB and depth is very
sparse. In fact only one stream of works was found which is connected to cross-modal
person re-identification in these modalities.

In 2017 Wu et al. [78] proposed a depth-shape descriptor called eigen-depth to extract
describing features from the depth domain. The eigen-depth features are based on a
division of the body into several describing regions or voxels and an extraction of within
voxel and between voxel covariances (see figure 12). The eigenvalues of these covariance
matrices are logarithmized and used as the eigen-depth features. The distance between
eigen-depth features are proven to lie in Euclidean space and are rotation invariant. The
authors were able to show, that those orientation-invariant descriptors of body regions
are less prone to errors due to position and lighting changes. As their result in the
depth domain were very promising, they decided to transfer the obtained knowledge to
the RGB domain. The argumentation is that for most surveillance cameras no depth

Figure 12: Extraction dimensions for the eigen-depth. (a) RGB image; (b)
depth point cloud; (c) within voxel feature extraction; (d) between voxel
feature extraction [78].

information can be extracted, but still the features captured in the depth domain are
more discriminative than the ones from the RGB domain. Therefore, the authors extract
Histogram of Gradients (HoG) [79] and LBP features [80] from the RGB domain, as these

14



Master Thesis Cross-modal person re-identification

features are supposed to describe the body shape coarsely. The goal is to learn a common
subspace representation by hands of mappings F (x) for RGB and G(x) for depth, from
the features extracted in the different domains. To achieve this goal, the authors define
an optimization problem which can be solved with an Eigendecomposition. Finally, a
common latent subspace can be defined. The authors use the obtained transformation to
bring the extracted features from RGB to the subspace and perform the re-identification
task in this subspace. The scheme of the idea of the authors can be seen in figure 13.
Although, the methodology is in principle applicable in cross-modal re-identification, the
authors do not perform any evaluations for cross-modal re-identification [59].

Figure 13: Scheme in Wu et al. [78].

Zhuo et al. [5] take the ideas presented in the paper by Wu et al. [59] and use
them for the cross-modal re-identification task. In the paper "Person Re-identification
on Heterogeneous Camera Network" [5] they use hand-crafted features for extracting
descriptors for RGB and depth images. For RGB they make use of Histogram of Gradient
(HoG) [79] and Scale-Invariant Local Ternary Patterns (SILTP) [81] features. For the
depth image Eigen-depth features [78] are used. Similarly to Wu et al. [59] they argue
that the extracted features for both modalities describe human body shape and, therefore,
are inherently already reducing the discrepancy between the modalities. Nevertheless,
this similarity is by far not enough to directly compare the extracted features and another
step has to be taken to match the spaces. The authors propose the learning of a coupled
dictionary for matching the features. This technique is based on an optimization of a
convex problem and delivers correlative dictionaries. The obtained sparse vectors for
both input modalities can now be compared in Euclidean space.

After the presentation and optimization of the cross-modal re-identification techniques
in this paper, a competitive evaluation will be made in chapter 5.3, where the results of
Zhuo et al. will be discussed.

2.3.3 Re-identification in RGB-Infrared
For cross-modal person re-identification between RGB and Infrared recent work is available.
In contrast to person re-identification between RGB and depth in these domains, neural
network techniques are already used. In the following the relevant papers will be discussed.

In 2017 Wu et al. published the paper "RGB-Infrared Cross-Modality Person Re-
Identification" [83] were they presented the SYSU-IR dataset. The datasets consists of
RGB and infrared images and was developed for cross-modality re-identification of persons.
For more details on the dataset refer to chapter 4.1.3. Also cross-modal re-identification
between infrared and RGB images is motivated by surveillance applications. The authors

15



Master Thesis Cross-modal person re-identification

analyze several standard neural network structures to embed the two modalities to one.
First, a one-stream neural network which simply takes mixed inputs from the modalities
as equally weighted is presented (see also chapter 5.2.1). Second, a two-stream neural
network, which gives the network two input streams which are evaluated separately first
and connected in a subsequent layer. Third, they evaluate a newly developed network,
which they call "One stream structure with zero-padding augmentation" network. The
idea is to define a network with two input channels, one for each modality. Therefore,
if the input is from the one modality, the channel of the other modality is padded with
zeros. The approach can be seen in figure 14. With this method the authors give the
network a guideline on specific nodes for the first modality, specific nodes for the second
modality and shared nodes, but also the possibility to freely combine the nodes. With
this method the authors set the state-of-the-art in the SYSU dataset (see chapter 4.1.3).

Figure 14: Input manipulation for zero-padding [83].

In mid-2018 Ye et al. [84] published two papers connected to the topic of cross-modal
person re-identification in RGB vs. Infrared. In the first one [84], they presented a
two-stream neural network which combined a contrastive and a softmax loss together.
To enhance the results they attached a subsequent metric learning step. The results were
only reported on a dataset which was not made available for this work.

The second work [85] is more relevant, as the results were published on the SYSU
dataset. Here, the authors adopt the same methodology as used in [84] and combine
two losses. The first loss has the goal to minimize the cross-modal intra-distance and
at the same time maximize the inter-modal distances. Hence, the authors compare the
distance of a positive visible-thermal image pair and the minimum distance of all negative
visible-thermal pairs. This is very much related to a standard triplet loss. This loss is
accompanied by an identity loss to guarantee the robustness (see chapter 4.3.2 for more
details on the difficulties with robustness in triplet loss). The authors manage to enhance
the performance on SYSU. The network structure can be seen in figure 15.

The current state-of-the-art in SYSU was published by Dai et al. [86] in July 2018
under sthe title "Cross-Modality Person Re-Identification with Generative Adversarial
Training". The idea of the authors was to combine three losses. The first two losses are a
softmax loss and a triplet loss. Therefore, they combine two of the methods, which are in
general separately capable of training a neural network in one modality (see explanation
in chapter 2.2.2). Additionally, they introduce a GAN based structure. The discriminator
differentiates from which modality the input sample came and, hence, the generator
enforces a mutual embedding. With this method the authors managed to push the
re-identification performance on the SYSU dataset significantly by 11%.
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Figure 15: Two-stream network as defined by Ye et al. [85].

Figure 16: Scheme of Generative Adversarial Training for cross-modal
re-identification [86].

2.4 Main contributions
After a thorough analysis of the related work for cross-modal re-identification it is possible
to classify the main contributions of this work in this context.

First, deep neural networks are successfully deployed for the task of cross-modal
person re-identification between depth and RGB. To the present day only conventional
methods were used to solve this task. In this work two deep learning methods from the
related task of person re-identification between infrared and RGB will be presented and
used for a classification in the re-identification task between RGB and depth. Additionally,
a newly designed network will be analyzed. With the evaluation of three deep neural
network structures extensive experiments on the performance of these methods in the
task of cross-modal person re-identification are performed. Hence, it was possible to
define a new state-of-the-art table for two datasets.

Second, an introduction of a new two-step deep neural network training scheme for
cross-modal re-identification between depth and RGB was presented. This neural network
exploits the relationship of the depth and RGB modality within cross-modal distillation.
The cross-modal distillation network is considered the state-of-the-art for cross-modal
person re-identification between depth and RGB. At the same time it is shown, that
the newly presented architecture cannot directly applied to all cross-modal tasks as
the performance in re-identification between infrared and RGB was not outperforming
previous work.

Third, within the successful deployment of the cross-modal distillation network it
was possible to contribute to a better understanding of the asymmetrical relationship
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between depth and RGB modalities. It was shown, that features which can be extracted
in the depth modality can up to a certain degree also be extracted in the RGB modality.
This knowledge can be leveraged for future problems-solving approaches concerning the
cross-modal relationship between depth and RGB.
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3 Methods for cross-modal person
re-identification

One of the contributions of this work is the deployment of deep neural network structures
for the cross-modal person re-identification task in RGB and depth. Therefore, in the
following three deep neural network structure for cross-modal person re-identification
will be deployed on the task of cross-modal re-identification between depth and RGB.
Two of these methods, the one-stream neural network and the zero-padding network are
extracted from [83] as those methods were proven to be successful in cross-modal person
re-identification between infrared and RGB. The third network, the cross-distillation
neural network was developed in this work on the basis of the ideas of [77] and is considered
another main contribution of this work.

3.1 One-stream neural network
The usage of a one-stream neural networks is the standard case in neural network training
and deployment. Generally, inputs from a single modality are provided to the network
and optimization is performed by hands of a standard loss, like softmax. To adjust for
the cross-modal case, the input to the network is simply a mix of two modalities. This
means that input images from the different modalities are given to the network in an
equal manner. In the optimization process it is expected, that the network learns to
embed the two modalities into a common feature space without any further guidance
from the outside.

Figure 17: Exemplary structure of an one-stream neural network network
[83].

An example scheme for an one-stream neural network can be seen in figure 17. The
application of the one-stream network for cross-modal sensing is extracted from Wu et
al. [83] where the network was used for sensing between RGB and infrared images. In
this paper the neural network architecture will be differing slightly from [83]. Whilst Wu
et al. [83] used a Resnet6 model for the evaluation of the one-stream network, here a
Resnet18 and a Resnet50 structure will be analyzed. According to Wu et al. [83] the
network will be optimized with softmax loss.

3.2 Zero-padding neural network
The basic idea of two-stream neural networks is to dedicate a separate part of the neural
network to each of the modalities. The example of a two-stream network used in this
work is the zero-padding neural network. This network structure was presented in chapter
2.3.3. The idea is to bring the images from the two sensing modalities to one channel.
Hence, RGB is brought to grayscale, whilst the depth modality remains in its single
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stream. Afterwards these one-channel images are combined with an empty or zero-padded
channel. The channels are combined in a way, that each modality has its own separate
channel. The approach is visualized in figure 14. Within this approach the network is
supposed to have guidance on modality-specific nodes and shared nodes as can be seen in
figure 18.

Figure 18: Zero-padding network. Visualization of domain-specific and
shared nodes [83].

In the evolution of this work a second two-stream neural network structure was
investigated. Unfortunately, it turned out, that the implementation as provided by
the authors was not giving the expected results. More information on this two-stream
structure can be found in appendix A.

3.3 A cross-modal distillation network
This subsection introduces our novel cross-modal approach. The major difference to the
approaches presented in the previous subsection is that the tasks T s from the source
modality and the task T t from the target modality are approached in a sequential manner,
rather than in parallel. Therefore, the training of the task in the source modality is
separated from the training of the task in the target modality. The cross-distillation
scheme to transfer the supervision from one modality to the other modality is adapted
from the work by Gupta et al. [77] (see section 2.3.1). To make use of the cross-distillation,
the training of the network is divided into two steps, as it is visualized in figure 19, which
will be explained in detail next.

3.3.1 Step I – Training of the baseline network
In step I of the training of the cross-modal distillation network, a neural network F is
trained for sensing in a first modality, as presented in section 2.2.2. Therefore, we make
use of a combination of feature extractors and losses as presented in chapter 2.2. The
feature extractors Resnet18 and Resnet50 as well as softmax loss and triplet loss will be
used to optimize networks for the baseline of the cross-modal distillation network in this
work.

The network is optimized by hands of an early-stopping criteria based on the mAP in
the validation set. Afterwards, the network is frozen as Ffr, with corresponding weights
WF,fr..
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Figure 19: Two step training scheme and inference for the proposed cross-
distillation network. Step I involves training of a CNN for single-modal
re-identification. In step II, the knowledge from the first modality is
transferred to the second modality. During inference, query and gallery
images different modalities produce feature embeddings and matching scores
for cross-modal re-identification. This figure is exemplary of a transfer from
depth to RGB, and a inference with RGB as query and depth as gallery.
The modalities can be interchanged in both cases.

3.3.2 Step II – Cross-Distillation
The obtained neural network feature extractor for the first modality is deployed as the
baseline network for the training of a feature extractor for the second modality. For the
second training step, a network with the same architecture as the corresponding network
in step I is initialized.

Similarly to Gupta et al. [77], the weights of the converged model from step I, WF,fr.,
are copied to network G which is dedicated to the second modality. Additionally, the
weights of the network are frozen from a mid-level convolutional layer up to the final
feature embedding.

This retains the high-level mapping from the first network, which was successfully
trained in the source modality, to the target modality.

At the same time, the target embedding can still learn meaningful low-level features
for the task in the target modality.

For the actual transfer of knowledge we make use of paired images Xm1 from modality
1 and Xm2 from modality 2. The aim is to optimize G in such a way that the embeddings
of images from the second modality Xm2 with label y are close to the embeddings of
images from the first modality Xm1 with label y. This is realized by exploiting image
pairs xm1,i and xm2,i from the two modalities, which are considered coupled as they are
taken at the exactly same time step.

Hence, the embedding of xm1,i is obtained with a forward propagation through the
frozen network Fm1,fr. and is taken as the groundtruth for the embedding of xm2,i with
the, at this stage, trainable network G. Since during inference mode the embeddings will
be compared based on Euclidean distance, we aim to minimize this metric between the
two embeddings. Hence, we make use of the mean squared error (MSE) loss between the
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Algorithm 1 Cross-Distillation Method
1: Input: Input Train Data with paired images, Xm1, Xm2

STEP I:
2: j = 0
3: mAPval,best = 0
4: Initialize network F with parameters WF using a pre-trained CNN
5: while (j < MAXEPOCH) do
6: Perform training of F , train (Xm1,WF ) using the loss functions in equations (2)

or (3) or (5).
7: if mAPval,j > mAPval,best then
8: save WF as WF,best

9: end if
10: j = j + 1
11: end while

STEP II:
12: j = 0
13: Lval,best =∞
14: Load WF,best into F and freeze to Ffr.

15: Initialize weights WG of network G with weights WF,best

16: Freeze mid- to high-level weights of WG

17: while (j < MAXEPOCH) do
18: Perform training of Gm2, train (Xm2, WG) using loss function 6 and Ffr.(Xm1)

as groundtruth
19: if Lval,j < Lval,best then
20: save WG as WG,best

21: end if
22: j = j + 1
23: end while
24: Load WG,best into G and freeze to Gfr.

25: Output: Models Ffr. and Gfr.

embeddings of paired images Ffr.(xm1,i) and G(xm2,i) which is defined as

LMSE =
1

N

N∑

i=1

‖Ffr.(xm1,i)−G(xm2,i)‖2, (6)

where N is the batch size in training stage. The weights WG of network G are optimized
based on this loss function and trained until convergence. Early-stopping criteria for the
training of this network is the loss in the validation set. The whole training procedure is
formalized in algorithm 1.

3.3.3 Inference
In inference mode, the two resulting neural networks Ffr. and Gfr. are evaluated in the
corresponding modalities to obtain feature embeddings for input images. Similarity be-
tween the feature representations of RGB and depth images is measured using Euclidean
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distance. For each query image, each gallery image is therefore ranked according to the
similarity between embeddings in Euclidean space.
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4 Datasets, experimental methodology and
experimental details

This work is targeting the previously almost untouched challenge of cross-modal person
re-identification between RGB and depth. Therefore, it is necessary to have a detailed
look at, on the one hand, evaluation methodology and on the other hand available datasets
for the task. In the following, these two topics will be analyzed in detail. Additionally to
that a detailed view on the experimental implementation which was used for this work
will be taken.

4.1 Datasets
In the following, the datasets which are most relevant for this work will be discussed.
Thereby, a discussion of splits in training, validation and test sets will be made. Addition-
ally, a short glimpse will be taken at other datasets and it will be discussed why those
were not considered for the validation of the results. As discussed in chapter 2.4 the focus
is not be solely on re-identification between RGB and depth modality combinations, but
also a common dataset for re-identification between infrared and the RGB modality will
be considered to be able to discuss generalization capabilities of the presented techniques.

4.1.1 BIWI RGBD-ID Dataset
The BIWI RGBD-ID dataset was published by the Intelligent Autonomous Systems
Laboratory (IAS-Lab) of the University of Padua in 2013. The dataset was developed to
target long-term people re-identification from RGB-D cameras [87].

The dataset was recorded with a Microsoft Kinect and contains a total of 50 different
people which are divided into 50 training and 56 testing sequences. The 56 testing
sequences consist of 28 persons with two sequences each. The testing sequences were
recorded on a different day and in a different location and, therefore, contain variations,
like different clothing. In the training sequences the persons perform a certain routine
of motions such as head movements and walking to the camera. The testing sequences
consist of "Still", which contains no movement and "Walking", where a walk in direction
camera is performed. The amount of images contained in the different modalities can
be seen in table 1. Exemplary images from the BIWI-RGBD-ID dataset can be seen in
figure 20 [87].

The BIWI RGBD-ID dataset was used as validation for the cross-modal re-identification
methods presented in [5], which is the only comparison paper for cross-modal re-id in
RGB-depth. A more detailed discussion of the results in this paper will be made in
chapter 5.3.

When analyzing the literature, in which the BIWI RGBD-ID dataset is used, it gets
visible, that the originally presented split in training and testing set of the authors was
neglected in most of the follow-up papers. Wu et al. [78] used only the 22 persons with
only one sequences and without appearance change for training, and the 28 persons with
three sequences for testing. Liu et al. [88] made the assumption that the same person
wears the same clothes. Therefore, they discarded the designated training instances
and only used the still and walking sequences from the designated testing set. Zhuo et
al. [5] take the same assumption and go one step further. They split the 28 persons
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with different clothing and define them as different persons when they wear different
clothes. In this manner they manage to obtain 78 persons instances (28x2 + 22). They
divide these 78 persons randomly in 40 persons for training and 38 for testing. For the
comparison in this work, the training set of 40 person will be divided into 32 training
and 8 validation persons. All images are synchronized.

Models which are not based on hand-crafted features, like neural networks, are
very dependent on training data which captures the same distribution as the test data.
Therefore, it was logical, that the provided training-test split had to be broken up as
no sequence of changing clothes was part of the training set. On the other hand, it
contradicts the intention of the authors of the dataset to design a long-term oriented
re-identification system, to simply combine the persons with different clothing as was
done in Zhuo et al. [5]. On the other hand, in the relevant scenarios in surveillance and
autonomous driving a clothing change is very unlikely. Additionally, Zhuo et al. [5] is the
only comparable source for cross-modal re-identification (see chapter 2.3). Hence, in this
work this split will be evaluated. The split by identities can be found in appendix B.1.

Figure 20: Example images from BIWI [87]. First and third image from the
RGB modality. Second and fourth image from the depth modality. Images
are coupled.

4.1.2 RobotPKU RGBD-ID dataset
Another dataset with similar characteristics to the BIWI dataset is the RobotPKU
dataset. It was published by Liu et al. in 2017 [88].

The dataset consists of 90 persons. In the original paper no split in training, validation
and test set was presented. For this work the division will be 40, 10, 40 for training,
validation and test set, respectively. This follows the division of Liu et al. [88] the best
as possible. They reported a division of training and test set in 50 persons each. The
split and the corresponding amount of images can be seen in figure 1. Example images
are shown in figure 21.

The RobotPKU dataset is a more challenging dataset than the BIWI RGBD-ID
dataset for two reasons. Firstly, the depth images dataset are much more error-prone. For
example, in figure 21 in the depth image on the very right the head of the person is not
entirely captured by the depth device. Errors like this are much rarer in the BIWI dataset.
Secondly, the images are not perfectly coupled like in BIWI and a small difference within
several milliseconds between depth and RGB images are possible. Hence, the performance
test on the RobotPKU dataset can be considered a robustness test for datasets which are
well-performing on BIWI.

The split by identities which is used in this work can be found in appendix B.2.
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Figure 21: Example images from RobotPKU dataset [88]. First and third
image from the RGB modality. Second and fourth image from the depth
modality.

4.1.3 SYSU RGB-IR Re-ID
As was discussed in chapter 1, it is necessary to take a look at different modality
combinations to obtain a thorough overview over the capabilities of a method for cross-
modal re-identification. For this reason the dataset SYSU RGB-IR Re-ID [83] will be
considered.
The dataset combines the modalities visible light and infrared (IR) light. It consists of 491
identities from 6 cameras, giving in total 29,023 RGB images and 16,579 IR images (see
also table 1). Camera 3 and 6 are capturing infrared, while the other 4 cameras capture
RGB images. Camera 1,2 and 3 are placed indoor, while camera 2 and 3 are in the same
room. The remaining cameras are capturing an outdoor environment. All together there
are 496 identities in the dataset, of which 296 identities are used for training, 99 for
validation and 96 for testing. The images are captured in bright (RGB) or dark (IR)
environment and, hence, not synchronized. Example images can be seen in figure 22.

There are two scenarios given for testing: 1. The ’All-search’ scenario, where all
cameras are used. 2. The indoor scenario, where only cameras 1, 2 and 3 are relevant. In
both cases the visible light images are used as gallery and the infrared images as probe.

Figure 22: Example images from SYSU RGB-IR Re-ID dataset. Top images
from visible light modality, bottom images from infrared modality [83].

4.1.4 Other Datasets
Besides the presented datasets especially in the RGB-D domain some additional datasets
were found. For the IIT RGB-D dataset [69] the problem was, that the depth data was
given as a pointcloud and very few images per person were available. For this work,
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Dataset train val test overall
M1
#ids

M1
#imgs

M2
#ids

M2
imgs

M1
#ids

M1
#imgs

M2
#ids

M2
imgs

M1
#ids

M1
#imgs

M2
#ids

M2
imgs

M1
#ids

M1
#imgs

M2
#ids

M2
imgs

BIWI 32 9245 8 9245 8 2097 8 2097 38 10696 38 10696 78 22038 78 22038
RobotPKU 40 7400 40 7400 10 1815 10 1815 40 7297 40 7297 90 16512 90 16512
SYSU-IR 296 20274 296 9929 99 1974 99 1980 96 6775 96 3803 491 29023 491 15712

Table 1: Overview over the datasets. For BIWI and RobotPKU:
Modality 1 (M1) is RGB, Modality 2 (M2) is Depth. For SYSU-IR:
Modality 1 (M1) is RGB, Modality 2 (M2) is infrared.

it was considered logical to focus on datasets which do not necessarily need additional
preprocessing steps to feed the images to a neural network. Additionally, preliminary tests
showed, that the images were too few for successfully training deep learning methods.

The TUM Gaid dataset [70] includes around 300 persons and is, therefore, theoretically
very well suited for deep learning. Unfortunately, the depth images in the dataset are
very small and preliminary tests showed, that no meaningful insights could be achieved
on this dataset.

4.2 Measures of performance
The evaluation of the validation and test loss in re-identification tasks is more challenging,
than in most other machine learning tasks as the persons contained in the validation
and test set are not part of the training set. Therefore, it is not possible to directly
measure the validation or test loss at a certain time step like in classical classification
tasks. For example, for a classification task optimized with softmax loss, the loss can
simply be measured by the difference between the obtained probability for a class and the
groundtruth class label. In a re-identification task the groundtruth labels of validation
and test set are not part of the classification layer as a preliminary embedding layer is
used for comparison. Hence, the performance of a re-identification network has to be
monitored by taking a look at final evaluation measures.

The most common evaluation measures in re-identification are the cumulative matching
characteristics (CMC) and the mean average precision (mAP). These will be presented in
the following. Beforehand two concepts have to be introduced, which are closely related.
Additionally, a look at a technique for deconvolution of neural networks for visualizing
the most activating regions for a network in an image will be discussed as this will be
used for a qualitative analysis of the results.

4.2.1 Probe/Query vs. Gallery/Target set
In general in evaluation settings for re-identification a target set and a query set are
differentiated. Both sets contain images of the same person instances which are extracted
from validation or tests set. Generally, out of the target set a gallery set is constructed and
from the query set the probe set is obtained. Despite this definition, the words "query"
and "probe" set as well as "gallery" and "target" set are often used interchangeable.

The gallery set can be considered the comparison set for the probe set. Usually, the
output of an algorithm is a similarity measure which defines the distance between all
images from the target set to the query set [71]. From this similarity matrix the measures
which will be presented in chapters 4.2.3 and 4.2.4 are calculated.
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4.2.2 Single-gallery shot vs. multi-gallery shot
While the definition of the query set is constant within the literature, the construction of
the gallery set can be done in two manners.

In a single-gallery shot setting the gallery consists of one, normally randomly chosen
image from each object in the gallery. Therefore, only one image of each person in the
gallery set is used for the evaluation of the measures. Afterwards, the distance of each
image in the probe is calculated (one-to-many comparison) to each image in the gallery
and the statistics CMC and/or mAP (see chapters 4.2.4 and 4.2.3) are calculated.

In a multi-gallery shot setting more than one image of an individual object can be
part of the gallery set. This leads to a higher diversity in the gallery set. An usual effect
of having more than one image in the gallery set is, that higher accuracies (especially
for CMC) can be reached. Intuitively, this can be explained by the fact, that it is more
likely that an ’easy’ image of the same person is part of the gallery set.

4.2.3 Cumulative Matching Characteristics (CMC)
As re-identification is an inherently difficult task, it mostly does not make sense to only
consider if the top match between query image and gallery images is correct. Therefore,
the cumulative matching characteristics curve (CMC) describes, if the correct match is
among the first k matches. CMC basically shows the probability for an image in the probe
set to find a correct match among the first k most probable matches in the gallery. It is
possible to indicate the performance with the area under the CMC curve. Nevertheless,
in more recent literature it is more common to report several of the top k ranks instead
of one value for CMC. Popular values for k are 1, 5 and 10 (R1, R5 and R10) [34, 83, 78].
CMC values can be very biased by multi-shot settings, as they are only reporting the
first match of a probe image. Assuming a decently performing model, the more images of
the same person are in the gallery, the higher is the probability that the first match of a
probe image is from the same class.

4.2.4 Mean Average Precision (mAP)
Before the publication of Market-1501 [34], it was common in person re-identification
to evaluate the performance of algorithms solely based on CMC indicators. Zheng et
al. [34] argumented the need for another statistic with the scheme which can be seen
in figure 23. In the example cases (a), (b) and (c) the CMC rank 1 accuracy is always
1, because the first image is a match in all cases. Nevertheless, there is an apparent
difference especially between (b) and (c), where two images of the same person are in the
gallery (multi-gallery shot). For a fair comparison, it is necessary to differentiate if the
second gallery item is detected on position two, like in (b) or position five, like in (c). In
this case, "recall", which is defined as the proportion of true positives not identified, is
not considered in CMC and average precision is better applicable for measurement [34].

The evaluation of machine learning techniques with a precision-recall curve is a
popular instrument. For the calculation it is necessary to identify true positives (tp), false
negatives (fn) and false positives (fp). Precision is defined as tp

tp+fp , while recall is defined
as tp

tp+fn . The statistic is often displayed as a step function for different thresholds with
precision on the y-axis and recall on the x-axis. The average precision (AP) is defined as
the area under the precision-recall curve. In re-identification the threshold is defined as
the distance of the probe image to gallery images which are accepted as the same person.
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Figure 23: Problematic nature of using solely CMC curve for measurements.
While CMC is 1 for all cases, AP additionally captures recall (in (c) only
0.71 accuracy). Green is same person image, red is other person. Source:
[34].

Therefore, the average precision has to be calculated separately for each probe image.
Finally, the mean of the average precision of all probe images are reported as the mean
average precision (mAP). MAP is less influenced by single- versus multi-gallery shot
settings than CMC, as it inherently evaluates the performance over all positive samples.

4.2.5 Deconvolution of neural networks
A visualization of the activations of a neural network can provide insights into the learned
patterns of a network. Therefore, in this work one method for activation visualization will
be used. In 2014, Springenberg et al. [82] presented an approach to visualize the concepts
learned by higher neural network layers in a simple and efficient way. The idea is to invert
the data flow of a convolutional neural network by move from neuron activations on a
specific higher-level layer down to an input image. This process is called deconvolution.
In the approach Springenberg et al. [82] presented, the idea is to use an image as well as
its groundtruth to get a reasonable reconstruction of the image. The deconvolution step
itself is analogous to a backward pass through the network. The main difference to a
typical backward pass is, that when propagating through a non-linearity, like a rectified
linear unit layer, the gradients are computed based on only the top gradient signal. The
authors call this guided backpropagation, because it adds an additional guidance from
higher layers. The idea behind it is to diminish the influence of negative gradients, which
decrease the activation of units, which are meant to be visualized.

Figure 24: Example deconvolution results with guided backpropagation.
Source: [82].
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In figure 24 some example results of guided backpropagation are visualized. It
gets visible, which parts of the images are activating the network and lead to the final
classification decision, like e.g. the dog noses for the classification as a dog. On the very
left, the image shows the results, when the guidance is taking out of the deconvolution
algorithm. The obtained images are much less descriptive than the ones for guided
backpropagation.

4.3 Experimental Details
After having discussed the main datasets and measures of performance for the experimental
chapter, it is possible to take a look at details of the experimental implementations. This
will be done in the following and is split into details on evaluation and details on the
training procedures.

4.3.1 Details on Evaluation
For this work, the datasets for testing the methods are split into training, validation and
test set. Even though this is considered a good practice in machine learning research
[47], many methods in the area of person re-identification are ignoring this separation
and only use a training and a test set [5]. Therefore, those methods are highly prone to
overfit to the test data. For the BIWI RGBD-ID dataset and the RobotPKU dataset no
splits of the dataset by the original authors were provided and the dataset had to be split
by the author of this paper (for splits see Appendix B). To get meaningful performance
indicators for these datasets a 3-fold cross-validation procedure was followed for all tests.
This means, that three times a different validation set was extracted from the design set.
For the SYSU-IR dataset a split in training, validation and test set was provided by the
original authors. Hence, no further cross-validation was performed.

Especially for the datasets with a high amount of images for each individual, it was
necessary to restrict the amount of images which are taken into account for the evaluations
to get a reasonable trade-off between training time and evaluation time. Following the
procedure used in [83] for each evaluation of mAP, a maximum of 50 random images of
each person in the probe. It was shown that the difference to a scenario that considers
all images is minimal. For evaluation of Rank1, Rank5 and Rank10 the same excerpt of
images is taken into account. In general for person re-identification tasks, images from
the same camera are taken out of the evaluation, following the evaluation protocol in
CUHK03. For the BIWI RGBD-ID and the RobotPKU dataset the camera constraint
had to be relaxed, as for most identities only one camera view is available. The same
holds for the validation set of SYSU RGBD-ID.

Additionally, for each evaluation only one of the images of one instance in the gallery
is used to obtain a single-shot setting. In an evaluation different images are taken for the
gallery set and the evaluation is repeated 10 times.

To compare the performance the rank 1 accuracy on the test set, rank 5 accuracy on
the test set, rank 10 accuracy on the test set and mAP on the test set will be reported.

For some networks in the following chapters further visualizations of the networks are
available in the appendix.
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4.3.2 Details on Training procedures
In general, in the following the neural networks are optimized with an an early stopping
criteria. For all datasets the early stopping criteria is the mean average precision (mAP,
compare chapter 4.2.4) of the validation set. The neural networks taken into account for
testing are Resnet18 and Resnet50 as explained in chapter 2.2.2. Those networks have
shown very good performance in re-identification tasks and are, therefore, taken as the
baseline for this work. The networks are optimized with softmax and triplet loss. The
neural networks trained with softmax were optimized with stochastic gradient descent
with Nesterov momentum [89]. Those trained with triplet loss were optimized with the
ADAM optimizer [90]. For the next chapter all networks were designed to obtain a feature
size of 128 as suggested in the literature [45]. A dropout rate of 0.5 was deployed. The
margin for triplet loss (see formula 5) was set to 0.5.

The training of the neural networks for re-identification in the different domains are
classical neural network optimizations. Therefore, a training loss is optimized and ideally
converges to zero. An example loss for a successful optimization with triplet loss and
softmax loss can be seen in figure 25. Even though in an optimization for triplet loss
more variation in the graph is visible, both curves converge to zero.

(a) Loss curve in successful training with
softmax loss.

(b) Loss curve in successful training with
triplet loss. Curve is smoothed out to make
trend more visible.

Figure 25: Loss curves for successful trainings with triplet and softmax loss.

Figure 26: Loss curves for unsuccessful training of triplet loss

The main reason, why the loss curves have to be discussed in detail, is that there
is a certain complexity in training neural networks with triplet loss. In some cases the
training can lead to a training loss as it can be seen in figure 26. Here, the training loss
is not converging to zero but to 0.5. To explain this behaviour a view has to be taken
on formula 5 which is the definition of triplet loss. It consists of three parts. Firstly,
the distance of the embeddings of the anchor and positive. Secondly, the distance of the
embeddings of the anchor and negative. This part is subtracted from the first part and,
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thirdly, a margin α is added. As defined in the introduction of this chapter, α is set to
0.5 for the presented trainings. Clearly, in a successful training the distance between the
two former parts of the formula is bigger than the margin 0.5 and, therefore, a loss of 0
is achievable. But, and this is what happened in the training shown in figure 26, if the
task is difficult to solve, the optimization can lead to a network which is embedding all
images in the same point and, hence, obtains a distance of 0 for all images. In this case
the loss of the network simply converges to α. This is dangerous because of two reasons.
Firstly, the performance in the validation set of the networks in re-identification tasks is
measured with mAP because it can not be measured with a loss directly connected to the
training loss (see chapter 4.2). Hence, the problem can only be identified in monitoring
the training loss. Secondly, the standard evaluation functions for mAP and CMC are
vulnerable to embeddings of all images to zero, as they simply look for the least distance
and do not include a sanity check.

There are some potential solutions to the problem, like more careful initialization
and training of the networks. As simple variations did not lead to a solution for the
considered cases and the goal of this work is not to optimize training procedures with
triplet loss, the complexity will be accepted and if a network training is not possible it
will be indicated as n/a in the evaluation.
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5 Experimental Results
In the following sections the experimental results of this work will be presented in two
subsections. The first subsection presents the results for optimizing deep neural networks
in single modalities. This analysis functions as a comparison baseline for the rest of this
work, and at the same time corresponds to step I of the cross-modal distillation network
(section 3.3). In the second subsection the results for the three neural network techniques
for cross-modal sensing will be presented.

5.1 Optimization in single-modal re-identification
In section 2.2 several methods for optimizing a neural network for person re-identification
in a single modality were given. To get a guideline for this paper in the following
several neural network architectures and optimization techniques will be compared in the
single-modal task. This analysis will be used as a comparison baseline for the cross-modal
methods and acts as step I for the cross-distillation network. The results for the neural
networks presented in this section are explicitly not optimized for cross-modal sensing
and solely optimized for re-identification in one single modality.

5.1.1 BIWI RGBD-ID dataset
The BIWI RGBD-ID dataset was presented in section 4.1.1. It consists of depth and
RGB images. For the tests which are presented in table 2 the split of 32 individuals for
training, 8 individuals for validation and 38 for testing was taken.

Table 2: Average test set accuracy of different deep neural network
architectures in the single-modal task for the BIWI dataset.

Modality Feature
Extractor Loss R1 (%) R5 (%) R10 (%) mAP (%)

RGB
Resnet18 Triplet 93.68 ± 0.76 99.65 ± 0.35 99.96 ± 0.04 94.77 ± 0.83

Softmax 93.32 ± 1.83 99.67 ± 0.24 99.93 ± 0.09 94.46 ± 1.55

Resnet50 Triplet 92.14 ± 1.86 99.71 ± 0.24 99.95 ± 0.08 93.44 ± 1.46
Softmax 94.75 ± 0.74 99.75 ± 0.19 99.96 ± 0.03 95.68 ± 0.60

Depth
Resnet18 Triplet 61.28 ± 2.49 93.85 ± 1.05 99.44 ± 0.18 62.71 ± 2.37

Softmax 57.09 ± 0.79 88.96 ± 0.15 96.95 ± 0.20 58.38 ± 1.07

Resnet50 Triplet 54.23 ± 1.75 91.48 ± 0.56 99.15 ± 0.18 55.31 ± 1.71
Softmax 59.84 ± 0.66 90.54 ± 0.81 97.80 ± 0.19 61.44 ± 0.54

In RGB the performance of the classifiers are very good. All trained models obtained
an mAP of 93% or higher on the test set. The best model is the Resnet50 network
optimized with softmax loss with an average mAP of 95.68%. Resnet18 with softmax loss
obtains a mAP of 94.46% and, hence, is competitive to the deeper version. The networks
trained with softmax loss obtain an average mAP of 94.77% for Resnet18 and 93.44% for
Resnet50. Hence, in this case the shallower network is better suited for the task as the
deeper one.

The average mAPs in the depth domain are much lower than in RGB. Here, the
best performing model is Resnet18 trained with triplet loss which achieved an average
mAP of 62.71%. Again, the deeper Resnet50 model performed worse for the optimization
with triplet loss. For optimization with softmax loss Resnet50 outperformed Resnet18
by around 3%. The average mAP of Resnet50 was 61.44%. Hence, the best models for
re-identification in pure depth were around 30% worse in average mAP in comparison to
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the best models in RGB. This indicates, that the re-identification task in depth is more
difficult to solve in comparison to the re-identification in visible light. In figure 43 and 44
examples for query-gallery results are shown. Analyzing the two tasks visually it gets
clear, that also for humans the task in depth is much more difficult to solve than the task
in RGB.

To understand how the neural network solved the re-identification tasks, a possibility
is to analyze which parts of the images activated the neural networks the most. In section
4.2.5 a method to obtain such gradient images via guided deconvolution was presented.
In figure 27 the gradient images of the images from figure 20 are shown. All images are
calculated with Resnet18 trained with softmax loss for the corresponding modalitites.

(a) Frontal image,
RGB

(b) Frontal
image, Depth

(c) Dorsal image,
RGB

(d) Dorsal image,
RGB

Figure 27: Single-modality networks: Gradient images for BIWI with
Resnet18 and softmax loss.

It is shwon, that a big difference between the activations of a RGB image and a
depth image exist. In RGB images ((a) and (c) in figure 27) bigger regions are activating
the network. Those regions can be identified as the head region and the torso of the
person. It is quite apparent, that the overall appearance of the torso, including colors is
evaluated. This is reasonable as the torso is fully visible in almost all images, and mostly
not changing its appearance that much in frontal (a) and dorsal images (c). The high
variability in the visibility of the legs of a person when walking, leads to the fact, that
the image is lowly activated by this part.

In images (b) and (c) the activations of the networks trained on the depth images are
visible. The activation functions are much differently built than for the RGB images. To
extract features for classifying the depth images, the network is dependent on boundary
structures of the body. The images suggest that two structures are used. First, the
overall body shape of torso, arms and upper legs. Again the lower part of the legs is
mostly neglected. Most probable, because this part is too variable. Second, it seems that
the network is most activated by the structure of the torso. A reason for this can be, that
the torso contains most of the recurring describing features for a depth image. Almost
no coherence between the activation maps of depth and RGB images can be identified.

5.1.2 RobotPKU dataset
The Robot PKU dataset is similar to the BIWI dataset and consists of RGB images and
depth images. As explained in section 4.1.2 the depth images are more noisy and, hence,
solving the re-identification task in RobotPKU is more complex. Exemplary images for
RGB and depth are shown in figure 21.

For the RGB modality an average mAP of up to 91.91% is reached with a Resnet18
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trained with triplet loss. The deeper Resnet50 performs worse and obtains an average
mAP of 90.63%. Both networks trained with triplet loss outperform the corresponding
networks trained with softmax loss. Here, Resnet18 and Resnet50 obtain an average mAP
of 86.86% and 87.11%. Similarly to the BIWI dataset, the performance of all networks in
the RGB modality is high.

Networks optimized to perform in the depth modality are much more difficult to train.
It was not possible to successfully train a Resnet18 and Resnet50 with a triplet loss. For
a more thorough explanation on why this was not possible please refer to section 4.3.2.
The same networks trained with softmax loss obtained an average mAP of 38.65% for
Resnet18 and 44.03% for Resnet50. These values are around 40% lower than for the RGB
modality. Hence, a significant gap between the difficulty of the separate re-identification
task in RGB and in depth exist. Also in comparison to the performance in the depth
modality in BIWI (table 2) a gap of 20% exists, while the amount of instances in the test
set are almost same. This indicates that the task in the depth modality for RobotPKU is
more difficult than for BIWI. Nevertheless, comparing the results to random guessing,
which lies at 2% for Rank1 accuracy, the results are still acceptable.

Table 3: Average test set accuracy of the different deep neural network
architectures in the single-modal task for the RobotPKU dataset.

Modality Feature
Extractor Loss R1 (%) R5 (%) R10 (%) mAP (%)

RGB
Resnet18 Triplet 90.53 ± 0.65 99.30 ± 0.17 99.46 ± 0.10 91.91 ± 0.64

Softmax 84.73 ± 0.47 98.00 ± 0.12 99.24 ± 0.14 86.86 ± 0.46

Resnet50 Triplet 89.04 ± 3.91 99.17 ± 0.33 99.46 ± 0.10 90.63 ± 3.41
Softmax 84.52 ± 0.24 97.91 ± 0.35 99.12 ± 0.23 87.11 ± 0.22

Depth
Resnet18 Triplet n/a n/a n/a n/a

Softmax 39.17 ± 0.34 69.85 ± 0.63 82.58 ± 0.35 38.65 ± 0.44

Resnet50 Triplet n/a n/a n/a n/a
Softmax 44.50 ± 1.02 75.83 ± 1.29 87.56 ± 0.87 44.50 ± 1.02

To get more insights into the results, again a look at the gradient images will be taken.
The images can be seen in figure 28 and correspond to the original images in figure 21.
All gradient images are calculated with the Resnet18 networks trained with softmax in
the corresponding modality. For RGB the networks are mainly activated by head and

(a) Frontal image,
RGB

(b) Frontal
image, Depth

(c) Dorsal image,
RGB

(d) Dorsal image,
RGB

Figure 28: Single-modality networks: Gradient images for RobotPKU with
Resnet18 and softmax loss.

legs of the persons (see (a) and (c)). The torso seems to not play a very big role in the
evaluation of the frontal image. Still for the dorsal image, a higher activation for the
torso and the arms are found.

Again, the activations for the network in the depth modality are much different from
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RGB (images (b) and (c)). Even though the very much cluttered structures in the image
are difficult to interpret, it is possible to derive one main finding. The activations are
mainly found in the region of the torso of the person. This is a big difference to the
activations in the RGB modality. Therefore, this can be interpreted as a first indicator,
that the inherently learned attributes to describe the persons of the two networks are not
modelling the same features.

Further visualizations for the RobotPKU dataset and can be found in the appendix.
In figure 47 and 48 exemplary query-gallery results are found. Looking at figure 48 can
give a hint why the performance in the depth modality is generally low. For example in
the second row the query image almost contains no information as many outer parts of
the body are not captured by the depth-capturing device. This problem of the RobotPKU
dataset was also described in section 4.1.2. Figure 47 gives insights in why for the
RobotPKU dataset the torso is not as describing as in the BIWI dataset for the RGB
images. The reason is simply that several persons wear very similar clothes. Therefore a
more full view of the person is taken into account by the neural network comparison to
the BIWI dataset.

5.1.3 SYSU RGB-IR dataset
The SYSU RGB-IR dataset consists of two modalities. The first modality is infrared
images and the second modality is visible light images. The dataset is discussed to
analyze the generalization of the presented methods for general cross-modal person
re-identification. As for the SYSU dataset a fully defined split in training, validation
and test set exists no standard deviation is reported for the accuracies. Example images
can be seen in figure 22. In table 4 the results of the networks optimized for the single
modalities are shown.

Table 4: Average test set accuracy of the different deep neural network
architectures in the single-modal task for the SYSU-IR dataset.

Modality Feature
Extractor Loss R1 (%) R5 (%) R10 (%) mAP (%)

RGB
Resnet18 Triplet 74.00 93.98 97.52 74.85

Softmax 67.28 87.40 92.07 68.38

Resnet50 Triplet n/a n/a n/a n/a
Softmax 75.06 91.35 94.76 76.09

Infrared
Resnet18 Triplet 61.45 88.92 94.52 62.11

Softmax 62.03 87.08 93.28 63.24

Resnet50 Triplet n/a n/a n/a n/a
Softmax 68.58 91.16 96.09 69.91

In the RGB modality the best performing model is a Resnet50 trained with softmax
loss. It obtained an average mAP of 76.09%. The shallower Resnet18 reached an mAP of
7% less. With triplet loss only Resnet18 was trained successfully, it obtained an mAP of
74.00%.

For the infrared modality Resnet18 and Resnet50 trained with softmax loss perform
with 63.24% and 69.91%, respectively. Again, only a Resnet18 was trained successfully
with triplet loss. It obtained an accuracy of 62.03%. Similarly, to the depth modalities
in the other datasets, the infrared modality is more difficult to classify than the RGB
modality. In the appendix in figure 39 and 40 exemplary gallery-query results are shown
for Resnet18 trained in RGB and in infrared with softmax, respectively. The images show
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the high complexity of the tasks.
An explanation of the lower performance in the RGB dataset in comparison to the

datasets which were investigated earlier is the higher number of individuals of the test
set in the SYSU dataset. With around 70% mAP the networks are still performing well.

5.1.4 Discussion
It was shown, that for all relevant datasets in both modalitites for the single-modal case
networks could be trained which obtained decent to good results. The datasets have in
common, that for the RGB modality a high re-identification performance in terms of test
mAP can be achieved. For all examined datasets, the performance in the RGB modality
was higher than for the corresponding modality. For depth (BIWI and RobotPKU) the
difference was more significant than for infrared (SYSU).

It is important to understand, that the results of this section are an indicator for
possible performances of the methods for cross-modal sensing in the following chapters.
For example, Resnet50 trained with softmax in RobotPKU obtains a rank 1 accuracy of
84.73% for RGB and 39.17% for depth, respectively. Hence, for cross-modal sensing the
lower of the two values, in this case 39.17%, can most likely be considered an upper bound
for the Rank 1 accuracy in cross-modal re-identification. This is logical, as individuals
which are not re-identified in the same modality correctly can most likely not be re-
identified when compared to an object from another modality. Hence, a hypothesis which
can be made after this section is that sensing between modalities cannot be superior to
sensing within the more challenging of the two modalities.

A look at the gradient images for the depth and RGB modalities gave first insights in
the inherent modelling of the networks. It was found, that networks trained in the RGB
modality are not automatically modelling structural features of the human body. The
most activated regions are recurring attributes like colors or salient features, like shoes
or heads. On the other hand, networks trained in the depth modality are only capable
of sensing structural shape features. Overall, it got visible, that the learned features
are very dataset dependent. Especially for the RGB modality the results for BIWI and
RobotPKU were very different. The network trained with the BIWI dataset was very
activated by the colors of the torso, while the network trained in RobotPKU was much
more activated by heads and legs.

This analysis gives a first important hint for the next sections. It was shown, that
separately trained networks for the domains use a very different base for the classification
of the images. Therefore, it can be problematic to map the extracted features into a
common feature space.

Another interesting finding was found for the interaction of a shallow and deep
Resnet architecture with softmax and triplet loss. For all datasets, a network optimized
with triplet loss was obtaining better accuracy when it was shallower (Resnet18). Net-
works optimized with softmax loss obtained better accuracies with a deeper architecture
(Resnet50).
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5.2 Optimization in cross-modal re-identification
In section 5.1 the capabilities of neural networks for re-identification in single modality
were analyzed. It was shown, that in the single modal sensing task decent accuracies can
be achieved. In this section the three neural network methods which were presented in
section 3 will be evaluated on the datasets. After each subsection a short discussion on
the results for the specific network architectures will take place.

In the following a lot of references to the preceding section 5.1 will be made. These
methods will be named as single-modal networks. As the networks which are presented in
the following are also capable of sensing in a single modality (indicated as single-modal
task) references to section 5.1 with single-modal networks will be written in italic letters
to avoid confusion.

5.2.1 One-stream neural network
The most straightforward method to allow cross-modal re-identification in deep neural
networks are one-stream neural networks. The class of networks was presented in chapter
3.1. In this chapter the performance of one-stream networks on the presented datasets
in chapter 1 will be reported. For evaluating the performance of the one-stream neural
networks, several performance indicators will be evaluated. The networks sensing in the
cross-modal task are inherently capable of sensing in single modalities as well. Hence,
the performance in the test set in both cross-modal tasks (changing query and gallery),
as well as in the individual modalities separately are reported. All these performance
indicators are then used to discuss the behavior of the one-stream network.

In the literature the one-stream network is optimized by hands of a softmax loss. This
will be followed in this work and similarly to the preceding section the feature extraction
architecture will be varied between Resnet18 and Resnet50.

5.2.1.1 BIWI RGBD-ID dataset
Table 5 shows the results on the test set for the BIWI RGBD-ID dataset. The result for
the cross-modal tasks can be seen in the first two columns for each architecture. For
Resnet18 an average mAP of 14.55% for RGB as query and depth as gallery are obtained.
For depth as query and RGB as gallery 20.09% in average mAP are obtained. The same
measures for Resnet50 are 16.86% for RGB as query and depth as gallery and 23.75%
for depth as query and RGB as gallery. Hence, for the cross-modal task the one-stream
method profited from a deeper architecture within the BIWI dataset.

The bottom two lines (indicated as Q:RGB, G:RGB and Q:Depth, G:Depth) indicate
the performance in the single-modal task for the networks. For Resnet18 in pure RGB
an average mAP of 88.15% is obtained and for sensing in pure depth an average mAP of
54.23%. In the single-modal networks with the same architecture (see table 2) an average
mAP of 94.46% and 58.38% was achieved. Hence, the performance of the one-stream
network in the single-modal task is only slightly deteriorated by a few percentage points.
For Resnet50 pure sensing in the one-stream network led to a performance of 90.16%
and 59.06% for RGB and depth, respectively. Again this is only slightly inferior to the
95.68% and 61.44% in the single-modal network.

Again a look at the gradient images gives more insights into the activations of the
network. In figure 29 the gradients are visualized. The corresponding original images
are shown in figure 20 in chapter 4.1.1. Comparing the gradient images to the gradient
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Architect. Datas. Loss Feature
Extractor

Inference
modality R1 R5 R10 mAP

One-stream
network BIWI Softmax

Resnet18

Q:RGB, G: Depth 13.27% ± 2.54% 47.66% ± 4.37% 72.71% ± 3.09% 14.55% ± 1.99%
Q:Depth, G: RGB 15.85% ± 1.77% 51.32% ± 1.87% 75.30% ± 2.61% 20.09% ± 1.32%
Q:RGB, G: RGB 86.24% ± 2.51% 98.10% ± 0.65% 99.52% ± 0.13% 88.15% ± 2.07%
Q:Depth, G: Depth 52.78% ± 1.76% 86.84% ± 0.99% 96.10% ± 0.38% 54.23% ± 2.07%

Resnet50

Q:RGB, G: Depth 15.68% ± 0.77% 50.29% ± 1.18% 75.65% ± 0.46% 16.86% ± 0.87%
Q:Depth, G: RGB 19.82% ± 0.33% 55.74% ± 0.83% 78.92% ± 1.07% 23.75% ± 0.30%
Q:RGB, G: RGB 88.60% ± 1.67% 98.37% ± 0.13% 99.53% ± 0.06% 90.16% ± 1.26%
Q:Depth, G: Depth 57.48% ± 0.08% 89.01% ± 0.13% 97.53% ± 0.41% 59.06% ± 0.20%

Table 5: One-stream network, BIWI: Performance in test set. All
possibilities for populating Query (Q) and Gallery (G) are reported.

images from the single-modal networks in figure 27 from chapter 2.2, many differences
are visible.

(a) Frontal image,
RGB

(b) Frontal
image, Depth

(c) Dorsal image,
RGB

(d) Dorsal image,
RGB

Figure 29: One-stream networks: Gradient images for BIWI with Resnet18
and softmax loss.

The RGB-based images (a) and (c) are less activated by certain surface regions, like
the torso or head in comparison to the single-modal networks and are more activated by
structural elements. It can be assumed, that the training procedure, to a certain level
lowered the color dependence of the features. This is desirable for a common feature
space as color features are not extractable in the depth modality. Nevertheless, the
network is activated quite heavily by the colors of the upper leg region of the person
and, hence, not completely focusing on the structure of the person. Also in the depth
modality (images (b) and (d)) some differences to the single-modal network activations
in figure 27 are apparent. Again the network is activated by the structure of the persons
shape and a differentiation between torso and other parts of the body like arms are made.
In comparison to figure 27 the activation by the torso shape is lower and the network is
more focused on outer bounds of the person. Still the network is activated by different
parts of the image for the depth and the RGB modality.

A visualization for the cross-modal query-gallery results with RGB as query can be
found in the appendix in figure 45. The most important message of this image is, that
the task the networks are solving in the cross-modal space is very challenging. Looking at
figure 45, it gets clear, that it is also difficult for a human to classify the images correctly.

5.2.1.2 RobotPKU dataset
In table 6 the results of the one-stream network on the test set for RobotPKU are shown.
For Resnet18 an average mAP of 9.34% for RGB as query and depth as gallery and
12.73% for depth as query and RGB as gallery are achieved. Similarly to the BIWI
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dataset, the performance increases when changing to a Resnet50 architecture. Here, with
RGB as query and depth as gallery an average mAP of 11.42% and with depth as query
and RGB as gallery 14.19% are obtained.
In the single-modal tasks with Resnet18 an average mAP of 77.03% for RGB and 33.82%
for depth are achieved. For the single-modal network with the same architecture these
values were at 86.86% and 38.65%. Hence, a slight deterioration of this performance of
around 9% and 5% was sensible. For the single-modal task in Resnet50 average mAPs of
79.00% and 38.34% are obtained. Again these values are slightly deteriorated by 8% and
5% in comparison to 87.11% and 44.50% in the single-modal network.
In figure 30 the activation maps of the one-stream networks for the RobotPKU dataset

Architect. Datas. Loss Feature
Extractor

Inference
modality R1 R5 R10 mAP

One-stream
network RobotPKU Softmax

Resnet18

Q:RGB, G: Depth 10.06% ± 0.89% 34.08% ± 2.62% 52.25% ± 3.57% 9.34% ± 0.67%
Q:Depth, G: RGB 11.17% ± 1.59% 36.96% ± 3.87% 54.87% ± 4.15% 12.73% ± 1.48%
Q: RGB, G: RGB 75.52% ± 0.85% 94.26% ± 0.44% 97.40% ± 0.22% 77.03% ± 0.88%
Q: Depth, G: Depth 34.68% ± 1.47% 64.87% ± 3.07% 78.65% ± 2.98% 33.82% ± 1.55%

Resnet50

Q:RGB, G: Depth 11.92% ± 0.63% 38.13% ± 1.01% 57.34% ± 2.14% 11.42% ± 0.52%
Q:Depth, G: RGB 12.48% ± 1.01% 38.51% ± 1.51% 56.77% ± 0.85% 14.19% ± 1.37%
Q: RGB, G: RGB 77.27% ± 4.11% 94.92% ± 1.75% 97.62% ± 0.71% 79.00% ± 4.03%
Q: Depth, G: Depth 38.52% ± 4.95% 69.23% ± 6.31% 82.19% ± 4.68% 38.34% ± 5.38%

Table 6: One-stream network, RobotPKU: Performance in test set. All
possibilities for populating Query (Q) and Gallery (G) are reported.

are presented. The corresponding images from the original modalities were shown in
figure 21.
Similar to the BIWI dataset the activation in the RGB modality is highly different to the
one found in the single-modal network in figure 34. For the RGB modality, less influence
of the salient regions, like head and feet are visible as it was the case in the single-modal
network. The activation is much more cluttered and less easy to interpret. On the other
hand, the activations in the depth modality (image (b) and (d)) are not much differing
from the ones found in the single-modal network. Therefore, it can be concluded, that
the features extracted from the RGB modality are capturing more of the general shape
of the person than before. The fact, that almost no performance loss was found in the
single-modal task for RGB, shows that an extraction of more shape-based features is not
destructive for performance in the single-modal network.
Also for the one-stream network for the RobotPKU dataset some visualization can

(a) Frontal image,
RGB

(b) Frontal
image, Depth

(c) Dorsal image,
RGB

(d) Dorsal image,
RGB

Figure 30: One-stream networks: Gradient images for RobotPKU with
Resnet18 and softmax loss.

be found in the appendix. In figure 49 an exemplary query-gallery result is visualized.
Again, the difficulty of the task gets visible in the image.
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5.2.1.3 SYSU RGB-IR dataset
The results for the SYSU dataset with one-stream network on the test set are reported in
table 7. For the cross-modal task with a one-stream network trained with Resnet18 with
RGB as query and infrared as gallery a mAP of 9.75% and with infrared as query and
RGB as gallery a mAP of 12.64% is obtained. Again the one-stream network profits from
a deeper network architecture and with Resnet50 a mAP for RGB as query and infrared
as gallery of 14.19% and for depth as query and infrared as gallery of 18.98% is obtained.

Architect. Datas. Loss Feature
Extractor

Inference
modality R1 R5 R10 mAP

One-stream
network SYSU Softmax

Resnet18

Q:RGB, G: Infrared 9.64% 26.69% 37.71% 9.75%
Q:Infrared, G: RGB 12.11% 31.99% 44.45% 12.64%
Q: RGB, G: RGB 62.57% 83.16% 88.49% 63.10%
Q: Infrared, G: Infrared 51.13% 77.84% 85.96% 52.47%

Resnet50

Q:RGB, G: Infrared 13.57% 36.39% 50.00% 14.19%
Q:Infrared, G: RGB 18.40% 43.76% 58.04% 18.98%
Q: RGB, G: RGB 73.25% 90.56% 94.44% 74.84%
Q: Infrared, G: Infrared 61.62% 86.56% 93.57% 63.33%

Table 7: One-stream network, SYSU: Performance in test set. All
possibilities for populating Query (Q) and Gallery (G) are reported.

For the single-modal task Resnet18 obtains a mAP of 63.10% for RGB and 52.47%
for infrared. For the same architecture the single-modal network obtained a mAP of
68.38% for RGB and 63.24% for infrared. Therefore, for RGB a slight deterioration
of about 5% and a more significant deterioration for infrared of around 11% is found.
For the single-modal task with the one-stream network in Resnet50 mAPs of 74.84% for
RGB and 63.33% for infrared images are obtained. Again this corresponds to a slight
deterioration to the performance in the single-modal networks with 76.09% and 69.91%.

For the SYSU dataset no visualization of the activating regions in the images are
made. The reason for this is that the dataset is only used as a test for the generalization
of the techniques. The main focus of this work is on re-identification between RGB and
depth and, hence, the BIWI and the RobotPKU datasets. Exemplary visualization of
query-gallery set results for the cross-modal task with RGB as query can be found in the
appendix in figure 41.

5.2.1.4 Discussion
After the evaluation of the results for the one-stream neural networks on the relevant
datasets, several findings can be summarized and the advantages and disadvantages of
the methods can be discussed.

Firstly, it is apparent, that the method is very powerful in terms of sensing in
the single-modal tasks. For all datasets the results were only slightly deteriorated in
comparison to the the results from the networks which were optimized solely in a single
modality. This shows, that an one-stream architecture is inherently capable of handling a
mixed input of two different modalities.

Nevertheless, for one-stream networks the results in cross-modal sensing were highly
inferior to the performance in the single-modal task. For the BIWI dataset the best mAP
of 23.75% was reached in sensing with depth as query and RGB as gallery, which is 35%
lower than for sensing in the more difficult single-modal task which is in this case the
depth modality. For the RobotPKU dataset, the best mAP was achieved for sensing with
depth as query and RGB as gallery with an mAP of 14.2%. This is around 20% lower
than the performance in the more difficult single-modal task, which is again depth. In
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SYSU the best mAP was reached for sensing with infrared as query and RGB as gallery
with 18.98%. This is around 45% percent lower than sensing in the individual modalities
with the same network.

Analyzing these results it can be concluded, that the one-stream network is not optimal
for cross-modal sensing. Most probable, a reason for that is, that in the optimization no
explicit constraint for the cross-modal tasks is existing. A potential reason for this could
be the optimization with a softmax loss. As described in 2.2.2.2, there is no guarantee
for a successful generalization for zero-shot learning as the loss does not include a direct
optimization of the embeddings.

Nevertheless, the gradient images from re-identification between depth and RGB
suggested, that the activations of depth and RGB images are much closer together than for
networks trained separately in these modalities. Nevertheless, still noticeable differences
between the modalities are apparent.

5.2.2 Zero-padding neural network
The zero-padding network was presented in section 3.2. The network architecture
contains guidance on modality1-specific, modality2-specific and shared nodes and, hence,
is considered a kind of two-stream neural network. The idea for the zero-padding network
was introduced by Wu et al. [83].

The implementation in this work is slightly differing to the one presented by Wu et
al. First, the architecture will be Resnet18 and Resnet50 instead of Resnet6 used by the
authors to enable a comparability to the other methods presented in this work. Second,
instead of having a two-channel input with one channel allocated to a specific modality,
a three-channel input was retained. In this case, one channel was always zero-padded,
while the other two channels were allocated to the two modalities. The reason for this
procedure is, that for three input channels well initialized models exist and, therefore,
less pitfalls in retraining the models are apparent. The general idea of the zero-padding
networks with domain-specific and shared nodes is not limited by this implementation.

5.2.2.1 BIWI
The results of the zero-padding network architecture for the BIWI dataset are displayed
in table 8.

The results for the cross-modal task are very low. For Resnet18 an average mAP of
5.65% and 6.52% for the two tasks are obtained. For Resnet50 the average mAP is at
5.02% and 7.60% for a switching gallery and query set. These values are significantly
lower than the results which were obtained for the cross-modal task for the one-stream
network (section 5.2.1).

Architect. Datas. Loss Feature
Extractor

Inference
modality R1 R5 R10 mAP

Zero-padding
network BIWI Softmax

Resnet18

Q:RGB, G: Depth 4.77% ± 0.71% 20.75% ± 3.08% 39.26% ± 7.78% 5.65% ± 0.71%
Q:Depth, G: RGB 3.21% ± 0.42% 16.53% ± 2.34% 32.57% ± 4.12% 6.52% ± 0.61%
Q:RGB, G: RGB 76.75% ± 4.61% 95.89% ± 1.20% 99.07% ± 0.29% 79.18% ± 4.47%
Q:Depth, G: Depth 26.42% ± 4.63% 54.31% ± 5.18% 71.33% ± 2.17% 25.96% ± 4.54%

Resnet50

Q:RGB, G: Depth 3.89% ± 0.34% 16.21% ± 1.83% 31.60% ± 2.92% 5.02% ± 0.40%
Q:Depth, G: RGB 5.00% ± 1.74% 19.88% ± 2.26% 34.01% ± 1.19% 7.60% ± 1.47%
Q:RGB, G: RGB 81.46% ± 3.06% 97.31% ± 0.79% 99.00% ± 0.49% 83.73% ± 2.84%
Q:Depth, G: Depth 30.14% ± 0.15% 58.93% ± 1.16% 76.36% ± 2.59% 30.30% ± 0.24%

Table 8: Zero-padding network, BIWI: Performance in test set. All
possibilities for populating Query (Q) and Gallery (G) are reported.
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For the single-modal tasks the average mAP for Resnet18 is at 79.18% for RGB
and 25.96% for depth. Within the single-modal networks these values were at 94.46%
and 58.38%. Therefore, a noticeable performance difference is sensible. For Resnet50 a
similar effect is visible. For sensing in the single-modal task in RGB the average mAP is
deteriorated from 95.68% to 83.73% and for sensing in the single-modal task in depth it is
deteriorated from 61.44% to 30.30%. Especially for the depth modality the differences are
quite significant, but also a visible deterioration for the RGB modality took place. Most
probably, the performance reduction can be explained with the fact, that the modalities
are compressed into one channel instead of being introduced as three channels. As a
matter of fact, the performance in the single-modal tasks decreases significantly. This
effect is further enhanced for the cross-modal tasks where a very low performance is
achieved.

5.2.2.2 RobotPKU
The results of the zero-padding network for the RobotPKU dataset can be seen in table
9. Again very low average mAPs in comparison to the one-stream networks are obtained.
For Resnet18 the average mAP for the two cross-modal tasks lies at 4.76% and 4.98%.
For Resnet50 the performance is even further deteriorated with 3.64% and 4.84%. These
values lie very close to random guessing. Hence, it can be assumed that the zero-padding
network in this architecture is not applicable for cross-modal sensing in the RobotPKU
dataset.

Architect. Datas. Loss Feature
Extractor

Inference
modality R1 R5 R10 mAP

Zero-padding
network RobotPKU Softmax

Resnet18

Q:RGB, G: Depth 4.62% ± 0.66% 19.24% ± 2.47% 34.27% ± 3.25% 4.76% ± 0.47%
Q:Depth, G: RGB 3.54% ± 0.72% 17.07% ± 1.78% 32.28% ± 1.93% 4.98% ± 0.59%
Q:RGB, G: RGB 60.85% ± 0.39% 87.37% ± 0.97% 93.68% ± 0.82% 62.82% ± 0.32%
Q:Depth, G: Depth 20.98% ± 1.31% 39.89% ± 2.17% 53.77% ± 2.19% 19.71% ± 1.40%

Resnet50

Q:RGB, G: Depth 3.42% ± 1.01% 15.18% ± 3.28% 29.25% ± 4.57% 3.64% ± 0.77%
Q:Depth, G: RGB 3.04% ± 2.05% 14.61% ± 4.41% 29.60% ± 5.65% 4.84% ± 1.61%
Q:RGB, G: RGB 57.96% ± 5.83% 84.07% ± 4.27% 91.80% ± 2.14% 59.99% ± 6.24%
Q:Depth, G: Depth 18.67% ± 3.78% 35.83% ± 5.68% 47.88% ± 6.31% 17.60% ± 3.85%

Table 9: Zero-padding network, RobotPKU: Performance in test
set. All possibilities for populating Query (Q) and Gallery (G) are
reported.

Also in the single-modal tasks again a deterioration took place. The average mAP for
Resnet18 for sensing in pure RGB is at 62.82%, while in the single-modal networks an
average mAP of 86.86% was achieved. For pure depth the deterioration was from 38.65
to 19.71%. For Resnet50 both performance measures within the zero-padding network
were even lower than for Resnet18, even though in the single-modal networks a higher
performance was achieved with Resnet50.

5.2.2.3 SYSU-IR
The results of the zero-padding network in the SYSU-IR dataset are provided in table 10.
Again comparably low mAPs in the cross-modal tasks are achieved. In the single-modal
tasks the measures are significantly inferior to the results in the single-modal networks.
The deterioration for RGB is at around 30% for Resnet18 and Resnet50. For depth
a loss of 10% and 30% can be observed for Resnet18 and Resnet50, respectively. For
cross-modal sensing the best results are obtained for Resnet50 with a mAP of 9.63% for
RGB images as query and infrared images as gallery and 8.66% for the reverse.
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Architect. Datas. Loss Feature
Extractor

Inference
modality R1 R5 R10 mAP

Zero-padding
network SYSU Softmax

Resnet18

Q:RGB, G: Depth 8.7% 28.2% 42.7% 8.8%
Q:Depth, G: RGB 8.4% 25.2% 38.7% 8.5%
Q:RGB, G: RGB 50.3% 79.1% 88.0% 28.3%
Q:Depth, G: Depth 28.8% 51.1% 64.9% 28.3%

Resnet50

Q:RGB, G: Depth 10.17% 30.02% 45.16% 9.63%
Q:Depth, G: RGB 8.83% 26.23% 39.3% 8.66%
Q:RGB, G: RGB 55.3% 83.32% 91.09& 48.75%
Q:Depth, G: Depth 22.53% 47.64% 61.36% 12.93%

Table 10: Zero-padding network, SYSU: Performance in test set. All
possibilities for populating Query (Q) and Gallery (G) are reported.

5.2.2.4 Discussion
It was shown, that the results for the zero-padding algorithm were generally inferior in all
dimensions in comparison to the results with the one-stream network. This contradicts
the findings of Wu et al. [83]. The reason for the bad performance can most likely
be found in the architecture of the zero-padding network. Here, only one channel per
modality is available. Therefore, the information in RGB is reduced and also for depth
the network has less parameters to extract meaningful features. The most probable
explanation for the different findings to Wu et al. [83] can be found in the different
network architecture. Resnet18 and Resnet50 architecture are deeper models than the
Resnet6 architecture used in [83]. Therefore, the differentiation in modality-specific and
modality-shared nodes in zero-padding did not add learning capabilities to the network
architecture.

5.2.3 Cross-modal distillation network
The cross-modal distillation network is considered the main contribution of this work.
The architecture and training procedure for this network was presented in section 3.3.
The cross-modal distillation network is trained in a two-step procedure. The first step
is an optimization in single-modalities. The results for this step were shown in section
5.1. In step II of the method the knowledge obtained in step I is transferred to the
corresponding second modality by hands of a cross-distillation step.

In the following for the cross-modal distillation method all possible combination for
the knowledge transfer will be investigated. Therefore, at maximum eight models have to
be investigated for each of datasets. On the highest level this is the transfer from RGB
to depth and the transfer from depth to RGB. In each of these, Resnet18 and Resnet50
both trained with softmax loss and triplet loss in the baseline have to be analyzed.

Afterwards, a view on the influence of the choice of the embedding layer will be made
for the most successful methods.

5.2.3.1 BIWI RGBD-ID
In table 11 the results for the cross-modal distillation networks with baseline networks
trained with softmax loss are shown. As the networks are based on the single-modal
networks presented in chapter 5.1 the performance in one of the two single-modal tasks
is always identical to the results from the baseline network. Hence, in table 11 in (a) and
(b) the depth modality has the same performance as in table 2 and for (c) and (d) the
RGB modality has the same performance as in table 2 for the corresponding baseline
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network. Taking a detailed look at the table several interesting findings can be named.

Datas.
Basel.
Loss
(St. I)

Distil.
Loss
(St. II)

Transfer
Direction FE Inference

modality R1 R5 R10 mAP

BIWI Softmax MSE

Depth to
RGB

(a) R18

Q:RGB, G: D 21.93% ± 1.93% 57.70% ± 2.59% 78.85% ± 1.87% 22.29% ± 2.15%
Q:D, G: RGB 27.72% ± 2.14% 65.35% ± 1.52% 81.63% ± 1.28% 27.95% ± 2.91%
Q:RGB, G:RGB 59.78% ± 2.55% 89.06% ± 1.32% 97.62% ± 0.67% 62.68% ± 2.57%
Q:D, G:D 55.07% ± 0.51% 89.46% ± 0.90% 98.17% ± 0.28% 56.30% ± 0.59%

(b) R50

Q:RGB, G: D 26.70% ± 5.16% 66.73% ± 4.31% 85.40% ± 2.81% 27.13% ± 4.94%
Q:D, G: RGB 29.78% ± 4.14% 70.43% ± 2.29% 89.05% ± 1.36% 30.94% ± 3.72%
Q:RGB, D:RGB 61.78% ± 2.11% 87.29% ± 0.56% 96.19% ± 0.14% 63.88% ± 2.02%
Q:D, G:D 59.54% ± 0.51% 90.41% ± 0.17% 97.88% ± 0.12% 60.99% ± 0.81%

RGB to
Depth

(c) R18

Q:RGB, G: D 5.25% ± 1.28% 19.93% ± 0.20% 35.19% ± 1.97% 6.09% ± 0.91%
Q:D, G: RGB 6.55% ± 0.81% 29.13% ± 2.80% 51.58% ± 4.66% 11.56% ± 0.55%
Q:RGB, D:RGB 94.88% ± 0.94% 99.80% ± 0.07% 99.98% ± 0.02% 95.87% ± 0.59%
Q:D, G:D 34.59% ± 3.54% 65.06% ± 5.79% 82.65% ± 5.34% 34.53% ± 3.89%

(d) R50

Q:RGB, G: D 6.40% ± 0.90% 24.57% ± 3.41% 42.38% ± 4.90% 6.91% ± 0.72%
Q:D, G: RGB 7.78% ± 1.34% 30.04% ± 4.53% 49.86% ± 4.76% 11.90% ± 1.50%
Q: RGB, D: RGB 93.60% ± 0.77% 99.71% ± 0.19% 99.96% ± 0.03% 94.79% ± 0.77%
Q:D, G:D 33.11% ± 2.45% 64.54% ± 3.93% 81.80% ± 3.34% 32.87% ± 2.53%

Table 11: BIWI: Results for cross-modal distillation networks, Baseline
loss (Step I) is Softmax loss and distillation loss (Step II) is MSE.
Variations in Transfer direction, Feature extractor (FE) between
Resnet18 (R18) and Resnet50 (R50). Reported are all possibilities to
populate Query (Q) and Gallery (G) with RGB and depth (D)

Data.
Basel.
Loss
(St. I)

Distil.
Loss
(St. II)

Transfer
Direction FE Inference

modality R1 R5 R10 mAP

BIWI Triplet MSE

Depth to
RGB

(c) R18

Q:RGB, G: D 25.54% ± 2.10% 70.20% ± 3.48% 93.07% 1.81% 27.92% ± 1.74%
Q:D, G: RGB 26.47% ± 3.12% 71.86% ± 2.14% 93.98% ± 1.31% 28.13% ± 3.07%
Q:RGB, G:RGB 57.27% ± 2.42% 87.72% ± 1.90% 97.21% ± 0.88% 59.21% ± 2.68%
Q:D, G:D 61.24% ± 2.55% 94.12% ± 0.77% 99.47% ± 0.17% 62.69% ± 2.72%

(d) R50

Q:RGB, G: D 22.35% ± 4.16% 63.17% ± 6.82% 87.78% ± 5.03% 24.52% ± 3.66%
Q:D, G: RGB 23.71% ± 4.40% 65.72% ± 6.17% 89.99% ± 4.37% 25.53% ± 3.89%
Q:RGB, G:RGB 46.27% ± 4.08% 79.23% ± 3.66% 93.01% ± 2.34% 47.71% ± 4.25%
Q:D, G:D 54.97% ± 1.08% 91.35% ± 0.57% 99.10% ± 0.16% 55.99% ± 1.15%

RGB to
Depth

(e) R18

Q:RGB, G: D 7.97% ± 0.58% 33.08% ± 2.11% 58.86% ± 4.75% 8.94% ± 0.55%
Q:D, G: RGB 7.56% ± 1.35% 33.93% ± 2.55% 57.14% ± 2.68% 13.07% ± 1.03%
Q:RGB, G:RGB 93.47% ± 1.67% 99.74% ± 0.21% 99.99% ± 0.01% 94.50% ± 1.35%
Q:D, G:D 26.84% ± 2.27% 64.10% ± 2.81% 84.09% ± 2.61% 25.36% ± 2.74%

(f) R50

Q:RGB, G: D 6.63% ± 0.95% 29.74% ± 1.51% 54.66% ± 2.77% 7.95% ± 0.78%
Q:D, G: RGB 7.43% ± 1.79% 30.96% ± 3.12% 55.28% ± 3.45% 12.86% ± 1.61%
Q:RGB, G:RGB 92.12% ± 1.86% 99.61% ± 0.31% 99.93% ± 0.12% 93.50% ± 1.53%
Q:D, G:D 25.92% ± 2.12% 63.03% ± 2.65% 83.63% ± 2.50% 24.51% ± 2.10%

Table 12: BIWI: Results for cross-modal distillation networks, Baseline
loss (Step I) is Triplet loss and distillation loss (Step II) is MSE.
Variations in Transfer direction, Feature extractor (FE) between
Resnet18 (R18) and Resnet50 (R50). All possibilities to populate
Query (Q) and Gallery (G) with RGB and depth (D) are reported.

First, the performance in the cross-modal task is significantly better, when the
knowledge is transferred from a network optimized within the depth modality to the RGB
modality ((a) and (b) in table 11) than for a network optimized within the RGB modality
and transferred to the depth modality ((c) in table 11). The performance difference in
average mAP is bigger than 18% for Resnet50, which is very significant. For the transfer
the usage of Resnet50 pushed the performance in comparison to the usage of Resnet18.

A second very interesting finding is that the performance in the modality the knowledge
was transferred to can be better than the performance in the originally trained modality.
For example, in (a) and (b) in table 11 the average mAP in RGB is at 62.7% and 63.88%
for Resnet18 and Resnet50, while the performance in the starting networks for depth
were at 56% and 61%. This effect was not observed in (c) and (d) where the transfer
took place from RGB to depth. This finding indicates that the cross-distillation step
generalizes well for the transfer from depth to RGB.
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In table 12 the same evaluations are shown for the cross-modal distillation networks
where the baseline was trained with triplet loss. In this table, similar observations can be
made. Again, the transfer from depth to RGB is much more successful than the transfer
from RGB to depth by bigger than 15% for the best performing model. For the transfer
of baseline networks trained with triplet loss a deeper network (Resnet50) did not bring
better results than the shallower Resnet18 architectures.

Figure 31: Overview over mAP performance for BIWI dataset with cross-distillation
network. Only cross-modal tasks are reported.

Comparing table 11 and 12 it gets visible, that baseline models trained with triplet
loss and with softmax loss, were both best performing in the cross-modal task when the
knowledge was transferred from depth to RGB. A better visualization of the average
mAPs of all transfer combinations can be seen in figure 31. For Resnet18 architectures
the better result was obtained with a network trained with triplet loss. For Resnet50 a
baseline model trained with Resnet50 was more suitable and this model was the overall
best model.

In figure 32 the gradient visualization maps for the cross-distillation network from
depth to RGB is shown. Following the architecture for the cross-distillation network,
image (b) and (d) for the depth modality are the same as in figure 27 for the single-modal
network. Comparing images (a) and (b) and images (c) and (d) it gets visible, that the
cross-modal distillation was very successful. The gradient images from depth and from
RGB are almost not differentiable. For all images, the activations are mainly based on
the torso region, accompanied by the structure of the arms and upper legs. The results of
the gradient images accompanied by the very good performance in the cross-modal task
suggest, that the cross-distillation network was successfully deployed for the cross-modal
tasks in the BIWI dataset.

Further visualizations for the cross-distillation network can be found in the appendix.
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(a) Frontal image,
RGB

(b) Frontal
image, Depth

(c) Dorsal image,
RGB

(d) Dorsal image,
RGB

Figure 32: Cross-distillation networks: Gradient images for BIWI for
Resnet18 and softmax loss baseline.

In figure 46 exemplary query-gallery images are shown.

5.2.3.2 RobotPKU
In the previous chapter several interesting findings for the cross-distillation network on
the BIWI RGBD-ID dataset were made. In this chapter the results for the same tests for
the RobotPKU dataset will be shown. This gives insights into the generalization of the
findings from the BIWI dataset.

In tables 13 and 14 the performance for the cross-distillation network with softmax
and triplet loss are shown. Again the performance in the baseline models is according
to the performance in the models trained in section 5.1. This means, that for models
(a) and (b) the performance in the single-modal task in depth is the same as for the
single-modal task, while for (c), (d), (e), and (f) the performance in RGB is the same as
in the single-modal task.

Dataset
Basel.
Loss
(St. I)

Distil.
Loss
(St. II)

Transfer
Direction FE Inference

modality R1 R5 R10 mAP

RobotPKU Softmax MSE

Depth to RGB

(a) R18

Q:RGB, G: D 10.05% ± 2.03% 33.52% ± 5.42% 51.35% ± 5.96% 9.63% ± 1.63%
Q:D, G: RGB 14.61% ± 2.43% 44.17% ± 5.70% 62.98% ± 5.77% 14.25% ± 2.51%
Q:RGB, D:RGB 39.93% ± 5.07% 65.09% ± 6.68% 77.03% ± 6.19% 40.04% ± 5.50%
Q:D, G:D 39.11% ± 0.72% 70.49% ± 0.43% 83.24% ± 0.20% 38.91% ± 0.84%

(b) R50

Q:RGB, G: D 18.36% ± 1.96% 49.85% ± 3.63% 68.53% ± 3.38% 17.38% ± 1.95%
Q:D, G: RGB 18.82% ± 0.37% 51.76% ± 1.45% 70.55% ± 1.05% 17.90% ± 0.41%
Q:RGB, G:RGB 43.59% ± 1.33% 72.29% ± 0.50% 84.26% ± 0.59% 43.76% ± 1.44%
Q:D, G:D 45.31% ± 0.53% 76.19% ± 0.66% 87.68% ± 0.57% 45.27% ± 0.36%

RGB to Depth

(c) R18

Q:RGB, G: D 5.25% ± 1.28% 19.93% ± 0.20% 35.19% ± 1.97% 6.09% ± 0.91%
Q:D, G: RGB 6.55% ± 0.81% 29.13% ± 2.80% 51.58% ± 4.66% 11.56% ± 0.55%
Q:RGB, G:RGB 83.67% ± 0.44% 97.93% ± 0.32% 99.15% ± 0.08% 86.03% ± 0.44%
Q:D, G:RGB 23.68% ± 1.35% 44.73% ± 2.73% 58.78% ± 3.40% 22.39% ± 1.59%

(d) R50

Q:RGB, G: D 4.22% ± 1.78% 19.05% ± 5.37% 33.93% ± 6.34% 6.69% ± 1.92%
Q:D, G: RGB 4.79% ± 1.37% 18.59% ± 2.96% 33.50% ± 4.29% 4.88% ± 1.04%
Q:RGB, D:RGB 84.25% ± 0.18% 97.67% ± 0.43% 98.94% ± 0.15% 86.70% ± 0.29%
Q:D, G:D 17.65% ± 2.10% 35.92% ± 4.86% 49.58% ± 6.14% 16.49% ± 2.21%

Table 13: RobotPKU: Results for cross-modal distillation networks,
Baseline loss (Step I) is softmax loss and distillation loss (Step II) is
MSE. Variations in Transfer direction, Feature extractor (FE) between
Resnet18 (R18) and Resnet50 (R50). All possibilities to populate
Query (Q) and Gallery (G) with RGB and depth (D) are reported.

In table 13 it gets visible, that again a transfer from depth to RGB (models (a) and
(b)) was significantly more successful, than the other way round. The best results from
Depth to RGB was achieved with Resnet50 and led to mAPs of 17.4% and 17.9%. This
is more than 10% superior to the best transfor from RGB to depth. Nevertheless, the
performance of all models in the cross-modal task with a best mAP of 17.9% is much
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Dataset
Basel.
Loss
(St. I)

Distil.
Loss
(St. II)

Transfer
Direction FE Inference

modality R1 R5 R10 mAP

RobotPKU Triplet MSE RGB to Depth

(e) Resnet18

Q:RGB, G: D 6.09% ± 1.91% 24.10% ± 5.83% 41.70% ± 7.26% 6.26% ± 1.56%
Q:D, G: RGB 6.89% ± 2.32% 24.92% ± 5.63% 41.90% ± 6.43% 10.38% ± 2.23%
Q:RGB, G:RGB 90.51% ± 0.97% 99.38% ± 0.19% 99.56% ± 0.13% 91.85% ± 1.00%
Q:D, G:D 19.30% ± 1.96% 47.54% ± 3.74% 66.16% ± 3.89% 17.34% ± 1.93%

(f) Resnet50

Q:RGB, G: D 5.71% ± 0.78% 22.75% ± 1.30% 39.04% ± 1.90% 9.36% ± 0.74%
Q:D, G: RGB 5.35% ± 0.92% 21.52% ± 2.16% 38.30% ± 3.13% 5.73% ± 0.91%
Q:RGB, G:RGB 88.92% ± 3.66% 99.16% ± 0.13% 99.46% ± 0.08% 90.59% ± 3.28%
Q:D, G:D 16.94% ± 1.03% 42.75% ± 3.20% 61.32% ± 4.08% 14.89% ± 1.00%

Table 14: RobotPKU: Results for cross-modal distillation networks,
Baseline loss (Step I) is Triplet loss and distillation loss (Step II) is
MSE. Variations in Transfer direction, Feature extractor (FE) between
Resnet18 (R18) and Resnet50 (R50). All possibilities to populate
Query (Q) and Gallery (G) with RGB and depth (D) are reported.

Figure 33: Overview over mAP performance for RobotPKU dataset with cross-
distillation network.

lower in comparison to the performances which were found for the BIWI dataset. This
shows the higher complexity of the task. For the transfers based on softmax the deeper
Resnet50 network brought better results than the shallower Resnet18.

As described in chapter 5.1 it was not possible to successfully train models based on
triplet loss for the depth modality. Therefore, in table 14 only networks for the transfer
from RGB to depth are shown. It gets visible, that the average mAP reached by these
models is significantly lower than the accuracies for the best models from softmax.

When comparing the cross-distillation steps based on triplet and softmax loss it gets
visible, that the models based on softmax obtain the higher accuracies in the cross-
modal tasks overall. Nevertheless, the triplet models are more successful to transfer the
knowledge from RGB to depth than the corresponding models trained with softmax loss.

In figure 33 a visually faster to grasp overview over the average mAPs of the models
is shown.

In figure 34 the obtained activation maps from softmax trained Resnet18 cross-modal
distillation network are shown. Comparing the results to the gradients of the one-stream
network (figure 30) it gets visible that very similar results are obtained. Again, the
gradient images are closer to each other than for the single-modal networks (see figure
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34), but they are not activated by exactly the same parts for depth and RGB. Therefore,
the cross-modal distillation was successful, but not as impressing as for the BIWI dataset.

(a) Frontal image,
RGB

(b) Frontal
image, Depth

(c) Dorsal image,
RGB

(d) Dorsal image,
RGB

Figure 34: Cross-distillation networks: Gradient images for RobotPKU
with a baseline trained with Resnet18 and softmax loss.

Further visualizations for the RobotPKU cross-distillation network can be found in
the appendix. In figure 50 a query-gallery result is shown.

5.2.3.3 SYSU-IR
For the SYSU IR dataset no coupled images are available. Therefore, to train the
cross-modal distillation network instead of taking the embedding of the coupled image as
groundtruth, the average over all images of one person instance was taken.

Dataset
Basel.
Loss
(Step I)

Distil.
Loss
(Step II)

Transfer
Direction FE Inference

modality R1 R5 R10 mAP

SYSU Softmax MSE

Infrared to RGB

(a) R18

Q:RGB, G:I 7.52% 22.52% 34.53% 8.49%
Q:I , G: RGB 5.48% 18.09% 28.54% 4.75%
Q:RGB, G:RGB 13.78% 33.01% 44.73% 9.38%
Q:I, G:I 61.76% 86.84% 93.11% 63.60%

(b) R50

Q:RGB, G:I 9.78% 27.80% 40.13% 10.87%
Q:I , G:RGB 8.58% 26.00% 38.58% 7.67%
Q:RGB, G:RGB 20.25% 43.02% 55.25% 14.68%
Q:I, G:I 67.50% 90.73% 96.10% 69.44%

RGB to Infrared

(c) R18

Q:RGB, G:I 4.14% 12.89% 20.84% 3.96%
Q:I , G: RGB 4.96% 17.37% 27.43% 5.76%
Q:RGB, I:RGB 67.28% 87.40% 92.07% 68.38%
Q:I, G:I 15.31% 29.46% 38.32% 14.05%

(d) R50

Q:RGB, G:I 3.85% 12.72% 21.15% 3.46%
Q:I , G: RGB 2.96% 12.23% 20.60% 4.06%
G:RGB, Q:RGB 75.06 91.35 94.76 76.09
Q:I, G:I 13.16% 26.04% 34.81% 12.19%

Table 15: SYSU: Results for cross-modal distillation networks, Base-
line loss (Step I) is softmax loss and distillation loss (Step II) is MSE.
Variations in Transfer direction, Feature extractor (FE) between
Resnet18 (R18) and Resnet50 (R50). All possibilities to populate
Query (Q) and Gallery (G) with RGB and Infrared (I) are reported

In table 15 and 16 the results for the cross-modal distillation method for the SYSU-IR
datasets are shown.

Again transfers from RGB to infrared images and from infrared to RGB images were
conducted. In chapter 5.1.3 it was shown, that sensing in the single modality of infrared
was more difficult than sensing in the RGB modality for the dataset. In table 15 and 16
it gets visible, that the transfer from infrared to RGB worked better than the transfer
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Dataset
Baseline
Loss
(St. I)

Distil.
Loss
(St. II)

Transfer
Direction FE Inference

modality R1 R5 R10 mAP

SYSU Triplet MSE

Infrared to RGB (a) R18

Q:RGB, G:I 9.73% 30.08% 45.51% 9.74%
Q:I, G: RGB 9.49% 31.43% 48.22% 11.51%
Q:RGB, G:RGB 13.99% 38.82% 55.54% 10.10%
Q:I, G:I 61.06% 88.34% 94.26% 62.66%

RGB to Infrared (c) R18

Q:RGB, G:I 9.06% 27.81% 42.77% 9.31%
Q:I, G: RGB 8.36% 28.68% 42.80% 10.34%
Q:RGB, G:RGB 74.00% 93.98% 97.52% 74.85%
Q:I, G:I 21.89% 47.13% 61.62% 21.38%

Table 16: SYSU: Results for cross-modal distillation networks, Base-
line loss (Step I) is Triplet loss and distillation loss (Step II) is MSE.
Variations in Transfer direction, Feature extractor (FE) between
Resnet18 (R18) and Resnet50 (R50). All possibilities to populate
Query (Q) and Gallery (G) with RGB and infrared (I) are reported.

from RGB to infrared. The best model for the cross-modal task were found within the
baseline networks trained with the triplet loss.

Although the transfer from infrared to RGB worked better than the transfer from
RGB to infrared, the overall transfer did not work well for both directions. This gets
visible in the fact, that the single-modal performance in the transferred modality is very
low for all cases. For example for the best performing model with softmax loss, which is
Resnet50 trained from infrared to RGB has a mAP of 69.44% for the infrared modality
and only a mAP of 14.68% for the RGB modality.

Several reasons for the bad performance of the cross-modal distillation network within
the SYSU dataset can be found. First, no coupled images are available and, hence, one
of the intrinsic ideas of the cross-modal distillation technique can not be applied. Second,
the method with its distillation idea was designed for the transfer between depth and
RGB. A finding is, that the asymmetrical relationship between depth and RGB is much
different to the asymmetrical relationship between infrared images and RGB images.

A visualization of the query-gallery results of this network can be seen in the appendix
in figure 42.

5.2.3.4 The embedding layer
Until now, in this work an embedding layer of size 128 was fixed for all analyses. This
parameter was fixed to have a fair comparison between softmax and triplet loss. The
size 128 was suggested in [45]. In fact, in most related literature the choice of this
hyperparameter was not justified with experiments. To get better insights into a suitable
embedding size we conducted experiments on the embedding size for the most successful
models from the previous chapters. For BIWI these are the baseline models trained
with Resnet50 and softmax loss as well as Resnet18 trained with triplet loss. For the
RobotPKU a Resnet50 with softmax loss was re-evaluated. As explained in section 2.2 for
softmax loss it is possible to take two different layers as the embedding. The penultimate
layer (as described in equation (2)) can be varied in size and we chose to evaluate the
embedding sizes 32, 128, 256, 512, 1024 and 2048. Additionally the classification layer
before the softmax function (equation (3)) with size C of the classes will be evaluated.

In figure 35 the results for the BIWI dataset with a Resnet50 with softmax loss
are shown with the varying embedding size. It gets visible, that the best cross-modal
performance for the BIWI dataset is achieved with the classification layer embedding
with size C. The next best model for the cross-modal tasks is the preliminary layer with
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Figure 35: Analysis of influence of embedding layer and embedding size on the per-
formance of the cross-modal distillation network with Resnet50 and softmax loss on
the BIWI dataset. Transfer from depth to RGB. Reported are RGB as query and
depth as gallery (left), depth as query and RGB as gallery (middle) and single-modal
performance in depth (right).

an embedding size of 512. It gets visible, that the performance of the penultimate layer
is highly influenced by the size of the embedding. A clear maximum can be seen at a
512 feature embedding. Interestingly, for the single-modal task in depth the penultimate
layer embeddings mostly outperformed the classification layer. Here, a bigger embedding
size led to a slowly converging performance increase. Nevertheless, the classification
layer was best suited for the cross-modal distillation task. The average mAP for the
classification layer in the cross-modal tasks was 35.90%/38.31% for varying query and
gallery population.

Figure 36: Analysis of influence of embedding size on the performance of the cross-modal
distillation network with Resnet18 and triplet loss on the BIWI dataset. Transfer from
depth to RGB. Reported are RGB as query and depth as gallery, depth as query and
RGB as gallery, and single-modal performance in depth in the same chart

The results for a varying embedding size for the triplet loss are shown in figure 36.
Here only one definition of the embedding layer is existent and, hence, all statistics are
shown in one figure. It gets visible, that the varying size of the embedding layer has
very minor influence of the performance of the triplet loss based cross-modal distillation
network. With a best cross-modal performance of 27.22%/30.42% the triplet loss based
model is inferior to the softmax based model.

The results for a varying embedding size for RobotPKU can be seen in figure 37. Again
the evaluation was made by hands of a Resnet50 with softmax loss. The classification
layer embedding outperforms most of the embeddings from the penultimate layer within
the cross-modal tasks. Nevertheless, in the RobotPKU dataset an embedding with size
256 for the penultimate layer gives better performance. Also in the single-modal task in
depth a clear maximum for the embedding size can be seen at 256.
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Figure 37: Analysis of influence of embedding layer and embedding size on the perfor-
mance of the cross-modal distillation network with Resnet50 and softmax loss on the
RobotPKU dataset. Transfer from depth to RGB. Reported are RGB as query and
depth as gallery (left), depth as query and RGB as gallery (middle) and single-modal
performance in depth (right).

5.2.3.5 Discussion
After the inspection of the results in the individual datasets, the cross-distillation method
can be discussed on a higher level. Therefore, it is necessary to revisit several aspects.

First, it is necessary to discuss the effectiveness of the cross-distillation direction.
In the BIWI dataset, the best performance is reached for the transfer from the depth
to the RGB modality. In this case, the performance difference to the other learning
direction about 20 % (tables 11 and 12). For the RobotPKU dataset a similar behavior
was observed. Again the transfer from depth to RGB was more effective than the transfer
from RGB to depth. For the SYSU dataset the results for the correct direction for the
knowledge transfer were not that clear. Still in softmax and triplet loss based cross-
distillation models the transfer from infared to RGB was slightly more successful than
the transfer from RGB to infrared. Considering all these results, a conclusion on the
more effective transfer direction can be made. In all tested datasets the transfer from
the ’weaker’ modality, in terms of performance in the single-modal task (see tables 2, 3
and 7), to the stronger modality was more effective. In all cases, this means that the
transfer from the RGB modality to the other modality was less effective. Two potential
explanations for this behavior can be found. Firstly, the networks trained on RGB
are very dependent on color features. Colors cannot be found in the corresponding
other modalities (either infrared or depth). Therefore, it is not possible to transfer this
knowledge to the corresponding modality. Secondly, most likely, the weaker modality
contains information, which is also apparent in the RGB modality. For the infrared
modality no colors are found but structural features and transitions are the same as in
RGB. Therefore, it can up to a certain degree be considered a subspace of RGB. In depth,
this is even more clear. The depth images are mainly capturing the structural appearance
of a person. To a certain degree these features can be found in the RGB modality as well.
This hypothesis is especially underlined by the findings in figure 32. It was shown, that
it is possible to train a network in RGB which is very similarly activated as a network
trained for the depth modality.

A second interesting point to look at is the performance in the single-modal task in
the retrained modality. For BIWI in the cross-distillation with Resnet50 and softmax
(table 11) the mAP performance in the retrained RGB modality is 63.88% and, therefore,
even higher than the performance in the baseline depth network (60.99%). This shows,
that a very meaningful transfer of knowledge took place. The knowledge transfer enabled,
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that the sensing in the retrained modality can even be better than in the baseline. A
similar result can be found in the RobotPKU dataset (see table 13). In this case for the
baseline model with Resnet18 and softmax loss an average mAP of 40.04% in the RGB
modality and 38.91% for the baseline in depth are achieved. In the SYSU dataset and
several other cross-distillations, the effect was not observed. Nevertheless, the results
are impressing as they clearly show that a knowledge transfer from depth to RGB is
possible. On the other hand, the results also show, that the cross-distillation method does
not seem to be universally applicable in cross-modal tasks as the results in the transfer
from infrared to RGB was not successful and also a transfer from RGB to depth was not
possible.

Additionally, we analyzed the influence of the embedding size on the performance of
the cross-distillation network. It was shown, that the embedding size and embedding
layer can have a significant influence on the performance of the cross-modal distillation
network. For example for the BIWI dataset this difference was about 16% in average
mAP between an embedding with the preliminary layer (2048D) and an embedding from
the classification layer of the size of the training classes of 32 for a query from RGB and
a gallery from depth. For BIWI dataset the best embedding was the classification layer
with the size of the classes. For the RobotPKU dataset the best embedding was the
penultimate layer with an embedding size of 256.
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5.3 Comparison to state-of-the-art methods
After each of the three deep neural network methods was evaluated individually, in
this chapter a overall comparison of the best performing version of the methods on the
different datasets will be made.

To give an outright comparison, additionally to the neural network based models
two conventional feature extractors, WHOS [35] and LOMO [21], were evaluated. Those
feature extractors were used within a direct comparison in Euclidean space as well as
after a metric learning step with XQDA [21].

Table 17: Average accuracy of state-of-the-art and proposed networks
for different scenarios on the BIWI dataset. For results from [5] no
detailed information on the evaluation procedure was given. As the
single-gallery shot is used, this paper reports conservative accuracy
indicators a comparison is still possible.

Approach Query-RGB, Gallery-Depth Query-Depth, Gallery-RGB
R1 (%) R5 ( ) R10 (%) mAP (%) R1 (%) R5 (%) R10 (%) mAP (%)
WHOS, Euclidean[35] 3.2 16.6 31.5 3.7 5.1 18.7 32.6 5.6
WHOS, XQDA[35] 8.4 31.7 50.2 7.9 11.6 34.1 51.4 12.1
LOMO, Euclidean[21] 2.8 16.4 32.5 4.8 3.3 15.6 29.8 5.6
LOMO, XQDA[21] 13.7 43.2 61.7 12.9 16.3 44.8 62.8 15.9
Eigen-depth HOG/SLTP,
CCA [5] 8.4 26.3 41.6 - 6.6 27.6 45.0 -

Eigen-depth HOG/SLTP,
LSSCDL [5] 9.5 27.1 46.1 - 7.4 29.5 50.3 -

Eigen-depth HOG/SLTP,
Corr. Dict. [5] 12.1 28.4 44.5 - 11.3 30.3 48.2 -

Zero-padding network,[83]
Resnet50 5.86 ± 2.18 25.85 ± 6.35 47.13 ± 8.06 7.28 ± 4.03 10.34 ± 2.68 38.91 ± 6.45 62.84 ± 11.48 9.77 ± 3.80

One-stream network,[83]
Resnet50 15.68 ± 0.77 50.29 ± 1.18 75.65 ± 0.46 16.86 ± 0.87 19.82 ± 0.33 55.74 ± 0.83 78.92 ± 1.07 23.75 ± 0.30

Cross-modal distillation network,
Resnet50 (ours), Emb. size 32 (C) 34.87 ± 2.48 75.22 ± 2.42 93.93 ± 1.21 35.90 ± 2.37 36.29 ± 2.25 77.77 ± 2.21 94.44 ± 2.24 38.31 ± 2.18

The results for the BIWI dataset can be seen in figure 17. For this dataset additionally
to the three neural network techniques and the evaluated conventional approaches for
this work, the findings of [5] were included. For the results of [5] no detailed information
on the evaluation procedure was given. As the single-gallery shot is used for the rank
accuracies, this paper reports conservative accuracy indicators and, hence, a comparison
is still possible. A first finding from the table is that the zero-padding network is
performing worse than the conventional methods. For example, the LOMO feature
extractor combined with the XQDA feature learning obtains a mAP of 12.9%. The
zero-padding network is significantly worse with an average mAP of 7.28%. The one-
stream network is outperforming all conventional methods as well as the zero-padding
network with an average mAP of 16.68%. This finding contradicts the finding of Wu et
al. [83], where the zero-padding network was better as the one-stream network. The most
probable explanation for the different results lies in the depth of the network. While Wu
et al. [83] compared a one-stream network with the zero-padding network with a Resnet6,
the used network for both evaluations in this work is Resnet50. Most probable, the higher
capacity in Resnet50 led to the fact, that the zero-padding architecture is not adding
value to the feature extraction anymore, while the one-stream network profits from it.
Comparing the results from the one-stream network to the best performing cross-modal
distillation network a significant difference is apparent. In average mAP the cross-modal
distillation network outperforms the one-stream network by 19%/15% within the two
cross-modal tasks. Therefore, the cross-modal distillation method can be considered the
state-of-the-art model within the BIWI dataset for cross-modal person re-identification.

In table 18 the results for the RobotPKU dataset are shown. Again, similar obser-
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Table 18: Average accuracy of state-of-the-art and proposed architec-
ture for different scenarios on the RobotPKU dataset.

Approach Query-RGB, Gallery-Depth Query-Depth, Gallery-RGB
R1 (%) R5 (%) R10 (%) mAP (%) R1 (%) R5 (%) R10 (%) mAP (%)

WHOS, Euclidean[35] 3.8 16.3 29.5 3.9 3.5 16.1 31.2 5.4
WHOS, XQDA[35] 10.0 31.8 49.8 8.2 9.8 31.0 48.0 9.8
LOMO, Euclidean[21] 3.6 15.0 28.0 3.9 3.7 15.3 28.7 4.9
LOMO, XQDA[21] 12.9 36.4 56.1 10.1 12.3 37.4 56.1 12.3
Zero-padding network,[83]
Resnet50 7.76 ± 0.85 29.04 ± 2.57 47.79 ± 3.34 7.67 ± 0.59 6.57 ± 0.64 26.80 ± 2.14 45.62 ± 2.78 8.31 ± 0.56

One-stream network,[83]
Resnet50 11.92 ± 0.63 38.13 ± 1.01 57.34 ± 2.14 11.42 ± 0.52 12.48 ± 1.01 38.51 ± 1.51 56.77 ± 0.85 14.19 ± 1.37

Cross-modal distillation network,
Resnet50 (ours), Emb. size 256 19.50 ± 0.99 50.11 ± 0.53 67.93 ± 0.69 18.13 ± 1.21 21.51 ± 1.12 54.90 ± 1.40 72.61 ± 0.95 20.52 ± 1.00

vations can be made. The zero-padding network is inferior to conventional methods by
several percentage points. The one-stream network again outperforms the zero-padding
network as well as the conventional algorithms. In this case the difference between the
best conventional model, LOMO with XQDA, and the one-stream network is in average
mAP only 1.3%/1.8%. A significant performance boost is observed for the cross-modal
distillation method. With an average mAP of 18.13%/20.52% it is by far the most efficient
method for the task. It is 6.71%/6.33% superior to the one-stream network.

Table 19: State-of-the-art table for SYSU, including results from this
work

Method
All-search Indoor-search
Single-shot Multi-shot Single-shot Multi-shot
r1 r10 r20 mAP r1 r10 r20 mAP r1 r10 r20 mAP r1 r10 r20 mAP

HOG+Euclidean 2.76 18.25 31.91 4.24 3.82 22.77 37.63 2.16 3.22 24.68 44.52 7.25 4.75 29.06 49.38 3.51
HOG+CRAFT 2.59 17.93 31.50 4.24 3.58 22.90 38.59 2.06 3.03 24.07 42.89 7.07 4.16 27.75 47.16 3.17
HOG+CCA 2.74 18.91 32.51 4.28 3.25 21.82 36.51 2.04 4.38 29.96 50.43 8.70 4.62 34.22 56.28 3.87
HOG+LFDA 2.33 18.58 33.38 4.35 3.82 20.48 35.84 2.20 2.44 24.13 45.50 6.87 3.42 25.27 45.11 3.19
LOMO+CCA 2.42 18.22 32.45 4.19 2.63 19.68 34.82 2.15 4.11 30.60 52.54 8.83 4.86 34.40 57.30 4.47
LOMO+CRAFT 2.34 18.70 32.93 4.22 3.03 21.70 37.05 2.13 3.89 27.55 48.16 8.37 2.45 20.20 38.15 2.69
LOMO+CDFE 3.64 23.18 37.28 4.53 4.70 28.23 43.05 2.28 5.75 34.35 54.90 10.19 7.36 40.38 60.33 5.64
LOMO+LFDA 2.98 21.11 35.36 4.81 3.86 24.01 40.54 2.61 4.81 32.16 52.50 9.56 6.27 36.29 58.11 5.15
Asymmetric FC layer network [83] 9.30 43.26 60.38 10.82 13.06 52.11 69.52 6.68 14.59 57.94 78.68 20.33 20.09 69.37 85.08 13.04
Two-stream network [83] 11.65 47.99 65.50 12.85 16.33 58.35 74.46 8.03 15.60 61.18 81.02 21.49 22.49 72.22 88.61 13.92
One-stream network [83] 12.04 49.68 66.74 13.67 16.26 58.14 75.05 8.59 16.94 63.55 82.10 22.95 22.62 71.74 87.82 15.04
One-stream network (Resnet18/ours) 16.13 56.27 72.17 18.92 19.76 60.38 75.32 13.73 19.65 64.45 79.69 30.30 25.02 70.12 83.24 21.70
Zero-padding network [83] 14.80 54.12 71.33 15.95 19.13 61.40 78.41 10.89 20.58 68.38 85.79 26.92 24.43 75.86 91.32 18.64
BDTR reported [85] 17.01 55.43 71.96 19.66
BDTR (ours, see appendix A) [85] 5.68 31.12 48.14 8.04 7.01 35.4 52.54 4.62 7.84 43.13 65.06 16.3 9.85 48.60 70.07 9.09
Cross-modal distillation network[85] 15.09 58.29 75.80 18.26 18.66 64.44 81.63 12.50 17.82 66.08 85.09 28.57 22.37 72.12 86.7 18.33
cmGAN [86] 26.97 67.51 80.56 27.80 31.49 72.74 85.01 22.27 31.63 77.23 89.18 42.19 37.00 80.94 92.11 32.76

After the evaluation of the two datasets for the cross-modal person re-identification
task in RGB and depth it can be concluded, that the cross-modal distillation method is
the state-of-the-art for the task. Another aspiration of this work is to investigate how
general the methods can be applied for cross-modal person re-identification. Therefore,
also the SYSU dataset which consists of RGB and infrared images was investigated. The
results can be seen in table 19.

When the SYSU dataset was presented in [83], the authors provided code for the
evaluation of the datasets. Although the authors announced that a single-gallery shot
setting will be used, their evaluation procedure is quite specific. The general definition
of single-gallery shot settings is, that one image of each person in the gallery is used.
Instead the authors decided to use one image of each person from each camera for the
single-gallery shot evaluation. Therefore, the results are theoretically better than for
a normal random single-gallery shot setting as it was used in this work. Hence, the
earlier results from this work are brought into the evaluation setting of [83] to make the
methods comparable. The resulting table can be seen in figure 19. Several interesting
findings can be made. Firstly, the one-stream network trained with Resnet18 is superior
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to the one-stream network trained by [83] with Resnet6. On top of that the Resnet18
one-stream network trained in this work is also superior to the zero-padding network
which was reported by [83]. This result underlines the findings for the performance of
the zero-padding network for the BIWI and RobotPKU dataset.

The results for the cross-modal distillation network are inferior to the results of the
one-stream network for the SYSU dataset. Also the cmGAN [86] which was presented
in mid-2018 is significantly outperforming all other reported methods. Hence, it can
be concluded that the cross-modal distillation network is not generally applicable to all
modality combinations for cross-modal person re-identification.
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6 Conclusions
To sum up the findings of this work, in this conclusions section the research questions
which were posed in the introduction (section 1) will be answered in detail. Additionally,
the implications of the results for the intelligent vehicles domain will be discussed and
some future directions for the research on cross-modal re-identification between depth
and RGB will be given.

The first research question was "How and how well can the cross-modal person
re-identification task between RGB and depth be solved?"

To answer this question two person datasets where Kinect depth images as well as
RGB images are available were investigated. While the BIWI dataset [87] consists of
cleanly captured and well aligned images, the RobotPKU dataset [88] is more noisy in
terms of alignment of the images and image quality.

Several techniques were investigated to evaluate the feasibility of cross-modal person
re-identification in these datasets. Hereby, the focus was on neural network techniques
as this was suggested by the success of these methods in closely related work. In
chapter 5.3 the focus on deep neural networks was justified as two of the three neural
network techniques were superior to all evaluated conventional methods for both RGB-D
datasets. The one-stream network which was suggested by Wu et al [83] outperformed
all conventional methods and the zero-padding network by 3.96%/7.83% in average mAP
with changing query and gallery for the BIWI dataset and by 1.32%/1.89% for the
RobotPKU dataset. The cross-modal distillation network which was presented in this
work was able to outperform the one-stream network in average mAP by additional
19.04%/14.56% for BIWI and 6.71%/6.33% for the RobotPKU dataset. Hence, the
cross-modal distillation network is considered the state-of-the-art for cross-modal person
re-identification between depth and RGB.

A reason for the superiority of the cross-modal distillation network in comparison to
the other methods can be inferred from the activation maps of the different methods.
In figure 38 the activation maps from the single-modal networks, one-stream network
and cross-modal distillation network which were discussed in the corresponding chapters
are summarized together. It gets visible that the single-modal networks in the different
modalities are activated by very different parts of the images. In the RGB modality
(images (a) and (c) in figure 38) the activations are mainly triggered by colors. In the
depth modality (images (b) and (d)) the activations of the network can be found in
the shape of the person. In the third column the corresponding activation images for
the one-stream network are visualized. It gets visible that the activations are closely
connected to the activations within the single-modal networks. Nevertheless there is
a slight trend in the RGB images to be activated by the shape of the person. Finally,
in the fourth column the activations of the cross-modal distillation network are shown.
Here, clearly in both modalities similar features are extracted. To be more exact in
both modalities features which were found in the single-modal networks in depth are
activating the networks. This shows that the transfer of knowledge from depth to RGB
was successful. As a consequence of the similar activation in both modalities an embedding
to the same feature space is facilitated. Hence, the better accuracies in the cross-modal
tasks can be explained.

Based on these results, the posed research question can be answered. The task of
cross-modal re-identification can be solved with deep neural network structures. It was
shown, that several approaches based on neural networks exist which can be successfully
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Figure 38: Comparison of activation maps for single-modal networks (2nd column),
one-stream network (3rd column) and cross-modal distillation network (4th column)
for the BIWI dataset. Original images in the left column.

deployed for the task. On top of that it was shown, that when exploiting the inherent
relationship between depth and RGB even better results can be achieved.

The second research question of this work was "Is it possible to develop a generic
methodology for re-identification between modalities and how well does it generalize to
different modality combinations, like near-infrared images and visible light images?"

In this work additionally to the datasets with RGB and depth images a dataset
with infrared and RGB images was investigated. For this dataset the cross-modal
distillation method was not the most successful method tested in this work and also in
related literature superior methods can be found. The one-stream network, which was
significantly inferior to the cross-modal distillation method for the RGB-depth datasets,
outperformed the cross-modal distillation method for this dataset. Therefore, it is difficult
to find a conclusive answer on this research question. In general, the methods are designed
such that they are theoretically generic for cross-modal re-identification tasks. Also the
experimental results show that the neural network based methods are applicable on all
kinds of dataset. Nevertheless, the performance of the different techniques in different
datasets suggest, that it might be necessary to craft specific methods for the specific
asymmetrical relationships of certain cross-modal re-identification task.

Overall the analysis in this paper showed that cross-modal person re-identification is
a complex task, and the results in absolute numbers suggest that there is still room for
improvement. In fact, the accuracies obtained in cross-modal re-identification (tables 17
and 18) are still significantly lower than the accuracies for single-modal re-identification
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in the more difficult modality for re-identification (tables 2 and 3). This hints that further
improvements will be possible. As this is one of the first works concerning the task it is
possible to highlight some potential future directions and current problems in the domain.

First, it will be necessary to obtain bigger datasets to make research in re-identification
between depth and RGB more attractive and give data-hungry methods based on deep
neural networks the possibility to obtain higher accuracies. The publication of the SYSU-
IR dataset in 2017 [83] pushed the interest in cross-modal person re-identification in RGB
vs. infrared immensely [84, 85, 86]. A similar effect could be expected for cross-modal
re-identification between RGB and depth. Therefore, the amount of persons contained
in the datasets would have to rise from less than a hundred for the current datasets to
at least the magnitude of several hundreds. Additionally, high-quality depth and RGB
images will be necessary.

Second, for future research it will be important to expand the considered mode of
depth. Especially for the needs in intelligent vehicles it will be necessary to evaluate the
methods on sparse depth maps, as captured by lidars or radars. Therefore, completely
new datasets with a high amount of tracked pedestrians and other street objects, will be
needed.

Overall, this work approached the relevant problem of cross-modal re-identification
in RGB and depth for surveillance applications as well as intelligent vehicles in a very
effective way. The newly presented method brings the community closer to solve this
difficult problem and the results help to understand the relation between RGB and depth
better.
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Appendices

A BDTR
The BDTR two-stream neural network was discussed in chapter 2.3.3 and visualized in
figure 15. The general idea is to have two input streams for a neural network which
are specific to each modality. Subsequently, these individual streams are merged on a
higher feature level. As the authors provided the codebase for their paper, the idea is
not re-implemented and the implementation of the authors is used. Therefore, Alexnet
is the feature extractor [85]. The main contribution of Ye et al. within the paper is
the combination of the identity loss and the ranking loss as described in chapter 2.3.3.
In the paper the authors do not define a validation set and the model is trained until
convergence. This configuration was used for the evaluation in this work.

The authors published the algorithm based on the results on the SYSU-IR dataset.
Hence, for this work the network was retrained with the parameters provided by Ye et al.
[85] and evaluated in the same scheme.

The results reported in the paper and the results obtained by the retraining can be
found in table 20. It is clearly visible, that a huge difference in the performance of the
network is existent. The mAP differs around 11% whilst the values are 19.66% and 8.04%,
respectively. Hence, most probably the authors evaluated the algorithm differently as it
is shown in the published code. Even though not enough details are given in the paper, it
is possible to identify two potential flaws. Firstly, there is the possibility that the authors
used some kind of early-stopping criteria for the neural network training based on the
test set. This leads to an overfitting on the test data, but at the same time pushes the
performance of the algorithm. Secondly, the authors only used parts of the test set for
evaluating the performance on the test set. The second hypothesis is reinforced by the
provided code-base, where exactly 2060 images, which are not randomly shuffled are used
for the evaluation in the test set.

Cross-modal R 1 R 10 R 20 mAP
Reported in [85] 17.01 55.43 71.96 19.66
Reproduced result 5.68 31.12 48.14 8.04

Table 20: Results BDTR in SYSU

Due to the high uncertainty in terms of the correct training procedure of the two-
stream network, at this point no further evaluation of the the architecture for the other
datasets are made.

B Splits of the datasets

B.1 BIWI RGBD-ID
Design set (Train + Validation set):
0, 1, 4, 5, 6, 7, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 25, 26, 34, 35, 38, 39, 40, 43, 50, 56,
57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 73, 74, 76, 77.
Test set:
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2, 3, 8, 10, 14, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 36, 37, 41, 42, 44, 45, 46, 47, 48,
49, 51, 52, 53, 54, 55, 60, 63, 64, 68, 71, 72, 75.

B.2 RobotPKU
Design set (Train + Validation set):
0, 2, 3, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 41, 43,
44, 45, 46, 47, 52, 54, 55, 58, 59, 60, 63, 66, 67, 68, 72, 73, 74, 77, 78, 80, 82, 83, 84, 87,
88.
Test set:
1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 24, 26, 38, 39, 40, 42, 48, 49, 50, 51, 53, 56, 57,
61, 62, 64, 65, 69, 70, 71, 75, 76, 79, 81, 85, 86, 89.

B.3 SYSU RGB-IR
Split predefined by the authors.
Train set:
0, 1, 3, 4, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 28, 29, 34, 51, 52, 54, 55, 57, 58, 59,
60, 61, 63, 64, 69, 70, 71, 72, 73, 75, 76, 77, 78, 90, 91, 94, 97, 98, 106, 108, 109, 110, 112,
113, 114, 117, 118, 119, 120, 122, 123, 125, 126, 127, 130, 131, 132, 134, 135, 136, 139,
141, 142, 146, 148, 150, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 167, 168,
170, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 185, 187, 188, 192, 193, 195, 196,
197, 198, 199, 200, 202, 204, 205, 207, 208, 210, 211, 212, 213, 215, 216, 217, 218, 219,
220, 221, 223, 224, 225, 226, 227, 229, 230, 233, 234, 239, 242, 243, 244, 245, 246, 247,
248, 249, 250, 253, 254, 255, 257, 259, 260, 261, 263, 264, 266, 267, 269, 270, 275, 276,
277, 278, 279, 280, 282, 283, 285, 286, 287, 288, 289, 291, 292, 293, 294, 295, 296, 297,
298, 303, 304, 305, 307, 308, 309, 310, 312, 313, 315, 316, 318, 319, 320, 321, 322, 323,
324, 325, 326, 327, 328, 329, 331, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443,
444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461,
462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479,
480, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498,
500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 511, 512, 513, 514, 515, 516, 517, 518,
519, 520, 521, 522, 523, 524, 525, 526, 527, 529, 530, 531, 532
Validation set:
333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 347, 348, 349, 350, 351,
352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369,
370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387,
388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405,
406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423,
424, 425, 426, 427, 428, 429, 430, 431, 432
Test set:
5, 9, 16, 20, 23, 24, 26, 27, 30, 33, 35, 36, 39, 40, 41, 42, 43, 44, 48, 49, 50, 53, 62, 68, 74,
79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 101, 103, 104, 105, 107, 111, 115, 116, 121,
124, 128, 129, 133, 137, 138, 149, 151, 161, 165, 166, 169, 171, 175, 184, 189, 191, 201,
203, 206, 209, 214, 222, 228, 231, 236, 251, 252, 256, 258, 262, 265, 268, 271, 272, 273,
274, 281, 284, 290, 299, 300, 301, 302, 306, 311, 314, 317, 330, 332
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C Visualizations for different techniques

Figure 39: SYSU-IR, Single-modal network visible light images: Examples
for query images and corresponding gallery images with lowest distance

Figure 40: SYSU-IR, Single-modal network infrared images: Examples for
query images and corresponding gallery images with lowest distance.
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Figure 41: SYSU-IR, One-stream network: Examples for query images
(RGB) and corresponding gallery images (infrared) with lowest distance.

Figure 42: SYSU-IR, Cross-modal distillation network from infrared to
RGB (triplet loss): Examples for query images (RGB) and corresponding
gallery images (infrared) with lowest distance.
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Figure 43: BIWI, Single-modal network visible light images: Examples for
query images and corresponding gallery images with lowest distance

Figure 44: BIWI, Single-modal network depth images: Examples for query
images and corresponding gallery images with lowest distance.
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Figure 45: BIWI, One-stream network: Examples for query images (RGB)
and corresponding gallery images (depth) with lowest distance.

Figure 46: BIWI, Cross-modal distillation network from depth to RGB
(softmax loss): Examples for query images (RGB) and corresponding gallery
images (depth) with lowest distance.
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Figure 47: RobotPKU, Single-modal network visible light images: Examples
for query images and corresponding gallery images with lowest distance

Figure 48: RobotPKU, Single-modal network depth images: Examples for
query images and corresponding gallery images with lowest distance.
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Figure 49: RobotPKU, One-stream network: Examples for query images
(RGB) and corresponding gallery images (depth) with lowest distance.

Figure 50: RobotPKU, Cross-modal distillation network from depth to
RGB (softmax loss): Examples for query images (RGB) and corresponding
gallery images (depth) with lowest distance.
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D Paper "A Cross-Modal Distillation Net-
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A Cross-Modal Distillation Network for Person
Re-identification in RGB-Depth

Frank Hafner , Amran Bhuiyan, , Julian F. P. Kooij , Eric Granger , Member, IEEE

Abstract—Person re-identification involves the recognition over time of individuals captured using multiple distributed sensors. With
the advent of powerful deep learning methods able to learn discriminant representations for visual recognition, cross-modal person
re-identification based on different sensor modalities has become viable in many challenging applications in, e.g., autonomous driving,
robotics and video surveillance. Although some methods have been proposed for re-identification between infrared and RGB images,
few address depth and RGB images. In addition to the challenges for each modality associated with occlusion, clutter, misalignment,
and variations in pose and illumination, there is a considerable shift across modalities since data from RGB and depth images are
heterogeneous. In this paper, a new cross-modal distillation network is proposed for robust person re-identification between RGB and
depth sensors. Using a two-step optimization process, the proposed method transfers supervision between modalities such that similar
structural features are extracted from both RGB and depth modalities, yielding a discriminative mapping to a common feature space.
Our experiments investigate the influence of the dimensionality of the embedding space, compares transfer learning from depth to
RGB and vice versa, and compares against other state-of-the-art cross-modal re-identification methods. Results obtained with BIWI
and RobotPKU datasets indicate that the proposed method can successfully transfer descriptive structural features from the depth
modality to the RGB modality. It can significantly outperform state-of-the-art conventional methods and deep neural networks for
cross-modal sensing between RGB and depth, with no impact on computational complexity.

Index Terms—Deep Learning, Convolutional Neural Networks, Transfer Learning, Distillation Networks, RGB-D Vision, Person
Re-Identification, Autonomous Driving, Video Surveillance.

F

1 INTRODUCTION

Person re-identification is an important function in many
monitoring and surveillance applications, such as multi-
camera target tracking, pedestrian detection in autonomous
driving, access control in biometrics, search and retrieval in
video surveillance, and forensics [1], [2], [9], and, as such,
has gained much attention in recent years. Given the query
image of an individual captured over a network of dis-
tributed cameras, person re-identification seeks to recognize
that individual based on a gallery of previously-captured
images [3].

Traditionally, person re-identification involves recogniz-
ing individuals over a network of non-overlapping cameras
that sense in the same RGB modality. State-of-the-art single
modal methods based on RGB images can be categorized
as either feature learning based methods, that seek to learn
robust and discriminant feature representations from person
samples [4], [20], [21], [25], [26], [27], or distance learning
based methods, that seek to learn an effective distance
metric that can minimize the difference between persons
from different cameras [5], [24], [28], [29], [30]. Single-
modal re-identification remains a very challenging problem
due to low resolution images, occlusions, misalignments,
background clutter, motion blur, and variations in pose and
illumination. Moreover, most of the state-of-the-art meth-
ods [20], [21], [22], [23], [24], [56] rely on the assumption
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that people do not usually change their clothing, i.e., their
appearance across views remains same, which is unsuitable
for long-term monitoring and surveillance.

New sensors to capture high-definition signals, like li-
dars and radars which sense in the depth modality, allow
to expand on sensing capabilities, and are paving the way
for innovative, next-generation monitoring and surveillance
technologies. This paper focuses on deep neural networks
for cross-modal person re-identification that allow sensing
between RGB and depth modalities. Deep neural networks
are highly successful at performing high-level visual recog-
nition tasks due to their capacity to learn important low-
and intermediate-level features from the raw image data.
These networks are trained with labeled image data from
both modalities, and then allow to recognize a person cap-
tured using either the RGB or depth sensor. Note that these
networks differ from methods in literature for multi-modal
person re-identification, where RGB and depth representa-
tions are combined (often normalized and concatenated) to
improve performance [16], [74], [75], [76], [77].

Although some methods have been proposed for cross-
modal re-identification between RGB and infrared im-
ages [10], [11], [12], [13], few address RGB and depth im-
ages [17]. However, sensing across RGB and depth modal-
ities is important in many real-world scenarios. This is the
case, for example, with video surveillance systems that must
recognize individuals in poorly illuminated environments.
Recent progress in lidar technology makes the usage of
depth information more and more viable in these situations
as a replacement for infrared cameras [14], [15]. Another
example is the case of autonomous self-driving vehicles,
which require tracking pedestrians around their vicinity,
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Fig. 1. Illustration of the cross-modal person re-identification system
based on RGB (query) and depth (gallery set) modalities.

where some regions are covered by lidars sensors, and
others by RGB cameras.

In this case, figure 1 illustrates an example of a
cross-modal system. Query images captured for a person
sensed in the RGB modality (captures color intensities), are
matched against a set of reference gallery images from a
depth modality (captures 3D geometry). There is a con-
siderable shift across modalities since data from RGB and
depth images are heterogeneous. State-of-the-art methods
proposed for cross-modal re-identification are typically op-
timized co-jointly using image data from both source and
target modalities which leads to complex re-identification
models.

Cross-modal re-identification can be seen as a transfer
learning task [31], [32], commonly employed to adapt visual
recognition models to operate across domains in, e.g., image
classification [33], [34], human activity classification [35],
[36] and objection recognition [8], [37], [38], [39]. In partic-
ular, labeled data is available in both source and target do-
mains. A same task (re-identification) is associated with two
different domains, where source and target distributions dif-
fer [7]. The source domain corresponds to either the depth or
RGB modality, while the target domain corresponds to the
other modality. The main objective is to transfer the knowl-
edge learned from source to target domain, even though
the data distribution between the domains can incorporate
a significant shift. Then, the cross-modal re-identification
can recognize across two domains and, therefore, solve the
transfer learning task (re-identification based on either RGB
or depth) in a common representation space.

A key challenge for designing cross-modal networks is
training when image data distribution incorporate a sig-
nificant shift. State-of-the-art deep learning methods will
typically optimize using image data from both source and
target modalities jointly. Low accuracies in comparison to
single-modal re-identification within infrared-RGB cross-
modal re-identification suggest that co-joint optimization
might not be ideal with respect to the significant distribution
shift between the modalities [10], [11], [12], [13]. Hence, the
technique proposed in this paper seeks to exploit the asym-
metrical relationship between depth and RGB images by
training the re-identification system in a sequential manner.

In this paper, a new cross-modal distillation network
is proposed for robust person re-identification across RGB
and depth sensors. Inspired by the unsupervised distillation

method of [8], this paper adopts a deep neural network able
to transfer learned representations from one sensor modality
to another. The proposed approach relies on paired labeled
images from both modalities for training, but is independent
of paired images during testing or inference. Using a two-
step optimization process, the proposed method transfers
supervision between modalities such that similar structural
features are extracted from both RGB and depth modalities.
Extracting these features yields a discriminative mapping
to a common feature space. A research goal of this work
is to justify the ideal order of transfer, i.e., which modality
is source and which one is target [39]. In the first step a
network is optimized based on data from the first (source)
modality, and then, in the second step, the embeddings and
weights of this first neural network provide guidance to
optimize a second network for the other (target) modal-
ity. Following [8], this cross-modal distillation network is
initialized with the weights of the network trained in the
first step, to facilitate the transfer of the knowledge to the
other network. All mid-level to high-level layers of the
second network are frozen during training. In contrast to [8],
the optimization is based on the final embedding layer of
the networks to guarantee an embedding in a common
feature space for both modalities. Note that the proposed
distillation network is a general model for cross-modal re-
identification that may be extended to other combinations of
modalities and to recognize other visual objects in image re-
trieval (e.g., vehicles) where appearance changes. However,
in order to better understand the asymmetrical relationship
between depth and RGB modalities, this paper focuses on
recognizing persons across depth and RGB.

This paper presents the following contributions: (i) A
deep cross-modal network is adopted to transfer an em-
bedding representation from one modality to the other by
exploiting the intrinsic relation between depth and RGB.
(ii) In contrast to the majority of literature in person re-
identification we investigate the choice for a certain embed-
ding size and embedding layer with experiments. We are
able to show, that an embedding extracted from the softmax
classification layer can be competitive to the commonly used
preliminary layer embedding. (iii) Extensive experimental
validation is conducted to show the advantages of the
proposed method over state-of-the-art networks on multiple
RGB-D based benchmark re-identification datasets. To our
knowledge, this is the first deep cross-modal distillation
network for re-identification between RGB and depth.

The rest of the paper is organized as follows. Section 2
provides an overview of conventional, deep learning and
cross-modal techniques related to person re-identification.
Section 3 describes deep cross-modal neural network tech-
niques as well as the proposed cross-modal distillation
network. Section 4 describes the experimental methodology
(dataset, protocol and performance metrics) used for vali-
dation of the proposed and baseline systems, and section
5 presents the experimental results. Finally, Section 6 de-
scribes our main findings, and highlight directions for future
research.
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2 RELATED WORK

The area of person re-identification has received much at-
tention in recent years [9]. This section provides a summary
of the state-of-the-art conventional, deep learning and cross-
modal techniques as they relate to our research.

Conventional Methods. Conventional approaches for
person re-identification from a single modality can be cate-
gorized into two main groups – direct methods (with hand-
crafted descriptors or learned features) and metric learning
based approach. Direct methods for re-identification are
mainly devoted to the search of the most discriminant
features, or combinations thereof, to design a powerful
descriptor (or signature) for each individual regardless of
the scene. In contrast, in metric learning methods, a dataset
of different labeled individuals is used to jointly learn the
features and the metric space to compare them, in order to
guarantee a high re-identification rate.

Due to the non-rigid structure of the human body, it
is difficult to model the appearance of the whole body
for re-identification. Instead it is more robust to model
the appearance focusing on salient parts or meaningful
parts of the body. Most of the direct method based re-
identification approaches rely on the local meaningful parts,
e.g. horizontal stripes [24], [42], triangular graphs, concen-
tric rings [43], symmetry-driven structures [20], pictorial
structure [22], meaningful body-parts [21] and horizontal
patches [44]. Different features (such as: Color based fea-
tures [20], [21], [22], textures [45], [46], [47], edges [47],
Haar-like features [48], interest points [49] and Biologically
Inspired Features (BIF) [49]) and different combination of
those features (such as: Bag-of-Words (BoW) [78], Weighted
Histogram of Overlapping Strips (WHOS) [73], & Local
Maximal Occurrence (LOMO) [24]) from those local regions
have proven to be useful to achieve better re-identification
accuracy. Given the handcrafted features, another stream of
direct method based re-identification approaches learns the
feature importance based on the salient feature analysis of
each individual [4], [21], [27], or by exploiting the coherence
among different features on manifold space [72].

Metric learning based approaches usually find a map-
ping from feature space to a new space in which feature
vectors from image pairs of the same individual are closer
than feature vectors from different image pairs. Commonly
used metric learning techniques that are adopted for re-
identification include Mahalanobis metric learning [53],
Large Margin Nearest Neighbor Learning (LMNN) [52],
Logistic Discriminant Metric Learning (LDML) [52], Kernel
Canonical Correlation Analysis (KCCA) [54], keep it simple
and straight forward metric learning (KISSME) [53] and
Cross-view Quadratic Discriminant Analysis (XQDA) [24].

Deep Learning Methods. Similar to other vision ap-
plications, there has also a been growing number of deep
learning based re-identification approaches [55], [56], [57],
[58], [59], [60], [61], [62], [63]. The idea of using a deep
learning architecture for person re-identification stems from
Siamese CNN with either two or three branches for pairwise
verification loss [55], [56], [57], [58], [59], [62] or triplet
loss [60], [61], [63] respectively, or combination of both [64].
Some of those approaches use their own network architec-
tures, by proposing new layers [56] or by fusing features

from different body parts with a multi-scale CNN struc-
ture [57], [65]. Some other [60], [63], [68] use the pre-trained
or different variants of pre-trained models (e.g. Resnet [41],
GoogleNet [66]) which often obtain great re-identification
accuracy. Another trend of using deep learning architecture
is transfer learning [59], [70], [71], for when the distribution
of the training data from the source domain is different from
that of the target domain. The most common deep transfer
learning strategy for re-identification [70] is to pre-train a
base network on a large scale source dataset, and transfer
learned representation to the target dataset. Variant of other
transfer learning approaches for re-identification [59], [71]
leverages the idea of joint or multi-task learning considering
combination of different re-identification datasets, or aux-
iliary datasets to minimize the cross-domain discrepancy.
However, these transfer learning methods depend on the
assumption that the tasks are the same and in a single
modality. Thus all the above mentioned single modality
based approaches are unsuitable when the source and target
domains are heterogeneous.

Cross-Modal Methods. While the progress in re-
identifying persons in single modalities was significant,
only few works [10], [11], [12], [13], [16], [17] investigated
the task of cross-modal person re-identification.

Recently, several works were published concerning
cross-modal person re-identification between RGB and in-
frared images [10], [11], [12], [13]. In [10], the authors ana-
lyze several standard neural network structures to embed
the RGB vs. IR modalities in a common feature space
on their proposed SYSU-IR dataset. The key architectural
contribution is the ’One stream structure with zero-padding
augmentation’ network. The zero-padding network as well
as the simple one-stream network from [10] will be analyzed
in more detail in section 3.2. In [11], the authors presented a
two-stream neural network which combined a contrastive
and a softmax loss together. To enhance the results they
attached a subsequent metric learning step. A similar sce-
nario was also used in [12] where the authors adopt the
same methodology as [11] and combine two losses. The first
loss has the goal to minimize the cross-modal intra-distance
and at the same time maximize the inter-modal distances.
Hence, the authors compare the distance of a positive
visible-thermal image pair and the minimum distance of
all negative visible-thermal pairs. This loss, is accompanied
by an identity loss to guarantee the robustness. The cross-
modal re-identification problem on RGB-IR scenario has
been addressed in adversarial way in [13]. The idea of the
authors is to combine three losses. The first two losses are a
identity loss and a triplet loss. Additionally, they introduce
a GAN based structure on their network architecture. The
discriminator differentiates from which modality the input
sample came and, hence the generator enforces a mutual
embedding.

There are a few works in the literature that consider
multi-modal person re-identification scenario [16], [74], [75],
[76], [77] by fusing the RGB and the depth information
in order to extract robust discriminative features. In [74],
the authors fused clothing appearance features with
anthropometric measures extracted from depth data.
In [75], a tri-modal based person re-identification method
has been proposed by combining the RGB, depth and
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thermal data. In [76], the authors proposed a height-based
gait feature that integrated RGB based height histogram
and gait feature from depth data. In [77], a depth based
segmentation technique is used to extract the features from
the foreground body parts. In [16], a depth-shape descriptor
called eigen-depth is proposed to extract describing features
from the depth domain. The distance between eigen-depth
features are proven to lie in Euclidean space and are
rotation invariant. The authors were able to show that
those orientation-invariant descriptors of body regions are
less prone to errors from position and lighting changes.
Additionally, the authors defined a common latent subspace
for the eigen-depth features and features extracted in the
RGB modality. Although, the methodology is in principle
applicable in cross-modal re-identification, the authors
did not perform any evaluations in this domain [16].
Finally [17] used the same features to perform cross-modal
re-identification between depth and RGB.

In 2016, Gupta et al. [8] presented a transfer learning
network for cross-modal distillation. Their goal is to use
learned representations from large datasets in a certain
modality for classification in a paired modality with limited
labeled data. An example usage of this network is the
transfer of the capabilities of a CNN object classifier in RGB
to the corresponding depth images. Therefore, the network
trained in the RGB modality is copied to the depth modality.
Afterwards a mid-level layer in the network is frozen and
optimized by means of unlabeled coupled images. Hence,
a common mid-level layer is enforced, while the low-level
features can be learned in the new modality.

In contrast to the above works on cross-modal re-
identification, we propose to employ the cross-modal distil-
lation idea by means of a deep transfer learning technique.
The idea of the method is inspired by the recent work on su-
pervision transfer of Gupta et al. [8]. However, supervision
transfer [8] and our approach aim at different problems with
different focuses of method design: supervision transfer
solves the problem of limited data availability for object
detection problems with a transfer scheme from RGB to
depth. Our method is using the distillation paradigm to
transfer knowledge from one modality to a second modality
to solve the re-identification task across the two modalities.
Therefore, contrary to Gupta et al. [8], the task has to be
solved across modalities in the same feature space and is not
considered a pre-training procedure as in [8]. In Gupta et al.
the direction of transfer is defined as from RGB to depth. In
contrast, in this work the ideal direction of transfer is one of
the research questions which is answered.

3 DEEP CROSS-MODAL NEURAL NETWORKS

In this section deep neural networks are presented for cross-
modal person re-identification based on RGB and depth
modalities. These networks are trained with labeled image
data from both modalities. During inference, the trained
network then allows to recognize the same person captured
using either the RGB or depth sensor. To date, no deep
neural networks architectures have been applied to solve
the cross-modal person re-identification between RGB and
depth.

(a) Single-modal re-identification

(b) Cross-modal re-identification

Fig. 2. (a) Single-modal re-identification embeds input (from the same
modality) to a common latent feature space, such that different images
from the same individual are close together in the mapping. (b) Cross-
modal re-identification creates a shared embedding for multiple modali-
ties, each with their own mapping function.

Consider a query image x̂, and a set of gallery images
x1, · · · , xM with associated labels y1, · · · , yM , such that yi
indicates the individual present in image xi. In single-modal
re-identification, both query x̂ ∈ χ and gallery images
xi ∈ χ are from the same input space χ. The general
approach to person re-identification is to apply a mapping
from the input images to an embedded space, where input
samples of the same individual are mapped close together,
and of different individuals are further apart. Figure 2a
shows how this embedding is used during test time for
the standard single-modal case with RGB colour images.
The query image x̂ is mapped to the embedded space
F (x̂), where the distances to the gallery images F (xi) are
compared. The identified person ŷ for query x̂ is then the
individual corresponding to the closest embedded gallery
image î, i.e.

ŷ = yî where î = argmin
i

d(F (x̂), F (xi)). (1)

where d is the distance metric for the embedding, typically
the Euclidean distance d(a, b) = ‖a − b‖. During training,
the learning objective is therefore to estimate a suitable
mapping F (x) from available training data.

For cross-modal re-identification an additional challenge
is added, as query and gallery images can now use different
input spaces. Figure 2b shows an example with a depth
image as query, using RGB gallery images. Since both input
spaces now have to be mapped to the same latent space,
hence training involves the additional challenge of learning
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a mapping G(x) for depth images to the shared feature
space with F (x).

In our work, the cross-modal re-identification task is
formulated as a transfer learning problem, where labeled
data is available in both source and target domains. Ds is
defined as the source domain, while Dt is the target do-
main. In the case of cross-modal sensing between RGB and
depth, Ds corresponds to either the depth or RGB modality,
and Dt corresponds to the other modality. A domain D
consists of an input space χ with a marginal probability
distribution P (χ). In our case, there is a considerable shift
across domain distributions, since RGB and depth images
are heterogeneous, and thus χs 6= χt. A task T is defined
by a label space, and in our case, both modalities are related
to the same person re-identification task. The task in the
source domain is denoted as T s, while the task in the target
domain by T t. Hence, cross-modal person re-identification
can be seen as a case of transfer learning where a shared re-
identification task T s = T t is associated with two different
domains Ds 6= Dt, where either the source and target data
representations or the source and target distributions dif-
fer [7]. Additionally, the cross-modal re-identification seeks
to recognize across two domains and, therefore, solve the
tasks T s and T t in a common feature space, instead of each
task separately.

To formalize our approach, section 3.1 will first present
common deep neural network architectures and loss func-
tions which were successful applied for single-modal re-
identification. Then, using these components, section 3.2
first presents two cross-modal baseline approaches taken
from existing work on person re-identification between RGB
and infrared. Section 3.3 will then introduce our main con-
tribution, the cross-modal distillation network for RGB and
depth.

3.1 Methods for Single-Modal Re-Identification
In most research on person re-identification, both modalities
are the same, Ds = Dt. Therefore, the task is defined as a
single-modal re-identification problem. For this task, several
successful feature extraction networks and loss functions
have been employed to train deep learning architectures
for person re-identification. Although, we cannot cover all
feature extractors and losses in this paper, this section
presents common ones which were successful applied for
single-modal re-identification.

For feature extraction, our work uses Residual neu-
ral networks (Resnet) [41] which are pre-trained on Ima-
geNet. The Resnet architectures were shown to be effec-
tive for several person re-identification applications [67],
[69] . The general Resnet architecture consists of convolu-
tional blocks with residual connections to enable learning
in deep networks. To assess the influence of a shallow
Resnet network versus a deeper one, both Resnet18 and
Resnet50 are explored. Furthermore, we consider two possi-
ble loss functions, triplet loss and softmax loss, which both
have been successfully applied in single-modal person re-
identification [9], [60], [68]. These losses are used to learn
embeddings for the input images, such that images of the
same individual have a small Euclidean distance in the
embedded space, while distinct individuals are far apart.
We will now shortly discuss both losses in more detail.

3.1.1 Triplet Loss

Using the triplet loss results in a metric learning approach
which directly optimizes an embedding layer in a certain
distance metric. During training, this loss compares the
relative distances of three training samples, namely a so-
called anchor image xa, a positive image sample xp from
the same individual as xa, and a negative sample xn from a
different individual. Given an anchor image xa, this loss
assures that the embedding of an image taken from the
same class xp is closer to the anchor’s embedding than
that of a negative image belonging to another class yn by
at least a margin m in distance metric d. In the following,
F denotes the deep neural network structure to optimize,
correspondingly F (x) is the result of a forward pass with
image x through the network to the final embedding layer.
Anchor image xa and positive image xp are extracted from
an instance with the same label ya = yp. The negative image
is defined as xn and is taken from another instance, hence
ya 6= yn. The triplet loss is therefore defined as

Ltri =

T∑

i=1

[
d(F (xa(i)), F (xp(i)))− d(F (xa(i)), F (xn(i))) +m

]
.

(2)

Here, indices a(i), p(i) and n(i) stand for anchor, positive
and negative, of the i-th triplet, and T for the number of
triplets used per batch.

3.1.2 Softmax Loss

For the second considered loss, the softmax loss, the embed-
ding is learned indirectly by first treating re-identification on
the training set as a classification problem, where all C in-
dividuals in the training set are considered a different class.
During training, the softmax loss thus optimizes the class
probabilities for the instances in the training set. Afterwards,
a layer of the neural network prior to the softmax loss is
used as the embedding. This enables that the network can
be applied on test data, which can contain new individuals
not present in the training data, by only keeping the net-
work output F (xi) at a layer before the softmax function,
which is considered the M -dimensional embedding for test
images xi. In literature for re-identification the embedding
layer is usually chosen as the penultimate layer before the
softmax loss [9]. Therefore, the softmax loss to optimize the
embedding can be expressed as

Lsoft1 = − 1

N

N∑

i=1

log

(
eW(yi)

F (xi)+b

∑C
j=1 e

W(j)F (xi)+b

)
, (3)

where N is the batch size, W(j) are the weights leading to
the j-th node of the ultimate softmax layer of the network,
b is a bias and M is the variable amount of nodes in the
penultimate layer. The amount of classes is defined as C .

Apart from the common embedding F (x), our work
also investigates including the final transformation F ′(x) =
WF (x) + b as an alternative C-dimensional softmax em-
bedding. Note that the embedding size is now fixed to the
amount of classes C in the training set.



6

Fig. 3. Cross-modal architectures based on a one-stream network.

Fig. 4. Cross-modal architectures based on a zero-padding network.

Using F ′
(j)(xi) to denote the j-th element in this C-

dimensional embedded vector F ′
(j), the softmax loss for this

alternative embedding can now be written as

Lsoft2 = − 1

N

N∑

i=1

log

(
eF

′
(yi)

(xi)

∑C
j=1 e

F ′
(j)

(xi)

)
. (4)

3.2 Cross-Modal Architectures for Re-Identification

We now introduce two state-of-the-art cross-modal net-
works from the literature on re-identification across RGB
and infrared, which we will apply to re-identification across
RGB and depth. Both these methods are optimized co-jointly
using image data from RGB and depth modalities. They ap-
proach tasks T s and T t for cross-modal re-identification in a
parallel manner, since images from both modalities are pro-
vided to the network in mixed batches. Therefore, in these
cases the mapping functions are identical, F (x) = G(x).

The first cross-modal architecture is the one-stream neural
network, which is illustrated in figure 3. It is designed in
the same way as a CNN for single-modal re-identification,
using a Resnet feature extractor and softmax loss [10]. The
only difference for optimization as explained in section
3.1 is that the weights are optimized with mixed batches
of both modalities. These images are provided equally to
the network and, therefore, no outer guidance concerning
modality-specific nodes in the network is given.

The second cross-modal architecture, the zero-padding
neural network from [10], is shown in figure 4. It incorporates
two input channels, and the key idea is to embed each
modality in a separate channel and pad the other channel
with zeros. By using the zero-padding of one channel in
each modality, several nodes in early layers within the
network are influenced by only one of the two modalities.
Therefore, the network obtains outer guidance on specific
nodes for the first modality, specific nodes for the second
modality and shared nodes. This architecture is also based
on Resnet feature extractor and optimized using softmax
loss.

3.3 A Cross-Modal Distillation Network

This subsection introduces our novel cross-modal approach.
The major difference to the approaches presented in the
previous subsection is that the tasks T s and T t are ap-
proached in a sequential manner, rather than in parallel.
Therefore, the training of the task in the source modality is
separated from the training of the task in the target modality.
The conceptual cross-modal distillation scheme to transfer
the supervision from one modality to the other modality
is adapted from the work by Gupta et al. [8], see section
2. Nevertheless, several crucial differences to the cross-
modal distillation of Gupta et al. are existent which were
elaborated in section 2. The main objective of the sequential
cross-modal distillation is to exploit the intrinsic relation of
the two modalities to be able to extract similar features from
both. The training of the network is divided into two steps,
as visualized in figure 5, which will be explained in detail
next.

3.3.1 Step I – Training of the Baseline Network
In step I of the training of the cross-modal distillation
network, a neural network F is trained for sensing in a
first modality Ds, as presented in section 3.1. The feature
extractors Resnet18 and Resnet50 as well as softmax loss
and triplet loss will be used to optimize networks for the
baseline of the cross-modal distillation network (for more
details see chapter 3.1). The network is optimized by means
of an early-stopping criteria based on the mAP in the
validation set. Afterwards, the network is frozen as Ffr ,
with corresponding weights WF,fr..

3.3.2 Step II – Cross-Modal Distillation
The obtained neural network feature extractor for the first
modality is deployed as the baseline network for the train-
ing of a feature extractor for the second modality. For the
second training step, a network with the same architecture
as the corresponding network in step I is initialized.

Similarly to [8], the weights of the converged model from
step I, WF,fr., are copied to network G which is dedicated
to the second modality. Additionally, the weights of the
network are frozen from a mid-level convolutional layer up
to the final feature embedding. This retains the high-level
mapping from the first network, which was successfully
trained in the source modality, to the target modality. At the
same time, the target embedding can still learn meaningful
low-level features for the task in the target modality.

For the actual transfer of knowledge we make use of
paired images Xm1 from modality 1 and Xm2 from modal-
ity 2. The aim is to optimize G in such a way that the
embeddings of images from the second modality Xm2 with
label y are close to the embeddings of images from the first
modality Xm1 with label y. This is realized by exploiting
image pairs xm1,i and xm2,i from the two modalities, which
are considered coupled as they are taken at the exactly same
time step. Hence, the embedding of xm1,i is obtained with a
forward propagation through the frozen network Ffr. and
is taken as the groundtruth for the embedding of xm2,i

with the, at this stage, trainable network G. Since during
inference mode the embeddings will be compared based on
Euclidean distance, we aim to minimize this metric between
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Fig. 5. Two step training scheme and inference for the proposed cross-modal distillation network. Step I involves training of a CNN for single-modal
re-identification. In step II, the knowledge from the first modality is transferred to the second one. During inference, query and gallery images
different modalities produce feature embeddings and matching scores for cross-modal re-identification. As an example, this figure is exemplary of
a transfer from depth to RGB, and a inference with RGB as query and depth as gallery. The modalities can be interchanged in both cases.

Algorithm 1 Cross-Modal Distillation Network
1: Input: Input Train Data with paired images, Xm1, Xm2

STEP I: Training baseline network
2: j = 0
3: mAPval,best = 0
4: Initialize network F with parameters WF using a pre-trained

CNN
5: while (j < MAXEPOCH) do
6: Perform training of F , train (Xm1,WF ) using loss

function 2 or 3.
7: if mAPval,j > mAPval,best then
8: save WF as WF,best

9: end if
10: j = j + 1
11: end while

STEP II: Cross-modal distillation
12: j = 0
13: Lval,best =∞
14: Load WF,best into F and freeze to Ffr.

15: Initialize weights WG of network G with weights WF,best

16: Freeze mid- to high-level weights of WG

17: while (j < MAXEPOCH) do
18: Perform training of G, train (Xm2, WG) using loss

function 5 and Ffr.(Xm1) as groundtruth
19: if Lval,j < Lval,best then
20: save WG as WG,best

21: end if
22: j = j + 1
23: end while
24: Load WG,best into G and freeze to Gfr.

25: Output: Models Ffr. and Gfr.

the two embeddings. Hence, we make use of the mean
squared error (MSE) loss between the embeddings of paired
images Ffr.(xm1,i) and G(xi) which is defined as

LMSE =
1

N

N∑

i=1

‖Ffr.(xm1,i)−G(xi)‖2 (5)

where N is the batch size in training stage. The weights
WG of network G are optimized based on this loss function
and trained until convergence. Early-stopping criteria for
the training of this network is the loss in the validation set.
The whole training procedure is formalized algorithm 1.

3.3.3 Inference

In inference mode, the two resulting neural networks Ffr.

and Gfr. are evaluated in the corresponding modalities
to obtain feature embeddings for input images. Similarity
between the feature representations is measured using Eu-
clidean distance. For each query image, each gallery image
is therefore ranked according to the similarity between
embeddings in Euclidean space, and the label of the most
similar gallery image is returned, see equation (1).

4 EXPERIMENTAL METHODOLOGY

In this section we present the experimental methodology
used to validate the proposed approach. Therefore, two
RGB-D person re-identification datasets will be presented.
As these datasets were originally not designed for cross-
modal person re-identification it is important to discuss
their intrinsic properties and the adjustments in detail. Ad-
ditionally, a complete description of the evaluation protocol
used in this work will be given to enable repetition of the
experiments.
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4.1 Datasets
Two publicly-available dataset for person re-identification
were considered for the experiments, namely BIWI RGBD-
ID [18] and RobotPKU [19] datasets. These datasets were
selected because they provide high-resolution depth and
RGB images, a decent amount of instances and a large
amount of images per instance in different poses. These are
prerequisites to successfully train neural networks for re-
identification. No other public datasets which were found
were satisfying these requirements.

The BIWI RGBD-ID dataset targets long-term people
re-identification from RGB-D cameras [18]. The dataset is
recorded with a Microsoft Kinect, which provides depth,
RGB images and a skeleton. The skeleton is neglected for
this work. As in [17] same person with different clothing is
considered as a separate instance. Overall, it is comprised of
78 individuals with 22,038 images in depth and RGB. The
BIWI dataset consists of RGB images with a resolution of
1280×960 and depth images with a resolution of 640×480.
In all images the individuals were cropped out in RGB and
depth with a margin in all directions and resized to 256×128
for training. RGB and depth images are provided coupled
with no visible difference in capturing time.

As with the BIWI dataset, the RobotPKU dataset was
captured with a Microsoft Kinect camera [19]. The dataset
consists of 90 persons with 16,512 images in total. The depth
and RGB images in the RobotPKU dataset are provided
cropped, and hence, the images have varying resolutions
corresponding of the distance of the individual to the cam-
era. For training, all images are resized to 256 × 128. The
images are provided in a coupled manner. Nevertheless, by
visual inspection it is apparent, that there is a slight time
difference, in the order of a fraction of a second, between
the images captured in depth and RGB. Compared to the
BIWI dataset, the depth images in the RobotPKU dataset
are more noisy and often body parts, like heads and arms,
are absent in the images.

Although RGB-infrared re-identification within the
SYSU-IR dataset [10] is considered a parallel stream to RGB-
depth re-identification no evaluations on this dataset will be
made. This is due to the fact, that the cross-modal distillation
network is primarily designed for the properties of RGB and
depth [8]. Additionally, in this dataset no paired images of
the modalities are available.

4.2 Evaluation Protocol
For the performance evaluation with the BIWI dataset, the
same partitions into training, validation and testing subsets
were adopted as in [17]. Accordingly, the dataset is divided
into videos from 32 individuals for training, 8 instances for
validation and 38 individuals for testing. For the RobotPKU
dataset, the division will be videos from 40 individuals for
training, 10 for validation, and 40 for testing. This follows
the division of [19]. The exact split (label of individuals used
to form subsets) is provided in appendix A.

For quantitative evaluation, the average rank 1, 5 and
10 accuracy performance measure is reported along with
the mean average precision (mAP). For the reporting of the
rank accuracy, a single-gallery shot setting is used, where
a random selection of the gallery (G) images is repeated

10 times. For the query (Q) a maximum of 50 images per
person are randomly selected. For the evaluation of cross-
modal performance images of all cameras are compared.
The only exception to this is the removal of the exactly same
corresponding image in the parallel modality.

To obtain statistically reliable results for the proposed
and baseline methods based on deep neural networks, av-
erage results are obtained through a 3-fold cross-validation
process. The methods are trained and evaluated 3 times,
and for each replication, a different validation subset is
randomly extracted from within the design subset. Hence,
the average values for performance measure are reported
with standard deviation.

5 EXPERIMENTAL RESULTS

An extensive series of experiments has been considered to
validate the proposed cross-modal distillation network. In
this section, the results for optimization with the single
modalities (i.e., step I. in Fig 5) are first shown to establish a
baseline for the individual modalities. Hence, we first inves-
tigate how different choices for deep networks and losses
affect the performance on single-modal re-identification,
and compare the relative difficulty of the modalities and
dataset. Then, the distillation step (step II.) of the proposed
method is performed and evaluated (section 5.2). Here,
insights in how the distillation network is ideally trained
are given. This involves the choice of the correct baseline
network as well as the direction of transfer in the distillation
step. Additionally, a sensitivity analysis of the results for the
cross-modal distillation is performed (section 5.3). Finally,
the presented method (section 5.4) is compared to other
baselines and the state-of-the-art of the cross-modal person
re-identification task between RGB and depth are defined.
The findings of this section are underlined with an analysis
of the activations of the neural networks (section 5.5).

5.1 Single-Modal Re-identification Performance

For performance evaluation with individual modalities
(RGB and depth separately), several neural network opti-
mizations have been investigated. Results have been ob-
tained on BIWI and RobotPKU datasets using two ar-
chitectures for feature extraction. The shallower network,
Resnet18, and a deeper network, Resnet50. Both architec-
tures have been optimized with triplet loss, equation (2),
and softmax loss, equation (3).

For triplet loss an embedding size of 128 and a training
batch of 64 with 16 instances á 4 images was used. As
triplets the most difficult combinations within the batches
were chosen. These parameters were proposed by [60].

For the following sections the standard softmax loss
definition, equation (3), will be used with an embedding
size of 128. This embedding size corresponds to the em-
bedding size of triplet loss to enable a fair comparison of
the optimizations. A more detailed analysis of the influence
of the embedding size will be discussed in section 5.3
where a comparison of the best performing methods with
different embeddings will be made. For this also the novel
softmax loss definition in equation (4) will be evaluated.
Corresponding to triplet loss a batch size of 64 will be used.
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TABLE 1
Average test set accuracy of the proposed method (Step I) for different modalities on BIWI dataset.

Modality Feature
Extractor Loss rank-1 (%) rank-5 (%) rank-10 (%) mAP (%)

RGB
Resnet18 Triplet 93.68 ± 0.76 99.65 ± 0.35 99.96 ± 0.04 94.77 ± 0.83

Softmax 93.32 ± 1.83 99.67 ± 0.24 99.93 ± 0.09 94.46 ± 1.55

Resnet50 Triplet 92.14 ± 1.86 99.71 ± 0.24 99.95 ± 0.08 93.44 ± 1.46
Softmax 94.75 ± 0.74 99.75 ± 0.19 99.96 ± 0.03 95.68 ± 0.60

Depth
Resnet18 Triplet 61.28 ± 2.49 93.85 ± 1.05 99.44 ± 0.18 62.71 ± 2.37

Softmax 57.09 ± 0.79 88.96 ± 0.15 96.95 ± 0.20 58.38 ± 1.07

Resnet50 Triplet 54.23 ± 1.75 91.48 ± 0.56 99.15 ± 0.18 55.31 ± 1.71
Softmax 59.84 ± 0.66 90.54 ± 0.81 97.80 ± 0.19 61.44 ± 0.54

TABLE 2
Average test set accuracy of the proposed method (Step I) for different modalities on RobotPKU dataset.

Modality Feature
Extractor Loss rank-1 (%) rank-5 (%) rank-10 (%) mAP (%)

RGB
Resnet18 Triplet 90.53 ± 0.65 99.30 ± 0.17 99.46 ± 0.10 91.91 ± 0.64

Softmax 84.73 ± 0.47 98.00 ± 0.12 99.24 ± 0.14 86.86 ± 0.46

Resnet50 Triplet 89.04 ± 3.91 99.17 ± 0.33 99.46 ± 0.10 90.63 ± 3.41
Softmax 84.52 ± 0.24 97.91 ± 0.35 99.12 ± 0.23 87.11 ± 0.22

Depth
Resnet18 Triplet n/a n/a n/a n/a

Softmax 39.17 ± 0.34 69.85 ± 0.63 82.58 ± 0.35 38.65 ± 0.44

Resnet50 Triplet n/a n/a n/a n/a
Softmax 44.50 ± 1.02 75.83 ± 1.29 87.56 ± 0.87 44.50 ± 1.02

Table 1 shows the average accuracy of the networks
for single-modal re-identification for individual (RGB and
depth) modalities on BIWI data. Results show that the
networks optimized using RGB modality alone, can reach a
high level of accuracy. The best model, (Resnet50 optimized
with softmax loss) provides an average mAP of 95.68%. The
performance of networks optimized with triplet loss and
softmax loss lead to comparable performance. As expected,
the overall accuracy for the networks optimized using depth
modality alone is much lower compared to the accuracy
achieved for the same task with RGB. The highest accuracy
(mAP = 62.71%) is achieved using the Resnet18 network
optimized with triplet loss.

Table 2 shows the average accuracy for single-modal re-
identification for individual (RGB and depth) modalities on
RobotPKU data. Again, the RGB modality allows to achieve
high level of accuracy. For instance, using Resnet18 trained
with triplet loss yields the highest level of accuracy (mAP of
91.91%). Models trained with softmax loss generally obtain
a slightly lower accuracy. In the depth modality, the net-
works using Resnet50 with softmax loss achieve an average
mAP of 44.50%. Networks trained with triplet loss did not
converge to produce meaningful embedding layers. This is
caused by the inherent complexity of the re-identification
task in the depth images of the RobotPKU dataset. This
complexity is also reported in the performance indicators
for the networks optimized with softmax loss. Overall
results indicate that, compared to the BIWI data, the re-
identification task is more challenging with the RobotPKU
data, especially in the depth modality. This is explained by
the higher level of noise in RobotPKU images, as well higher
variability in the objects orientations.

The difference in performance for sensing in RGB and

depth in both datasets gives insights in the complexity of
the individual tasks. Following the results for both datasets,
it is comparably easy to solely sense in RGB as visual
cues like color features can be exploited very effectively
for the re-identification task. In depth, color features are
not present and the features based on a persons shape are
less descriptive and lead to a lower accuracy. Nevertheless,
it was shown that also in depth descriptive features can
be extracted. The performance of the models in depth in
BIWI is significantly higher than in the RobotPKU dataset.
The lower accuracy for RobotPKU suggest that it is much
more challenging to sense in the depth modality in this
dataset. Therefore, it is expected that the transfer of features
in RobotPKU is more difficult than in the BIWI dataset.

5.2 Performance for Cross-Modal Distillation
The cross-modal distillation network introduced in section 3
involves two optimization steps. In the previous section 5.1
networks for single-modal re-identification were analyzed.
These networks correspond to the training in Step I of
the cross-modal distillation. In this section experiments are
presented to gain insight on the step II (distillation), and,
in particular, on the advantages of transferring knowledge
based on the depth or RGB modality.

Figure 6 presents the average mAP accuracy of the cross-
modal distillation networks trained on the BIWI dataset in
the cross-modal tasks with varying population of query and
gallery between RGB and depth. The top four networks
train the baseline network in depth (step I.), and then
transfer to RGB (step II.). The bottom four networks train
the baseline network in RGB (step I.), and then transfer
to depth (step II.). Results are shown for the two feature
extractor architectures Resnet18 and Resnet50. Additionally,
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Fig. 6. Average mAP accuracy of various cross-modal distillation net-
works on the BIWI dataset. For all combinations we report varying query
(Q) and gallery (G) modalities. The first column indicates the direction
of the transfer for the cross-modal distillation.

the different colors indicate results with triplet (blue) and
softmax (green) loss functions.

Results indicate that the accuracy obtained for when
transferring from RGB to depth are significantly lower than
from depth to RGB. Using depth images to populate a
reference gallery, and RGB images as query achieves an
mAP accuracy of about 31% using Resnet50 optimized with
softmax loss. The best mAP accuracy for the same task and
transferring from RGB to depth is about 13%. An explana-
tion for this behavior is that the general shape information
of a person that is captured in depth can, to a certain degree,
be recovered in the RGB images. In contrast, the additional
descriptive information which is inherent in RGB, like color
information cannot be found in depth images. This will be
further analyzed in section 5.5.

The performance obtained for models trained with the two
losses is only slightly differing (see Table 1). Cross-modal
distillation networks with a baseline trained with softmax
loss profit from the deeper neural network architecture
Resnet50, while networks with a baseline trained with
triplet loss obtain a better result with the shallower Resnet18
architecture. The overall best performance is obtained with
a baseline in Resnet50 and softmax loss with an average
mAP of 30.1% with RGB as gallery (G) and depth (D) as
query and 27.1% for depth as gallery and RGB as query. The
corresponding average mAPs for the network with baseline
Resnet18 and triplet loss are 28.1% and 27.9%, respectively.

A remarkable finding is the significant difference in
performance when alternating the modality used as gallery

and query between RGB and depth. Our results suggest
that a higher level of performance can be achieved in all
networks when the gallery consists of RGB images. The
explanation for this behavior can be found in the single-
modal re-identification performance of depth and RGB. In
fact, when calculating the performance of the network with
single-modal re-identification, the RGB modality provides
better results than with depth. Therefore, if RGB images are
in the gallery the probability of meaningful embeddings for
the images is higher than for depth in gallery. As the per-
formance indicators are more influenced by meaningful em-
beddings in the gallery, we see this effect. Hence, a recom-
mendation for future work on cross-modal re-identification
is to report for both gallery and query definitions.

Figure 7 shows an example of results for the best per-
forming cross-modal distillation network (Resnet50 with
softmax loss) on BIWI dataset, where the query image is
RGB and the gallery image is depth. Query images are
selected randomly in test set. This figure highlights the
complexity of the task, which is very difficult to solve for
humans.

Fig. 7. Example of qualitative results for the proposed architecture on
BIWI dataset. The green box denotes the correct match. Gallery (G)
and Query (Q) varied for the modalities.

Figure 8 presents the average mAP accuracy of the
cross-modal distillation networks trained on the RobotPKU
dataset in the cross-modal tasks. We present the same results
as with the BIWI dataset. Since it is not possible to train a
network with triplet loss in depth (see section 5.1), these re-
sults are not reported in the table. The results on RobotPKU
data mirror the findings from the BIWI dataset. Again,
the transfer from depth to RGB significantly outperforms
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the transfer from RGB to depth. The difference of the best
networks in mAP is 11%/7.5% for varying query and gallery
population. The best overall network is Resnet50 trained
with softmax and a transfer from depth to RGB. Similarly to
observations on BIWI data, the accuracy for RGB as gallery
(G) and depth as query (Q) is higher compared to depth as
Gallery (G) and RGB as Query (Q).

Fig. 8. Average mAP accuracy of various cross-modal distillation net-
works on the RobotPKU dataset. For all combinations we report varying
query (Q) and gallery (G) modalities. The first column indicates the
direction of the transfer for the cross-modal distillation.

In summary, to obtain the better results with the
cross-modal distillation network, the transfer of knowledge
should occur from depth to RGB. As shown in section 5.1
(tables 1 and 2) in the single-modal task a much higher
performance was obtained in the RGB modality. Hence,
the performance in the single-modal task of the baseline
network is not critical to performance for cross-modal dis-
tillation. Results suggest that the success of the distillation
step is more dependent on the features learned from the
modalities. Hence, the features learned in the depth modal-
ity were transferable to the RGB modality, while features
learned in the RGB modality where not transferable to the
depth modality. This gives an indication on the relation
between the depth and RGB modality where depth can, to
a certain degree, be considered a subset of RGB. The results
indicate that networks with a baseline trained with softmax
loss and networks with a baseline network in triplet loss
obtain similar results. In section 5.3 a more detailed analysis
on the influence of the embedding size will be evaluated.

5.3 Sensitivity Analysis for Cross-Modal Distillation
To get a better understanding of the cross-modal distilla-
tion network we will present a sensitivity analysis in this
chapter. First, the ideal embedding size and layer for the
architectures which were identified as best suited for the
task in section 5.2 will be analyzed. Second, the influence of
the different components of the distillation process will be
evaluated.

For the BIWI dataset the best performing cross-modal
distillation methods were obtained with a transfer from
depth to RGB with a baseline in Resnet50 trained with
softmax loss and with a baseline in Resnet18 trained with
triplet loss. Hence, for these two methods the influence
of differently sized embeddings are analyzed in figure 9
and 10. For the cross-modal distillation network trained
with a baseline in softmax loss (figure 9) the two variants
of the softmax loss as defined in formulas 3 and 4 are
evaluated. The difference between the two definitions is
the layer which is defined as the embedding layer. In the
variably sized embedding as in formula 3 the features are
extracted from the preliminary layer before the softmax loss.
For this embedding sizes of 32, 128, 256, 512, 1024 and 2048
are investigated. Embeddings from the novel softmax loss
definition as in formula 4 are denoted as classification layer
embedding and have a defined size according to the number
of training classes, which is 32 for the BIWI dataset and 40
for the RobotPKU dataset. For better visual comparison of
the two embedding definitions the obtained performance
for the latter are shown as a horizontal line independently
of the x-axis. For triplet loss embedding sizes of 32, 128, 256,
512, 1024 and 2048 are evaluated.

It becomes clear that for the BIWI dataset in the single-
modal task in pure depth (right graph in figure 9) the
networks profit from a bigger size within the preliminary
layer embedding up to a convergence. In contrast to that
the best performance in the cross-modal tasks after step II.
of the cross-modal distillation is obtained when using the
classification layer embedding with 37.73% and 39.81% for
varying query and gallery definition. For the cross-modal
tasks, an optimum for the preliminary layer embedding can
be found at a 512 dimensional feature size. However, the
results are inferior to the classification layer embedding.
The results for a varying embedding size for triplet loss are
shown in figure 10. Here, only slight performance variations
can be observed for a differing embedding size. The overall
best result for the cross-modal task for the BIWI dataset
is obtained with the classification layer embedding of the
size of training classes, 32. To the best of our knowledge
this is the first work identifying the classification layer as
a better performing embedding layer than the preliminary
layer for a re-identification task. Hence, the suggestion for
future work in re-identification is to consider the classi-
fication layer embedding as a potential alternative to the
preliminary layer embedding.

The results for a varying embedding size for a cross-
modal distillation network with a baseline in Resnet50 and
softmax loss for the RobotPKU dataset can be seen in figure
11. It gets visible that for all evaluations a clear optimum is
reached with an embedding size of 256 with the preliminary
layer embedding. In this case, the preliminary layer embed-
ding outperforms the classification layer embedding slightly
for all tasks. The best obtained average mAPs for the cross-
modal tasks with changing query and gallery are obtained
with Resnet50 trained with softmax loss with an preliminary
layer embedding of size 256 are 18.13% and 20.52%.

The cross-modal distillation method is highly dependent
on a successful knowledge transfer from depth to RGB.
To get more insights into this transfer we evaluated the
influence on network accuracy in the cross-modal tasks with
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Fig. 9. Analysis of influence of embedding layer and embedding size on the performance of the cross-modal distillation network with Resnet50 and
softmax loss on the BIWI dataset. Transfer from depth to RGB. Reported are RGB as query and depth as gallery (left), depth as query and RGB as
gallery (middle) and single-modal performance in depth (right).

Fig. 10. Analysis of influence of embedding size on the performance of the cross-modal distillation network with Resnet18 and triplet loss on the
BIWI dataset. Transfer from depth to RGB. Reported are RGB as query and depth as gallery, depth as query and RGB as gallery, and single-modal
performance in depth in the same chart

Fig. 11. Analysis of influence of embedding layer and embedding size on the performance of the cross-modal distillation network with Resnet50
and softmax loss on the RobotPKU dataset. Transfer from depth to RGB. Reported are RGB as query and depth as gallery (left), depth as query
and RGB as gallery (middle) and single-modal performance in depth (right).

varying components for knowledge transfer. Table 3 shows
the impact of copying of weights, and freezing of mid to
high-level layers on the accuracy. Results are shown for
the BIWI dataset with a cross-modal distillation network
with a baseline in Resnet18 trained with classification layer
embedding. If the freezing of mid- to high-level layers in
the copied network is omitted, performance decreases by
6.8%/3.5%. Another reduction can be seen when the second
network is not initialized with the weights of the first net-

work. In this case the cross-modal performance in average
mAP decreases by 6.4%/5.8%. These results underline the
importance of each component for the cross-modal distilla-
tion network in performing knowledge transfer across the
modalities.
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TABLE 3
Analysis of influence of various training scenarios for knowledge transfer. Results are average accuracy of the BIWI dataset for a cross-modal

distillation network using Resnet18 and softmax loss as introduced in formula 4.

Scenario rank-1 (%) rank-5 (%) rank-10 (%) mAP(%)
No copying of weights,
No freezing of layers

Q: RGB, G: D 15.7 49.8 77.9 17.5
Q: D, G: RGB 19.4 54.6 82.9 23.9

Copying of weights,
No freezing of layers

Q:RGB, G: D 22.6 63.1 88.3 23.9
Q: D, G: RGB 26.9 70.2 91.8 29.7

Copying of weights,
Freezing of layers

Q:RGB, G: D 29.8 71.5 91.8 30.6
Q: D, G: RGB 31.0 73.4 93.1 33.2

TABLE 4
Average accuracy of state-of-the-art and proposed networks for different scenarios on the BIWI dataset. For results from [17] no detailed

information on the evaluation procedure was given. As the single-gallery shot is used, this paper reports conservative accuracy indicators a
comparison is still possible.

Approach Query-RGB, Gallery-Depth Query-Depth, Gallery-RGB
rank-1 (%) rank-5 (%) rank-10 (%) mAP (%) rank-1 (%) rank-5 (%) rank-10 (%) mAP (%)

WHOS, Euclidean [73] 3.2 16.6 31.5 3.7 5.1 18.7 32.6 5.6
WHOS, XQDA [73] 8.4 31.7 50.2 7.9 11.6 34.1 51.4 12.1
LOMO, Euclidean [24] 2.8 16.4 32.5 4.8 3.3 15.6 29.8 5.6
LOMO, XQDA [24] 13.7 43.2 61.7 12.9 16.3 44.8 62.8 15.9
Eigen-depth HOG/SLTP, CCA [17] 8.4 26.3 41.6 - 6.6 27.6 45.0 -
Eigen-depth HOG/SLTP, LSSCDL [17] 9.5 27.1 46.1 - 7.4 29.5 50.3 -
Eigen-depth HOG/SLTP, Corr. Dict. [17] 12.1 28.4 44.5 - 11.3 30.3 48.2 -
Zero-padding network, [10]
Resnet50 5.86 ± 2.18 25.85 ± 6.35 47.13 ± 8.06 7.28 ± 4.03 10.34 ± 2.68 38.91 ± 6.45 62.84 ± 11.48 9.77 ± 3.80

One-stream network, [10]
Resnet50 15.68 ± 0.77 50.29 ± 1.18 75.65 ± 0.46 16.86 ± 0.87 19.82 ± 0.33 55.74 ± 0.83 78.92 ± 1.07 23.75 ± 0.30

Cross-modal distillation network,
Resnet50, Embedding size 32 (C), (ours) 34.87 ± 2.48 75.22 ± 2.42 93.93 ± 1.21 35.90 ± 2.37 36.29 ± 2.25 77.77 ± 2.21 94.44 ± 2.24 38.31 ± 2.18

TABLE 5
Average accuracy of state-of-the-art and proposed architecture for different scenarios on the RobotPKU dataset.

Approach Query-RGB, Gallery-Depth Query-Depth, Gallery-RGB
rank-1 (%) rank-5 (%) rank-10 (%) mAP (%) rank-1 (%) rank-5 (%) rank-10 (%) mAP (%)

WHOS, Euclidean [73] 3.8 16.3 29.5 3.9 3.5 16.1 31.2 5.4
WHOS, XQDA [73] 10.0 31.8 49.8 8.2 9.8 31.0 48.0 9.8
LOMO, Euclidean [24] 3.6 15.0 28.0 3.9 3.7 15.3 28.7 4.9
LOMO, XQDA [24] 12.9 36.4 56.1 10.1 12.3 37.4 56.1 12.3
Zero-padding network, [10]
Resnet50 7.76 ± 0.85 29.04 ± 2.57 47.79 ± 3.34 7.67 ± 0.59 6.57 ± 0.64 26.80 ± 2.14 45.62 ± 2.78 8.31 ± 0.56

One-stream network, [10]
Resnet50 11.92 ± 0.63 38.13 ± 1.01 57.34 ± 2.14 11.42 ± 0.52 12.48 ± 1.01 38.51 ± 1.51 56.77 ± 0.85 14.19 ± 1.37

Cross-modal distillation network,
Resnet50, Embedding size 256, (ours) 19.50 ± 0.99 50.11 ± 0.53 67.93 ± 0.69 18.13 ± 1.21 21.51 ± 1.12 54.90 ± 1.40 72.61 ± 0.95 20.52 ± 1.00

5.4 Comparison with State-of-the-Art Methods
In this section the results from section 5.2 are taken into a
broader scope. Therefore, a comparison to existing methods
for cross-modal person re-identification will be taken. Addi-
tionally to the presented deep neural network structures for
cross-modal person re-identification several methods based
on hand-crafted features will be evaluated for the task.
Hence, in the following the WHOS feature extractor [73]
and the LOMO feature extractor [24] will be investigated.
The same features will be extracted for both modalities. The
features are compared on basis of Euclidean distance and
the additional metric learning step Cross-view Quadratic
Discriminant Analysis (XQDA). Additionally, the matching
of Eigen-depth and HOG/SLTP features as reported by [17]
is included in table 4 for the BIWI dataset.

Table 4 presents the average accuracy of state-of-the-art
and proposed networks for different scenarios on the BIWI
dataset. First, it is apparent that the hand-crafted feature
extractors lead to very low accuracy when matched in the
Euclidean space. This is expected, as the modalities depth
and RGB are heterogeneous and, hence, no direct compari-

son of hand-crafted features is possible. When applying the
Cross-view Quadratic Discriminant Analysis (XQDA) the
performance of the models based on hand-crafted features
are significantly enhanced, while the LOMO features lead
to the best results. These results also outperform the re-
sults from [17] for the Eigen-depth features combined with
HOG/SILTP.

Interestingly, also the zero-padding network is outper-
formed by the conventional approaches. This suggests that
the zero-padding with the tested architecture is not suitable
for the cross-modal person re-identification task between
depth and RGB. For BIWI, the one-stream architecture is
outperforming all methods based on hand-crafted features
by at least 3%/7% for varying query and gallery in Rank
1 accuracy with a Resnet50 structure. Finally, the cross-
modal distillation network enables an additional improve-
ment compared to the one-stream network by 19%/16% for
Resnet50.

In table 5 the results for the RobotPKU dataset are
shown. Again, the LOMO features with the subsequent met-
ric learning step XQDA obtains the best mAP for the hand-
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crafted methods. The one-stream network with Resnet50
structure outperforms LOMO, XQDA in average mAP. The
performance increase of the cross-modal distillation net-
work above that of the one-stream network is at 6.7%/6.3%.

Overall results show that the cross-modal distillation
network can significantly improve accuracy compared to
state-of-the art methods for both BIWI and RobotPKU
datasets. This improvement was bigger with BIWI dataset
than with the RobotPKU dataset. This is most probably due
to the fact, that the BIWI dataset consists of high quality
depth images, which are very well synchronized. The depth
data in the RobotPKU dataset contains many more flaws
like missing limbs and, additionally, the coupled images
between depth and RGB are far less synchronized. As the
cross-modal distillation network relies on coupled images,
poor synchronization of RGB-D images can have have a
non-negligible influence on performance. The difficulties in
the RobotPKU dataset also explain the lower overall accura-
cies in RobotPKU in comparison to the BIWI dataset. As all
methods based on deep neural networks compared in this
section have the same meta-architecture during inference,
and were built upon the same feature extractors, the time
and memory complexity is the same for all methods. This
underlines the superiority of the cross-modal distillation
network over the competing methods.

5.5 Analysis of Neural Network Activations
The cross-modal distillation network is state-of-the-art for
cross-modal person re-identification. The analysis in section
5.2 showed that the high performance is feasible when
transferring knowledge from depth to RGB. To insight into
why a baseline trained in the depth modality is that su-
perior, a analysis of deconvolutional images will be made
for certain deep neural network architectures. Figure 12
shows deconvolution images for different networks on two
images from RGB (a. and c.) and depth (b. and d.) from
the BIWI RGBD-ID dataset. The guided backpropagation
algorithm was used for visualization of the activations for
the networks [40]. The architectures which are shown are
separate training for the single-modality task (as in section
5.1), the one-stream network (presented in section 3.2), and
our cross-modal distillation method.

The images show that the activations for the different
networks are varying considerably. When optimized for the
single modalities, the networks in the RGB modality are
activated by features inside the torso region of a person,
like the color of the same. The network sensing in the depth
modality is activated by the outer structure of the torso.
For the one-stream network the activation structures are
not that clear. For the RGB modality the network is mostly
activated by colors of torso and upper legs, while in the
depth modality a cluttered outer structure of the torso is
captured.

For the RGB modality in the cross-modal distillation
network a very different activation map can be observed
(images (a) and (c)). Instead of being activated by color
features, we see that the network is mostly activated the
structure of the torso for those images. Therefore, the knowl-
edge from depth, which is a descriptiveness of the problem
with structural details, was transferred to the RGB modal-
ity. This finding underlines that the transfer of knowledge

Fig. 12. Comparison of deconvolution images for different networks
on BIWI data. Visualization is performed with guided backpropagation
[40]. Activation maps of cross-modal distillation network in RGB highly
differing to the other techniques.

between the modalities was successful. As the describing
features for the images are similar, the task of embedding
to a common feature space is facilitated. This explains the
better performance in cross-modal person re-identification
as found in section 5.4.

6 CONCLUSIONS

In this work a new technique for cross-modal person re-
identification between RGB and depth was presented. The
cross-modal distillation network is trained in two steps.
Firstly, a deep neural network is optimized in a single-
modality with architectures and losses which are proven
to be efficient for single-modal person re-identification. In
the second step, a distillation of the learned features to the
second modality takes place and an embedding of images
from both modalities in a common feature space is enforced.

The key difference of our method to the state-of-the-
art methods for cross-modal person re-identification with
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deep neural networks is its two-step approach. This en-
ables the method to exploit the relation between the two
relevant modalities. We find that our transfer-learning ap-
proach outperforms state-of-the-art the current state-of-the-
art for cross-modal person re-identification between RGB
and depth.

Our experiments showed that features which are de-
scriptive in the depth modality can successfully be trans-
ferred to the RGB modality for the task of person re-
identification. An implication of this is that information
captured in depth is to a certain level retrievable in the
RGB modality. Following this, we were able to show that
for the specific application the depth modality can, up to a
certain degree, be considered a subset of the RGB modality.
This finding helps to explain the dependence of the RGB
modality and the depth modality.

The analysis in this paper also showed that cross-modal
person re-identification is a complex task, and the results
in absolute numbers suggest that there is still room for im-
provement. In fact, the accuracies obtained in cross-modal
re-identification (tables 4 and 5) are still significantly lower
than the accuracies for single-modal re-identification in the
more difficult modality (tables 1 and 2). As this is one of
the first works concerning the task we want to highlight
some potential future directions and current problems in
the domain.

First, it will be necessary to obtain bigger datasets to
make research more attractive and give data-hungry meth-
ods based on deep neural networks the possibility to obtain
higher accuracies. The publication of the SYSU-IR dataset
in 2017 [10] pushed the interest in cross-modal person
re-identification in RGB vs. infrared immensely [11], [12],
[13]. A similar effect could be expected for cross-modal
re-identification between RGB and depth. Therefore, the
amount of persons contained in the datasets would have to
rise from less than a hundred for the current datasets to at
least the magnitude of several hundreds. Additionally, high-
quality depth and RGB images will be necessary. Second, for
future research it will be important to expand the considered
mode of depth. Especially for the need in intelligent vehicles
it will be necessary to evaluate the methods on sparse
depth maps, as captured by LiDARs or radars. Therefore,
completely new datasets with a high amount of tracked
pedestrians and other street objects, will be needed.

Overall, we were able to approach the relevant prob-
lem of cross-modal re-identification in RGB and depth for
surveillance applications as well as intelligent vehicles in
a very effective way. Our method brings the community
closer to solve this difficult challenge and our results help to
understand the relation between RGB and depth better.
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APPENDIX A
SPLIT OF EVALUATION DATASETS

This appendix provides the label of individuals used to form
the design (training set plus validation) and test subsets.

A.1 BIWI RGBD-ID dataset:
Design set (Train + Validation set):

0, 1, 4, 5, 6, 7, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 25, 26, 34, 35,
38, 39, 40, 43, 50, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 73,
74, 76, 77.

Test set:

2, 3, 8, 10, 14, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 36, 37,
41, 42, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 60, 63, 64, 68,
71, 72, 75.

A.2 RobotPKU dataset:
Design set (Train + Validation set):

0, 2, 3, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 41, 43, 44, 45, 46, 47, 52, 54, 55, 58, 59, 60,
63, 66, 67, 68, 72, 73, 74, 77, 78, 80, 82, 83, 84, 87, 88.

Test set:

1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 24, 26, 38, 39, 40, 42, 48,
49, 50, 51, 53, 56, 57, 61, 62, 64, 65, 69, 70, 71, 75, 76, 79, 81,
85, 86, 89.
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(LIVIA), Montréal, Canada. He is currently work-
ing as a research and development engineer

for autonomous driving at ZF Friedrichshafen AG. His main research
interests include re-identification of objects in different contexts, RGB-D
vision and efficient deployment of neural networks.

Amran Bhuiyan received the Bachelor de-
gree in Applied Physics, Electronic & Commu-
nication Engineering from University of Dhaka,
Bangladesh in 2009, the M.Sc. degree in Com-
puter Engineering and Information Technology
from the Lucian Blaga University of Sibiu, Roma-
nia under the Erasmus Mundus external window
in 2011 and the Ph.D. degree in Pattern Analysis
and Computer Vision from the Istituto Italiano
di Tecnologia, Genova, Italy. He is currently a
Postdoctoral Researcher with LIVIA, École de
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