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Abstract
Internet of Medical Thing (IoMT) is an emerging technology in healthcare that can be used to realize a wide variety of

medical applications. It improves people’s quality of life and makes it easier to care for the sick individuals in an efficient

and safe manner. To do this, IoMT leverages the capabilities of some new technologies including IoT, Artificial Intelli-

gence, cloud computing, computer networks and medicine. Combining these technologies to monitor the patient’s health

conditions in real-time or semi-real-time is a critical challenge in IoMT. In this regard, one of the most crucial components

of IoMT are network communication protocols that should provide a fast and reliable communication path between a

connected biosensor to a patient and cloud computing environment. In this paper, we propose EQRSRL as an efficient

routing mechanism for different types of IoMT applications. The aim of EQRSRL is to provide a reasonable level of

Quality of Service (QoS) for IoMT traffics. To achieve this goal, it categorizes the network traffic into three classes and

treats them differently concerning their QoS requirements. Moreover, EQRSRL divides the network environment into

multiple zones to decrease the number of message exchange between the nodes. In order to compute optimal paths between

the nodes, it considers QoS and energy metrics, and makes use of a reinforcement learning approach in path computation

process. Simulation results show that the implementation of EQRSRL in IoMT is practical and leads to improvement of

82% in average energy consumption, 25% in end-to-end delay and 7% packet delivery ration in compared to the state-of-

the-art routing techniques.

Keywords Internet of Things � Internet of Medical Things � TSCH scheduling � Routing protocol � Energy efficiency �
QoS � Reinforcement learning

1 Introduction

Due to the development of the Internet of Things (IoT), we

are now facing a wide range of applications in commercial

[1], industrial [2, 3], military [4], monitoring [5], smart

homes [6], smart cities [7–9], underwater [10] and medical

[11] fields [12]. The Internet of Medical Things (IoMT) is

one of the important applications that use a combination of

biosensors and IoT devices to track human physiological

activity and reactions. Due to the importance of medical

applications, recently, a great deal of research has been

conducted in the field of IoMT. However, most of the

existing methods have only focused on one aspect of the

requirements of IoMT. Since IoMT applications generate

large amounts of data from various sensors, they require

QoS-aware computations for real-time processing. To

address these needs, a multi-layer architecture has recently
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been proposed [13, 14]. While this architecture uses three

layers, it fails to consider the challenges faced in each layer

and only develops its method in the first layer. To bridge

this gap, we have developed a three-layer architecture that

coordinates and integrates all layers for medical use.

Therefore, the main motive of this research is to propose a

three-tier architecture for data collection, routing, pro-

cessing, and storage, which this architecture improves

network effectiveness.

In the first layer, the biosensors can be lightweight,

small-size, and low-power and can be placed inside/outside

the body. They sense various physiological data of the

body and the patient’s vital signs, such as temperature,

heart rate, blood pressure, electrocardiogram (ECG) and

electroencephalogram (EEG), and then send data to the

coordinator node [15]. Then, the coordinator nodes send

data to medical centers through intermediary nodes using

wireless communication. The coordinator nodes are in

charge of preprocessing and data aggregation in addition to

routing. The connections between the coordinator nodes

and the sink are defined in the second tier. After initial

processing on an edge device, data are transmitted to a

remote server or cloud environment for storage or pro-

cessing. In the third tier, a general practitioner or staff

member of a hospital or medical center evaluates the

detected parameters remotely and makes the best decision

for the patient. Furthermore, gathered data on the cloud can

be analyzed by using machine learning techniques to pre-

dict, categorize, or identify diseases.

According to the proposed architecture, it is essential to

develop a centralized scheduling method for the first layer

and an appropriate routing protocol for the second layer in

order to address issues such as high node density, varying

data rates, network mobility, resource limitations, and

reasonable quality of service [16, 17]. Since Wireless

Sensor Networks (WSN) routing protocols or routing

methods in IoT cannot be used in IoMT networks [18].

Therefore, in order to take into account the characteristics

of IoMT networks, we attempt to present a centralized

scheduling approach and a machine learning-based routing

protocol in this paper. Although different routing protocols

have been proposed, they couldn’t address all the men-

tioned challenges. For this reason, in this paper, we attempt

to propose a routing schema to address most of these

challenges. As a matter of fact, the aim of EQRSRL is to

provision all IoMT requirements simultaneously. To do

this, we focus on the following main points of interest in

designing EQRSRL:

• QoS There are different types of IoMT data because

they deal with human vital indicators. Decisions

concerning the patient’s life-threatening factors should

be made as soon as possible. Furthermore, patient data

with severe symptoms that require prompt treatment

should be provided as soon as possible with high

reliability. Quality of service (QoS) is a primary

concern at IoMT, with the aim of maintaining a secure

connection, high availability, minimal transmission

delays and packet loss.

• Energy awareness It is difficult to charge or replace

sensors on IoT devices. Therefore, power consumption

is an important concern in IoMT and it requires energy-

efficient routing methods.

• Mobility The network architecture defines how various

sensor nodes interact with one another. IoMT requires

the use of a routing algorithm that takes network

mobility into account.

• Data rates It can be measured as the speed at which

data is transferred between source and destination. In

the medical field, data transfer rates and the importance

of data in different sensors vary. It’s crucial to develop

routing protocols that can deal with the variety of data

rates in IoMT.

Since human life is at the sake, providing the mentioned

parameters in an IoMT environment is an essential issue.

Hence, EQRSRL considers these parameters to increase

QoS in IoMT as well as energy efficiency.

The organization of this paper is as follows. In the

section 2, we review some related work in IoMT. The

Sect. 3 describes the architecture and model of EQRSRL.

We experimentally evaluate EQRSRL in Sect. 4 and the

results of the simulation are explained. Finally, Sect. 5

concludes the paper.

2 Related work

In this section, we review and describe some earlier

research work in the scope of IoMT. We categorize routing

protocols into four groups: QoS-aware, Temperature-

aware, Cluster-based, Cost or Energy-aware [15]. Each

group covers a different aspect of IoMT’s limitations. In

the following, we will examine each of them separately.

2.1 QoS-aware routing protocols

This group of protocols considers different metrics to pro-

vide QoS. In fact, they provide higher reliability, lower end-

to-end delay, and higher packet delivery ratio [19–21]. In

[22], the authors proposed a local multipurpose routing

algorithm. In their method, data traffic has been categorized

into four classes: Normal, reliability-sensitive, delay-sensi-

tive, and critical traffic with respect to the desired QoS. To

do this, they have considered four different modules, each of

which is responsible to route a specific class. In IoMT
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networks, mobility is an unavoidable presumption;

nonetheless, the authors paid no attention to the nodes’

mobility. DMQoS [23] is a geographical routing in which

data packets are classified into four categories (normal,

critical, latency, and reliability packets). Moreover, it con-

sists of five modules to route each of the mentioned cate-

gories. However, using the location data of sensor nodes in

Wireless Body Area Network (WBAN) is a challenging

issue and is not practical in most circumstances. Addition-

ally, DMQoS increases traffic overload, which causes a

collision and decreases reliability. In [24], the authors pro-

posed a QoS-aware routing protocol for delay-sensitive data

named QPRD, in which data are split into normal and delay-

sensitive groups. The best path is selected for both groups of

data regarding the QoS requirements. However, it does not

provide any mechanism for ensuring transmission reliability.

ZEQoS [20], is another QoS-aware routing protocol to

consider energy requirements, end-to-end delay, and relia-

bility in order to improve QoS. It uses more power than the

QPRD protocol and does not have a reasonable performance

in dynamic networks. ZEQoS considers QoS requirements,

but it does not attention to nodes’ movement and changing

network topology. A reinforcement Q-Learning routing for

IoMT is presented to identify optimum routing rules based

on QoS [25]. While this method uses reward and penalty in

dynamic environments and adapts to the condition of the

network, it is not scalable and does not take energy into

account. Ahmed et al. proposed an improved quality-aware

routing protocol (IM-QRP) for remote health monitoring of

the elderly or chronically ill in hospitals and residential

environments [26]. The proposed protocol shows a signifi-

cant improvement in energy consumption and quality of

service criteria compared to similar routing protocols.

Although IM-QRP follows a three-layer architecture, routing

is performed only in the first layer. Memon et al. present a

QoS-aware routing protocol that considers temperature and

QoS requirements simultaneously (TLD-RP) [27]. QoS

metrics such as link stability, reliability, and delay are taken

into account in TLD-RP. The proposed TLD-RP strategy

improves WBSN performance along with throughput,

packet delivery, network overhead, and link stability, and

the simulation results support its effectiveness and efficacy.

Although QoS-based protocols pay attention to the cri-

teria of delay and reliability, in most of these methods,

routing is only done in the first layer (from biosensors to

coordinator nodes). To bridge this gap, we considered QoS

metrics in the second layer, where the most delay and

packet loss occurs.

2.2 Thermal-aware routing protocols

These protocols use the temperature of sensor nodes as

route selection criteria [9]. Thermal-Aware Routing

Algorithm (TARA) [28] is one of the first of these proto-

cols in which data routes from the source to the sink by

avoiding hotspot nodes. In TARA, some important factors

such as reliability are not guaranteed. Bag et al. proposed

LTR to select the nodes with the lowest temperature as

neighbours. LTR uses a fixed number of hops count to send

packets to the sink node [29]. In another work, they pro-

posed ALTR [30] as the extension of LTR. The difference

between ALTR and LTR is that when the hops count

exceeds the threshold, ALTR sends the packet to the sink

through a path with the lower number of hops. LTRT [31]

is a combination of LTR and shortest path routing that

selects a node with the lowest temperature as the next-hop.

LTRT requires precise information about the node tem-

perature in the network. This policy is not efficient,

because it consumes a great deal of energy. In [32], the

authors proposed a routing mechanism in which the nodes

adjust their energy level based on the distance to the

neighbouring nodes. In their method, the energy value of

each node is calculated from the value of the Received

Signal Strength Index (RSSI) of its neighbors. By choosing

a path that is close to the maximum RSSI value, less energy

is required, leading to energy efficiency and minimal heat

production. EOCC-TARA [33] uses advanced multi-ob-

jective spider monkey optimization in order to provide a

temperature-aware routing algorithm in WBAN. EOCC-

TARA simultaneously considers several metrics, including

energy, link reliability, path loss, and queue length. How-

ever, EOCC-TARA needs to gather information from the

whole of the network in SDN to find the best routes,

therefore it has a high routing overhead.

Most temperature-aware routing protocols apply single

or combined routing criteria such as temperature, hop

count, or energy. Some studies use the sleep-wake mech-

anism to prevent skin damage. To do this, when the tem-

perature of a sensor exceeds a threshold, it goes to sleep

mode. Therefore, vital information is ignored until the

sensor cools [34, 35]. Therefore, some of these methods do

not consider QoS and are not suitable for real-time

applications.

2.3 Cluster-based routing protocols

These types of protocols divide the entire network into

several clusters. Clusters are composed of a collection of

members and a cluster head (CH). Many techniques have

been proposed to select the cluster head. CH’s task is to

gather, aggregate, and transmit data from member nodes to

the sink. The main goal of these protocols is to decrease

direct communications between the sources and sink node

[36]. In [37], the authors use a fuzzy logic system to select

the CHs. Their proposed protocol is energy-efficient and

uses direct transmission between the source and the base
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station node, depending on the location of the sensor node.

The authors, in [38], introduced a self-organizing routing

protocol that divides the network into clusters in which the

CHs are randomly chosen, which leads to consuming more

energy. Multiple WBANs are connected by the solution

that the authors in [39] presented. Their method uses high-

reliability CHs to transfer data packets from source to sink

while minimizing collision and improving QoS. Their

protocol increases network stability and extends the life of

the network, but it causes increased delay. Recently,

heuristic and meta-heuristic algorithms have been used to

cluster nodes in different fields of IoT applications. In [40],

prior to creating clusters, the malignant nodes in the net-

work are first detected. Then, a multi-objective firefly

algorithm is used to choose the cluster head (CH) for each

cluster. Different types of data were gathered by a number

of body sensor nodes and transferred to CH. Then, CH

provides the information to the system via the gateway

after sending the data it has gathered to the sink. Nazari

et al. introduce a clustering strategy for the Internet of

Things (IoT) based on software-based networking (SDN)

and using genetic algorithms. Their method determines the

necessary number of clusters and makes sure that CHs are

distributed throughout the environment. After clustering,

CHs use greedy distance-based routing for sending data to

the sink. Therefore, multi-hop routing causes a prolonged

network lifetime [6]. DECR presents an energy-efficient

two-hop-based clustering and routing protocol [41]. DECR

utilizes a modified grey-wolf optimization algorithm to

select the cluster head (CH) and optimize routing, taking

into account node connectivity and residual energy. DECR

determines the optimal number of clusters by considering

intra-cluster and inter-cluster transmission distances. A

routing algorithm is also proposed to ensure energy-effi-

cient packet delivery from CH to sink. Simulation results

show that DECR significantly outperforms existing clus-

tering and routing protocols in various performance

metrics.

Although, clustering has been successful in reducing

energy consumption in many IoT applications. However,

using this technique in IoMT will be very inefficient due to

the delay of the cluster-based routing process.

2.4 Cost-based protocols

Considering energy as a cost is one of the most important

aspects of designing routing protocols for IoMT. Cost-

based protocols attempt to estimate the cost of a link

regarding the suitableness of that link in the routing process

[42]. LAEEA [43] is a routing protocol that selects the least

count of hops to reduce energy consumption in the routing

process for the transmission of data packets toward the sink

node. Nodes with the most energy and the shortest distance

from the sink are selected as intermediate nodes in this

protocol. In [45], an efficient and reliable energy routing

scheme (ERRS) is proposed to increase reliability. ERRS

uses a technique called adaptive static clustering to

improve reliability and prolong the lifetime of the network.

However, it does not provide any assurance of QoS and

interference protection. IM-SIMPLE [44] is a cost-based

protocol that includes three phases: Setup, Next-Hop

Selection, and Scheduling. In IM-SIMPLE, the cost func-

tion is calculated based on the remaining energy of the

nodes and their distance to the sink. At the setup phase, the

sink and other sensor nodes broadcast a packet including

information about their position, identifier, and remaining

energy. Then, each node investigates the information

obtained from its neighbor nodes, and selects the node with

the lowest cost as a next-hop. Finally, at the scheduling

phase, the sending node allocates a time slot using TDMA

for the next-hop node. To decrease energy consumption,

IM-SIMPLE employs a linear mathematical model. In

SMORP [46], energy consumption is distributed equally

among all nodes using a spider monkey optimization

algorithm. Energy distribution serves to preserve network

connectivity and stability. SMORP chooses nodes with the

highest residual energy, the lowest traffic load, and the

closest proximity to the sink, as a next-hop.

Cost-based methods deal with different aspects of net-

work requirements. Creating a trade-off between different

requirements is the main challenge in these protocols. It

should be noted that most of the previous research has

followed the routing issue only in the first layer. So paying

attention to all layers seems necessary to be ignored in

most of the tasks.

In order to compare the above research work in terms of

some influential parameters in IoMT such as mobility,

energy, latency, reliability and temperature, we summarize

them in Table 1. As shown in this table, some research

works focus only on temperature or energy consumption.

However, none of them have been specifically designed to

provide better reliability and QoS along with low power

consumption and high mobility. In this paper, we aim to

achieve better performance in terms of overall latency,

reliability, power consumption, and mobility by providing

a routing protocol based on reinforcement learning.

3 EQRSRL architecture

In EQRSRL, we assume that the network is based on a

three-tier architecture. In the first layer, patients are con-

nected to several biosensors, each of which is in charge of

gathering particular data. The sensors collect data and

transfer it to the coordinator node according to a proposed

scheduling algorithm. At the second layer, coordinators
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perform data preprocessing and forward data toward a sink

node by using hop-by-hop communication. The sink node

is connected to an edge device, and each patient’s infor-

mation flow is processed separately on this node. The

processed data are aggregated, summarized, and finally

delivered to the third layer for further processing or stor-

age. Various techniques, such as machine learning algo-

rithms, can be implemented in the third layer for data

analysis such as disease detection, drug prescription

effects, and so forth. Therefore, experts can view these

results in an application and use them to analyze the dis-

ease recovery process. The overall architecture of the

system is shown in Fig. 1.

As shown in Fig. 1, after collecting and sending data by

biosensors, the coordinator node divides them into three

categories: normal, high priority, and real-time. Energy-

sensitive, delay-sensitive and service-sensitive paths are

used to send normal, high priority and real-time data,

respectively. As aforementioned in Sect. 1, in order to

calculate appropriate routes, energy, location, latency and

packet delivery ratio (PDR) should be taken into account. It

is worth noting that considering all of these metrics in a

single tier is difficult and in most cases does not lead to

desirable results. Hence, in order to take these metrics into

account, we attempt to implement a cross-layer solution in

which the physical and MAC layer functionalities are

deployed in the first tier. Moreover, the routing function-

alities are deployed in the second tier. As depicted in

Fig. 1, the main goal of the first and second tiers is to

gather and deliver the data to the third tier (Cloud tier) for

further analysis. In this paper, we do not involve in the

third tier and propose EQRSRL to consider the QoS issues

in the first two tiers for IoMT applications.

3.1 First tier: physical parameters

As it is shown in Fig. 1, the functionality of the first tier is

to sense the environment (Human body) and send the

Table 1 Comparison between

related researches
Paper Energy Delay Reliability Mobility Temperature

Khan et al. [20] � U U � �
Nadeem et al. [21] � U U U �
Djenouri et al. [22] U � U � �
Razzaque et al. [23] U � � U �
Khan et al. [24] U � U � �
Liang et al. [25] � U � U �
Ahmad et al. [26] U U U � �
Memon et al. [27] U U U � �
Tang et al. [28] � U � � U

A bag et al. [29] U � � � U

Sodhro et al. [30] U � U � U

Takahashi et al. [31] � � U � U

Ahmed et al. [32] U � � � U

Ahmed et al. [33] U � U � U

Selem et al. [34] � � � � U

Selem et al. [35] � � � U U

Sharma et al. [36] U � � � �
Singh et al. [37] U � U � �
Watteyne et al. [38] � � U U �
Anguraj, et al. [40] � U U � �
Nazari at al. [6] U U � � �
Arafat et al. [41] U � � U �
Mu et al. [39] � U U � �
Navya et al. [42] U � � U �
Ahmed et al. [43] U U � � �
Javaid et al. [44] � � U U �
Ullah et al. [45] U U U � �
Proposed method U U U U �

Wireless Networks (2023) 29:3239–3253 3243

123



sensed data in a hop-by-hop fashion toward the coordina-

tor. In this tier, in order to make EQRSRL more realistic,

we attempt to model energy consumption, delay and PDR

similar to real world communication models. We describe

each of them as follows.

We assume that in EQRSRL, biosensors and coordinator

nodes use different power consumption models. Hence, we

use the energy consumption model for biosensor nodes

similar to [33] which is described as Eq. (1):

EN ¼ ESens;N þ ETX;N þ ERX;N þ EProc;N þ ETrans;N ð1Þ

Where ESens is the required energy to sense and collect data

from the physical environment, ETX and ERX are the

required energy for transmission and reception, respec-

tively. EProc is the required energy for processing the data

and ETrans is the amount of energy which is used to switch

between active, idle, and sleep modes. The details of

information whether ESens, ETX , ERX , EProc and ETrans are

calculated are given in [33, 47].

To model the energy consumption for the coordinator

nodes in EQRSRL, we use Eq. (2). It is worth mentioning

that, coordinators do not have the ability to sense the

environment and can only send, receive and process the

data. Hence, the estimated model for a coordinator can be

expressed as follows.

EC ¼ ETX;C þ ERX;C þ EProc;C þ ETrans;C ð2Þ

According to Eq. (1), the energy consumption during a

given period for each sensor node can be estimated by

taking summation of ESens, ETX , EProc. Moreover, since a

sensor during a given period only receives one packet from

its coordinator and only one time switches from sleep to

idle mode, we can estimate the total energy consumption

for that period using Eq. (3) as follows.

EN ¼
X

Sam�rate

ESens þ
X

Sam�rate

EProcþ

X

Tran�rate

ETX þ ERX þ ETrans

ð3Þ

The energy for each coordinator node in a given period can

be calculated by Eq. (4).

Fig. 1 System Model. (Tier 1: patient information is collected

through biosensors and transferred to the coordinator node according

to the proposed scheduling algorithm. Tier 2: Coordinators perform

data preprocessing and send data to the sink node using hop-by-hop

communication according to the proposed routing algorithm. Tier 3:

All the data are stored in the cloud, then machine learning algorithms

are applied to analyze data such as disease diagnosis, drug admin-

istration effects, etc.)
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EC ¼
XMembers

m¼1

ðERX þ EProcÞ þ
XPackets

p¼1

ðETXÞþ

X

k2Neighbours
ðERX þ EProc þ ETXÞ þ

X

t2T
ETrans

ð4Þ

The first part of Eq. (4) denotes the energy consumed for

receiving and processing packets from members of a coor-

dinator inside the same cluster. The second part is the energy

consumed for sending the data to the next hop, which can be

an intermediate node or even a sink node. If the current

coordinator node is selected as an intermediate node, it

should receive, process and then forward packets to the next

hop as calculated in the third part of Eq. (4). Since a coor-

dinator node may switch from sleep to active mode several

times during a given period, the fourth part of Eq. (4) is

considered to estimate the energy for these transitions.

In the jargon of computer networks, nodal delay

includes transmission, propagation, processing and queuing

delay which is expressed as follows.

Dn ¼ DTrans þ DProp þ DProc þ DQueu ð5Þ

According to Eq. (5), end-to-end delay for a path between

a source and destination node consisting of m hops is

estimated by summation of the nodal delay in each hop, as

shown in Eq. (6).

De2e ¼
Xm

i¼1

Di ð6Þ

An electromagnetic signal power density decreases as it

propagates through space, and known as path loss. Dif-

ferent path loss models are introduced in the literature,

such as [48, 49]. For EQRSRL, we use FRIIS Free Space

propagation model, which is calculated as follows.

Pr ¼ Pt þ Gt þ Gr þ 20 � logðkÞ � 20 � logð4 � p � dÞ

� 10 � logðLÞ
ð7Þ

Where Pr is the power of the received signal as a function

of the distance (d meters) between the transmitter and

receiver, Pt is the power of the transmitted signal, Gt and

Gr determine the gain of the transmitter and receiver

antennas, k is the wavelength of the carrier signal in meters

and L represents other losses.

3.2 First tier: scheduling

In EQRSRL, we propose a centralized scheduling schema

to manage the shared communication channel. The pro-

posed schema uses TSCH’s [50–52] approach to assign a

time slot for the biosensor. To do this, it divides the fre-

quency band into some sub-channel, each of which consists

of some fixed-length a time slot. The scheduling schema is

performed by the coordinator, and it assigns a time slot to

each biosensor. Each sensor only can send its data in the

assigned a time slot. In EQRSRL, to improve QoS and save

energy, the coordinator calculates a time slot for each

sensor regarding its transmission rate. Table 2 lists the

features of some popular biosensors in terms of physical

layer characteristics. As it is shown in this table, for sensors

such as ECG, we need to send 1 pps that denotes to

assigning more consecutive a time slots for this type of

sensor. Nevertheless, even in critical applications such as

IoMT, it is not necessary to send all the data sensed by

biosensors. On the one hand, the function of the body’s

organs moves much slower than the sampling rate, and on

the other hand, sending data per sample increases energy

consumption and network traffic. For this reason, in

EQRSRL, we consider an adaptable transmission rate

depending on the type of each sensor.

In this paper, we assume that the topology is a star

network and all sensors are directly connected to the

coordinator node as shown in Fig. 2. In this network, it is

important to consider the following constraints and

assumptions when dealing with the scheduling issue.

In EQRSRL similar to TSCH, if each slot-frame has 101

slot-time and 16 channels, and the transmission rate per

sensor is the same as Table 2, the number of required cells

is 7 cells. In EQRSRL, the control packets are sent in the

zero slot-time. Furthermore, the first slot-time can be ran-

domly chosen from [1 to 96]. Each frequency sub-channel

is also randomly selected from 16 sub-channels. For

example, as shown in Fig. 3, the scheduling schema of the

topology of Fig. 22 consists of 5 sub-channels, each of

which has 7 time slots. In this example, we assume that the

transmission rates of sensors B and C are twice times more

than the other sensors.

3.3 Second tier: routing protocol

The second tier in EQRSRL architecture implements the

routing functionalities, including two steps: setup and

routing. In the setup phase, each node identifies its position

and those of the neighbors from which it can have a path to

the sink via them. In fact, after the setup phase, the network

environment is divided into multiple zones as depicted in

Fig. 4(b). In nutshell, the following activities are per-

formed during the setup phase:

1. First, the sink sends a setup message to the neighbors,

which includes its energy, ID, and zone number. The

initial value of the zone number is zero where the sink

is located.

2. The nodes that are close to the sink node receive the

setup message and extract the zone number from it.
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They then increment this number by one and set their

zone value to that number. Subsequently, they send a

new message to their neighboring nodes, containing

information about their energy level, ID, and zone

number.

3. If a node receives a message from several nodes, it sets

its zone number based on the smallest received value.

Moreover, it updates its neighbor’s table, which is used

in the routing phase.

4. The above process continues till all the nodes in the

network identify their zone, as depicted in Fig. 4(b).

Upon finishing the setup phase, a reinforcement learning-

based routing process is initiated. Generally, reinforcement

learning enables devices to learn how to utilize local infor-

mation gathered from their neighbors to select an appropriate

next node. This policy not only reduces energy consumption,

but also provides better QoS for various IoMT applications.

As aforementioned, some important information such as

neighbor position, zone and energy is obtained during the

setup phase. Moreover, the delay of each link can be cal-

culated regarding the position information. As a result, in

reinforcement learning, each node calculates the initial Q-

value for all neighbors whose zone is less than its current

zone (i.e., the neighbor closer to the sink). Since we assume

that the traffic is divided into three different types, it is

needed to identify three different types of paths. Therefore,

for all three types of traffic, the Q values are calculated and

updated separately. The initial values for energy-sensitive

traffic, delay-sensitive traffic, and real-time traffic are

given in Eqs. (8)–(10), respectively.

rt0Q1
¼ a � Er=E0 þ b � PSucc=ðPSucc þ PLossÞ ð8Þ

rt0Q2
¼ a � Er=E0 þ b � PSucc=ðPSucc þ PLossÞ þ c � 1=d

ð9Þ

rt0Q3
¼ a � PSucc=ðPSucc þ PLossÞ þ b � 1=delayþ c � 1=d

ð10Þ

To learn the real cost of an action, we have to compute the

action-value function, which defines whether an action is

good to be performed from a given state based on a policy

p. The action-value function is computed as follows.

Qpðs; aÞ ¼ E½GtkSt ¼ s;At ¼ a�;Gt ¼
X1

k¼0

ck � Rtþkþ1

ð11Þ

Generally, the Q-learning reinforcement method is a

model-free approach that does not require an environment

Table 2 Caption text
Power supply Power consumption Sensing frequency Transmission rate

ECG 1.8–3.3 V 464 mW 500 Hz 1 pps

SpO2 1.8–3.3 V 464 mW 500 Hz 1 s

Respiration 3.3–5.5 V 435 mW 20 Hz 2 s

Blood pressure 5 V – 4 Hz 2 s

Temperature 2.7–3.3 V 1951 mW 0.2 Hz 5 s

Fig. 2 Topology of first layer

Fig. 3 Scheduling example

Fig. 4 Zoning phase
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model. The action-value approximate function depends on

the policy pursued by the agent [53]. Therefore, the optimal

policy is the best choice policy in any situation. The sender

selects a neighbor with the highest Q-value, denoted by a

maximum (Q (s, a)) as calculated in Eq. (12).

Ql� ¼ Q�ðs; aÞ;V�ðs; aÞ ¼ maxðQðs; aÞÞ ð12Þ

One agent performs each action, it receives a reward and

uses it to update the Q-value using Eq. (13).

Qtþ1ðs; aÞ ¼ ð1 � aÞ � Qtðs; aÞ þ a � ðrtþ1ðs; aÞ

þ c � maxðQðs; aÞÞ
ð13Þ

a is the learning rate and rtþ1ðs; aÞ is the immediate reward

that is calculated using Eq. (14) for all types of traffic

separately. discount factor varies between 0 and 1.

rtþ1
Qi

¼
rtQi

; Er [ 0and packet is received

rtQi
� c � PLoss=ðPSucc þ PLossÞ; Er [ 0 and packet is lost

�100; Er\ ¼ 0

8
><

>:

ð14Þ

3.4 Second tier: topology management

Since patients and sensor nodes might move from one

place to another place, changing the topology in IoMT is

inevitable. For EQRSRL, we assume this type of move-

ment follows the random walking model [54]. Hence, we

attempt to manage these topology changes with the least

number of packets. As the matter of fact, in EQRSRL, the

nodes exchange a minimum number of packets to inform

each other about the movement of some other nodes. In

nutshell, when a node slightly moves to another position, it

follows the following steps.

1. It sends a message requesting the zone and energy to its

neighbors and asks for their zone number.

2. If there is a sink among the respondents, the current

zone is one. (Fig. 5(a))

3. If the node receives more than two different zones, the

node considers its zone number equal to the zone from

which it has received the highest messages. (Fig. 5(b))

4. If the node receives more than two different zones

(three), in this case, it sets its zone number equal to the

average number of zones.(Fig. 5(c))

5. If a node receives a response only from nodes in one

zone, the node increases its zone number by one and

forms a new layer. (Fig. 5(d))

To model the mobility, a stochastic differential equation is

used to compute the velocity of the patient i at time t [54].

vti ¼ �
�logðq1Þ h

�h � logðq2Þ

" #
� ½vti � l� � dt þ JdBt

ð15Þ

Where q1 and q2 show the auto-correlation parameters in

the first and second coordinates, l and h show the mean

velocity vector and the mean rotation angle, respectively.

In addition, J is a lower 2 � 2 triangular matrix with

positive oblique elements that determines the covariance of

velocity changes, and Bt represents the standard Brownian

motion at time t. The current patient’s location is calculated

using Eq. (16).

Lti ¼ L
ð
i t � 1Þ þ vti ð16Þ

4 Performance evaluation

In this section, we carry out a comprehensive performance

evaluation. We implemented EQRSRL in MATLAB sim-

ulator and the source code of it has been uploaded in

GitHub [55]. To make a fair comparison, we evaluate

EQRSRL and benchmarks in different scenarios. All

experiments are executed on a computer with a CPU Intel

Core i7-4700MQ�2.4 GHz and 16 GB of memory. In our

simulations, the sink node is located in the center of the

Fig. 5 Management of dynamic topology changes
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topology, while other IoT devices are randomly deployed

in a 200 m � 200 m area. It is assumed that each patient is

equipped with 5 biosensors and one coordinator. Table 3

shows the simulation parameters. Since EOCC-TARA

[33], SMORP [46], THE [34], mobTHE [35] and ISDNC

[6] are research works similar to EQRSRL, we have used

these methods as benchmarks and compare the perfor-

mance of EQRSRL with them. We consider the following

important QoS metrics for the performance evaluation.

• Total Energy Consumption it denotes the total energy

consumed by IoT devices for sensing, processing,

sending/receiving packets to/from coordinator nodes,

switching from active to sleep mode, and routing

packets to the edge node. To make a more accurate

comparison, we compare energy consumption for

routing; the average energy consumption for routing

all packets.

• Average End-to-End Delay The average elapsed time of

a packet from an IoMT to the sink node. The delay of

each link is calculated based on the equations stated in

section 3.1, and the delay of a route is considered with

the sum of the delay of links.

• Packet Delivery Ratio it is the ratio between the number

of packets successfully delivered to the sink node and

all the packets that originated from the nodes.

Energy consumption is one of the most important criteria

of the Internet of Things. Figure 6 shows the results of

different algorithms for the average energy consumption of

each patient at the end of the simulation.

Figure 6 illustrates EQRSRL outperforms other tech-

niques in terms of energy consumption. This is because of

two reasons: first, EQRSRL manages topology locally and

prevents sending broadcast messages. The use of layering

and the prevention of direct data transmission is another

reason that leads to less energy consumption in EQRSRL.

Moreover, PDR is an important metric that has an adver-

sary effect on energy consumption. Once a packet is

dropped in the network, it should be resent, as a conse-

quence, consumes more energy. The reason that ISDNCR

has less efficiency compared to EQRSRL is that it is based

solely on energy consumption and the distance from the

source to the next hop and the distance from the next hop to

the sink. The SMORP method only pays attention to the

energy criterion, but does not consider the distance from

the source node to the next hop. Similarly, EOCC-TARA

method only takes the reliability of the link into consid-

eration, and does not involve the energy level of the next

hop. Both THE and mobTHE use routing in the first tier, in

which each biosensor must be aware of the temperature/

link quality of other sensors to choose the best next-hop

based on the neighbor’s status. Thus, to update the neigh-

boring list, it is necessary to send additional packets, which

consumes a lot of energy. In addition, they send data

packets to the sink directly, which requires a lot of energy

because energy consumption and distance are directly

related. According to Fig. 6, it is evident that EQRSRL is

more scalable than other methods and with increasing the

number of nodes, its energy consumption increases

slightly.

Table 3 Simulation parameters

Parameters Values (amounts)

Simulation time 360 s

Packet size 32 bits

Efs 10 pJ/bit/m2

Emp 0.0013 pJ/bit/m4

EDA 5 nJ/bit/signal

ERX 50 nJ/bit

ETX 50 nJ/bit

Vsup 2.7 V

Isens 25 mA

Tsens 0.5 mS

Niter 0:97 � 10E6

f 191.42 MHz

Cavg 22 pF

I0 1.196 mA

Vt 0.2 V

Procc 21.26

IA 8 mA

IS 10 l A

C 3*10E8 m/s

The initial energy of the sensor node 3.3-5J

The initial energy of the coordinator node 10J
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To investigate the overhead of the routing in EQRSRL

and benchmarks, we only measure the energy consumption

for the routing process as shown in Fig. 7. This fig-

ure clearly shows that EQRSRL significantly is energy

efficient in routing process compared to the other

benchmarks.

Figure 8 shows that the EQRSRL method performs well

in terms of average end-to-end delay in different scenarios.

The reason for this is that in EQRSRL, the cost of each link

is calculated based on the QoS metrics such as the delay of

that link which leads to making a path with minimum

delay. On the other hand, in order to find the optimal path

in EOCC-TARA and SMORP, general network informa-

tion should be collected in the sink node, because both of

these methods leverage SDN architecture. Hence, sending

packets, making decisions on the SDN controller and then

sending optimal paths to nodes leads to higher delay in the

network. In the second layer, THE and mobTHE send data

packets directly to the sink. As a result, the network will be

congested, and it takes longer in MAC layer for a device to

capture the channel in order to forward the received packet.

As shown in Fig. 8, ISDNCR results in long end-to-end

delay, because it only involves the distance between the

next hop to the sink node without any consideration

between the current node and the next hop.

As mentioned in previous sections, the importance of

delay depends on the type of traffic. Generally, in real-time

traffics, the delay is much more significant than in other

types of traffic. Figures 9, 10 and 11 show the delay for

real-time, delay-sensitive and normal traffic, respectively.

As shown in all of these figures, EQRSRL outperforms

other benchmarks in terms of delay in scenarios with a

different number of patients. This is because, during the

routing process, EQRSRL calculates the paths for each

type of traffic by considering the most critical QoS metrics

such as PDR and delay. Therefore, the delay for all types of

packets is expected to be acceptable and in the worst case

is about 400msec.

Figure 12 shows the packets’ delivery ratio for different

scenarios. According to the propagation model described in

Sect. 3.1, as the distance between the transmitter and

receiver increases, the strength of the received signal

decreases, and, as a consequence, the probability of packet

loss increases. In EQRSRL, dividing the network into

multiple zones leads to multi-hop routing. This prevents the

direct sending of packets and also reduces the energy

consumption, as well as the packets, lost ratio. Further-

more, EQRSRL also takes QoS metrics into account, which

causes the calculation of appropriate paths in terms of

packet loss.

Since the sleep mechanism is used in THE and

mobTHE. Therefore, if the temperature of the sensor rises
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above a threshold, the sensor will turn off until the tem-

perature drops. Therefore, many packets are lost at this

time.

EOCC-TARA and SMORP require selecting the best

route using the evolutionary algorithm. The evolutionary

algorithm time complexity is equal to O(Niter* Npop*

Nnodes). Where Niter is the number of evolutionary algo-

rithm iterations, Npop is THE calculates a utility value for

each node based on data transmission rate, distance,

energy, and temperature. Then it selects the best next hop

with O(N) based on the utility. Similarly, mobTHE com-

putes the link quality based on the Received Signal

Strength Indicator (RSSI) that has time complexity equal to

O(N). If the length of the route is equal to M, then the

complexity of THE and mobTHE is O(N*M). EQRSRL

leverages Q-Learning, and Q-Values are initialized and

updated with O(N). The next hop selects with O(N); thus

the similarity of THE and mobTHE, EQRSRL has com-

plexity time equal to O(N*M).

5 Conclusion

In this paper, we proposed EQRSRL as a routing schema to

improve QoS and reduce energy consumption for IoMT

applications. One of the benefits of EQRSRL is that it

treats each network traffic with respect to its QoS

requirements. In order to achieve this goal, we implement

EQRSRL in a cross-layer fashion. Hence, we apply a

scheduling mechanism similar to the TSCH protocol in the

MAC layer, as well as reinforcement learning-based rout-

ing in the network layer. This policy leads to providing a

high level of QoS for real-time medical applications in

which human life is at the sake. As the matter of fact, QoS

provisioning helps in the transmission of real-time medical

data from biosensors to the cloud, as well as the trans-

mission of control commands from the cloud to the IoMT

coordinator nodes. Moreover, EQRSRL also reduces the

energy consumption of biosensors and prolongs the net-

work lifetime. To make it more realistic, we developed the

physical layer communications using well-known energy

consumption and propagation models. Simulation results

show that EQRSRL significantly reduces energy con-

sumption and increases QoS in terms of end-to-end delay

and packet delivery ratio.

Author contributions AN: Conceptualization, Methodology, Soft-

ware, Original draft preparation, MK: Software, Original draft
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