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Abstract

Accurate forecasting in Reverse Supply Chain (RSC) management is crucial for the semiconductor industry,

particularly for companies like ASML, which must efficiently manage the return flow of defective machinery

parts. This study addresses key gaps by developing and evaluating time series-based forecasting models

tailored to ASML’s RSC. Using a modified ABC-analysis, parts were categorized based on defect frequency

and economic impact, focusing on the most critical components. The research applied and optimized

models including SES, ARIMA, ARIMAX, and LSTM, using five years of historical defect data. The analysis

showed that LSTM models excel in high-frequency (weekly) forecasts for parts with frequent early-life

defects, achieving an average mMAPE of 26.32%. ARIMAX models performed best for lower-frequency

(monthly) data, particularly in sparsely represented classifications, with mMAPE as low as 4.31% to 10.80%.

Despite a higher mMAPE of 85.42% in one outlier, ARIMAX emerged as the most balanced model, offering

a practical trade-off between accuracy and computational efficiency. Furthermore, the study highlights the

computational efficiency of ARIMAX, which, although more demanding than SES, provided a favorable

balance, with ARIMA and LSTM being more resource-intensive. These findings demonstrate ARIMAX’s

suitability for long-term forecasting and broader trend analysis, making it the preferred model for ASML’s

RSC. This research provides a robust, data-driven framework that enhances inventory management

and capacity planning, making it possible to predict return flows with low error rates on a monthly basis,

particularly in high-tech industries where many defective parts are returned. Future research should

incorporate additional dynamic variables, explore hybrid models, and refine data splitting techniques to

further improve predictive accuracy and support sustainable supply chain operations.
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Introduction

This chapter introduces the study by providing an overview of an company analysis of ASML, highlighting

the research context, and formulating the problem statement. It outlines the research objectives and

questions, details the methodologies to be used, and concludes with a brief overview of the thesis structure.

1.1. Company Analysis
ASML, a Dutch multinational, plays a key role in the semiconductor industry as an Original Equipment

Manufacturer (OEM). It specializes in developing and manufacturing sophisticated photolithography

machines that are integral for producing nanometer-thin silicon wafers. These wafers are crucial for

the microchip production utilized by major technology firms such as Samsung, TSMC, and Intel for

manufacturing a range of electronic devices, from laptops to mobile phones. Consequently, ASML is

positioned at the heart of a vital supply chain, essential for the advancement of technology in global tech

enterprises (The Economist, 2024).

Headquartered in Veldhoven, Netherlands, ASML’s history is rooted in its establishment in 1984, resulting

from a collaboration between Philips and ASMI in Eindhoven. Over the years, ASML has evolved into a

significant force within the semiconductor sector, marked by its expansion across over 60 locations in 16

countries. Its technological milestones include the introduction of the PAS 5500 series, the development of

immersion technology in the TWINSCAN systems, and the pioneering efforts in Extreme Ultraviolet (EUV)

lithography. With a keen focus on EUV and Deep Ultraviolet (DUV) technologies, ASML not only dominates

the DUV market but also enjoys a unique monopoly in EUV lithography, offering systems that cater to a

broad spectrum of semiconductor manufacturing requirements. The chronological development of the

systems, including their specifications, are illustrated in Figure 1.1.

Figure 1.1: ASML’s Systems Overview (ASML Holding N.V., 2015)

ASML’s commitment to environmental sustainability is demonstrated through its goal to achieve net-zero

greenhouse gas emissions and its efforts to reduce waste to landfill or incineration by 2030. The company’s

ambitious target of a 95% reuse rate for defective machine parts, which are returned from the field or

from their own factories, by 2025 illustrates its dedication to integrating environmental responsibility with

economic benefits through sustainable practices (ASML, 2022).

1
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The company’s operational success is further bolstered by its comprehensive Supply Chain Management

(SCM) strategy. With over 400 suppliers predominantly based in Europe, ASML ensures a seamless flow

of machinery parts from these suppliers to its manufacturing facilities and then to the customers. This

end-to-end support system encompasses the provision of service parts for global customers, facilitating

the swift replacement of defective parts.

This thesis encompasses collaboration with ASML’s Reverse Supply Chain Operations (RSC Ops) team,

a crucial segment of the Planning and Delivery (P&D) department. The P&D department plays a vital role

in aligning ASML’s strategic goals with its capacity planning initiatives. Particularly, the RSC Ops team is

dedicated to the analysis, implementation, and improvement of Reverse Supply Chain (RSC) processes.

These processes manage the logistics of returning products from customers to the warehouse, factory,

and both external and internal suppliers, including returns from ASML’s main factory in Veldhoven to its

storage facilities and suppliers. The primary objective of these operations is to quickly assess and execute

the necessary actions for these returned parts, which include repair, component harvesting, dismantling,

and recycling of material components.

1.2. Research Context
The RSC is integral to achieving sustainability and operational efficiency within modern supply chains,

particularly in resource-intensive industries like the semiconductor sector. Current practices emphasize

the strategic integration of RSC into traditional SCM frameworks, showcasing the importance of Closed-

Loop Supply Chain (CLSC) strategies. These strategies integrate forward and reverse supply chains,

enhancing environmental objectives through extended product lifecycles and minimized waste, particularly

in sectors such as automotive and electronics where sector-specific RSC strategies are crucial (Guide and

Van Wassenhove, 2001; Kumar and Putnam, 2008; Bressanelli et al., 2019).

Despite these advances, several challenges persist, notably in forecasting and data management within the

RSC. Literature indicates a significant scarcity of data on return volumes, hindering effective management

(Toktay et al., 2003; Cui et al., 2020). Moreover, there is a pronounced lack of methodological comparisons

and empirical validations of forecasting models tailored for the RSC (Kumar et al., 2014; Syntetos et

al., 2016). Such gaps hinder the development of accurate forecasting models crucial for planning and

optimizing return flows. The primary focus remains on demand forecasting, with insufficient attention to the

supply-side forecasting of returned defective parts. This oversight undermines the accuracy of predicting

and managing returns.

Furthermore, the strategic relevance of Product Recovery Management (PRM) within the manufacturing

industry is underscored in the integrated supply chain model of Thierry et al. (1995), which highlights the

importance of effectively integrating recovery operations such as repair, refurbishing, and remanufacturing

back into the forward supply chain. This facilitates the efficient reuse and recycling of high-value parts,

reducing waste and enhancing resource efficiency.

In terms of reliability and quality control, the intersection of failure rates with the return of defective parts

in semiconductor manufacturing is critically examined. Traditional models like the bathtub curve and

Weibull distribution are effective in later stages but fall short during initial phases where defects are

prevalent (Abernethy, 2006; Roesch, 2012). This suggests a need for alternative statistical methods

such as AutoRegressive Integrated Moving Average (ARIMA) and machine learning techniques for more

accurate early-stage predictions (Lee et al., 2021).

This research seeks to address these identified gaps by exploring the specific challenges and opportunities

of RSC operations in the semiconductor industry. By examining the strategic integration of RSC within

SCM frameworks, assessing the effectiveness of current forecasting models, and exploring innovative

predictive techniques, the study aims to enhance the understanding and management of RSC operations.

It specifically focuses on tailoring forecasting approaches to the unique needs of the semiconductor sector

for defective machinery parts early in the product lifecycle, thereby aligning with corporate sustainability

goals and operational demands. This approach not only contributes to the broader discourse on efficient

and sustainable supply chain practices but also fosters the development of sector-specific solutions.
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1.3. Problem Statement
ASML is confronting substantial challenges within its RSC operations, particularly concerning the inventory

of returned defective parts needing repair or upgrading. The current state of the reverse inventory is

alarmingly overstocked, holding more than 100,000 returned parts. This inventory issue stems primarily

from the complex process flows within the RSC, where parts undergo evaluations to determine whether

they should be dismantled, harvested, repaired, or recycled.

A significant challenge arises when these parts accumulate in storage for extended periods due to an initial

lack of demand, compounded by previous investments in newly purchased parts. This backlog not only

ties up substantial financial resources but also disrupts operational fluidity, hindering sustainability and

efficiency objectives within the RSC.

This problem is particularly severe in the reverse flow of parts from ASML’s factory located in Veldhoven,

where parts are assembled into new modules but may fail during the assembly process, particularly in

the infant stage of the product lifecycle. These parts must await a demand signal before they can be

returned to the supplier for repair and subsequently reused as spare parts. Due to capacity constraints

and prolonged storage, some parts are eventually harvested or recycled, which substantially diminishes

their value and circularity.

Moreover, a recent policy change mandates that all repairable defective parts originating from customer

facilities be returned for repair to the specific supplier, regardless of immediate demand. These parts

are repaired and stored in a different inventory than the reverse inventory, and therefore, the scope of

defective parts from customers is not the main problem of the RSC Ops.

Currently, ASML’s RSC lacks a forecasting model to provide insights into future inflows of defective parts

into the reverse inventory. This gap results in excess and obsolescence of parts, leading to significant

value loss. Often, repairable defective parts must wait due to earlier orders for new parts. Implementing a

forecasting model to predict the inflow of repairable defective parts could enable the early blocking of new

purchases, allowing these parts to be stored for shorter periods or sent directly to the supplier for repair

from the Veldhoven factory.

A forecasting model could also be utilized for short-term predictions on a monthly basis, aligning with

ASML’s practice of updating KPI’s and inventory numbers at the beginning of each month. This alignment

ensures that forecasts remain relevant and integrated with overall operational planning. Furthermore,

short-term predictions are valuable for the RSC Ops team, which reviews part flows to maintain smooth

operations.

There is a need for a predictive forecasting model tailored to the unique dynamics of the semiconductor

sector’s RSC. Developing a forecasting model is essential for optimizing the use of repaired parts, reducing

dependency on new part production, and alleviating financial strain caused by overstocked inventories.

This development could enhance the operational management of ASML’s RSC, aligning it more closely with

the company’s strategic objectives and contributing to the sustainability and efficiency of the semiconductor

industry’s SCM.

1.4. Research Objective
The primary research objective of this study is outlined below.

To examine forecasting models that accurately predict the return flow volume of defective

machinery parts.

Research Objective

This objective focuses on utilizing ASML’s operational data to investigate and modify predictive forecasting

models tailored to address ASML’s specific challenges. Furthermore, these models aim to be generalizable

across the semiconductor industry to enhance RSC operations.

The objective will be explored through the following sub-objectives:

• Context Definition: Examine existing methods and challenges in forecasting the return of defective
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machinery parts within the RSC. This includes identifying key variables, suitable forecasting meth-

ods, and evaluation metrics to document challenges and explore improvements applicable to the

semiconductor industry.

• Current State Assessment: Evaluate ASML’s current RSC management practices by reviewing

CLSC dynamics and focusing on reverse inventory management and supply chain efficiency. Identify

inefficiencies and areas for potential improvement.

• Data and Variable Analysis: Analyze ASML’s historical data to pinpoint critical variables influencing

the return quantities of defective machinery parts. Conduct a detailed examination of historical trends

to inform the selection of an effective forecasting model.

• Models Experimentation: Select and test forecasting models to predict the future return quantities

of defective machinery parts at ASML. The goal is to identify a model that balances computational

efficiency with accuracy, enhancing the management of returns. This model should potentially be

used for blocking new purchases or for monthly operational planning purposes.

• Models Evaluation: Apply thorough testing and assessment to processed ASML data and specialised

software. Evaluate the forecasting model’s accuracy, operational efficacy, scalability, and broader

applicability in the semiconductor sector to improve overall operational efficiency.

1.5. Research Questions
This section introduces the research questions designed to assess the research objectives. The main

question addressed below.

How can forecasting models accurately predict the return flow volume of defective machinery

parts?

Main Research Question

The following sub-questions delve into various aspects of this main question:

1. What are the existing practices and challenges in managing the reverse supply chain for defective

machinery parts?

2. Which forecasting methods and models are available and suitable for predicting defective machinery

parts in the return flow, and what are the crucial variables and evaluation metrics?

3. What are the key challenges in managing the return flow of defective parts within ASML’s reverse

supply chain?

4. What data is available at ASML for predicting the return flow volume of defective parts, and how can

this data be processed with a focus on the crucial variables?

5. Which forecasting models and evaluation metrics are best suited for predicting the return flow of

defective machinery parts at ASML, considering the specific requirements and crucial data variables?

6. What are the optimal parameters for the most suitable forecasting models tailored to different

classifications of defective parts and varying data frequencies?

7. Which forecasting models provide the highest accuracy in predicting defect counts for specific

classifications of defective machinery parts, considering various data frequencies?

1.6. Scope
The scope of this master’s thesis is clearly defined to ensure the research remains focused and manageable.

Precision in defining the scope is crucial to the study’s success since it streamlines the research process

and ensures that the questions addressed are adequately answered. The following important aspects are

considered when determining the scope of this thesis.

• Focus on the RSC Framework: The thesis specifically addresses the return flow of defective

machinery parts within the RSC framework. Following Driessen et al. (2014), two key decision

points are highlighted: the strategic or tactical classification of parts concerning their returns, usually

conducted annually, and more frequent tactical forecasts (monthly or quarterly) to predict return rates
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and times. Although inventory control and demand forecasting are not the main objectives of this

research, their connection with the return forecasting model is crucial. An effective and integrated

forecasting model must consider these aspects to ensure alignment with the broader supply chain

operations. Therefore, while inventory control and demand forecasting are not directly studied, their

influence on the returns forecasting model is acknowledged to ensure the developed model functions

effectively within ASML’s operational framework.

• Industry-Specific Focus: This research is rooted in the OEM sector, focusing predominantly on

Business-to-Business (B2B) interactions while placing less emphasis on Business-to-Customer (B2C)

dynamics. As described in the research context the case study will be focused on the semiconductors

industry. To strengthen the study, an extensive literature review spanning various industries is

conducted, incorporating a diverse range of forecasting methods, variables, and evaluation metrics.

• Geographic and Process-Level Focus at ASML: The operational focus of this research is detailed

in Figure 1.2. This diagram illustrates the flow of parts from OEM suppliers through the ASML factory

in Veldhoven (the Netherlands), where parts are assembled into modules. The primary focus of this

research is shown within the blue rectangle in the diagram. This area highlights the initial reverse

flow of parts, from the detection of defects at the manufacturing site through to the decision-making

regarding repairs, depicted by the orange lines. Concentrating on this specific scope is essential as

it allows for a precise analysis of defect management processes. By focusing on the initial stages of

the reverse flow, the research aims to develop an accurate forecasting model for defective parts at

ASML. This targeted approach ensures that the study addresses the most critical phase of defect

handling, providing valuable insights for improving inventory management and operational efficiency.

• Product-level focus at ASML: ASML’s operations encompass a diverse array of machinery parts,

each prone to defects. To systematically identify the specific parts for this study, a classification

analysis method will be employed, as highlighted as a crucial strategy in the literature review. Such

an analysis should categorize parts based on the variability in defect occurrences and their economic

value, ensuring a balanced and representative selection. This targeted selection ensures that the

study focuses on parts that significantly impact ASML’s operations, excluding end-of-life parts and

concentrating on those in the early stages of their lifecycle. By prioritizing parts with the highest

economic impact and varied defect ranges, the research aims to provide robust insights into defect

forecasting. The economic calculation of the parts’ impact on inventory is not part of this research;

instead, the focus is on determining the volume of defective parts using the most accurate forecasting

model.

Figure 1.2: Forward and Reverse Supply Chain of ASML; Scope of This Research

1.7. Research Approach
For a master’s thesis, the research methodology must align closely with the study’s objectives and

complexities. This study aims to examine forecasting models that can accurately predict the return flow

volume of defective parts for managing the RSC at ASML. Initially, the Define, Measure, Analyze, Design,

and Evaluate (DMADE) methodology, a modification of DMADV with the Verify phase replaced by Evaluate,

was proposed to better fit the iterative nature of academic research. However, as the research progressed,

a stronger emphasis on data management led to the adoption of the CRISP-DM methodology outlined
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by Chapman et al. (2000). CRISP-DM, the Cross-Industry Standard Process for Data Mining, starts with

the Business Understanding phase. This step ensures that the research objectives align with business

needs and identifies the critical processes involved. The subsequent phases include Data Understanding,

Data Preparation, Modeling, Evaluation, and Deployment. This systematic approach ensures coherent

development and practical implementation of the forecasting model at ASML. The stepwise phases of the

methodology are displayed in Figure 1.3.

Figure 1.3: CRISP-DM Model by Chapman et al. (2000)

The research starts with a literature review followed by a system analysis, similar to the Business Un-

derstanding phase in CRISP-DM, to ground the study in theory and practice. Data Understanding and

Preparation phases are critical, ensuring data integrity for modeling. The Modeling phase applies statistical

and data mining methods, followed by a precise evaluation by comparing the models to each other. This

process aims to identify the models that offer the highest prediction accuracy. The Deployment phase,

which focuses on implementing and monitoring the model at ASML, is not part of this thesis.

By integrating CRISP-DM, the research bridges theoretical research and practical application, ensuring

outcomes are both academically sound and practically actionable for ASML’s RSC management.

The research methodologies include:

• Literature Research: This phase follows a structured review process, beginning with the formulation

of the research problem. An extensive search of relevant literature is conducted, with careful

screening for relevance and quality. The literature is then extracted, analyzed, and synthesized to

form a robust theoretical foundation. This foundational knowledge informs the first two sub-questions,

focusing on the core challenges, best practices in RSC management and forecasting models.

• Desk Research & Expert Consulting: Complementary to the literature review, this phase involves

gathering additional data from various sources such as industry reports and process documentation.

Expert consultations are conducted to validate findings and provide practical insights, ensuring the

research remains grounded in real-world practices and challenges.

• Swimlane Diagram: The Swimlane diagram methodology is employed to systematically map the

RSC processes at ASML. This visual tool helps in understanding the operational framework by

clearly delineating the roles, responsibilities, and interactions between different departments. The

Swimlane diagram serves as a foundational map that guides the data understanding and preparation

by highlighting key process flows and outputs.

• Data Preparation: This crucial phase involves the collection and initial processing of raw data from

internal sources at ASML. The data is intensively and precisely gathered to ensure it accurately

represents the system’s functionality and challenges. Following collection, the data undergoes a

preparation process to ensure quality and consistency, making it suitable for in-depth analysis.

• Data Understanding: In this phase, the prepared data is thoroughly analyzed to gain insights into

the operational patterns and relationships within the RSC. This step is essential for identifying crucial

variables that will be used as inputs for the forecasting models. Understanding the data’s structure

and content is critical for the subsequent modeling phase.
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• Requirements & Selection Process: Based on the insights gained from the data understanding

phase, specific requirements for the forecasting models are defined. This involves selecting appro-

priate models and techniques that best fit the characteristics of the data and the operational needs

of ASML’s RSC. The selection process is guided by both theoretical considerations and practical

constraints.

• Parameters Optimization: Once the models are selected, they undergo a complex optimization

process. This involves adjusting various parameters to enhance the models’ predictive accuracy and

reliability. The optimization process ensures that the models are finely tuned to the specific context

of ASML’s RSC.

• Models Evaluation: The final phase involves a comprehensive evaluation of the forecasting models.

The models are tested against historical data to assess their predictive performance. Various

evaluation metrics will be used to measure accuracy, reliability, and relevance to ASML’s strategic

objectives. This phase ensures that the models not only perform well theoretically but also provide

actionable insights for practical implementation.

1.8. Thesis Outline
This thesis is carefully structured to ensure efficient research progression. The conceptual framework of

the thesis is illustrated in Figure 1.4, which delineates the methodologies employed in each chapter and

maps each chapter to its corresponding research question.

The process initiates with a literature research in Chapters 2 and 3, addressing the foundational aspects of

the study. Subsequent chapters build upon this groundwork with desk research, expert consulting, data

preparation, and understanding, leading to the selection, optimization and evaluation of forecasting models.

Each chapter systematically addresses specific sub-questions, culminating in Chapter 9, where the main

research question is thoroughly examined, followed by recommendations in Chapter 10.

Figure 1.4: Thesis Framework including Chapters, Research Questions, and Methodologies
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Literature Research: Reverse Supply Chain Challenges

This chapter presents a comprehensive literature review on the RSC within SCM, specifically focusing

on the challenges related to forecasting the return flows of defective parts. It examines existing practices

and methodologies, identifying both opportunities and difficulties in managing the inventory and Reverse

Logistics (RL) aspects of the RSC for defective machinery parts. By the end of this chapter, the first

sub-research question of this thesis will be answered and discussed.

1. What are the existing practices and challenges in managing the reverse supply chain for defective

machinery parts?

In conducting this literature review, a structured search strategy was employed to ensure a comprehensive

examination of relevant academic and industry sources. The initial search terms used included ”reverse

supply chain”, ”reverse logistics”, ”defective parts”, ”remanufacturing”, ”circular economy”, ”inventory

management”, and ”return flow”. These terms were chosen to cover a broad spectrum of RSC-related

challenges and practices.

To further refine the search and include seminal works and recent advancements, the snowballing technique

was utilized. This involved reviewing the reference lists of key articles identified in the initial search to

discover additional relevant studies. This iterative process captured a wide range of perspectives and

methodologies, enriching the literature base for this research.

2.1. Reverse Supply Chain Dynamics
SCM is an overarching framework that integrates all activities related to the supply chain, procurement,

and logistics. At its core, SCM aims to manage the flow of goods and services efficiently from inception to

delivery. Fahimnia et al. (2013) describe the traditional supply chain, often referred to as the open-loop or

forward supply chain, which focuses on the seamless progression of products and services from suppliers

to manufacturers, then to retailers, and ultimately to end-users. This flow is facilitated by a network of

transportation and storage operations, ensuring that goods move smoothly and efficiently through each

phase of the supply chain.

Building on this foundational understanding, Fahimnia et al. (2013) extend the discussion to a mixed integer

non-linear model for production-distribution planning, utilizing a customized algorithm and leveraging real-

world data from the automotive industry. This model highlights the strategic integration of production and

distribution processes, underscoring the importance of optimizing supply chain efficiency to accommodate

both the traditional flow of goods and the complexities of modern supply chain demands.

The RSC is an critical component of modern SCM, focusing on the recovery and reutilization of products

after consumer use. This emerging modern supply chain model diverges from conventional logistics

by prioritizing the collection, RL, and reintroduction of products into the supply cycle (Guide and Van

Wassenhove, 2006). The RSC serves not only to manage returns due to defects but also represents

a strategic shift towards sustainable practices. OEM play a pivotal role in this process, balancing the

production of new materials with the refurbishment and remanufacturing of existing products for further

use (Guide and Van Wassenhove, 2001).

The return product flow in the RSC initiates with the collection of used or end-of-life products from consumers

in a B2C supply chain. As described by Agrawal et al. (2015), this process involves several key steps,

8
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each presenting unique challenges and opportunities for value recovery. The journey of used or returned

products is depicted in Figure 2.1, illustrating the pathway from collection, through inspection and sorting,

to their eventual repair, remanufacturing, recycling, reuse, or disposal. This pathway is determined by

whether the goal is to recapture value or to dispose of the product responsibly.

Figure 2.1: Key processes of Reverse Logistics (Agrawal et al., 2015)

The operational complexities of the RSC are highlighted by Diener (2004), who notes the issues of non-

uniform product quality, the difficulty of forecasting return volumes, potential damage to product packaging,

unclear destination or routing, inconsistent inventory management, and the less transparent nature of RL

processes. Moreover, Fleischmann (2003), Ravi and Shankar (2014) emphasize the significant difficulties

in anticipating return flows, exacerbated by the uncertainties inherent in the nature of returns. These

uncertainties necessitate a robust and flexible RSC network to effectively manage the variability in return

volumes, timing, and product condition.

The strategic importance of efficiently managing return product flows extends beyond logistical efficiency

to encompass value creation through sustainability practices. Guide and Van Wassenhove (2006) delin-

eates the RSC’s role in collection, RL, inspection, sorting, and the recovery operations of used products,

underscoring the value-driven focus of modern RSC management. This strategic perspective is further

reinforced by the movement towards integrating the RSC within a circular economy framework, as dis-

cussed by Mishra et al. (2022). The circular economy model, supported by recycling, remanufacturing,

reuse, and repair practices, aligns with the objectives of the RSC to extend product lifecycles and minimize

waste. The significance of circular economy in the context of RSC is also supported by Bressanelli et al.

(2019), advocating for the development of policies that encourage the transition to sustainable supply

chain practices.

The concept of CLSC represents an advanced integration of forward and reverse supply chain activities,

aimed at creating a seamless flow of materials and information. Guide and Van Wassenhove (2001)

provides an illustration of a CLSC model in Figure 2.2, highlighting the integration of forward and reverse

supply chains into a cohesive system. This integration facilitates a more sustainable and efficient man-

agement of resources, enabling the re-purposing of returned products in a manner that supports both

economic and environmental objectives.

Figure 2.2: CLSC model integrating forward and reserve SC (Guide and Van Wassenhove, 2001)
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The RSC strategies vary significantly across different sectors, necessitating tailored approaches and expert

knowledge, especially given the potential outsourcing of RSC functions. In industries such as automotive

and electronics, strategic RSC management is critical for achieving economic efficiency and addressing

the unique challenges presented by the collection and reintegration of returned products (Kumar and

Putnam, 2008).

Thierry et al. (1995) presents an integrated supply chain model in Figure 2.3, which effectively integrates

PRM with traditional supply chain operations. This model is particularly relevant to the semiconductor

industry, focusing on the post-fabrication stage where part outflows become inflows for subsequent module

assembly, leading to the creation of complete semiconductor systems. The model delineates essential

recovery processes such as repair, refurbishing, remanufacturing, cannibalization, and recycling, each

necessitating varying degrees of disassembly and processing. By effectively integrating these recovery

operations back into the forward supply chain, the model facilitates the efficient reuse and recycling of

high-value components, thus reducing waste and enhancing resource efficiency within the industry’s

manufacturing processes (Thierry et al., 1995).

Figure 2.3: Integrated Supply Chain Model (Thierry et al., 1995)

Companies now view the RSC not just as a regulatory compliance mechanism but as a strategic tool

capable of yielding economic advantages while bolstering corporate social responsibility. This strategic

repositioning has spurred research and innovation, seeking to refine RSC operations and enhance corporate

sustainability (Govindan et al., 2012).

2.1.1. Conclusion
This section delineates the strategic integration of RSC within traditional SCM frameworks, highlighting the

necessity to manage return flows effectively for sustainability and operational efficiency. It emphasizes the

role of CLSC in integrating forward and reverse logistics, thereby supporting environmental objectives and

economic gains through extended product lifecycles and minimized waste (Guide and Van Wassenhove,

2001). Moreover, the literature discusses the importance of developing sector-specific RSC strategies to

navigate the unique challenges and maximize opportunities within industries like automotive and electronics

(Kumar and Putnam, 2008; Bressanelli et al., 2019). This strategic focus not only aligns with compliance

but positions RSC as a crucial component for achieving corporate sustainability and leveraging economic

advantages. The section advocates for ongoing research and tailored approaches in RSC operations to

enhance efficiency and sustainability across different sectors (Guide and Van Wassenhove, 2006; Mishra

et al., 2022).
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2.2. Challenges and Importance of Forecasting in RSC
Forecasting the supply of returned parts within the RSC framework is important for enhancing the resilience

and efficiency of supply chains. The literature reveals various forecasting models and methodologies, each

contributing insights into addressing the inherent uncertainties of RSC processes. This part of the literature

review synthesizes key challenges and used methodologies from the referenced studies, outlining their

implications for future research in RSC forecasting.

Fleischmann (2003) and further discussions by Ravi and Shankar (2014) highlight the difficulties in

forecasting return flows, which are intensified by the unpredictable nature of returns. They argue for

the development of a strong RL network design, underlining the importance of creating models that are

capable of adapting to variations in the amount and condition of returns. This involves a detailed look at

the significance of inventory management and transportation logistics within the RL network, identifying it

as a promising area for future academic research.

Furthermore, Thierry et al. (1995) highlight the crucial function of controlling entry and managing product

recovery in guiding products’ movement through RL channels. They argue that choosing the best ways to

handle returned products, aimed at maximizing their recoverable value, is closely linked to the efficiency of

forecasting models in predicting return volumes and timing. This connection underscores the necessity of

developing forecasting models that not only predict the quantity of returns but also aid in strategic decisions

about handling returns to optimize both economic benefits and environmental sustainability.

Agrawal et al. (2015) underscores the importance of precise forecasting in managing returns within

RL processes. Given the inherent uncertainty in the volume, timing, and quality of returns, there is a

pressing need for robust forecasting models to efficiently optimize RL operations. Despite this necessity,

the literature, as highlighted by Toktay et al. (May 2003), reveals a notable lack of detailed forecasting

practices in the RL as part of the RSC. This indicates a significant gap in both practical application and the

development of methodologies specifically designed for RSC.

Toktay et al. (May 2003) examine the crucial role of accurate return flow forecasting in inventory control

for remanufacturable products. They categorize products by lifecycle and upgrade potential, from con-

sumables to durables, emphasizing the strategic, tactical, and operational decisions impacted by return

flow predictions. The study introduces a methodological framework for forecasting returns, which involves

developing a return delay model and refining its parameters based on historical sales and returns data.

Their findings highlight the trade-offs between different forecasting methods in terms of cost performance

and order variability, advocating for adaptable strategies tailored to various stages of product lifecycles

and sales volumes.

Exploring the complexities of RSC, Kumar and Putnam (2008) identifies the variability and complexity of RL

strategies across industries, suggesting that forecasting models must accommodate diverse sector-specific

challenges. The anticipation of outsourcing RL activities further emphasizes the need for sophisticated

forecasting models capable of navigating the unpredictability of return flows, highlighting the critical role of

information systems and infrastructure in supporting effective RL processes.

Duc et al. (2010) and DeCroix et al. (2009) contribute insights into demand patterns and inventory optimiza-

tion, relevant to both forward and reverse supply chains. Their findings suggest that integrating stochastic

modeling and time-series analysis could offer valuable strategies for managing returns more effectively,

pointing towards a need for forecasting models that better account for the stochastic nature of the supply

in RSC.

Cui et al. (2020)’s research explores predictive models for estimating return volumes in a B2C supply chain,

with a focus on the Least Absolute Shrinkage and Selection Operator (LASSO) method. Although LASSO

is precise, Cui et al. (2020) points out its limitations in specifically identifying returns caused by product

defects. This finding is critical as it highlights the need for more detailed models capable of understanding

the varied reasons behind product returns. The study suggests that including factors like product type and

manufacturing methods could lead to more accurate predictions in RSC.

Matsumoto and Komatsu (2015) and Thierry et al. (1995) contribute to the discussion on the effectiveness

of forecasting models in RSC, particularly regarding the supply of return defective parts. Matsumoto and

Komatsu (2015) provides an empirical investigation into the use of two different time series models for

demand forecasting in auto parts remanufacturing, underscoring the significant potential of time series
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analysis in capturing seasonal and periodic variations in remanufactured product sales. This study’s

findings offer a benchmark for future research in forecasting within the RSC domain, particularly in parts

remanufacturing.

However, Matsumoto and Komatsu (2015) also identifies critical limitations in the existing forecasting

approaches, notably the absence of cause-effect mechanisms and the challenge of integrating external

factors, such as weather conditions and product lifecycle stages, into the forecasting models. This gap

highlights the need for advancing forecasting methodologies that can encompass a broader range of

influencing factors, potentially enhancing accuracy and applicability in RSC forecasting.

The research by Syntetos et al. (2016) widens the discussion to the heuristic approaches employed in

forecasting within CLSC, revealing a lack of scientific validity. This viewpoint opens up new opportunities

for research into how hierarchical forecasting, demand variation, and supply forecasts might improve RL

forecasting approaches, emphasising the importance of comprehensive models that take into account all

aspects of projected output.

Clottey and Benton (2010) and Fleischmann et al. (2012) advocate for the adoption of quantitative forecast-

ing methods that leverage historical data to predict future trends. These approaches, including time series

models and associative models, could significantly improve the predictability and management efficiency

of RL processes. However, there remains a notable reliance on management opinion for forecasting in

some sectors, indicating an area for potential improvement through data-driven models.

Kumar et al. (2014) critically addresses forecasting challenges within the RSC, particularly focusing on

the return rates of products. Through their research, they introduce an ANFIS tailored to navigate the

complexities of forecasting in a multi-echelon, multi-period, and multi-product CLSC. This study highlights

the paramount importance of accurately forecasting return product volumes as essential for enhancing

profitability and efficiency in the RSC.

A notable gap outlined by Kumar et al. (2014) is the absence of integrative research that directly correlates

the flows of returned products with the demand for new parts. This oversight signals a potential area for

supply chain optimization that remains unexplored. Despite the promising utility of the ANFIS model in

enhancing forecast accuracy and supporting strategic supply chain planning. Kumar et al. (2014) identify

key limitations in their research, particularly the lack of comparative analysis with alternative forecasting

methodologies such as neural networks and regression-based methods, as well as a scarcity of validation

using real-world data.

2.2.1. Conclusion
This review of forecasting in the RSC highlights critical gaps that hinder optimal management, including

a pronounced scarcity of data on return volumes (Toktay et al., 2003; Cui et al., 2020), a predominant

focus on demand rather than supply forecasting of return defective parts (Thierry et al., 1995; Fleischmann,

2003), and a lack of methodological comparisons and empirical validations of forecasting models such

as ANFIS against neural networks and regression methods (Kumar et al., 2014; Syntetos et al., 2016).

Additionally, the literature underscores a significant oversight in not directly linking return flows with new

part demands, a crucial aspect for enhancing supply chain efficiency (Kumar et al., 2014). Addressing

these gaps is essential for advancing the accuracy and applicability of forecasting models within the RSC

framework.

2.3. Failure Rate Stages & Reliability
This thesis focuses on predicting the return flow of defective machinery parts in the semiconductor industry

during the initial assembly phase. Predictive analytics are necessary to estimate the quantity of defects

based on historical data. Such defects are closely associated with the reliability and failure rates of

machinery parts. Therefore, this section concentrates on examining literature related to reliability and

failure rate predictions, exploring how these factors influence defect occurrences and return flows in

semiconductor manufacturing.

According to (Lewis, 1996), quality and reliability, while distinct, are closely interconnected aspects crucial

to product development. Quality is defined as the collection of features in a product or service that satisfies

specific requirements at the time of manufacture. Reliability, on the other hand, relates to the consistent



2.3. Failure Rate Stages & Reliability 13

performance of a product throughout its expected lifespan under designated conditions, ensuring it operates

without failure.

Lewis (1996) emphasizes that quality assessments are instantaneous, evaluating a product at a particular

moment, whereas reliability considers the entire lifecycle of the product. This distinction is particularly

important in industries like semiconductor manufacturing, where products are expected to function reliably

over long periods and under diverse operational conditions. From this perspective, it is evident that quality

issues are typically more pertinent to the initial stages of the manufacturing process.

Brombacher et al. (May 2005) discusses the nuanced facets of product reliability, noting that failures can

be classified into physical and functional types. Physical failures occur due to material or component

degradation, which may be instantaneous or progressive. Functional failures, however, arise when a

product meets technical specifications but fails to align with user expectations or needs, reflecting a

mismatch between design intentions and user requirements.

Three dimensions frame these reliability issues: adherence to specifications, statistical significance across

various user scenarios, and the impact of time on failure rates (Brombacher et al., 2005). The ”bathtub

curve” is a fundamental model illustrating these concepts, and is shown in Figure 2.4. It depicts an initial

high failure rate (infant mortality), followed by a period of stable performance (useful life), and ending

with increased failures due to aging (wear-out). Early failures (infant mortality) are often due to inherent

deficiencies, such as missing components, substandard materials, or shipping damages. As these early

issues are addressed, the failure rate declines, which is critical for establishing a baseline for reliable

operation (Lewis, 1996).

Figure 2.4: Bathtub Curve (Lewis, 1996)

Holcomb and North (Jan. 1985) introduced the concept of infant mortality in electronic components, under-

scoring a phase where failure rates are initially high but gradually decrease due to latent defects introduced

during manufacturing, such as internal electrical flaws or contaminants. Roesch (Dec. 2012) expands

on this by focusing on the ”extrinsic” phase of the bathtub curve, which is particularly relevant to the

semiconductor industry. This phase is characterized by initially high failure rates resulting from manufac-

turing defects. This stage, often neglected in the context of semiconductors, especially in small batches

or low-volume production, is critical for establishing benchmarks for subsequent reliability assessments.

Roesch (Dec. 2012) highlights the criticality of early defect detection and resolution in boosting long-term

reliability. These insights are fundamental for employing predictive analytics to effectively forecast defect

rates during the assembly phase, thereby enhancing product reliability from the beginning.

Reliability forecasting in various industries often emphasizes stages beyond the initial ”infant mortality”

phase of the product lifecycle, as represented by the bathtub curve. Notably, the Weibull distribution is

extensively utilized in these later stages due to its effectiveness in modeling life data, which is crucial for

predicting long-term product reliability (Lu, 1998). According to Abernethy (2006), the Weibull analysis is

a commonly used method in engineering for determining component failures, leveraging its two primary

parameters: the shape parameter, which influences the distribution’s skewness, and the scale parameter,

which sets the threshold, thus determining the distribution’s location. However, the Weibull distribution is

typically less relevant for the ”infant mortality” stage, where failures are more a result of manufacturing

defects or early-use deviations rather than the wear-out mechanisms that dominate later life stages.
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Focusing on the later stages of reliability enables organizations to plan maintenance more effectively,

predict potential failures, and implement cost-effective replacement strategies. For example, Lee et al.

(Nov. 2021) discusses various modeling approaches, including the parametric Weibull distribution, to

forecast failures and enhance the reliability of automotive components. The use of the Weibull distribution

in these contexts underscores its capability to provide accurate failure analyses even with minimal data,

making it an invaluable tool in the arsenal of reliability engineers focused on extending the useful life of

products well beyond their early usage phases.

Additionally, Lee et al. (Nov. 2021) explored different models, such as time-series methods like ARIMA

and machine learning techniques including LSTM, support vector machines, and random forests. Lee et al.

(Nov. 2021) indicates that these models often outperform the Weibull distribution, which is typically focused

on later stages for reliability predictions. These alternative approaches are better suited for capturing the

complexity and variability of early-stage failures, thereby providing more robust and accurate predictions

for these critical initial phases.

Conclusion

This section explores the intersection of reliability and failure rates with the return of defective parts in

semiconductor manufacturing, focusing on the initial assembly phase. Quality and reliability, while distinct,

are interconnected and crucial for predicting defects (Lewis, 1996). The ”bathtub curve” model is central to

understanding these aspects in this research project, highlighting the initial high failure rate due to infant

mortality, followed by stable and wear-out phases (Lewis, 1996). While the Weibull distribution is effective

in later life stages (Abernethy, 2006), it falls short during the infant mortality phase where defects are

prevalent (Roesch, 2012). Alternative predictive models, such as ARIMA and machine learning techniques,

are suggested to provide more accurate early-stage predictions (Lee et al., 2021). This thesis capitalizes

on these insights by utilizing historical data in conjunction with predictive analytics to improve quality control

and accurately forecast early-life failures in the assembly process.

2.4. Inventory Control & Classification
This section will first outline the inventory control of returned spare parts, followed by the classification of

these parts.

2.4.1. Inventory Control
Forecasting the return of parts is essential and involves two pivotal decisions following assortment manage-

ment, as identified by Driessen et al. (2014). The research illustrates these concepts through a diagram that

provides an overview of processes and decisions in maintenance logistics control, as shown in Figure 2.5.

Return parts forecasting is structured around two primary decisions:

1. Classification of Parts: Parts are classified either strategically or tactically based on their anticipated

frequency of returns. This classification is generally an annual activity, aimed at categorizing parts to

facilitate subsequent forecasting efforts.

2. Forecasting Return Rates and Times: Following classification, return rates and times are predicted

on a more regular basis—typically monthly or quarterly. This step is crucial for accurately predicting

the volume and timing of parts returns to the facility.

The relationship between parts return forecasting, inventory control, and demand forecasting is crucial.

Accurate return forecasts aid in optimizing inventory by ensuring availability of necessary parts while

minimizing excess stock. This is particularly critical for repairable parts, which might be restored to a

ready-for-use state or scrapped if repair is unfeasible, significantly impacting operational efficiency and

financial overheads (Driessen et al., 2014).

Furthermore, Driessen et al. (2014) highlights how return forecasting integrates into broader maintenance

logistics frameworks. The data obtained from return forecasting informs decision-making in inventory

control and aligns with demand forecasting to harmonize all aspects of spare parts logistics.

Below is a concise summary illustrating how parts return forecasting and inventory control connects directly

and indirectly with various processes in maintenance logistics control (Driessen et al., 2014):

• Assortment Management (Direct): Influences decisions regarding which parts to include in the

inventory based on their return rates and repairability.
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Figure 2.5: Diagram of Logistics Control Processes and Decisions (Driessen et al., 2014)

• Demand Forecasting (Direct): Enhances the accuracy of demand predictions by incorporating data

on return rates and conditions of parts.

• Supply Management (Indirect): Affects supplier selection and contract negotiations by considering

anticipated parts return rates.

• Repair Shop Control (Indirect): Guides scheduling and resource allocation in repair shops through

forecasts of returned parts volumes and timing.

• Deployment (Indirect): Shapes replenishment policies and the management of procurement and

repair orders by factoring in the flow and condition of returned parts. It also triggers adjustments in

procurement and repair strategies based on discrepancies between forecasted and actual returns.

2.4.2. Classification of Spare Parts
As outlined by Driessen et al. (2014), the initial step in managing returns involves strategically classifying

spare parts. Given the variety of spare parts in production and operations management, it is crucial to

determine distinct characteristics of the stock, as detailed by Van Kampen et al. (June 2012). Since each

part exhibits unique demand patterns, they often necessitate tailored forecasting approaches. However,

it is impractical to develop individual models for each, thus grouping and applying specific forecasting

models and control policies to each category is common practice Heinecke et al. (June 2013). Furthermore,

classification aids in allocating managerial focus, particularly since not all returned items merit equal

attention due to disparities in their value or volume (Molenaers et al., 2012). The classification methods

outlined below are commonly utilized in spare parts inventory management and demand forecasting, which

may also be applicable to forecasting the return of defective parts:

• Demand Patterns: The classification of demand patterns into smooth, intermittent, erratic, and

lumpy categories by Syntetos and Boylan (2005) provides a systematic approach to forecasting and

inventory management. This method is essential for understanding the frequency and variability of

demand, which directly influences stock control strategies. The classification is based on two key

metrics: the Average Demand Interval (ADI) and the Squared Coefficient of Variation (CV2). ADI

measures the average interval between successive demands, with lower values indicating more
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frequent demand. CV2 quantifies the variability in demand size relative to the mean, with higher

values indicating greater variability.

Figure 2.6: Demand Pattern Classification (Syntetos and Boylan, 2005)

As depicted in Figure 2.6, demand patterns are classified using cut-off values of ADI = 1.32 and

CV2 = 0.49. Smooth demand is characterized by ADI < 1.32 and CV2 < 0.49, indicating regular

and low variability demand. Intermittent demand, defined by ADI ≥ 1.32 and CV2 < 0.49, involves

sporadic but predictable demands. Erratic demand, with ADI < 1.32 and CV2 ≥ 0.49, shows frequent

and highly variable demand occurrences. Lumpy demand, identified by ADI ≥ 1.32 and CV2 ≥
0.49, features long periods without demand followed by high variability when demand occurs. The

findings from Lamghari-Idrissi (2021) emphasize the practical implications of these categories in

managing spare parts for ASML, particularly highlighting that lumpy demand patterns predominate

(88.3%). Additionally, Bacchetti and Saccani (Dec. 2012) noted that spare parts typically encounter

intermittent or lumpy demand patterns. Accurate classification of demand patterns is crucial for

applying appropriate forecasting techniques and inventory policies, thereby optimizing cost and

efficiency in supply chain operations.

• ABC Analysis: This technique categorizes items based on their importance and usage frequency.

Typically, ”A” items account for 20% of the items but represent 80% of the total value, making them

critical for inventory management. Syntetos et al. (Feb. 2009) used an extended version, ”ABCDEF”,

for spare parts demand categorization, which refines this method. In this approach, ”A” items are

those with more than one order in the last six months and an average demand quantity greater

than six, indicating high-frequency demand. ”C” items have only one order in the last six months,

while ”D”, ”E”, and ”F” items have no orders in the last 6, 12, or more than 12 months, respectively.

This extended categorization aids in more accurate spare parts demand forecasting and enhances

inventory management.

• FSN Classification: This method categorizes spare parts as fast-moving, slow-moving, or non-

moving to optimize inventory management by identifying items for disposition and freeing up capital

and space (Devarajan and Jayamohan, 2016). This method segments inventory into ”F” items

(frequently ordered), ”S” items (lower turnover), and ”N” items (unused for an extended period),

facilitating targeted management strategies (Stoll et al., 2015). However, practical applications,

particularly using standard SAP time-series forecasting methods, often result in inaccuracies for

slow-moving items, leading to excessive stock and heightened obsolescence risks (Syntetos et al.,

2009).

• VED Analysis: VED analysis classifies items based on their criticality to the production process.

”V” items are vital and have a high impact, ”E” items are essential but with a lesser impact than ”V”

items, and ”D” items are desirable but not critical (Jadhav and Jaybhaye, 2020).

• HML Analysis: This method categorizes inventory based on unit price. ”H” items are high-priced, ”M”

items are medium-priced, and ”L” items are low-priced, facilitating financial management of inventory

(Jadhav and Jaybhaye, 2020).

• Analytic Hierarchy Process (AHP): AHP is a multi-criteria decision-making method that ranks

alternatives based on a hierarchy of criteria such as criticality, usage frequency, and lead time. This
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method proves invaluable in classifying spare parts by incorporating both qualitative and quantitative

factors into the inventory management strategy (Molenaers et al., 2012).

2.4.3. Conclusion
This section examines the crucial role of inventory control and classification of returned spare parts within

RSC. Central to this process, as Driessen et al. (2014) outlines, is the accurate forecasting of return flows,

which relies on strategic classification and regular monitoring of return rates and times. Such classification

not only facilitates more precise predictions of parts returns but also optimizes inventory by aligning parts

availability with operational demands, thereby reducing excess stock and increasing efficiency. The

incorporation of forecast data enhances various logistical operations, from assortment management to

repair shop control, shaping overall supply chain strategies. The various classification methods mentioned,

including ABC, FSN, VED, HML, and AHP analysis, provide supply chain managers with valuable tools to

prioritize and manage parts based on their value, usage frequency, and critical importance (Jadhav and

Jaybhaye, 2020; Syntetos et al., 2009). This systematic approach to inventory and classification, utilized

in spare parts inventory management, substantially aids in managing the complexities of RSC and may

also be applicable to forecasting the return of defective parts.

2.5. Conclusion & Discussion
Each section of this literature review chapter concludes with key insights. This section synthesizes these

insights to provide a comprehensive answer to the first sub-question of this research:

What are the existing practices and challenges in managing the reverse supply chain for defec-

tive machinery parts?

Research Question 1

In managing the RSC for defective machinery parts, there are several established practices and notable

challenges. Practices include strategically integrating RSC within traditional supply chain frameworks to

improve sustainability and efficiency. This involves adopting CLSC strategies that merge forward and

RL, thereby extending product lifecycles and minimizing waste. Specifically tailored strategies are also

developed for industries like automotive and electronics, which face unique challenges in managing return

flows and aligning with sustainability goals.

The classification of demand patterns into smooth, intermittent, erratic, and lumpy categories provides

a systematic approach to forecasting and inventory management, crucial for understanding demand

frequency and variability. This method highlights that lumpy demand patterns predominate in managing

spare parts for ASML, emphasizing the need for tailored forecasting techniques and inventory policies.

Additionally, inventory management methods are essential, with advanced classification systems such as

ABC, FSN, VED, HML, and AHP analysis aiding in the prioritization of items such as spare parts based

on value and usage frequency. These systems optimize inventory levels by ensuring the availability of

high-priority parts.

A major challenge is the scarcity of data on return volumes, which hampers the effectiveness of forecasting

models crucial for planning return flows. The focus within the literature and practice predominantly remains

on demand forecasting, with inadequate attention to supply-side forecasting for defective parts. This

oversight restricts the development of precise predictive models crucial for RSCmanagement. Furthermore,

there is a lack of comprehensive comparisons and validations of different forecasting models, which stifles

advancements in this area. Additionally, current models often fail to effectively link return flows with new

part demands, which is critical for enhancing supply chain responsiveness and efficiency. Another critical

gap is in the early stages of the product lifecycle (bathtub curve) where existing models like the Weibull

distribution fall short in predicting defects accurately, necessitating alternative statistical approaches such

as ARIMA and machine learning techniques for better early-stage defect predictions.

Addressing these challenges through focused research and methodological innovation is essential for

enhancing the management capabilities within RSC, especially for defective machinery parts, contributing

to more sustainable and efficient supply chain operations.



3
Literature Research: Forecasting Methods & Metrics

This chapter builds on the research gaps identified previously, focusing on various forecasting methods

and models relevant to predicting return flows. An overview of all the forecasting methods and models

is shown in Figure 3.1. This chapter evaluates their suitability for accurately forecasting the return of

defective machinery parts and provides a detailed examination of the crucial variables and evaluation

metrics integral to these models. By the end of this chapter, answers to the following sub-research question

will be disccused:

2. Which forecasting methods and models are available and suitable for predicting defective machinery

parts in the return flow, and what are the crucial variables and evaluation metrics?

Figure 3.1: Overview of Forecasting Methods & Models Discussed (Authors’ own creation)
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To comprehensively explore the forecasting methods and metrics related to this research, initial search

terms included ”forecasting methods”, ”return flow prediction”, ”defective parts forecasting”, ”failure predic-

tion”, ”supply chain” and ”reverse supply chain”. These search terms were specifically chosen to capture

a broad spectrum of relevant literature and ensure a thorough examination of the various aspects of

forecasting in the context of return flows and defective machinery parts.

To further refine the search and include seminal works and recent advancements, the snowballing technique

was utilized. This involved reviewing the reference lists of key articles identified in the initial search to

discover additional relevant studies.

3.1. Forecasting Methods & Models
Demand forecasting is a well-established discipline within SCM, as detailed by Syntetos et al. (2016).

However, the area of return or supply forecasting, particularly in predicting early-stage defects within RSC,

has not received comparable attention, as discussed in Sections 2.2 and 2.3. This section explores relevant

forecasting methods and models to examine their objectives, functionalities, and potential modifications for

accurately forecasting defects of machinery parts during the early failure stage.

3.1.1. Classification of Forecasting Methods
Forecasting methodologies are categorised from a broad perspective into qualitative and quantitative

approaches. Qualitative methods are employed when there is a lack of historical data or the data is

insufficient to establish patterns, often used in scenarios involving new products or rapidly changing market

conditions where traditional data analysis is ineffectual (Caniato et al., 2011). Conversely, quantitative

methods are preferred in stable environments where sufficient historical data can facilitate accurate

forecasting. This research focuses on quantitative methods due to the availability of historical data related

to defective machinery parts, enabling the precise quantification of future defects. These methods can

be further divided into univariate and multivariate approaches. Univariate approaches consider a single

variable, while multivariate approaches incorporate multiple variables to improve forecasting accuracy

(Cerqueira et al., 2019).

Quantitative Forecasting Methods

Quantitative forecasting encompasses a spectrum of methodologies including causal models, time series

analysis, and Machine Learning (ML) techniques. Recent advancements have blurred the lines between

causal and ML methods, as ML increasingly incorporates causal inference to predict outcomes (Wang

et al., 2021). This shift has led to a categorization of quantitative methods into two main groups: traditional

time series models and ML models. The latter have gained significant traction over the past two decades

due to their ability to handle complex datasets and provide robust predictive capabilities (Cerqueira et al.,

2019; Rosienkiewicz et al., 2017).

Time Horizon

Forecasting horizons in SCM are classified into very short-term, short-term, mid-term, and long-term,

each aligned with specific strategic goals (Makridakis et al., 1998). Very short-term forecasting (up to

one month) addresses immediate operational decisions like daily production scheduling and inventory

adjustments (Bowersox et al., 2002). Short-term forecasting (one to three months) focuses on tactical

decisions such as monthly production plans and inventory restocking, incorporating market trends and

seasonal factors (Chase et al., 2006). Mid-term forecasting (six to eighteen months) is vital for strategic

decisions like capacity adjustments and long-term inventory strategies, integrating broader forecasts

(Armstrong, 2001). This horizon is crucial for RSC management, particularly for planning remanufacturing

and recovery processes (Guide and Wassenhove, 2009). Long-term forecasting (three to five years)

supports strategic decisions like market expansion and new product development (Kotler and Armstrong,

2010). This research focuses on mid-term forecasting, as it aligns with the operational cycles of defect

returns in RSC and possible capacity adjustments at the inventory level.

3.1.2. Traditional Time Series Models
Time series analysis employs historical data to forecast future events by identifying and leveraging data

trends. This methodological framework involves constructing statistical models that encapsulate observed

patterns from past data, facilitating predictions of future outcomes. Such models can range from univariate,
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focusing on a single variable, to multivariate approaches, which analyze simultaneous behavior across

multiple variables. This technique is vital for understanding complex dynamics within datasets as it

incorporates a variety of statistical methods to enhance prediction accuracy (Kalayci, 2003).

The core elements of time series analysis include the level, trend, seasonality, cycles, and irregular random

fluctuations. The ’level’ sets the baseline value of the dataset, while the ’trend’ indicates the general

directional movement, upward or downward. ’Seasonality’ accounts for consistent, predictable patterns

that recur over specific intervals, and ’cycles’ represent longer-term economic or other fluctuations that

do not follow a fixed periodicity (Hyndman and Athanasopoulos, 2018). ’Irregular random fluctuations’

encompass spontaneous, unpredictable variations. These components are integrated through time series

decomposition, a critical process for distilling accurate forecasts from complex data sets (Silver et al.,

2016).

The following subsections reviews traditional time series models relevant to SCM, with a specific focus on

their use within RSC to forecast returns of defective machinery parts in the semiconductor industry. The

analysis aims to identify which models best accommodate the distinctive characteristics of return flows,

enhancing forecasting reliability.

Simple Forecasting Methods

The Naïve method stands as the simplest forecasting technique, relying exclusively on the most recent

observation to predict future values. It assumes the immediate past observation is the optimal predictor for

the upcoming period:

ŷt+1|t = yt

where ŷt+1|t is the forecast for the next period, and yt represents the observed value in the current

period. Celebrated for its simplicity, the Naïve method is particularly effective when the data shows

minimal variation over time and has been proven robust across various economic and financial time series

(Hyndman and Athanasopoulos, 2018). Despite its basic nature, it serves as a valuable benchmark against

more sophisticated models, especially when the latest data point contains the most pertinent information

for predictions (Paldino et al., 2021).

The Simple Moving Average (SMA) method calculates the arithmetic mean of the last n observations:

SMA =
1

n

n∑
i=1

yt−i+1

This method smooths out random fluctuations, aiding in the analysis of short to medium-term trends

(Johnston et al., 1999). Although SMA is straightforward, its efficacy is limited in data lacking strong trends

or seasonal variations (Song and Li, 2008). Within the RSC context, especially concerning stochastic

return flows of defective parts, SMA may require adjustments to better address underlying trends typically

overlooked by this model (Jacobs et al., 2014).

Building on SMA, the Exponentially Weighted Moving Average (EWMA) assigns progressively decreasing

weights to older data, prioritizing more recent information:

St = αyt−1 + (1− α)St−1

Here, St represents the estimated value at time t, yt−1 the actual value from the previous period, and α the

smoothing constant (0 < α < 1). EWMA adapts more quickly to data changes, making it apt for scenarios

where recent observations significantly influence future predictions (Syntetos and Boylan, 2005). Choosing

the right α is crucial and should be tailored based on specific RSC data characteristics, such as repair

times and failure rates, which critically affect forecasting accuracy.

SMA is well-suited for datasets with consistent return rates, whereas EWMA is more effective in situations

where recent changes in return patterns significantly impact the accuracy of future forecasts. By adjusting

the parameters of SMA and EWMA, specifically n for SMA and α for EWMA, these models can be better

tailored to reflect the specific dynamics of defective part returns in the semiconductor industry. Such

customization enhances the performance of these forecasting models.

Table 3.1 presents a summary of the relevant features, along with the comparative advantages and

disadvantages of simple forecasting methods.
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Table 3.1: Comparison of Simple Forecasting Methods

Method Feature Advantage Disadvantage

Naïve Uses the last observation

as the forecast

Simple and robust for data with

minimal variation

Ineffective for data with trends or

seasonality

SMA Average of the last n ob-

servations

Smooths fluctuations and aids in

trend analysis

Limited effectiveness in non-

trendy, non-seasonal data

EWMA Weights recent data more

heavily (α)
Adapts quickly to changes in data Requires careful setting of the α

parameter

Exponential Smoothing Methods

Exponential smoothing methods are essential for addressing various forecasting needs in time series

analysis, particularly due to their flexibility in adjusting to data complexities. Simple Exponential Smoothing

(SES) is the foundational method in this category, best suited for stable data without trends or seasonality:

ŷt+1|t = αyt + (1− α)ŷt|t−1

where ŷt+1|t is the forecast for the next period, yt is the most recent observation, and α is the smoothing

constant, modulating the impact of historical data (Hyndman and Athanasopoulos, 2018).

SES is frequently compared with the EWMA. While both methods emphasize recent observations, their

applications differ significantly. EWMA primarily serves as a smoothing technique, laying the groundwork

for further analysis or as part of more complex models. Conversely, SES is designed for direct forecasting,

making it particularly valuable in environments requiring immediate and responsive predictions, such as

flows within supply chains (Gardner, 1985).

For datasets with trends, double exponential smoothing, also known as Holt’s Method, introduces a

second parameter to handle trends (Holt, 1957). This approach proves essential in scenarios like vehicle

consumption within CLSCs, where a linear trend is observable. Kumar and Yamaoka (2007) demonstrated

the necessity of Holt’s method in such environments, accommodating the linear trends detected in their

data, which underscores the adaptability of exponential smoothing methods in practical applications.

When considering time series with both trends and seasonality, triple exponential smoothing, better known

as Holt-Winters’ Method, is preferred. This method integrates a seasonal adjustment to align forecasts

with recurring cycles (Winters, 1960), crucial for predicting the flows subject to seasonal variations. The

precision of Holt-Winters’ method in handling such complex patterns was notably affirmed by Matsumoto

and Komatsu (2015) in their study on remanufacturing environments, highlighting its low error margins and

effectiveness in seasonal demand forecasting.

Additionally, challenges in applying Holt-Winters’ method, such as the robustness of forecasts in varying

conditions, were explored by Chatfield and Yar (1988), emphasizing the practical robustness of this method.

Further, a study by Krapp et al. (2013) compared traditional forecasting methods, like Holt’s method, to

Bayesian estimation techniques. While Holt’s method showed lower accuracy in return forecasts, it still

achieved an acceptable level of performance.

The choice among these methods is influenced by the specific characteristics of the data, making their

selection crucial for achieving accurate and reliable forecasts in RSC. SES is optimal for stable data,

Holt’s method is advantageous for datasets with linear trends, and Holt-Winters’ excels in scenarios with

compounded trends and seasonalities.

Table 3.2 presents a summary of the relevant features, along with the comparative advantages and

disadvantages of exponential smoothing methods.

Autoregressive Models

Auto-Regressive (AR) models are fundamental in time series forecasting, especially in scenarios with

significant autocorrelation. Formally, an AR model of order p (denoted as AR(p)) is represented by the
equation:
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Table 3.2: Comparison of Exponential Smoothing Methods

Method Feature Advantage Disadvantage

SES Single smoothing con-

stant (α)
Direct and responsive forecast-

ing for stable data

Limited by lack of trend or sea-

sonality adaptation

Holt Introduces a trend compo-

nent

Effective for linear trend data May overlook non-linear trends

or seasonality

Holt-Winters Incorporates both trend

and seasonal adjust-

ments

Ideal for handling complex pat-

terns with trends and seasonality

More intricate, requiring precise

calibration of parameters

yt = c+ φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt

where yt indicates the current value, c is a constant, φ coefficients signify the impact of previous values,

and εt denotes white noise (Hyndman and Athanasopoulos, 2018).

In the context of return forecasting in the semiconductor industry, AR models can help predict return flows

by analyzing patterns in previous returns, which is crucial for managing RL effectively (Box et al., 2015).

The Integration component (I), involves differencing the series d times to render it stationary—a necessary

precondition for the effective application of ARIMA models, which combine AR and Moving Average (MA)

components (Hyndman and Athanasopoulos, 2018):

yt = c+ εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q

This MA component accounts for lagged forecast errors, aiding in smoothing out noise and enhancing

forecast clarity.

ARIMAmodels, by integrating AR, I, andMA components, address a wide array of time series data, including

those with non-stationarity and seasonal fluctuations (Box et al., 2015). They are extensively used for

forecasting, adaptable through the Box-Jenkins methodology for precise model fitting and parameter

estimation (Hyndman and Athanasopoulos, 2018).

Furthermore, the use of ARIMA models necessitates careful consideration of their constraints, notably

the requirement for data stationarity and the model’s challenges with handling high-frequency seasonal

variations. Such issues often necessitate significant modifications, such as the adoption of Seasonal

ARIMA (SARIMA) models, to accommodate seasonal patterns effectively (Box et al., 2015).

However, traditional ARIMA models sometimes fail to capture complex dependencies such as those

between past sales and future returns, which can be crucial in predicting returns of defective parts. This

limitation is highlighted in studies by Clottey et al. (2012), who suggest that incorporating bivariate models

or extensions such as ARIMAX could enhance forecasting accuracy by integrating external variables

like warranty claims or failure rates. ARIMAX is essentially an ARIMA model that includes one or more

exogenous variables, directly affecting the forecast.

In the study discussed earlier, Matsumoto and Komatsu (2015) not only investigates the effectiveness of

the Holt-Winters model but also compares it to the ARIMA model for demand forecasting in the context of

auto spare parts remanufacturing. The comparison between these two models provides a comprehensive

overview of how each model handles the inherent complexities of forecasting in a remanufacturing

environment, particularly in terms of capturing seasonal and periodic variations in sales data. This analysis

offers valuable insights into the suitability of these models for enhancing the accuracy of forecasts in

production planning specific to remanufacturing scenarios.

In their study on forecasting spare part extractions in a CLSC, Turki et al. (2022) assess the efficacy of

ARIMA models, highlighting their precision in structured forecasting scenarios. Despite ARIMA’s strengths

in parameter customization and accuracy for higher volume parts, its limitations include an inability to

process non-linear trends and seasonal fluctuations without modifications. This necessitates the integration
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of ARIMA with other models to enhance forecasting reliability in dynamic supply chain environments (Turki

et al., 2022).

In the study by Lee et al. (Nov. 2021), an ARIMA model was utilized to forecast the number of failures in

automobile parts based on time series data from the first six months of usage. The data derived from two

specific vehicle models. The ARIMA model parameters tested across a range of values (p = 1 to 4; d = 0

to 2; q = 1 to 4) to pinpoint the combination that best modeled the underlying patterns of failures while

optimizing for simplicity, as indicated by the lowest Akaike Information Criterion (AIC).

Once the optimal parameters were determined for each part, the ARIMA model was employed to predict

future failures from the seventh to the sixtieth month. This predictive modeling aimed to enable proactive

quality assurance measures and reduce warranty service expenses by anticipating potential failures.

Despite these efforts, the predictive accuracy of the ARIMA model fell short when compared to more

advanced machine learning approaches, such as deep learning, which proved more effective in forecasting

failures and estimating long-term reliability more precisely (Lee et al., 2021).

Following the discussion on ARIMAmodels, Distributed Lag Models (DLM) provide another robust approach

for modeling the relationship between past sales and future returns, crucial in industries with significant

return rates like electronics and automotive. DLMs conceptualize returns (mt) as a cumulative function of

sales over previous periods, expressed by:

mt =

T∑
k=1

βknt−k + εt

where nt−k represents sales, βk are the lag coefficients depicting the impact of these sales on returns,

and εt is an error term, typically modeled as white noise (Clottey et al., 2012).

The strength of DLM lies in its adaptability; parameters (β) can be updated as new data emerges, enhancing

forecast accuracy over time (Clottey et al., 2012). This feature is beneficial in dynamic market environments

where product life cycles and sales patterns are subject to change. Parameters are generally estimated

using ordinary least squares when lags are manageable, but more complex scenarios might require

advanced techniques for greater accuracy (Geda and Kwong, 2018).

DLMs are shown to be most effective when the sales-returns relationship is strong and stable. However,

in environments where this relationship is weaker or variable, mixed models that incorporate elements of

ARIMA and regression could provide better forecasting accuracy (Ma and Kim, 2016).

A challenge with DLMs is determining the appropriate lag length and ensuring accurate parameter esti-

mation, as errors in these areas can significantly degrade the model’s effectiveness (Geda and Kwong,

2018). Despite these challenges, DLMs offer a robust framework for forecasting returns, providing valuable

insights for managing RL in sectors with significant return volumes.

Table 3.3 presents a summary of the relevant features, along with the comparative advantages and

disadvantages of auto-regressive methods.

3.1.3. Machine Learning Methods
This subsection reviews ML methods, as grouped by (Benti et al., 2023) into four categories: supervised

learning, unsupervised learning, reinforcement learning, and deep learning. The focus will be on supervised

and deep learning due to their relevance to the labeled data used in this study, which is essential for

forecasting applications.

Supervised learning involves training models on datasets with labeled input-output pairs, optimizing for

accuracy in predicting specific outcomes. This makes it particularly suited for regression and classification

tasks within structured data environments. Deep learning, characterized by its use of multi-layered neural

networks, is adept at processing and learning from large volumes of complex data, thereby enhancing the

capability and precision of forecasting models (Benti et al., 2023).

For this review, unsupervised and reinforcement learning will not be covered due to their less direct

applicability to the structured, labeled datasets at hand. The focus will remain on how supervised learning

and deep learning can be optimally applied to address forecasting challenges, leveraging their robust

capabilities in handling labeled and intricate data patterns effectively.
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Table 3.3: Comparison of Autoregressive and Related Forecasting Methods

Method Feature Advantage Disadvantage

AR(p) Utilizes past values

(φ1, φ2, ..., φp)

Effective for data with autocorre-

lation, captures dynamics over

multiple past periods

Requires stationarity; not suit-

able for non-linear trends

MA(q) Uses past forecast errors

(θ1, θ2, ..., θq)
Good for smoothing out noise

and short-term fluctuations

Does not account for long-term

trends or seasonality

ARIMA Combines AR, I (differ-

encing), and MA compo-

nents

Flexible, handles non-stationary

data including trends

More complex to configure and

calibrate, requires careful differ-

encing

SARIMA Extends ARIMA with sea-

sonal adjustments

Specifically targets seasonal

data variations, offering precise

adjustments

More parameters to estimate,

which can increase model com-

plexity and fitting challenges

ARIMAX Extends ARIMA to

include exogenous vari-

ables

Enhances forecasting accuracy

by incorporating external influ-

ences

Increases model complexity, re-

quiring more data for effective es-

timation

DLM Models returns as a func-

tion of distributed lag ef-

fects from past sales

Captures delayed impact of sales

on returns, adaptable to new data

Requires careful selection of lag

length and parameter estimation

Supervised Learning

The LASSO model, renowned for its dual functionality in demand forecasting—variable selection and regu-

larization—effectively minimizes overfitting while identifying pertinent predictors from expansive datasets.

These datasets may incorporate variables like usage patterns, production batch specifics, and historical

failure rates (Cui et al., 2020). The mathematical formulation of LASSO is:

Minimize:

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

|βj |

Here, yi represents the return volumes, xij the predictors, βj the coefficients, λ the regularization parameter,
and p the number of predictors. This model’s capacity to streamline complex datasets by excluding

extraneous variables makes it highly effective in SCM, improving both interpretability and manageability.

Cui et al. (2020) acknowledges the model’s prowess in forecasting product returns, yet points out its

shortcomings in specifically identifying defects as the cause of returns. In large datasets characteristic of

RSC scenarios, where multiple factors affect return probabilities, LASSO’s attribute of performing variable

selection and regularization concurrently proves invaluable. Cui et al. (2020) illustrates this with a case

involving over 331,000 products, where LASSO successfully isolated critical predictors such as sales,

product types, and historical returns. This pinpointing of relevant variables is essential for precise return

volume forecasts, which in turn, are crucial for optimizing inventory and minimizing waste in sectors where

returns play a essential role.

The Random Forest algorithm excels in addressing the nonlinear and complex relationships characteristic

of RSC data through an ensemble of decision trees. It improves prediction accuracy by employing bootstrap

sampling and random feature selection to mitigate overfitting (Suthaharan, 2016). The method is particularly

advantageous for its ability to estimate variable importance, which could be crucial for pinpointing key

predictors of defective machinery parts.

The operational mechanism of Random Forest includes (Suthaharan, 2016):

• Bootstrap Sampling: Creating diverse training subsets from the original dataset, allowing each tree

to learn from different samples.

• Feature Randomness: During tree splits, considering a random subset of features to enhance model

diversity and prevent overfitting.

• Aggregation of Tree Results: Averaging the predictions from all trees to produce a final, more stable

output.
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The capability of Random Forest to rank variables by importance is demonstrated through evaluation

metrics such as Mean Decrease Accuracy, assessing how predictor shuffling affects model accuracy. This

feature is vital for identifying critical factors influencing defect occurrences and return likelihood. Studies,

such as those conducted by Sareminia and Amini (2023), demonstrate that Random Forest performs well

in predicting spare parts demand, although it requires a substantial amount of data points to be effective.

Support Vector Machine (SVM) are well-regarded for their dual capability in classification and forecasting,

making them particularly versatile across various data contexts. Traditionally employed to maximize the

margin between classes of data points, SVMs are adept at ensuring precise categorization, a critical feature

in settings requiring accurate predictions. For example, a study by Zeng and Qiao (2013) demonstrated

that a 2D least-square SVM could outperform traditional forecasting models like AR models and radial

basis function neural networks in short-term prediction. This capability to accurately predict outcomes is

enhanced by SVMs’ utilization of a wide range of input features, including historical and environmental

data. Moreover, their adaptability was further evidenced in a different study by Rostami-Tabar et al. (2013),

where SVMs were used to forecast demand for oil industry spare parts using a piecewise linearization

approach. This method proved effective in managing uncertainty, showcasing SVMs’ value in complex

supply chain scenarios where conventional models may falter.

Support Vector Regression (SVR) is an advanced ML technique used for predicting continuous outcomes

in regression analysis. SVR operates by mapping data into a higher-dimensional space using the kernel

trick, a method that allows the model to handle non-linear relationships effectively (Benti et al., 2023). This

mapping facilitates the fitting of the best possible hyperplane that minimizes the error margin between the

actual and predicted values. One of the critical features of SVR is its flexibility in choosing kernel functions

and setting regularization parameters, which are vital for optimizing the model’s performance in diverse

forecasting environments. This capability makes SVR particularly useful in sectors where the relationships

between variables are complex and non-linear.

A notable application of SVR in the renewable energy sector is demonstrated by Yuan et al. (2022), who

employed an optimized SVR model to predict wind power. Their study highlighted the model’s superior

performance over traditional methods, particularly in terms of handling seasonal variability and improving

prediction accuracy, underlining SVR’s robustness and adaptability.

Table 3.4 presents a summary of the relevant features, along with the comparative advantages and

disadvantages of supervised learning methods.

Table 3.4: Comparison of Supervised Learning Methods

Method Feature Advantage Disadvantage

LASSO Regularization and vari-

able selection

Efficiently handles large datasets

with many predictors, reducing

overfitting and enhancing model

interpretability.

May fail to capture complex, non-

linear relationships.

Random Ensemble of decision

trees, bootstrap sampling,

feature randomness

Excellent at handling non-linear

data; provides insights on vari-

able importance and robustness

against overfitting.

Computationally intensive;

model performance heavily

depends on correct parameter

tuning.

SVM Classification and regres-

sion capabilities using op-

timal hyperplanes

Versatile and effective in high-

dimensional spaces; good for

both classification and regres-

sion tasks.

Computationally intensive; per-

formance heavily reliant on ap-

propriate kernel choice.

SVR Regression with kernel

trick to handle non-linear

data

Effective in forecasting scenarios

with non-linear relationships; ro-

bust across various applications.

Sensitive to kernel and regular-

ization settings; may require ex-

tensive parameter tuning.

Deep Learning

Deep learning models represent an advanced branch of machine learning, characterized by their use of

Artificial Neural Networks (ANN) with extensive layering, suitably named ”deep”. These layers can range

from just a few to several thousand (Wang et al., 2019). The primary function of these models is to identify
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patterns and connections in data by dynamically adjusting the neural connections to reduce errors between

predicted and actual outputs (Elsaraiti and Merabet, 2022). Structurally, ANN are designed to mimic the

human brain, beginning with an input layer that receives data, usually in the form of numerical vectors,

and concluding with an output layer that delivers results, which could be classifications or predictions

(Dougherty, 1995).

In the specific context of managing RL for Waste of Electrical and Electronic Equipment (WEEE), Temur

and Bolat (2017) have effectively utilized ANN to forecast the volumes of product returns accurately. Their

study highlights the adaptability of ANN in processing complex data, a critical aspect for optimizing reverse

logistics frameworks. The researchers tested various configurations of ANN, varying in the number of

hidden layers and neurons, to discover the most effective structure for accurate predictions. They found

that a model with two hidden layers, each containing four neurons, achieved the lowest mean squared error

and provided highly reliable forecasts. This model was particularly effective in predicting return volumes

for new collection points anticipated under future regulatory frameworks. The ability of ANN to deliver

dependable forecasts is essential for the strategic planning and implementation of efficient RL operations,

ultimately improving the management systems for WEEE (Temur and Bolat, 2017).

Building on these advancements, Marx-Gomez et al. (2002) introduced a neuro-fuzzy system that further

refines the forecasting of product returns, especially for scrapped electronic products. Unlike traditional

methods, their neuro-fuzzy approach utilizes both fuzzy logic and neural networks to handle the inherent

uncertainties in return data, such as timing and quantity. This system incorporates expert knowledge

through fuzzy rules and uses a sophisticated inference mechanism to predict returns more accurately. The

success of their model in a case study with photocopiers demonstrates its potential to enhance prediction

capabilities in RL, particularly under varying conditions dictated by real-world complexities (Marx-Gomez

et al., 2002).

The ANFIS model uniquely blends the adaptive learning capabilities of neural networks with the heuristic

reasoning of fuzzy logic, making it particularly adept at handling complex and nonlinear systems. According

to Jin et al. (Aug. 2013), ANFIS is structured into five distinct layers: input fuzzification, rule application,

normalization of firing strengths, defuzzification, and output summation. Figure 3.2 provides an illustration

of ANFIS architecture by Jin et al. (Aug. 2013). This architecture allows ANFIS to fine-tune membership

functions and if-then rules directly from the data, significantly enhancing its precision in time series

forecasting. Employing a hybrid learning algorithm that integrates gradient descent and least squares

methods, ANFIS adjusts its model parameters for optimal accuracy. While offering substantial benefits

in modeling intricate data relationships, challenges such as potential overfitting and high computational

demands during training are notable drawbacks, particularly when the data is noisy or the ruleset extensive

(Jin et al., 2013).

Figure 3.2: An ANFIS architecture by Jin et al. (Aug. 2013)

Building on this foundation, Kumar et al. (2014) applied ANFIS to forecast return products within an

integrated forward and reverse supply chain, addressing the uncertainties prevalent in the volume of

product returns. The approach leverages the neural network capabilities and fuzzy logic of ANFIS to

significantly improve forecasting accuracy under conditions of incomplete data and complex patterns,

which traditional forecasting methods often fail to address effectively. The methodology encompasses

a two-phase process: initially, ANFIS forecasts product return rates, adapting to the dynamics of multi-

period, multi-product, and multi-echelon closed-loop supply chain settings, factoring in historical sales
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data, consumer return tendencies, and existing incentives. Subsequently, the forecasted data inform the

optimization of the supply chain design to ensure robustness and efficiency (Kumar et al., 2014).

The evaluation of the ANFIS model across 25 periods highlighted its reliability and high accuracy in

forecasting, promising substantial applicability for real-world CLSC challenges. The evaluation metrics

used demonstrated a close match between the forecasted and actual return volumes, affirming ANFIS’s

effectiveness in managing the uncertainties associated with return product forecasting (Kumar et al., 2014).

LSTM, developed by Hochreiter and Schmidhuber (1997), are an advanced form of Recurrent Neural

Networks (RNN) engineered to overcome the limitations posed by the vanishing gradient problem typical

in traditional RNNs. These networks feature specialized memory cells regulated by three distinct gates:

the input gate (it), the forget gate (ft), and the output gate (ot). These gates selectively retain or discard
information, facilitating effective long-term sequence processing and allowing for robust error backprop-

agation across multiple layers, thus enhancing the network’s capability to learn from long sequences

(Hochreiter and Schmidhuber, 1997). Subsequent studies, such as those by Groenendijk et al. (2020),

have underscored the ability of LSTM to propagate errors efficiently and bolster learning capabilities across

complex datasets.

Figure 3.3 illustrates an LSTM cell in detail, highlighting its core components: the input Xt, the previous

hidden state ht−1, and the previous cell state Ct−1 (Ismail et al., 2018). The operational mechanism within

the cell includes the modulation gate (C̃t) alongside the aforementioned gates. The forget gate determines

parts of the cell state to retain or discard, the input and modulation gates update the cell state with new

information, and the output gate determines the final output, which, after passing through a tanh function,

becomes the new hidden state ht. This intricate gating system ensures critical data is preserved over

extended periods, crucial for tasks requiring medium and long-term data retention (Ismail et al., 2018).

Figure 3.3: An LSTM cell (Ismail et al., 2018)

Chandriah and Naraganahalli (2021) demonstrated the effectiveness of LSTM in predicting automobile

spare parts demand. Their model, trained on historical data and installed base information, achieved

superior accuracy compared to traditional methods, even for parts with delayed installation. This approach

has the potential to improve reverse logistics and maintenance scheduling.

Lee et al. (Nov. 2021) showcased the use of LSTM for predicting automobile part failures using warranty

claim data. LSTMs’ ability to handle temporal dependencies in sequential data is crucial for capturing the

irregular patterns indicative of part failures. Their ”many-to-many” LSTM architecture outperformed other

models in accuracy metrics, making them possibly suitable for industries like semiconductor manufacturing

to predict defective machinery parts.

Table 3.5 presents a summary of the relevant features, along with the comparative advantages and

disadvantages of deep learning methods.

3.2. Evaluation Metrics
Forecasting the return flow of defective parts in the requires the application of sophisticated models whose

accuracy needs to be critically assessed. This review dissects the most relevant evaluation metrics used in

the literature, providing a clear understanding of their formulas, applications, and theoretical underpinnings.
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Table 3.5: Comparison of Deep Learning Methods

Method Feature Advantage Disadvantage

ANN Multi-layered artificial

neural network

Capable of processing complex

and non-linear data patterns,

good for dynamic data.

Requires large datasets for train-

ing; prone to overfitting without

careful regularization.

ANFIS Adaptive learning capa-

bilities integrating fuzzy

logic

High precision in handling non-

linear systems; effectively tunes

membership functions and rules

from data.

Complex system setup; potential

for overfitting; computationally in-

tensive, especially with extensive

rule sets.

LSTM Recurrent neural network

with long-term depen-

dency handling

Excels in managing data where

temporal sequences and past in-

formation are crucial, suitable for

forecasting part failures.

High complexity leading to chal-

lenging model tuning and longer

training times.

3.2.1. Scale-Dependent Measures
Scale-dependent measures are vital when forecast and actuals are on the same scale, allowing for direct

comparison of model performance.

Mean Squared Error (MSE)

The MSE quantifies the average squared deviation between forecasts and actual observations, serving

as a foundational measure of forecast error magnitude. Despite its known sensitivity to large errors, it is

widely utilized in quantitative finance and forecasting due to its clear interpretative advantages in scenarios

where large errors are particularly detrimental (Hyndman and Koehler, 2006).

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.1)

Root Mean Squared Error (RMSE)

The RMSE is preferred in various forecasting scenarios due to its capacity to penalize larger errors more

significantly, thus helping to highlight models that may underperform during critical operational situations

(Chai and Draxler, 2014).

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.2)

Mean Absolute Error (MAE)

The MAE, is frequently selected for its straightforwardness and robustness against outliers. This makes

it an indispensable metric for comparing either a single time series or multiple series that are measured

on the same scale. Its simplicity in calculation and interpretation renders it highly suitable for practical

applications within SCM (Hyndman and Athanasopoulos, 2018). The MAE is also commonly referred to

as the Mean Absolute Deviation (MAD), where the ”D” stands for ”deviation”, utilizes absolute values to

calculate deviations, ensuring that negative and positive errors do not cancel each other out, thus providing

a more accurate measure of forecast accuracy (Hyndman and Koehler, 2006).

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.3)

3.2.2. Scale-Independent Metrics
Scale-independent metrics are crucial for comparing models applied to different scales of data.
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Mean Absolute Percentage Error (MAPE)

MAPE offers a way to express forecast error as a percentage, making it a preferred choice for cross-scale

model performance comparison (Armstrong and Collopy, 1992). It allows for straightforward interpretation,

though it is not without its issues, particularly when datasets include zeros or extreme values.

MAPE = 100%× 1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3.4)

Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE addresses some of the known limitations of MAPE by accounting for both under- and over-forecasts

symmetrically, thus avoiding distortion from extreme values (Makridakis et al., 2020).

SMAPE = 100%× 1

n

n∑
i=1

∣∣∣∣∣ yi − ŷi
|yi|+|ŷi|

2

∣∣∣∣∣ (3.5)

Modified Mean Absolute Percentage Error (mMAPE)

The mMAPE is designed to address the limitations of standard MAPE, particularly in datasets with zero

or near-zero values. Standard MAPE can yield undefined or extremely high values in such cases. The

mMAPE enhances robustness and interpretability by capping the error and ensuring the denominator is

never zero. The term (1 + |yi|) in the denominator ensures this condition, where yi is the actual value and
ŷi is the forecasted value (Turki et al., 2022).

mMAPE = 100%× 1

n

n∑
i=1

(
|ŷi − yi|
1 + |yi|

)
(3.6)

3.2.3. Synthesis
This synthesis consolidates findings from multiple earlier discussed studies focusing on the accuracy of

the forecasting models.

The study by Krapp et al. (2013) evaluated the efficacy of SES and Holt’s method using MSE, MAPE, and

MAD. It was found that Holt’s method produced higher MSE and MAD values, indicating larger errors

compared to the Bayesian estimation approach. Despite this, Holt’s method showed better accuracy than

SES.

In research conducted by Matsumoto and Komatsu (2015), the ARIMA and Holt-Winters models were

assessed using data from auto parts remanufacturing. ARIMA demonstrated superior performance,

providing more accurate predictions over both short and long terms using SMAPE and consistently

outperforming Holt-Winters in MAPE.

Clottey et al. (2012) applied MAPE to evaluate the performance of the DLM. Meanwhile, Lee et al. (Nov.

2021) used MSE and MAE to measure the prediction performance of models like ARIMA, SVM, and LSTM

over various periods, establishing a ranking based on these metrics to compare their effectiveness.

In another study, Temur and Bolat (2017) employed MSE to gauge the performance of ANN models, and

Kumar et al. (2014) assessed the ANFIS model using the coefficient of determination (R2) along with

RMSE, MAE, and MAPE. Additionally, Chandriah and Naraganahalli (2021) used MSE to evaluate LSTM

models.

The literature review reveals that among the scale-dependent metrics, RMSE and MAE are preferred for

their capacity to highlight significant forecasting errors and their ease of interpretation (Chai and Draxler,

2014; Hyndman and Athanasopoulos, 2018). MAPE, despite its popularity, requires careful application,

especially in data sets with zero values, to avoid misinterpretation (Armstrong and Collopy, 1992). SMAPE’s

symmetric consideration of errors offers an improved alternative, particularly in data sets prone to outliers

(Makridakis et al., 2020). The mMAPE is designed to address the limitations of standard MAPE, particularly

in datasets with zero or near-zero values, and has been utilized for evaluating ARIMA models among

others (Turki et al., 2022).

Table 3.6 provides a summary of the evaluation metrics applied across various studies to assess different

relevant forecasting models for this research.
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Table 3.6: Evaluation of forecasting models across different metrics, categorized by cited studies.

Citation MSE RMSE MAE MAPE SMAPE mMAPE

(Krapp et al., 2013) SES - - SES - -

Holt - - Holt - -

(Matsumoto and Komatsu, 2015) - - - ARIMA, ARIMA, -

Holt-Winters Holt-Winters -

(Clottey et al., 2012) - - - DLM - -

(Lee et al., 2021) ARIMA, - ARIMA, - - -

SVM, SVM,

LSTM LSTM

(Temur and Bolat, 2017) ANN - - - - -

(Kumar et al., 2014) - ANFIS ANFIS ANFIS - -

(Chandriah and Naraganahalli, 2021) LSTM - - - - -

(Turki et al., 2022) - - - - - ARIMA

3.3. Conclusion & Discussion
Each section of this literature review chapter concludes with key insights. This section synthesizes these

insights to provide a comprehensive answer to the second sub-question of this research:

Which forecasting methods and models are available and suitable for predicting defective ma-

chinery parts in the return flow, and what are the crucial variables and evaluation metrics?

Research Question 2

To address the urgent need for robust forecasting within the RSC of the semiconductor industry, this

discussion synthesizes insights from a comprehensive literature review and a detailed matrix of forecasting

models discussed (Figure 3.4). The primary objective is to identify models that can accurately predict the

return flow of defective machinery parts, thereby mitigating challenges such as overstocked inventories

and inefficiencies in managing these returns.

Traditional forecasting methods, such as SMA, EWMA and SES provide foundational approaches but are

generally limited to simpler scenarios. These methods often rely on sales data to forecast future demand,

which is more typical in B2C contexts and less suited to the complexities of defective part returns in the

semiconductor industry. Among less complex models, Holt-Winters stands out for its ability to handle

variations from return flow more effectively, offering a balance between simplicity and adaptability to data

fluctuations.

Advanced models like ARIMA, ARIMAX, and LSTM have shown significant potential in addressing the

unique challenges associated with spare parts and failure rates in RSC. ARIMA models are adaptable to

non-stationary data, a common characteristic of return flow and spare parts demand. ARIMAX extends

ARIMA by integrating external variables, such as repair rates and failure statistics, which are crucial for

predicting return flows. These models adjust well to data irregularities inherent in manufacturing processes,

effectively forecasting defect quantities.

LSTM models excel in managing medium and long-term dependencies and recognizing complex patterns.

They are particularly suited for scenarios where past events significantly influence future outcomes, such

as parts failing during initial assembly stages in ASML’s operations. LSTM models have demonstrated

superior performance compared to ARIMA, SVM, Random Forest, and ANN in scenarios involving complex

dependencies and sparse data, which are typical in forecasting spare parts demand.

However, models like ANFIS and LASSO, although valuable for specific tasks such as planning efficiencies

or analyzing return causes, are less preferred due to their complexity or lack of direct focus on quantitative

forecasting needs, particularly in operational environments characterized by high defect variability.
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Because of the different data variations of defective machinery parts there is need to investigate different

models which can deal with sparse data, but for some more and some less complex so a choice would be

favorable to test different complexities.

The discussion highlights the crucial variables for effective forecasting in the supply chain. Key variables

include historical defect rates, which help establish baseline trends; production data, which may indicate

potential manufacturing flaws; and sales data, although in this context, sales data is less relevant as it

pertains more to customer returns rather than returns from early-stage factory processes. By analyzing

these variables, forecasting models can be precisely adjusted to reflect the real-world complexities of the

semiconductor manufacturing process.

The literature review highlights the importance of selecting appropriate evaluation metrics for forecasting

return flows in the semiconductor industry. MAE and MSE are particularly valued for their ability to

emphasize significant forecasting errors and offer clear interpretations, making them suitable for complex

supply chain environments. MAPE, though widely used, requires careful consideration in datasets with zero

values, whereas mMAPE offers a more robust alternative. SMAPE provides a balanced error assessment,

advantageous in datasets with outliers. This synthesis underscores the need for tailored metrics to ensure

accurate and reliable forecasting.

Figure 3.4: Matrix of Forecasting Models in Literature Research (Authors’ own creation)



4
System Analysis

This chapter aims to analyze ASML’s CLSC and RSC processes, focusing on the complete process,

part identification and notification systems, and the return flow of defective parts. By examining these

components, it identifies key challenges, such as the unpredictability of return volumes and the integration

of complex data elements. This chapter will finally give answer to the third sub question of this research:

3. What are the key challenges in managing the return flow of defective parts within ASML’s reverse

supply chain?

4.1. CLSC & RSC Process Identification
The CLSC at ASML integrates both forward and reverse supply chain processes to optimize the lifecycle

management of parts. This integration is achieved by employing methodologies similar to those discussed

in the literature review Section 2.1, particularly drawing on the work of Guide and Van Wassenhove (2001)

and Thierry et al. (1995). The comprehensive structure of ASML’s CLSC is analyzed and depicted using

these methods, as illustrated in Figure 4.1.

Figure 4.1: General CLSC of ASML (Authors’ own creation)

ASML’s supply chain starts with external suppliers manufacturing raw materials, followed by the fabrication

of parts by both internal and external suppliers. In the forward supply chain of ASML, these parts are

assembled into modules, which are then integrated into complete systems at semiconductor fabrication

plants, known as fabs. Effective planning ensures the timely availability of spare parts, minimizes production

downtime, and fulfills customer orders. Each part is identified by a unique numerical code and assembled

into modules for lithography systems.

ASML engages in recovery operations mainly for economical and circularity reasons, as refurbishing parts

is more cost-effective than purchasing new ones while maintaining high quality. The RSC consists of

two main inflows: return flow from the factory and return flow from customer fabs. Returned parts from

customers, known as service parts, may be repaired locally if facilities exist; otherwise, they are sent to the

Netherlands for further processing if it is economically and sustainably viable. This process includes repair

execution, returning good parts to factories or customers, RL within the Netherlands, repair and reuse

investigations, recycling, and local repairs. This closed-loop approach supports ASML’s sustainability and

operational excellence goals, ensuring economic objectives are met while minimizing waste and optimizing

resource reuse.

32
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As indicated in the scope section, this research focuses on parts that become defective within the factory.

The primary issue concerns the inflow of new and repaired parts from suppliers and their subsequent

assembly. The inflow of parts from the reverse inventory’s good stock of repaired parts indirectly influences

the scope of this research. The core aspect of the return inflow into the reverse inventory is the outflow of

these defective parts from the factory; these flows are indicated by the orange lines in Figure 4.1. Repairable

parts are returned to suppliers for repairs, while unrepairable parts undergo a reuse investigation to

determine the appropriate action, such as dismantling, harvesting, or recycling. This dynamic necessitates

identifying the variables essential for developing a forecasting model as part of ASML’s RSC.

Figure 4.2 provides a simplified forward flow of ASML’s supply chain, highlighting the factory parts and

service parts for customer facilities. The red ”Defect” cross indicates where defects occur in the supply

chain and the point at which forecasts must predict these defects. This figure clarifies that ASML also acts

as an internal supplier of parts. Initially, these raw materials are supplied by external suppliers and then

developed into unique ASML parts using several external components. These parts are distributed to

factory warehouses for use or to service warehouses. The indicated gray shapes are outside the scope

of this research. Additionally, the forward flow to the factory is indirectly connected to the return flow of

defective machinery parts. This connection helps in understanding the relationship between these flows

and gathering data variables.

Figure 4.2: Forward Flow of ASML Supply Chain (Authors’ own creation)

Figure 4.3 shows a simplified reverse flow from the factory in ASML’s supply chain, primarily investigated to

understand the consequences and identify the problem statement. The red ”Defect” cross marks the points

in the supply chain where defects occur and where forecasts must predict these defects. This indicates that

the defect point is where the forward flow transitions into the reverse flow. The reverse flow of defective

machinery parts from the factory leads to overcapacity in the reverse inventory, and repairable parts are

sometimes recycled due to a lack of demand, leading to value loss. Repairable defective parts are stocked

in the 5L warehouse and only sent to the supplier for repairs if there is a demand trigger from the factory

or customer facilities. Unrepairable parts, or those without current demand, are sent for evaluation for

potential reuse, provided that warehouse capacity allows. When there is demand for repairable parts, they

can eventually be sent to the supplier for repairs. Unrepairable parts follow a distinct process, depicted

in grey, leading to decisions regarding dismantling, harvesting for usable components, or recycling. The

dismantling decision is entirely outside the scope of this research.

The repair process and inventory control, although outside the direct scope of this research, are intricately

connected to it, and their interdependencies will be reflected in the recommendations. The demand trigger

in the reverse flow is crucial for conducting a classification analysis to identify high-value parts for this case

study. Furthermore, understanding lead times for new parts in the forward flow and repairable defective

parts in the reverse flow is valuable for determining the appropriate forecasting horizon for each part. This

approach align with the problem statement’s recommendation to block new buys and create dummy orders

for repairable defective parts in the system.

4.2. Part Identification and Notification Systems
This subsection delves into ASML’s part identification and notification system, which is essential for

subsequent analyses. Each component at ASML is assigned a unique 12-digit Numerical Code (12NC)

along with a specific equipment number that facilitates individual tracking. When modifications or defects
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Figure 4.3: Reverse Flow of ASML Supply Chain (Authors’ own creation)

occur, a MN number is generated, which plays a critical role in the precise tracking of each part’s lifecycle.

Grasping this system is crucial for the logistical and supply chain operations at ASML and lays the

groundwork for further analytical investigations. Figure 4.4 illustrates the straightforward relationship

between these three identification and notification elements, with arrows to the right indicating multiple

12NC lines comprising individual parts and various material notifications.

Figure 4.4: 12NC, Equipment Number and MN (Authors own creation)

4.2.1. 12-digit Numerical Code (12NC)
At ASML, the management of part inventories and the tracking of part modifications are facilitated by the

12NC system. This standardized system is crucial for identifying parts across various databases, including

System Applications and Products in Data Processing (SAP) a widely-used enterprise resource planning

software and Teamcenter a product lifecycle management database system enhancing logistical efficiency

and operational accuracy.

ASML’s parts, which often exhibit non-trivial complexity and significant value, are sourced globally from

multiple suppliers. These parts, whether as larger modules or individual spare components, are managed

through a robust identification system using the 12NC, essential for efficient lifecycle management of each

component.

Each ASML machine component is designated by a unique 12NC, an important legacy from ASML’s

Philips heritage. The 12NC is integral to precise component tracking and effective inventory management.

Below is a detailed breakdown of the 12NC structure:

• First 4 Digits: Specify the site of part usage. For instance, ’4022’ denotes parts used in ASML
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factories, while ’SERV’ indicates parts designated for customer service sites. This research focuses

on ’4022’ due to its relevance to factory operations.

• Next 3 Digits: Relate to the department or project, e.g., ’657’ for Mechanical EUV projects.

• Following 4 Digits: Are uniquely assigned to each part, ensuring specific identification.

• Last Digit (Modification Stage): Tracks the modification history of the part, starting at ’1’ for new

designs and increasing with each modification.

These 12NC identifiers are generated through the Material Reservation Tool (MRT) and integrated across

various ASML systems for enhanced tracking and management.

Similarly, the 11-digit Numerical Code (11NC) comprises the first 11 digits of the 12NC as the base part

number, enhanced by a 12th versioning digit. This versioning digit, which ranges from 1 to 9, indicates

a part’s direct lineage to its predecessors or successors, showcasing the evolution of the part through

modifications. When the number of modifications exceeds nine, a new 11NC is initiated, signifying a shift

in the base part number. In contrast, each 12NC number is completely unique, acting as a standalone

identifier for parts that typically do not undergo frequent modifications. This ensures that each part remains

uniquely identifiable across all ASML systems.

This structured approach to part numbering via the 11NC and 12NC systems is crucial for maintaining an

orderly and effective inventory and manufacturing process management, ensuring each part’s history and

modifications are clearly tracked and managed.

4.2.2. Equipment Numbers
At ASML, each part is not only identified by a 12NC but also assigned an equipment number. This

equipment number acts as a unique serial identifier for each individual part, linking it to its specific 12NC.

It enables a detailed tracking of where each component is used, how it interacts with different assemblies,

and its function within various systems. This system ensures precise tracking and management of parts

throughout their lifecycle.

The importance of the equipment number extends beyond simple identification. It is crucial for maintaining

records of calibration, certification, and compliance with quality standards, all of which are essential

elements in the precision-demanding field of semiconductor manufacturing. Furthermore, equipment

numbers enable maintenance teams and engineers to quickly locate and identify the correct parts for

repairs or upgrades, thus minimizing downtime and enhancing operational efficiency.

Each part’s lifecycle is recorded under its equipment number in ASML’s internal databases. Actions such as

”Equipment created”, ”Outbound delivery”, and ”Functional location changed” are constantly tracked. This

lifecycle data is not only vital for quality assurance but also helps factory Material Quality (MQ) engineers

monitor the parts for any unusual behavior or potential failures. By analyzing years of lifecycle data,

engineers can identify patterns or anomalies that might indicate a risk of failure, allowing for proactive

measures to enhance reliability and operational safety.

4.2.3. Material Notification MN Process
The MN creation process at ASML is a system designed to manage updates, replacements, or checks

on inventory involving specific parts, identified by their unique 12NC and associated equipment numbers.

This process is essential for maintaining operational integrity and ensuring the quality of part modifications

and replacements. The MN process unfolds through several carefully planned steps:

• Notification Creation: Whenever a part is newly introduced or requires modifications due to upgrades

or defects, aMN is generated. This document is detailed, specifying whether the part is being replaced,

modified, or introduced for the first time. It is crucial for maintaining accurate records of parts and

their conditions.

• Notification Approval: After the creation of the MN, it must be approved by key stakeholders, such

as supply chain managers, production engineers, and quality assurance teams. This approval is

critical to ensure that all changes adhere to ASML’s stringent standards and specifications, ensuring

each component conforms to the system’s overall quality framework.

• Implementation in Systems: Once approvals are obtained, the specifics documented in the MN

are integrated into ASML’s inventory and management systems. This step is fundamental to keep
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all inventory records up to date and ensure that the system databases accurately reflect the latest

status of parts and components, essential for the seamless operation of the company.

This research highlights the importance of generating a MN when a defect is detected in a part. The

creation date of the MN is recorded and linked to the defect’s occurrence, which is crucial for accurate

forecasting and data analysis. When a defect is detected, an MN is created to capture essential details,

such as the plant code, equipment number, and the specific system affected. The process of MN creation

and the subsequent steps are illustrated in Figure 4.5, and the key steps are shortly described:

• Root Cause Analysis (RCA): This process involves a detailed investigation to determine the

underlying cause of the defect (Validate failure analysis). Strategies are then developed to prevent

future occurrences. The MN remains active until all corrective measures are implemented, ensuring

a comprehensive resolution of the issue.

• Material Recovery and Closure: The Material Review Board (MRB) evaluates the defect and

determines the most suitable corrective action: in-house repair, return to the supplier, or scrap the

material. This decision follows established recovery indicators. Additionally, the MRB checks the

accuracy and completeness of the MN data. The MN remains open until the recovery actions and

RCA are fully completed.

• Lifecycle Updates and Vendor Feedback: Information about the lifecycle of defective parts,

including any repairs or replacements, is precisely recorded in the MN. Feedback from vendors

regarding the condition of returned parts offers essential insights for potential improvements and

helps identify recurring issues, thereby contributing to continuous quality assurance. If a part is

deemed non-repairable upon receipt, it undergoes another inspection, and a new MN is created to

document this status.

This MN approach ensures that each stage, from defect identification to resolution, is carefully monitored

and documented. This not only upholds high standards of quality and reliability but also minimizes

operational disruptions within ASML’s complex supply chain.

Figure 4.5: Material Notification Creation (ASML’s Process Modified by Author)

4.3. Swimlane Process Analysis
The Swimlane diagram in Figure 4.6 visually represents ASML’s process for managing defective parts,

primarily within the RSC, but also as part of the complete CLSC. The diagram is divided into five main

columns: Demand & Planning, Supplier/Vendor, Factory Veldhoven ASML, MRB, and Output. Each

column corresponds to a distinct department or the output phase in the process flow, illustrating their

interactions and dependencies. For a more detailed view, an enlarged version of the Swimlane diagram is

available in Appendix B.

• Demand & Planning: The process begins with the Demand & Planning departments, where a

demand forecast triggers the initiation of a ”12NC Factory Part Process”. During this phase, it is

determined whether a repairable part is available in stock. If such a part is available, it is sent back to
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Figure 4.6: Swimlane Process of Defective Parts (Authors’ own creation)

the factory for further processing. If no repairable part is available, a new part is planned and ordered

to meet the demand.

• Supplier/Vendor: The suppliers, mainly vendors, are responsible for the manufacturing and dis-

tribution of parts. These parts are then either stored as factory stock or moved to the next phase

of assembly. This stage ensures that the necessary components are available for the production

process at the Factory Veldhoven ASML.

• Factory Veldhoven ASML: At the Factory Veldhoven ASML, the operations involve several critical

steps. Parts are initially stored in clean room storage before being assembled into modules. The

ASML operations can be categorized in module assembly (ASSY) and systems assembly (FASY).

These modules undergo system assembly and testing, after which they are sent to customer fabs. If

a defect is detected during any phase of this process, a MN is created. The defective part is then

subjected to repair execution and RCA.

• MRB: The MRB assesses whether a defective part can be repaired. If a part is deemed repairable, it

undergoes the repair process and is either reused or recycled. Non-repairable parts are out of scope

of this analysis, ensuring that only viable components are reintegrated into the supply chain. The

repairable parts process is connected to show the RCA connection.

• Output: The Output phase captures critical data points essential for effective forecasting and

SCM. These data points include demand quantities, equipment numbers and creation dates, MN’s

and their creation dates, cause and defect descriptions, and repair success rates. By analyzing

these data points, ASML can improve forecasting accuracy, optimize inventory management, and

enhance overall supply chain efficiency. This structured approach ensures that the RSC process is

well-managed, reducing downtime and maintaining high operational standards.
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Key Data Outputs

The Swimlane diagram highlights several essential data outputs, as explained below.

• Demand Quantities: Understanding the volume of spare parts demanded is valuable for determining

the classification of parts and identifying which defective parts are significant for the case study.

• Equipment Number and Creation Date: Facilitates tracking and lifecycle analysis of parts, aiding

in better asset management.

• Material Notifications: Provides detailed records of defects and issues, helping to identify the count

and timing of parts becoming defective.

• Cause and Detect Descriptions: Assists in identifying common defect patterns and root causes,

enabling proactive measures.

• Repair Success Rate: Indicates the efficiency and effectiveness of repair processes, offering

valuable insights for recommendations regarding specific defective parts.

By thoroughly analyzing these data points, they can serve as crucial inputs for categorization in forecasting

models within this process.

Defective Causes of Parts in Factory and Quality Issues

Defective parts in the early stages of factory processes can significantly impact ASML’s supply chain

efficiency and product quality. These quality issues stem from various factors, including substandard raw

materials, inconsistent manufacturing processes, and inadequate quality control measures from suppliers.

Additionally, transportation mishaps such as handling damage, environmental exposure, and packaging

failures further contribute to defects. Human errors during assembly and equipment malfunctions also play

a critical role. These defects lead to production delays, increased repair costs, and potential customer

dissatisfaction.

Upon being stored in the ”Factory Stock” as shown in the Swimlane diagram, defective parts undergo

investigation. During the sub-assembly process, where parts are combined to create new ASML compo-

nents referred to as ”Makes” and during the cleaning of the parts in the ”Clean Room Storage” inspections

determine their usability. This process helps identify whether defects originated from the supplier or

occurred during transportation. If the parts are deemed good stock, they proceed to assembly. However,

defects can still arise during processing in the ”Assembly Modules” or due to design faults.

4.4. Current vs Forecast-Driven Approach Comparison
Currently, ASML uses a reactive method for ordering parts in the factory, primarily issuing new buy orders

when defective parts are unavailable for repair. This reactive approach results in inefficiencies, overstocking,

and extended lead times. Table 4.1 illustrates the differences between the current reactive approach and a

forecast-driven approach to operational factory parts management, highlighting the potential improvements

in efficiency, inventory control, and lead time reduction that a forecast-driven strategy can offer.

4.5. Conclusion
This section synthesizes the research outcomes from the system analysis as addressed in this chapter,

specifically focusing on the third sub-question of this research:

What are the key challenges in managing the return flow of defective parts within ASML’s

reverse supply chain?

Research Question 3

The focus is to analyze the complexities in managing the return flow of defective parts within ASML’s

RSC. As a subset of the broader CLSC, where parts and modules flow cyclically, ASML’s RSC specifically

addresses the causes, return flow, and inventory of defective parts originating from the factory, presenting

unique challenges.

A major challenge is the unpredictability of return volumes. This unpredictability starts from when a part is

identified as defective, documented through a ’Material Notification’ (MN), which is crucial for initiating the



4.5. Conclusion 39

Aspect Current Approach Forecast-Driven Approach

Demand Management &

Order Planning
• Reactive with immediate new buy or-

ders

• Inefficient planning, unreliable fore-

casts, leading to oversupply

• Proactive, anticipating defective

parts returns

• Efficient planning, reliable forecast-

ing, reducing new buy orders

Lead Times & Operational

Efficiency
• Long repair lead times, significant de-

lays

• Inefficient operations, high costs,

overstocking, underutilized repaired

parts

• Shorter lead times with proactive

planning

• Cost-effective, sustainable opera-

tions

• Improved inventory management,

faster repair cycles

Inventory & Cost Manage-

ment
• High dependency on new buy or-

ders, leading to overstocking and in-

creased costs

• Reduced dependency on new buy

orders, focusing on the repair loop

• Cost savings, better inventory man-

agement

Table 4.1: Comparative Analysis of Current vs. Forecast-Driven Approaches at ASML

return process. Without predictive insight into future return volumes, specifically the quantity of parts that

will become defective, inventory management within the RSC becomes significantly complicated. This

unpredictability makes maintaining optimal stock levels and planning for new purchases difficult, leading to

potential overstocking or stockouts.

Additionally, managing the return flow is complicated by the need to effectively integrate key data elements

such as 12NC, equipment numbers, and MNs. These identifiers are crucial for tracking defective parts

throughout their lifecycle. However, the complexity and vast number of different parts across various

modules and systems present significant challenges. The decision-making process for handling defective

parts requires precise demand triggers and inventory controls. Understanding lead times for new parts and

repairable defective parts is crucial for determining the appropriate forecasting horizon. Aligning inventory

levels with actual demand is essential to minimize unnecessary new purchases.

To address these challenges, enhancing predictive insights through the analysis of historical return patterns

and developing reliable forecasting models tailored to the RSC is essential. Integrating key data outputs,

such as demand quantities, equipment creation dates, cause and defect descriptions, and repair success

rates, can improve tracking and management capabilities. This integration will enable ASML to implement

effective forecasting models, enhance inventory management, and ensure that the RSC operates more

efficiently.



5
Data Analysis

This chapter aims to provide a comprehensive analysis of the data available at ASML for forecasting

defects in machinery parts, specifically focusing on the Veldhoven factory. The primary goal is to answer

the fourth sub-research question of this thesis:

4. What data is available at ASML for predicting the return flow volume of defective parts, and how can

this data be processed with a focus on the crucial variables?

To achieve this, the chapter explores the data systems and tools employed at ASML, detailing the processes

of data extraction, filtering, and merging. It also discusses the methods used for data preparation and

understanding. Finally, the data will be transformed to ensure the datasets are suitable for accurate

time series forecasting. The overall process of data analysis, from initial data extraction to final data

transformation, is illustrated in Figure 5.1.

Figure 5.1: Data Analysis Process Overview (Authors’ own creation)

5.1. Data Systems & Focus
The primary objective of this research is to examine forecasting models that accurately predict the return

flow volume of defective machinery parts within the Veldhoven factory. To achieve this, the research aims

to forecast when specific 12NC parts will fail by using historical MN data for different equipment numbers.

Each MN creation date, obtained from SAP ECC and processed in Spotfire, serves as a timestamp

indicating the occurrence of a defect. By analyzing and aggregating these timestamps, a forecasting model

could predict the total number of expected defective instances for each unique 12NC part over a specified

period.

ASML employs the SAP ECC system to gather and process MN data, which is crucial for RSC operations.

The primary SAP dataset for this research is ZLifecycle, a transaction system accessible via specific

equipment numbers. ZLifecycle documents the lifespan of ASML parts, excluding simpler parts like bolts,

and includes attributes such as 12NC, plant location, part description, and events detailing what happened

with the specific equipment. Each MN linked to an equipment number includes a creation timestamp.

Further details on these lifecycle data attributes will be explored in the following sections.

To analyze and visualize data, ASML’s RSC Ops team uses TIBCO Spotfire, an AI-enhanced analytics

platform. Spotfire integrates data from SAP through the SAP HANA connector, which combines static data

40
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with real-time data from various sources. These connectors, also known as ”infolinks” enable seamless data

integration. Spotfire provides dynamic dashboards and interactive visualizations for comprehensive big

data analytics. Data from SAP ECC ZLifecycle is continuously streamed into Spotfire, where it is collected

and reorganized. For this research, the primary Spotfire dataset used is ”CSAP Material Notification” which

gathers ZLifecycle data from SAP. Further analysis will involve exporting this data to Comma-Separated

Value (CSV) files for additional cleaning, processing, and modeling. The process of extracting data from

SAP through a data warehouse into a Spotfire dashboard will be detailed further.

For data cleaning, processing, and developing the forecasting model, this research utilizes an ASML

laptop equipped with an Intel Core i7 processor. Python version 3.9 is used as the programming language

on the Jupyter Notebook platform, employing packages such as NumPy, Pandas, scikit-learn, Seaborn,
and Matplotlib, all installed in a virtual environment. The choice of Python is due to the researcher’s
familiarity with the language and its efficiency in handling large datasets, which is essential for this research.

However, other programming languages could also be suitable for this task. The data exported from

Spotfire is stored as CSV files and managed using Python during the preparation and modeling phases.

The data flow connections of these different data systems are illustrated in Figure 5.2.

Figure 5.2: Connection Between Data Systems (Authors’ own creation)

5.2. Data Gathering
This section outlines the initial steps undertaken to gather and pre-process the data for analysis. The

process encompasses the extraction and filtering of relevant data from ASML’s systems, followed by the

creation of a merging diagram to illustrate the connections between datasets. These pre-processing steps

ensure that the data is systematically organized and refined, thereby facilitating subsequent preparation

and understanding of the data.

5.2.1. Extraction & Filtering
Data extraction from Spotfire starts with the importation of the ”CSAP Material Notification” information

link. This process involves setting filters on demand data to narrow down the relevant data points for this

research. The filtering options are considered as follows:

• Date of Notification: This corresponds to the creation date of the MN. Preference is given to entries

no older than five years to ensure relevance and accuracy. Dates in this report are presented in the

European format: DD/MM/YYYY. The data range is limited to records from the past five years, as

data from this period is deemed the most qualitative and reliable. Older data becomes less relevant

for forecasting. The reference point is the most recent export date, 31/05/2024, which is chosen

because data is updated on the last day of each month. This snapshot was made on 06/06/2024.

Thus, the data covers the period from 31/05/2019 to 31/05/2024.

• Plant for Material: The research focuses on the Veldhoven factory, which represents the early

lifecycle stages of parts. The plant code for this location is ”NL01” which is used as a filtering

parameter to scope the data accordingly.

• Material Notification Quality Sufficient: Given that MN creation is a manual process and subject

to human error, each MN is double-checked by Material Quality (MQ) engineers. A parameter is set

to select MN’s where the quality is marked ”Y” for sufficient, ensuring only high-quality notifications

are included in the dataset.

• Notification Type: This parameter specifies the MN type. By setting the constraint to ”ZQ” the

dataset is limited to MN’s that report failures, aligning with the research focus on defective parts.

• Detect Code: This parameter identifies the detection code associated with an MN. Setting the

constraint to ”ZQ-MESDT” ensures inclusion of only those detection codes relevant to the Veldhoven

plant. These codes provide insights into the primary causes of MN creation, such as ”F: Failed during

processing.”
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After implementing these filters, the dataset comprises 83,211 rows, representing the total of MN’s.

Additionally, new columns have been integrated into the Spotfire Data Canvas environment, followed by

specific row filtering to eliminate irrelevant MN’s:

• Factory Clean 12NC: A new column is calculated using an expression that assigns ”Y” only to

12NC codes that strictly begin with ”4022.xxx.xxxxx” and contain no additional characters. This filter

effectively excludes special cases like SERV, USP, UPP, and FSD from the dataset, as they are

beyond the scope of this research. Retaining only the rows marked ”Y” cleans the dataset, reducing

it to 78,701 rows.

• Equipment Number CSAP Clean: A new column is calculated using an expression that assigns ”Y”

only to equipment numbers from SAP that are strictly between 7 and 14 characters in length. This

filter effectively excludes all parts that are missing an equipment number or are incorrectly registered

in SAP. Retaining only the rows marked ”Y” cleans the dataset, reducing it to 68,947 rows.

The data is now initially filtered from a scope perspective. The ”CSAP Material Notification” information

originally consisted of 164 columns; after adding the new calculated columns, it now comprises 166

columns. Each column represents an attribute, which is a data field describing a characteristic or feature

of a data object associated with a specific MN.

5.2.2. Entity Relationship Diagram
Collecting data and understanding the interconnections within ASML’s complex systems posed significant

challenges. This process required consulting with various experts to gather insights and make informed

decisions based on the literature review. As illustrated in Figure 4.6, the Swimlane supply chain process

outlines the potential data outputs, which are further discussed in Section 4.5. This data output can be

further enhanced by incorporating additional relevant attributes from various tables in SAP and Spotfire,

applying these in potential forecasting models. The most critical columns from the ”CSAP Material

Notifications” were selected to reduce dataset complexity, with the option to add more columns in the future

if necessary. The following datasets are extracted and filtered to expand the dataset for this research:

”SAP IH10 Equipment Selection”, ”Material Masterdata On Plant Level”, ”ReUse Demand”, and ”RSR

(Repair Success Rate)”.

The Entity Relationship Diagram (ERD) in Figure 5.3 illustrates the detailed structure and connections

between the datasets within ASML’s systems to merge the data tables. These tables are interconnected

through key fields such as material number (12NC) and equipment number, enabling comprehensive

data merging essential for accurate forecasting models. The ”Notification Number” refers to Material

Notifications (MN). The cardinality and relationships between ”CSAP Material Notifications” and these

tables are explained below.

• SAP IH10 Equipment Selection: This relationship is many-to-one. Each equipment number in the

”SAP IH10 Equipment Selection” table can be associated with multiple MN’s in the ”CSAP Material

Notifications” table. This indicates that one piece of equipment can generate numerous MN’s over

time, capturing a detailed history of defect activities. This dataset is named ”IH10” and is indirectly

extracted, first from SAP ECC to a CSV file and then imported into Spotfire.

• Material Masterdata On Plant Level: This relationship is many-to-one. Each MN in the ”CSAP

Material Notifications” table is linked to a single material number (12NC) entry in the ”Material

Masterdata On Plant Level” table. This means that while many MN’s can refer to the same 12NC,

each 12NC entry consolidates all related MN’s, providing a centralized view of material specific

attributes. This dataset is extracted directly from Spotfire with an infolink.

• ReUse Demand: This relationship is one-to-one. Each 12NC in the ”ReUse Demand” table is directly

linked to a corresponding MN in the ”CSAP Material Notifications” table. This ensures that the reuse

demand data is specific and directly correlates to individual MN’s, providing precise demand insights.

This dataset is extracted directly from Spotfire with an infolink.

• RSR (Repair Success Rate): This relationship is one-to-one. Each MN in the ”CSAP Material

Notifications” table is connected to a unique entry in the ”RSR” table, which tracks the success

rates of repairs for each 12NC. This linkage allows for detailed analysis of repair outcomes for each

notified defect, aiding in the assessment of repair efficacy. This dataset is extracted indirectly from a

CSV file into Spotfire.
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Figure 5.3: Entity Relationship Diagram of Data Merging (Authors’ own creation)

This process results in a consolidated dataset comprising 19 columns, constructed from the integration of

five distinct datasets. The number of rows remains unchanged, as the merged dataset continues to be

based on the MN level.

5.3. Data Preparation
The original dataset, after extraction, filtering, and merging, was thoroughly investigated. The summary of

all column attributes, including non-null counts, null counts, and unique counts, is shown in Table 5.1.

5.3.1. Data Enrichment
To enhance the reliability of forecasting models, the dataset was enriched by implementing two key

strategies as detailed below.

Grouping by Latest Successors

During the data preparation phase, the initial focus was on the original 12NC parts identified by their

Material Number. However, frequent upgrades within a two-year period often resulted in predecessors
and successors sharing many characteristics. One main similarity is that when one 12NC is unavailable, a

different version with a small upgrading adjustment can be used for the same operational task, leading to a

similar demand quantity for these parts. To address this relationship, the dataset was enriched by grouping

parts by their latest successors, represented by the Material Number Clean 12NC Latest Successor.
This approach aggregates similar parts that have become defective over different years, maintaining a

high degree of relatedness.

Consultations with ASML’s experts confirmed the substantial relationship between these parts, justifying

the decision to group them by their latest successor. The original dataset contained 12,201 unique

Material Number values, while the enriched dataset contains 9,832 unique values. This reduction in

unique 12NC’s effectively increases the defect counts per group, providing a more robust dataset for

analysis. Consequently, this enrichment enhances the reliability of the forecasting models by allowing for

more historical data points per part group, resulting in improved predictive accuracy.

Duration of Non-Defect

To further enrich the dataset to analyse the defective parts, an additional feature attribute, Duration of
Non-Defect, was created. This feature represents the time interval between the Equipment Created Date
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# Column Name Non-null Null Unique

1 Notification Number 68,947 0 68,947

2 Date of Notification 68,947 0 1,800

3 Record Created Date 68,947 0 1,799

4 Equipment Number CSAP 68,947 0 61,317

5 Material Number 68,947 0 12,201

6 Material Number Clean 12NC Latest Successor 68,856 91 9,832

7 Material Description 68,947 0 9,744

8 Detect Code Description 68,947 0 9

9 Source Of Cause Code Description 67,940 1,007 15

10 Material Notification Quality Sufficient 68,947 0 1

11 Notification Type 68,947 0 1

12 Plant For Material 68,947 0 1

13 Equipment Created Date 68,933 14 3,757

14 ABC-indicator 63,578 5,369 3

15 XYZ-indicator 49,077 19,870 3

16 Planned Delivery Time 68,937 10 104

17 Standard Price 68,604 343 11,014

18 LatestSuccessorDemand 54,530 14,417 738

19 RSR 48,067 20,880 219

Table 5.1: Summary of Data Columns with Non-Null Counts, Null Counts, and Unique Counts

and the Date of Notification for each defect. The creation of this feature involved several key steps:

1. Date Conversion: Converted the Date of Notification and Equipment Created Date from string

format to datetime objects, enabling accurate calculations.

2. Calculation of Duration: Calculated the duration of the defect by subtracting the Equipment Created
Date from the Date of Notification.

3. Identification of Negative Durations: Identified instances with negative durations, indicating

potential data entry errors or anomalies.

4. Verification of Data: Assessed the count of negative duration values, finding 276 instances, and

reviewed a sample to verify the correctness of the Duration of Non-Defect feature.

The Duration of Non-Defect feature adds significant value by providing insights into the time elapsed
between the creation of equipment and the notification of defects. This feature can be utilized for predictive

modeling, quality control, and data integrity checks, significantly enhancing the overall analysis.

5.3.2. Data Cleaning
The data cleaning process involves several crucial steps to ensure data integrity and validity. Starting with

68,947 rows, the dataset was filtered down to 44,718 rows by addressing missing values, unrealistic data

points, and critical field completeness.

Missing Values

The data cleaning process for this dataset involved several steps designed to ensure the integrity and

validity of the data. Each step was carefully chosen to address specific data quality issues. The dataset

cleaning missing values resulted in a total of 20,728 rows being dropped. Table 5.2 provides a detailed

explanation of each step and the rationale behind the choices made.

The data cleaning process was essential to create a valid and reliable dataset for analysis. By addressing

missing values, unrealistic data points, and ensuring the completeness of critical fields, the resulting dataset

is robust and suitable for subsequent analysis. These steps ensure that the dataset accurately reflects the

real-world scenarios it aims to model, providing a solid foundation for further insights and decision-making.
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Step Action Rows Affected

1 Drop rows with missing values in LatestSuccessorDemand 14,417

2 Drop rows where LatestSuccessorDemand > 900,000 5,864

3 Drop rows with missing values in Standard_price 287

4 Drop rows with missing values in Equipment Created Date 13

5 Drop rows with negative Duration of Non-Defect 147

6 Mark missing values in Source Of Cause Code Description as Unknown 636

Table 5.2: Summary of Missing Values Steps

Duplication’s

To maintain the accuracy and reliability of the dataset, it is essential to identify and remove duplicate

records. Duplicates can arise due to various reasons, such as data entry errors or system glitches, and

can negatively affect the analysis by skewing results. In this study, duplicates were identified based on

three key columns: Date of Notification, Equipment Number CSAP, and Notification Number. The
process was carried out as follows:

1. The dataset initially contained 48,219 rows.

2. Groups with multiple MN’s for the same equipment number on the same date were identified.

3. Within each group, all but the first occurrence were marked for removal to eliminate redundant entries.

4. This process resulted in the removal of 804 rows, reducing the dataset to 47,415 rows.

By removing these duplicates, the dataset was refined to more accurately represent the true MN events,

thereby enhancing its integrity and the reliability of subsequent analyses.

Obsolescence

To further ensure the dataset’s relevance and reliability, it is necessary to identify and remove records

of the parts that have not had any defect notifications in the last two years. These parts are considered

obsolete, either because their defects have been resolved or they are no longer in use. Removing these

parts helps maintain an accurate dataset for analysis and forecasting. The process was carried out as

follows:

1. The dataset initially contained 47,415 rows.

2. Convert the dataset’s Date of Notification field to a datetime format.

3. Define the cut-off date as two years prior to May 31, 2024.

4. Group the dataset by Material Number Clean 12NC Latest Successor.
5. Identify groups with at least one defect recorded within the last two years.

6. Mark parts without any defect records in the last two years, resulting in 1,039 parts (12NC).

7. Remove the rows of these parts from the dataset, dropping 2,697 rows, resulting in 44,718 rows after

cleaning.

By removing obsolete parts, the dataset was refined to focus on relevant and active defects, thereby

enhancing its integrity and the reliability of subsequent analyses.

5.3.3. Data Validation
The dataset’s integrity and cleanliness are critical for accurate analysis. Table 5.3 provides a comprehensive

overview of the dataset after the cleaning process. Notably, there are no missing values, except for three

attributes which are not required for further data analysis. These attributes, however, may be valuable for

elaboration or recommendations. Additionally, the dataset’s uniqueness has been validated, ensuring that

all entries are distinct and reliable.

5.4. Data Interpretation
This section provides an in-depth analysis of the processed data to extract meaningful insights and

understand the underlying patterns. It involves examining trends in defect notifications, identifying early

life failures, and analyzing the causes of failures.
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# Column Name Non-null Null Unique

1 Notification Number 44,718 0 44,718

2 Date of Notification 44,718 0 1,776

3 Record Created Date 44,718 0 1,773

4 Equipment Number CSAP 44,718 0 40,345

5 Material Number 44,718 0 5,845

6 Material Number Clean 12NC Latest Successor 44,718 0 4,260

7 Material Description 44,718 0 4,426

8 Detect Code Description 44,718 0 9

9 Source Of Cause Code Description 44,718 0 16

10 Material Notification Quality Sufficient 44,718 0 1

11 Notification Type 44,718 0 1

12 Plant For Material 44,718 0 1

13 Equipment Created Date 44,718 0 3,151

14 ABC-indicator 40,326 4,392 3

15 XYZ-indicator 34,881 9,837 3

16 Planned Delivery Time 44,718 0 86

17 Standard Price 44,718 0 5,473

18 LatestSuccessorDemand 44,718 0 683

19 RSR 33,874 10,844 193

20 Duration of Non-Defect 44,718 0 3,168

Table 5.3: Summary of Cleaned Data Columns with Non-Null Counts, Null Counts, and Unique Counts

5.4.1. Explanatory Data Analysis
An analysis of ASML’s complete dataset of defect notifications was conducted, aggregating all defects of

all parts by month. This examination, which includes monthly data and seasonal decomposition, reveals

crucial insights into the trends and factors influencing historical defect occurrences. The findings are

essential for understanding and forecasting the return flows of defective parts. The graph in Figure 5.4

illustrates the trend and non-seasonal pattern.

Figure 5.4: Total defects aggregated per month over the last 5 years (Author’s Own Creation)

The data indicates a clear upward trend in defect notifications from 2019 to 2024, likely due to ASML’s

increased production volumes in the last years. As customer orders have risen, machine production has

expanded, leading to a higher frequency of defects. This direct correlation between production scale and

defect frequency underscores the impact of increased manufacturing activity on defect occurrences.

Additionally, ASML has significantly improved its data storage and management practices over the years,
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resulting in more reliable and accurate data, particularly in recent years. Historical issues such as missing

values or inaccuracies have been addressed, enhancing the trustworthiness of recent defect counts and

making them more reflective of actual conditions.

Seasonal decomposition of the defect counts indicates periodic fluctuations, suggesting some level

of seasonality. However, these patterns are not dominant and likely result from operational cycles,

maintenance schedules, or other periodic factors. While seasonality could be considered in forecasting

models, it does not primarily drive defect counts in this dataset.

The residual component in the seasonal decomposition plot shows significant variability, indicating the

presence of unexplained factors influencing defect counts. This variability could be due to unexpected

events, changes in production processes, supply chain disruptions, or shifts in defect reporting practices,

contributing to random fluctuations in the data.

5.4.2. Early Life Failure
Figure 5.5 illustrates the duration in days from equipment creation to defect notification, revealing that most

defects occur within the first 1000 days of a part’s lifecycle, particularly emphasizing the first 100 days.

This pattern underscores the prevalence of early-life failures. The zoomed-in view highlights that despite

some parts having longer lifespans due to repairs or upgrades, early-stage failures are predominant. This

analysis supports the thesis focus on early-life failures and aligns with the problem statement, which

emphasizes the severity of defects during the infant stage of the product lifecycle, particularly in ASML’s

Veldhoven factory. The data analysis corroborates the literature review, which points out the limitations of

traditional reliability models for early-stage defects, thereby justifying the need for alternative approaches

and the thesis’s emphasis on this critical early stage.

Figure 5.5: Early Life Defects Pareto (Author’s Own Creation)

5.4.3. Detect & Cause of Failures
Two critical attributes used to identify the reasons for failures are the Detect Code Descriptions and the

Source Of Cause Code Descriptions.

Detect Code Descriptions refer to how and when a failure was identified. This includes information on

whether the part was defective upon arrival or if it failed during processing. There are nine distinct detection

codes used to categorize these scenarios. The top five most frequently occurring detection codes are

shown in Figure 5.6. Notably, one of these codes is labeled ”Other” which is used when the exact reason

cannot be determined from the code itself. In such cases, the specific details can often be found in the

SAP system by referring to the MN description file. The majority of issues arise either from defective parts

arriving from stock or failures occurring during processing.
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Figure 5.6: Top 5 Detection Code Descriptions (Author’s Own Creation)

The Source Of Cause Code Descriptions are integral to the subsequent failure analysis phase. Engi-
neers utilize these codes to identify the specific components and reasons behind failures. There are 16

different source of cause codes, and Figure 5.7 illustrates the five most common ones. Notably, two codes

are related to vendor issues. One of these codes is used when vendor involvement is suspected, which

triggers discussions between the vendor and engineers. If a RCA confirms the vendor’s responsibility, a

distinct code is assigned. Most failures occur during the production manufacturing process, particularly

during assembly, and are likely due to quality or human errors. Technological issues, which rank as the

fifth most common, differ from production issues in that they pertain to design failures of the parts rather

than the assembly process itself.

Figure 5.7: Top 5 Source of Cause Code Descriptions (Author’s Own Creation)

5.5. Parts Classification
Classification is crucial for understanding andmanaging the return flow of defective parts from the factory. By

categorizing parts based on defect patterns, defect count ranges, and economic impact, it becomes possible

to systematically utilize the data in forecasting models and optimize future inventory management strategies

according to the specific characteristics of different parts. This section explores various classification

methods, starting with demand pattern classification and progressing to a tailored approach that combines

traditional inventory analysis techniques.



5.5. Parts Classification 49

Important Note: From this section onward, confidential data is used for analysis and classification. This

data is also utilized in subsequent sections and chapters of this research. Due to privacy concerns

and confidentiality agreements between the researcher, the university, and the company, actual material

numbers (12NC) and corresponding characteristics, such as parts’ standard prices, have been anonymized.

5.5.1. Demand Pattern Classification
To evaluate the behavior of the return flow and classify it, as well as to determine if there is a relationship

between the return flow of defective parts and spare parts demand, the approach suggested by Syntetos

and Boylan (2005) was initially applied. In this context, the ADI refers to the interval between notifications

of defective parts, rather than the interval between demands. This ADI and CV2 measures the return flow

of defective parts, thus providing insight into the defect patterns rather than demand patterns. The results

for the defective parts return flow from the ASML factory, based on the cleaned dataset, are presented in

Table 5.4. These results show a significant similarity to the findings in spare parts demand forecasting as

described by Lamghari-Idrissi (2021).

Table 5.4: Initial Classification Results

Low ADI High ADI

High CV2 0.5% 91.2%

Low CV2 0.0% 8.3%

The classification results indicate that 0.5% of the notifications fall into the ”Erratic” category and 8.3%

into the ”Intermittent” category. Notably, these percentages are just outside the threshold lines, bordering

the ”Lumpy” category. Figure 5.8 visually represents the classification of defective parts notifications and

shows this threshold with dashed lines.

Figure 5.8: Defective Parts Notifications Pattern (Authors’ own creation)

Given the predominance of the ”Lumpy” category in these research outcomes (91.2%), it becomes evident

that while this classification is a useful starting point, additional tailored classification methods may be

necessary to effectively address the unique characteristics of the dataset. This outcome highlights the

similarities to spare parts demand forecasting and suggests that other classification analyses need to

be considered to provide a comprehensive understanding of defect frequency patterns in semiconductor

manufacturing.

5.5.2. ABCD-analysis
Traditional inventory management methods, such as ABC-analysis and FSN-analysis, optimize inventory

control and are also used in demand forecasting by prioritizing parts based on annual usage value and
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frequency of parts movement, respectively. However, these methods are not suitable for forecasting

defects in semiconductor manufacturing due to the irregular and variable nature of defect occurrences

across numerous parts (12NC’s). These methods are primarily designed for classifying inventory parts

rather than defect counts.

To address these challenges, a novel approach named ABCD-analysis is proposed, specifically tailored

and developed by the researcher for this study. This customization was necessary as existing methods

did not adequately address the classification of defect types. The ABCD-analysis combines elements

from ABC-analysis, which categorizes parts based on a Pareto distribution to prioritize them according to

their economic value, and the FSN analysis, which evaluates the frequency of parts’ movement. This new

method categorizes 12NC’s based on defect frequency ranges and cumulative defect counts, ensuring a

balanced and representative selection for forecasting model application. Traditionally, the ABC-analysis

consists of three categories; however, in this research, a fourth category ”D” is introduced. This extension

aligns with the precedent set by Syntetos et al. (Feb. 2009), who expanded the traditional approach for spare

parts forecasting to include categories D, E, and F, as discussed in the literature review (Section 2.4.2).

This tailored ABCD-analysis thus provides a more nuanced and effective classification system for defect

forecasting.

The choice of ABCD-analysis is particularly relevant due to its adaptability and broad applicability, making

it a valuable tool for other researchers facing similar challenges in return or defect frequency contexts. By

focusing on defect count volumes in the return flow rather than stock volumes in inventory management,

the ABCD-analysis provides a structured approach to managing and predicting defect occurrences. The

outcomes of the ABCD-analysis are illustrated in Figure 5.9, which displays histograms for the total defects

in each category alongside the Pareto cumulative defect count distribution. The 12NC with the highest

defect counts in each specific ABCD category is shown at the top of the bars, with these identifiers

anonymized for confidentiality.

Figure 5.9: ABCD-analysis Histogram with Pareto (Authors’ own creation)

To ensure a rational and impactful selection of parts, the economic value for each 12NC is calculated

using the formula: Economic V alue = Demand × Standard Price. This calculation provides a justified
basis for assessing the economic significance of each part. This evaluation is crucial for determining the

business importance of the parts and ensuring that the selected components for analysis in the forecasting

model are highly relevant. By adopting this method, other researchers can benefit from a comprehensive

and adaptable framework for defect forecasting in various industries. Table 5.5 presents the ranges for

demand, standard price, economic value, and defect count for each category. The values in this table

have been normalized to ensure confidentiality and are not the actual figures.

The ABCD-analysis of defect counts and economic impact for 12NC parts reveals a critical subset of

parts, with Category A parts representing a significant proportion of total defects. The selection criteria
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Table 5.5: Ranges for Each Category (Normalized)

Cat. Demand Standard Price Economic Value Defect Count

min max min max min max min max

A 0.0 5,233 0.05 0.50 0.0 2,616.5 39 782

B 0.0 4,774 0.03 0.80 0.0 3,819.2 15 38

C 0.0 14,048 0.04 0.75 0.0 10,536 5 14

D 0.0 4,948 0.02 1.00 0.0 4,948 1 4

for these 12NC parts are based on their variability in defect counts and economic value, allowing for an

analysis of parts with diverse data points and economic impact. This study will concentrate on three

parts from Category A due to its substantial impact and range of defect counts, spanning from 39 to 782.

Additionally, the study will include two parts from Category B, which is the second most impactful category

with defect counts ranging from 15 to 38. Only one part from Category C will be investigated due to its

lower occurrence and defect counts, which range between 5 and 14. The exclusion of Category D is

academically justified based on the low impact and unpredictability of defects in this category. Time series

models are most effective when applied to data with identifiable patterns and sufficient frequency (Box

et al., 2015). The random nature of defects in Category D does not lend itself to reliable forecasting, as

the data lacks the consistency required for model training and validation. Concentrating on Categories

A, B, and C allows for a more robust and meaningful analysis, aligning with the research objectives and

operational priorities of ASML.

Table 5.6 summarizes the total defect count, percentage of total defects, unique 12NC’s count, and

percentage of total 12NC’s for each category.

Table 5.6: ABCD-Categorically Aggregated Data

Cat. Total Defect Count % Total Defects Unique 12NC’s Count % Total 12NC’s

A 17,851 40% 235 5%

B 13,449 30% 591 14%

C 8,946 20% 1,131 27%

D 4,472 10% 2,303 54%

Total 39,129 100% 3,549 100%

• Category A: Comprising only 5% of the total 12NC parts, Category A is responsible for 40% of the

total defect counts. These parts are critical for both defect reduction and cost management. Three

12NC parts with different defect count observations from Category A will be the primary subjects of

this research.

• Category B: Representing 14% of the total 12NC parts, Category B accounts for 30% of the defect

counts. Two 12NC parts with different defect count observations from Category B will be included in

the study to provide a broader perspective on defect patterns.

• Category C: Representing 27% of the total 12NC parts, Category C accounts for 20% of the defect

counts. One 12NC part from Category C will be analyzed to include an investigation of low-frequency

defect dynamics, providing a comprehensive understanding of these less common defective parts.

• Category D: Including 54% of the total 12NC parts but accounting for only 10% of the defect counts.

Due to the low and sporadic occurrence of defects, Category D parts will be excluded from this

research, as forecasting models are less effective for such random and infrequent defect patterns

(Box et al., 2015).

Table 5.7 highlights the top 6 highest parts in each category, focusing on the parts that should be the

primary focus for detailed analysis. The parts are identified by their 12NC; however, for confidentiality

reasons, they are labeled according to their category and ranked by frequency, as indicated by the number

following the classification letter. The values in this table have been normalized to ensure confidentiality
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and are not the actual figures. This table introduces the ”Impact Score”, which is calculated by multiplying

the ”Economic Value” by the ”Defect Count”. This metric provides a more comprehensive measure that

accounts for both the economic value and the frequency of defects. The ”Impact Score” is particularly

valuable from a research perspective as it incorporates defect frequency while maintaining a focus on

economic impact, thereby aligning technical and business considerations.

Table 5.7: Top 6 Highest 12NC Parts per Category (Normalized)

Cat. 12NC Parts Demand Standard Price Economic Value Defect Count Impact Score

A Part A1 287.0 0.05 14.35 349 5,006.15

A Part A2 75.0 0.20 15.00 230 3,450.00

A Part A3 82.0 0.80 65.60 56 3,673.60

B Part B1 15.0 1.00 15.00 36 540.00

B Part B2 64.0 0.63 40.32 22 888.96

C Part C 112.0 0.33 36.96 13 480.48

The correlation between the demand for parts and the defect counts suggests that parts with higher

demand tend to exhibit higher defect counts. This correlation can be attributed to the larger volume of parts

handled, where increased batch sizes may inherently lead to a higher probability of defects. However, this

relationship varies for some parts, indicating the complexity of factors influencing defect occurrences.

Furthermore, the significant differences in defect counts across categories indicate a broad range of defect

frequencies. This variability is beneficial for research purposes, as it allows for a diverse set of experiments

with different input datasets in the forecasting models. Testing on parts with varying defect frequencies

enhances the robustness and applicability of the forecasting models across different scenarios.

5.6. Classified Parts Analysis
The analysis begins by examining how defects occur over time for each unique 12NC part. Table 5.8

provides essential statistics for each unique part, including the first and last dates of defect occurrence, the

total days between these dates, the mean duration between non-defective periods, and the mean duration

between defect notifications. For example, Part A1 has an observation period of 1,321 days, frequent

defects with a short mean interval of 3.80 days between notifications, and a mean non-defective period of

170.43 days. Part A2 has fewer defects but a significant mean non-defective duration of 460.63 days, with

a mean interval of 2.66 days between notifications. Conversely, Part C shows the longest mean interval of

46.92 days between defects, indicating infrequent occurrences. These insights help in identifying parts

with frequent issues and planning maintenance strategies effectively.

Table 5.8: Statistics for Each Unique Part

Cat. 12NC Parts First MN Last MN Last – First Mean Duration Mean Duration

Date Date Difference To Defect Between MN’s

days days days

A Part A1 2020-10-12 2024-05-25 1,321 170.43 3.80

A Part A2 2022-09-30 2024-05-31 609 460.63 2.66

A Part A3 2021-12-06 2024-04-22 868 214.07 15.78

B Part B1 2021-03-09 2024-03-04 1,091 73.72 31.17

B Part B2 2023-03-30 2024-05-30 427 198.50 20.33

C Part C 2022-10-17 2024-05-02 563 160.62 46.92

Figure 5.10 illustrates the distribution of defects over time for each unique part. The zero values are shown

as points, but because there are predominantly zeros in the daily defect counts, the zeros appear as

continuous lines on the x-axis, while the points greater than zero indicate actual defect occurrences. This

visualization highlights the frequency of zero counts, demonstrating the sparsity of the data. The data’s
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lumpiness, characterized by periods of no defects followed by sudden bursts of multiple defects, mirrors

the demand patterns often seen in spare parts.

Figure 5.10: Unique Parts Defect Distribution (Authors’ own creation)

Figure 5.11 displays the cumulative defect counts over time for each unique part. This visualization aids

in evaluating the total number of defects accrued by each part throughout the observed period. It offers

insights into the general occurrence of defects, revealing that nearly all parts experienced an increasing

count of defects. For example, Part A1 demonstrates a significant rise in cumulative defects, suggesting

a higher frequency of defect occurrences compared to other parts, which could potentially influence the

performance of forecasting models.

5.7. Data Transformation
This section covers ’Data Resampling’ and ’Data Split’, explaining the methods used to enhance the

dataset’s suitability for forecasting models.

5.7.1. Data Resampling
The primary dataset for time series forecasting quantifies defects at specific moments through timestamps.

Due to its sparse nature, with numerous zero values and lumpiness, data transformation is essential for

enhancing suitability for forecasting models. This section outlines the transformation process using the

Pandas library in Python, specifically through resampling techniques. Resampling aggregates data into
larger time intervals, reducing noise and the prevalence of zero values. For this research, two types of

resampled data will be considered for all six parts under study:

• Weekly Resampled Data: Data is aggregated into weekly intervals using Pandas’ resampling

functionality to always choose the last day of the week, Sunday, with ’W-SUN’. This reduces the

number of zero values and smooths out daily fluctuations, providing a clearer view of defect trends.

This frequency aligns well with ASML’s RSC operations team’s strategy, aiding in the prediction of

defect occurrences for specific parts. The distribution of the resampled weekly data for all six parts

is shown in Figure D.1 in the Appendix D. Although no significant seasonality is detected, some

cyclical patterns are observed, particularly in Part A2 (see Figure 5.12).

• Monthly Resampled Data: Monthly forecasting is often preferred in literature due to its effectiveness
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Figure 5.11: Unique Parts Cumulative Distribution (Authors’ own creation)

in various studies. Additionally, forecasting on a monthly basis aligns with ASML’s practice of updating

KPI’s and inventory numbers at the beginning of each month, ensuring the forecasts remain relevant

and integrated with overall operational planning. The distribution of the resampled monthly data

is shown in Figure D.2 in the Appendix D. Similar to the weekly data, no significant seasonality is

detected, but some cyclical patterns are observed in Part A2 (see Figure 5.12).

Figure 5.12: Part A2 Resampled Distribution (Left: Weekly; Right: Monthly)

By applying these resampling techniques, the transformed datasets (weekly and monthly) are expected

to provide a more robust basis for forecasting models. The choice of resampling interval depends on

balancing the operational needs of ASML’s RSC operations team with empirical findings from literature,

ensuring the forecasts are both practically and academically sound.

In conclusion, while no significant seasonality patterns were identified in the dataset, the presence of

cyclical patterns, as shown in Part A2, will be considered in the forecasting models.

5.7.2. Data Split
In the context of this study, an ideal approach for data splitting would involve an annual division to capture

full cycles of seasonal variations and trends. This method aligns with business objectives such as improved

planning and promoting the reuse of existing parts, thereby reducing the necessity for new purchases.

However, this approach is not feasible due to the sparse nature of the available data. Specifically, the six

parts under investigation, along with most other parts in the same categories, have an average planned

delivery time of 302 days. This near-annual delivery time, which begins when the purchase order is placed
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with vendors, prevents the complete blocking of new buys for the majority of parts in this case study.

Despite the limitation of not always being able to implement such a data split in scenarios with longer

planned delivery times, it remains theoretically feasible for other research contexts where delivery times

are shorter. In this study, the goal was to extract as many time steps as possible for each part to ensure

effective model training. Literature commonly recommends an 80% training data and 20% test data split

to achieve the most reliable forecasts, crucial for applications such as new buys blocking and capacity

planning.

The 80/20 data split approach does more than just dividing the data; it also considers the period length

for each split, ensuring that the model is trained and tested on data that is both comprehensive and

representative of different temporal scenarios. The absolute length of the period used for the 80/20 split is

modified to enhance the relevance and applicability of the forecasts.

The justification for the data split is as follows:

• Sufficient Training Data: Utilizing an 80% training data split guarantees that a substantial portion

of the dataset is allocated for model training. This is crucial for enabling the models to learn and

capture complex patterns and trends within the data, thereby improving their predictive accuracy.

The long-term and short-term variations in defect occurrences can be better understood through this

approach.

• Robust Testing Set: The 20% reserved for testing ensures a sufficiently large sample to evaluate

the model’s performance effectively. This helps in assessing the model’s ability to generalize to

unseen data, which is critical for the credibility and reliability of the forecasts.

• Empirical Support: The 80/20 split is empirically supported and widely used in various forecasting

applications. Studies have shown that this ratio provides a balance between training the model

adequately and having enough data to robustly test its performance. This split is well-documented in

the literature, ensuring a robust methodological approach and facilitating comparability with existing

studies.

• Business Relevance: The chosen split is highly relevant from a business perspective, supporting

the management of incoming return flow and monthly operations. Short-term forecasting is essential

for reverse inventory management, enabling the Reverse Supply Chain Operations (RSC Ops) team

to efficiently plan and allocate resources for handling returns. The chronological aspect of the split

means that the test period varies between 84-259 days for weekly data and 61-244 days for monthly

data, thus covering both short- and medium-term forecasting horizons.

• Absolute Length of the Period: The period length for the 80/20 split is carefully selected to ensure

that the historical data used is relevant to the forecasting model. Not every period has the same

relevance; thus, the absolute length of the training and testing periods is adjusted to reflect the

specific characteristics and requirements of each part. This consideration ensures that the models

are trained on data that is temporally relevant, which is critical for achieving accurate and meaningful

forecasts.

The weekly and monthly statistics for the 80/20 split are presented in Table 5.9 and Table 5.10, respectively.

These tables provide detailed insights into the data distribution, including start and end dates and the

duration of the test split in days. Differences in defect counts between weekly and monthly data highlight

the granularity and varying alignment of weeks and months, which must be taken into account when

interpreting the results.

To enhance clarity and readability, standardized abbreviations have been created for each part. These ab-

breviations will be used consistently throughout the document to simplify references and avoid redundancy.

Table 5.11 defines these abbreviations.
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Table 5.9: Weekly Statistics for 80/20 Split

Cat. 12NC Parts Train Samples Test Samples Start Date End Date Test Split

defects / zeroes defects / zeroes days

A Part A1 176 / 78 173 / 0 2023-09-10 2024-05-26 259

A Part A2 160 / 19 70 / 0 2024-02-04 2024-06-02 119

A Part A3 49 / 61 7 / 19 2023-11-12 2024-04-28 168

B Part B1 33 / 98 3 / 29 2023-08-06 2024-03-10 217

B Part B2 15 / 38 7 / 8 2024-03-10 2024-06-02 84

C Part C 8 / 57 5 / 12 2024-01-14 2024-05-05 112

Table 5.10: Monthly Statistics for 80/20 Split

Cat. 12NC Parts Train Samples Test Samples Start Date End Date Test Split

defects / zeroes defects / zeroes days

A Part A1 175 / 9 174 / 0 2023-09-30 2024-05-31 244

A Part A2 140 / 2 90 / 0 2024-01-31 2024-05-31 121

A Part A3 49 / 3 7 / 2 2023-11-30 2024-04-30 152

B Part B1 33 / 10 3 / 5 2023-08-31 2024-03-31 213

B Part B2 13 / 5 9 / 0 2024-03-31 2024-05-31 61

C Part C 10 / 9 3 / 2 2024-02-29 2024-05-31 92

Table 5.11: Part Abbreviations

Cat. 12NC Parts Frequency Test Prediction Steps Part Abbreviation

A Part A1 Weekly 38 A1_Wk

Monthly 9 A1_Mh

A Part A2 Weekly 18 A2_Wk

Monthly 5 A2_Mh

A Part A3 Weekly 25 A3_Wk

Monthly 6 A3_Mh

B Part B1 Weekly 32 B1_Wk

Monthly 8 B1_Mh

B Part B2 Weekly 13 B2_Wk

Monthly 3 B2_Mh

C Part C Weekly 17 C_Wk

Monthly 4 C_Mh

5.8. Conclusion
This section synthesizes the research outcomes from the system analysis as addressed in this chapter,

specifically focusing on the fourth sub-question of this research:

What data is available at ASML for predicting the return flow volume of defective parts, and how

can this data be processed with a focus on the crucial variables?

Research Question 4

The data available at ASML for forecasting the return flow volume of defective parts is extensive and

multifaceted, primarily sourced from the SAP ECC system and processed using TIBCO Spotfire. Key

datasets include ZLifecycle and CSAP Material Notification, which provide detailed records on defect
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occurrences, encompassing attributes such as 12NC’s, plant locations, part descriptions, and timestamps

for defect events.

To make this data suitable for forecasting, several processing steps are undertaken. Initially, data extraction

from Spotfire involves filtering to focus on recent and high-quality MN entries, ensuring relevance and

accuracy. The data is enriched by grouping parts by their latest 12NC successors and by creating additional

features, such as the duration of defects, which measures the time interval between equipment creation

and defect notification. Comprehensive data cleaning processes address missing values, duplicates, and

obsolete records, resulting in a refined and reliable dataset. The validation of this dataset ensures its

integrity and completeness, crucial for effective forecasting.

The crucial variable for forecasting is time series-based, determined by the occurrences of defects recorded

in the ’Material Notification’ (MN). By counting these defects for specific 12NC’s based on the timestamps

of the MN creation dates, this variable becomes essential for developing a time series forecast model,

enabling the prediction of future defects at specific time steps and thereby determining the return flow from

the factory to the RSC.

Parts classification further refines the data analysis. The classification of demand patterns reveals that the

majority of parts fall into the ”Lumpy” category, indicating irregular and infrequent defect occurrences. The

ABCD-analysis categorizes parts based on defect frequency and economic value, identifying three parts

from Category A, two from Category B, and one from Category C as focal points for further investigation.

This classification highlights the variability in defect occurrences and the economic impact across different

parts.

Resampling techniques transform the data into weekly and monthly intervals, reducing noise and enhancing

the detection of trends and patterns. This processing step is vital for improving the dataset’s suitability for

time series forecasting models. For all six selected parts, two different data sets (weekly and monthly)

are considered, resulting in 12 scenarios to investigate the differences in data variability and forecasting

accuracy.

An ideal approach for data splitting would involve an annual division to capture full cycles of seasonal

variations and trends. However, this approach is not feasible due to the sparse nature of the available

data. Specifically, the six parts under investigation have an average planned delivery time of 302 days.

This near-annual delivery time, which begins when the purchase order is placed with vendors, prevents

the complete blocking of new buys for the majority of parts in this case study. Despite this limitation, the

80/20 data split is used to extract as many time steps as possible for each part, ensuring effective model

training. This split is justified by its empirical support and business relevance, covering both short- and

medium-term forecasting horizons. The absolute length of the period used for the 80/20 split is modified to

enhance the relevance and applicability of the forecasts.

In conclusion, the data available at ASML, combined with thorough data processing and enrichment,

provides a solid foundation for forecasting the return flow volume of defective parts. The processed dataset,

enriched with crucial variables and cleaned to ensure reliability, is well-suited for developing accurate

time series forecasting models. The classification and resampling methods applied ensure that the data

is effectively structured to capture the key trends and patterns necessary for robust forecasting. This

approach not only enhances the relevance and accuracy of the forecasts but also tailors them to the

unique operational context of ASML’s RSC management, ultimately answering the fourth research question

comprehensively.



6
Forecasting Models for Defective Machinery Parts

This chapter investigates various forecasting models to identify the most effective approach for predicting

the return flow of defective machinery parts at ASML. The analysis begins by establishing a clear set of

requirements for the selection of forecasting models, ensuring they address the unique challenges and

complexities of ASML’s operations. It then discusses variable selection and feature engineering, focusing

on the key attributes necessary for accurate forecasting. The chapter proceeds to explore both univariate

and multivariate models, detailing their selection, application, and the criteria used for their evaluation.

Finally, the chosen evaluation metrics will be discussed. The chapter concludes by answering the fifth

research question:

5. Which forecasting models and evaluation metrics are best suited for predicting the return flow of

defective machinery parts at ASML, considering the specific requirements and crucial data variables?

6.1. Requirements
To choose the best-suited forecasting models for predicting the return flow of defective machinery parts at

ASML, a clear set of requirements has been established. These requirements ensure that the selected

models can effectively address the unique challenges and complexities of the semiconductor industry,

particularly those relevant to ASML’s operations. Given the lack of literature directly addressing the quantity

return flow of defective machinery parts while accounting for various types of parts with varying amounts of

data, these requirements are crucial for selecting models that can handle the intricacies specific to ASML’s

needs. As concluded in Chapter 5, time series forecasting is preferred for this research because the defect

counts on specific dates for specific parts need to be determined to predict the return flow in RSC from the

factory.

1. Literature-Based Model Selection: The forecasting model should be one that is well-documented

in the literature, with a preference for models used to predict spare part demand patterns.

2. Time Series Approach: The model should be based on time series analysis to effectively utilize the

available data from Chapter 5.

3. Handling Non-Stationarity and Trends: The model must be capable of managing non-stationary

data and identifying trends within the dataset.

4. Time Horizon Flexibility: The model should be mainly suitable for medium-term forecasting horizons

to predict defects one year ahead to block new buys, but also performance for short-term predictions

could be valuable for managing the return inflow as indicated in Section 5.7.2.

5. Balancing Complexity and Performance: Considering the variety of parts in the semiconductor

industry, a less complex model is preferred if it can provide accurate predictions. However, more

complex models should also be considered if they offer significantly better performance, especially

given potential future improvements in computational efficiency.

6. Variable Data Volumes: The model should be capable of handling different volumes of data,

reflecting the diverse range of parts and their availability in the semiconductor industry.

7. Performance with Sparse and Lumpy Data: The model must perform well with sparse and lumpy

data, which characterizes the majority (98.3%) of the data.
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6.2. Variables Selection & Feature Engineering
The attribute columns described in Chapter 5 and summarized in Table 5.3 are not all relevant for time

series forecasting models for specific parts. Some attributes are redundant as they remain constant for

unique parts. However, during data analysis, these attributes were essential for characterizing and filtering

the data to ensure quality. Certain attributes need to be retained for part identification, while others will

serve as predictor variables in the forecasting models.

6.2.1. Univariate Models
For univariate time series models, the primary part identification attribute necessary for the forecasting

models is Material Number Clean 12NC Latest Successor, which aggregates defect counts over time.
The key temporal variable for these models is the Date of Notification, representing the timestamp of
each defect notification (MN).

To enable potential traceability and further analysis within the system, unique identifiers such as Material
Number, Equipment Number cSAP, and Notification Number are retained as attributes for the purpose
of reverse analysis.

6.2.2. Multivariate Models
Multivariate models can enhance forecasting performance by incorporating additional exogenous dy-

namic variables specific to each Equipment Number cSAP and Notification Number within the cumula-
tive Material Number Clean 12NC Latest Successor. Feature engineering plays a crucial role in these
models by decomposing the date into multiple components to capture cyclical and seasonal patterns.

Other exogenous features, such as temperature, are not relevant to this research because the parts are

used in clean rooms regulated for specific temperature and humidity levels, making outside weather factors

irrelevant. Furthermore, future orders and sales data were not available for this study, and therefore, could

not be incorporated into the forecasts. The date-related features utilized in this research include:

• Year: The calendar year associated with the Date of Notification.

• Month: The numerical representation of the month for the Date of Notification.

• Week: The specific week number within the year corresponding to the Date of Notification, used
only for the weekly sampled data.

• Holiday in Month: A binary variable indicating whether the Date of Notification falls on a public
holiday in the month, used only for the monthly resampled data.

• Holiday in Week: A binary variable indicating whether the Date of Notification falls on a public

holiday in the week, used only for the weekly resampled data.

However, certain dynamic variables specific to each Equipment Number cSAP and Notification Number
within the cumulative Material Number Clean 12NC Latest Successor will not be incorporated. These

variables, which include:

• Detect Code Description

• Source of Cause Code Description

• Duration of Non-Defect

will not be taken into account because only historical data is available for these variables. For time series

forecasting, it is essential to have future values of these variables to use them in the predictions. Without

this future data, the models are unable to function correctly. Consequently, while these features could be

utilized in future research through regression models to forecast their influence on defect counts, they will

not be employed in the experiments of this research.

6.3. Selection of Forecasting Models
The forecasting models in Chapter 3 are compared to each other in the Figure 3.4 to these different

requirements which are converted to characteristics which were discussed in the various literature.

Given the specific requirements and complexities inherent to the semiconductor industry’s return flow

of defective machinery parts at ASML, a selection of forecasting models is made to effectively address
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these challenges. This section details the chosen models, justifies their selection, and explains their

application within this research framework. The base forecasting models selected for this study, along with

their relationships to the research, are highlighted in blue in the summarized literature matrix shown in

Figure 6.1.

Figure 6.1: Selected Models Matrix from Literature Research (Authors’ own creation)

6.3.1. Simple Exponential Smoothing
SES is chosen as the initial benchmark model due to its simplicity and ease of use. It provides a straightfor-

ward approach to smoothing data, making it an ideal foundational model for forecasting. The α parameter

in SES will be optimized to determine the best forecast. SES is well-documented in the literature for basic

time series forecasting, particularly for smoothing data and providing a clear baseline. As a simple model,

it serves as a baseline, allowing for the comparison of the performance of more advanced models. By

starting with a simple model like SES, subsequent enhancements and modifications can be evaluated for

their added value. This model satisfies the requirement for a literature-based, time series approach while

offering a clear starting point for evaluating more complex models. However, it has limitations in handling

trends and complex patterns in non-stationary data.

6.3.2. ARIMA
The ARIMA model is chosen for forecasting the return flow of defective machinery parts at ASML due to

its strong alignment with the specific requirements of this research. ARIMA is extensively documented in

the literature for its effectiveness in forecasting spare parts demand and failure rates, ensuring its reliability

within ASML’s context.

The ARIMA model is particularly well-suited for non-stationary data, which allows it to identify and model

trends within the return flow data. This capability is crucial for handling the variability and potential lumpiness

observed in ASML’s data. The model’s robustness in capturing the dynamics of return flow data, especially

with sparse datasets, makes it an ideal choice.

The model’s parameters (p, d, and q) will be optimized using Auto-Correlation Function (ACF) and Partial
Auto-Correlation Function (PACF) plots. Typically, the objective is to minimize the AIC, ensuring an efficient

and accurate fit that balances complexity and performance. However, in this research, the model will be

optimized to achieve the lowest possible evaluation metrics, which will be determined in further analysis.

This approach ensures that the model’s performance can be compared generally and provides the most

accurate predictions for ASML’s needs.

Additionally, ARIMA’s flexibility allows it to handle varying data volumes, which is essential for the diverse

range of parts at ASML. This combination of attributes—robustness, flexibility, and the ability to accurately

capture trends in non-stationary data—makes ARIMA a robust and flexible choice, satisfying all the outlined

requirements.

6.3.3. ARIMAX
The ARIMAX model is selected to enhance the capabilities of the base ARIMA model by incorporating

exogenous variables, aiming to improve forecasting accuracy for ASML’s return flow of defective machinery

parts. The literature discusses the ARIMAX model for its superior forecasting performance in contexts
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where external variables are critical. Studies indicate that incorporating exogenous predictors can lead to

more accurate forecasts by accounting for influences outside the primary time series data. This model’s

selection is also driven by the opportunity to directly compare its performance with the ARIMA model, as

the literature suggests potential improvements but lacks specific testing in the RSC context.

The ARIMAX model extends the ARIMA framework by integrating external factors into the time series

analysis, making it a multivariate approach. The exogenous variables provide deeper insights into defect

patterns, allowing for a more comprehensive understanding of the factors affecting return flows. This

enhanced model is expected to better capture the complexities and variability in ASML’s defect data,

providing more accurate and actionable forecasts.

The parameters of the ARIMAX model will be optimized using techniques such as ACF and PACF plots,

along with minimizing evaluation metrics to ensure a precise and efficient fit. While the AIC will be checked,

it will not be the primary criterion for optimization. This approach ensures that the model’s performance is

balanced with its complexity, achieving superior accuracy without imposing unnecessary computational

burden. Similar to the ARIMA model it satisfies all the outlined requirements.

6.3.4. LSTM
The LSTM model is selected due to its exceptional capability to handle time series data with complex

temporal dependencies. LSTM model is particularly effective in scenarios where long-term dependencies

in the data are critical for accurate forecasting. This makes them highly relevant for predicting the return

flow of defective parts in the semiconductor industry.

LSTM models excel in managing short to long-term dependencies and recognizing complex patterns, which

are typical in forecasting spare parts demand. They are especially suited for scenarios where past events

significantly influence future outcomes, such as parts failing during initial assembly stages in ASML’s

operations. The literature supports the superior performance of LSTM models compared to traditional

methods like ARIMA, SVM, Random Forest, and ANN, particularly in scenarios involving sparse data and

complex dependencies.

The LSTM model’s architecture includes memory cells that can maintain information over long periods,

allowing the model to learn and remember important features from the data. This ability is crucial for

capturing the intricate dynamics of return flows in the semiconductor industry.

In the implementation of LSTM models, the focus will be on tuning hyperparameters such as the number of

layers, the number of neurons per layer, the learning rate, and the batch size to optimize model performance.

The training process involves backpropagation through time which updates the model weights to minimize

the loss function.

In conclusion, the LSTM model is selected for its robust performance in handling complex temporal

dependencies and its extensive support in the literature for forecasting scenarios with sparse and intermittent

data patterns. By leveraging the LSTM model’s advanced architecture, this research aims to achieve a

higher accuracy in predicting the return flow of defective machinery parts compared to traditional forecasting

methods, thereby satisfying all the outlined requirements.

6.4. Evaluation Metrics
Accurately assessing the performance of forecasting models requires selecting appropriate evaluation

metrics that can handle the unique challenges of the dataset, such as the presence of zeros and high

variability. This section outlines the selection, normalization, and ranking of evaluation metrics to ensure

robust and fair comparisons of model performance.

6.4.1. Selection of Evaluation Metrics
Given the challenges posed by the presence of zeros in the data and high variability, the selection of

evaluation metrics is crucial for accurately assessing the performance of forecasting models. The three

most effective metrics for this research, based on the specific requirements and characteristics of the data,

are presented in Table 6.1. These metrics are also commonly used in similar research from the literature.
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Table 6.1: Selected Evaluation Metrics

Metric & Equation Relevance to Research

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

MSE is useful for highlighting significant forecasting errors due

to the squaring of each error term, making it sensitive to large

deviations. This characteristic is beneficial for assessing model

performance in scenarios with high variability, which is evident

from the available data in this research. MSE is used in similar

research from the literature for models such as SES, ARIMA, and

LSTM.

MAE =
1

n

n∑
i=1

|yi − ŷi|

MAE is chosen for its straightforwardness and robustness against

outliers. It is indispensable for comparing series measured on

the same scale and is simple to calculate and interpret. MAE

provides an accurate measure of forecast accuracy by ensuring

that negative and positive errors do not cancel each other out.

MAE is used in similar research from the literature for models

such as ARIMA and LSTM.

mMAPE = 100%× 1

n

n∑
i=1

(
|ŷi − yi|
1 + |yi|

) The mMAPE addresses the limitations of standard MAPE, par-

ticularly in datasets with zero or near-zero values. By ensuring

the denominator is never zero, it enhances robustness and inter-

pretability. This metric is valuable for evaluating models in the

context of sparse and lumpy data, which is a characteristic of the

available data in this research. mMAPE is used in similar research

from the literature for the ARIMA and LSTM models.

6.4.2. Normalizing and Ranking the Metrics
To compare the performance of the forecasting models using different evaluation metrics, the values

of MSE, MAE, and mMAPE are normalized to ensure they are on a comparable scale. This approach,

similar to the one used by Lee et al. (2021), ensures that each metric contributes equally to the overall

performance ranking. This normalization is achieved using the min-max normalization technique:

Normalized Metric =
Metric−min(Metric)

max(Metric)−min(Metric)

Normalization ensures that each metric contributes equally to the overall performance ranking.

6.4.3. Aggregating Scores and Ranking Models
Following the approach used by Lee et al. (2021), after normalizing the metrics, an aggregate score for

each model is calculated by averaging its normalized MSE, MAE, and mMAPE scores:

Aggregate Score =
Normalized MSE+ Normalized MAE+ Normalized mMAPE

3

Models are then ranked based on their aggregate scores, with the model having the lowest aggregate

score being considered the best performing. This process is repeated for each dataset frequency and part

classification to identify the top-performing model in each scenario.

To determine the overall best performing model across all dataset frequencies and part classifications, the

mean of the aggregate scores for each model across all scenarios is computed:

Overall Score =

∑N
i=1 Aggregate Scorei

N

where N represents the total number of different dataset frequencies and part classifications. This

comprehensive ranking approach ensures a robust comparison and selection of the optimal parameters

for each forecasting model. Additionally, it facilitates the identification of the best overall forecasting model

for the given research context in subsequent analyses.
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6.5. Conclusion
This chapter addressed the fifth sub-question of the research:

Which forecasting models and evaluation metrics are best suited for predicting the return flow

of defective machinery parts at ASML, considering the specific requirements and crucial data

variables?

Research Question 5

To determine the most appropriate forecasting models and evaluation metrics for predicting the return flow

of defective machinery parts at ASML, the following models were carefully selected based on the stated

requirements:

• SES: Chosen for its simplicity and as a benchmark for comparison. While SES does not meet all the

requirements, particularly in handling trends and complex patterns in non-stationary data, it provides

a foundational baseline to evaluate the performance of more complex models.

• ARIMA: Ideal for handling non-stationary data, ARIMA is capable of identifying and modeling trends

within the return flow data, making it highly suitable for the variability and lumpiness observed in

ASML’s data. ARIMA meets all the specified requirements, ensuring reliability and accuracy.

• ARIMAX: Building on the ARIMA model, ARIMAX incorporates exogenous variables to improve

forecasting accuracy. This allows for deeper insights into defect patterns by considering external

influences. ARIMAX meets all the requirements, offering enhanced forecasting performance.

• LSTM: Selected for its ability to manage complex temporal dependencies, LSTM models are partic-

ularly effective for scenarios with sparse and intermittent data patterns, offering potentially higher

accuracy in forecasting the return flow of defective parts. LSTM meets all the requirements, providing

robust and advanced forecasting capabilities.

The selected evaluation metrics—MSE, MAE, and mMAPE—ensure a robust assessment of model

performance. MSE is particularly useful for highlighting significant forecasting errors, MAE provides a

straightforward measure of accuracy without being unduly influenced by outliers, and mMAPE addresses

the limitations of standard MAPE by being robust to zero or near-zero values.

By normalizing and ranking these metrics, the models can be effectively compared, facilitating the iden-

tification of the optimal forecasting approach. This comprehensive evaluation ensures that the chosen

models not only meet the specific requirements of ASML but also provide actionable insights for reverse

inventory planning within the RSC.



7
Experiments & Results

This chapter builds on the extracted and transformed data from Chapter 5 and the selected models

from Chapter 6, setting the foundation for the experiments. The chapter is organized into sections for

each of the four forecasting models: SES, ARIMA, ARIMAX, and LSTM. Each section details the model

configuration, parameter optimization, and performance results for all parts and frequencies. Figure 7.1

provides an overview of this chapter, which shows the data extraction, transformation, and connection

with the experiments and results. Insights are provided into how these models handle different defect

part classifications and data frequencies. Additionally, there is a section analyzing the computational

effort required for each model. The chapter concludes by synthesizing the findings to identify the optimal

parameters for each model, thereby addressing the sixth sub-research question:

6. What are the optimal parameters for the most suitable forecasting models tailored to different

classifications of defective parts and varying data frequencies?

Figure 7.1: Data Extraction & Transformation connection with Experiments & Results

7.1. Simple Exponential Smoothing
SES is a foundational time series forecasting method used to predict future values based on past obser-

vations. This technique is particularly useful for data without trends or seasonal patterns. SES applies

exponentially decreasing weights to past data, giving more importance to recent observations.

7.1.1. Model Implementation
SES forecasts are generated using the following formula:

ŷt+1|t = αyt + (1− α)ŷt|t−1

In this equation, ŷt+1|t represents the forecasted value at time t + 1 based on data up to time t. The
parameter α is the smoothing constant, which ranges between 0 and 1, determining the weight given to
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the most recent observation yt versus the previous forecast ŷt|t−1. The higher the value of α, the more
weight is placed on the most recent observation.

The SESmodel was implemented in Python using the statsmodels.tsa.holtwinters.SimpleExpSmoothing
library due to its efficiency and computational robustness.

7.1.2. Parameter Optimization
To determine the best α value for the SES model, a grid search algorithm is developed, as outlined in

algorithm 1 which can be found in Section C.1. This algorithm systematically tests α values from 0.0 to 1.0

in increments of 0.025, ensuring a thorough exploration of the parameter space. The optimization process

involves:

1. Fitting the SES model on the training data for each α value.

2. Forecasting defect counts on the test data.

3. Applying a non-negativity constraint to ensure predictions are non-negative.

4. Calculating evaluation metrics MSE, MAE, and mMAPE.

5. Normalizing these metrics to define comparison.

6. Identifying the best α based on an aggregate score of normalized metrics.

7.1.3. Results
The optimal α values and their corresponding performance metrics for each defect part are summarized in

Table 7.1. The results are ranked by normalized MSE, MAE, and mMAPE across twelve different outputs.

The rankings are categorized into groups A, B, and C, separated by dashed lines, with the models within

each group ordered by their performance.

Table 7.1: Optimal Parameters and Performance Metrics for SES

Part_Freq α Avg. ŷ MSE MAE mMAPE Rank

A2_Mh 0.55 18.65 6.03 1.87 10.89 3

A3_Wk 0.85 0.13 0.31 0.35 20.95 7

A1_Wk 0.40 3.99 5.62 1.71 31.55 9

A2_Wk 0.05 3.74 3.45 1.50 36.38 8

A3_Mh 1.00 2.00 1.50 0.84 75.00 11

A1_Mh 0.525 17.45 46.7 5.74 34.28 12

B1_Wk 1.00 0.00 0.10 0.10 4.69 4

B2_Mh 0.575 2.09 1.51 0.98 21.33 5

B2_Wk 0.00 0.31 0.61 0.61 35.53 6

B1_Mh 1.00 0.00 0.38 0.38 18.75 10

C_Mh 0.00 0.63 0.71 0.75 47.40 1

C_Wk 1.00 0.00 0.30 0.30 14.71 2

Figure 7.2 shows the SES forecasts compared to actual defect counts for Parts C and A1, and additional

plots for the other parts are available in Appendix D: Figure D.3. For Part C_Mh, the SES model performs

well, with the predictions closely aligning with the actual counts. However, for the weekly data, it shows a

constant zero prediction, indicating that the model performs well in predicting non-defective periods but

fails to capture the occasional defects. This suggests that SES can handle parts with infrequent and low

defect counts effectively on a monthly basis, but for weekly frequencies, its performance is misleadingly

good due to the predominance of non-defective periods.

Notably, the predicted mean value (ŷ) for parts A3_Wk, B1_Wk, B2_Wk, and C_Wk is also zero or almost

zero, suggesting that these models predict no defects. While this results in excellent performance metrics

(very low MSE and MAE), it indicates that the models similarly are forecasting non-defects, which may not

reflect the real-world scenario where some defects are expected. Thus, from a practical perspective, these

models may not be as effective despite their seemingly good performance.
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Figure 7.2: Weekly and Monthly SES Results for Part C (rank 1 & 2) and Part A1 (rank 9 & 12)

On the other hand, for both weekly and monthly Parts A1, the SES model is not able to accurately forecast

the more variable and higher defect counts, as evidenced by the larger discrepancies between the predicted

and actual values. The variability and higher frequency of defects in Parts A1 expose the limitations of

SES in handling such complex patterns.

These results demonstrate the performance of SES in forecasting defect counts, providing valuable insights

for further analysis. However, the limitations observed suggest the need for more advanced models to

handle parts with greater variability and complexity in defect counts.

7.2. ARIMA Model
The ARIMA model is a widely-used statistical method for time series forecasting. It integrates AR, I, and

MA components to capture various patterns in time series data. This section focuses on the basic ARIMA

model without seasonality or exogenous variables.

7.2.1. Model Configuration
The ARIMA model is represented by the equation:

yi =

p∑
j=1

φjyi−j + εi +

q∑
j=1

θjεi−j

In its expanded form:

(1− φ1B − · · · − φpB
p)(1−B)dyt = c+ (1 + θ1B + · · ·+ θqB

q)εt

where:

• φ and θ denote the coefficients for the AR and MA terms, respectively,

• d indicates the differencing order,

• B is the backshift operator,

• εt represents white noise.

The components of the ARIMA model are configured as follows:

• Autoregressive (AR) Component: Predicts the current value based on past values. The order (p)
shows how many past values are used. The PACF plot helps identify p by highlighting significant
lags.

• Moving Average (MA) Component: Predicts the current value using past forecast errors. The order

(q) shows how many past errors are used. The ACF plot helps identify q by highlighting significant
lags.

• Integrated (I) Component: Makes the data stationary by differencing. The order (d) shows how
many times differencing is needed. The Augmented Dickey-Fuller (ADF) test helps determine d,
ensuring the series becomes stationary.
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By configuring these parameters, the ARIMA model can be tailored to the specific characteristics of the

time series data. The model fitting process involves estimating these parameters to minimize prediction

error, providing a robust tool for forecasting defect counts in a time-dependent manner.

In Python, the statsmodels library provides tools to implement ARIMA models. The primary functions

used are:

• ARIMA(): Defines the ARIMA model with parameters specifying the order of AR (p), differencing (d),
and MA (q) components.

• fit(): Estimates the parameters of the ARIMA model by fitting it to the provided time series data.

The statsmodels library is chosen for its comprehensive and flexible implementation of ARIMA models.

It provides robust methods for parameter estimation, diagnostics, and validation, ensuring accurate and

reliable forecasts. The library’s functions allow for easy configuration and fine-tuning of model parameters,

making it a preferred choice for time series analysis in both academic and practical applications.

7.2.2. Parameter Range Selection
Selecting appropriate parameter ranges for the ARIMA model is crucial for ensuring accurate and reliable

forecasting. This process involves a detailed analysis of the ACF, PACF, and ADF test results to determine

suitable values for p, d, and q.

The ACF and PACF plots for the original defect counts provide insights into the autocorrelation structure of

the time series. These plots help identify potential values for the AR (p) andMA (q) parameters. For instance,
the ACF plot for the original defect counts of Part A1_Wk shows significant positive autocorrelations up

to several lags, suggesting that MA terms up to q = 5 should be considered. Similarly, the PACF plot

displays significant spikes at initial lags, indicating potential AR terms up to p = 14.

Figure 7.3: ACF and PACF plots for original defect counts of Part A1_Wk

The ADF test is used to assess the stationarity of a time series. For the Part A1_Wk dataset, the ADF test

results for the original series revealed an ADF statistic of -1.41 and a p-value of 0.57. Since the p-value is

greater than 0.05, the null hypothesis cannot be rejected, indicating that the series is non-stationary and

necessitates differencing.

After applying first-order differencing (d = 1), the ADF test was conducted again. This time, the first

differenced series yielded an ADF statistic of -6.76 and a p-value of 0.00, which is significantly less than

0.05. These results indicate that the null hypothesis can be rejected, confirming that the differenced series

is stationary.

After differencing, the ACF and PACF plots were analyzed again to determine the appropriate values for p
and q. The reanalysis for the differenced series showed reduced autocorrelations, with significant spikes
indicating that p and q values up to 3 should still be considered. The ADF test for the differenced series

indicated stationarity with a p-value less than 0.05.

Following similar analyses for all parts, as illustrated in Figure D.7 through Figure D.18 in Appendix D,

the parameter ranges for grid search optimization were determined and summarized in Table 7.2. This

comprehensive approach ensures that the selected ranges encompass all potential values while maintaining

computational feasibility.
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Figure 7.4: ACF and PACF plots for first differenced defect counts (d=1) of Part A1_Wk

Table 7.2: Parameter Ranges for ARIMA Model Grid Search

Part_Freq p Range d Range q Range Combinations

A1_Wk 0-5 0-1 0-14 180

A1_Mh 0-2 0-1 0-4 30

A2_Wk 0-8 0-1 0-10 198

A2_Mh 0-3 0-1 0-2 24

A3_Wk 0-4 0 0-7 40

A3_Mh 0-3 0-1 0-3 32

B1_Wk 0-14 0 0-14 225

B1_Mh 0-7 0 0-7 64

B2_Wk 0-4 0 0-12 78

B2_Mh 0-3 0-1 0-2 18

C_Wk 0-7 0-1 0-7 96

C_Mh 0-6 0-1 0-6 84

7.2.3. Parameter Optimization
To identify the optimal parameters for the ARIMA model, a comprehensive grid search algorithm is

developed for this research, as outlined in algorithm 2 which can be found in Appendix C.2. This method

evaluates combinations of p, d, and q parameters within predefined ranges. The process ensures a

thorough exploration of the parameter space to capture the best-fitting model.

The grid search algorithm for ARIMA involves the following steps:

1. Manually modifying the ranges for p, d, and q based on the parameters defined in Table 7.2 for

specific ’Part_Freq’.

2. Fitting the ARIMA model on the training data for each combination of p, d, and q.

3. Applying a non-negativity constraint to ensure predictions are non-negative.

4. Forecasting defect counts on the test data.

5. Calculating evaluation metrics MSE, MAE, and mMAPE.

6. Normalizing the chosen metrics MSE, MAE, and mMAPE to facilitate comparison.

7. Identifying the best combination of p, d, and q based on an aggregate score of normalized metrics.

This approach ensures that the selected parameters result in the most accurate and reliable forecasts for

the defect counts, tailored to the specific characteristics of the data.

7.2.4. Results
The results, summarized in Table 7.3, detail the optimal parameters and performance metrics of the ARIMA

models, ranked by normalized MSE, MAE, and mMAPE across twelve different scenarios. The rankings
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are categorized into groups A, B, and C, separated by dashed lines, with the models within each group

ordered by their performance.

Table 7.3: Optimal Parameters and Performance Metrics for ARIMA Model

Part_Freq p d q Avg. ŷ MSE MAE mMAPE Rank

A2_Mh 2 0 0 18.61 3.15 1.29 7.60% 3

A3_Wk 2 0 3 0.49 0.31 0.52 43.30% 7

A2_Wk 5 0 2 3.86 4.26 1.53 34.27% 8

A1_Wk 3 1 4 3.85 5.69 1.72 30.82% 9

A3_Mh 0 1 0 2.00 1.50 0.83 75.00% 11

A1_Mh 0 1 1 16.98 48.66 5.90 34.25% 12

B1_Wk 14 0 12 0.28 0.11 0.28 25.31% 4

B2_Mh 2 1 0 2.27 1.06 0.84 18.63% 5

B2_Wk 1 0 0 0.34 0.55 0.59 35.59% 6

B1_Mh 0 0 5 1.02 0.82 0.64 62.85% 10

C_Mh 1 0 2 0.63 0.06 0.13 4.28% 1

C_Wk 7 1 7 0.11 0.20 0.29 17.02% 2

The ARIMA model for Part C demonstrated superior performance, particularly with monthly data, achieving

the lowest MSE, MAE, and mMAPE. This model was ranked first overall, highlighting its robustness despite

the limited number of data points. Conversely, Part A1 showed the poorest performance, with high MSE,

MAE, and mMAPE values, placing its weekly and monthly models at ninth and twelfth, respectively. The

complexity and variability in defect counts for Part A1 posed significant challenges for the ARIMA model.

Additionally, the A1 monthly model had a significant outlier at the end of May 2024, where defect counts

dropped down from 30 at the end of April to 7 at the end of May, contributing to its high MSE. Figure 7.5

illustrates the performance patterns for Parts A1 and C, with additional plots available in Appendix D:

Figure D.4.

Figure 7.5: Weekly and Monthly ARIMA Results for Part C (rank 1 & 2) and Part A1 (rank 9 & 12)

Monthly data generally performed well, with the ARIMA model for Part C_Mh ranking first and Part A2_Mh

third. In the weekly data, Parts C_Wk and B1_Wk ranked second and fourth, respectively. However,

these weekly models, despite their high rankings, predicted nearly all values as zero, suggesting that they

forecast no defects. While this results in favorable performance metrics, it indicates that the models are

primarily predicting non-defects. The same results for both of these parts are similar to the results of the

SES model and may not reflect real-world scenarios where some defects are expected, rendering them

impractical for forecasting due to the lack of actionable predictions.

The parameters p, d, and q in the ARIMAmodels offer crucial insights into their performance across different

datasets. Models with d = 0, such as A2_Mh, B1_Wk, and C_Mh, generally exhibit strong performance,

suggesting that these time series are already stationary and lack significant trends. Specifically, B1_Wk, with

p = 14, d = 0, and q = 12, ranks highly due to its capability to effectively capture complex autoregressive
patterns and noise components.
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On the other hand, models with d = 1, such as A1_Mh and A3_Mh, reflect the presence of underlying
trends necessitating differencing for stationarity. For instance, A1_Wk, characterized by p = 3, d = 1, and
q = 4, displays higher complexity because it must account for both trend and noise, leading to moderate
performance.

Employing a consistent 80/20 data split across parts provided a balanced training and testing approach.

However, the varying number of samples significantly impacts performance metrics. Comparisons between

parts with fewer predictions and larger datasets highlight the difficulty in predicting variability, which affects

accuracy.

Overall, while the ranking of ARIMA models provides an initial insight into performance, it is challenging to

compare metrics across datasets with different characteristics. Therefore, rankings should be interpreted

cautiously, with a thorough analysis of what occurs in the forecasts to understand the true performance of

the models.

7.3. ARIMAX Model
The ARIMAX model extends the ARIMA model by incorporating external variables that are believed to

influence the dependent variable.

7.3.1. Model Configuration
The ARIMAX model can be represented by the equation:

yi = βxi +

p∑
j=1

φjyi−j + εi +

q∑
j=1

θjεi−j

where yi is the dependent variable, xi represents the exogenous variables, φ and θ are coefficients for the
AR and MA terms, respectively, d indicates the differencing order, and εi represents white noise. From the

library statsmodels.tsa.statespace.sarimax the SARIMAX function is used to implement the ARIMAX

model without seasonality, but with the inclusion of exogenous features as determined in Section 6.2.2.

The ARIMAX model configuration is similar to the ARIMA model but includes exogenous variables to

capture additional influences on the time series. These exogenous variables could improve the model’s

accuracy by accounting for external factors that affect the dependent variable.

7.3.2. Parameter Optimization
Parameter optimization for the ARIMAX model involves running the SARIMAX function with the specified
exogenous features, which do not require any transformation. It is important to clarify that seasonality is not

considered in this context to avoid confusion; there is no standalone ARIMAX model in statsmodels, as it is
essentially a SARIMAX model where the seasonality parameters are not applied. The optimization process

follows similar steps to the grid search algorithm used for the ARIMA model, as defined in Section 7.2.3.

Additionally, the same parameter ranges for grid search optimization were employed for the ARIMAX

model, as detailed in Table 7.2. The primary distinction lies in the inclusion of ”Exogenous Features XT

and XV ” where XT is utilized for training the model through fitting, and XV is used in the testing data and

predictions. The complete algorithm for the ARIMAX model is outlined in algorithm 3, which can be found

in Appendix C.2.

7.3.3. Results
The analysis of the ARIMAX model’s performance, as detailed in Table 7.4, reveals the optimal parameters

and several key insights. Datasets are ranked by normalized MSE, MAE, and mMAPE across twelve

scenarios. Rankings are categorized into groups A, B, and C, separated by dashed lines and ordered by

performance within each group.

Models with d = 0, such as B1_Wk, C_Mh, and C_Wk, generally perform well, indicating that the time

series for these datasets are already stationary and do not exhibit strong trends. For instance, B1_Wk,

with parameters p = 4, d = 0, and q = 3, achieves the highest rank with the lowest MSE and MAE,

suggesting that the autoregressive and moving average components capture the underlying patterns
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effectively. Similarly, C_Mh and C_Wk also rank high with d = 0, further supporting the absence of a
significant trend in these datasets.

Table 7.4: Optimal Parameters and Performance Metrics for ARIMAX Model

Part_Freq p d q Avg. ŷ MSE MAE mMAPE Rank

A3_Wk 3 0 4 0.41 0.30 0.49 38.96% 6

A2_Wk 4 0 1 3.68 3.51 1.40 29.92% 7

A1_Wk 4 0 2 4.38 5.13 1.68 33.81% 8

A2_Mh 0 1 0 17.95 11.67 2.85 15.18% 9

A3_Mh 1 1 3 2.08 1.61 0.91 79.17% 10

A1_Mh 0 1 0 19.32 35.42 4.29 31.07% 12

B1_Wk 4 0 3 0.00 0.09 0.09 4.69% 1

B2_Mh 3 0 0 2.52 0.41 0.48 10.80% 4

B2_Wk 0 0 11 0.40 0.56 0.51 31.38% 5

B1_Mh 1 0 0 1.16 1.13 0.89 85.42% 11

C_Mh 5 0 3 0.68 0.04 0.12 4.31% 2

C_Wk 4 0 6 0.08 0.20 0.26 14.31% 3

Conversely, models with d = 1, which are used in A2_Mh, A3_Mh, and A1_Mh, show varying performance.

A2_Mh, despite requiring differencing to achieve stationarity, performs moderately well, indicating some

underlying trend that the model successfully captures. However, A1_Mh, with the same differencing

parameter, performs poorly, suggesting that the trend component in this dataset may not be effectively

modeled by the ARIMAX configuration used.

The visual comparison of ARIMAX forecasts with actual defect counts for Part C and Part A1 is shown in

Figure 7.6, with additional plots available in Appendix D: Figure D.5. Part C, both weekly and monthly,

is well-forecasted, as indicated by the C_Mh line, which closely matches the actual defect count pattern

over time. In contrast, the lower-ranked Part A1 exhibits larger deviations, illustrating the challenges in

accurately predicting defect counts for this more variable dataset.

Figure 7.6: Weekly and Monthly ARIMAX Results for Part C (rank 2 & 3) and Part A1 (rank 8 & 12)

The connection between the performance metrics and the exogenous variables, as shown in Table 7.5,

provides further insights. The ’Year’ variable, where available, shows positive correlations, indicating a

trend over time. This is particularly evident in B1_Mh with a correlation of 0.467, where the model also

ranks relatively high. In contrast, the ’Month’ variable generally exhibits negative correlations, with B2_Mh

showing the most extreme value of -1.0, suggesting significant cyclical variations that the model must

account for. The strong performance of B2_Mh, with a high negative correlation for ’Month’, underscores

the importance of capturing these cyclical effects.

The ’Week’ variable shows moderate negative correlations across most datasets, reflecting a weekly

cyclical pattern in defect counts. The best-performing model, B1_Wk, with a strong negative correlation,

highlights the critical role of weekly patterns in forecasting accuracy.



7.4. LSTM Model 72

Table 7.5: Pearson Correlation Coefficients for Exogenous Variables (ARIMAX)

Exogenous Variable A1_Wk A2_Wk A3_Wk B1_Wk B2_Wk C_Wk

Year 0.239 NaN 0.039 0.246 NaN NaN

Month -0.239 -0.193 -0.071 -0.252 -0.008 -0.091

Week -0.234 -0.185 -0.058 -0.261 -0.055 -0.105

Holiday_in_Week -0.096 -0.530 0.113 0.360 -0.255 -0.299

Exogenous Variable A1_Mh A2_Mh A3_Mh B1_Mh B2_Mh C_Mh

Year 0.318 NaN 0.131 0.467 NaN NaN

Month -0.373 -0.717 -0.192 -0.509 -1.000 0.135

Holiday_in_Month 0.465 0.345 -0.263 -0.067 0.866 0.302

Holiday-related variables exhibit mixed impacts on defect counts. For instance, A2_Wk shows a strong

negative correlation for ’Holiday_in_Week’, indicating a significant drop in defect counts during holiday

weeks. Conversely, B1_Wk shows a positive correlation for the same variable, suggesting an increase in

defects during holiday periods. This variability emphasizes the context-specific influence of holidays on

defect counts, necessitating tailored model configurations for different datasets.

Overall, the Pearson correlation coefficients reveal the significance of different exogenous variables in

predicting defect counts. The varying correlations highlight the need for customized ARIMAX models

that consider specific temporal patterns and external influences. These insights are essential for refining

ARIMAX models and enhancing their predictive accuracy in forecasting return flows of defective parts in

the semiconductor industry.

7.4. LSTM Model
Long Short-Term Memory (LSTM) model, a specialized form of Recurrent Neural Networks (RNNs), excel

in time series prediction by effectively modeling long-term dependencies within sequential datasets. This

research utilizes an LSTM network to predict the return flow of defective parts. The model integrates

historical defect data along with the relevant exogenous variables, offering a sophisticated forecasting

method.

7.4.1. Model Configuration
In configuring the LSTM model for forecasting defect counts of different parts, TensorFlow and Keras are

selected for their robust capabilities. TensorFlow, an open-source platform for machine learning, offers

powerful tools for building and training models, making it an excellent choice for research experiments. Its

extensive library and support for distributed computing allow for efficient handling of large datasets and

complex computations, which are often required in research settings. Keras, integrated within TensorFlow,
simplifies the creation of deep learning models, making it ideal for complex forecasting tasks. Its straightfor-

ward interface accelerates the model development process, enabling rapid experimentation and iteration,

which is crucial for research environments where testing multiple hypotheses and models is common.

The LSTM network for this experiments is built using Keras and the Sequential model. This setup allows

for the addition of multiple LSTM layers sequentially, followed by a dense (fully connected) layer to produce

the final forecast. This configuration is essential for understanding the complex and irregular patterns in

defect return data. The Sequential model structure facilitates the stacking of layers, thereby enhancing the

model’s ability to learn effectively from the data. Its simplicity and flexibility make it a suitable choice for

iterative experimentation.

Data pre-processing involved using MinMaxScaler from the Scikit-learn library to normalize both defect

counts and exogenous features, ensuring the data falls within the range of 0 to 1. This normalization

accelerates the convergence of the neural network and improves model performance. The exogenous

features—year, month, week, and whether there was a holiday in the week or month—provide additional

context that could influence defect occurrences. By scaling these features separately, the pre-processing

ensured that each type of data was appropriately handled, enhancing the model’s ability to learn effectively.
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Unlike traditional statistical models, machine learning models require a validation split in addition to the

training and test data splits. To maintain comparability with other models, a validation set of 10% was

used, subtracted from the training data, resulting in a training set that comprises 70% of the total data.

7.4.2. Hyperparameters Range Selection & Optimization
This subsection outlines the methodology used for generating random combinations of parameters to

fine-tune LSTM networks. The objective was to explore a diverse range of parameter settings to identify

the most effective configurations for the forecasting model, particularly for predicting defect counts in a

time-dependent manner.

To effectively tune the LSTM model, several key hyperparameters and the window size parameters were

identified, each with a range of potential values informed by prior research, domain-specific knowledge, and

trial-and-error investigation on the dataset. The parameters and their respective ranges are summarized in

Table 7.6. Additionally, two specific hyperparameters were determined without a range search to reduce

computational complexity, as the grid search was already complex to run.

• Dropout Rate: Set at 0.1, this regularization technique prevents overfitting by randomly setting

a fraction of input units to zero during training. The 0.1 dropout rate strikes a balance between

mitigating overfitting and maintaining the network’s learning capacity.

• Dense Layer: A fully connected (Dense(1)) layer applied after the LSTM layers, typically with a

single neuron and a linear activation function. This configuration is essential for producing continuous

output values, which aligns with the nature of regression tasks and is crucial for forecasting defective

parts.

Table 7.6: Parameter Ranges for Random Search

Parameter Range

Epochs 40, 80

Window Size 5, 10, 15, 20

Optimizer Adamax, RMSprop, Nadam

Batch Size 5, 10, 20, 40

LSTM Units 32, 64, 128

LSTM Layers 1, 2, 3

Activation Function ReLU, Tanh, Swish

The ranges for each parameter were chosen based on their demonstrated effectiveness in previous studies

and practical considerations relevant to the forecasting problem. For instance, the number of epochs

balances between sufficient training and computational efficiency. The window size values allow for

evaluating short-term versus longer-term historical data’s impact on prediction accuracy. The optimizers

were selected for their adaptive learning rate capabilities, which are crucial for effectively training deep

neural networks. RMSprop was chosen for its ability to handle non-stationary targets, making it ideal

for time series forecasting. Adam and Nadam were favored for their simplicity and lower computational

requirements, offering efficient training alternatives. Batch sizes were varied to assess the trade-off

between training stability and speed. LSTM units and layers were chosen to explore different model

capacities and depths, and activation functions were tested to determine their impact on learning nonlinear

patterns.

To comprehensively explore the parameter space, an initial random grid search was conducted across

a broad range of hyperparameters. Given the high dimensionality and potential interactions between

parameters, an exhaustive grid search would result in thousands of combinations, making it computa-

tionally prohibitive. Therefore, random sampling was employed to balance comprehensive coverage and

computational feasibility, increasing the likelihood of identifying optimal or near-optimal settings. The best

performing hyperparameters from this random search will be identified and then used to define a more

concise range for the optimal grid search in this research.

The random sampling process involved:
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• Random Sampling: For each parameter, a random value was selected from its predefined range.

• LSTM Layer Configuration: Based on the randomly selected number of layers, a corresponding

number of LSTM units were randomly assigned. For example, if the number of layers was 2, two

random values from the lstm_units range were selected and sorted in descending order to form the

layer configuration.

This random sampling process was repeated until 60 unique combinations were generated, ensuring

uniqueness by cross-referencing with previously generated combinations.

To reduce the time required for the grid search, initial investigations focused on both weekly and monthly

frequencies, but only four out of six parts were selected for the initial investigation, excluding Parts A_2

and C_1. This approach led to eight experiments (4 parts × 2 frequencies) to determine the best parameter

ranges.

A comprehensive grid search algorithm was developed for this research, as outlined in algorithm 4 in

Section C.2. This algorithm involves:

1. Importing pre-generated random combinations of hyperparameters.

2. Creating sequences with exogenous features based on the randomly selected window size.

3. Splitting the data into training, validation, and test sets.

4. Building the LSTM model with the specified number of layers and units, followed by dropout and

dense layers.

5. Training the model on the training set and validating it on the validation set.

6. Making predictions on the test set and applying a non-negativity constraint to ensure predictions are

non-negative.

7. Calculating evaluation metrics: MSE, MAE, and mMAPE.

8. Normalizing the chosen metrics to facilitate comparison.

9. Identifying the best parameter configuration based on an aggregate score of normalized metrics.

The generated combinations were stored in dataframes for further analysis, ensuring a structured approach

for subsequent evaluation and comparison. The outcomes were then analyzed by identifying the top

three combinations for all experiments, providing a valuable selection of the best parameters for a more

generalized application in the optimal grid search. Table 7.7 lists the best performing hyperparameters

ranges, which will be used consistently across all parts and frequencies in the optimal grid search.

For the monthly data, adjustments to window sizes were necessary due to data sparsity resulting from

resampling to monthly frequencies. Because of fewer data points, the model could not effectively learn from

larger window sizes. These adjustments ensured the model could learn effectively from the aggregated

data. A trial-and-error approach identified optimal window sizes for managing sparse data. Table 7.8

summarizes the window sizes used for the monthly data.

Table 7.7: Selected Hyperparameter Ranges

Parameter Range

Epochs 40, 80

Optimizer RMSprop

Batch Size 10, 40

LSTM Units 32, 64, 128

LSTM Layers 2, 3

Activation Function Tanh

Table 7.8: Selected Window Size Ranges

Part_Freq Window Size Range

All Weekly Parts 5, 10, 15

A1_Mh & A3_Mh 5, 10, 15

A2_Mh 5, 7, 9

B1_Mh 2, 3, 4

B2_Mh 1, 2, 3

C_Mh 2, 3, 4

The same steps are used for the optimal grid search, but all combinations are generated first using the

hyperparameters from Table 7.7 and Table 7.8. This resulted in 192 different combinations calculated for

the six parts at two different frequencies. The only difference in usage of the algorithm 4 is that instead of

importing random combinations, the optimal combinations are used in the first step of the algorithm.



7.5. Computational Effort of Models 75

7.4.3. Results
The performance of the LSTM model varied significantly across different parts and frequencies, as detailed

in Table 7.9. Part C_Wk demonstrated the highest accuracy; however, the average predicted value is

nearly zero, suggesting that the model is predicting no defects. While this results in excellent performance

metrics, it indicates that the LSTM is forecasting non-defects for this weekly part dataset, which may not

reflect real-world scenarios where some defects are expected. Therefore, from a practical perspective,

the model for this data frequency and defect pattern may not be as effective despite the seemingly good

performance. Conversely, Part C_Mh exhibited lower performance, likely due to the reduced number of

data points and larger time intervals in the monthly data, making it challenging for the model to capture

short-term variations effectively.

Table 7.9: Optimal Parameters and Performance Metrics for LSTM Model

Part_Freq Epoch Window Batch LSTM Units Avg. ŷ MSE MAE mMAPE Rank

Size Size

A3_Wk 80 5 40 [128, 128, 128] 0.36 0.26 0.36 23.61% 5

A2_Mh 80 7 40 [128, 128, 128] 20.03 9.40 2.03 12.66% 6

A2_Wk 80 15 10 [128, 128, 128] 2.16 4.09 1.41 25.16% 7

A1_Wk 40 5 10 [128, 128] 3.47 5.56 1.69 30.18% 8

A3_Mh 40 15 40 [64, 64, 64] 2.01 0.81 0.83 53.17% 11

A1_Mh 80 5 40 [64, 64, 64] 18.59 44.36 4.81 35.21% 12

B1_Mh 40 15 40 [64, 32] 0.67 0.31 0.37 20.79% 2

B2_Wk 80 10 40 [64, 32] 0.02 0.43 0.39 20.82% 3

B1_Wk 40 10 10 [32, 32, 32] 0.26 0.11 0.27 23.38% 4

B2_Mh 40 3 10 [32, 32] 1.18 3.28 1.65 39.08% 9

C_Wk 80 15 40 [128, 128] 0.01 0.23 0.26 14.28% 1

C_Mh 80 2 40 [128, 64] 1.18 0.65 0.73 52.11% 10

Part A1, with its higher variability and frequency of defects, posed significant challenges for the LSTM

model. Both weekly and monthly forecasts for Part A1 ranked lower, indicating difficulties in capturing the

complex and volatile patterns of defect occurrences. This suggests that standard LSTM configurations

may struggle with highly variable data and might benefit from additional feature engineering or alternative

modeling approaches. Part B1 showed good performance for both weekly and monthly frequencies,

reflecting the model’s ability to handle datasets with more consistent patterns. Similarly, Part B2_Wk

exhibited robust performance, demonstrating the model’s effectiveness in capturing defect patterns with

an appropriate configuration.

The visual comparison of LSTM forecasts with actual defect counts for Part C and Part A1 reinforces

these findings and is shown in Figure 7.7, with additional plots available in Appendix D: Figure D.6. The

C_Wk line illustrates that the model forecasts constant zero values. In the right graph, both the weekly

and monthly predictions for Part A1 exhibit significant deviations from the actual defect counts, highlighting

the challenges in forecasting highly variable and complex datasets.

The Pearson correlation coefficients, shown in Table 7.10, reveal the significance of different exogenous

variables in predicting defect counts. The connection between performance metrics and Pearson correla-

tions highlights the influence of exogenous variables on model outcomes. High positive correlations with

the ’Year’ variable suggest a trend that the LSTM model captures well, particularly for datasets like A1_Wk

and A1_Mh. Conversely, negative correlations with ’Month’ and ’Week’ variables indicate significant

cyclical patterns, which the model must account for to improve accuracy.

7.5. Computational Effort of Models
The computational effort required for parameter optimization of various forecasting models is significant,

especially given the trial-and-error nature of grid searches. Table 7.11 provides a concise overview of

the time taken to run grid searches for each model, emphasizing computational efficiency. Note that
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Figure 7.7: Weekly and Monthly LSTM Results for Part C (rank 1 & 10) and Part A1 (rank 8 & 12)

Table 7.10: Pearson Correlation Coefficients for Exogenous Variables (LSTM)

Exogenous Variable A1_Wk A2_Wk A3_Wk B1_Wk B2_Wk C_Wk

Year 0.860 NaN 0.581 -0.511 NaN NaN

Month -0.760 -0.406 -0.584 0.535 0.927 -0.518

Week -0.759 -0.432 -0.575 0.544 0.969 -0.433

Holiday_in_Week 0.246 -0.317 0.068 0.324 0.109 -0.134

Exogenous Variable A1_Mh A2_Mh A3_Mh B1_Mh B2_Mh C_Mh

Year 0.842 NaN NaN -0.420 NaN NaN

Month -0.635 0.975 -0.902 0.270 -0.452 -0.702

Holiday_in_Month 0.193 -0.219 -0.877 -0.646 -0.054 0.310

the random searches for the LSTM models are not included in this table, but they were already more

time-intensive compared to the optimal grid searches of the other models.

Table 7.11: Computational Time of Grid Searches (in seconds)

Model SES ARIMA ARIMAX LSTM Avg. Part

Part Week Month Week Month Week Month Week Month

A1 0.57 9.16 271.08 2.55 100.5 2.35 1,475.17 1,086.26 368.46

A2 0.33 0.18 101.58 1.22 58.06 2.55 1,248.65 930.24 292.10

A3 0.39 0.23 7.88 1.94 6.43 2.07 1,259.99 1,076.36 294.66

B1 0.55 0.24 668.24 13.91 100.07 8.38 2,875.25 2,040.36 713.12

B2 0.25 0.17 51.87 1.46 16.44 2.99 1,831.13 1,550.68 431.12

C 0.29 0.25 35.48 15.06 24.68 10.57 1,564.32 1,477.49 394.52

Avg. Model 0.40 1.70 189.36 6.02 51.03 4.82 1,709.08 1,360.23 416.83

The computational efficiency of forecasting models varies significantly due to their complexity and parameter

requirements. SES models are the most efficient, with average grid search times of 0.40 seconds for weekly

and 1.70 seconds for monthly data, reflecting their simplicity and limited parameter space. In contrast,

ARIMA models, which involve complex time series differencing and parameter estimation, average 189.36

seconds for weekly and 6.02 seconds for monthly data. Adding exogenous variables in ARIMAX models

further increases the computational load, averaging 51.03 seconds for weekly and 4.82 seconds for monthly

data. LSTM models, with their deep learning architecture, require the most significant computational effort,

averaging 1,709.08 seconds for weekly and 1,360.23 seconds for monthly data, due to the extensive

data pre-processing, numerous parameters, and multiple epochs involved. These differences underscore

the trade-offs between model complexity and computational efficiency, with LSTM models providing the

highest accuracy potential at the greatest computational cost.
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7.6. Conclusion
This chapter addressed the sixth sub-question of the research:

What are the optimal parameters for the most suitable forecasting models tailored to different

classifications of defective parts and varying data frequencies?

Research Question 6

The detailed results for the optimal parameters of each model are presented in their respective sec-

tions. Each model’s configuration and performance metrics are thoroughly discussed to highlight their

effectiveness and limitations for different defect part classifications and data frequencies.

The experiments with SES revealed that while the model is computationally efficient and effective for parts

with low variability and infrequent defects, it struggles with parts exhibiting higher variability and more

complex patterns. The optimal smoothing constant (α) varied significantly across parts and frequencies,
with higher values being more suitable for datasets with more frequent and recent defects.

The ARIMA model, incorporating autoregressive, differencing, and moving average components, demon-

strated better performance for datasets requiring differencing to achieve stationarity. However, the

complexity and parameter estimation process increased computational times. The optimal parameters for

ARIMA varied widely, with higher values of p and q necessary to capture complex and lumpy patterns in
some datasets.

The ARIMAX model, which extends ARIMA by incorporating exogenous variables, showed improved

performance by accounting for external factors influencing defect counts. The ranges of parameters were

similar to the ARIMA model but with differences in optimal parameters due to the inclusion of exogenous

variables like ’Year’ and ’Month’, which enhanced predictive accuracy for some datasets. This model

was particularly effective for parts with clear trends and cyclical patterns, as indicated by high Pearson

correlation coefficients with the exogenous variables.

The LSTM model provided the most nuanced approach to forecasting defect counts. Its ability to capture

long-term dependencies in the data, combined with the inclusion of exogenous features, made it the

most effective for parts with complex and volatile patterns. However, this model required significant

computational effort. The optimal configurations for LSTM involved multiple layers and units, with the best

results obtained using larger batch sizes and longer training epochs.

In conclusion, the optimal parameters for forecasting models varied based on defect part classification

and data frequency. SES models were best suited for simple, low-variability datasets, while ARIMA and

ARIMAX models handled more complex patterns effectively, especially with the inclusion of exogenous

variables. The LSTM model, despite its computational intensity, was most effective for datasets with high

variability and long-term dependencies. These findings provide a comprehensive understanding of the

strengths and limitations of each forecasting model, guiding the selection of the most appropriate model

and parameters for different scenarios in the RSC of defective parts.
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Models Evaluation

This chapter aims to address the final sub-research question of this thesis:

7. Which forecasting models provide the highest accuracy in predicting defect counts for specific

classifications of defective machinery parts, considering various data frequencies?

The focus is on evaluating and comparing different forecasting models to determine their accuracy and

effectiveness in predicting defects across various part classifications and data frequencies. The detailed

analysis includes both disaggregate and aggregate comparisons of model performance, considering

weekly and monthly data. Additionally, practical considerations such as computational effort and model

complexity are discussed to provide comprehensive insights into the suitability of each model for real-world

applications in RSC management within the semiconductor industry.

8.1. Models Comparison
This section presents a detailed comparison of forecasting models for different part classifications, specifi-

cally A1, A2, A3, B1, B2, and C. Subsequently, the results are aggregated for classifications A, B, and C. The

outcomes for the specific parts on a weekly basis are visualized in Figure D.19 in the Appendix D. Similarly,

the graphical performance of the monthly models for these six parts can be compared in Figure D.20.

8.1.1. Disaggregate Comparison of Classified Parts Frequencies
The disaggregate comparison of parts frequencies aims to evaluate the performance of the four forecasting

models across different defect part classifications for both weekly and monthly data frequencies. The

analysis focuses on determining the most accurate model for each classification and frequency combination,

as presented in Table 8.1.

For A1 classification, the LSTM model performed best for weekly data, effectively capturing complex

temporal patterns without always predicting zeros. This is logical given the high defect count and extensive

dataset, allowing the LSTM to learn both long and short-term dependencies over three years. However,

for monthly data, ARIMAX emerged as the best performer, with LSTM showing reduced accuracy due to

two main outliers causing high errors. The ARIMA model also performed well, closely matching LSTM’s

performance for weekly data.

In the A2 classification, ARIMA excelled for monthly data, showing strong performance in capturing trends

and patterns, making it ideal for this high defect count dataset. The LSTM model also performed well

for weekly data, indicating its efficiency in high-frequency scenarios, although it showed higher errors for

monthly predictions.

For the A3 classification, the SES model outperformed other models when evaluated using MSE and MAE

metrics for weekly data. However, the SES model consistently predicts almost no defects on a regular

basis, which is misleading given the actual defect counts. This inconsistency highlights the limitations of

using weekly models for this particular dataset. When examining the monthly data, all models show very

high mMAPE values. This is primarily because the models predict a nearly constant defect count of around

two each month, which only holds true for two of the four months in question. Therefore, the historical data

for this specific A3 part is inadequate for enabling the models to produce accurate predictions.

For B1 classification, ARIMAX and SES were almost equally effective for weekly data, often predicting

zero defects due to the dataset’s extreme lumpy pattern. The high mean interval between defects led to
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Table 8.1: All Models and Part Frequencies Performance Metrics

Part_Freq Rank Model MSE MAE mMAPE

A1_Wk 1 LSTM 5.56 1.69 30.18%

2 ARIMA 5.69 1.72 30.82%

3 SES 5.62 1.71 31.55%

4 ARIMAX 5.13 1.68 33.81%

A1_Mh 5 ARIMAX 35.42 4.29 31.07%

6 LSTM 44.36 4.81 35.21%

7 SES 46.70 5.74 34.28%

8 ARIMA 48.66 5.90 34.25%

A2_Mh 1 ARIMA 3.15 1.29 7.60%

3 SES 6.03 1.87 10.89%

7 LSTM 9.40 2.03 12.66%

8 ARIMAX 11.67 2.85 15.18%

A2_Wk 2 LSTM 4.09 1.41 25.16%

4 ARIMAX 3.51 1.40 29.92%

5 SES 3.45 1.50 36.38%

6 ARIMA 4.26 1.53 34.27%

A3_Wk 1 SES 0.31 0.35 20.95%

2 LSTM 0.26 0.36 23.61%

3 ARIMAX 0.30 0.49 38.96%

4 ARIMA 0.31 0.52 43.30%

A3_Mh 5 LSTM 0.81 0.83 53.17%

6 ARIMA 1.50 0.83 75.00%

7 SES 1.50 0.84 75.00%

8 ARIMAX 1.61 0.91 79.17%

Part_Freq Rank Model MSE MAE mMAPE

B1_Wk 1 ARIMAX 0.09 0.09 4.69%

2 SES 0.10 0.10 4.69%

3 LSTM 0.11 0.27 23.38%

4 ARIMA 0.11 0.28 25.31%

B1_Mh 5 LSTM 0.31 0.37 20.79%

6 SES 0.38 0.38 18.75%

7 ARIMA 0.82 0.64 62.85%

8 ARIMAX 1.13 0.89 85.42%

B2_Mh 1 ARIMAX 0.41 0.48 10.80%

3 ARIMA 1.06 0.84 18.63%

7 SES 1.51 0.98 21.33%

8 LSTM 3.28 1.65 39.08%

B2_Wk 2 LSTM 0.43 0.39 20.82%

4 ARIMAX 0.56 0.51 31.38%

5 ARIMA 0.55 0.59 35.59%

6 SES 0.61 0.61 35.53%

C_Mh 1 ARIMAX 0.04 0.12 4.31%

2 ARIMA 0.06 0.13 4.28%

7 LSTM 0.65 0.73 52.11%

8 SES 0.71 0.75 47.40%

C_Wk 3 ARIMAX 0.20 0.26 14.31%

4 LSTM 0.23 0.26 14.28%

5 ARIMA 0.20 0.29 17.02%

6 SES 0.30 0.30 14.71%

good scores by predicting no defects, which was not useful. The LSTM model performed best for monthly

data, but all models struggled with the dataset’s variability.

In the B2 classification, ARIMAX was the most accurate for monthly data, showing a well-predicted pattern

and good performance metrics. For weekly data, the LSTM model showed good performance in the MSE

and MAE metrics, but its high mMAPE indicates that these results might be misleadingly favorable due

to the predominance of non-defective periods. Considering the relatively recent dataset starting just at

the end of 2023 and it’s defect distribution, ARIMAX emerges as the most reliable choice for monthly

predictions of part B2.

For the classification C, the ARIMAX model performed exceptionally well for monthly data (C_Mh). While

the ARIMA model also provided very good predictions, ARIMAX had a slightly better overall score. This

classification had the smallest dataset, with just 13 defect counts over 563 days and an average interval of

46.9 days between defects. Despite the limited data, the ARIMAX model’s predictions were remarkably

accurate. The test data included only three defects and two non-defective periods, yet the ARIMAX

model, utilizing a complex configuration of AR(5) and MA(3), successfully forecasted these occurrences,

demonstrating its robustness even with sparse data.

In conclusion, LSTM models are generally best for high-frequency (weekly) data, especially in classification

A, where they capture intricate temporal dynamics effectively. For lower frequency (monthly) data, ARIMA

and ARIMAX models excel, providing robust performance in capturing broader trends and cyclical patterns.

Classification C highlights ARIMAX’s strength in handling sparse data. This nuanced approach ensures

better accuracy in predicting defects, enhancing RSC management in the semiconductor industry.
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8.1.2. Aggregated Comparison of Classifications
This subsection presents an aggregated comparison of forecasting models for classifications A, B, and C,

with the aim of providing a comprehensive evaluation of their performance across both weekly and monthly

data. The results for all parts within each classification were averaged to offer an overall assessment

of model effectiveness. The aggregated performance metrics for classifications A and B are presented

in Table 8.2. Classification C is excluded from this table because it consists of only one part, and its

performance metrics are already shown in aggregated form in Table 8.1.

Table 8.2: Average A & B Part Classification All Models and Part Frequencies Performance Metrics

Class_Freq Rank Model MSE MAE mMAPE

A_Wk 1 LSTM 3.30 1.15 26.32%

2 SES 3.13 1.19 29.63%

3 ARIMAX 2.98 1.19 34.23%

4 ARIMA 3.42 1.26 36.13%

A_Mh 5 LSTM 18.19 2.56 33.68%

6 ARIMA 17.77 2.67 38.95%

7 ARIMAX 16.23 2.68 41.81%

8 SES 18.08 2.82 40.06%

Class_Freq Rank Model MSE MAE mMAPE

B_Wk 1 ARIMAX 0.33 0.30 18.04%

2 LSTM 0.27 0.33 22.10%

3 SES 0.36 0.36 20.11%

4 ARIMA 0.33 0.44 30.45%

B_Mh 5 SES 0.95 0.68 20.04%

6 ARIMA 0.94 0.74 40.74%

7 ARIMAX 0.77 0.69 48.11%

8 LSTM 1.80 1.01 29.94%

In classification A, the LSTM model consistently demonstrated superior performance across both weekly

and monthly data. The LSTM model’s ability to effectively capture complex temporal patterns is reflected in

its lowest MSE and MAE values among the models, indicating its robustness in handling varying temporal

resolutions. This makes LSTM particularly well-suited for forecasting in environments where intricate

temporal dynamics are crucial.

For classification B, ARIMAX emerged as the most effective model for weekly data, showcasing strong

performance in managing high-frequency predictions. However, when applied to monthly data, the SES

model outperformed others on average. This performance is misleading, as the SES model often predicted

zero defects instead of accurately forecasting future defect occurrences. This tendency to predict zeros,

rather than actual defects, leads to seemingly better performance metrics but does not contribute effectively

to practical forecasting needs.

While ARIMAX generally demonstrated strong performance, it is noteworthy that the model faced challenges

with two specific parts within the classifications, where its accuracy was notably lower compared to the other

models. These outliers highlight the model’s potential vulnerabilities in certain scenarios. Nevertheless,

despite these instances, ARIMAX consistently emerged as the most reliable model for low-frequency

(monthly) data, excelling in managing percentage errors and capturing broader trends. This resilience

underscores its robustness in most contexts, even when occasional difficulties arise.

A critical factor influencing model performance across all classifications is the variability in defect counts

and the occurrence of zero-defect periods. For example, in classifications A3 and B1, where periods with

zero defects were frequent, the models often struggled to deliver accurate predictions. This variability

complicates the performancemetrics andmakes direct comparisons across classificationsmore challenging.

The effectiveness of each model is closely tied to the frequency and distribution of defect data available for

training and testing, a consideration that must be factored in when interpreting the aggregated results.

The aggregated findings align with the disaggregated analysis, showing that the LSTM model consistently

excels in high-frequency (weekly) data, particularly for classification A, where its ability to capture intricate

temporal dynamics is especially beneficial. For classification B, ARIMAX performs well in weekly data

but shows slightly less accuracy in monthly data. The SES model performs effectively for monthly data in

classification B but not in classification A. When considering MAE andMSE, ARIMAX generally proves more

effective for lower-frequency (monthly) data due to its capability to capture cyclical patterns. Furthermore,

classification C continues to highlight ARIMAX’s strength in managing sparse and variable data patterns,

as previously discussed in Section 8.1.1.

The overall average performance metrics, as presented in Table 8.3, provide a comprehensive evaluation

of each model’s strengths and limitations across different data frequencies and classifications. This table
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offers valuable insights, reinforcing the observations discussed earlier regarding the relative effectiveness

of each forecasting model in various contexts.

Table 8.3: Overall Average Performance Metrics for Each Model (Wk and Mh)

Model Frequency MSE MAE mMAPE

LSTM
Wk 2.6425 1.0275 28.5125%

Mh 14.625 2.5125 48.0575%

ARIMA
Wk 2.6275 1.03 30.315%

Mh 14.79 2.465 47.32%

SES
Wk 2.67 1.0625 29.858%

Mh 14.9875 2.7075 46.98%

ARIMAX
Wk 2.9575 1.1625 29.365%

Mh 14.03 2.505 43.1575%

However, it is important to consider that the comparison between classifications A and B is influenced

by the data split methodology used. Due to the near-annual delivery times of parts, the weekly and

monthly models differ significantly in granularity and scope. While the weekly data captures more detailed

variations, the monthly data aggregates these into broader trends. This difference in data frequency and

the corresponding data splits creates a situation where the models are tested under varying conditions,

potentially affecting the comparability of results across classifications. Despite these challenges, the

metrics in Table 8.3 provide a valuable overview of model performance, offering important insights for

selecting the most appropriate forecasting approach.

8.2. Practical Model Evaluation
This section evaluates the practical applicability of the best-performing forecasting models by considering

both their predictive accuracy and computational effort, as discussed in Section 7.5.

From the disaggregate and aggregated comparisons, LSTM models generally excel in high-frequency

data, particularly for classifications A and B. For lower frequency data, ARIMA and ARIMAX models are

superior, capturing broader trends and cyclical patterns effectively. The computational time for parameter

optimization varies significantly among models. SES models are the most computationally efficient, while

LSTMmodels require the most significant computational effort. ARIMA and ARIMAXmodels fall in between,

with ARIMAX being slightly more demanding due to the inclusion of exogenous variables.

Considering both predictive accuracy and computational effort:

• High-Frequency Data: LSTM models deliver the highest performance but are computationally

intensive. The ARIMA and ARIMAX models may offer a better balance between computational

efficiency and accuracy.

• Low-Frequency Data: ARIMA and ARIMAX models provide robust accuracy with moderate compu-

tational demands. ARIMAX is particularly more effective at capturing complex patterns in sparse

data compared to ARIMA.

In conclusion, in resource-constrained environments, ARIMA and ARIMAX models offer a balanced

compromise between accuracy and computational efficiency for both frequencies. This approach ensures

better defect prediction accuracy, enhancing RSC management in the semiconductor industry.
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8.3. Conclusion
This section gives answer to the final sub-research question:

Which forecasting models provide the highest accuracy in predicting defect counts for specific

classifications of defective machinery parts, considering various data frequencies?

Research Question 7

For high-frequency (weekly) data, LSTM models are the most accurate, particularly for classification A, due

to their ability to capture intricate temporal dynamics effectively. This model’s strength lies in handling large

datasets with frequent defect occurrences, allowing it to learn both short and long-term dependencies.

For lower-frequency (monthly) data, ARIMA and ARIMAX models perform best, excelling in capturing

broader trends and cyclical patterns. These models are particularly well-suited for datasets with infrequent

but aggregated defect counts. ARIMAX is especially effective in classifications B and C, where it accurately

handles complex and sparse data patterns.

Additionally, the practical evaluation of computational efficiency highlights that while LSTM models are

computationally intensive, they offer the highest accuracy for high-frequency data. In contrast, ARIMA

and ARIMAX models provide a balanced compromise between accuracy and computational effort for both

weekly and monthly frequencies, making them practical alternatives in resource-constrained environments.
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Conclusion & Discussion

This research demonstrates the effectiveness of advanced time series forecasting models in predicting the

return flow volume of defective machinery parts at ASML within the RSC context. This chapter concludes

by answering the main research question, comparing findings with existing literature, assessing model

complexity and computational demands, and exploring practical applications and limitations.

9.1. Conclusion
By addressing the sub-research questions, the study has identified the most accurate models for different

scenarios, leading to the answer to the main research question:

How can forecasting models accurately predict the return flow volume of defective machinery

parts?

Research Question

A crucial variable for forecasting is time series-based, determined by the occurrences of defects recorded

in the ’Material Notification’ (MN). By counting these defects for specific 12NCs based on the timestamps

of the MN creation dates, this variable becomes essential for developing a time series forecast model,

enabling the prediction of future defects at specific time steps and thereby determining the return flow from

the factory in the RSC.

The classification of demand patterns reveals that the majority of parts fall into the ”Lumpy” category,

indicating irregular and infrequent defect occurrences. This lumpiness and sparseness of data present

significant challenges for forecasting models. The ABCD-analysis categorizes parts based on defect

frequency and economic value, identifying three parts from classification A, two from classification B,

and one from classification C as focal points in this research analysis. This classification highlights the

variability in defect occurrences and the economic impact across different parts.

Resampling techniques transform the data into weekly and monthly intervals, reducing noise and enhancing

the detection of trends and patterns. This processing step is vital for improving the dataset’s suitability for

time series forecasting models. For all six selected parts, weekly and monthly data sets are considered,

resulting in 12 scenarios to investigate the differences in data variability and forecasting accuracy.

For high-frequency (weekly) data, the LSTM model consistently demonstrates superior accuracy for

classification A. This model excels in capturing complex temporal patterns and efficiently handling large

datasets characterized by frequent defect occurrences, making it the optimal choice for weekly forecasts. On

average, across the three parts analyzed, the LSTM model achieved the best performance for classification

A, with an MSE of 3.30, an MAE of 1.15, and an mMAPE of 26.32%.

For classifications B and C, the ARIMAX model consistently outperformed other models for both weekly and

monthly data. Its strength lies in its ability to handle complex and sparse data patterns, making it particularly

well-suited for these classifications. For B2 monthly data, ARIMAX achieved an MSE of 0.41, MAE of

0.48, and mMAPE of 10.80%. In classification C, the ARIMAX model demonstrated exceptional accuracy,

with an MSE of 0.04, MAE of 0.12, and mMAPE of 4.31%. On average, the weekly ARIMAX model also

performed better for classification B. However, it can be noted that for both B and C classifications, the
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models tend to perform more similarly to each other. Overall, when comparing the models across B1, B2,

and C parts, the ARIMAX monthly model showed superior performance, resulting in a combined mMAPE

of 33.51%, underscoring its effectiveness in these classifications.

In conclusion, the aggregated results are consistent with the disaggregated findings, indicating that LSTM

models are generally the best choice for high-frequency (weekly) data, particularly for parts in classification

A. This is because LSTM models effectively capture more variable time-related patterns and handle

datasets with frequent defect occurrences. For lower frequency (monthly) data, ARIMA and ARIMAX

models demonstrate superior performance, as they are adept at capturing broader trends and cyclical

patterns. Classification C further highlights ARIMAX’s strength in managing sparse data and complex

patterns. The evaluation metrics used in this research, MSE, MAE, and mMAPE, demonstrate that

both LSTM and ARIMAX models generate relatively small errors and achieve reasonable accuracy in

predicting defect counts, particularly for parts with high variability and frequent issues. These predictions

can determine the return flow, thereby enhancing ASML’s inventory management and capacity planning.

9.2. Discussion
This section provides a interpretation of the results, comparing them with existing literature, and evaluates

model complexity and computational demands. Additionally, it explores practical applications, highlights

contributions to capacity planning and inventory management, identifies potential areas for improvement,

and suggests directions for future research.

9.2.1. Interpretation of Results
The findings underscore the effectiveness of advanced time series forecasting models in predicting the

return flow volume of defective machinery parts within ASML’s RSC. The LSTM models showed excellent

accuracy in predicting high-frequency (weekly) data, particularly for classification A parts. This is because

they can effectively capture complex patterns over time and handle large datasets with frequent defect

occurrences. For classifications B and C, ARIMAX models were the most effective for both weekly and

monthly data, adeptly handling complex and sparse data patterns. To generalize these findings, forecasting

defect counts for these six parts should be extended to all parts within the same categories, using the

appropriate model for each classification. This approach allows ASML also to determine the total return

inflow at any specific time step by summing the predicted defect counts for all parts, thus enhancing

inventory and capacity management. However, despite performing excellently in terms of MSE and MAE,

some models predicted no defects, which is misleading given the actual defect counts. This highlights the

limitations of weekly models for this dataset, suggesting the need for model adjustments or alternative

approaches to improve prediction reliability.

9.2.2. Comparison with Existing Literature
This study advances the field of RSC management by addressing significant gaps in the forecasting of

return flow volumes, particularly within the semiconductor industry. Previous research, such as Kumar

et al. (2014), highlighted the lack of integrative models linking returned product flows with the demand for

new parts. This study directly addresses this gap by developing and evaluating specialized forecasting

models tailored to ASML’s needs.

This study demonstrates that advanced time series forecasting techniques, particularly ARIMAX and LSTM

models, are effective for predicting early-stage failures in high-value, complex parts, such as those at ASML.

These models effectively manage the sporadic and variable nature of defect occurrences, addressing

the limitations of traditional methods like the Weibull distribution, which previous research has found

less effective in such cases (Abernethy, 2006). Moreover, the ARIMAX and LSTM models consistently

outperformed the SES benchmark model in scenarios where non-zero defect counts were predicted.

Additionally, the introduction of the ABCD-analysis extends the traditional ABC-analysis by categorizing

parts based on defect frequency and cumulative counts (Syntetos et al., 2009). This method enhances

inventory management by focusing forecasting efforts on the most impactful parts, reducing overstock,

and improving overall forecasting accuracy. The study supports the findings of Clottey et al. (2012),

showing that ARIMAX outperforms standard ARIMA models when incorporating exogenous variables,

further validating its use in complex forecasting scenarios.

However, the study also highlights challenges, particularly the computational demands of LSTM models,
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as noted by Chandriah and Naraganahalli (2021), and the limitations in generalizability due to the reliance

on historical data and a narrow sample of parts. Future research should expand the scope to include more

parts and consider additional dynamic variables to further validate and refine these models.

9.2.3. Limitations
This study encountered several limitations that affect the generalizability and practical application of its

findings. A key limitation was the reliance on historical defect data, which may not fully capture the range

of factors influencing future return flows. Additionally, the computational demands of LSTM models pose

challenges for real-time application, requiring significant processing power and time.

The study’s focus on high-value, complex parts with a 302-day average planned delivery time provided

valuable insights but limited the broader applicability of the findings. This focus hindered the achievement

of the initial goal to develop forecasting models for predicting inflows of defective parts and enabling early

blocking of new purchases. The models were more effective for capacity planning rather than for reducing

new purchases. Additionally, the complexity of accurately blocking new purchases was greater than

anticipated, highlighting the need for high precision to ensure sufficient future stock availability. While the

ARIMAX model performed well for short-term, monthly predictions aligned with ASML’s KPI updates, these

forecasts were more suited to operational planning than to achieving the strategic objective of reducing

new purchases. This indicates a need for further refinement and expansion of the forecasting models to

fully meet the broader goals of the study.

The study also employed an 80/20 data split for training and testing, which, while enhancing model reliability,

may not fully address all variables affecting defect occurrences. Additionally, the analysis was limited to six

parts, including only one from classification C, which restricts the generalizability of the results. Expanding

the analysis to a broader range of parts would provide more comprehensive validation of the models’

applicability.

Lastly, certain dynamic variables specific to each equipment number within the cumulative 12NC latest

successor were not incorporated, as only historical data was available for them. Exogenous variables such

as Detect Code Description, Source of Cause Code Description, and Duration of Non-Defect re-

quire future data for effective time series forecasting. Without future values, the models cannot fully function.

Although these variables could be explored in future research through regression models, their exclusion

limits the scope of this study and suggests a direction for more accurate forecasting in future research.

9.2.4. Implementability
The findings of this research have significant practical implications for ASML’s capacity planning and

inventory management. The demonstrated robustness of ARIMA and ARIMAX models in generating

accurate monthly forecasts makes them particularly suitable for integration into ASML’s monthly capacity

planning processes. These models align well with the company’s operational practices, such as updating

KPIs and inventory levels at the beginning of each month, ensuring that inventory is consistently matched

with expected return volumes.

While these models are effective for optimizing inventory management, and possibly reducing the risk of

excess stock and obsolescence, they are not yet accurate enough for reliably blocking new purchases.

Therefore, their implementation should currently focus on enhancing inventory management rather than

on proactively preventing new buys. However, the adoption of these forecasting models across a broader

range of parts can still be streamlined through systematic and automated processes, minimizing manual

intervention. Integrating these models into ASML’s existing systems, such as SAP or Spotfire, could

significantly improve planning and decision-making processes.

9.2.5. Future Research
Future research should focus on enhancing the robustness and applicability of forecasting models by

integrating additional data sources, such as future orders of systems and machine usage patterns. A key

area of investigation should be on less complex parts to develop more generalized and accurate forecasts,

which can effectively block new purchases and minimize excess inventory. Additionally, it is recommended

to explore the application of these models to cumulative defect counts rather than individual parts, which

could better support capacity planning by predicting the aggregate return flow from factories or service

customers.
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Moreover, refining the data split approach beyond the current 80/20 training and testing ratio could capture

a broader range of variables affecting defect occurrences. Expanding the analysis to include a more

diverse set of parts would enhance the generalizability of the models. Future research should also consider

incorporating dynamic exogenous variables, such as Detect Code Description and Source of Cause
Code Description, through regression models or other methods that can account for the lack of future
data.

Investigating hybrid models that combine the strengths of LSTM and ARIMAX could lead to improved

predictive accuracy. Additionally, applying these models across different areas within the semiconductor

industry or similar high-tech sectors would extend their utility. Finally, focusing on scenarios with shorter

planned delivery times may allow for better capturing of seasonal variations and trends, ultimately improving

the reliability and accuracy of long-term forecasting tools.



10
Recommendations

Recommendation 1: Expand Inventory Coverage

To improve the generalizability and accuracy of the forecasting models, it is essential to include a broader

range of parts, particularly those from underrepresented categories such as category C. Expanding the

analysis beyond the initial six parts will allow for more comprehensive validation of the models across

different defect patterns. This broader coverage will better support inventory management decisions and

enhance the reliability of return flow predictions.

Recommendation 2: Focus on Monthly Data Updates

Given the operational focus of ASML’s RSC, it is recommended to establish a consistent schedule for

updating training data with an emphasis on monthly updates. Regular monthly data refreshes will ensure

that the models remain aligned with the latest trends and patterns in defect occurrences, thereby maintaining

their accuracy and relevance. This approach supports the operational needs of the RSC Ops department

and contributes to more reliable forecasting outcomes.

Recommendation 3: Broaden ABCD Analysis Application

The ABCD analysis method, which has proven effective in prioritizing parts based on defect frequency and

economic impact, should be applied across the entire inventory. This broader application will enhance

the focus on critical parts, ensuring that resources are allocated efficiently and that forecasting efforts are

directed where they are most needed. By prioritizing parts with the highest impact, ASML can optimize

inventory management and reduce the risks of stockouts or overstocking.

Recommendation 4: Integrate Exogenous Variables

Future enhancements to the forecasting models should include additional exogenous variables, such

as part usage patterns and expected order volumes. Incorporating these variables into a multivariate

forecasting framework will provide deeper insights into the factors driving defect occurrences and improve

the accuracy of the models. This integration will also help address limitations identified in the current study,

leading to more robust and comprehensive forecasting models.

Recommendation 5: Optimize Model Selection and Expand Variable Integration

To enhance both the accuracy and efficiency of defect forecasting, it is recommended to balance the use

of LSTM and ARIMAX models based on the available computational resources and data frequency. LSTM

models should be employed where high accuracy is needed for high-frequency data, while ARIMAX models

should be prioritized in resource-constrained environments due to their efficiency. Additionally, expanding

the scope of the models to incorporate a wider variety of parts and dynamic exogenous variables will

further improve the predictive power and generalizability of the models. This approach will ensure that

the forecasting models remain both practical and robust, enhancing their applicability across different

operational scenarios.

Recommendation 6: Aggregate Data for Capacity Planning

To better align the forecasting models with the practical needs of capacity planning, it is recommended to

focus on aggregated defect data. Testing models on aggregated defect counts, rather than on individual

part data, will leverage larger datasets and improve predictive accuracy for return flow volumes. This

approach is particularly relevant for capacity planning, where the total volume of parts is more critical than

specific part details.
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Predictive Analytics of Defective Machinery Parts in
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Abstract
Accurate forecasting in Reverse Supply Chain (RSC) management is crucial for the semiconductor industry,
particularly for companies like ASML, which must efficiently manage the return flow of defective machinery
parts. This study addresses key gaps by developing and evaluating time series-based forecasting models
tailored to ASML’s RSC. Using a modified ABC-analysis, parts were categorized based on defect frequency
and economic impact, focusing on the most critical components. The research applied and optimized models
including SES, ARIMA, ARIMAX, and LSTM, using five years of historical defect data. The analysis showed that
LSTM models excel in high-frequency (weekly) forecasts for parts with frequent early-life defects, achieving an
average mMAPE of 26.32%. ARIMAX models performed best for lower-frequency (monthly) data, particularly
in sparsely represented classifications, with mMAPE as low as 4.31% to 10.80%. Despite a higher mMAPE of
85.42% in one outlier, ARIMAX emerged as the most balanced model, offering a practical trade-off between
accuracy and computational efficiency. Furthermore, the study highlights the computational efficiency of ARIMAX,
which, although more demanding than SES, provided a favorable balance, with ARIMA and LSTM being more
resource-intensive. These findings demonstrate ARIMAX’s suitability for long-term forecasting and broader trend
analysis, making it the preferred model for ASML’s RSC. This research provides a robust, data-driven framework
that enhances inventory management and capacity planning, making it possible to predict return flows with low
error rates on a monthly basis, particularly in high-tech industries where many defective parts are returned.
Future research should incorporate additional dynamic variables, explore hybrid models, and refine data splitting
techniques to further improve predictive accuracy and support sustainable supply chain operations.
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1. Introduction
In the high-tech semiconductor industry, RSC management
is a critical yet complex aspect of operations, particularly for
companies like ASML, a leading original equipment manu-
facturer (OEM). ASML produces advanced photolithography
machines used to manufacture silicon wafers, which are es-
sential components in microchips for major technology firms
such as Samsung, TSMC, and Intel. Efficient management
of returned defective machinery parts is crucial within this
B2B context, where timely and accurate prediction of return
flows not only enhances operational efficiency and financial
performance but also significantly impacts the circularity of
resources within the supply chain, promoting sustainability
and reducing waste.

The RSC presents unique challenges that differentiate it
from traditional forward supply chains. While forward supply
chains primarily rely on demand forecasting driven by market
trends and consumer behavior, the RSC focuses on predicting
the volume and timing of returns. This objective is compli-
cated by the unpredictable nature of product defects, timing of
failures, and customer return behaviors. Research by Kumar

et al. emphasizes the critical role of accurately forecasting
return volumes in enhancing the profitability and efficiency
of RSC [1]. Additionally, their study highlights a significant
gap in the literature, noting the absence of integrative research
that correlates returned product flows with the demand for
new parts. This study aims to address that gap by providing a
more comprehensive understanding of these dynamics.

ASML’s RSC faces significant challenges due to the high
value and complexity of the parts involved, compounded by
an overstocked reverse inventory with more than 100,000 re-
turned parts awaiting repair, recycling, or disposal. This issue
is particularly acute in the early stages of the parts’ lifecycle,
where failure rates are undesirably high. Traditional models
like the bathtub curve [2], which illustrates high initial failure
rates due to ”infant mortality”, and the Weibull distribution
[3], commonly used in reliability engineering, are effective
for later-stage failures but fall short in predicting these early
failures. Additionally, ASML’s RSC currently lacks a forecast-
ing model to provide insights into future inflows of defective
parts, leading to excess accumulation, obsolescence, and sig-
nificant value loss. This absence often results in delays for
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repairable parts due to the prioritization of new orders, further
increasing inefficiencies. Addressing these gaps is essential,
particularly due to the high value of defective parts in semi-
conductor manufacturing and the prevalence of early-stage
failures [4].

Given these challenges, there is a need for alternative
forecasting models that can deliver more accurate early-stage
predictions. Recent studies suggest that models like ARIMA
and machine learning techniques provide better accuracy in
predicting early-life failures [5]. By leveraging historical data
and predictive analytics, this research aims to improve quality
control and enhance forecasting accuracy during the early
stages of the product lifecycle.

The primary objective of this research is to address the gap
in existing literature by developing and evaluating forecasting
models specifically tailored to the RSC of the semiconductor
industry. This research will focus on predicting the volume of
defective machinery parts returned during their early failure
stage—a critical yet underexplored area in current forecasting
literature. By utilizing ASML’s operational data, the study
aims to modify and adapt existing predictive models to better
suit the unique challenges of the RSC, thereby improving
inventory management, reducing overstock, and supporting
ASML’s sustainability goals. The main research question that
this study seeks to answer is:

How can forecasting models accurately predict the return
flow volume of defective machinery parts?

The paper is structured as follows: Section 2 outlines
the methodology, including system analysis, data retrieval,
parts classification, and the selection of forecasting models
and evaluation metrics. Section 3 presents the experimental
results, focusing on the optimization of parameters for the
most suitable forecasting models and their computational ef-
ficiency. Section 4 discusses the key findings, and Section
5 concludes with insights and recommendations for future
research directions.

2. Methods
This study examines ASML’s Closed-Loop Supply Chain
(CLSC), which integrates forward and RSC processes to op-
timize the lifecycle management of machinery parts. The
methodology is based on frameworks by [6] and [7], with
ASML’s CLSC structure illustrated in Figure 1. This diagram
shows the flow of parts from OEM suppliers through ASML’s
factory in Veldhoven, where they are assembled into mod-
ules. The research specifically focuses on the area highlighted
within the blue rectangle, which represents the initial reverse
flow of parts—from the detection of defects at the manufac-
turing site to the decision-making process regarding repairs,
as depicted by the orange lines.

The RSC manages the return flow of defective machinery
parts. A key challenge in this process is the unpredictability
of return volumes, initiated when a part is flagged as defective

Figure 1. General CLSC of ASML

through a Defect Notification (DN). This unpredictability
complicates inventory management, leading to difficulties
in maintaining optimal stock levels and planning for new
purchases, potentially resulting in overstocking or stockouts.

Further complexities arise from the need to integrate es-
sential data elements, such as Unique Part Codes (UPCs),
equipment numbers, and DNs, for effective tracking of de-
fective parts. The variety and complexity of machinery parts
across different modules require precise demand triggers and
inventory controls.

To address these challenges, the study emphasizes en-
hancing predictive insights through historical data analysis
to identify the key variables and parts to focus on. The most
suitable forecasting models are then selected for this case
study, followed by the choice of appropriate evaluation met-
rics. These metrics are used to develop grid searches that
determine the optimal parameters for each forecasting model.
Ultimately, this approach allows for the evaluation of the
most accurate model, providing a comprehensive answer to
the main research question. This methodological approach
is discussed in the following subsections and systematically
displayed Figure 2.

2.1 Data Retrieval
The data is gathered through ASML’s internal systems, specif-
ically from the Veldhoven factory, covering the period from
May 2019 to May 2024. This five-year dataset then undergoes
a process of filtering, cleaning, and analysis to identify the
most important variables. The analysis investigates the dura-
tion from equipment creation to defect notification, revealing
that most defects occur within the first 1000 days of a part’s
lifecycle, with a significant concentration in the first 100 days.
This pattern highlights the prevalence of early-life failures,
which is the primary focus of this study. The key variables
identified include Unique Part Codes (UPC), which allow for
the analysis and forecasting of specific parts’ return flows; the
Defect Notification (DN), which is the specific code associ-
ated with defect occurrences for each part; and the Date of
Notification, which serves as the timestamp for the historical
DNs. In addition to these, exogenous features such as year,
month, week, and public holidays are identified for use in mul-
tivariate forecasting models, enabling the capture of cyclical
patterns to enhance forecasting accuracy.
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Figure 2. Methodology Flowchart

2.2 Parts Classification
Effective parts classification is crucial for forecasting and
inventory management in ASML’s RSC. This section inte-
grates insights from literature with a novel methodological
approach specifically designed to address the challenges of
defect forecasting in semiconductor manufacturing.

Demand Classification: The classification of defective
parts follows the framework proposed by [8], which cate-
gorizes demand patterns based on Average Demand Inter-
val (ADI) and Coefficient of Variation squared (CV²). The
results indicate that 91.2% of defect notifications fall into
the ”Lumpy” category, underscoring the sporadic yet highly
variable nature of defect occurrences. Additionally, 0.5% of
notifications are classified as ”Erratic” and 8.3% as ”Intermit-
tent”, both bordering the threshold for lumpy demand. This
predominance of lumpy demand highlights the necessity for
specialized classification techniques to accurately forecast
return flow volumes.

Inventory Classification: Traditional inventory manage-
ment methods like ABC-analysis and FSN-analysis are ef-
fective for optimizing inventory control by prioritizing parts
based on factors such as annual usage value and movement
frequency. However, these methods are not directly suited for
forecasting defects in semiconductor manufacturing, where
defect occurrences across numerous unique parts (UPCs) are
irregular and highly variable. Traditional methods typically
focus on classifying inventory parts by stock levels and usage
rather than addressing the complexity of defect counts.

ABCD-analysis: To address these challenges, this study
introduces a novel ABCD-analysis, specifically developed to
categorize unique parts (UPCs) based on defect frequency
ranges and cumulative defect counts. The ABCD-analysis
integrates key elements of ABC-analysis, which classifies
parts based on inventory volumes and employs the Pareto
distribution to prioritize them by economic value. It extends
the traditional ABC framework by adding a fourth Classifi-
cation ”D” to account for parts with low and sporadic defect
counts, following the approach of [8] for more nuanced spare
parts classification. Additionally, the analysis incorporates
aspects of FSN-analysis, where defect occurrences are treated
as movements to evaluate frequency. This combined approach
ensures a balanced and representative selection of parts for
forecasting model application.

The ABCD-analysis reveals that Classification A parts,

while representing only 5% of the total unique parts (UPCs),
account for 40% of all defects, highlighting their significant
impact on return flow and cost management. These parts have
defect counts ranging from 39 to 782, as shown in Figure 3,
making them a critical focus for this study. Consequently,
three parts from Category A (Part A1, Part A2, and Part
A3) have been selected for detailed analysis based on their
substantial impact and variability in defect counts.

Figure 3. ABCD-analysis

In addition to Classification A, two parts from Classifica-
tion B (Part B1 and Part B2) and one part from Classification C
(Part C) have been chosen for analysis due to their significant,
although lower, defect frequencies. Classification B parts ex-
hibit defect counts between 15 and 38, while Classification C
parts range between 5 and 14 defects. The exclusion of Classi-
fication D is justified by its low impact and the unpredictable
nature of its defects, which makes reliable forecasting chal-
lenging. Classification D parts, representing 55% of the total
but only 10% of the defects, do not provide the consistency
needed for effective model training and validation.

The selected parts, detailed in Table 1, are further jus-
tified by their high ”Impact Scores”. The Impact Score is
derived by multiplying the economic value of each part by its
defect count, where the economic value is calculated using
the formula: Economic Value = Demand ×Standard Price.
This calculation provides a rational and impactful basis for
assessing the economic significance of each part. By combin-
ing economic value with defect frequency, the Impact Score
offers a comprehensive measure that ensures the most critical
parts are prioritized for the analysis. This targeted selection
aligns with the research objectives and operational priorities
of ASML, enabling a robust and meaningful analysis across
different defect frequencies.
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Table 1. Statistics for Each Unique Part, Including Defect Counts
Class. UPC First DN Last DN Last – First Mean Duration Mean Duration Defect Count

Date Date Difference To Defect Between DN’s
days days days

A Part A1 2020-10-12 2024-05-25 1,321 170.43 3.80 349
A Part A2 2022-09-30 2024-05-31 609 460.63 2.66 230
A Part A3 2021-12-06 2024-04-22 868 214.07 15.78 56
B Part B1 2021-03-09 2024-03-04 1,091 73.72 31.17 36
B Part B2 2023-03-30 2024-05-30 427 198.50 20.33 22
C Part C 2022-10-17 2024-05-02 563 160.62 46.92 13

2.3 Data Transformation
Data resampling and splitting are essential for preparing the
dataset for time series forecasting. Given the sparse and lumpy
nature of the data, aggregating defect occurrences into man-
ageable intervals helps reduce noise and improve forecast
accuracy.

Data Resampling: The dataset is resampled on a weekly
(Wk) and monthly (Mh) basis to create two time series for
each of the six parts under study. Weekly resampling uses the
’W-SUN’ option in Python’s Pandas library, aligning data
to each week’s end (Sunday). This reduces zero values and
smooths daily fluctuations, making it better suited for ASML’s
RSC operations. Monthly resampling aligns with ASML’s
practice of updating KPIs and inventory at the start of each
month. These resampled datasets form the foundation for the
forecasting models, ensuring both practical relevance and an
academically sound approach. As shown in the last red block
of Figure 2, each unique part (UPC) is renamed according
to its frequency (e.g., A1 Wk and A1 Mh ) to standardize
references and simplify result interpretation.

Data Split: Following resampling, the data is divided into
training (80%) and test (20%) sets, a strategy carefully chosen
to balance effective model training with a thorough evalua-
tion of its predictive capabilities. The 80/20 split enables the
model to learn from a substantial portion of historical data
while reserving a meaningful segment for performance vali-
dation on unseen data. This approach not only ensures robust
and reliable predictions but also aligns with ASML’s oper-
ational requirements, facilitating informed decision-making
and efficient resource allocation within the RSC.

2.4 Forecasting Models
Selecting the appropriate forecasting models for predicting
the return flow of defective machinery parts at ASML required
careful consideration of several key requirements, including
handling sparse and lumpy data, managing non-stationary
trends, and providing accurate medium-term forecasts. The
main requirements are summarized in Table 2.

Model Selection: Based on these requirements, four mod-
els were selected: Simple Exponential Smoothing (SES), Au-
toRegressive Integrated Moving Average (ARIMA), ARIMA
model including Exogenous variables (ARIMAX), and Long
Short-Term Memory (LSTM) networks.

SES: SES was chosen as a baseline model due to its

Table 2. Model Selection Requirements
Requirements

Literature Supported Time Series Approach
Handling Non-Stationarity Medium-Term Focus
Complexity vs. Performance Data Flexibility
Sparse & Lumpy Data

straightforward implementation and responsiveness to recent
data. SES is particularly effective in supply chain environ-
ments where up-to-date predictions are critical [9]. Its simplic-
ity makes it a useful benchmark for comparing more complex
models.

ARIMA: The ARIMA model was selected for its robust-
ness in handling non-stationary data and its effectiveness in
forecasting time series with trends. ARIMA’s adaptability
makes it well-suited for environments characterized by vari-
ability, such as the semiconductor industry. Studies like [10]
and [11] demonstrate ARIMA’s precision in structured fore-
casting scenarios. However, ARIMA can struggle with com-
plex dependencies, such as those between past sales and future
returns. To address this, the model parameters are carefully
optimized, as demonstrated by [5] in their study on forecasting
automobile part failures.

ARIMAX: The ARIMAX model extends ARIMA by in-
corporating exogenous variables, allowing it to account for
external factors influencing return flows. This capability is
especially valuable in complex manufacturing environments
like ASML, where multiple variables impact defect occur-
rences. The study by [12] highlights ARIMAX’s potential to
improve forecast accuracy by integrating external influences,
making it an ideal choice for this study.

LSTM: The LSTM model is chosen for its ability to man-
age complex temporal dependencies, particularly in cases
involving sparse and irregular data. LSTM is well-suited
for handling medium to long-term dependencies, crucial in
forecasting defect returns within the semiconductor indus-
try. Research by [5] and [13] underscores LSTM’s superior
performance in capturing complex patterns compared to tra-
ditional models like ARIMA. The study by [5] demonstrated
LSTM’s effectiveness in predicting automobile part failures
using warranty claim data, where its many-to-many approach
significantly outperformed other models, highlighting its ap-
plicability to industries such as semiconductor manufacturing.
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2.5 Evaluation Metrics
Accurately assessing the performance of forecasting models
requires selecting appropriate evaluation metrics that can han-
dle the unique challenges of the dataset, such as the presence
of zeros and high variability. The selected metrics—Mean
Squared Error (MSE), Mean Absolute Error (MAE), and mod-
ified Mean Absolute Percentage Error (mMAPE)—are com-
monly used in similar research and are particularly suited to
the characteristics of the data in this study.

2.5.1 Selection of Evaluation Metrics
MSE is particularly useful for highlighting significant fore-
casting errors due to the squaring of each error term, which
makes it sensitive to large deviations. This characteristic is
advantageous in scenarios with high variability, as demon-
strated in studies by [5] and [14], where it has been effectively
applied to models like SES, ARIMA, and LSTM.

MAE is chosen for its simplicity and robustness against
outliers. It is indispensable for comparing series measured on
the same scale, providing a straightforward calculation and
interpretation. MAE ensures that negative and positive errors
do not cancel each other out, making it a reliable measure of
forecast accuracy, as seen in research involving ARIMA and
LSTM models [10, 13].

mMAPE addresses the limitations of standard MAPE,
particularly in datasets with zero or near-zero values. By
ensuring the denominator is never zero, mMAPE enhances ro-
bustness and interpretability, making it suitable for evaluating
models in contexts characterized by sparse and lumpy data,
such as the ARIMA and LSTM models used in this research
[11].

Table 3. Selected Evaluation Metrics
Metric Equation
MSE 1

n ∑
n
i=1(yi − ŷi)

2

MAE 1
n ∑

n
i=1 |yi − ŷi|

mMAPE 100%× 1
n ∑

n
i=1

(
|ŷi−yi|
1+|yi|

)

2.5.2 Normalization, Aggregation, and Ranking of Metrics
To ensure fair comparisons of forecasting models using differ-
ent evaluation metrics, the values of MSE, MAE, and mMAPE
are normalized using the min-max normalization technique.
This process, similar to the approach used by [5], ensures that
each metric is on a comparable scale, facilitating an equitable
contribution to the overall performance ranking.

Following normalization, an aggregate score for each
model is calculated by averaging its normalized MSE, MAE,
and mMAPE scores. Models are then ranked based on their
aggregate scores, with the model having the lowest aggregate
score considered the best performing. This method allows for
a robust comparison of models across different dataset fre-
quencies and part classifications, ensuring the identification
of the optimal forecasting model for the research context.

3. Results
3.1 Optimal Parameters for Each Model
To ensure accurate forecasting, the optimal parameters for
each selected model— SES, ARIMA, ARIMAX, and LSTM
—were determined by developing grid search algorithms. This
subsection outlines the key parameters for each model and the
approach used to optimize them.

SES primary parameter is the smoothing constant α . A
grid search was conducted across α values ranging from 0 to 1
in increments of 0.025. The best α was selected based on the
lowest aggregate score derived from normalized evaluation
metrics (MSE, MAE, mMAPE).

ARIMA requires selecting the autoregressive order (p),
differencing order (d), and moving average order (q). Param-
eter ranges were determined through ACF, PACF, and ADF
tests. A grid search was then performed over p (0-14), d (0-1),
and q (0-12) to identify the optimal combination based on the
aggregate score of normalized metrics.

ARIMAX extends ARIMA by incorporating exogenous
variables, selected through domain knowledge and correlation
analysis. The grid search for ARIMAX followed the same pro-
cedure as ARIMA, with the inclusion of exogenous variables
to improve model accuracy.

LSTM requires optimization of multiple hyperparameters:
the number of units, layers, batch size, and window size. After
an initial random search, a grid search refined key parameters:
epochs (40-80), batch size (10-40), LSTM units (32-128), and
layers (1-3). The optimal configurations were chosen based
on the lowest aggregate score from normalized metrics.

Table 4. Parameter Ranges for Model Grid Search
Model Parameter Range
SES α 0.0 - 1.0 (increments of 0.025)
ARIMA p 0 - 14
& d 0 - 1
ARIMAX q 0 - 12
LSTM Epochs 40 - 80

Window Size 5 - 15
LSTM Units 32 - 128
Layers 1 - 3

The grid search process enabled a thorough exploration
of the parameter range, resulting in optimal configurations
for each forecasting model—SES, ARIMA, ARIMAX, and
LSTM—tailored to the dataset’s unique characteristics. The
selected parameters, evaluation metrics, and rankings for all
12 scenarios, encompassing six unique parts across two fre-
quencies, are thoroughly detailed in the extensive experimen-
tal research documentation. These results provide a solid
foundation for comparing model performance and ensuring
the most accurate forecasting approach for each scenario.

3.2 Models Performance
This section provides a comprehensive evaluation of forecast-
ing models across different classifications (A, B, and C) and
data frequencies (weekly and monthly). The objective is to
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Table 5. Best Models for Each Classification (Weekly and Monthly)

UPC Freq Model MSE MAE mMAPE

A1 Wk LSTM 5.56 1.69 30.18%
A1 Mh ARIMAX 35.42 4.29 31.07%

A2 Wk LSTM 4.09 1.41 25.16%
A2 Mh ARIMA 3.15 1.29 7.60%

A3 Wk SES 0.31 0.35 20.95%
A3 Mh LSTM 0.81 0.83 53.17%

UPC Freq Model MSE MAE mMAPE

B1 Wk ARIMAX 0.09 0.09 4.69%
B1 Mh SES 0.38 0.38 18.75%

B2 Wk LSTM 0.43 0.39 20.82%
B2 Mh ARIMAX 0.41 0.48 10.80%

C Wk ARIMAX 0.20 0.26 14.31%
C Mh ARIMAX 0.04 0.12 4.31%

identify the most effective models by discussing their per-
formance in specific scenarios, supported by computational
efficiency analysis, and to determine the best overall model
for defect forecasting in the semiconductor industry.

3.2.1 Model Performance Across Classifications
The performance of the top models for each classification and
frequency is summarized in Table 5. This table presents the
models that achieved the lowest MSE, MAE, and mMAPE
highlighting their effectiveness in different scenarios.

Classification A: The LSTM model consistently demon-
strated superior performance for high-frequency (weekly)
data, particularly in classification A1, where it effectively
captured intricate temporal dynamics. However, for lower-
frequency (monthly) data, ARIMAX and ARIMA emerged
as the more effective models. For instance, ARIMAX outper-
formed LSTM in A1 Mh, indicating its strength in capturing
broader trends and cyclical patterns.

Classification B: In classification B, ARIMAX was the
best performer for weekly data in B1, managing high-frequency
predictions with precision. However, for monthly data, the
SES model appeared to outperform others in B1 Mh. This re-
sult is somewhat misleading, as SES constantly predicted zero
defects, leading to artificially favorable performance metrics
without practical forecasting value. Despite this, ARIMAX
remained more reliable in capturing actual defect occurrences,
particularly in B2 Mh, where it provided better MSE and
MAE scores.

Classification C: Classification C, characterized by sparse
and irregular data, further highlighted ARIMAX’s robustness.
It consistently outperformed other models in both weekly
(C Wk) and monthly (C Mh) data, demonstrating its ability
to handle limited and irregular data with accuracy.

3.2.2 Computational Efficiency
In addition to accuracy, computational efficiency is a crucial
factor in selecting the appropriate forecasting model. Table 6
summarizes the average time required for grid searches across
different models, emphasizing the trade-offs between model
complexity and computational demands.

The SES model was the most computationally efficient,
requiring minimal time due to its simplicity. However, its pre-
dictive limitations, particularly the tendency to predict zero
defects, make it less suitable for practical forecasting despite

Table 6. Average Computational Time Grid Search
Model Weekly Monthly

SES 0.40 sec. 1.70 sec.
ARIMA 189.36 sec. 6.02 sec.
ARIMAX 51.03 sec. 4.82 sec.
LSTM 1,709.08 sec. 1,360.23 sec.

its efficiency. ARIMA and ARIMAX, while more computa-
tionally demanding than SES, offered a balanced trade-off
between accuracy and efficiency, particularly for monthly
data. LSTM, despite its high accuracy in weekly data, was the
most computationally intensive, reflecting its deep learning
architecture and extensive preprocessing requirements.

3.2.3 Overall Model Evaluation
To provide a comprehensive evaluation, the overall average
performance metrics for each model across different frequen-
cies and classifications are presented in Table 7.

Table 7. Overall Average Performance Metrics
Model Freq. MSE MAE mMAPE

SES Wk 2.67 1.06 29.86%
Mh 14.98 2.71 46.98%

ARIMA Wk 2.63 1.03 30.32%
Mh 14.79 2.47 47.32%

ARIMAX Wk 2.96 1.163 29.37%
Mh 14.03 2.51 43.16%

LSTM Wk 2.64 1.03 28.51%
Mh 14.62 2.51 48.06%

The data in Table 7 reinforce that while LSTM mod-
els excel in capturing intricate temporal dynamics in high-
frequency (weekly) data, their effectiveness diminishes with
lower-frequency (monthly) forecasts. In contrast, ARIMA
and ARIMAX models consistently perform better for monthly
data, with ARIMAX emerging as the most reliable model over-
all. Its ability to effectively manage broader trends and cycli-
cal patterns, coupled with balanced computational demands,
makes ARIMAX the preferred choice for defect forecasting
in the semiconductor industry’s RSC. This model’s robust-
ness in handling sparse and irregular datasets ensures greater
accuracy and efficiency, thereby enhancing RSC management.
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4. Conclusion
This study sought to address the primary research question:
How can forecasting models accurately predict the return
flow volume of defective machinery parts? By evaluating
various forecasting models and introducing a modified ABCD-
analysis, the research provides valuable insights for enhancing
inventory management and defect forecasting within ASML’s
RSC.

The analysis highlighted that lumpy demand, character-
ized by irregular and infrequent defect occurrences, dominates
the defect data, underscoring the need for specialized classi-
fication techniques to accurately forecast return flows. The
ABCD-analysis was introduced as a method to categorize
unique parts (UPCs) based on defect frequency and cumula-
tive defect counts, effectively prioritizing parts with the most
significant impact on return flow and cost management. This
framework provided a solid foundation for applying appropri-
ate forecasting models.

Historical defect occurrences emerged as the key variable
in developing accurate time series models. The performance
evaluation demonstrated that the LSTM model excelled in
high-frequency (weekly) forecasts, particularly for parts in
Classification A. These parts, characterized by frequent early-
life defects, provided a robust dataset, resulting in an average
mMAPE of 26.32%. The inclusion of exogenous variables
such as years, months, weeks, and holidays further enhanced
the performance of both LSTM and ARIMAX models.

For the more complex and sparsely populated Classifica-
tions B and C, which together represent 40% of all parts and
50% of defect counts, the ARIMAX model showed superior
performance on a monthly basis. Despite the limited data,
13 defect occurrences for Classification C and 22 for B2, the
ARIMAX model achieved a highly accurate mMAPE, ranging
from 4.31% to 10.80%, demonstrating its effectiveness in cap-
turing broader trends and handling sparse, irregular datasets.
However, the B1 monthly prediction posed challenges, with
the ARIMAX model producing an mMAPE of 85.42%. This
outlier significantly affected the overall average for Classifi-
cations B and C, resulting in a combined mMAPE of 33.51%
for the ARIMAX model. Despite this, ARIMAX remained
the best-performing model overall for these classifications.

By integrating ABCD-analysis with advanced forecasting
models such as ARIMAX and LSTM, ASML can implement
a robust strategy for managing its RSC. The ARIMAX model
emerges as the most balanced option for practical implemen-
tation, offering an optimal trade-off between forecasting ac-
curacy and computational efficiency. While LSTM models
are highly effective for high-frequency data, such as weekly
forecasts for parts in Classification A, their performance di-
minishes for lower-frequency forecasts. In contrast, ARIMAX
consistently outperforms in scenarios requiring broader trend
analysis, making it the preferred choice for defect forecast-
ing in the semiconductor industry’s RSC, particularly on a
monthly basis. For parts like A1 and A2, where ARIMA and
ARIMAX perform comparably well, and for parts in Clas-

sifications B and C, a monthly application of the ARIMAX
model is recommended. This approach aligns with ASML’s
practice of updating KPIs and inventory at the start of each
month, further enhancing the model’s effectiveness.

ARIMAX’s ability to deliver accurate predictions, even
with limited data, makes it particularly suitable for broader
implementation. This model enables ASML and similar indus-
tries to optimize inventory management, reduce overstock, and
improve supply chain sustainability by accurately forecasting
the inflow of returns. Additionally, it could enhance planning
for personnel and warehouse capacities, ultimately leading
to more informed and strategic decision-making across the
organization.

5. Discussion
This study advances the field of RSC management by address-
ing significant gaps in the forecasting of return flow volumes,
particularly within the semiconductor industry. Previous re-
search, such as Kumar et al. [1], highlighted the lack of
integrative models that link returned product flows with the
demand for new parts, which this study directly addresses
by developing and evaluating specialized forecasting models
tailored to ASML’s needs.

This study demonstrates that advanced time series fore-
casting techniques, particularly ARIMAX and LSTM models,
are effective and usable for predicting early-stage failures in
high-value, complex parts, such as those at ASML. These
models successfully handle the sporadic and variable nature
of defect occurrences, addressing the limitations of traditional
methods like the Weibull distribution, which previous research
has found less effective in such cases [3]. Furthermore, the
ARIMAX and LSTM models outperformed the SES bench-
mark model in all scenarios where non-zero defect counts
were predicted.

Another contribution of this research is the development
of the ABCD-analysis, which builds on the traditional ABC-
analysis framework by categorizing parts based on defect
frequency and cumulative counts [8]. This approach ensures
that forecasting efforts are concentrated on the most impactful
parts, thus addressing the complexities of inventory manage-
ment and reducing overstock, especially in industries where
part failures are frequent. The combination of ABCD-analysis
with advanced forecasting models, particularly LSTM and
ARIMAX, provides a robust framework for improving fore-
casting accuracy, especially for parts with varying defect fre-
quencies.

The LSTM model, known for its ability to manage com-
plex temporal dependencies [5], performed effectively in high-
frequency (weekly) forecasts, particularly for Classification A
parts where defect occurrences are more frequent. However,
the study also highlighted the limitations of LSTM models
when applied to lower-frequency data, as these models some-
times predicted no defects despite achieving low MSE and
MAE scores, which can be misleading. This finding sug-
gests that while LSTM is powerful in certain scenarios, it
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may require adjustments or alternative approaches to improve
prediction reliability in other contexts.

For the more complex and sparsely populated Classifi-
cations B and C, the ARIMAX model, which incorporates
exogenous variables such as years, months, weeks, and holi-
days, demonstrated superior performance. This finding sup-
ports the assertion made by [12] that ARIMAX outperforms
standard ARIMA models when these additional features are
considered, as they significantly enhance forecast accuracy.
The impact of these variables varied greatly depending on the
specific part and frequency, indicating that a comprehensive
approach incorporating all relevant features is necessary for
accurate forecasting across all parts in the future. Despite the
limited data available for these classifications, the ARIMAX
model maintained a high level of accuracy, demonstrating its
robustness in capturing broader trends and cyclical patterns.
However, while historical defect data played a crucial role,
it may not account for all factors influencing return flows,
suggesting a limitation in the generalizability of the study’s
findings.

The study also encountered challenges related to the com-
putational demands of LSTM models, as noted in [13]. These
demands limit the feasibility of LSTM for real-time applica-
tions due to the significant processing power and time required.
Furthermore, the analysis was restricted to only six parts, with
limited representation from Classification C, which narrows
the scope of the conclusions. This suggests that future re-
search should extend the analysis to a broader range of parts
to validate the models more comprehensively.

Additionally, future research should consider incorporat-
ing more dynamic exogenous features, such as factory usage
patterns and expected orders, into the forecasting models.
Expanding the models to a multivariate framework, as recom-
mended by [10], could enhance their predictive capabilities
and provide deeper insights into future defect occurrences.

In conclusion, while this study makes significant strides
in filling research gaps by developing specialized forecasting
models and classification techniques, the identified limitations
indicate opportunities for further refinement. Future research
should build on these findings by exploring new methodolo-
gies, particularly in less complex parts and cumulative defect
counts. This approach could enhance the robustness and appli-
cability of forecasting tools, improve capacity planning, and
minimize excess inventory within the semiconductor indus-
try. Moreover, investigating hybrid models and refining the
data split approach could further advance the accuracy and
generalizability of these models across various sectors.

References
[1] D Kumar, Hamed Soleimani, and Govindan Kan-

nan. Forecasting return products in an integrated for-
ward/reverse supply chain utilizing an anfis. International
Journal of Applied Mathematics and Computer Science,
24(3):669–682, 2014.

[2] E.E. Lewis. Introduction to Reliability Engineering. John
Wiley and Sons Inc., New York, 2 edition, 1996.

[3] R. Abernethy. The New Weibull Handbook. Abernethy,
Florida, United States of America, 5 edition, 2006.

[4] William J. Roesch. Using a new bathtub curve to cor-
relate quality and reliability. Microelectronics reliabil-
ity/Microelectronics and reliability, 52(12):2864–2869,
12 2012.

[5] Jun-Guel Lee, Tae-Hyeong Kim, Ki Woo Sung, and
Sung Won Han. Automobile parts reliability prediction
based on claim data: The comparison of predictive ef-
fects with deep learning. Engineering failure analysis,
129:105657, 11 2021.

[6] V. D. R. Guide and L. N. Van Wassenhove. Managing
product returns for remanufacturing. Production and
Operations Management, 10(2):142–155, 2001.

[7] M. Thierry, M. Salomon, J. van Nunen, and L.N. van
Wassenhove. Strategic issues in product recovery manage-
ment. California Management Review, 37(2):114–135,
1995.

[8] Aris A. Syntetos, Kai-Kuang Ma, and Mohamed Zied
Babaı̈. Demand categorisation in a European spare parts
logistics network. International journal of operations
and production management, 29(3):292–316, 2 2009.

[9] E. S. Gardner. Exponential smoothing: the state of the
art. Journal of Forecasting, 4:1–28, 1985.

[10] Rob J Hyndman and George Athanasopoulos. Forecast-
ing: principles and practice. OTexts, 2 edition, 2018.
https://otexts.com/fpp2/.

[11] Emna Turki, Oualid Jouini, Ziad Jemai, Laura Urie, Ad-
nane Lazrak, Patrick Valot, and Robert Heidsieck. Fore-
casting extractions in a closed loop supply chain of spare
parts: An industrial case study. International Journal of
Production Research, pages 236–243, 2022.

[12] T. Clottey, W. C. Benton Jr, and R. Srivastava. Forecasting
product returns for remanufacturing operations. Decision
Sciences Journal of Innovative Education, 43(4):589–614,
2012.

[13] K. K. Chandriah and R. V. Naraganahalli. Rnn/lstm with
modified adam optimizer in deep learning approach for
automobile spare parts demand forecasting. Multimedia
Tools and Applications, 80(17):26145–26159, 2021.

[14] R. J. Hyndman and A. B. Koehler. Another look at mea-
sures of forecast accuracy. International journal of fore-
casting, 22(4):679–688, 2006.



B
Swimlane

(Swimlane figure see next page)

102



103

Figure B.1: Swimlane Process of Defective Parts (Authors’ own creation)



C
Algorithms

C.1. Grid Search for SES Parameters

Algorithm 1: Grid Search for Exponential Smoothing using statsmodels
Init: Training Data T , Test Data V
Hyperparameters: Range for α values to be determined

Result: Best α parameter

for each α in α_values do

Fit Exponential Smoothing model on training data T using α
model← ExponentialSmoothing(T, trend=None, seasonal=None)
Handle possible exceptions

if no exception then

result← model.fit(smoothing_level = α)

Make predictions on test data V
predictions← result.forecast(steps = len(V ))
predictions← max(predictions, 0)

Calculate evaluation metrics

MSE ← mean_squared_error(V, predictions)
MAE ← mean_absolute_error(V, predictions)

mMAPE ← 100× 1
len(V )

∑ |V −predictions|
1+|V |

Store results for current α
results← append(results, (α,MSE,MAE,mMAPE))

end

end

Normalize and aggregate metrics

for each metric in {MSE,MAE,mMAPE} do
normalized_metric← metric−min(metric)

max(metric)−min(metric)

df [Normalized_+metric]← normalized_metric

end

Calculate aggregate score

df [Aggregate_Score]← df [[Normalized_MSE,Normalized_MAE,Normalized_mMAPE]].mean(axis=1)

Rank models based on aggregate score

df [Rank]← df [Aggregate_Score].rank()

Find the best parameters

best_alpha← df.loc[df [Rank].idxmin()]

return best_alpha

104



C.2. Grid Search for ARIMA Parameters 105

C.2. Grid Search for ARIMA Parameters

Algorithm 2: Grid Search for ARIMA Parameters using statsmodels
Init: Training Data T , Test Data V
Hyperparameters: Ranges for p, d, q values to be determined
Result: Best (p, d, q) parameters
for each p in p_values do

for each d in d_values do
for each q in q_values do

Fit ARIMA model on training data T using (p, d, q)
model← ARIMA(T, order = (p, d, q))
Handle possible exceptions

if no exception then

result← model.fit()

Make predictions on test data V
predictions← result.forecast(steps = len(V ))
predictions← max(predictions, 0)

Calculate evaluation metrics

MSE ← mean_squared_error(V, predictions)
MAE ← mean_absolute_error(V, predictions)

mMAPE ← 100× 1
len(V )

∑ |V −predictions|
1+|V |

Store results for current (p, d, q)
results← append(results, (p, d, q,MSE,MAE,mMAPE))

end

end

end

end

Normalize and aggregate metrics

for each metric in {MSE,MAE,mMAPE} do
normalized_metric← metric−min(metric)

max(metric)−min(metric)

df [Normalized_+metric]← normalized_metric

end

Calculate aggregate score

df [Aggregate_Score]← df [[Normalized_MSE,Normalized_MAE,Normalized_mMAPE]].mean(axis=1)

Rank models based on aggregate score

df [Rank]← df [Aggregate_Score].rank()

Find the best parameters

best_params← df.loc[df [Rank].idxmin()]

return best_params
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C.3. Grid Search for ARIMAX Parameters

Algorithm 3: Grid Search for ARIMAX Parameters using statsmodels
Init: Training Data T , Test Data V , Exogenous Features XT , XV

Hyperparameters: Ranges for p, d, q values to be determined
Result: Best (p, d, q) parameters
for each p in p_values do

for each d in d_values do
for each q in q_values do

Fit ARIMAX model on training data T using (p, d, q) and exogenous features XT

model← SARIMAX(T, exog = XT , order = (p, d, q), enforce_stationarity =
False, enforce_invertibility = False)
Handle possible exceptions

if no exception then

result← model.fit(disp = False)

Make predictions on test data V using exogenous features XV

predictions← result.forecast(steps = len(V ), exog = XV )
predictions← max(predictions, 0)

Calculate evaluation metrics

MSE ← mean_squared_error(V, predictions)
MAE ← mean_absolute_error(V, predictions)

mMAPE ← 100× 1
len(V )

∑ |V −predictions|
1+|V |

Store results for current (p, d, q)
results← append(results, (p, d, q,MSE,MAE,mMAPE))

end

end

end

end

Normalize and aggregate metrics

for each metric in {MSE,MAE,mMAPE} do
normalized_metric← metric−min(metric)

max(metric)−min(metric)

df [Normalized_+metric]← normalized_metric

end

Calculate aggregate score

df [Aggregate_Score]← df [[Normalized_MSE,Normalized_MAE,Normalized_mMAPE]].mean(axis=1)

Rank models based on aggregate score

df [Rank]← df [Aggregate_Score].rank()

Find the best parameters

best_params← df.loc[df [Rank].idxmin()]

return best_params
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C.4. Random & Grid Search for LSTM Parameters

Algorithm 4: Random and Grid Search for LSTM Parameters using tensorflow and keras
Init: Training Data T , Validation Data V , Test Data E
Hyperparameters: Ranges for epochs, window size, optimizer, batch size, LSTM units, LSTM layers,

activation function

Result: Best parameter configuration

for each combination of parameters in random/grid search do

Extract parameter values

epochs, window_size, optimizer, batch_size, lstm_units,
lstm_layers, activation← parameter combination

Create sequences with exogenous features

X, y ← create_sequences(T, exogenous_data, window_size)

Split data into train, validation, and test sets

X_train, y_train,X_val, y_val,X_test, y_test← split_data(X, y)

Build LSTM model

model← Sequential()

model.add(Input(shape = (window_size,X_train.shape[2])))
for each units in lstm_units do

model.add(LSTM(units, activation = activation, return_sequences = (i < len(lstm_units)−1)))

model.add(Dropout(0.1))

end

model.add(Dense(1))
model.compile(optimizer = optimizer, loss =′ mse′)

Train the model

model.fit(X_train, y_train, epochs = epochs, batch_size = batch_size, validation_data =
(X_val, y_val), verbose = 0)

Make predictions for test set

y_pred← model.predict(X_test)
y_test_inv ← scaler_defect.inverse_transform(y_test.reshape(−1, 1))
y_pred_inv ← scaler_defect.inverse_transform(y_pred)
y_pred_inv ← np.maximum(y_pred_inv.flatten(), 0)

Calculate evaluation metrics

MSE ← mean_squared_error(y_test_inv, y_pred_inv)
MAE ← mean_absolute_error(y_test_inv, y_pred_inv)
mMAPE ← 100× np.mean(np.abs((y_pred_inv − y_test_inv)/(1 + np.abs(y_test_inv))))

Store results for current parameter combination

results← append(results, (epochs, window_size, optimizer, batch_size, lstm_units,
lstm_layers, activation,MSE,MAE,mMAPE))

end

Normalize and aggregate metrics

for each metric in {MSE, MAE, mMAPE} do

normalized_metric← metric−min(metric)
max(metric)−min(metric)

df [Normalized_+metric]← normalized_metric

end

Calculate aggregate score

df [Aggregate_Score]← df [[Normalized_MSE,Normalized_MAE,Normalized_mMAPE]].mean(axis=1)

Rank models based on aggregate score

df [Rank]← df [Aggregate_Score].rank()

Find the best parameters

best_params← df.loc[df [Rank].idxmin()]

return best_params
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D.1. Resampled Distribution Graphs

Figure D.1: Weekly Resampled Parts Distribution
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Figure D.2: Monthly Resampled Parts Distribution
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D.2. Weekly & Monthly Forecasting Results per Model

Figure D.3: Weekly and Monthly SES Results
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Figure D.4: Weekly and Monthly ARIMA Results
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Figure D.5: Weekly and Monthly ARIMAX Results
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Figure D.6: Weekly and Monthly LSTM Results
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Figure D.7: ACF, PACF, and ADF for Part A1_Wk
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Figure D.8: ACF, PACF, and ADF for Part A1_Mh
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Figure D.9: ACF, PACF, and ADF for Part A2_Wk
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Figure D.10: ACF, PACF, and ADF for Part A2_Mh
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Figure D.11: ACF, PACF, and ADF for Part A3_Wk
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Figure D.12: ACF, PACF, and ADF for Part A3_Mh
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Figure D.13: ACF, PACF, and ADF for Part B1_Wk
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Figure D.14: ACF, PACF, and ADF for Part B1_Mh
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Figure D.15: ACF, PACF, and ADF for Part B2_Wk



D.3. ACF, PACF, and ADF for each Part_Freq 123

Figure D.16: ACF, PACF, and ADF for Part B2_Mh
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Figure D.17: ACF, PACF, and ADF for Part C_Wk
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Figure D.18: ACF, PACF, and ADF for Part C_Mh
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D.4. Weekly Forecasting Results Models Comparison

Figure D.19: Weekly SES, ARIMA, ARIMAX, LSTM Results
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D.5. Monthly Forecasting Results Models Comparison

Figure D.20: Monthly SES, ARIMA, ARIMAX, LSTM Results
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