

Delft University of Technology

Programming Quantum Computers

Krol, A.M.

DOI
10.4233/uuid:43110674-5c4d-4745-a941-c8accf328c65
Publication date
2025
Document Version
Final published version
Citation (APA)
Krol, A. M. (2025). Programming Quantum Computers. [Dissertation (TU Delft), Delft University of
Technology]. https://doi.org/10.4233/uuid:43110674-5c4d-4745-a941-c8accf328c65

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:43110674-5c4d-4745-a941-c8accf328c65
https://doi.org/10.4233/uuid:43110674-5c4d-4745-a941-c8accf328c65

PROGRAMMING QUANTUM COMPUTERS

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
donderdag 13 maart 2025 om 10:00 uur

door

Anna Maria KROL

Master of Science in Computer Engineering
Delft University of Technology.

Dit proefschrift is goedgekeurd door de promotoren.

Samenstelling promotiecommissie bestaat uit:
Rector Magnificus, voorzitter
Prof. dr. H. P. Hofstee, Technische Universiteit Delft, promotor
Dr. ir. Z. Al-Ars, Technische Universiteit Delft, promotor

Onafhankelijke leden:
Prof. dr. M.P.M. Möttönen Aalto Universitet, Finland,

and VTT Technical Research Centre of Finland
Prof. dr. G.A. Steele, Technische Universiteit Delft
Prof. dr. K.L.M. Bertels, Universiteit Ghent, België
Dr. M. Möller Technische Universiteit Delft
Dr. rer. nat. A. Luckow Ludwig-Maximilians-Universität, Germany,

Clemson University, USA, and BMW Group, Germany
Prof. dr. Y.M. Blanter Technische Universiteit Delft, reservelid

Copyright © 2025 by A.M. Krol

ISBN 000-00-0000-000-0

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

I think I can safely say that nobody understands quantum mechanics.

Richard P. Feynman

CONTENTS

Summary ix

Samenvatting xi

1 Introduction 1
1.1 A brief introduction to quantum computing 1
1.2 Current state of quantum computing . 2
1.3 The future of quantum computing . 3
1.4 Challenges to address and research questions 6
1.5 Contributions . 8
1.6 Outline . 9

2 Beyond Quantum Shannon: Circuit Construction for n-Qubit Gates 11
2.1 Introduction . 13
2.2 Notation and gate definitions . 15
2.3 Decomposing uniformly controlled rotations 16
2.4 Full decomposition . 16
2.5 Optimization . 18
2.6 Conclusion . 21

3 Efficient Decomposition of Unitary Matrices 23
3.1 Introduction . 25
3.2 Background . 26
3.3 Decomposing multi-controlled rotation gates 30
3.4 Comparison of different decomposition methods. 31
3.5 Implementation in OpenQL. 38
3.6 Execution time and memory allocation 42
3.7 Comparison to other programming languages 43
3.8 Conclusion . 46

4 Efficient Parameterized Compilation for Hybrid Quantum Programming 49
4.1 Introduction . 51
4.2 Background . 52
4.3 Design goals . 55
4.4 Parameterisation in OpenQLPC . 56
4.5 Comparison to other programming languages 59
4.6 Experimental results . 61
4.7 Conclusion . 64

vii

viii CONTENTS

5 QISS: Quantum Industrial Shift Scheduling Algorithm 67
5.1 Introduction . 68
5.2 Background . 69
5.3 Simplified model for shift scheduling . 72
5.4 Algorithm design and validation . 77
5.5 Gate requirements . 90
5.6 Conclusion . 93

6 Requirements for industry relevant quantum computation 95
6.1 Introduction . 96
6.2 Background . 97
6.3 Resource estimation for fault-tolerant quantum computing 101
6.4 Automated tools for resource estimation 109

6.5 Extrapolating to
p

N iterations . 111
6.6 Scenarios from Beverland et al. 113
6.7 Near-term superconducting qubits . 114
6.8 High-fidelity qubits . 117
6.9 Conclusion . 120

7 Conclusion 123

Acknowledgments 131

Bibliography 133

Curriculum Vitæ 151

List of Publications 153

SUMMARY

Because of recent stagnating single-thread performance and limited potential for further
miniaturization of transistors, the computing industry is looking towards new technolo-
gies as the basis for the next generation of computing. One of these new technologies is
quantum computing. For utility-scale quantum computing, we will likely need millions
of qubits. To program these qubits, the complete quantum computing stack will need
to be improved, since programming large numbers of qubits is not feasible with current
quantum programming languages.

In this dissertation, we present our new unitary decomposition algorithm, which is
used to decompose arbitrary unitary matrices into a sequence of quantum gates that can
be executed on a quantum computer. Our method results in 5% less CNOT gates than
the previous state-of-the-art and can be used to decompose an arbitrary 3-qubit gate
into at most 19 CNOT gates.

Unitary decomposition is an essential part of some quantum algorithms, and can be
used as an optimization method for (parts) of quantum circuits. Efficient implemen-
tation of unitary decomposition allows for the translation of bigger input matrices into
elementary quantum operations, which is key to executing these algorithms on existing
quantum computers. With the implementation of unitary decomposition in quantum
programming framework OpenQL, we show how the structure of the input or interme-
diate matrices can be used to minimize the number of output gates and to minimize
the runtime of the decomposition. Our implementation is 10 to 500 times as fast as the
decomposition methods of the UniversalQCompiler and Qubiter.

With hybrid classical-quantum algorithms, even near-term quantum devices may be
able to outperform classical computers. Hybrid algorithms, such as variational quantum
eigensolvers, are iterative processes, and use a classical optimizer to update a parame-
terized quantum circuit. Each iteration, the circuit is executed on a physical quantum
processor or a simulator, and the average of the measurement results is passed back to
the classical optimizer. When many iterations are performed, the quantum program is
recompiled many times.

We have implemented explicit parameters that prevent recompilation of hybrid pro-
grams in OpenQL, called OpenQLPC. These parameters reduce the compile time, and
therefore improve the total runtime for hybrid algorithms. We have compared the execu-
tion of the MAXCUT benchmark in OpenQL with the execution of the same benchmark
in PyQuil and Qiskit, which shows that the efficient handling of parameterized circuits
in OpenQLPC results in up to 70% reduction in total compilation time and a reduced to-
tal execution time. With OpenQLPC, compilation of hybrid algorithms is also faster than
either PyQuil or Qiskit.

In a collaboration with BMW and Entropica, we have developed a quantum algo-
rithm for industrial shift scheduling (QISS), which uses Grover’s adaptive search to tackle

ix

x SUMMARY

a common and important class of valuable, real-world combinatorial optimization prob-
lems.

We show how QISS can be used to find the optimal schedule for n days out of a so-
lution space of size N = 42n . The optimal solution is reached in 99% of cases withinp

N = 4n applications of Grover’s oracle, which requires a total of 11n + 9+ l og2(19n)
qubits for scheduling n days. We show the explicit construction of the Grover’s oracle, in-
corporating the multiple constraints and detail the corresponding logical-level resource
requirements. Further, we simulate the application of QISS for small-scale problem in-
stances to corroborate the performance of the algorithm. Our work shows how complex
real-world industrial optimization problems can be formulated in the context of Grover’s
algorithm.

Using QISS, we then used open-source tools to estimate the quantum resources re-
quired for execution of this algorithm. We used qubit models based on current technol-
ogy, as well as theoretical high-fidelity scenarios for superconducting qubit platforms.
We find that the overall computational runtime is more strongly influenced by the ex-
ecution time of gate and measurement operations than by system error rates. We find
that achieving quantum utility would not only require low system error rates (1096 or
better), but also measurement operations with an execution time below 10 ns. This rules
out the possibility of near-term quantum utility for this use-case, and suggests that sig-
nificant technological or algorithmic progress will be needed before quantum utility can
be achieved.

The research in this dissertation allows us to answer our main research question:
How can we make the quantum computing stack ready for utility-scale quantum
computing?
For the quantum stack to be ready for utility-scale quantum computing, several major
improvements will need to be made to prepare for programming and compiling circuits
with millions of qubits.

• We will need high-level abstractions that will speed up programming of quantum
computers, allow for (easier) debugging and will allow for programming millions
of qubits.

• The classical component of the compilation and compute of (hybrid) quantum
algorithms will need to be improved.

• More algorithms for real-world use-cases will need to be developed, which will
provide a basis for improvements across the quantum stack that will lead to quan-
tum utility.

• We need to do quantum resource estimation for real use-cases, in order to have
insights into what utility-scale quantum computing will look like.

SAMENVATTING

Vanwege de recente stagnerende single-thread prestaties en het beperkte potentieel voor
verdere miniaturisering van transistors, verlegt de computerindustrie haar blik naar
nieuwe technologieën als basis voor de volgende generatie computers. Één van deze
nieuwe technologieën is de quantum computer. Om quantumvoordeel te bereiken heb-
ben we waarschijnlijk miljoenen qubits nodig. Om deze qubits te programmeren, moet
de volledige quantumcomputer-stack worden verbeterd, aangezien het programmeren
van grote aantallen qubits niet haalbaar is met de huidige generatie quantumprogram-
meertalen.

In dit proefschrift presenteren we ons nieuwe unitaire decompositie algoritme, dat
kan worden gebruikt om willekeurige unitaire matrices te factoriseren tot een reeks
quantum operaties die kunnen worden uitgevoerd op een quantumcomputer. Onze me-
thode resulteert in 5% minder CNOTs dan de state-of-the-art en kan worden gebruikt om
een willekeurige 3-qubit operatie te vertalen naar maximaal 19 CNOTs.

Unitaire decompositie is een essentieel onderdeel van sommige quantumalgoritmes
en kan worden gebruikt als een optimalisatiemethode voor (delen van) quantumcircuits.
Efficiënte implementatie van unitaire decompositie maakt de vertaling van grotere ma-
trices naar elementaire quantum operaties mogelijk, wat essentieel is voor het uitvoeren
van deze algoritmes op bestaande quantumcomputers. Met de implementatie van uni-
taire decompositie in het quantumprogrammeerframework OpenQL laten we zien hoe
de structuur van de ingevoerde matrix of tussenmatrices kan worden gebruikt om het
aantal uitvoer operaties te minimaliseren en de tijd die de decompositie kost te minima-
liseren. Onze implementatie is 10 tot 500 keer zo snel als de decompositiemethoden van
de UniversalQCompiler en Qubiter.

Met hybride klassieke-quantumalgoritmes kunnen zelfs quantumcomputers op
korte termijn klassieke computers overtreffen. Hybride algoritmes, zoals variationele
quantumeigensolvers, zijn iteratieve processen en gebruiken een klassieke optimalisa-
tor om een geparameteriseerd quantumcircuit elke iteratie bij te werken. Bij elke iteratie
wordt het circuit uitgevoerd op een fysieke quantumprocessor of een simulator, en het
gemiddelde van de meetresultaten wordt teruggestuurd naar de klassieke optimalisator.
Wanneer er veel iteraties worden uitgevoerd, wordt het quantumprogramma vele malen
opnieuw gecompileerd.

We hebben expliciete parameters geïmplementeerd die hercompilatie van hybride
programma’s in OpenQL voorkomen, genaamd OpenQLPC. Deze parameters verminde-
ren de compileertijd en verbeteren daarom de totale tijd die de uitvoer van een hybride
algoritme kost. We hebben de uitvoering van de MAXCUT-benchmark in OpenQL verge-
leken met de uitvoering van dezelfde benchmark in PyQuil en Qiskit, wat aantoont dat
de efficiënte verwerking van geparametriseerde circuits in OpenQLPC resulteert in tot
70% vermindering van de totale compilatietijd en een kortere totale uitvoeringstijd. Met
OpenQLPCis de compilatie van hybride algoritmes ook sneller dan in PyQuil of Qiskit.

xi

xii SAMENVATTING

In samenwerking met BMW en Entropica hebben we een quantumalgoritme voor in-
dustriële planningen (QISS) ontwikkeld, dat gebruik maakt van Grover’s adaptieve zoek-
algoritme om een veelvoorkomende en belangrijke klasse van waardevolle, echte com-
binatorische optimalisatieproblemen aan te pakken.

We laten zien hoe QISS gebruikt kan worden om de optimale planning te vinden voor
n dagen uit een oplossingsruimte die N = 42n elementen bevat. De optimale oplossing
wordt bereikt in 99% van de gevallen met minder dan

p
N = 4n applicaties van Grover’s

orakel, wat een totaal aan 11n+9+l og2(19n) qubits gebruikt voor het plannen van n da-
gen. We laten de expliciete constructie van het Grover’s orakel zien waarbij de meerdere
restricties worden opgenomen, en hoe dat vertaalt naar de behoeftes van het orakel op
het niveau van logische qubits en operaties. Verder simuleren we de toepassingen van
QISS voor kleinschalige problemen om de prestaties van het algoritme te bevestigen.
Ons werk laat zien hoe complexe industriële optimalisatieproblemen kunnen worden
geformuleerd in de context van Grover’s algoritme.

Met behulp van QISS hebben we vervolgens open-source applicaties gebruikt om
een inschatting te maken van het aantal qubits die nodig zijn en van de uitvoeringstijd
van dit algoritme. We hebben qubitmodellen gebruikt op basis van huidige technologie,
evenals theoretische hoge-kwaliteits scenario’s voor supergeleidende qubits. We hebben
ontdekt dat de algehele rekentijd sterker wordt beïnvloed door de uitvoeringstijd van
quantumoperaties dan door qubit error-percentages. Onze bevindingen laten zien dat
het behalen van quantumvoordeel niet alleen lage qubit errorpercentages (1096 of beter)
vereist, maar ook quantummetingen die uitgevoerd kunnen worden in minder dan 10 ns.
Dit sluit uit dat quantumvoordeel op korte termijn voor dit gebruikersscenario mogelijk
is en laat zien dat er aanzienlijke vooruitgang nodig is in quantumtechnologiëen- of al-
goritmes, voordat er voor dit scenario quantumvoordeel kan worden behaald.

Dit brengt ons terug bij onze belangrijkste onderzoeksvraag: Hoe kunnen we
de quantumcomputerstack gereedmaken voor quantumcomputers op bruikbare
schaal?
Om de quantumstack gereed te maken voor quantumcomputers op bruikbare schaal,
zullen er verschillende grote verbeteringen moeten worden ingevoerd om het program-
meren en compileren van circuits met miljoenen qubits mogelijk te maken.

• We hebben abstracties op hoog niveau nodig die het programmeren van quan-
tumcomputers kunnen versnellen, die (eenvoudiger) debuggen mogelijk maken
en die het programmeren van miljoenen qubits mogelijk maken.

• Het klassieke onderdeel van de compilatie en berekening van (hybride) quantu-
malgoritmes moet worden verbeterd.

• Er moeten meer algoritmes voor echte gebruikersscenario’s worden ontwikkeld,
die een basis vormen voor verbeteringen in de quantumstack die zullen leiden tot
het (grootschalig) gebruik van quantum computers.

• We moeten inschattingen maken van de (quantum)benodigdheden voor echte ge-
bruikersscenario’s, om inzicht te krijgen in hoe quantumcomputers op bruikbare
schaal eruit zal gaan zien.

1
INTRODUCTION

This thesis is about trying to improve quantum programming, from the fundamental,
compilation and implementation levels, ending with a look to the future of quantum
computing.

1.1. A BRIEF INTRODUCTION TO QUANTUM COMPUTING
This section introduces why people are looking at quantum computing, how to build a
quantum computer, the current state of quantum computer and ends with a look to the
future.

1.1.1. WHY QUANTUM COMPUTING?
Computers have seen a steady exponential increase in performance since the 1960s. As
Gordon Moore observed in the 1970, the number of components per integrated circuit
doubled every two years. This trend, called Moore’s law, has held until the 2010s but now,
in 2024, has ended [202].

At the heart of Moore’s law has been the miniaturization of transistors [121], from
20µm in 1968 to just 3nm in 2022 [122]. But there is limited potential for making
even smaller transistors: for a 3nm transistor, the gate length is only 15 silicon atoms
across [89]. Besides the fundamental limits of silicon atoms, the potential for further
performance increase is also limited by power consumption, heat dissipation, data stor-
age and memory access time [207].

To counteract stagnating single-thread performance, the industry has shifted to-
wards parallel computing using multiple cores (Figure 1.1) and off-loading certain tasks
to dedicated hardware, such as GPUs, FPGAs or, in the future, quantum computers [135].

1.1.2. HOW TO BUILD A QUANTUM COMPUTER?
The fundamental units of a quantum computer, qubits, consist of one elementary par-
ticle each. Depending on the technology, this can be an atom, an ion, an electron or a
photon.

1

1

2 1. INTRODUCTION

1970 1980 1990 2000 2010 2020
year

100

101

102

103

104

105

106

107

108

54 years of microprocessor trend data
Transistors
(thousands)

Single-thread
performance
(specINT x 10^3)

Frequency
(MHz)

Typical power
(Watts)

Number of
logical cores

Figure 1.1: 54 years of microprocessor trend data. Original data up to 2010 collected and plotted by M.
Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten, data 2010-2020 collected by K.
Rupp [163, 164], additional data (1970-2024) via wikipedia.org/wiki/Transistor_count [201] and the
SPECint and SPECpower benchmarks [42].

Qubits are very susceptible to noise, in the form of electromagnetic radiation, tem-
perature, imperfections in the control of the qubits (quantum gates and measurement)
or other interactions with the environment [90]. Depending on the technology used to
make qubits, this means that they need to be held in a vacuum, at a temperature near
absolute zero, and generally isolated and protected from the environment. But some ac-
cess is needed to be able to control and measure the qubit and to allow qubits to interact
with each other in controlled ways.

The DiVincenzo criteria to build a quantum computer are [54]:

1. A scalable physical system with well-characterized qubits

2. The ability to initialize the qubits to a simple reference state (such as |000....〉)
3. Long relevant coherence times, much longer than the gate operation time

4. A universal set of quantum gates

5. A qubit-specific measurement capability

To fulfill these requirements, you do not just need qubits but also the systems to con-
trol qubits. For controlling qubits at scale, you need to be able to program the quantum
computer, which is done using a compiler stack like the one shown in Figure 1.2.

1.2. CURRENT STATE OF QUANTUM COMPUTING
The technology of current qubits does not yet fulfill all of the DiVincenzo criteria to a
point where they can be used to do things that are infeasible with any classical computer.

Although the first systems with more than a thousand qubits are available [34, 157],
the error rates of these qubits and the quantum gates are too high to do anything more
than short experiments before any information in the systems is lost due to noise.

wikipedia.org/wiki/Transistor_count

1.3. THE FUTURE OF QUANTUM COMPUTING

1

3

Figure 1.2: The quantum computing stack

This is why error correction methods are being developed, which means multiple
physical qubits can be used to make a single logical qubit. One such method is sur-
face code, which has a threshold of 0.57% error rate of the physical qubits [61, 30]. This
threshold gives the maximum error rate that the physical qubits can have, below which
error correction works to prevent errors in the system. With error rates near the thresh-
old, many qubits are needed per physical qubit, on the order of 10 000 or more. If the
physical error rate of the qubits is much lower than the threshold, fewer physical qubits
are needed per logical qubit.

Different quantum error correction codes (QEC) have different thresholds, and the
threshold can also be different for different types of errors. Current quantum systems
are butting up against this error threshold [2], but we are not yet in the fault-tolerant era
of quantum computing without sufficient physical qubits to fully implement QEC.

The error rates have been decreasing, and qubit numbers increasing in recent years
(see Figure 6.1).

1.3. THE FUTURE OF QUANTUM COMPUTING
The computational properties of quantum computers allow them to solve certain types
of problems with (super)polynomial speedup as compared to classical computers. We
will need a quantum computer with low enough error rates to enable quantum error
correction, and with many thousands or potentially millions of qubits, most of which
will be used for error correction [22].

1.3.1. QUANTUM SUPREMACY, UTILITY AND ADVANTAGE

Three different terms are often used when talking about milestones in the development
of quantum computing: quantum supremacy, quantum advantage and quantum util-
ity. There is no standardized definition of these concepts, and they are used to mean
different, sometimes conflicting, things by different authors and in different contexts.
All three concepts are used when talking about how quantum computing might be bet-
ter than classical computing in some way: when quantum computing has a supremacy,
utility or advantage over classical computing.

Because of the conflicting definitions of these three concepts, we will define these
terms here as they are used in this thesis:

1

4 1. INTRODUCTION

• Quantum supremacy: a quantum computer solves a problem that cannot be
solved by any classical computing system, regardless of the utility of the prob-
lem [152].

• Quantum utility: quantum computing has become a useful tool for solving mean-
ingful (scientific) problems that are beyond the reach of brute-force classical com-
puting methods [106, 47].

• Quantum advantage: a quantum computer can solve a problem with some (sig-
nificant, practical) benefit over a classical computer; the problem needs to have
a real-world application and be commercially or scientifically relevant, the ben-
efit can be a decrease in runtime, but quantum advantage also applies for other
types of benefits, like cost or accuracy [68, 47]. Often overlaps with the meaning of
quantum utility: both terms were coined to contrast with quantum supremacy.

For quantum utility and quantum advantage, we do not just need quantum
supremacy, but we need to solve a useful problem that a quantum computer can solve
in a reasonable amount of time, such as hours or weeks, rather than millions of years.

1.3.2. SHOR’S AND GROVER’S ALGORITHMS
The threshold for quantum utility and quantum advantage depends greatly on the type
of problem and what classical and quantum algorithms can be used to solve the prob-
lem. This can clearly be seen in Figure 1.3.

A brute force approach can be used to solve most types of problems, but such an ap-
proach is generally not practically feasible due to the large amount of compute resources
required. However, in some cases the brute force approach is the only possibility, which
is why it is used in exhaustive search subroutines for solving NP-complete problems [8],
for example. With quantum computing, Grover’s algorithm can be used to solve such
problems with polynomial speedup: instead of O(2L) function evaluations, only O(

p
2L)

are needed to search a space of size 2L .
As can be seen in Figure 1.3, this does result in a quantum speedup compared to

classical brute force for larger problem sizes. Even at a frequency of 1 MHz (106 function
evaluations per second), the crossover point is below one minute of runtime compared
to a classical computing system running at (the equivalent of) 7.7 THz (7.7 ·1012 func-
tion evaluations per second). But even though it is faster than the classical computing
approach, the runtime for Grover’s algorithm increases rapidly with problem size. This
means that there is a limited range of problem sizes for which Grover’s algorithm will be
useful. If we set the limit for reasonable runtime at a week, then the maximum search
space for the classical computer is 262, while for a quantum computer at 1 MHz it is 278.
This will limit the usefulness of Grover’s algorithm. For faster quantum computers, the
window of runtime speedup is larger, especially if a search algorithm that achieves cubic
or quartic speedup is found [14].

Compared to Grover’s algorithm, Shor’s algorithm has a much narrower set of
problems for which it can be used. One such problem is factoring, which can
be solved using a brute-force approach, but can also be solved using a more effi-
cient algorithm: the general number field sieve. This algorithm has a complexity of

1.3. THE FUTURE OF QUANTUM COMPUTING

1

5

0 50 100 150 200 250 300 350 400
L (bits)

10 6

10 3

100

103

106

109

1012

Ru
nt

im
e

(s
)

Shor's algorithm at 1 MHz

Shor's algorithm at 1 GHz

Shor's algorithm at 1 kHz

Classical factoring at 7.7 THz

Runtime for factoring an L-bit number
or to search a space of size 2L

s

Gr
ov

er
's

alg
ori

thm
 at

 1
MHz

Gr
ov

er
's

alg
ori

thm
 at

 1
GH

z

Gr
ov

er
's

alg
ori

thm
 at

 1
kH

z

Cl
as

sic
al

br
ut

e
fo

rc
e

at
 7

.7
 T

Hz

Cubic s
peed

up at
 1 MHz

Quartic
 speedup at 1 MHz

second

minute

hour

day
week
month
year
decade
century
millennium

1 million years

ms

Runtime scaling of classical and quantum algorithms

Figure 1.3: Classical and potential quantum runtime scaling for factoring of an L-bit number or for searching
an unstructured search-space with 2L items. The classical computing frequency of 7.7 THz is the effective
speed for factoring of the largest RSA number to date, which has 829 (binary) digits and took the equivalent of
2700 core-year using Intel Xeon Gold 6130 CPUs at 2.1GHz [26].

O
(
exp

(
1.9 · 3

√
L · log(L)2

))
[27] and was used to factor the largest RSA number to date,

a number with 250 decimal digits or 829 binary digits. Shor’s algorithm uses 2L2 logi-
cal qubits and O

(
72 ·L3

)
logical cycles to factor an L-bit number [21]. And even though

Shor’s algorithm is slower for smaller problem sizes, factoring numbers with more than
360 bits will be quicker when using a quantum computer at 1 MHz compared to the
classical systems.

The crossover point between the quantum and classical approaches depends on
many different factors, from the algorithm implementation to the characteristics of the
physical qubits [193]. The difficulty in determining the exact problem size at which the
quantum computer will have an advantage over the classical system can clearly be seen
in the Figure 1.3. When the quantum computer operates at a (logical) frequency of 1
GHz, the maximum size of a feasible search space with Grover’s algorithm is not 278, but
298, and Shor’s algorithm is already faster for factoring 206-bit numbers. For quantum
computing at 1 kHz, however, a classical computer at a runtime of one week can search a
larger space than a quantum computer using Grover’s, and the crossover point for Shor’s
algorithm occurs at the factoring of a 562-bit number, which would take a year. And
this is without taking into account the potential for parallel execution of the classical
computers. The number of 7.7 THz already accounts for some parallel execution, but
while factoring the largest RSA number took the equivalent of 2700 core-years, it did not
actually take 2700 years. This might be even more the case for the type of brute-force ap-
proaches that Grover’s algorithm can replace, because an unstructured search can easily
be split into many separate search tasks that can all be executed in parallel.

The figure also show the difference between the two algorithms. Grover’s algorithm
can be used for a wide range of problems and provides quadratic speedup over brute-

1

6 1. INTRODUCTION

force methods. But a practical speedup can only be achieved by an (unrealistically) fast
quantum computer, and only for a limited set of problem sizes, because the runtime of
the quantum computer will still grow exponentially with size. The type of brute-force
(unstructured search) problem that Grover’s can be used for, is also a problem class that
can be easily parallelized in classical computing (embarrassingly parallel), which means
that the brute-force execution time can be reduced to (almost) the time it takes for one
single iteration. This is not possible with Grover’s algorithm. All this combined means
that it is unlikely there will many practical applications for Grover’s algorithm in the near
to medium future. However, if a quantum computer is developed with a high enough
capacity and clock speed, then it can be used to speed up many different types of appli-
cations using Grover’s algorithm.

This is in contrast with Shor’s algorithm. Shor’s algorithm has a much narrower field
of application than Grover’s, and can be used to solve a much more specific type of prob-
lem: factoring [177]1. And although factoring can also be done using classical computing
at below exponential runtimes, factoring large numbers still takes a lot of time and a lot
of compute resources. This is the reason that the widely used RSA-encryption works as a
cryptosystem: the largest RSA-key that has currently been broken has 829 bits [26], while
typical key sizes used for encryption are 2048-4096 bits. With Shor’s algorithm, factoring
can be done at superpolynomial speedup compared to all known non-quantum algo-
rithms [177], and decryption of RSA-keys might become possible [193], which both pro-
vides a practical application for Shor’s algorithm and incentive for building a quantum
computer that is powerful enough to use Shor’s to break RSA-encrypted data.

This shows that the threshold for quantum utility depends not only on the achievable
clock-speed of the quantum computer, but also on the type of algorithm that is used, and
how that compares to a classical solution to the problem.

For both Shor’s and Grover’s algorithm, many qubits are needed to solve the problem
at (and beyond) the crossover point, especially if quantum error correction and other
overheads need to be included.

1.4. CHALLENGES TO ADDRESS AND RESEARCH QUESTIONS
For quantum utility, we do not just need to have enough qubits, we need to program
these qubits. The overarching research question of this thesis is thus:

• How can we make the quantum computing stack ready for utility-scale quantum
computing?

To answer this question, this dissertation takes a broad look at the whole compiler stack,
as shown in Figure 1.2.

We will address the following problems with the current quantum programming
stack:

1. Limited number of high-level (quantum specific) abstractions

2. Classical compile/compute time, especially in hybrid algorithms

1Or more widely: the hidden subgroup problem for finite abelian groups

1.4. CHALLENGES TO ADDRESS AND RESEARCH QUESTIONS

1

7

3. Limited number of algorithms for real-world use-cases

4. Lack of visibility on quantum computing effectiveness

1.4.1. QUANTUM HIGH-LEVEL ABSTRACTIONS
In order to perform computations using a quantum computer, we need to manipulate
qubits using quantum gates and measurement operators. These qubit manipulations
represent the lowest level of modifications in the physical characteristics of the qubits.
Such modifications do not relate directly to the algorithms being executed on the quan-
tum computer itself. In that sense, such qubit manipulations correspond to program-
ming a classical computing system using assembly language. However, in modern pro-
gramming languages used to program classical computers, programmers no longer need
to program in assembly language but can make use of higher-level abstractions, such as
functions, structs and if-then-else statements, that simplify the task of programming,
optimizing and debugging algorithms on such computers.

Current quantum programming languages usually allow the use of high-level classi-
cal programming features, but there are not many quantum-specific high-level abstrac-
tions that can be used. This is partly because there is no immediate need for high-level
abstractions when programming current quantum computers. The number of qubits
on a single quantum chip is still quite manageable to program without high-level ab-
stractions, and hand-optimized quantum circuits are at an advantage over potentially
less efficient automated code. Quantum programming will also need to mature as a field
before a general consensus can form about the type and function of high-level abstrac-
tions.

One existing high-level abstraction is unitary decomposition, with which a (unitary)
matrix can be used directly when programming a quantum circuit. This matrix needs to
be decomposed into elementary or native gates.

This brings us to the following two research questions about quantum high-level ab-
stractions:

1. What are useful high-level abstractions for programming quantum computers?

2. How can existing high-level abstractions such as unitary decomposition be im-
proved?

1.4.2. CLASSICAL COMPILE AND COMPUTE TIME
The experimental nature of most current quantum programs also means that there is
little regard for the classical compute and compile time of algorithms. This is an issue
when the goal is to minimize the total runtime of the algorithm. Minimizing classical
components of the runtime becomes more relevant for larger scale quantum comput-
ing, first for outperforming classical computers at some task (quantum supremacy) but
especially when using quantum computing for actual (commercial) purposes.

This brings us to the following research question to address the classical compile and
compute time in quantum computing:

3. Can the performance of quantum algorithms be improved through compiler
optimizations?

1

8 1. INTRODUCTION

1.4.3. REAL-WORLD USE-CASES
Quantum computers of the future can be used to solve large-scale optimization prob-
lems, like the supply chain of a large company. Although current quantum computers
cannot be used yet for large-scale problems, it is valuable for the development process to
keep certain end-goals in mind. One way to do that is by using benchmarks to compare
different quantum computers, where the problems used in the benchmark are repre-
sentative of industry-relevant problems. This will also aid with the development of a
quantum compiler stack that will be suitable for writing algorithms in the future.

This brings us to the following research question to address the limited number of
algorithms for real-world use-cases:

4. What does a quantum algorithm for a real-world use-case look like?

1.4.4. REQUIREMENTS FOR PRACTICAL QUANTUM COMPUTING
To make the quantum computing stack ready for utility-scale quantum computing, we
need to know what that scale is. How many qubits will be needed to be able to run useful
quantum algorithms?

Besides the number of physical qubits, the viability of quantum computers also de-
pends on the physical and logical clock speed of the qubits, the error rate of idle qubits,
the error rate of qubit operations, qubit interconnect topology, available error correction
codes and other details of the qubit implementation and technology [193]. And the scale
at which a quantum computer can outperform a classical computer also depends on the
type of problem we want to solve, and the specifics of the algorithm and implementation
[193].

This brings us to the following research question to address the lack of visibility on
quantum computing effectiveness:

5. What are the requirements for practical quantum computing?

1.5. CONTRIBUTIONS
In this section, we present the contributions of this dissertation for each of the research
questions posed in Section 1.4.

1. What are useful high-level abstractions for programming quantum computers?

• Chapter 2: High-level circuit blocks are used in the construction of a new unitary
decomposition algorithm.

• Chapter 3: The structure and construction of different decomposition algorithms
are discussed, including the other uses these algorithm may have, such as state
preparation.

• Chapter 4: Hybrid programming constructions are used, optimized and compared
between different quantum programming languages.

• Chapter 5: We use high-level building blocks to construct our algorithm. We show
the explicit construction of each block and how the problem constraints were used

1.6. OUTLINE

1

9

to build up the algorithm. Using these building blocks, quantum oracles for many
different types of optimization problems can be created.

2. How can existing high-level abstractions such as unitary decomposition be im-
proved?

• Chapter 2: We present a new unitary decomposition algorithm that results in 5%
less CNOT gates than the state-of-the-art best algorithm.

• Chapter 3: We show we can take advantage of the underlying matrix structure to
reduce the size of the circuit resulting from unitary decomposition.

3. Can the performance of quantum algorithms be improved through compiler opti-
mizations?

• Chapter 3: We accelerate the compilation of our implementation of unitary de-
composition in quantum programming framework OpenQL. Our implementation
is up to 500 times as fast as other implementations.

• Chapter 4: We implement explicit parameters that prevent recompilation of the
whole quantum circuit. This improves compilation and thereby the total runtime
for iterative hybrid quantum-classical algorithms. This reduces compile time by
up to 70% for the MAXCUT benchmark.

4. What does a quantum algorithm for a real-world use-case look like?

• Chapter 5: We present QISS, a Quantum algorithm for Industrial Shift Scheduling.
This algorithm uses Grover’s adaptive search to find the optimal combination of
shift lengths for a simplified automotive production line. The structure and con-
straints of the problem are modeled after a real-world use-case. The algorithm was
developed in a collaboration with BMW and Entropica Labs due to the industrial
impact of such algorithm on optimizing complex manufacturing processes.

5. What are the requirements for practical quantum computing?

• Chapter 6: Using QISS, we estimate the quantum resources required to execute
the algorithm for a range of problem sizes. We use different qubit characteristics
as the basis of our resource estimations: characteristics from the literature, char-
acteristics based on current superconducting qubits and potential characteristics
of high-fidelity superconducting qubits. We show that we will need hundreds of
thousands of qubits with low error rates and fast logical cycle times to achieve
quantum utility for this application.

1.6. OUTLINE
In this introduction, we have explained the promises and challenges of quantum com-
puting. We have outlined our contributions to these challenges. The remainder of the
dissertation describes the algorithms, optimizations and our vision in more detail.

1

10 1. INTRODUCTION

Chapter 2:
beyond QSD

Chapter 3:
efficient

unitary decomp.

Chapter 4:
efficient

parameters

Chapter 5:
QISS

Chapter 6:
resource

estimation

Unitary
decomposition

Compiler
optimizations

Algorithm
implementations

Quantum computing
for real-world use-cases

Figure 1.4: Relation between the thesis chapters

Figure 1.4 shows the order of and the relationships between the chapters of the dis-
sertation. The first two chapters, Chapter 2 and Chapter 3, focus on two aspects of uni-
tary decomposition. In Chapter 2, we discuss our new decomposition algorithm, and
Chapter 3 shows our earlier implementation and optimization of the quantum Shan-
non decomposition algorithm. Chapters 3 and 4 both focus on compiler optimizations
of programming framework OpenQL. The compiler optimization in Chapter 4 is verified
and tested by implementation of the MAXCUT benchmark. The last two chapters are the
result of a collaboration with BMW, Germany and Entropica labs, Singapore: The first of
these, Chapter 5, discusses the development of our own benchmark, Quantum Industrial
Shift Scheduling algorithm (QISS), which is based on a real-world use-case from BWM.
This benchmark is used to assess the requirements for industrial quantum computing
through resource estimation, which is discussed in Chapter 6.

2
BEYOND QUANTUM SHANNON:

CIRCUIT CONSTRUCTION FOR N-QUBIT

GATES

In this chapter, we present our new unitary decomposition algorithm, which is a funda-
mental improvement of the unitary decomposition abstraction for quantum program-
ming. The new algorithm is based on the block-ZXZ decomposition method and can
be used to decompose arbitrary unitary matrices into a sequence of quantum gates that
can be executed on a quantum computer.

Our method results in 5% less CNOT gates than the previous state-of-the-art: quan-
tum Shannon decomposition, which was first introduced in 2005 by Möttönen and Var-
tiainen. The decomposition is applied recursively to generic quantum gates, and can
take advantage of existing and future small-circuit optimizations. Because our method
uses only single qubit gates and uniformly controlled rotation-Z gates, it can easily be
adapted to use other types of multi-qubit gates.

With the proposed decomposition, a general three-qubit gate can be decomposed
using 19 CNOT gates (rather than 20). For general n-qubit gates, the proposed decom-
position generates circuits that have 22

48 4n − 3
2 2n + 5

3 CNOT gates, which is less than the
best known exact decomposition algorithm by (4n−2−1)/3 CNOT gates. This chapter has
the following contributions:

• We show how to decompose an arbitrary n-qubit gate into at most 22
48 4n − 3

2 2n + 5
3

CNOT gates. This is (4n−2−1)/3 less than the best previously published work [173].

• More specifically, we can construct a general three-qubit operator with at most 19
qubits, which is currently the least known for any exact decomposition method.

11

2

12 2. BEYOND QUANTUM SHANNON: CIRCUIT CONSTRUCTION FOR N-QUBIT GATES

This chapter is based on the following article:

• Anna M. Krol and Zaid Al-Ars. “Beyond quantum Shannon decomposition: Circuit
construction for n-qubit gates based on block-Z X Z decomposition”. In: Phys.
Rev. Appl. 22 (3 Sept. 2024), p. 034019. DOI: 10.1103/PhysRevApplied.22.
034019

CODE AVAILABILITY
An implementation of the algorithm using Python and Qiskit can be found here: https:
//github.com/anneriet/decomposition_algorithm.

https://doi.org/10.1103/PhysRevApplied.22.034019
https://doi.org/10.1103/PhysRevApplied.22.034019
https://github.com/anneriet/decomposition_algorithm
https://github.com/anneriet/decomposition_algorithm

2.1. INTRODUCTION

2

13

2.1. INTRODUCTION
To execute a quantum algorithm, a series of unitary operations (gates) and non-unitary
operations (measurements) are applied to quantum bits (qubits) in a quantum circuit.
The complexity of a quantum algorithm can be described as the number of gates, the
number of qubits or the length of the critical path (depth) of the circuit.

Physically, a qubit is a quantum-mechanical system that can store quantum infor-
mation, such as superconducting qubits [110], trapped ions [78] or spin qubits [134].
Applying a quantum gate means manipulating the state of the qubit in a controlled way.
Exactly which gate operations are possible depends on the qubit technology and the im-
plementation [123].

To run arbitrary quantum operations on real quantum hardware, the unitary opera-
tor (matrix) needs to be translated into elementary (native) gate operations. This is by
no means a trivial task, and the focus of much research over the years into methods for
performing such translation using quantum gate decomposition.

An important target of gate decomposition methods is to minimize the number of
two-qubit gates required to implement a given unitary matrix. This is essential, because
the two-qubit gates require qubit connectivity and mapping, and the execution time and
error-rates of two-qubit gates are an order of magnitude worse than for single qubit gates
in current quantum hardware [123].

It has been proven that any exact decomposition of an arbitrary n-qubit gate requires
at least 1

4 (4n −3n −1) CNOT gates [176].
Approximate decomposition algorithms such as [156, 12, 205] can be used to de-

compose arbitrary quantum gates with (almost) the minimum number of CNOT gates
and little accuracy loss, at the cost of excessive runtime of the search algorithm: decom-
position of a five-qubit gate can take at least several hours. These methods are therefore
not suitable for bigger gates or for applications where classical compile time is relevant
for the performance of the algorithm [117].

In contrast, exact decomposition methods are much faster, and for one- and two-
qubit gates also achieve the minimum CNOT count. One-qubit gates do not require any
CNOTs and can be decomposed into a sequence of three rotation gates [19]. Arbitrary
two-qubit gates can be decomposed into three CNOTs using the methods described in
[196, 176, 198, 182], which also show that less CNOTs are necessary when the gate meets
certain conditions. For arbitrary three-qubit gates, there is no algorithm that results in
the minimum 14 CNOTs, but algorithms do exist that can decompose them into 64 [194],
40 [195], 26 [80] or 20 [139, 173] CNOTs.

For quantum gates of arbitrary size, the decomposition methods have drastically
improved since 1995, when Barenco et al. [19] showed that any unitary operator on n
qubits can be constructed using at most O(n34n) two-qubit gates. This decomposition
method used the standard QR decomposition based on Givens rotations [44], and the
CNOT count has been improved over the years by use of Gray codes and gate cancella-
tions to O(1

2 ·4n) CNOT gates [3, 173, 194]. Another approach to unitary decomposition
has been to use Cosine Sine Decomposition (CSD) [147, 69, 191, 140]. This was com-
bined with diagonalization and separate handling of quantum multiplexors (using the
method from [140]) in 2004 to construct the NQ decomposition, which requires O(1

2 ·4n)
CNOTs [175]. The NQ decomposition was optimized in 2005 by Möttönen and Varti-

2

14 2. BEYOND QUANTUM SHANNON: CIRCUIT CONSTRUCTION FOR N-QUBIT GATES

ainen to produce the first decomposition with less than 1
2 4n in the leading order: with

the optimizations, the decomposition requires at most (23/48)·4n−(3/2)·2n+(4/3) CNOT
gates [139]. This decomposition is more widely known as the Quantum Shannon decom-
position (QSD) [173]. More recently, the Khaneja-Glaser decomposition [104] was used
in [129] to construct a decomposition method that can decompose unitary operations
using (21/16) ·4n −3(n ·2n−2 +2n) CNOT gates.

In this chapter, we show the design and construction of a new unitary decomposi-
tion method based on block-ZXZ decomposition [50, 49, 62], that uses demultiplexing
and optimizations similar to quantum Shannon decomposition [139, 173]. The contri-
butions of this chapter are as follows.

• We show how to decompose an arbitrary n-qubit gate into at most (22/48) · 4n −
(3/2) ·2n + (5/3) CNOT gates. This is (4n−2−1)/3 less than the best previously pub-
lished work [139, 173].

• More specifically, we can construct a general three-qubit operator with at most 19
qubits, which is currently the least known for any exact decomposition method.

An overview of the CNOT count for the proposed method compared to previously
published unitary decomposition algorithms is given in Table 2.1.

Table 2.1: Number of CNOT gates resulting from unitary decomposition by the proposed decomposition com-
pared to previously published algorithms and the theoretical lower bound. The results of this chapter are
shown in bold.

Number of qubits 1 2 3 4 5 6 n

Original QR decomp. [19, 44] O(n3 ·4n)
Improved QR decomp. [112] O(n ·4n)
Palindrome transform [3, 173] O(n ·4n)

Givens rotations (QR) [194] 0 4 64 536 4156 22618 ≈ 8.7 ·4n

Original CSD [191, 118] 0 14 92 504 2544 12256 (1/2) ·n ·4n − (1/2) ·2n

Iterative disentangling (QR) [173] 0 8 62 344 1642 7244 2 ·4n − (2n +3) ·2n +2n

KG Cartan decomp. [129] 0 3 42 240 1128 4896 (21/16) ·4n −3(n ·2n−2 +2n)
CSD [140] 0 8 48 224 960 3968 4n −2 ·2n

QSD (base) [173] 0 6 36 168 720 2976 (3/4) ·4n − (3/2) ·2n

Block-ZXZ [50] 0 6 36 168 720 2976 (3/4) ·4n − (3/2) ·2n

CSD (optimized) [139] 0 4 26 118 494 2014 (1/2) ·4n − (1/2) ·2n −2
NQ [175] 0 3 21 105 465 1953 (1/2) ·4n − (3/2) ·2n +1
QSD (optimized) [139, 173] 0 3 20 100 444 1868 (23/48) ·4n − (3/2) ·2n + (4/3)
Proposed decomposition 0 3 19 95 423 1783 (22/48) ·4n − (3/2) ·2n + (5/3)

Theoretical lower bounds 0 3 14 61 252 1020 (1/4) · (4n −3n −1)

The rest of the chapter is organized as follows. We start with the notation and gate
definitions in Section 2.2. Then in Section 2.3, we show the decomposition of uniformly
controlled rotations. Section 2.4 continues with the full decomposition. The optimiza-
tions and the resulting gate count are shown in Section 2.5. The chapter ends with the
conclusion in Section 2.6.

2.2. NOTATION AND GATE DEFINITIONS

2

15

2.2. NOTATION AND GATE DEFINITIONS
This section introduces the mathematical notation and gate definitions used in this
chapter.

2.2.1. MATHEMATICAL OPERATIONS
The conjugate transpose of a matrix is represented with † (i.e. the conjugate transpose
of matrix U is U †). Reversible quantum operations (gates) can be fully represented as
unitary matrices, for which U † =U−1,UU † = I , where I is the identity matrix.

The Kronecker product of two matrices is written as ⊗. The Kronecker product of
(n ×m) matrix A and (p ×q) matrix B is the (pm ×qn) block matrix:

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

The Kronecker sum of two matrices is written as ⊕. The Kronecker sum of (n×m) matrix
A and (p ×q) matrix B is the ((m +p)× (n +q)) block matrix:

A⊕B =
[

A 0
0 B

]
where the zeros are zero matrices.

2.2.2. GENERIC GATES
The elementary quantum operations used in this chapter are part of the well-established
and widely used set presented in [19].

The following generic gates are used in the decomposition and their circuit represen-
tation are listed below.

• Generic single-qubit unitary gate:
U (2) = U

• Generic multi-qubit unitary gate:
U (n) = \ U where the backslash is used to show that the wire carries an ar-
bitrary number of qubits.

• Controlled arbitrary (multi-qubit) gates:
•

\ U
=

[
I 0
0 U

]
, gate U is only applied if the control qubit is in state |1〉.

• Quantum multiplexor:
□

\ U
=U1⊕U2 =

[
U1 0
0 U2

]
, gate U1 is applied if the

control qubit is in state |0〉, gate U2 is applied if the control qubit is in state |1〉.
• Uniformly controlled rotation gate:

\ □

Ra
, a different rotation around axis a is applied depending on the state

of the control qubits.

2

16 2. BEYOND QUANTUM SHANNON: CIRCUIT CONSTRUCTION FOR N-QUBIT GATES

2.3. DECOMPOSING UNIFORMLY CONTROLLED ROTATIONS

This section shows the decomposition for one of the main building blocks resulting from
our method; the uniformly controlled rotation gates. These gates will be decomposed
using the method from [140].

The uniformly controlled rotation gates that are used in our decomposition method
are always uniformly controlled Rz gates applied to the first qubit. The matrix repre-
sentation of such a gate follows from the general matrix representation of a uniformly
controlled Rz gate with k controlling qubits, and is (D ⊕D†), where D is a (2k ×2k) diag-
onal matrix.

This gate can be implemented by an alternating sequence consisting of 2k CNOTs
and 2k single qubit rotation gates applied to the target qubit. The CNOT controls are de-
termined using a sequence based on the binary reflected Gray code [71]. The 2k rotation
gates in the circuit each apply a rotation by some angle θ j to the target qubit, which can
be calculated in such a way that the complete circuit is equivalent to (D ⊕D†) [140].

The structure of the decomposition of a uniformly controlled Rz gate with three con-
trol qubits is shown in Figure 2.1.

□

=

• •
□ • •
□ • • • •
Rz R̃1

z R̃2
z R̃3

z R̃4
z R̃5

z R̃6
z R̃7

z R̃8
z

bit 1
bit 2
bit 3

g1 g2 g3 g4 g5 g6 g7 g8

Figure 2.1: Decomposition of a uniformly controlled Rz gate with (k=3) control qubits with the three-bit Gray

code that is used to find the control nodes of the CNOTs. In this figure R̃
j
z is used to mean Rz (θ j), where

j = 1, · · · ,2k

.

2.4. FULL DECOMPOSITION

In this section, we first introduce the basis of our decomposition: the block-ZXZ decom-
position [50]. Then we show how to decompose the circuit into elementary gates. This
decomposition method results in the same number of CNOT gates as the unoptimized
quantum Shannon decomposition [50].

2.4.1. BLOCK-ZXZ DECOMPOSITION

The proposed decomposition is based on the block-ZXZ decomposition presented
in [50], which shows how the method presented in [62] can be used to decompose a
general unitary gate into the following structure:

2.4. FULL DECOMPOSITION

2

17

U = 1

2

[
A1 0
0 A2

][
I +B I −B
I −B I +B

][
I 0
0 C

]
(2.1)

= 1

2

[
A1 0
0 A2

]
(H ⊗ I)

[
I 0
0 B

]
(H ⊗ I)

[
I 0
0 C

]
(2.2)

This can be represented as the following quantum circuit:

U =
• H • H □

\ \ C B A

To construct this circuit, we need to solve Equation (2.1), which requires that [62]:

U

[
I

C †

]
=

[
A1

A2

]
(2.3)

To find matrices A1, A2 and C , we first divide the starting matrix U into four equal
blocks. We call the upper left block X , the upper right block Y and the lower two blocks

U21 and U22. This makes U =
[

X Y
U21 U22

]
and then use singular value decomposition to

decompose X and Y .
For X , with singular value decomposition we get X = VXΣW †

X with unitary matrices
VX ,WX ∈U and Σ is a diagonal matrix with non-negative real numbers on the diagonal.
We define SX =VXΣV †

X , a positive semi-definite matrix and unitary matrix UX =VX W †
X .

Then we have the polar decomposition of X = SX UX . The same method can be used to
find SY and UY so that Y = SY UY .

Then we can write

U =
[

SX UX SY UY

U21 U22

]
(2.4)

and define C † = iU †
Y UX so that Equation (2.3) becomes

U

[
I

iU †
Y UX

]
=

[
A1

A2

]
(2.5)

We can find A1 = (SX + i SY)UX and A2 = U21 +U22(iU †
Y UX). Finally, we rewrite Equa-

tion (2.1) and solve for the upper left corner to get B = 2A†
1X − I .

2.4.2. DEMULTIPLEXING
A gate U = U1 ⊕U2 can be decomposed into unitary matrices V and W and a unitary
diagonal matrix D so that U = (I ⊗V)(D ⊕D†)(I ⊗W) using the method described in
theorem 12 of [173]: [

U1 0
0 U2

]
=

[
V 0
0 V

][
D 0
0 D†

][
W 0
0 W

]
(2.6)

2

18 2. BEYOND QUANTUM SHANNON: CIRCUIT CONSTRUCTION FOR N-QUBIT GATES

To find the values for V , D and W , we first use diagonalization of U1U †
2 to get U1U †

2 =
V D2V †, where V is a square matrix with columns representing the eigenvalues of U1U †

2
and D a diagonal matrix whose diagonal entries are the corresponding eigenvalues.
Then we can find W as W = DV †U2. The matrix D ⊕D† corresponds to a multiplexed
Rz gate acting on the most significant qubit in the circuit.

In a quantum circuit, demultiplexing looks like this:

□ =
Rz

\ U \ W □ V

We can use this method to demultiplex gates A, B and C from the circuit in Sec-
tion 2.4.1, which gives the following circuit:

Rz H Rz H Rz

\ WC □ VC WB □ VB WA □ VA

It is clear from the circuit that gate VC can be merged with WB , and that VB can be
merged with WA . This means we now have a circuit decomposition of an initial n-qubit
gate into four (n-1)-qubit gates, three uniformly controlled Rz gates and two Hadamard
gates. The uniformly controlled Rz gates can be decomposed as in Section 2.3. The
decomposition is applied recursively to each (n-1)-qubit gate until only one-qubit gates
are left, which can be decomposed using ZYZ-decomposition [19].

This leads to a total CNOT count that is the same as the unoptimized quantum Shan-
non decomposition [173]: (3/4) ·4n − (3/2) ·2n .

2.5. OPTIMIZATION
Because the circuit resulting from the block-ZXZ decomposition is very similar to that
of the quantum Shannon decomposition [139, 173], it can be optimized using the same
methods. But where QSD can merge one CNOT gate from the central Ry gate, we can
merge two CNOT gates into the central multiplexor. This results in a total CNOT count
of 22

48 4n − 3
2 2n + 5

3 = 11
24 4n − 3

2 2n + 5
3 CNOT gates for decomposing an n-qubit unitary gate.

2.5.1. DECOMPOSITION OF TWO-QUBIT OPERATORS

The decomposition can be applied recursively until the biggest blocks are the generic 2-
qubit unitary gates. These can be decomposed using the optimal 3-CNOT circuit, which
can be done using one of several methods [174, 176, 182]. This reduces the CNOT count
to (9/16) ·4n − (3/2) ·2n [173].

The CNOT count can be further reduced using the technique first described in [175].
The right-most two-qubit gate can be decomposed up to the diagonal into the following
circuit, which requires only two qubits [174]:

U = D
U • Ry • U

U Ry U

2.5. OPTIMIZATION

2

19

The diagonal matrix can be migrated through the circuit and merged with the next two-
qubit gate, which can then be decomposed and its diagonal joined with the next, until
only one two-qubit gate is left. This reduces the CNOT count by 4n−2 −1 gates to (8/16) ·
4n − (3/2) ·2n −1.

2.5.2. MERGING TWO CNOT GATES INTO THE CENTRAL MULTIPLEXOR
After the block-ZXZ decomposition, we first decompose only the left and right multi-
plexors (A and C). We now have a circuit with two uniformly controlled Rz gates. Using
the decomposition of a three-qubit unitary as an example, the circuit now looks like this:

Rz H • H Rz

WC
□

VC B WA
□

VA
□ □

When decomposing the uniformly controlled Rz gates (see Section 2.4.2), we can modify
one of the decompositions so that both of the Hadamard gates are next to a CNOT:

Rz Rz Rz Rz H • H Rz Rz Rz Rz

WC
• •

VC B WA
• •

VA• • • •
The Hadamard gates can be moved to the other side of two CNOTs, making them into

CZ gates:
H = H • H H = H •

• • •
This makes the circuit:

Rz Rz Rz Rz H • • • H Rz Rz Rz Rz

WC
• •

VC B WA
• •

VA• • • •
The two CZ gates can be merged into the middle controlled gate (B) together with the

two (n-1)-qubit gates VC and WA , similar to the optimization introduced in [139].
The new central gate B̃ can be calculated as:

B̃ = (C Z ⊗ I)

[
WA 0

0 WA

][
I 0
0 B

][
VC 0
0 VC

]
(C Z ⊗ I)

=
[

WAVC 0
0 (Z ⊗ I)WA B VC (Z ⊗ I)

]
(2.7)

and decomposed as a regular multiplexor, using the method described in Sec-
tion 2.4.2.

Rz Rz Rz Rz H • H Rz Rz Rz Rz

WC
•

B̃
•

VA• • • •
This saves two CNOTs for every step of the recursion, for a total savings of 2 · (4n−2 −

1)/3 CNOT gates when stopping the recursion at generic two-qubit gates.

2

20 2. BEYOND QUANTUM SHANNON: CIRCUIT CONSTRUCTION FOR N-QUBIT GATES

2.5.3. GATE COUNT
Figure 2.2 shows the structure of the circuit after the decomposition of a generic three-
qubit gate. For a three-qubit unitary, the decomposition results in four generic two-qubit
gates. Three of these require two CNOTs to implement, while the last one requires three
CNOTs. The left and right controlled Rz gates both need three CNOTs and the middle
uniformly controlled Rz gate requires four CNOTs to decompose. That makes the total
CNOT count for the decomposition of a three-qubit unitary: 3 ·2+3+2 ·3+4 = 19 CNOT
gates.

To find the number of CNOT gates required for implementing bigger operators, we
start with the recursive relation below. An n-qubit unitary requires cn CNOTs, which are
at most:

cn ≤ 4 · cn−1 −3+3 ·2n−1 −2 = 4 · cn−1 +3 ·2n−1 −5

This breaks down as follows: at each level of the recursion, the CNOT count is the sum
of the CNOTs required for the decompositions of the four smaller unitaries (cn−1) and the
CNOTs required by the three quantum multiplexors (2n−1). Three of the smaller unitaries
can be implemented using one CNOT less by applying the optimization presented in
Section 2.5.1, and two of the multiplexors can be implemented using one less CNOT
using the method in Section 2.5.2.

A two-qubit unitary operator can be decomposed using at most three CNOTs (c2 ≤ 3),
the recursive relations for 3, 4 and 5 qubit unitary operators are given below.

c3 ≤ 4 · c2 +3 ·23−1 −5

c4 ≤ 4 · c3 +3 ·24−1 −5

≤ 4 ·4 · c2 +4 ·3 ·24−2 −4 ·5+3 ·24−1 −5

≤ 42 · c2 +3 ·24−1(4 ·2−1 +1)−5 · (4+1)

c5 ≤ 43· c2 +3 ·25−1(42 ·2−2+4 ·2−1+1)−5 · (42+4+1)

≤ 43 · c2 +3 ·25−1(22 +21 +1)−5 · (42 +4+1)

We can recognize the following structure [33]:

1+x +x2 +·· ·+xn = xn+1 −1

x −1

We can use this to derive the following relation for the CNOT count for the decomposi-
tion of an n-qubit unitary gate:

cn ≤ 4n−2· c2 +3 ·2n−1
(

2(n−3)+1−1

2−1

)
−5

(
4(n−3)+1−1

4−1

)
cn ≤ 4n−2· c2 +3 ·2n−1(2n−2 −1)− 5

3
(4n−2 −1)

cn ≤
(
4−2 · c2 +3 ·2−3 − 5

3
·4−2

)
·4n −3 ·2−1 ·2n + 5

3

2.6. CONCLUSION

2

21

With c2 ≤ 3, we get the following CNOT count for the decomposition of an n-qubit uni-
tary gate:

cn ≤
(

3

16
+ 3

8
− 5

48

)
·4n − 3

2
·2n + 5

3

cn ≤ 22

48
·4n − 3

2
·2n + 5

3

• • • •
• • • • • • • • • • • • • • •

Figure 2.2: Decomposition of a three-qubit gate using 19 CNOTs and 37 single qubit gates.

2.6. CONCLUSION
In this chapter, we presented a novel quantum decomposition method that is able to
produce circuits with a gate count that is lower than existing state-of-the-art quantum
decomposition methods. We used the optimizations presented by [139] and [173], gate
commutation and gate merging to optimize the block-ZXZ decomposition [50]. The de-
composition follows the same structure as the well-known quantum Shannon decom-
position, and has the same benefit of using recursion on generic quantum gates. This
means that the decomposition can take advantage of the known optimal decomposi-
tions for two-qubit unitary gates, and other small-circuit optimizations, heuristic meth-
ods or optimal decompositions for three or more qubit gates when these become avail-
able.

Other than general unitary gates, the decomposition uses only single qubit gates and
diagonal gates. This simplifies the structure and presents further opportunity for opti-
mizations, such as accounting for specific hardware constraints like connectivity.

The circuit output of the decomposition can be compiled to any universal gateset.
The resulting circuit will have the same overall structure with an equal number of two-
qubit gates when the gateset includes a two-qubit gate that is equivalent to the CNOT
gate up to single qubit gates. This is the case for, among others, the CZ gate (part of
the native gateset of the IBM Heron) [19], the ECR gate (IBM Eagle) [96] and the XX gate
(trapped ions) [78]. The compilation to a different type of two-qubit gate will add ad-
ditional single qubit gates, but many of these can be merged into neighboring (generic)
gates.

If these circuits are executed on a quantum execution platform which has a more
permissive gateset, the diagonal gates can also be implemented with uniformly con-
trolled Z-gates [141] instead of CNOTs. QR, QSD and Cartan decompositions have also
been generalized to higher-dimensional quantum systems [94], which may offer practi-
cal advantage over two-level qubits [119]. If our decomposition is also generalizable to
multi-level quantum systems, it may result in more optimal gate counts for these types
of systems as well.

2

22 2. BEYOND QUANTUM SHANNON: CIRCUIT CONSTRUCTION FOR N-QUBIT GATES

As can be seen in Table 2.1, our approach improves upon the previous record holder
by (4n−2−1)/3 CNOT gates to achieve the best-known CNOT count for any generic quan-
tum gate of size three or more qubits.

3
EFFICIENT DECOMPOSITION

OF UNITARY MATRICES IN QUANTUM

CIRCUIT COMPILERS

In this chapter, we present our implementation of a unitary decomposition algorithm in
the programming framework OpenQL. Unitary decomposition is a widely used method
to map quantum algorithms to an arbitrary set of quantum gates. Efficient implemen-
tation of this decomposition allows for the translation of bigger unitary gates into el-
ementary quantum operations, which is key to executing these algorithms on existing
quantum computers.

Unitary decomposition can be used as an aggressive optimization method for the
whole circuit, as well as to test part of an algorithm on a quantum accelerator. For the
selection and implementation of the decomposition algorithm, perfect qubits are as-
sumed. We base our decomposition technique on quantum Shannon decomposition,
which generates O(3

4 4n) controlled-not gates for an n-qubit input gate.

In addition, we implement optimizations to take advantage of the potential un-
derlying structure in the input or intermediate matrices, as well as to minimize the
execution time of the decomposition. Comparing our implementation to Qubiter and
the UniversalQCompiler (UQC), we show that our implementation generates circuits
that are much shorter than those of Qubiter and not much longer than the UQC. At the
same time, it is also up to 10 times as fast as Qubiter and about 500 times as fast as the
UQC.

23

3

24 3. EFFICIENT DECOMPOSITION OF UNITARY MATRICES

This chapter is based on the following article1:

• Anna M. Krol, Aritra Sarkar, Imran Ashraf, Zaid Al-Ars, and Koen Bertels. “Efficient
Decomposition of Unitary Matrices in Quantum Circuit Compilers”. In: Applied
Sciences 12.2 (2022). ISSN: 2076-3417. DOI: 10.3390/app12020759

CODE AVAILABILITY
OpenQL can be found at: https://github.com/QuTech-Delft/OpenQL and the spe-
cific version and branch that were used to implement unitary decomposition and the
optimizations can be found here: https://github.com/anneriet/OpenQL.

1This article was completed before the work presented in Chapter 2, and therefore did not originally include
the improved block-ZXZ based decomposition.

https://doi.org/10.3390/app12020759
https://github.com/QuTech-Delft/OpenQL
https://github.com/anneriet/OpenQL

3.1. INTRODUCTION

3

25

3.1. INTRODUCTION
Quantum computing is promising to provide the next phase of performance improve-
ment for large-scale computing. To this end, many different algorithms have been de-
veloped in the theoretical domain, such as Shor’s algorithm for prime factorization in
polynomial time [178], or Grover’s algorithm for finding a specific input corresponding
to some output in

p
N time [74].

Recent years have seen some great strides in the field of physical implementations of
quantum computers as well. However, these still have some big limitations on the num-
ber of qubits, the error rates and the length of the circuits that can be executed on them.
Although quantum computers with as many as 128 qubits already exist [6], error rates
are of the order 10−2 −10−3 per gate [188]. Therefore, executing a circuit on a physical
quantum chip requires significant error correction, as well as mapping, scheduling and
other such measures [103].

These algorithms are executed on simulators, which come with their own set of re-
strictions. Some simulators require the use of specific qubit topology and limit possible
qubit states or the number of qubits, and all of them are bound by the classical resources
of the system the simulation is run on. The main resource limit is the memory necessary
to store the quantum circuit and the total qubit state, which is dependent on the length
of the circuit, the number of qubits and the degree of superposition. These also influ-
ence the processing time necessary to simulate the full circuit, which is generally done
by some form of matrix multiplications of the qubit state and each gate in the circuit.

Unitary decomposition is the process of translating an arbitrary unitary gate 2 into a
specific (universal) set of single and two-qubit gates. Unitary decomposition is necessary
because it is not otherwise possible to execute an arbitrary quantum gate on either a sim-
ulator or quantum accelerator. This makes it a required feature for algorithms that use
any type of gate that is not supported by the target platform or just produce an arbitrary
unitary gate that will need to be translated. In this chapter, only exact decomposition
algorithms will be considered for application on gate-based quantum computing.

This chapter proposes a highly-efficient method to implement unitary decompo-
sition for quantum algorithms using Quantum Shannon Decomposition. The chapter
shows that our approach is up to 10× more efficient in terms of the number of gates
generated for a given unitary matrix size and requires up to 100 times less wall-clock
execution time than other implementations. The contributions of this chapter are as
follows:

• Implementation of Quantum Shannon Decomposition for the unitary decompo-
sition of quantum algorithms;

• Decomposition optimizations that take advantage of the underlying matrix struc-
ture;

• The integration and evaluation of our method in the OpenQL quantum program-
ming framework;

2a unitary matrix U is a square, complex matrix, of which the inverse (U−1) and the conjugate transpose (U †)
are the same; i.e., U † =U−1 and UU † = I [5]

3

26 3. EFFICIENT DECOMPOSITION OF UNITARY MATRICES

• The optimization of the implementation of a quantum genome analysis use-case
using our method.

This chapter is structured as follows: In Section 3.2, applications for unitary decom-
position are discussed and some background is given on qubits, gate-based computa-
tion and the special qubit gates that are used this chapter. The specific decomposi-
tion method for multi-controlled gates is given in Section 3.3. In Section 3.4, several
decomposition algorithms are compared based on their resulting CNOT-count. The im-
plementation of the selected algorithm, Quantum Shannon Decomposition, is outlined
in Section 3.5. Experimental results are shown in Section 3.6 and compared to other im-
plementations in Section 3.7. Finally, the conclusion and future work can be found in
Section 3.8.

3.2. BACKGROUND

In this section, we first discuss the motivation for unitary decomposition in Section 3.2.1.
In Section 3.2.2, we will give the notation for the quantum and mathematical constructs
that are used in this chapter.

3.2.1. MOTIVATION FOR UNITARY DECOMPOSITION

Unitary decomposition is useful in several contexts. The first is the broad class of algo-
rithms that generate arbitrary unitary gates that need to be translated into a quantum
circuit, but it is also used to enable the more modular design of quantum algorithms or
as an aggressive optimization method.

We will use two quantum algorithms that we have developed in the context of
genome sequencing as an example of a possible application for unitary decomposition.
With genome sequencing, a genome sequence is first read as many short pieces which
then need to be combined to get the full DNA sequence. This is currently done using
many different algorithms, which are executed using (classical) high-performance com-
puting systems [85].

For genome sequencing using quantum accelerators, the DNA sequences can be
stored in superposition. The two algorithms that will be discussed both use a unitary
matrix in the process of finding the position of a short read (sequence of a small piece of
DNA) on a reference genome. That matrix needs to be decomposed before the algorithm
can be run on a quantum accelerator or simulator [167].

The first quantum genome sequencing algorithm we will use is Quantum In-
dexed Bidirectional Associative Memory (QiBAM) [167]. QiBAM uses a unitary or-
acle U (2n) = I (2n) − 2 |bp〉〈bp | assembled from a binomial distribution as |bx

p〉 =√
γh(p,x)(1−γ)n−h(p,x). Here, γ is a factor that influences the width of the distribution,

h(p, x) is the Hamming distance between the query pattern p and all memory states x,
and n is the number of qubits required to store the memory states. n is also the size of
the vector and resulting matrix.

3.2. BACKGROUND

3

27

ŜSp p =C Ry (2si n−1(−1/pp) =

1 0 0 0

0 1 0 0

0 0
√

p−1
p

−sp
p

0 0 sp
p

√
p−1

p

 (3.1)

The second genome sequencing algorithm is Quantum Associative Memory (QAM).
This uses a Hadamard-like transformation to store the patterns, assembled using Equa-
tion (3.1) [197].

In order to apply either gate from these two algorithms to qubits, they need to be
translated into some combination of (elementary) quantum gates that can be executed
on a quantum accelerator, and the same is true for other such algorithms.

Besides that, unitary decomposition also facilitates short-cuts in the design of new
algorithms. With unitary decomposition, a developer can keep part of an algorithm as
a unitary gate/matrix while working on some other part and test this. Otherwise, the
algorithm can only be executed in full when all of it is made out of known quantum
gates. Unitary decomposition allows the full algorithm to be tested and checked much
earlier in the development process on the target quantum chip or simulator.

Furthermore, unitary decomposition can be used as an aggressive optimization
method, because the maximum number of gates resulting from a decomposition can be
calculated easily beforehand. The maximum length of the circuit resulting from the de-
composition is only dependent on the number of qubits affected by the gate. For circuits
longer than this maximum, and thus consisting of more gates, the assembly of all gates
into a unitary matrix and then decomposing that matrix will always result in a shorter
circuit.

Someone programming in OpenQL might, for example, specify a circuit with three
qubits with 180 gates—this might be because of application semantics, code-readability
or because they did not consider the optimal way to program their quantum algorithm.
The total of 180 gates is more than the number of gates that would result from decom-
posing an arbitrary three-qubit gate. Thus, if the circuit is combined into a single unitary
matrix and then that matrix is decomposed using Shannon Decomposition, for example,
then the length of the circuit will be reduced from 180 gates to only 120 (84 rotation gates
and 36 CNOT gates).

Something to consider, however, is that the circuit resulting from the decomposi-
tion of a unitary matrix is longer than the theoretical minimum, and even the theoret-
ical minimum number of gates for a general n-qubit unitary gate becomes quite large
very quickly, since it scales with 4n−1 in the leading term. Thus, in most cases, a hand-
optimized and application-specific circuit will be shorter than the one resulting from
universal unitary decomposition. However, these hand-optimized circuits are labor-
intensive and require a significant amount of time to develop, while unitary decomposi-
tion can be done automatically.

3

28 3. EFFICIENT DECOMPOSITION OF UNITARY MATRICES

3.2.2. NOTATION
In this section, the notations are given for qubits, quantum gates, unitary matrices, the
universal set of gates that are used, quantum multiplexers and multi-controlled gates.

QUBIT NOTATION

A qubit state is represented in bracket notation as

|φ〉 =α |0〉+β |1〉 (3.2)

Besides the |_〉 notation, quantum states can also be represented as complex vectors:

α |0〉+β |1〉 = [
α β

]T
. This is especially useful for the combined state of multiple qubits,

where the first row of the vector corresponds to the binary number “0” in as many bits
as there are qubits. The second row corresponds to the number “1”, etc. As an example,
for a three-qubit state, the first row corresponds to |000〉, and the second to |001〉. This
continues to the final row, which is |111〉. The state vector has 2n rows for the state of n
qubits.

QUANTUM GATES

Qubits are manipulated using gates, which are matrices that operate on the qubit state
vector. To calculate the effect of gates on the combined qubit state, the state vector is
multiplied by the matrix representations of the gates in reverse order.

In the circuit notation, each line going into or out of a gate represents one qubit. To
represent n-qubit gates—gates that affect an unspecified number of qubits—a line with
a backslash through it is used.

(n +1)-qubit gate = 1 qubi t
Un qubi t s \

UNITARY MATRICES

A reversible quantum gate acting on n perfect qubits can be fully described as unitary
matrix [52]. The set of unitary matrices of size 2n by 2n is written as U (2n) and has the
following properties [5]:

• U † =U−1;

• U is diagonalizable;

• U (2n) has a set of 2n orthogonal eigenvectors;

• For a 2×2 unitary matrix U =
[

A B
C D

]
,
√

A2 +B 2 = 1.

The Special Unitary group, SU , is a subgroup of unitary matrices where

• |det (U)| = 1 for U in SU [170]

When a measurement is performed, the global phase (Φ) of the qubits does not influ-
ence the measurement probabilities. This means that all quantum gate operations can
be represented by a matrix in SU (2n) [32]. These properties are used to decompose the
matrix, using one of the algorithms described in Section 3.4.

3.2. BACKGROUND

3

29

UNIVERSAL SET OF GATES

In order to decompose all possible unitary matrices into quantum gates, a universal gate
set is selected as CNOT, the Rz (θ) and Ry (θ) gates. These three were selected because
they are used in most decomposition methods.

QUANTUM MULTIPLEXERS

Besides these conventional gates, there are several gates used in this chapter as inter-
mediate results for the various decomposition algorithms. The first is the quantum mul-
tiplexer, which corresponds to a unitary matrix corresponding to the following struc-
ture Equation (3.3).

U (2n) =
[

U0(2n−1) 0
0 U1(2n−1)

]
(3.3)

where U (2n) denotes a unitary gate over n qubits, which is a unitary matrix of 2n rows
and 2n columns. U0(2n−1) and U1(2n−1) are both (n − 1)-qubit gates. The rest of the
matrix of U is zero. The gate is uniformly controlled, which means that when the control
is 0, the upper left (U0) of the matrix affects the qubits. However, when the control is 1,
the lower right gate (U1) is applied. The circuit for this is shown in Circ. 3.1.

1
U (2n)

□

n −1 \
=

\ U0 or U1

Circuit 3.1: A quantum multiplexer

The first line is the controlling qubit, and the lower line is the rest (n−1) of the qubits.
The box with the line to the lower gate means that it is uniformly controlled.

MULTI-CONTROLLED (ROTATION) GATES

Another common intermediate gate is the multi-controlled (rotation) gate. This is a one-
qubit gate with k control bits. Rather than just applying a gate when all control bits are
zero, the applied operation to the target qubit can be different for each of the 2k possible
classical values of the control qubits.

This is written as F k
m(U (2)), which is a fully or multi-controlled U(2) gate with k con-

trol qubits, with the target qubit at position m. The circuit representation of this gate is
shown in Circ. 3.2. To indicate that an operation is applied for either state of the control
bits, a square control box is used.

1, . . . ,m −1 \

U (2k+1)

□

m = U (2) = F k
m (U (2))

m+1, . . . ,n \ □

Circuit 3.2: A multi-controlled U(2) gate.

3

30 3. EFFICIENT DECOMPOSITION OF UNITARY MATRICES

These multi-controlled gates correspond to a (block) diagonal unitary matrix, which
is why they show up frequently in decomposition schemes. This is shown in Equa-
tion (3.4).

F k
m(U (2)) = di ag j

(
U (2) j

)=
U (2)0

. . .
U (2)2k

 (3.4)

A multi-controlled rotation gate around axis a corresponds to the matrix shown in Equa-
tion (3.5). This can be any axis, but in this chapter, the multi-controlled Ry and Rz axes
are mainly used.

F k
m(Ra) = di ag j

(
Ra(θ j)

)=
Ra(θ0)

. . .
Ra(θ2k)

 (3.5)

3.3. DECOMPOSING MULTI-CONTROLLED ROTATION GATES
The multi-controlled rotation gates from Section 3.2.2 can be decomposed into a com-
bination of CNOTs and regular rotation gates. This can be done using the method from
[140], which results in 2k CNOTs gates and 2k 1-qubit rotation gates for a controlled rota-
tion gate with k control bits. To move from an F m

k (Ra)-gate to an F m
k−1(Ra)-gate, a circuit

such as Circ. 3.3 can be used.

□
=

• •
\ □ \ □ □

Ra Ra Ra

Circuit 3.3: Partial decomposition of an F m
k (Ra)-gate.

This can be extended until only CNOT gates and one-qubit rotation gates are left,
which leads to an example decomposition of a rotation gate with three control bits as
shown in Circ. 3.4.

To directly calculate which qubit is the control bit for each CNOT, this can be deter-
mined using Gray code. This is shown in the table below the circuit. The number of the
bit that is changed in the Gray code is the number of the qubit that will be the control
bit.

For each control bit of the multi-controlled gate, a one-qubit rotation gate and a sin-
gle CNOT is used, so the total decomposition of an F k

m-gate requires 2k rotation gates
and CNOTs [140]. This is the least-known number of gates for decomposing such a ma-
trix and is therefore used in almost all decomposition methods for (block) diagonal ma-
trices of this form.

3.4. COMPARISON OF DIFFERENT DECOMPOSITION METHODS

3

31

□

=
• •

□ • •
□ • • • •
Ra R1

a R1
a R1

a R1
a R1

a R1
a R1

a R1
a

bit 1
bit 2
bit 3

g0 g1 g2 g3 g4 g5 g6 g7

Circuit 3.4: Decomposition of an F 3
4 (Ra)-gate.

3.4. COMPARISON OF DIFFERENT DECOMPOSITION METHODS
In this section, first, the selection criteria for the various decomposition methods is out-
lined in Section 3.4.1. Then, the theoretical lower bounds for the number of gates result-
ing from decomposition are given in Section 3.4.2, with implementations for a one and
two-qubit gate in Sections 3.4.3 and 3.4.4. This is followed by an examination of various
general decomposition methods from the literature in Sections 3.4.5–3.4.8 and finally
the selection in Section 3.4.9.

3.4.1. SELECTION CRITERIA
Quantum computers are currently limited by the error rates and decoherence of
qubits [188], and the longer the circuit, the higher the chance of errors will become.
Therefore, the selection is based on circuit length, although the decomposition algo-
rithm is only tested with perfect qubits on a simulator for now. In accordance with the
motivations laid out in Section 3.2.1, only exact decomposition algorithms are consid-
ered.

For all decomposition methods, the number of gates resulting from the decomposi-
tion is only dependent on the number of qubits affected by the unitary gate. Thus, for
generic n-qubit unitary gates, the resulting circuit length can be calculated from the size
of the input matrix.

To measure the length of the resulting circuit, the number of CNOT gates will be used.
There are several reasons for that. The first is that not all papers distinguish between
generic one-qubit gates and rotation gates. The decomposition of a generic one-qubit
gate takes three rotation gates (see Section 3.4.3), so the comparison might be a factor of
three off if one-qubit gates are used to judge circuit length. The CNOT gate is used as the
result for all decomposition methods and always has the same definition. This makes it
a good metric for the total circuit length.

Secondly, each CNOT can generate entangled states between qubits [137], and for
execution of the circuit on (near-term) quantum devices, each CNOT between non-
neighboring qubits might introduce additional mapping operations [103]. Thus, to re-
duce mapping in the future, a circuit with as few CNOTs as possible is desired.

Thirdly, the error-rates for two-qubit gates are currently considerably higher than for
one-qubit gates [188]. Thus, the chance that an error occurs in a circuit becomes much

3

32 3. EFFICIENT DECOMPOSITION OF UNITARY MATRICES

bigger with more CNOTs. Thus, to make the decomposition feasible for near-term quan-
tum applications, it is not only important to keep the circuit-length low but especially
the CNOT count.

3.4.2. THEORETICAL LOWER BOUNDS
There is a theoretical lower bound for the number of CNOTs resulting from the decom-
position of an n-qubit gate, and it is mathematically proven to be 1

4 (4n − 3n − 1) [176].
There are implementations that reach this number for one and two-qubit gates [176], as
outlined in the next sections. This lower limit is included in the comparison, because it
is useful to keep in mind what is and is not possible in terms of algorithms for unitary
decomposition.

3.4.3. ZYZ DECOMPOSITION
For a one-qubit gate, no CNOT gates are necessary, and if rotation gates around any axis
are possible, only one such gate is needed to apply any one-qubit operation. However,
when using standard elementary gates, such as rotations around the Pauli X, Y or Z-axis,
the decomposition of an arbitrary one-qubit gate results in three rotation gates using
ZYZ decomposition [176].

One way to do this is with two rotation-z gates and one rotation-y gate. For this de-
composition, the anglesΦ,α,β,γ can be found so that the following equation is satisfied:

U (2) = e−iΦ
[

A B
C D

]
= e−iΦRz (α)Ry (β)Rz (γ) (3.6)

SU (2) =
[

A B
C D

]
= Rz (α)Ry (β)Rz (γ) (3.7)

These angles can be calculated using the eigenvalues of the matrix and are used in the
circuit shown in Figure 3.1. This is a universal decomposition for a one-qubit SU (2) gate
[176].

U = Rz (θ0) Ry (θ1) Rz (θ2)

Figure 3.1: Minimal universal quantum circuit for a one-qubit gate [176].

3.4.4. MINIMAL DECOMPOSITION OF TWO-QUBIT GATES
From the theoretical lower bounds, we know that at least 2.25 CNOT gates are needed for
a two-qubit gate. This rounds up to three CNOTs, and a circuit that achieves that number
is shown in Figure 3.2 [176].

To obtain the values for the gates of this circuit, first angles α, β and δ are found as
in the ZYZ decomposition (Section 3.4.3). These are used to make circuit v so that the
following holds:

(a ⊕b)v(c ⊕d) =U (4) (3.8)

3.4. COMPARISON OF DIFFERENT DECOMPOSITION METHODS

3

33

U
c Rz • a

=
d • Ry Ry • b

Figure 3.2: Minimal universal quantum circuit for a two-qubit gate using 18 elementary gates [176].

v
Rz (δ) •

=
• Ry (β) Ry (α) •

Figure 3.3: The circuit v used to construct a universal two-qubit gate [176].

The circuit v is shown in Figure 3.3.
Then, to get the one-qubit gates, first matrix A ∈ SO(4) can be found so that AUU T A†

is diagonal (SO(n) is the special orthogonal group, which means that the inverse of a
matrix Q is equal to its transpose: Q−1 = QT and det (Q) = 1). Through more diagonal-
ization, B ∈ SO(4) can be found so AUU T AT = B v vT B T and matrix C as C = v†B T AU ∈
SO(4). This leads to AT B vC =U , and because A, B and C are in the special orthogonal
group, they can be implemented by two unitary gates. After combining AT and B , the
four gates can be found as [176]

AT B = a ⊕b (3.9)

C = c ⊕d (3.10)

which gives the circuit in Figure 3.2. The four one-qubit gates can be implemented by
three rotation gates each, through ZYZ decomposition, so that the total rotation count is
4 ·3+3 and the total CNOT count is just the ones for the circuit v , and thus three. This
matches the theoretical lower bounds for an arbitrary two-qubit gate.

3.4.5. DECOMPOSITION WITH GIVENS ROTATIONS
In [194] a method of decomposition is described that uses the Givens rotation matrices
to perform the QR factorization of a unitary matrix. Each Givens rotation nullifies the
element on the i th column and j th row of a U (2n) matrix, as

1Gn,n−1U =

u1,1 u1,2 · · · u1,n
...

...
. . .

...
un−2,1 un−2,2 · · · un−2,n

ũn−1,1 ũn−1,2 · · · ũn−1,n

0 ũn,2 · · · ũn,n

 (3.11)

The modified elements of U are indicated with a tilde, and the element on the lower left
un,1 is nullified by the Givens rotation. Each Givens rotation matrix is equal to the iden-
tity matrix except for c = cos(θ) and s = si n(θ) for the elements at positions (i , i), (i , j),

3

34 3. EFFICIENT DECOMPOSITION OF UNITARY MATRICES

(j , i) and (j , j), with θ the angle of the Givens rotation. These are to nullify elements un-
til all elements below the diagonal are zero, at which point the following equality holds:
[194]

(
2n−1∏
i=1

2n∏
j=i+1

i G j , j−1

)
U = I (3.12)

By reordering the base vectors according to Gray code (see Section 3.2.2), the cosine and
sine elements will all be adjacent. This is convenient for quantum computation, because
that means that each Givens rotation matrix can be implemented by a controlled one-
qubit gate, C k

i , with k control bits. For one specific combined state of the control qubits,
the Γ gate is applied to qubit i , while for all other states, the target qubit is left unaffected.
This means that

2n−1∏
i=1

2n∏
j=i+1

C n−1
γ(i) (Γ†

(j ,k)) = SU (2n) (3.13)

iΓ j ,k :=
[i gk,k

i gk, j
i g j ,k

i g j , j

]
(3.14)

where γ(i) denotes the i th number of the Gray code, and the gates iΓ j ,k are formed from
the matrix for the Givens rotations. This results in the circuit shown in Figure 3.4 for the
decomposition of a two-qubit gate.

U

2Γ†
4,2 • 1Γ†

4,2

=
3Γ†

3,4
2Γ†

3,4
1Γ†

2,1
1Γ†

3,4

Figure 3.4: Decomposition into the Givens rotations [194].

The numbers of elementary gates and CNOTs were calculated using [19], which
are the numbers included in the table. Generally, this decomposition requires ap-
proximately 8.4 ·4n controlled gates, which follows from a recursive relation of gn(k) =
g 0

n(k)+ gn−1(k)+ gn−1(k −1) [194].

3.4.6. DECOMPOSITION THROUGH UNENTANGELING OF QUBITS
The first of the general decomposition methods uses consecutive unentangling of qubits,
since one of the ways to specify an n-qubit gate is by its effect on the base vectors. This
technique from [173] implements the correct behavior for each vector iteratively using a
method similar to QR decomposition, which leaves previous assessed vectors preserved.

To get here, the qubit state vector is divided into 2n−1 vectors of each 2 elements,
which are labeled |ψ j 〉 for j = 0, . . . ,2n−1 −1. For each of these vectors, Equation (3.15) is
used to determine r j , t j , φ j and θ j .

|ψ〉 = r e i t/2
[

e-iφ/2cos
θ

2
|0〉+e iφ/2si n

θ

2
|1〉

]
(3.15)

3.4. COMPARISON OF DIFFERENT DECOMPOSITION METHODS

3

35

So that:

Rz (−φ j)Ry (−θ j) |ψ j 〉 = r j e i t j |0〉 (3.16)

This corresponds to a circuit with a multi-controlled Ry and Rz , which is used to unen-
tangle the last qubit. The new qubit vector is assembled as in Equation (3.17). The circuit
to translate |φ〉 into |φ′〉 |0〉 will be called Ek as in Equation (3.18).

|ψ′〉 =
2n−1−1∑

j=0
r j e i t j | j 〉 (3.17)

F n−1
n (Ry)F n−1

n (Rz) |ψ〉 = Ek |ψ〉 = |ψ′〉 |0〉 (3.18)

This circuit is implemented with the multi-controlled Ry and Rz gate, as is shown in
Figure 3.5.

|ψ〉 \ □ □ |ψ′〉
Rz Ry |0〉

Figure 3.5: Unentangling a qubit state [173].

This method can be applied recursively to map an n-qubit stateφ to a scalar multiple
of a bit-string |b〉, which uses 2n+1 −2n CNOT gates.

Using this method to decompose unitary gates requires 2n−1 of these state prepara-
tion steps. At each step, a circuit C j is found that maps a unitary gate U j to a scalar mul-
tiple of | j 〉 so that U j+1 =C jU j . The final product U2n−1 will be a diagonal gate D, which

can be implemented with a multi-controlled RZ gate, so that U (2n) =C †
0C †

1 · · ·C †
2n−2D .

Each circuit C j needs (2n+1 −n) CNOT gates, and with the final diagonal gate this
leads to a total of 2 ·4n − (2n +3) ·2n +2n CNOT gates [173].

3.4.7. RECURSIVE COSINE SINE DECOMPOSITION
With the circuit presented in [191], an n-qubit gate is decomposed into multi-controlled
rotation gates. Cosine sine decomposition (CSD) is applied recursively until all the ma-
trices are diagonal.

With CSD, any even-dimensional unitary matrix U can be decomposed into real di-
agonal matrices C and S and smaller unitary matrices L0, L1, R0 and R1 as shown in
Equation (3.19) [147].

U =
[

U00 U01

U10 U11

]
=

[
R0 0

0 R1

][
C −S

S C

][
L0 0

0 L1

]
(3.19)

The left and right matrices are uniformly controlled gates; see Section 3.2.2. C and S
are diagonal matrices with the cosines and sines of angles θ j as the diagonal elements,
respectively, between the subspaces, as shown in Equations (3.20) and (3.21).

C = diag(cos(θ0), . . . ,cos(θn)) (3.20)

S = diag(sin(θ0), . . . , sin(θn)) (3.21)

3

36 3. EFFICIENT DECOMPOSITION OF UNITARY MATRICES

where the values θ are ordered from large to small and are between 1
2π and 0.

The central matrices from each recursive step correspond to multi-controlled Ry

gates which are decomposed as in Section 3.2.2. The other diagonal gates can be de-
composed into a circuit consisting of 1/2·n ·4n −1/2·2n CNOTs and 3/2·4n −1/2·2n one-qubit
rotation gates [51].

This is significantly improved upon in [139], which stops the recursion at uniformly
controlled one-qubit gates.

Furthermore, this proves that any uniformly controlled two-qubit gate (F n−1
n (U (2)))

can be decomposed into a specific sequence of 2n−1 − 1 CNOT gates, 2n−1 one-qubit
gates and one total global phase gate expressed as ∆n .

Furthermore, this proves that each multi-controlled two-qubit gate can be decom-
posed into a diagonal gate (∆) and a Gray code sequence of CNOTs and one-qubit gates.
The diagonal gates are folded into the central matrix from the CSD, so the total decom-
position is

U =∆n F̃ n-1
n (U (2))

2n-1-1∏
i=1

F̃ n-1
n−γ(i)(U (2))F̃ n-1

n (U (2)) (3.22)

Each F̃ n-1
n (U (2)) is decomposed with 2n−1 − 1 CNOTs, and the ∆n gate is implemented

with multi-controlled RZ gates. This results in 2n−2 CNOTs, which makes the total CNOT
count 1/2 ·4n − 1/2 ·2n −2. The resulting circuit is shown in Figure 3.6.

U
□ Ũ □ □ Rz

=
Ũ □ Ũ Rz

Figure 3.6: Recursive CSD decomposition [139].

3.4.8. QUANTUM SHANNON DECOMPOSITION
In [173], another way of using the CSD from Section 3.4.7, called Quantum Shannon
Decomposition (QSD), is introduced. The decomposition of a two-qubit gate is shown
in Figure 3.7.

U

Rz Ry Rz

=
G1 □ G2 □ G3 □ G4

Figure 3.7: Quantum Shannon Decomposition [173].

The start of the decomposition is the same as in Section 3.4.7, but the L and R matri-
ces are decomposed using eigenvalue decomposition. This is shown in Figure 3.8. The
resulting matrices are unitary gates applied to one less qubit than the starting unitary.
This leads to the circuit in Figure 3.7, where the D-matrix is implemented as a multi-
controlled Rz gate.

3.4. COMPARISON OF DIFFERENT DECOMPOSITION METHODS

3

37

L
□ Rz (θ)

=
L0 or L1

=
W □ V

Figure 3.8: Decomposition of the L matrix in QSD [173].

Quantum Shannon Decomposition is applied recursively until the final one-qubit
gates can be implemented with ZYZ decomposition. This means that only the multi-
controlled rotation gates contribute to the number of CNOTs, each of which requires
2n−1 CNOT gates for a single step of the recursion of an n-qubit gate. This leads to a total
CNOT count of 3/4 ·4n − 3/2 ·2n for this decomposition method.

There are two optimizations that can be implemented on top of this implementation
of Quantum Shannon Decomposition. The first is to stop the recursion at two-qubit
gates and translate those as in Section 3.4.4. The second optimization is to implement
the central multi-controlled Rz gate using CZ gates rather than CNOTs, of which one can
be absorbed into the neighboring multiplexer. This results in one fewer CNOT gate at
each level of the recursion. With these two implementations, the CNOT count comes to
23/48 ·4n − 3/2 ·2n + 4/3 [173] .

3.4.9. SELECTION OF THE ALGORITHM
For each decomposition method, the CNOT gate counts are compiled in Table 3.1 and
plotted in Figure 3.9. As an indication, the number of CNOT gates resulting from the de-
composition of a one to five-qubit unitary gate is given, along with the general formulas
for the number of CNOT gates resulting from the decomposition of an n-qubit gate, if
such a formula were available.

Table 3.1: CNOT counts for different implementations of unitary decomposition for one through five-qubit
gates, as well as an n-qubit unitary gate. The chosen algorithm is shown in bold.

Number of Qubits 1 2 3 4 5 n Section

Givens rotations [194] 0 4 64 536 4156 ≈ 8.4 ·4n Section 3.4.5
Iterative unentangling [173] 0 8 62 344 1642 2 ·4n − (2n +3)·2n +2n Section 3.4.6
KG Cartan decomp. [129] 0 3 42 240 1128 (21/16) ·4n −3(n ·2n−2 +2n) -
Recursive CSD [191] 0 14 92 504 2544 (1/2) ·n ·4n − (1/2) ·2n Section 3.4.7
Recursive CSD (optimized) [139] 0 4 26 118 494 (1/2) ·4n − (1/2) ·2n −2 Section 3.4.7
Block-ZXZ [50] 0 6 36 168 720 (3/4) ·4n − (3/2) ·2n Chapter 2
QSD [173] 0 6 36 168 720 (3/4) ·4n − (3/2) ·2n Section 3.4.8
QSD (optimized) [173] 0 3 20 100 444 (23/48) ·4n − (3/2) ·2n + (4/3) Section 3.4.8
Beyond QSD 0 3 19 95 423 (22/48) ·4n − (3/2) ·2n + (5/3) Chapter 2

Theoretical lower bounds [176] 0 3 14 61 252 (1/2) · (4n −3n −1) Sections 3.4.2 to 3.4.4

Table 3.1, the decomposition introduced in Chapter 2 results in the fewest CNOT
gates. But since that decomposition was not yet available when the work presented in
this chapter was completed, the optimized QSD was the best decomposition available at
the time. The choice was therefore made to implement QSD, although not the optimized
version. The optimizations from [194] can be implemented without any modifications

3

38 3. EFFICIENT DECOMPOSITION OF UNITARY MATRICES

2-qubit 3-qubit 4-qubit 5-qubit
Size of decomposed gate

0

500

1000

1500

2000

2500
Nu

m
be

r o
f g

en
er

at
ed

 C
NO

T
ga

te
s

CNOT counts for unitary decomposition algorithms
Givens rotations
Cosine Sine Decomposition (Base)
Iterative unentangling
Khaneja Glaser Cartan Decomposition
Block-ZXZ and Quantum
Shannon Decomposition (base)

Cosine Sine Decomposition (optimized)
Quantum Shannon Decomposition (optimized)
Beyond Quantum Shannon
Theoretical lower bounds

Figure 3.9: CNOT counts for different implementations of unitary decomposition for one through five-qubit
gates. Scaling formulas and gate numbers can be found in Table 3.1.

to a base implementation of the algorithm.
Besides that, QSD has several other advantages. The recursion is performed at gen-

eral n-qubit gates rather than multi-controlled one-qubit gates, which makes it relatively
simple to implement. If algorithmic implementations for three-qubit, four-qubit or five-
qubit or bigger general gates are found, they can be easily implemented. The same goes
for other specific optimizations. In addition, because the mathematical decompositions
are done separately for each step in the recursion, rather than all at once at the begin-
ning, any underlying structure in the beginning or intermediate matrices can be taken
advantage of immediately, therefore potentially skipping many computational steps as
well as decreasing the size of the resulting circuit.

For these reasons, the choice was made to go with Quantum Shannon Decomposi-
tion for the implementation of unitary decomposition in OpenQL.

3.5. IMPLEMENTATION IN OPENQL
The implementation of the decomposition in OpenQL is split into two parts: the calcula-
tion of all of the rotation angles, and the generation of the circuit. This is done so that the
implementation is independent from OpenQL. An example of unitary decomposition in
OpenQL can be found in Code Listing 3.1.

For unitary decomposition in OpenQl, first a Unitary object is defined, which is then
decomposed to calculate all the angles for all the rotation gates. The Unitary is then
added to a kernel as any other gate. The kernel is added to a program, which is compiled
with a compiler. The implementation is thus split between the Unitary class and the call
to kernel.gate().

Listing 3.1: Using unitary decomposition in OpenQL.

1 import os
2 from openql import openql as ql
3 import numpy as np
4 import sys
5

3.5. IMPLEMENTATION IN OPENQL

3

39

6 nqubits = int(sys.argv [1])
7

8 ql. set_option (’output_dir ’, os.path.join(curdir , ’output ’))
9 ql. set_option (’log_level ’, ’LOG_ERROR ’);

10

11 platf = ql. Platform (" starmon ", os.path.join(curdir , ’config . json ’))
12 program = ql. Program (’example ’, platf , nqubits)
13 kernel = ql. Kernel (" newKernel ")
14

15 compiler = ql. Compiler (" compiler1 ")
16

17 matrix = np.load(" data / out_ " + str(nqubits) + ".npy ")
18 u1 = ql. Unitary (" testname ",matrix)
19 u1. decompose ()
20 kernel .gate(u1 , range (0, nqubits))
21 program . add_kernel (kernel)
22

23 compiler . compile (program)

3.5.1. THE UNITARY CLASS
The Unitary is instantiated with a string and an array. The content of this array is the uni-
tary matrix, which is of size 2n×2n for an n-qubit gate. The complete Quantum Shannon
Decomposition is computed only when “decompose()” is called, and the calculated an-
gles for the resulting rotation gates are added to a list. This is done so that the Unitary
can be used multiple times in a program without the recalculation of the whole decom-
position.

However, before the decomposition is started, it is first checked whether the input
matrix is unitary. If this is the case, all of the intermediate matrices will also be unitary
[147], so this check is only necessary once. Furthermore, all of the Gray code matrices
needed for the multi-controlled rotation gates are added to a lookup table so they do not
need to be calculated anew at each decomposition step.

To make certain that the decomposition is correct, each single intermediate decom-
position is checked. For each step, only three matrices need to be multiplied, and this
saves any calculations that might be performed on an incorrect matrix. If any step of the
decomposition is not correct, an exception is thrown and the decomposition is stopped.

The Eigen [1] library is used to perform singular value decomposition (SVD), eigen-
value decomposition and matrix multiplication. The recursion is centered on a main
function, which takes as parameters a unitary matrix and the number of qubits. The
latter is to keep track of the level of recursion.

Computation of the CSD is done using the method from [147], which uses SVD.
The demultiplexing function uses Schur matrix decomposition for (sub)matrices smaller
than 26 × 26 and eigenvalue decomposition for bigger matrices. This is done because
Schur matrix decomposition is faster for small matrices [1].

The algorithm is recursive, and the demultiplexing step calls on the main function
again for the decomposition of the smaller unitary matrices. If the matrices are of size
2× 2, the rotation angles for the one-qubit rotation gates are calculated using ZYZ de-
composition as in Section 3.4.3.

Because the Unitary does not have access to the qubit numbers of the circuit, only

3

40 3. EFFICIENT DECOMPOSITION OF UNITARY MATRICES

the angles for the multi-controlled Ry and Rz are calculated at this point. This is done as
in Section 3.2.2 by solving the following matrix equalities:

M k

 θ1
...
θ2k

=

 α1
...

α2k

 (3.23)

where M k is a square matrix where all the entries are either “+1” or “−1”, which are cal-
culated using Gray code using Equation (3.24).

M k
i j = (−1)b(i−1)·γ(j−1) (3.24)

where the exponent is the bit-wise inner product of two binary vectors: bi and γ j . bi is
the integer i , and γ j is the j th value of the Gray code.

For the multi-controlled Ry gate, the values ofαi are calculated by taking the arc sine
of the diagonal entries of the S-matrix from the CSD. α1

...
α2k

= 2 ·ar csi n
(
Si ,i

)
(3.25)

For the multi-controlled Rz gates, the values of αi is calculated by taking the natural
logarithm of the D-matrix from the demultiplexing. α1

...
α2k

=−2 ·p-1 · ln
(
D(i ,i)

)
(3.26)

All the angles for all rotation gates are added to a list, which is used to generate the correct
gates when the Unitary is added to a circuit.

3.5.2. CIRCUIT ASSEMBLY
At the kernel level, when the (decomposed) Unitary object is added to the circuit, the
gates and CNOTs are assembled and added to the circuit list. At this point, it is checked
whether the Unitary is decomposed and if it is applied to the correct number of qubits.
The first is checked from a flag that is set to “true” at the end of the decomposition. The
latter is calculated from the size of the unitary matrix, which should be 2n × 2n for an
n-qubit gate.

Because the kernel only has the qubit numbers and the list of rotation angles, it does
not have insight into whether any optimizations have happened. Therefore, the gates
are added purely sequentially to the circuit, and each recursive call to the main function
returns the total number of rotation angles used up until that point. If gates have been
removed by an optimization, a specific angle is added to the circuit which signals how
many gates have been removed, and these gates are skipped during circuit generation.

3.5. IMPLEMENTATION IN OPENQL

3

41

It is expected that the decomposition will take the most time to compute, as well as
the most memory, since it contains the mathematical algorithms and matrix multipli-
cations. Comparatively, using the calculated angles to make the circuit will not require
much time or memory. Thus, adding the circuit sequentially is not expected to have
much of an impact on the total resources required by the circuit, while it allows for a
much more modular implementation of unitary decomposition.

3.5.3. COMPILATION OF THE OPENQL PROGRAM
After all gates have been added to the circuit, the kernel is added to a program which
is compiled in OpenQL. From this point, the gates from the decomposition are handled
in the same way as any manually added gates. Thus, the features and optimizations
from the lower levels of the programming language can be fully used for the circuit [103].
Afterwards, the circuit is transformed into quantum assembly language and written to
an output file as usual, or directly passed on to the simulator.

3.5.4. OPTIMIZATIONS
For the execution of the resulting circuit, it is important that it is as short as possible
for the reasons mentioned in Section 3.4. To this end, the algorithm itself was selected
to generate as few gates as possible. Combining and removing individual gates is per-
formed in a later compile step by the OpenQL compiler [103], but more structural opti-
mizations can be performed during the decomposition. For example, QAM, one of the
algorithms from Section 3.2.1, generates a unitary matrix that has an internal structure
that can be used to skip many steps in the recursion (see Section 3.2.1). The imple-
mented optimizations take advantage of the matrix structure through the early detection
of multiplexers and the detection of unaffected qubits.

DETECTION OF MULTIPLEXERS

Before the CSD is started, it is checked whether the upper right and lower left quarters of
the matrix are already zero-matrices. If that is the case, the matrix already has the struc-
ture of a multiplexer and is directly passed to the demultiplexing step. This is signaled
to the kernel by adding a specific gate angle to the list of rotation angles. This operation
halves the number of resulting gates for this step of the decomposition.

UNAFFECTED QUBITS

If a decomposition step leaves a qubit unaffected, then it is not necessary to apply any
gates to that qubit, and an n-qubit gate can be handled as an (n − 1)-qubit gate. This
reduces the resulting number of gates for this step by more than 3/4. Thus, before the
main decomposition is called, it is checked if the matrix is of the form A ⊕ I or I ⊕ A.
Each step of the QSD evaluates unitary gates on one less qubit, so any unaffected qubits
become the first or last qubit at some point in the decomposition. If an unaffected qubit
is detected, this is also signaled to the kernel. The unitary matrix of size (n −1) is then
assembled and passed back to the main function of the decomposition.

EXECUTION TIME OPTIMIZATIONS

There are also some optimizations to reduce the execution time and memory use of the
decomposition.

3

42 3. EFFICIENT DECOMPOSITION OF UNITARY MATRICES

One of the things done to reduce the total execution time and memory use is the
fitting of “.noalias()” flags to all places where the product of multiple matrices is assigned
to a different matrix. The Eigen library assumes aliasing for all such operations, and
without this flag it evaluates the result of a matrix product into a temporary matrix that
is then copied [1]. Another optimization is that all matrices are passed as references
where possible to prevent any unnecessary copying of data.

The execution time and memory use of the decomposition after these and other op-
timizations can be found in Section 3.6. Circuit generation and its associated steps scale
with approximately 22n , which is as expected since that implies a linear relation with the
number of matrix elements and the length of the circuit. The decomposition itself scales
as 23n [184].

3.6. EXECUTION TIME AND MEMORY ALLOCATION
The execution time of different parts of the decomposition is measured as the elapsed
wall-clock time, with measurements in between function calls to determine the relative
time consumption. The final execution times are shown in Figure 3.10. These tests were
executed using a Dell Latitude 7400 with an 8th Generation Intel® Core™ i7-8665U Pro-
cessor and 2× 4GiB DDR4 RAM.

No d
ec.

1-qubit
2-qubit

3-qubit
4-qubit

5-qubit
6-qubit

7-qubit
8-qubit

9-qubit

10-qubit
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

Lo
ga

rit
hm

ic
tim

es
ca

le
 (s

)

Execution time per component

No d
ec.

1-qubit
2-qubit

3-qubit
4-qubit

5-qubit
6-qubit

7-qubit
8-qubit

9-qubit

10-qubit
10 3

10 2

10 1

100

101

102

Lo
ga

rit
hm

ic
tim

es
ca

le
 (s

)

Aggregated execution time
compiler.compile(p)

p.add_kernel(k)

k.gate(...)

u1.decompose()

u1 = ql.Unitary(...)

matrix = np.load(...)

preamble

Figure 3.10: Execution time for the timed intervals, for the decomposition of different sizes of unitary matrices.

The program in Code Listing 3.1 has been used to determine the execution time and
memory used by the decomposition. Unitary matrices of sizes U (21) to U (210) were
randomly generated first, using QiBAM as outlined in Section 3.2.1. The matrices were
stored as binary files and loaded as required for the decompositions. The decomposi-
tion was repeated 1000 times for the smaller gates and 100 times for the decomposition
of the 10-qubit gate in OpenQL, with varying numbers for the intermediate sizes. The
execution time and memory use as reported in this chapter are the averages of these
runs.

To measure execution time, the Python “time” package was used to determine the
time difference between the start and various points of the program. The time for each
part of the code, as well as the resulting aggregated execution time, can be found in Fig-
ure 3.10 and Table 3.2.

As expected, the decomposition itself took the most time—more than 10 times that

3.7. COMPARISON TO OTHER PROGRAMMING LANGUAGES

3

43

of any other part. This is because of the considerable mathematical decompositions
and the number of matrix operations. One of the algorithms used in the decomposition
is eigenvalue decomposition, which is an iterative algorithm that requires O(6n) opera-
tions for an 2n ×2n matrix [23]. The data also show that the generation of the rotation
gates and CNOTs does not contribute much to the total execution time of the algorithm,
as expected. In addition, since the complete decomposition is calculated at design time,
it does not influence the run-time of the final circuit when it is executed on a quantum
accelerator.

Table 3.2: Total execution time at each line of Listing 3.1 for the decomposition of matrices of different sizes,
in seconds.

Line No dec. 1-qubit 2-qubit 3-qubit 4-qubit 5-qubit 6-qubit 7-qubit 8-qubit 9-qubit 10-qubit

Preamble 2.43·10−3 2.46·10−3 2.45·10−3 2.24·10−3 2.18·10−3 2.50·10−3 2.32·10−3 2.35·10−3 2.32·10−3 2.75·10−3 1.34·10−2

matrix =
np.load(..)

2.43·10−3 7.96·10−3 8.04·10−3 7.87·10−3 8.49·10−3 8.20·10−3 8.45·10−3 7.84·10−3 8.79·10−3 8.75·10−3 2.70·10−2

u1 = ql.
Unitary(..)

2.43·10−3 7.99·10−3 8.07·10−3 7.91·10−3 8.57·10−3 8.46·10−3 9.40·10−3 1.13·10−2 2.13·10−2 4.86·10−2 1.66·10−1

u1.
decompose()

2.43·10−3 8.15·10−3 8.33·10−3 8.30·10−3 9.71·10−3 1.61·10−2 3.49·10−2 1.29·10−1 7.82 ·10−1 4.60 ·100 3.98 ·101

k.gate(..) 2.56·10−3 8.20·10−3 8.39·10−3 8.39·10−3 9.95·10−3 1.70·10−2 3.63·10−2 1.35 ·10−1 8.09·10−1 4.70 ·100 4.02 ·101

p.add_
kernel(k)

2.56·10−3 8.21·10−3 8.39·10−3 8.40·10−3 9.97·10−3 1.71·10−2 3.63·10−2 1.36·10−1 8.11·10−1 4.71 ·100 4.03 ·101

compiler.
compile(p)

8.49·10−3 8.41·10−3 8.60·10−3 8.69·10−3 1.05·10−2 1.87·10−2 4.00 ·10−2 1.49 ·10−1 8.71 ·10−1 4.95·100 4.13·101

The same program has also been used to determine the memory allocation. This
has been measured using the Python memory_profiler package. The results of this are
shown in Table 3.3 and Figure 3.11. After an initial allocation of about 40 MiB, notewor-
thy additional allocation of memory occurs only when k.gate(...) is called. This means
that the complete unitary decomposition requires much less memory than generating
and storing the resulting circuit in OpenQL.

Table 3.3: Additional memory allocated at each line of Listing 3.1 for the decomposition of unitary matrices of
different sizes, in MiB.

Line
1-

qubit
2-

qubit
3-

qubit
4-

qubit
5-

qubit
6-

qubit
7-

qubit
8-

qubit
9-

qubit
10-

qubit

Initial 43.078 43.117 42.973 43.172 43.102 42.914 42.906 43.180 43.063 43.082
matrix = np.load(. . .) 0 0 0 0 0 0 0 0.734 1.375 4.570
u1 = ql.Unitary(..) 0 0 0 0 0 0.766 1.855 3.258 12.160 48.141
u1.decompose() 0 0 0 0 0.820 0.867 1.945 5.750 12.156 46.184
k.gate(..) 0 0 0 1.230 0.660 1.711 6.441 27.582 120.65 483.65
p.add_kernel(k) 0 0 0 0 0 0 0.316 1.344 4.441 18.105
compiler.compile(p) 0 0 0 0 0.313 0.328 1.535 6.039 24.141 16.137

3.7. COMPARISON TO OTHER PROGRAMMING LANGUAGES
We compare our OpenQL implementation to Qubiter and UniversalQCompiler. These
two are the only other quantum programming languages that, at the time of writing,
also offer unitary decomposition.

3

44 3. EFFICIENT DECOMPOSITION OF UNITARY MATRICES

1-qubit
2-qubit

3-qubit
4-qubit

5-qubit
6-qubit

7-qubit
8-qubit

9-qubit

10-qubit
0

50
100
150
200
250
300
350
400
450

Al
lo

ca
te

d
m

em
or

y
(M

iB
)

Additional memory allocated per line of code

compiler.compile(p)

p.add_kernel(k)

k.gate(u1, range(0,nqubits))

u1.decompose()

u1 = ql.Unitary("name",matrix)

matrix = np.load()

Initial

Figure 3.11: Additional memory allocated per line, for different sizes of unitary matrices

3.7.1. QUBITER
Qubiter [191] is a quantum compiler/programming language that aims to provide a set
of tools for designing and simulating quantum circuits. As part of that, they offer uni-
tary decomposition based on the recursive CSD from Section 3.4.7. Qubiter is written in
Python and uses numpy for the mathematics, as well as the LAPACK cuncsd function for
the CSD [51].

3.7.2. UNIVERSALQCOMPILER
UniversalQCompiler (UQC) is a software package written in the Mathematica language
that can be used to decompose various quantum operations into CNOT gates and single
qubit rotation gates. The resulting circuits can be displayed graphically or translated to
OpenQASM, a quantum assembly language used by IBMQ, among others [93].

One of the types of decomposition they have implemented is unitary decomposition
using QSD from [92]. This method produces 23/48·4n−3/2·2n+4/3 CNOTs, which is the same
number as in [173].

3.7.3. COMPARISON RESULTS
We compare the execution time and the number of gates our implementation generates
against Qubiter and UQC.

To obtain the total gate count, we use the number of lines in the output quantum as-
sembly, which also includes rotation gates and not just CNOTs. The results for OpenQL,
Qubiter and UQC are plotted in Figure 3.12. All of the implementations use an exact de-
composition algorithm and therefore generate a constant number of gates for each size
of the (non-sparse) input matrix.

It is clear that OpenQL always generates fewer gates than Qubiter, and almost all of
the difference is in the number of CNOTs. This is because we use QSD in our implemen-
tation of unitary decomposition in OpenQL. For a 5-qubit gate, unitary decomposition
with OpenQL generates a third of the CNOTs of Qubiter, and produces a total circuit that

3.7. COMPARISON TO OTHER PROGRAMMING LANGUAGES

3

45

1-qubit
2-qubit

3-qubit
4-qubit

5-qubit

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Nu
m

be
r o

f g
en

er
at

ed
 g

at
es

Gate count comparison

Qubiter total

Qubiter CNOTs

OpenQL total

OpenQL CNOTs

UQC total

UQC CNOTs

Figure 3.12: Number of generated CNOTs and total gates for OpenQL, UQC and Qubiter from the decomposi-
tion of different sizes of unitary matrices.

is almost twice as short.

When compared to UQC, our OpenQL implementation generates about 50% more of
any type of gate. This difference is because UQC uses an optimal circuit at the two-qubit
gate level, where OpenQL uses another iteration of QSD and then ZYZ-decomposition,
which results in more gates.

The implementations are also compared on the time used to compute the unitary
decompositions. The total wall-clock execution time for the decomposition and circuit
generation of 2 to 10-qubit unitary gates can be found in Figure 3.13. The total execution
time of all decompositions scales approximately linearly with the input matrix size (4n

for an n-qubit gate) for the decomposition of small matrices due to matrix loading and
circuit generation operations and then becomes 8n when the decomposition of bigger
matrices begins to take more time than the other steps. This is around the decomposi-
tion of seven-qubit unitary gates.

As can be seen in the figure, OpenQL is considerably faster than Qubiter and UQC.
When comparing the total execution times, it becomes clear that the OpenQL imple-
mentation takes more time per input matrix element (8n) due to the use of CSD. Qubiter
does not have that issue, but using unitary decomposition in OpenQL is about 10 to 100
times faster for the decomposition of 1 to 10-qubit unitary gates. This can most likely be
attributed to the languages the compilers are programmed in and how well the imple-
mentation takes advantage of the programming language. Qubiter is written in Python
and the UQC is written in Mathematica, both of which are considerably slower than C++,
used for OpenQL [10].

In addition to being faster, unitary decomposition in OpenQL generates a much
shorter circuit for all sizes of unitary matrices compared to Qubiter. For UQC, the tests
were stopped at the decomposition of an eight-qubit unitary gate, which took approx-
imately 450 s. Decomposing a nine-qubit gate was stopped after an hour, when it had
still not produced results. As a result, although the decomposition in UQC does result in

3

46 3. EFFICIENT DECOMPOSITION OF UNITARY MATRICES

1-qubit
2-qubit

3-qubit
4-qubit

5-qubit
6-qubit

7-qubit
8-qubit

9-qubit

10-qubit
0

100

200

300

400

W
al

l c
lo

ck
 ti

m
e

(s
)

Execution time comparison

Qubiter

OpenQL

UQC

Figure 3.13: Execution time of the decomposition and circuit generation for OpenQL, Qubiter and UQC for
different sizes of unitary matrices.

fewer gates, it also takes about 500 times as long as decomposition in OpenQL.

3.8. CONCLUSION
With the implementation of unitary decomposition, OpenQL can now be used for any
quantum algorithm that uses arbitrary unitary gates. One such algorithm is QiBAM
[167], which cannot be implemented without unitary decomposition.

The decomposition generates more gates than the theoretical minimum, but the
structure of the decomposition means that further optimizations can be easily inte-
grated with the current implementation. The decomposition is performed using Quan-
tum Shannon Decomposition, which is up to 10 times more efficient in the number of
generated gates than Qubiter and only 50% less efficient than the implementation of
UQC. Two optimizations were implemented to take advantage of the internal structure
of the input or intermediate unitary matrices, which can drastically reduce the length
of the resulting circuit. With these optimizations, the final resulting gate count can be
much lower than the illustrated worst case numbers.

The decomposition results in O(3
4 4n) CNOT gates and O(9

4 4n) total gates. Although
the execution time of the decomposition is O(8n) for matrices of size 2n × 2n , for the
decomposition of up to 10-qubit gates, our implementation is 10–100 times faster than
Qubiter and about 500 times faster than the implementation in UQC.

There are several avenues that can further bring down the number of gates the de-
composition generates, which are as follows:

• The implementation of a minimum two-qubit circuit, such as the one described
in [173] using the method from [76], if applicable;

• Additionally, the implementation of a universal three-qubit gate, such as the one
in [195];

3.8. CONCLUSION

3

47

• Implementing the multiplexed Rz gate with a CZ gate, as expressed in [173];

• Reworking the QSD so that the intermediate matrices cancel out, as the input ma-
trix has fewer degrees of freedom than the matrices resulting from the QSD. There-
fore, it might be possible to choose some of these intermediate matrices in such a
way that they can be decomposed using fewer elementary gates;

• The implementation of other specific efficient decompositions, such as controlled
unitary gates (as opposed to uniformly controlled gates), quantum multiplexers or
specialized multi-controlled rotation gates.

The implementation can also be updated to use the block-ZXZ based decomposition
method presented in Chapter 2, which can be optimized to generate a circuit with fewer
CNOT gates than is possible with QSD. Both decompositions have the same high-level
structure, which means that the circuit-level and execution time optimizations pre-
sented in this chapter will still provide the same, or similar, benefit with the new de-
composition method.

4
EFFICIENT PARAMETERIZED

COMPILATION FOR HYBRID

QUANTUM PROGRAMMING

Near-term quantum devices have the potential to outperform classical computing
through the use of hybrid classical-quantum algorithms such as variational quantum
eigensolvers. These iterative algorithms use a classical optimizer to update a parame-
terized quantum circuit. Each iteration, the circuit is executed on a physical quantum
processor or quantum computing simulator, and the average measurement result is
passed back to the classical optimizer. When many iterations are required, the whole
quantum program is also recompiled many times.

We have implemented explicit parameters that prevent recompilation of the whole
program in the quantum programming framework OpenQL, called OpenQLPC. These
parameters improve the compilation and therefore total run-time for hybrid quantum-
classical algorithms. We compare the time required for compilation and simulation of
the MAXCUT algorithm in OpenQLPCto the same algorithm in both PyQuil and Qiskit.
We show that efficient handling of parameterized circuits results in up to 70% reduction
in total compilation time for the MAXCUT benchmark, and leads to a reduced total exe-
cution time. With OpenQLPC, compilation of hybrid algorithms is also faster than either
PyQuil or Qiskit.

This chapter is based on the following article:

• Anna M. Krol, Koen Mesman, Aritra Sarkar, and Zaid Al-Ars. “Efficient Parame-
terised Compilation for Hybrid Quantum Programming”. In: 2023 IEEE Interna-
tional Conference on Quantum Computing and Engineering (QCE). vol. 2. 2023,
pp. 103–111. DOI: 10.1109/QCE57702.2023.10192

49

https://doi.org/10.1109/QCE57702.2023.10192

4

50 4. EFFICIENT PARAMETERIZED COMPILATION FOR HYBRID QUANTUM PROGRAMMING

CODE AVAILABILITY
OpenQL can be found at: https://github.com/QuTech-Delft/OpenQL and the spe-
cific version and branch that were used to implement efficient parameterised circuits
can be found here: https://github.com/anneriet/OpenQL. The code implementa-
tions of the MAXCUT benchmark in OpenQL, OpenQLPC, PyQuil and Qiskit can be found
at https://github.com/anneriet/efficient_params_code.

https://github.com/QuTech-Delft/OpenQL
https://github.com/anneriet/OpenQL
https://github.com/anneriet/efficient_params_code

4.1. INTRODUCTION

4

51

4.1. INTRODUCTION
Even though Google announced quantum supremacy in 2019 [11], universal, fault-
tolerant quantum computers are still a thing of the future. In the meantime, Noisy
Intermediate-Scale Quantum (NISQ) devices like the Google Sycamore Quantum Pro-
cessing Unit (QPU) have the potential to outperform classical computers in specific
cases [25].

The NISQ era means that anybody writing quantum algorithms has to contend with
a limited number of qubits and a trade-off between circuit depth and error-rates. The
demonstration from Google on a 53-qubit chip had a fidelity of only 0.2%, for exam-
ple [11].

Quantum algorithm development in the NISQ era is largely done with simulations
of quantum devices, which are more readily available and still faster than real quantum
devices. And many algorithms require more (interconnected) qubits than the current
state-of-the-art has to offer. In addition, simulators offer other advantages, such as ac-
cess to the full state of all qubits, error-free execution, setting of specific error rates and
repeatability of "random" results [101].

One such area of quantum algorithm development is hybrid quantum-classical al-
gorithms. These are expected to be the first algorithm candidates that will result in a
practical application for quantum computation [57]. Current quantum computers have
too few, too error-prone qubits to be sufficient to implement purely-quantum algorithms
such as Shor’s factorisation algorithm [177] or Grover’s search algorithm [73]. But with
hybrid algorithms, some of the processing is done on a classical computer, so quantum
circuits with less qubits and lower depth are required for the quantum device and more
fine-grained error correction can be applied [57].

VQE, and other variational hybrid algorithms, require many iterations of the same
quantum circuit. For each iteration, a set of parameters is updated according to some
classical (optimization) algorithm [57]. An example of the program flow for such algo-
rithms is shown in Figure 4.1.

Figure 4.1: Programming flow for hybrid quantum algorithms like VQE

Since compilers for quantum programming languages require a lot of processing to
produce an executable quantum circuit, doing a full compilation in each iteration con-
sumes significant amounts of time. For iterative hybrid algorithms, however, most of

4

52 4. EFFICIENT PARAMETERIZED COMPILATION FOR HYBRID QUANTUM PROGRAMMING

the circuit stays the same between iterations, which means that error-correction mech-
anisms, optimizations, decompositions, mapping, etc. are not affected. For VQE specifi-
cally, only some angles for rotation gates are changed, which means that most compila-
tion steps are not affected for parameterized gates.

With the increasing number of qubits quantum computers can support, and with
increasing qubit quality, the depth and complexity of executable quantum circuits will
increase. This in turn means that the amount of time spent during this recompilation
step will continue to increase, making it necessary to optimize it as much as possible. At
the same time, efficient classical compilation and simulation of quantum algorithms are
essential tools in the NISQ era and beyond. For as long as quantum supremacy has not
yet been reached, classical computers will continue to do part of the work.

Additionally, each QPU requires a classical control system, for data conversion and
implementation of QPU instructions. This classical device controls the qubits directly
through analog systems. When QPUs are integrated into High Performance Computing
(HPC) nodes, an additional latency bottleneck is introduced by the movement of data
across the complete stack of the HPC and quantum computing system [87]. This bottle-
neck can be improved by reducing the amount of data that needs to be transferred to the
QPU during the execution of hybrid algorithms [43].

In this chapter, we introduce OpenQL Parameterized Compilation (OpenQLPC)
which reduces compilation time and latency of hybrid quantum algorithms. The con-
tributions of this chapter are as follows:

• A more efficient compilation process for parameterized hybrid quantum program-
ming

• Implementation of our method in the OpenQL quantum programming framework

• Implementation of the MAXCUT quantum programming benchmark in
OpenQLPC

This chapter is structured as follows. A background on VQE and utilisation of pa-
rameters in programming languages is given in Section 4.2. Then the design goals are
presented in Section 4.3. The compilation process and improvements thereof can be
found in Section 4.4. After that, the methods and results are discussed in Sections 4.5
and 4.6. The conclusion can be found in Section 4.7.

4.2. BACKGROUND
To demonstrate the effect that a more efficient compilation of parameters can have, the
VQE algorithm will be used. We will compare our implementation, OpenQLPC, against
Qiskit (0.37.0) and PyQuil (3.1.0), so some background on these will be given as well.

4.2.1. VARIATIONAL QUANTUM EIGENSOLVERS
VQE is a class of hybrid quantum algorithms, i.e. it uses both classical and quantum re-
sources, to find solutions to eigenvalue and optimization problems. With VQE, quantum
devices with as few as 40-50 qubits might outperform purely classical approaches [149].
VQE can run on any gate-model quantum device, is able to leverage the strengths of a

4.2. BACKGROUND

4

53

specific architecture and to variationally suppress some errors [131]. To do this, it uses a
parameterized quantum circuit, where the parameters are updated variationally accord-
ing to a classical optimization algorithm.

The execution flow of VQE is shown in Figure 4.1. VQE can be used to determine the
ground state and the ground state energy of a Hamiltonian H .

To do this, a parameterized ansatz is used. The parameter values re adjusted with
each iteration of the circuit until convergence. The final parameter values determine the
ground state of the Hamiltonian [131].

There are many options for the choice of ansatz, as well as the choice of classical op-
timizer. The ansatz can be tailored to many aspects of the algorithm and system used,
such as the specific hardware implementation [131], specific problems, accuracy or cir-
cuit depth [72]. Different classical optimizers converge at different rates and respond
differently depending on the amount of noise present in the quantum system [148].

The number of iterations before algorithm convergence depends on many different
details. To give an indication, the qubit efficient implementation of VQE in [124] reaches
the ground state in 500 iterations, with 17-qubit circuits that contain 180 to 900 varia-
tional parameters. The various VQEs from [98] are 6-qubit circuits with 30 parameters
each done for 250 iterations, with 103 measurements per iteration to estimate the expec-
tation value.

4.2.2. PROGRAMMING OF PARAMETERIZED CIRCUITS
In this chapter, we compare OpenQLPC against Qiskit and PyQuil, quantum program-
ming languages from IBM and Rigetti, respectively. Both allow programming of para-
meterized circuits, are widely used and can be used as a library from a Python program.
This makes them a good comparison to OpenQLPC, which also has these features.

The aim of OpenQLPC is to be easy to use for new quantum programmers as well as
for people already familiar with these other languages. We will therefore give an overview
of how parameters can be used in these other languages and aim to make our syntax
similar so that adopting the new feature in OpenQL will be simple.

QISKIT

Qiskit is the quantum framework of IBM. It is suited for working with noisy qubits, which
can be simulated using their simulator, Qiskit Aer. This allows classical simulation of
circuits compiled using the Qiskit compiler, Qiskit Terra. Besides simulation, circuits
compiled using Qiskit Terra can also be executed on real quantum devices using IBM
Q [153].

The following example illustrates the use of parameterized circuits in Qiskit:

1 qcirc = QuantumCircuit (2)
2 theta = Parameter (" theta ")
3 pvec = ParameterVector (" pvec ", 2)
4 qcirc .ry(theta , 0)
5 qcirc .crx(pvec [1] , 0, 1)
6 qcirc . assign_parameters ({ pvec [1]: 1]} , inplace =True)
7 theta_range = np. linspace (0, 2* np.pi , 128)
8 circuits = [qcirc . bind_parameters ({ theta : theta_val }) for theta_val in

theta_range]
9 qcirc .qasm(filename =" output . qasm ")

4

54 4. EFFICIENT PARAMETERIZED COMPILATION FOR HYBRID QUANTUM PROGRAMMING

Defining parameters in Qiskit can be done individually, as shown above on line 2, or
as a vector with a specified length, as on line 3. Both can be used as gate arguments,
as on lines 4 and 5 of the example. Binding parameters to values can be done using the
command assign_parameters (line 6) to generate a single circuit, or by bind_parameters to
generate a list of circuits with a circuit for each value of the parameter. This is shown
on line 8. This code generates a list of 128 circuits, one for each of the values of theta as
defined on line 7. The circuit can be output as OpenQASM to a file, as shown on line 8.

The circuits can be run on a real quantum system by compiling them individually for
a specific backend. An example is shown here of how to run the circuits in the example
above:

1 compiled_circuit = transpile (circuits [64] , simulator)
2 compiled_circuit = assemble (circuits , simulator)
3 job = simulator .run(compiled_circuit , shots =10)
4 counts = job. result (). get_counts ()

On line 1, one of the circuits is transpiled to be executable on the simulator backend.
A list of circuits can also be compiled all at once, as on line 2. In both cases, the result-
ing compiled_circuit can be executed on any supported backend with the execute com-
mand, as shown in line 3. Any measurement results can be retrieved by calling result
().get_counts() as on line 4. This gives the measurement results as counts of how often
each possible bit combination was measured, for example: {’0’: 4, ’1’: 6}.

Compilation, execution and binding of parameter values can also be combined into
a single execute command, as shown below:

1 job = execute (compiled_circuit ,
2 backend = QasmSimulator () ,
3 parameter_binds =[{ theta : theta_val } for theta_val in

theta_range])

Using a single command to bind parameters and simulate the circuit makes it im-
possible to determine the individual execution time of the components from the host
Python program. So to get those results the separate commands are used. The compila-
tion is considered complete after the assemble command.

PYQUIL

PyQuil is the quantum programming language from Rigetti. It is compiled using the Quil
compiler into Quil, also the name of their Quantum Instruction Language [180]. PyQuil
can be used to write hybrid algorithms with parameters [99], which makes it a suitable
comparison to OpenQLPC.

A PyQuil program with the same overall functionality as the Qiskit example is shown
below. The program will be used to explain how parameters can be defined and used in
PyQuil [179]:

1 program = Program ()
2 ro = program . declare (’ro ’, memory_type =’BIT ’, memory_size =1)
3 theta = program . declare (’theta ’, memory_type =’REAL ’)
4 program += RX(theta , 0)
5 program += MEASURE (0, ro [0])

4.3. DESIGN GOALS

4

55

A quantum program is defined on line 1. Two types of parameter are declared on lines 2
and 3; ro will be used to store the measurement results, and the parameter theta is used
as argument for the RY gate on line 4.

The parameterized quantum program program from this example can be run for dif-
ferent values of theta, as shown in the following code listing [39]:

1 parametric_measurements = []
2 executable = simulator . compile (program)
3 for theta_val in np. linspace (0, 2 * np.pi , 128):
4 executable . write_memory (region_name =’theta ’, value = theta_val)
5 result = simulator .run(executable)
6 parametric_measurements . append (result)

In line 1, the array parametric_measurements is defined for storing the measurement re-
sults. The program from the previous example is compiled for a specific execution plat-
form, simulator in this case. A for-loop is used to iterate over the values of theta_val
(lines 3-6). On line 4, the value of theta_val is written to memory region theta. The

program is then run on a simulator and the measurement result is appended to the list
parametric_measurements on lines 5 and 6.

4.3. DESIGN GOALS
Implementation of parameters in OpenQLPCwas done with the following design goals in
mind: modularity, scalability, user-friendliness (usability), future-proof and speed.

Modularity: To make OpenQLPC robust against future changes to the host program-
ming language, the parameters will be implemented as a separate entity.

Scalability: This has two parts, the first is that OpenQLPC will make it easy for the
programmer to define many parameters, and to allow putting values to them in bulk as
well. The second part is that the overall compilation time should not be affected (too
much) by the number of parameters.

Usability: The syntax and use of the parameters will be made similar to other quan-
tum programming languages (Qiskit and PyQuil), for users already familiar with those
and to make manual rewriting of a program from one language to the other easier. Clear
errors should be provided, and parameter types should be explicit. Finally, the program-
mer should not be required to manually provide a string for each parameter, which can
become cumbersome for bigger programs. But manual naming should be supported, in
case human-readable common Quantum Assembly Language (cQASM) is desired.

Future-proof: Parameterisation also means a more clearly defined boundary be-
tween the static and dynamic parts of a quantum circuit, which can be used in the future
for a full split between those two compiler functionalities, or for detection of parallelism.
In addition, the compile speed, number of supported parameters etc. should allow this
feature to be used (and useful) into a future of quantum programming languages, where
extensive knowledge of quantum is no longer required to write quantum programs.

Compilation speed: OpenQL is a high-level quantum programming language with
an extensive compilation toolchain [103]. It supports gate decomposition, circuit opti-
mization, scheduling and mapping, all of which are necessary to be able to execute the
generated cQASM on NISQ devices [37]. This also makes the compilation in OpenQL and
all other such compilers computationally expensive, in terms of classical resources. For

4

56 4. EFFICIENT PARAMETERIZED COMPILATION FOR HYBRID QUANTUM PROGRAMMING

algorithms that require only a single compilation pass, the classical compilation time is
negligible compared to execution of a quantum program on a real quantum device, or
classical simulation of the circuit. However for iterative hybrid algorithms, such as VQE,
repeated compilation of essentially the same quantum circuit becomes a much bigger
drain on resources. With explicit definition of the dynamic parts of the circuit through
the use of parameters, the bulk of the compiler operations does not need to be repeated
for each iteration of the hybrid algorithm.

4.4. PARAMETERISATION IN OPENQLPC
The first time a quantum program is compiled (by calling compiler.compile(..)), the full
stack is executed, including gate decompositions, mapping, optimizations, etc. [103].
Without using our OpenQLPC approach, updating of any (parameter) values requires re-
peated execution of this whole stack, as shown with the grayed-out arrows in Figure 4.2.

4.4.1. COMPILE FLOW
With OpenQLPC, only the affected gates are updated with the numerical values of the
parameters as shown in Figure 4.2. This means that there is no unnecessary repetition
of the whole (extensive) compiler stack for every iteration of an iterative quantum algo-
rithm.

OpenQL Compilation Backend

Classical Computer

Expectation
value or cost
function

Quantum processor

Classical
optimiser

Quantum processor

Quantum processor

Ansatz

QASM

compiler

Measurement

results

New parameter values

Decompose Optimize Schedule Mapping

New parameter values

Figure 4.2: Compilation flow of OpenQL with and without using the new parameter implementation [103, 169]

In the first compile run, any parameterized quantum instructions without a numer-
ical value are skipped by any compiler passes that require that specific value. Mapping
and scheduling one (or a set of) instruction cannot be done when the qubit is not spec-
ified, but do not require knowledge of the angle of a rotation gate. When recompil-
ing, only parameterized quantum instructions and affected instructions are considered,
while the rest of the code is left unaffected. This might mean some optimizations that

4.4. PARAMETERISATION IN OPENQLPC

4

57

Table 4.1: Parameter syntax

[
openql.openql.

]
Param(Type

[
, Name

] [
, Value

]
)

Type : "INT" | "REAL" | "ANGLE"

Name : Symbolic name of the parameter, will appear unmodified in resulting cQASM
(string)

Value : Numerical value, must match the type as specified by Type

affect large regions of the code will not be done, but this effect is expected to be small
compared to the resources saved by not checking all of the code after each compilation.

4.4.2. IMPLEMENTATION
In this section, we will explain and document how parameters can be used in
OpenQLPCin more detail.

Before a parameter can be used it needs to be created, and at some point it will need
a (numerical) value. Assigning a numerical value to the parameter can be done at con-
struction, individually at any point in the program or at compile time. All this is ex-
plained in more detail below.

PARAMETER CONSTRUCTION

Parameter construction requires the specification of a type, which can be one of "INT",
"REAL" or "ANGLE". "REAL" and "ANGLE" are essentially the same, both map to an un-
derlying "double" type. Depending on the type, a parameter can substitute hard coded
qubit numbers or gate angles. Optionally, the user can specify a name for the parame-
ter at construction or directly assign a value to it. The syntax for parameter construction
can be found in Table 4.1. In the code listing below, example code is shown for parameter
construction with specification of 1. parameter type only, 2. type and parameter name,
3. type and numerical value, and 4. type, parameter name and numerical value.

1 p_int = ql. Param (" INT ")
2 p_real = ql. Param (" REAL ", " pname ")
3 p_angle = ql. Param (" ANGLE ", 1.724)
4 p_int2 = ql. Param (" INT ", " pname2 ", 4)

USING PARAMETERS

Parameters can be used in quantum circuits, in place of hard coded qubit numbers or
gate angles. Some examples of using parameters are shown below, where the parameters
are as defined in Section 4.4.2:

1 kernel . gate (" hadamard ", p_int)
2 kernel . gate ("rz", [0] , 0, p_real)
3 kernel . gate ("ry", p_int2 , p_angle)
4 kernel . gate (" cnot ", p_int , p_int2)

4

58 4. EFFICIENT PARAMETERIZED COMPILATION FOR HYBRID QUANTUM PROGRAMMING

On line 1 a "hadamard" gate is added to the kernel, where the parameter p_int is used in
place of the qubit number. On line 2, parameter p_real is used as the rotation angle of
the "rz" gate. Both of these can be combined, as on line 3, where the "ry" gate is applied
to the qubit number stored in parameter p_int2 and with the angle stored in p_angle.
Parameters can also be used for 2-qubit gates, as shown on line 4, where a cnot is applied
to qubits p_int and p_int2.

COMPILING PARAMETERS

Quantum programs with parameters can be compiled in the same way as circuits with-
out parameters in OpenQL, as shown in the code listing below:

1 compiler . compile (Program)

When the kernel from Section 4.4.2 is added to a program and compiled in this manner,
the resulting cQASM output is shown below:

1 hadamard % w5Bq1DRO
2 rz q[0] % pname
3 ry q[4], 1.724
4 cnot %w5Bq1DRO , q[4]

Line 1 shows the hadamard gate from Section 4.4.2 with parameter p_int. Symbolic names
in the cQASM code are preceded by the % symbol, and the randomly generated string
"w5Bq1DRO" is the "name" of this parameter. Line 2 shows the rz gate, applied to qubit 0.
The angle is the parameter p_real from Section 4.4.2. The name of this parameter was set
as pname at construction, and this is reflected in the cQASM output. On line 3, the ry gate
had p_int2 in place of a qubit number and p_angle in place of a rotation angle. Both were
constructed with a numerical value already set, which is reflected in the cQASM output
above, where instead of symbolic names the numerical values are used; qubit number 4
(q[4]) for p_int2 and 1.724 for p_angle

SETTING PARAMETER VALUES

There are three ways to set the value of a parameter in OpenQLPC. These are:

• at construction: p1 = Param(string, value),

• at any point individually:
Param.set_value(value), and

• at compile time: Compiler.compile(program, [p1], [value])

Setting a value at construction is outlined in Section 4.4.2, examples for the other two
ways are given here.

Assigning a numerical value to a single parameter can be done at any point in the
code by calling the set_value method. This is shown in the code below, where the p_int2
is defined as in Section 4.4.2.

1 p_int2 . set_value (2)

4.5. COMPARISON TO OTHER PROGRAMMING LANGUAGES

4

59

This assigns the value of 2 to p_int. It is also possible to modify the numerical value of a
parameter in this way.

When compiling and generating cQASM, the final value of a parameter will be used
for all instances of a parameter, so it is not possible to assign different numerical values
to a single parameter partway through a quantum circuit. The intended use is to mod-
ify parameter values between different iterations of a circuit, where the whole circuit is
compiled for each iteration.

It is also possible to set values at compile time. This can be done for all parameters at
once, or for a subset of the parameters. An example using the program from Section 4.4.2
is shown below:

1 compiler . compile (program , [p_int , p_real , p_angle], [1, 2.1 , -1.7])

With this line of code, the values of 1, 2.1 and -1.7 are assigned to parameters p_int, p_real
and p_angle, respectively, and the whole program is compiled.

This results in the following cQASM output:

1 hadamard q[1]
2 rz q[0], 2.1
3 ry q[4], -1.7
4 cnot q[1], q[4]

On line 1, the hadamard gate from before, with parameter p_int, is applied to qubit 1 (q[1]),
the value stored in p_int. This overwrites the value set in Section 4.4.2. The rz gate on
line 2 now uses an angle of 2.1, the value from p_real. The ry gate on line 3 is applied to
qubit 4 as in Section 4.4.2, since the value of p_int2 was not modified. The angle is now
-1.7, the value assigned to p_angle at compilation. On line 4, the cnot gate is applied from
qubit 1, as stored in p_int and to qubit 4, as stored in p_int2.

The resulting cQASM no longer contains symbolic names, and can now be executed
on a simulator or a real quantum device.

4.5. COMPARISON TO OTHER PROGRAMMING LANGUAGES
To determine the influence of parameters and to be able to compare the implementation
to other programming languages, execution time tests were performed. These were done
with the MAXCUT benchmark [133], which was implemented in OpenQL, OpenQLPC,
Qiskit and PyQuil.

4.5.1. THE MAXCUT BENCHMARK
MAXCUT is a hybrid algorithm which can be used for circuit layout design [17], statistical
physics and more [200]. It aims to find the division of a graph into two parts, where the
total weight of all edges between the parts is maximized [200]. The general case is an
NP-hard problem.

The MAXCUT benchmark from [133] was implemented in OpenQL, PyQuil and Qiskit
on 4-regular graphs of varying number of nodes. These graphs and this benchmark were
chosen because a reference implementation was already available, it can be easily scaled
up to any number of nodes and the number of qubits and the circuit depth both increase

4

60 4. EFFICIENT PARAMETERIZED COMPILATION FOR HYBRID QUANTUM PROGRAMMING

linearly with an increasing number of nodes. It is a variational quantum algorithm, with
an execution flow as in Section 4.2.1.

4.5.2. EXPERIMENTAL SETUP

In order to compare the performance of OpenQLPC with other programming languages,
the MAXCUT algorithm was implemented in OpenQL, OpenQLPC, Qiskit (0.37.0) and
PyQuil (3.1.0). Timing was done from the host Python program using the "time" package,
on a Dell Latitude 7400 with an 8th Generation Intel Core™ i7-8665U Processor and 2x
4GiB DDR4 RAM.

First, the compilation time was measured with minimal influence of outside factors.
To this end, the MAXCUT benchmark was run for each programming language with a
constant problem size of 3 steps and 15 nodes, while the number of iterations was varied
from 1 to 16. To avoid any influence of the classical optimizer on the measurements, the
parameter values for each iteration were randomly generated outside the timing loop.

Then, to determine the performance of OpenQLPC for the real benchmark, the com-
pilation and the total execution time were measured for the full benchmark for varying
problem sizes. The number of function evaluations for the classical optimizer was lim-
ited to 100, and any runs that reached convergence earlier were discarded.

To limit the influence of other factors on the measurement results, the angles for
each iteration were not generated using a classical optimizer, but randomly generated
outside of the timing loop. The number of steps was set at 3, as mentioned before, and
the number of nodes at 15. This corresponds to a circuit with a combined total of 330
CNOTs and rotation gates, and 15 measurement operators. For each separate measure-
ment, the language (OpenQL, OpenQLPC, Qiskit and PyQuil) and the total number of
iterations are randomly selected. For the iterations, a simple loop is used that compiles
the circuit with different angle values for the parameters. To make sure we include all of
the compilation steps but as few other steps as possible, the wall-clock starting time is
measured just before the first line where the quantum programming language was used.
Some programming languages use an ASAP strategy, while others only start the actual
compilation when a "compile" instruction is called. To verify that actual circuit genera-
tion took place for each iteration, (Open)QASM files are generated as output. All random
number generation and other preparation steps are done before the starting time, and
all handling and writing of measurement data after the ending time. The wall-clock end-
ing time is measured after all the iterations have completed, and total time is taken as
the difference between the ending and the starting time.

Timing was done for a total of 1, 2, 4, 6, 8, 10, 12, 14 and 16 iterations. Although
the circuit that is used in these tests comes from the MAXCUT benchmark, no classical
optimizer is used for this set of tests. This way, the number of iterations is not depen-
dent on any unknown factors, and the compilation time does not include the runtime
of the optimizer. The compilation of the circuits includes an optimization step to get
more realistic results and to better show the advantage that parametric compilation can
offer. With parametric compilation, the circuit will only be optimized (and decomposed,
scheduled and mapped) once, instead of every iteration. The Qiskit optimization level
was set to 1, which corresponds to "light optimization". This adds adjacent gate collapse
and redundant reset removal to the compilation stack [153]. The closest equivalent in

4.6. EXPERIMENTAL RESULTS

4

61

OpenQL is the "RotationOptimizer" pass, which tries to find sets of contiguous gates
that correspond to identity, and then takes those out of the circuit. Both of these opti-
mizations handle only small sets of adjacent gates, and remove or collapse them when
possible [102].

To determine whether the improvements made have an impact on any real appli-
cations, a full implementation of MAXCUT was used. The circuit and the parameters
are the same as in the previous set of tests, but now a classical optimizer was added to
the loop to determine the parameter values for the next iteration. The circuits were also
run on a simulator, and the measurement results coming from the simulator are used as
input for the optimizer. This makes the total execution flow as in Figure 4.1. The tests
were performed for regular graphs with between 3 and 8 nodes, with 3 steps to the algo-
rithm as before. Tests were performed interleaved where possible, and number of nodes
was randomized for each trial. For each run of the MAXCUT benchmark, the number of
function evaluations was limited to 100, and any runs that reached convergence earlier
where discarded. Therefore the total number of function evaluations for each language
is 100, although the number of circuit compilations and simulations can be lower. This
is because the loop is aborted preemptively if the optimizer generates negative angles or
angles bigger than 2π. The effect this has on the results is expected to be small, and it
should be the same for each language so does not influence the comparisons made.

4.6. EXPERIMENTAL RESULTS
The results for the first set of tests outlined in Section 4.5.2 can be found in Figure 4.3.
The figure shows the wall-clock time in seconds that it cost to compile for the different
numbers of iterations for OpenQLPC, OpenQL, Qiskit and PyQuil. Figure 4.4 shows these
measurements relative to the time of a single iteration (i.e., divided by the time it costs
to do just one iteration).

1 2 4 6 8 10 12 14 16
Number of iterations

0

100

200

300

400

W
al

l-c
lo

ck
 c

om
pi

la
tio

n
tim

e
(m

s)

41
65

376

112

157

203

246

290

333

3 6 12 17 23 29 34 40 45

4 5 9 12 15 18 21 25 28

Wall-clock compilation time

1 2 4 6 8 10 12 14 16
Number of iterations

0

200

400

600

800

1000

1200

1400

1600

W
al

l-c
lo

ck
 c

om
pi

la
tio

n
tim

e
(m

s)

1567

1571 1550 1592 1615 1611 1629 1629 1669

41 65 112 157 203 246 290 333 376

Wall-clock compilation time
PyQuil

Qiskit

OpenQL

OpenQLPC

Figure 4.3: Wall-clock compilation time for a MAXCUT circuit with 15 nodes, run without optimizer, with vary-
ing number of iterations for OpenQLPC, OpenQL, Qiskit and PyQuil

As can be seen in Figure 4.3, both OpenQLPC and OpenQL are considerably faster
than Qiskit and it is clear that all are much faster compilers than PyQuil. When con-
sidering the relative increase in compilation time, Figure 4.4 shows that OpenQL han-
dles repeat compilations worse than either Qiskit, OpenQLPC or PyQuil, since it is not

4

62 4. EFFICIENT PARAMETERIZED COMPILATION FOR HYBRID QUANTUM PROGRAMMING

optimized for this operation. In OpenQL, it takes 13 times as long to do 16 iterations
compared to a single iteration. This is because of setting up the circuit and the compiler,
which are done for each iteration instead of only once for the complete run in OpenQLPC.
The time that is saved by OpenQLPC for subsequent iterations can be seen in both ab-
solute and relative decrease in compile time. OpenQL and OpenQLPC take almost the
same amount of time for a single compilation, but for each subsequent iteration, there
is more and more time saved by OpenQLPC.

1 2 4 6 8 10 12 14 16
Number of iterations

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Co
m

pi
le

 ti
m

e
re

la
tiv

e
to

 a
 si

ng
le

 it
er

at
io

n

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.11.0

3.9
5.0

6.0
7.1

8.2
9.2

3.5

5.1

6.7

8.4

10.0

11.6 13.2

1.8
2.3

3.2
4.0

4.9
5.7

6.7
7.5

1.4
2.7

1.6

Relative increase in compilation time
PyQuil

Qiskit

OpenQL

OpenQLPC

Figure 4.4: Compilation time relative to the compilation time of a single iteration

Looking at the absolute compile times shows that Qiskit is an overall much slower
compiler than OpenQL or OpenQLPC. Inspecting the relative cost of compiling for mul-
tiple iterations, Qiskit shows some level of optimization for this type of repeated com-
pilations. Still these optimizations are not as effective as the ones implemented in
OpenQLPC, which is faster both in absolute terms and in relative cost of compilation.

Inspecting the compilation time of PyQuil, Figure 4.4 shows that consecutive itera-
tions do not incur much additional time. However, as can be seen in Figure 4.3, the com-
pile times of PyQuil are 10x to 100x higher than that of the other measured languages.
This might be because PyQuil has to be compiled by running a separate compiler on a
virtual machine in server mode, which is called from the main python program.

In Figure 4.5, we also inspect the accumulated compilation times for running MAX-
CUT with a classical optimizer for graphs of different numbers of nodes, for OpenQLPC,
OpenQL, Qiskit and PyQuil. OpenQLPC has the shortest total compile time, second is
Qiskit, then OpenQL, and the slowest by an order of magnitude is PyQuil. These bench-
mark runs were done with fewer nodes and more iterations (namely 100 iterations) than
the earlier tests, and it is interesting to see that OpenQL has overtaken Qiskit in com-
pile time. Although Qiskit takes considerably longer than OpenQL to compile a circuit
once, as noted before, the time that is saved for each subsequent iteration results in a
total shorter time spent compiling. The compile time of PyQuil shows that it is actually
the circuit length or the number of qubits that lead to such high compile times, as the
circuit with 3 nodes takes 614 ms to compile for 100 iterations, and the 15 node circuit

4.6. EXPERIMENTAL RESULTS

4

63

3 4 5 6 7 8
Number of nodes

0

200

400

600

800

1000
W

al
l-c

lo
ck

 ti
m

e
(m

s)

614
533

754
844 857 878

60 71 88 109 127 137
82 97

151 147 166 192

51 56 76 47 50 58

Accumulated compilation time for MAXCUT
PyQuil

Qiskit

OpenQL

OpenQLPC

Figure 4.5: Accumulated compilation time for the MAXCUT benchmark with 100 iterations for graphs with 3
to 8 nodes, for OpenQLPC, OpenQL, Qiskit and PyQuil

from Figure 4.3 takes 1567 ms for a single iteration. So although PyQuil uses little time
for compiling subsequent iterations, it is most likely just the first compilation pass of a
circuit that takes such a long time. OpenQLPC combines the already fast compile times of
OpenQL with efficiently handling iterations, and as a result is much faster than all other
tested options.

3 4 5 6 7 8
Number of nodes

0

1

2

3

4

5

W
al

l-c
lo

ck
 ti

m
e

(s
)

2.21
2.50

2.94

3.54
3.92

4.46

0.13 0.15
0.18 0.21 0.24 0.26

0.31 0.36
0.56 0.60 0.69 0.84

0.29 0.35
0.50 0.60 0.61 0.71

Total execution time for MAXCUT
PyQuil

Qiskit

OpenQL

OpenQLPC

Figure 4.6: Total execution time for the MAXCUT benchmark with 100 iterations for graphs with 3 to 8 nodes,
for OpenQLPC, OpenQL, Qiskit and PyQuil

Complete (simulated) runs of MAXCUT were also timed, to determine the influence
of the compiler optimization on the total runtime, and to verify that our earlier results do
not include any simulation. These are plotted in Figure 4.6. If any of the previous tests
included simulation, we would expect the measured compile times to be close to these
execution times. Since this is not the case, none of the tested compile times included
simulation.

The figure shows that total execution times are up to 50x higher than just compilation
times (Figure 4.5). So although the main difference in execution time between the pro-

4

64 4. EFFICIENT PARAMETERIZED COMPILATION FOR HYBRID QUANTUM PROGRAMMING

gramming languages is due to the difference in performance between the correspond-
ing simulators. Still, the same trend can be seen, where PyQuil takes the longest time by
far, and both OpenQL and OpenQLPC have similar performance, since OpenQLPC and
OpenQL both use the QX simulator. The figure also shows that the Qiskit Aer simulator
is the fastest of the tested options.

In summary, the results show that the improvements made for OpenQLPC result in a
clear speedup compared to OpenQL. Compared to Qiskit and PyQuil, OpenQLPC has the
fastest compile times for the MAXCUT benchmark. However, when looking at the total
execution time, the faster simulation by Qiskit Aer results in the shortest total execution
time of the benchmark. This can be partly explained by the large communication time
between OpenQLPC/OpenQL and the QX simulator, which requires writing and reading
of a QASM file for every iteration. This is especially apparent in the MAXCUT benchmark,
which has a lot of iterations for relatively short circuits, which results in a lot of read/write
operations compared to circuit compilation(s). Between the Qiskit compiler and the
Qiskit Aer simulator, however, the circuit can be passed directly.

4.7. CONCLUSION
In this chapter, we introduced OpenQLPC, an efficient approach to parametric compila-
tion for hybrid quantum-classical algorithms, and implemented it in the OpenQL pro-
gramming framework. OpenQLPC is designed to be modular, scalable, usable, future-
proof and fast. We compared wall-clock compilation time of OpenQLPC with OpenQL,
Qiskit and PyQuil. The total compilation time was measured using the MAXCUT bench-
mark from [133].

Experimental results show that compared to other programming languages, total
compile time of OpenQL and OpenQLPC are between 10 and 20 times faster than Qiskit,
respectively. PyQuil has the slowest compilation, about 60x longer than OpenQLPC. In
addition, comparing compile times of multiple compile iterations relative to single iter-
ations shows that OpenQLPC is the fastest, followed by Qiskit which is 1.2x slower, while
OpenQL took the most time being 1.8x slower than OpenQLPC.

The MAXCUT benchmark was also implemented in its entirety, including a classical
optimizer and simulations. These tests, with shorter circuits but more iterations than be-
fore, show that the improvements made in OpenQLPC result in a decrease of 40 to 70% in
(accumulated) compilation time. This makes OpenQLPC faster than all other tested lan-
guages. For the total execution (run)time of the MAXCUT benchmark, the performance
of the simulators has more influence than the compile times of the languages. The sim-
ulator used with PyQuil is still the slowest option by far, but the Qiskit Aer simulator is 2
to 3 times as fast as the QX simulator used by OpenQL and OpenQLPC. Even so, the faster
compile time of OpenQLPC does lead to a clear speed-up of the complete benchmark.

Furthermore, a single compilation of a quantum circuit is projected to become more
computationally expensive as more sophisticated mapping, optimization and error-
correcting algorithms are created and implemented, which will further increase the cost
of repeated compilations in hybrid algorithms and increase the impact of our approach.

Our approach can be extended to decrease the data transfer for hybrid algorithms,
which will improve the latency bottleneck caused by the movement of data over the en-
tire stack of HPC and QPU systems. Because we define the static and dynamic parts of

4.7. CONCLUSION

4

65

an algorithm explicitly, only the updated parameter values will have to be transferred to
the classical control systems of the QPU. But to implement such an extension requires
explicit access to these classical control systems. This was not available at the time of
writing, although there were existing proposals to provide the required access [159, 127].

After this work was completed, Amazon announced Braket hybrid jobs, which also
use parametric circuits to speed up the execution of hybrid quantum circuits [36]. This
is also illustrated in Figure 4.7. This paper and Amazon Braket hybrid jobs were both
presented at the QCE23 IEEE conference in Seattle.

Figure 4.7: AWS breakdown of runtime for a hybrid workload on Amazon Braket, with and without parametric
compilation [36].

5
QISS: QUANTUM INDUSTRIAL

SHIFT SCHEDULING ALGORITHM

In this chapter, we show the design and implementation of a quantum algorithm for in-
dustrial shift scheduling (QISS), which uses Grover’s adaptive search to tackle a common
and important class of valuable, real-world combinatorial optimization problems.

We show how QISS can be used to find the optimal schedule for n days out of a so-
lution space of size N = 42n . The optimal solution is reached within 99% of cases afterp

N = 4n applications of Grover’s oracle, which requires a total of 11n +11+⌈
log2(19n)

⌉
qubits for scheduling n days. We give an explicit circuit construction of the oracle, incor-
porating the multiple constraints present in the problem, and detail the corresponding
logical-level resource requirements. Further, we simulate the application of QISS to spe-
cific small-scale problem instances to corroborate the performance of the algorithm.

Our work shows how complex real-world industrial optimization problems can be
formulated in the context of Grover’s algorithm, and paves the way towards important
tasks such as physical-level resource estimation for this category of use cases.

This chapter is based on the following article:

• Anna M. Krol, Marvin Erdmann, Rajesh Mishra, Phattharaporn Singkanipa, Ewan
Munro, Marcin Ziolkowski, Andre Luckow, and Zaid Al-Ars. QISS: Quantum In-
dustrial Shift Scheduling Algorithm. Submitted to IEEE Transactions on Quantum
Engineering. 2024. arXiv: 2401.07763 [quant-ph]

CODE AVAILABILITY
The repository containing the full source-code of QISS can be found at
https://github.com/anneriet/QISS. This repository also contains the code that was
used to generate all the figures in this chapter. The full implementation of QISS is
located in the “QISS/QISS_with_cost.ipynb“ Python notebook and additionally in the
“QISS/operator_definitions.py“ python file.

67

https://arxiv.org/abs/2401.07763
https://github.com/anneriet/QISS

5

68 5. QISS: QUANTUM INDUSTRIAL SHIFT SCHEDULING ALGORITHM

5.1. INTRODUCTION
Many industries face complex optimization challenges too large and complex to solve
optimally [20]. For example, in the automotive industry, these problems may include
optimizing supply chain logistics [63, 189, 13], quality control [59, 79], robots path plan-
ning [171], and shift scheduling [192, 204]. These challenges feature numerous con-
straints and expansive solution domains that expand exponentially with each added
variable to the problem’s framework.

In particular, the shift scheduling problem in automotive production networks con-
cerns the creation of a schedule for the numerous production steps. The goal is to max-
imize productivity while considering dependencies between production steps, the dis-
crete number of possible shift durations, and working regulations and preferences. As
production steps, workers, and shift configurations increase, the solution space grows
exponentially.

Solving such industry-scale scenarios optimally for an extended period (e.g., one
year) is not feasible, so such problems are often solved heuristically [105]. Heuristic
methods can provide valid shift schedules in reasonable computation times, but can-
not guarantee an optimal solution, resulting in additional costs due to over-staffing or a
reduced production volume.

Quantum computing approaches for approximate solutions to such optimization
problems have also been proposed [133], such as [206, 75, 183, 169] based on quadratic
unconstrained binary optimization (QUBO) and quantum annealing, as well as quan-
tum acceleration of branch-and-bound algorithms [136] and reinforcement learn-
ing [168]. Like classical heuristics, most of these algorithms have no mathematical
bounds for the solution quality: they can provide feasible solutions under the right con-
ditions (e.g., a structured solution space), but it is impossible to say how close to the
optimal solution the algorithm got. It is therefore valuable to compare the approximate
answer to that of an exact solver for problem sizes that can still be solved exactly.

This chapter provides the first implementation of an exact quantum algorithm for
the industrial shift scheduling problem, which we call QISS. The term "industrial shift
scheduling" is chosen for simplicity for a problem that is about the optimization of the
schedule of factory shop operating hours, as described in Section 5.3. In other formu-
lations of the problem one may be faced with a related version, which differs e.g. in its
objective function or its constraints.

QISS is built upon the Grover’s adaptive search (GAS) procedure, wherein Grover’s
quantum algorithm is executed iteratively with input conditions at step i derived from
the output of step i −1. QISS then inherits the theoretical asymptotic quadratic speedup
over classical algorithms for unstructured search provided by Grover’s algorithm itself.

While unstructured search is not employed in practice as a method to solve
industrial-scale problems, it is often used on relatively small problem instances with
the goal of benchmarking the performance of heuristic algorithms. In this context, a
quadratic speedup could make a significant difference to the scope for analyzing the
performance of heuristics. Whether such a form of advantage can be achieved with an
exact quantum algorithm such as Grover’s may depend strongly on the use case at hand.
To begin to answer the question, one must construct an explicit quantum circuit for the
Grover’s ‘oracle’, which is responsible for identifying solutions that satisfy some desired

5.2. BACKGROUND

5

69

search criteria.
Our work details the construction of a Grover’s oracle circuit for the industrial shift

scheduling problem. In particular, we show how the problem’s characteristic and com-
plex constraints, related to production targets and intermediate storage limitations, can
be incorporated directly into the oracle. We expect our work to be valuable to researchers
investigating quantum computing approaches to similarly highly constrained optimiza-
tion problems, and in paving the way for a thorough physical-level resource estimation
for this specific problem type.

The contributions of this chapter are as follows:

• We formulate a shift scheduling problem with real-world constraints comparable
to industry-relevant use cases,

• We implement QISS, the first quantum algorithm that gives an exact solution to
the shift scheduling problem, and

• We verify and evaluate QISS to show the correctness of the algorithm and that it
can be used to solve the shift scheduling problem with quadratic speedup.

This chapter starts with a background discussion in Section 5.2 on the industrial shift
scheduling problem and current approaches to the use case, including quantum com-
puting algorithms like Grover’s search. The construction, implementation and valida-
tion of the quantum industrial shift scheduling algorithm are described in Section 5.4,
The chapter concludes with Section 5.6 with a summary of the findings. The accompa-
nying code is publicly available on GitHub.

5.2. BACKGROUND
This section will give background on the industrial shift scheduling problem, and an
overview of classical and quantum solutions for the use case.

5.2.1. INDUSTRIAL SETTING AND UTILITY OF THE PROBLEM
The literature on shift scheduling use cases is vast due to its relevance in almost all eco-
nomic and social sectors. Examples can be found for the optimization of nurse shift
schedules in hospitals [88], staffing of employees in call centers [130], retail [7, 97], or
the postal service [18]. Overviews of more use cases and solution approaches show the
whole spectrum of this optimization problem [146, 192].

Shift scheduling is also essential to production planning in manufacturing facilities,
especially in the automotive industry. To automate the scheduling process and mini-
mize costs while maximizing productivity, manufacturers use optimization algorithms
for shift scheduling. An optimization algorithm can analyze vast amounts of data and
variables, such as the production schedule, worker availability, working regulations, and
dependencies, to generate a shift schedule that meets production targets, reduces labor
costs, and improves worker satisfaction.

The main difference between shift scheduling in the manufacturing sector and other
sectors is the added constraint of a target production volume. Unlike other versions of
the shift scheduling problem, the objective is not to cover all shifts adequately. Instead,

https://github.com/anneriet/QISS

5

70 5. QISS: QUANTUM INDUSTRIAL SHIFT SCHEDULING ALGORITHM

the goal is to maximize the overall productivity of end-to-end manufacturing systems
comprising multiple production sites, referred to as shops, while minimizing labor costs
and complying with legal regulations.

One of the critical business motivations for implementing an automated shift
scheduling algorithm is the significant problem size associated with industrial manu-
facturing facilities. Companies operate in global production networks, and each facility
has its own unique production lines, teams, and shifts, making the scheduling process
complex and challenging. The optimal scheduling of thousands of employees working
in various roles, including production, maintenance, logistics, and administration, is
highly complex and implies a high potential for reduced labor costs and more consis-
tent production volumes.

More reliable production volumes are a crucial performance metric for manufactur-
ing companies, especially in the automotive industry, and any disruptions to the produc-
tion process can negatively affect this metric. An optimal schedule ensures that shifts are
planned prudently so that an adequate number of workers is always available. Interde-
pendent steps in the production process must be synchronized, and the limited inter-
mediate storage between these steps, so-called buffers, must be managed carefully to
minimize production downtime and increase the probability of reaching the production
target corridor.

Depending on the industry sector and the manufacturing entity’s size, the problem’s
scale can vary tremendously. In the automotive industry, the annual production volumes
of individual vehicle models reach values of several hundred thousand units with small
margins of a few percent of the overall volume.

The shift scheduling problem is known to be NP-complete [100]. The number of dif-
ferent shift configurations scales exponentially with the number of production steps in
the process and the number of days in the schedule. Thus, the solution space of industry-
scale scenarios with around ten production steps and approximately 300 working days
per year is too large to be fully explored with classical methods in a reasonable amount
of time, even when considering working time restrictions and regulative constraints cut-
ting the feasible solution space considerably.

In the remainder of this chapter, unless otherwise stated, when we refer to the
scheduling problem, this means the volume-constrained industrial shift scheduling
problem.

5.2.2. CLASSICAL HEURISTICS

Because of its complexity and large scale in industrial applications, the volume-
constrained shift scheduling optimization problem can currently only be solved heuris-
tically. Constructive heuristics allow dividing the problem into smaller parts, solving
each of them individually, updating the constraints according to the solutions found for
the prior parts, and combining them in the end to a valid solution [160].

The combined solutions of the subproblems do not necessarily form a globally op-
timal solution for the entire problem, even if each individual subproblem can be solved
optimally. An example of such a constructive heuristic based on optimal solutions of
subproblems is the following: a branch-and-cut algorithm identifies the optimal shift
schedule for the first week of one year [160]. The solution for this subproblem is used as

5.2. BACKGROUND

5

71

the basis for the subsequent week, the constraints and restrictions are adjusted accord-
ingly, and the branch-and-cut algorithm searches for the optimal solution for the next
week.

This process is iteratively repeated until the algorithm is unable to identify a valid
solution for a given week. In this case, the search procedure is repeated for the last week
with a valid solution. The previously found optimal solution is penalized such that an-
other valid solution is used as a new basis for the subsequent week. This constructive
search procedure runs until 365 consecutive days with valid schedules are found.

Even such a heuristic search procedure can take several hours of computation time,
due to the unstructured nature of the solution space of the shift scheduling problem. Un-
structured solution spaces are difficult to explore for optimization algorithms, because
solutions with small differences in their configuration can produce vastly different ob-
jective function values. Therefore, procedures like branch-and-cut algorithms - which
are based on excluding portions of the solution space that are guaranteed to not include
a solution that is better than the worst possible solution in the rest of the solution space
- scale badly with the size of shift scheduling problems.

The optimization of shift schedules has long been known to be hard to solve opti-
mally. Therefore, many other heuristic algorithms have been explored for different ver-
sions of the use case in literature, such as simulated annealing, genetic algorithms [15],
tabu search [55], and ant-colony optimization [77]. The employee shift scheduling prob-
lem has also been identified as an interesting use case for evaluating quantum comput-
ing algorithms and comparing their performances to classical methods [126, 20]. How-
ever, none of these studies has considered the volume-constrained shift scheduling use
case, which is significantly more complex to model.

5.2.3. GROVER’S ALGORITHM

QISS uses Grover’s adaptive search [31, 66] to find optimal shift schedules, which com-
bines classical adaptive search with Grover’s search algorithm. A short introduction to
Grover’s search is given here, while the full algorithm is described in Section 5.4.

Grover’s algorithm was initially formulated as a search algorithm for unsorted
databases, but has since then been used in various applications, ranging from optimiza-
tion [66] to approximate search [167]. The algorithm is designed for cases where only
one record satisfies a particular property. Any classical algorithm must take O(N) steps
because, on average, half of the N records need to be evaluated to find the target record.
A quantum computer can identify the record in only O(

p
N) steps with Grover’s algo-

rithm, thereby giving an asymptotic quadratic speedup over a classical random search
algorithm [73].

A high-level overview of the circuit implementation of Grover’s algorithm is shown in
Circ. 5.1. Grover’s algorithm consists of the following steps [66, 73]:

1. Initialization of the system to an equal superposition of all states in the solution
space. This is done by applying a Hadamard gate to each qubit.

2. An oracle that recognizes the states that are valid solutions, and multiplies their
amplitudes by -1. The oracle of QISS is implemented as O†CNOT(|−〉)O, where

5

72 5. QISS: QUANTUM INDUSTRIAL SHIFT SCHEDULING ALGORITHM

the CNOT gate is controlled by condition qubits in |c〉, which are set to |1〉 if all
conditions are fulfilled.

3. Grover’s diffusion operator D , which multiplies the amplitude of the |0〉n state (or
all states except |0〉n) by -1. This has the effect of inverting all amplitudes in the
quantum state about the mean, which amplifies the magnitudes of all states of
interest and decreases the magnitudes of all other states.

4. These are combined into Grover’s rotation operator G = DO†CNOT(|−〉)O.

5. The rotation operator can be repeated to amplify the state(s) of interest. A Grover’s
search with j rotations has j repeated applications of rotation operator G .

6. Sample the resulting state. For a problem with a solution space of size N and t
valid solutions, the probability of measuring a valid solution after j rotations is
P = t · |k j |2, where k j = 1p

t
sin

(
(2 j +1) ·θ)

and sin2θ = t
N .

Maximum amplification of the states of interest occurs at j = π
4

√
N
t , where N is the

size of the solution space, and t is the number of valid solutions.

|qS1〉 = |0〉 / H

Or acle
Reset =
Or acle†

Diffuser|qS2〉 = |0〉 / H

|qb〉 = |0〉 /

|q$〉 = |0〉 /

|c〉 = |0〉 / •
|−〉

Class. bits Output

Circuit 5.1: Circuit for Grover’s algorithm as used in QISS. Within the dashed line is Grover’s operator G , which
can be repeated to maximize the amplification of the target states.

5.3. SIMPLIFIED MODEL FOR SHIFT SCHEDULING
The production process of vehicles is a series of consecutive steps, some of which are
parallelized to increase productivity. In Figure 5.1, a sequence of five steps is depicted:
a press shop, body shops, a paint shop, mounting, and two assemblies. Here, a singu-
lar press shop supplies parts to three concurrent body shops that assemble the vehicle’s
body. These assemblies then progress to a unified paint shop for coloring, followed by
mounting where the vehicle’s body is joined to the chassis (also referred to “marriage”).
The production culminates in the assembly, bifurcated into two parallel processes in this
example. It is noteworthy that vehicles are buffered between certain stages to modulate
throughput.

5.3. SIMPLIFIED MODEL FOR SHIFT SCHEDULING

5

73

Figure 5.1: An example of an automotive productive line with five steps: a press shop, three parallel body shops,
a paint shop, mounting and two separate assemblies. There are buffers between the body, paint, mounting,
and assembly steps.

Figure 5.2: The structure of the simplified model: a body shop and a paint shop that share a buffer.

5.3.1. FEATURES AND CONSTRAINTS OF THE SIMPLIFIED MODEL
This chapter will consider a simplified model of the automotive production line consist-
ing of just two shops, a body shop and a paint shop, with a single shared buffer between
them. The goal is to find the optimal working time for each shop to meet an (annual)
production volume target with minimal costs. The model is shown schematically in Fig-
ure 5.2.

QISS outputs a schedule with a chosen shift length for each shop for each day. A
solution is valid if the schedule does not violate any constraints.The objective is then
to find the cheapest valid solution, where the sum of the operating costs of the shops
for the chosen shift lengths is as low as possible. Shifts are not assigned for individual
employees, but at the level of shops: how many hours should the whole shop operate on
a given day.

The simplified model has the following features and constraints:

• 2 shops: A body shop (S1) and a paint shop (S2).

• Both shops produce 1 unit/hour at $1/hour.

• Maximum of 1 shift per day per shop.

• Allowed shift lengths (in hours) for the body shop are [0, 5, 8, 10] and for the paint
shop they are [0, 4, 7, 9].

• No additional costs for different shift assignments on consecutive days.

• The shared buffer has an initial content of 5 units.

• The buffer cannot hold less than 0 or more than 10 units at the end of each day.

5

74 5. QISS: QUANTUM INDUSTRIAL SHIFT SCHEDULING ALGORITHM

• Target output volume V ∗ = 8n for n days.

• Over- or underproduction of ∆ = 0.05V ∗ is allowed: actual output volume is V =
8n ±∆.

The parameters of our simplified model have been chosen to ensure the problem
cannot be solved too trivially or easily. Scenarios in which the problem may become
simple to solve include those where: the possible shift lengths for shops S1 and S2 are
identical; the target output volume is so high (low) that the shops must essentially work
the maximum (minimum) number of hours; the buffer capacity is large enough to ac-
commodate multiple days’ worth of output from shop S1. We further remark that the
conditions we have chosen are realistic, e.g. it would not be practical or cost-effective to
construct a buffer capable of storing multiple days’ worth of output stock, which could
run into thousands of vehicles for real-world scenarios.

A mathematical formulation of our objective function to minimize is given by

C f =
#shifts∑

i=1

#shops∑
j=1

Si j C j , (5.1)

where #shifts is the product of the total number of days and the number of shifts per day,
#shops is the total number of shops, Si j denotes the assigned shift hours for shift i for
shop j and C j denotes the cost of operation per hour for shop j . The buffer is assumed
to have a constant cost and does not contribute to the cost function.

For this simplified model, the number of possible schedules grows with 16n for n
days, and a year with 280 working days has 21120 possible schedules. Checking all of
these schedules for validity and finding the cheapest of all the valid solutions is a com-
putationally prohibitive task. In Section 5.3.4 we provide supplementary information on
the simplified model, and discuss some of the complexities that arise when considering
more sophisticated, real-world models.

5.3.2. STRUCTURE OF SOLUTION SPACE
To discover methods that more efficiently explore the solution space than a pure brute-
force search, an important question is whether feasible solutions (those that satisfy all
the constraints) exhibit any discernible structure. If they do, then one can potentially
(partially) exclude infeasible regions from the search.

In the industrial shift scheduling problem, we note that the output production vol-
ume constraint can in principle be used in this way. We have both a lower and upper total
number of units that can be produced, i. e., V− = 8n−∆ and V+ = 8n+∆, respectively. We
can easily convert these into the required number of hours that must be worked in total
by each of the two shops. For example, to achieve an output of V−, at a minimum, shop
1 must work V−−Bi ni t hours, and shop 2 must work V− hours. A similar condition can
be derived to ensure that no more than V+ units are produced.

These conditions on the shop working hours could then be used to avoid searching
through solutions where the production volume is outside the allowed range. For in-
stance, a classical brute force algorithm could be restricted in its scope by only checking
solutions satisfying the above conditions. In the case of Grover’s algorithm, in principle,

5.3. SIMPLIFIED MODEL FOR SHIFT SCHEDULING

5

75

Figure 5.3: Total cost vs. output volume for 1623 feasible solutions (each represented by a blue dot) of the
n = 365 days simplified shift scheduling model described in Section 5.3. The feasible solutions were obtained
using simulated annealing.

one could prepare (e. g., using a quantum random access memory [67]) the initial state as
a superposition only of solutions that respect the conditions. While the overall complex-
ity of the problem is unchanged, in practice, the restriction to a subspace could lead to
a significant speedup over a full brute-force search. Nevertheless, an exhaustive search
within the identified subspace would still be necessary to obtain an exact solution.

To illustrate the nature of the feasible solution space for the simplified model for
the case of n = 365 days, Figure 5.3 shows the relationship between the total cost and
the total output volume for a total of 1623 feasible solutions found using a simulated
annealing algorithm. A notable feature is the large variance in the cost of solutions that
achieve the same output volume. For example, of the solutions achieving an output of
2774 units, there is a difference of around $100 in the cost of the solutions found. This
shows that cost minimization is not necessarily achieved simply by limiting production.

5.3.3. A LOWER BOUND FOR THE COST

A simple way to compute a lower bound on the cost for the simplified model follows
directly from considering the volume target. At the very least, we know that any feasible
solution must result in an output of V ∗−∆ vehicles. Therefore, we know with certainty
that we must incur a minimum operating cost that corresponds to the labor required to
produce those vehicles.

Denoting our lower bound for the cost value as CLB , we can compute it simply as the
sum of the cost of the work required by both shops:

CLB = (
V ∗−∆−Bi ni t

)+ (
V ∗−∆)

(5.2)

For the data specified in Section 5.3.1, we find that CLB = $5543.
Such a formula is easily generalizable to the case of multiple shops and buffers, mul-

tiple vehicle types, and different hourly costs and hourly production rates for the shops.

5

76 5. QISS: QUANTUM INDUSTRIAL SHIFT SCHEDULING ALGORITHM

It may be possible to find a tighter lower bound than this, a question that we leave for
future work.

Note that this method of obtaining a lower bound does not yield an explicit solution
(shift configuration) corresponding to the cost CLB . Moreover, we emphasize that CLB is
not necessarily the cost of the (unknown) optimal solution, which we denote COPT , al-
though it is certainly the case that CLB ≤COPT . Coincidentally, as we see from Figure 5.3,
for the simplified model defined in Section 5.3.1, we do indeed have COPT =CLB . How-
ever, this may not hold if the data specifying the model were to be modified, and it is also
unlikely to hold for more complex versions of the industrial shift scheduling problem.

5.3.4. BEYOND THE SIMPLIFIED MODEL

More complicated versions of the industrial shift scheduling problem can consist of
multiple shops, multiple buffers, multiple vehicle types, and non-linear production line
structures, as depicted in Figure 5.1. One complication in tackling these problems is the
increased size of the solution space, but there are a number of additional issues that can
complicate the structure of the solution space itself.

For a given shift configuration, for any given shift, each shop is scheduled to work a
certain number of hours, which in turn determines how many units can be processed
during that shift. In the simplified model, the shop can be idle if the upstream (i.e. pre-
ceding) buffer is emptied during a shift, but a schedule is marked invalid if a chosen shift
length results in buffer overflow of the downstream (i.e. following) buffer. This situa-
tion can also be handled with idle time if a shop would otherwise produce more units
than the downstream buffer can hold. For example: if the downstream buffer of a shop
can only hold five more units before being full, the shop can still be scheduled to run
for more than five hours without causing the schedule to be marked invalid. The shop
will then be idle after it has produced five units. As a result, the total output volume can
exhibit a complex relationship with the number of hours worked by the shops.

In the case where there are multiple shops and intermediate buffers, the calculation
of the total output volume and buffer occupation becomes yet more complicated. For
instance, on a given day the occupancy of the final buffer in a production line depends
on the occupancy of all upstream buffers on the previous day, and on the hours assigned
to the upstream shops on the current day. Not only does this imply a larger computa-
tional runtime, but it also further complicates the relationship between the total output
volume and the number of hours worked, and hence the total operating cost.

A second example is that of shared buffers, where, for instance, the output of two
body shops is passed into a single buffer. The two body shops produce different vehicle
models, each of which has its own total output volume target. If a single paint shop is re-
sponsible for work on both of these vehicle models, then we must specify the quantities
of the different models to be passed from the buffer to the paint shop. As an example,
one could choose a ratio based on the respective output volume targets. However, such
a simple rule could lead to inefficiencies, since it does not take account of the actual
quantities of each model in the buffer at a given time, and as a result idle time may be
introduced. One could introduce more complex rules for extracting vehicles from the
buffer, at the expense of a larger computational runtime.

Complications such as the two mentioned here, which are a result of more elaborate

5.4. ALGORITHM DESIGN AND VALIDATION

5

77

production lines, may affect the scope for restricting the search space in the spirit of the
example given in Section 5.3.2 above.

5.4. ALGORITHM DESIGN AND VALIDATION

QISS leverages Grover’s algorithm [28] in combination with an adaptive search proce-
dure, collectively referred to as Grover’s adaptive search (GAS) [31, 66], to provide exact
solutions to the industrial shift scheduling problem. GAS is described in Algorithm 1.

QISS returns shift schedules that satisfy the problem constraints, with the lowest
cost. Compared to a classical brute-force search, QISS benefits from the asymptotic
quadratic speedup delivered by Grover’s algorithm. As we remarked in the introduction,
this speedup may be useful in extending the scope for benchmarking the performance
of heuristic algorithms designed to tackle industrial-size problem instances.

We use a simplified model of a vehicle assembly line for this proof-of-concept of QISS
(Section 5.3). Based on the constraints of the model, we construct an oracle that marks
input states (schedules) as valid or invalid. First, we map all possible combinations of
possible shift lengths to binary numbers in equal superposition on qubit registers |qS1〉
and |qS2〉. This superposition of states defines the solution space, and the qubits in this
register are the only qubits that are measured at the end (Section 5.4.1).

Then we define qubit registers to calculate the buffer content, total cost and solu-
tion validity (Section 5.4.2). Calculating buffer content and cost is done through adders
in the Fourier basis, using the technique from [56]. Quantum Fourier Transforms are
used to transform the qubits from the Fourier basis to the computational basis and back
(Section 5.4.3).

Conditions are checked by addition or subtraction of relevant upper or lower limit
values, so a condition is (not) met if the qubits hold a (positive) negative number. This
can be easily checked because we use Two’s complement encoding (Section 5.4.4).

To mark the states we want to amplify, we use a register |c〉 with a condition qubit
for each of the conditions of the model. The corresponding qubit is set to |1〉 when a
condition is met. Using a multi-controlled NOT gate, a single output qubit is flipped
if all condition qubits are in |1〉. When the output qubit is initialized to the |−〉 state,
this operation applies a phase shift to all the states that we want to mark. We verify
the completed circuit for the first day (Section 5.4.5), and then extend it for scheduling
multiple days (Section 5.4.6).

By updating the maximum allowed cost of the solution, only those schedules with
lower cost are amplified by Grover’s algorithm. When there are no more valid solutions
left, the optimal solution has been found(Section 5.4.7). For bigger problem sizes, we do
not know the number of valid solutions nor do we know if we have actually reached the
optimal solution. This is why we need a general stop condition.

With GAS, the maximum cost at each iteration is set to the lowest cost that has been
found, up to that point. We will stop the algorithm when the total number of rotations
exceeds

p
N . This yields goods results, which we have validated using simulations for

shift schedules up to three days (Section 5.4.8).

5

78 5. QISS: QUANTUM INDUSTRIAL SHIFT SCHEDULING ALGORITHM

Algorithm 1: Grover’s adaptive search

1 Goal: Find the lowest value for y = f (x)
Input: Oracle that flags all states x where f (x) < ymi n

2 Set m to 1 and λ to 6/5 or any value 1 <λ≤ 4/3
3 Set xbest to an initial (valid) state
4 Set ymi n to a best guess for the solution
5 repeat
6 Choose j randomly from all integers 0 ≤ j < m
7 Apply Grover’s search with j rotations and measure the circuit
8 Set x to the measurement result
9 if f (x) < ymi n then

10 Set ymi n to f (x) and xbest to x
11 Set m to 1

12 else
13 Set m to the smaller of λ ·m and

p
N , where N equals the total number of possible

solutions

14 until a stop condition is met
Output: xbest and ymi n

5.4.1. DATA ENCODING
The shift assignments per shop function as the decision variables and are encoded in
binary form, using log2(i) qubits to store i different choices for shift assignments. Com-
pared to a one-hot encoding, this approach uses fewer qubits and ensures that each shop
is assigned a single shift length per day.

The encoding for the shift length for each shop in the simplified model is shown in
Table 5.1. We need four qubits per day, two for each shop. Shift lengths are combined as
|S1〉 |S2〉, for example |01〉 |11〉 means a shift of 5 hours for shop 1 and a shift of 9 hours
for shop 2. Encoding for multiple days is done by simply adding four qubits per day
to allow for solutions with different shift lengths for different days. The combination of
these states for both shops and all days will make up the solution space for QISS.

Table 5.1: Encoding of shift length in hours into qubit states for shops 1 and 2.

Shift length in hours
Qubit state

Shop 1 Shop 2

|00〉 0 0
|01〉 5 4
|10〉 8 7
|11〉 10 9

The number of units in the buffer is stored in a separate register in Two’s complement
form. Compared to other signed number representations, Two’s complement has the ad-
vantage that the operations for addition, subtraction, and multiplication are identical to
those for unsigned binary numbers. With Two’s complement, the most significant bit

5.4. ALGORITHM DESIGN AND VALIDATION

5

79

(MSB) of a binary number is ‘0’ for positive numbers and zero, and ‘1’ for negative num-
bers, which simplifies checking for the constraints later. To convert a negative number to
its b-bit Two’s complement equivalent, we can add 2b and convert the resulting number
as if it were an unsigned binary number. For example, the number −2 in three-bit Two’s
complement is 23 −2 = 8−2 = 6 =‘110’.

|qS1,1〉 • • • • • •
|qS1,2〉 X • • • • • X •
|qb0〉 P (2π

2 8)

U (8)

|qb1〉 P (2π
4 8) =

|qb2〉 P (2π
8 8)

|qb3〉 P (2π
16 8)

|qb4〉 P (2π
32 8)

Circuit 5.2: Conditional data encoding of the number 8 on qubit vector |qb〉 = |qb0qb1qb2qb3qb4〉. In future
circuits, we will refer to this type of circuit as the controlled gate U (a) on the right for the encoding of the
number a.

We use circuits like the one in Circ. 5.2 [56] to encode the number of units produced
per shift. This circuit encodes the decimal value 8 into the buffer qubit register |qb〉 when
the decision variable register |qS1〉 is in state |10〉. This corresponds to the 8 units pro-
duced during the 8-hour shift of Shop 1.

The phase gates P (λ) in this circuit apply a rotation around the Z-axis by angle λ to
the qubit. If the phase gate is controlled by one or multiple other qubits, it only applies
the rotation when all controlling qubits are |1〉. The matrix representation for this gate
is:

P (λ) =
[

1 0
0 e iλ

]
(5.3)

This can be used to encode the number of units produced for each possible shift
length, which is shown in Circ. 5.3.

• • X • •
=

□

• X • • X • □

|qb〉 U (10) U (8) U (0) U (5) S1

|qS1〉

Circuit 5.3: Encoding the number of units produced for the body shop (S1) in superposition onto |qb〉, using
the U(a) gate from Circ. 5.2.

5.4.2. QUBIT REGISTERS

QISS uses six distinct qubit registers, which are the following:

5

80 5. QISS: QUANTUM INDUSTRIAL SHIFT SCHEDULING ALGORITHM

Table 5.2: Description of the qubit registers used in QISS, including the number of qubits in each.

Register Description Qubits: 1 day n days

|qS1〉 Shop 1 2 2n
|qS2〉 Shop 2 2 2n
|qb〉 Buffer 5 6
|a〉 Ancilla 5 6n
|q$〉 Cost 6

⌈
log2(19n)

⌉+1
|c〉 Conditions 4 n +3
|−〉 Mark states 1 1

Total 25 11n +11+⌈
log2(19n)

⌉
1. Decision variables |qS1〉 and |qS2〉: This register stores the assigned shifts to each

shop. For i different possible shift assignments per shop, we need ⌈log2(i)⌉ qubits.
Each shop has four possible choices of shift assignment, so we need

⌈
log2(4)

⌉ = 2
qubits per shop per day. For n days, we will need ⌈n · log2(i)⌉ qubits.

2. Buffer occupancy |qb〉: This register stores the number of units in the buffer after a
given day’s work. It must contain enough qubits to capture buffer overflows, which
correspond to infeasible solutions. For the simplified model, this is the case when
the buffer is already filled to the maximum allowed value Bmax , and the next day,
shop 1 produces the maximum number of units while shop 2 does not consume
any units. This leads to a buffer occupancy of 10+ 10 = 20 units, which requires⌈

log2(10+10)
⌉+1 = 6 qubits. This is the maximum buffer occupancy that we need

to calculate accurately, since there is no reason to have accurate computations of
buffer occupancy for subsequent days after the solution has already been marked
infeasible.

3. Ancilla qubits |a〉: This register is used to impose a floor of zero on the buffer
occupancy, since it cannot contain a negative number of vehicles. For every day
that needs to be scheduled, the M AX (0, B̃) operation described in Section 5.4.3 re-
quires as many ancilla qubits as there are qubits in the buffer register, which is 6n
for n days for the simplified model. On the first day, only 5 qubits are required, be-
cause the buffer value cannot exceed 5+10 = 15 units. This can be taken advantage
of by using a modified M AX (0, B̃) circuit.

4. Cost qubits |q$〉: This register records the operational cost of implementing a shift
schedule. It must contain enough qubits to store the maximum possible cost with-
out overflowing. This can be done as an unsigned number because no negative
costs are possible. The maximum cost per day for the simplified model is $19, so
for n days we need a cost register of

⌈
log2(19n)

⌉+1 qubits.

5. Condition qubits |c〉: This register keeps track of all the different constraints, and
whether they are satisfied or violated. For each constraint, we thus require one
qubit to store a boolean value. Three qubits are needed for one day, and we need
n +2 qubits for n days.

5.4. ALGORITHM DESIGN AND VALIDATION

5

81

6. Marking of valid states |−〉: A single qubit that is initialized in the state |−〉. By ap-
plying a multi-controlled not gate from the condition qubits to this output qubit,
we apply a phase of -1 to all valid solutions, as indicated by all the constraints being
met. The subsequent operations of Grover’s algorithm will amplify the amplitude
of these marked valid solutions.

An overview of the number of qubits used by the oracle can also be found in Table 5.2.
In total, QISS uses 25 qubits to find the optimal schedule for a single day. For n days the
required number of qubits is 11n+11+⌈

log2(19n)
⌉

, or 11n+10+⌈
log2(19n)

⌉
when there

is a separate implementation of a modified M AX (0, B̃) for the first day.

5.4.3. CALCULATING BUFFER VALUES
We will need to perform addition and subtraction to calculate the value of the buffer
occupancy on each day, and the total output volume produced by the shops. We can
apply the relevant SX or U (X) gates to the target qubits, as shown in Circ. 5.4.

|qS1〉 □
|qS2〉 □

|qb〉 S1 S2 U (9C)

Circuit 5.4: Calculating S1+S2−C

Rather than defining a separate subtraction method, we negate the value to be sub-
tracted, and subsequently use the addition method described in Section 5.4.1. The neg-
ative of the value A is calculated as (−1)∗ A = 2m − A for a register with m (qu)bits using
Two’s complement. For values already encoded in the quantum circuit, the negation of
the bits is done by applying an X-gate to all the qubits in the computation basis, and then
adding 1. This circuit is shown in Circ. 5.5.

|qS1〉 □ = □

|qb〉 S1 QF T † X QF T U (1) 9S1

Circuit 5.5: Calculating |qb〉 =−S1

Before constructing the complete circuit, we need to define a final building block.
This is the M AX (0, B̃) operation, which enforces that the buffer always holds zero or
more units. If the scheduled shop hours lead to less than zero units in the buffer, the
number of units in the buffer is instead set to zero. The circuit to calculate M AX (0, B̃) is
shown in Circ. 5.6.

After calculating the buffer occupancy, we must transform the register back to the
computational basis for the application of the M AX (0, B̃) operation and the constraint
checks. Transformations from the computational to the Fourier basis is done with Quan-
tum Fourier Transforms (QFT), and to return to the computational basis an inverse QFT
is used.

5

82 5. QISS: QUANTUM INDUSTRIAL SHIFT SCHEDULING ALGORITHM

As we are encoding the buffer occupancy value in Two’s complement, we can use the
MSB (|qb0〉) to check if the number is smaller than zero. If that is the case, we set all the
other qubits to zero. We do this for each qubit in turn, by setting an ancilla qubit to |1〉
if both the MSB and the current target bit are in state |1〉 with a Toffoli gate. Then, we
apply a CNOT from an ancilla in the |0〉 state to the current target bit, setting it to zero.
The inverse oracle (Oracle†) is also used in the circuit (see Circ. 5.1), so a "fresh" ancilla
needs to be used for each bit of the buffer register. The circuit requires b qubits per day
for the b qubits in buffer register |qb〉.

|qb0〉 • • • • •

M AX
(0, B̃)

|qb1〉 •
|qb2〉 •
|qb3〉 • =
|qb4〉 •
|0〉 • |0〉 • |0〉 • |0〉 • |0〉 •

Circuit 5.6: Circuit for forcing the value of |qb〉 to be greater than or equal to zero, when |qb〉 is stored in Two’s
complement. The |0〉 in the circuit means that the ancilla qubit is reset to zero, or a "fresh" ancilla in the |0〉 is
used. The reset operation involves non-reversible measurement operations, but the circuit can be made fully
reversible with the additional ancilla qubits. This circuit will be referred to as M AX (0, B̃).

The final value for the buffer Bout after each day can be calculated as:

B̃ = Bi ni t +S1−S2

Bout = MAX(0, B̃)

This circuit is shown in Circ. 5.7. The value of −S2 can be implemented from S2 as
in Circ. 5.5, however, since S2 is generated from the classical input to the circuit, it can
also be implemented without using additional gates. This is done by replacing all the
shift lengths (si) for S2 with their corresponding 2m −si and encoding the circuit 2m −S2
with these new values as in Circ. 5.3. Because we are using Two’s complement, this is
equivalent to using −S2. Directly negating the input values uses fewer gates than the
method in Circ. 5.5, and is what we will use for the rest of the circuits.

|qS1〉 □

=

□
|qS2〉 □ □

|qb〉 B
i ni t S1 −S2 QF T †

M AX
(0, B̃)

QF T B
i ni t

B
|a〉

Circuit 5.7: Calculation of buffer value Bout for the simplified model after a single day

5.4. ALGORITHM DESIGN AND VALIDATION

5

83

5.4.4. CONSTRAINT CHECKING
After each day of operation, the buffer content must not exceed its maximum capacity
Bmax . We use this as a condition within Grover’s algorithm, to distinguish feasible and
infeasible solutions, by introducing a qubit |c1〉 that will be |1〉 when the condition is met,
and |0〉 otherwise.

c1 =
{

1 ifBout ≤ Bmax ⇒ Bout − (Bmax +1) < 0

0 if Bout > Bmax
(5.4)

In order to set the value of |c1〉, we first calculate Bout − (Bmax +1), and subsequently
apply an inverse quantum Fourier transform, QF T †, to return the buffer qubit register
to the computational basis. If the condition is met, then the buffer register state then
corresponds to a negative (binary) number, and we can apply a CNOT from the MSB to
our condition qubit |c1〉. Finally, we need to restore the buffer register to its state before
this constraint check, by applying a QF T to return to the Fourier basis, and then adding
(Bmax +1). The circuit for this operation is shown in Circ. 5.8, with the buffer register at
the output again holding a value of Bout .

|qS1〉 □
|qS2〉 □

|qb〉 B
i ni t

B

−(B +1
max

) QF T † • QF T (B +1
max

)

|a〉
|c1〉 |1〉 if Bout ≤ Bmax

Circuit 5.8: Evaluation of maximum buffer capacity condition Bout ≤ Bmax , with Bi ni t and B as defined in
Circ. 5.7. The CNOT is controlled by the MSB of the register |qb〉. The buffer register is returned to its original
state Bout through a quantum Fourier transform and by adding the value of Bmax +1.

The output volume Vout of the simplified model is calculated as:

Vout = Bi ni t +S1−B f i nal

where B f i nal is the content of the buffer at the end of the day. The circuit will (initially) be
applied only for 1 day, in which case B f i nal = Bout . To avoid the additional gates required
to calculate −B f i nal (Circ. 5.5), we can instead calculate −Vout = −Bi ni t − S1+B f i nal .
We can calculate the output volume on the same qubits that are used to store the buffer
occupancy value, which requires fewer qubits than using a separate qubit register and
saves copying or recomputing the data in the buffer. This means that the volume re-
quirement cannot easily be checked at the end of each day, but this is not required by the
constraints of the simplified model. −S1 and −Bi ni t can be easily calculated using the
Two’s complement method as before. Because we are computing −Vout , the constraints
for the output volume are defined accordingly. We call these output volume constraints
c2 and c3, with values as in Equations (5.5) and (5.6).

5

84 5. QISS: QUANTUM INDUSTRIAL SHIFT SCHEDULING ALGORITHM

|qS1〉 □ □
=

□
|qS2〉 □ □

|qb〉 B f i nal −S1 −Bi ni t −Vout

Circuit 5.9: −Vout =−Bi ni t −S1+B f i nal

c2 =
{

1 if Vout ≥Vlow ⇒−Vout +V ∗−∆≤ 0

0 if Vout <Vlow ⇒−Vout >−Vlow
(5.5)

c3 =
{

1 if Vout ≤Vup ⇒−Vout +V ∗+∆≥ 0

0 if Vout >Vup ⇒−Vout <−Vl ow
(5.6)

The lower limit for the tolerance is Vlow =V ∗−∆, for target volume V ∗ and tolerance ∆.
The upper limit for the tolerance is defined as Vup =V ∗+∆.

To set qubit c2, we need to transform the inequality from Equation (5.5) to −Vout +
(V ∗−∆−1) < 0 (where ’1’ is the minimum difference between numbers), which can be
calculated on the buffer register. Then we use a CNOT from the MSB of the buffer register
to qubit c2 to flip the qubit to |1〉 when the condition is met, and keep it at |0〉 otherwise.

For qubit c3, we can do the same. We calculate −Vout +(V ∗+∆) and then set c3 based
on the MSB of the result. An X-gate is needed to flip c3, since the condition is met when
the MSB is in state |0〉 (when the result of the calculation is bigger than or equal to zero).

To avoid recomputing Vout , we can compute the result for evaluating c3 from the
result for c2, simply by adding (2∆+1) to the latter. This works because we are first com-
paring to the lower limit, and the output volume should be within 2∆ of it to be within
the upper limit. The addition of ’1’ is again the minimum precision.

Combining these will give the circuit in Circ. 5.10.

|qb〉 −Vout V ∗−∆−1 QF T † • QF T 2∆+1 QF T † • QF T

|c2〉 = |0〉 |1〉 if Vout ≥Vl ow

|c3〉 = |0〉 X |1〉 if Vout ≤Vup

Circuit 5.10: Circuit for evaluating the output volume conditions |c2〉 and |c3〉.

5.4.5. COMPLETED CIRCUIT FOR DAY ONE
The complete circuit for scheduling one day is shown in Circ. 5.11. This circuit can be
used as the oracle in the circuit in Circ. 5.1, where the sub-circuit within the dashed box is
applied a specific number of times, namely the number of Grover rotations. The diffuser
operator in Circ. 5.1 is implemented as Circ. 5.12.

All possible combinations of shifts for one day are shown in Table 5.3. For each pos-
sibility, the buffer content and output volume have been calculated, as well as the ex-
pected value of the condition checks.

5.4. ALGORITHM DESIGN AND VALIDATION

5

85

|qS1〉 / H □ □

|qS2〉 / H □

|qb〉 / H B
i ni t S1 −S2 M AX

(0, B̃)

−(B +1
max

) • B +1
max −S1 −B

i ni t
V −1
low • 2∆+1 •

|a〉 /

|c1〉 •
|c2〉 •
|c3〉 •
|−〉

Circuit 5.11: The complete circuit for the simplified model with buffer and volume constraints for scheduling
of a single day. The QF T † and QF T operations have been abstracted as vertical dashed lines. Every time a
dashed line is crossed, the buffer is converted from the Fourier basis to the computational basis or back. This
circuit is used as the oracle in Grover’s search algorithm.

|qS1,1〉

Diffuser

H X • X H

|qS1,2〉 H X • X H

|qS2,1〉 =
H X • X H

|qS2,2〉 H X Z X H

Circuit 5.12: Diffuser for Grover’s algorithm

The schedules where shop 1 has a long shift and shop 2 has a short shift are not valid,
because, at the end of the day there will be more units in the buffer than its maximum
capacity. The target volume of 8±0.4 units per day cannot be met when scheduling for a
single day, since shop 2 can only produce 7 or 9 units in a shift. If we relax the constraint
(set∆ to 1), the production volume never exceeds the maximum. The minimum produc-
tion target is met if shop 2 has a shift of at least 7 hours. There are 16 possible schedules
for the simplified model, of which six meet all the requirements.

To validate that our approach gives the expected results,Circ. 5.11 was implemented
in Qiskit and simulated with Qiskit Aer, assuming noiseless, fully-connected qubits. The
results from 1000 measurements of the output state of the circuit are shown in Figure 5.4,
with the six valid solutions clearly amplified.

5.4.6. EXTENDING TO MULTIPLE DAYS
To extend the oracle to multiple days, we need to implement several changes compared
to the circuit for a single day. Firstly, to encode the shifts for each shop for all possible
days, we will need 2n qubits per shop for n days.

Secondly, we need to calculate the buffer occupancy values and check the buffer
constraints after each day. The buffer value after one day is B1 = MAX(0, B̃1), where
B̃1 = Bi ni t +S11 −S21. Combined, this gives B1 = MAX(0,Bi ni t +S11 −S21). The buffer
value after two days will be B2 = MAX(0,B1 +S12 −S22), and after n days it will be:

Bn = MAX(0,Bn−1 +S1n −S2n)

5

86 5. QISS: QUANTUM INDUSTRIAL SHIFT SCHEDULING ALGORITHM

Table 5.3: Expected output for the simplified model for one day, bolded rows are solutions that satisfy all the
constraints (c1: Bout ≤ Bmax , c2: Vout ≥Vl ow , c3: Vout ≤Vup)

|S1〉 |S2〉 Bi ni t U (S1) U (S2) Bout Vout Cost c1 c2 c3

00 00 5 0 0 5 0 $0 1 0 1
00 01 5 0 4 1 4 $4 1 0 1
00 10 5 0 7 0 5 $7 1 0 1
00 11 5 0 9 0 5 $9 1 0 1

01 00 5 5 0 10 0 $5 1 0 1
01 01 5 5 4 6 4 $9 1 0 1
01 10 5 5 7 3 7 $12 1 1 1
01 11 5 5 9 1 9 $14 1 1 1

10 00 5 8 0 13 0 $8 0 0 1
10 01 5 8 4 9 4 $12 1 0 1
10 10 5 8 7 6 7 $15 1 1 1
10 11 5 8 9 4 9 $17 1 1 1

11 00 5 10 0 15 0 $10 0 0 1
11 01 5 10 4 11 4 $14 0 0 1
11 10 5 10 7 8 7 $17 1 1 1
11 11 5 10 9 6 9 $19 1 1 1

|00
⟩|00

⟩
|00

⟩|01
⟩

|00
⟩|10

⟩
|00

⟩|11
⟩

|01
⟩|00

⟩
|01

⟩|01
⟩

|01
⟩|10

⟩
|01

⟩|11
⟩

|10
⟩|00

⟩
|10

⟩|01
⟩

|10
⟩|10

⟩
|10

⟩|11
⟩

|11
⟩|00

⟩
|11

⟩|01
⟩

|11
⟩|10

⟩
|11

⟩|11
⟩

Output s a e: |S1⟩|S2⟩

0

25

50

75

100

125

150

M
ea

su
re

m
en

 f
re

qu
en

cy

Measuremen ou comes for Grover⟩s search
 one day, buffer and volume cons rain s

Valid solu ion
Invalid solu ion

Figure 5.4: Simulated measurement outcomes using Qiskit for the implementation of Grover’s search for
scheduling one day and only buffer and volume constraints. States corresponding to valid solutions are shown
in dark blue.

5.4. ALGORITHM DESIGN AND VALIDATION

5

87

For each day, the values produced by each shop are added or subtracted from the buffer
register, controlled by the qubits in the corresponding shop register. Then the value for
M AX (0, B̃) need to be calculated, which requires a new set of ancilla qubits (|an〉) per
day to keep the circuit reversible. Finally, a conditional qubit (|c1,n〉) is set depending on
if the buffer exceeds the maximum allowed buffer content.

This means that we repeat everything in Circ. 5.7 after the gate for Bi ni t , with separate
controls and ancillas for each day. For two days, this looks like the circuit in Circ. 5.13.
After n repeats for n days, the output volume can be calculated. This can be done using
the same circuit as for one day (Circ. 5.9), but instead of subtracting the production of S1
once, it is done n times for n days.

|qS1,1〉 □
Day 1 Day 2

|qS1,2〉 □

|qS2,1〉 □

|qS2,2〉 □

|qb〉 S1 −S2 QF T †
M AX
(0, B̃)

QF T −(B +1
max

) • B +1
max S1 −S2 QF T †

M AX
(0, B̃)

QF T −(B +1
max

) • B +1
max

|a1〉
|a2〉
|c1,1〉
|c1,2〉

Circuit 5.13: Calculation of buffer value Bout for the simplified model for 2 days, including calculation of
M AX (0, B̃) for each day. Conditional qubits |c1,1〉 and |c1,2〉 are set depending on if the buffer exceeds the
maximum allowed buffer content for both days.

Checking whether the output volume falls within the allowed limits is similar to the
case of a single day, since it only needs to be checked at the end. The only differences
are the target output volume V ∗ and the allowable margin ∆, which need to be adjusted
depending on the number of days that are being simulated.

For verification, we implemented Circ. 5.13 (corresponding to two days of operation)
in Qiskit and simulated 1000 circuit shots using Qiskit Aer, which produced the mea-
surement results shown in Figure 5.5. The 22 valid solutions (shown in blue) are clearly
amplified over the 244 non-valid solutions.

5.4.7. COST CONSTRAINT
In the framework of Grover adaptive search, the objective function corresponding to the
total factory operating cost can be handled as an additional constraint by setting a cer-
tain maximum allowed cost. To store this total cost, we introduce an additional qubit
register, which must be large enough to avoid numerical overflow when both shops are
operated for the maximum number of hours daily. We also add a condition qubit for the
cost constraint.

Computing the total cost is straightforward: we add the cost corresponding to each
shift to the register with the same controlled adders as we did for the shifts. The same
set of shop qubits also controls them. In the case of the simplified model, the cost and
the number of produced units are the same, but this is not necessarily the case for more
realistic models.

5

88 5. QISS: QUANTUM INDUSTRIAL SHIFT SCHEDULING ALGORITHM

0 64 128 192 256
Output state: |S1⟩|S2⟩

0
5

10
15
20
25
30
35
40
45
50

M
ea

su
re
m
en

t f
re
qu

en
cy

Measurement outcomes for Grover⟩s search
two days, only buffer and volume constraints

Valid solution
Invalid solution

Figure 5.5: Simulated measurement outcomes using Qiskit for the implementation of Grover’s search for
scheduling two days and only buffer and volume constraints. States corresponding to valid solutions are shown
in dark blue, output states are converted from binary to decimal.

Adding the cost can be done at any point in the circuit, but for simplicity’s sake, we
will add the costs for each shop just after the corresponding values have been added to
the buffer.

At the end of the circuit, the cost constraint is checked with a similar construction
as for the maximum and minimum volume constraints. To avoid adding the minimum
precision, we define the cost constraint as Cout <Cmax where Cout is the calculated cost
of the solution, and Cmax is the maximum allowed cost. This means that we can calculate
Cout−Cmax at the end of the circuit, and the condition is met if the result is less than zero,
which means that the MSB is 1. We use this to set a single condition qubit with a CNOT.

|qS1,1〉 □ □
|qS1,2〉 □ □
|qS2,1〉 □ □
|qS2,2〉 □ □

|qb〉 S1 −S2 Buffer
checks

S1 −S2

|a〉+|c1〉
|q$〉 C 1 C 2 C 1 C 2

Circuit 5.14: Calculation of the buffer content and the cost for shops S1 and S2 for two days. All elements are
as defined before, with additionally cost register |q$〉, and gates C 1 and C 2, which are the costs per shift for
shops 1 and 2.

5.4. ALGORITHM DESIGN AND VALIDATION

5

89

|00
⟩|00

⟩
|00

⟩|01
⟩

|00
⟩|10

⟩
|00

⟩|11
⟩

|01
⟩|00

⟩
|01

⟩|01
⟩

|01
⟩|10

⟩
|01

⟩|11
⟩

|10
⟩|00

⟩
|10

⟩|01
⟩

|10
⟩|10

⟩
|10

⟩|11
⟩

|11
⟩|00

⟩
|11

⟩|01
⟩

|11
⟩|10

⟩
|11

⟩|11
⟩

Output state: |S1⟩|S2⟩

0

50

100

150

200

250

300

350

400

450

M
ea

su
re
m
en

t f
re
qu

en
cy

Maximum cost of $20

|00
⟩|00

⟩
|00

⟩|01
⟩

|00
⟩|10

⟩
|00

⟩|11
⟩

|01
⟩|00

⟩
|01

⟩|01
⟩

|01
⟩|10

⟩
|01

⟩|11
⟩

|10
⟩|00

⟩
|10

⟩|01
⟩

|10
⟩|10

⟩
|10

⟩|11
⟩

|11
⟩|00

⟩
|11

⟩|01
⟩

|11
⟩|10

⟩
|11

⟩|11
⟩

Oupu state: |S1⟩|S2⟩

0

50

100

150

200

250

300

350

400

450
Maximum cost of $18

|00
⟩|00

⟩
|00

⟩|01
⟩

|00
⟩|10

⟩
|00

⟩|11
⟩

|01
⟩|00

⟩
|01

⟩|01
⟩

|01
⟩|10

⟩
|01

⟩|11
⟩

|10
⟩|00

⟩
|10

⟩|01
⟩

|10
⟩|10

⟩
|10

⟩|11
⟩

|11
⟩|00

⟩
|11

⟩|01
⟩

|11
⟩|10

⟩
|11

⟩|11
⟩

Oupu state: |S1⟩|S2⟩

0

50

100

150

200

250

300

350

400

450
Maximum cost of $16

|00
⟩|00

⟩
|00

⟩|01
⟩

|00
⟩|10

⟩
|00

⟩|11
⟩

|01
⟩|00

⟩
|01

⟩|01
⟩

|01
⟩|10

⟩
|01

⟩|11
⟩

|10
⟩|00

⟩
|10

⟩|01
⟩

|10
⟩|10

⟩
|10

⟩|11
⟩

|11
⟩|00

⟩
|11

⟩|01
⟩

|11
⟩|10

⟩
|11

⟩|11
⟩

Oupu state: |S1⟩|S2⟩

0

50

100

150

200

250

300

350

400

450

Maximum cost of $14

|00
⟩|00

⟩
|00

⟩|01
⟩

|00
⟩|10

⟩
|00

⟩|11
⟩

|01
⟩|00

⟩
|01

⟩|01
⟩

|01
⟩|10

⟩
|01

⟩|11
⟩

|10
⟩|00

⟩
|10

⟩|01
⟩

|10
⟩|10

⟩
|10

⟩|11
⟩

|11
⟩|00

⟩
|11

⟩|01
⟩

|11
⟩|10

⟩
|11

⟩|11
⟩

Oupu state: |S1⟩|S2⟩

0

50

100

150

200

250

300

350

400

450
Maximum cost of $12

Valid solution
Invalid solution

Measurement outcomes for Grover's adaptive search: scheduling for one day, maximum cost from $20 to $12

Figure 5.6: Simulated measurement outcomes for Grover’s adaptive search for scheduling 1 day with manually
set value for the cost constraint (Cout < Cmax) starting at $20 and decreasing with steps of $2 until $12, at
which point there are no solutions left that satisfy all the constraints.

5.4.8. VALIDATING THE STOP CONDITION OF GAS
Having constructed the oracle and verified its ability to produce expected solutions, we
now proceed to investigate a proper stop condition for (see Algorithm 1).

There are many options for the stop condition of GAS: the loop can be stopped when
no improvement has been achieved in the last few of iterations when a threshold low-
est cost has been achieved, when a certain amount of time has passed, when a certain
number of iterations has been performed, etc.

We will stop the GAS procedure when the combined total rotation count (number
of times that Grover’s rotation operator has been applied) exceeds

p
N , where N is the

size of the search space. To validate our decision, we have simulated 10,000 runs of GAS
and kept track of the number of rotations and the current best cost after each loop. The
number of valid solutions and associated costs correspond to those for the shift sched-
ules for three subsequent days. Each shop has four possible shift lengths per day, so the
total number of possible schedules N = 42n . For three days, the total problem size is thus
N = 42·3 = 4096.

Each simulated run of GAS ran for a total of 2
p

N = 128 rotations. For each loop
of QISS, the specific number of rotations was determined randomly as outlined in Al-
gorithm 1. The initial cost was set to $60, which is three dollars more than the cost of
operating both shops, the maximum allowed number of hours for all three days. When
a valid solution is found, i.e. a solution that satisfies all the constraints, the initial cost is
replaced with the cost for the valid solution. This allows us to see how many rotations it
took QISS to arrive at a valid solution. After each loop was completed, the running to-
tals for the number of rotations with corresponding lowest found cost were stored. After
10,000 runs of GAS, the average, median, and percentile intervals were calculated from
the results. These can be found in Figure 5.7.

As can be seen from the figure, the minimum cost found by QISS decreases expo-
nentially with the number of Grover rotations, and the chance that we have landed on
the cheapest possible shift schedule increases accordingly. After a total of π

4

p
N = 51

rotations, more than 95% of runs have landed on the minimum cost of 41. After
p

N ro-
tations, this increases to more than 99%. Therefore, we will set the stop condition of GAS
to a number of rotations equal to

p
N , which yields good results while still ensuring an

asymptotic quadratic speedup over a classical brute-force search.
The exact rate at which the found cost decreases is dependent on the problem size,

5

90 5. QISS: QUANTUM INDUSTRIAL SHIFT SCHEDULING ALGORITHM

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Co
st
 ($
)

Minimum cost found by GAS
vs total # of rotations

0%-100%
1%-99%
5%-95%
25%-75%
Median
Average

0 20 40 60 80 100 120
Number of rotations

0
1 √N

Figure 5.7: Minimum cost found by GAS after a certain number of rotations for finding shift schedules for three
days, with the average, median and percentile intervals calculated from 10,000 runs of the adaptive search.

how many possible solutions are valid, the distribution of the costs associated with each
valid solution, and the number of valid solutions that share the minimum cost. We do
not have this data for larger problem sizes, but we expect that these results hold up for
larger problem sizes.

5.5. GATE REQUIREMENTS
In this section, we show the gate requirements for each high-level operator used in QISS
at different levels of gate decomposition. We use this to find the total number of elemen-
tary gates required by QISS for scheduling a single day without a cost constraint, this
corresponds to the circuit at the end of Section 5.4.5.

5.5.1. HIGH-LEVEL OPERATORS

The number of elementary gates for each of the high-level operators used in QISS
is shown in Table 5.4. Gates are grouped by type: all types of 1-qubit gates, multi-
controlled Pauli Z or X gates, double-controlled phase gates, (single) controlled phase
gates, double-controlled X (Toffoli) gates, and controlled X gates. The components cor-
respond to the components outlined before.

Some of the components require 3-qubit gates, which can be decomposed into 1-
and 2-qubit gates. The controlled U(X), the S(X) are both implemented with CCPhase
gates, which can be decomposed into 3 CPhase and 2 CNOT gates each. The MAX(0, B̃)
component is implemented with CCNOT (also called Toffoli) gates, which can be de-
composed into 9 1-qubit gates and 6 CNOTs each. Gate totals for these components
with these decompositions are also shown in the table. The diffuser component requires
a multi-controlled Z gate, which can also be decomposed into 1- and 2-qubit gates. The

5.5. GATE REQUIREMENTS

5

91

Table 5.4: Number of elementary gates required for each of the high-level operators used in QISS. The types of
elementary gates here are all types of 1-qubit gates, multi-controlled Pauli Z or X gates (MCZ/MCX), double-
controlled phase gates (CCPhase), (single) controlled phase gates (CPhase), double-controlled NOT (Toffoli)
gates (CCNOT), and controlled NOT gates (CNOT).

Circuit
component

1-qubit
gates

MCZ/
MCX

CCPhase CPhase CCNOT CNOT

Output init. 1
Superposition for shops 2
Superposition for buffer 5
CU(X) 5
Decomposition of CU(X) 15 10
U(X) 5
S(X) 4 20
Decomposition of S(X) 4 60 40
QFT 5 10
IQFT 5 10
M AX (0, B̃) 4 6
Decomp. of M AX (0, B̃) 36 30
Diffuser 16 1

number of such gates depends on the specific decomposition method and on the num-
ber of control qubits. For this reason, the gate has been left as-is, and no decomposed
gate count is provided.

5.5.2. GATE REQUIREMENTS FOR QISS
We used the totals in Table 5.4 to find the gate requirements for QISS for scheduling one
day and without the cost constraint, as it is at the end of Section 5.4.5. This was used as a
verification step when developing the algorithm. We have included it as a companion to
the qubit requirements of QISS in Section 5.4.2. The total gate requirement can be found
in Table 5.5.

The oracle for QISS is split up into its components:

• The initialization requires a single qubit (Hadamard or general initialization gate)
for the shop qubits, the buffer qubits and the output qubit.

• Some addition operations could be merged, so the final circuit for the oracle for
the simplified model has 4 adders: Bi ni t , −(Bmax +1), the combined (Bmax +1)−
Bi ni t + (Vlow −1) and 2∆+1, each requiring 5 1-qubit phase gates.

• The oracle has 3 S(X) operations: S1, −S2 and −S1, each implemented with 4 1-
qubit X-gates and 20 CCPhase gates.

• The M AX (0, B̃) operation is implemented with 4 CCNOTs and 6 CNOTs, with a
leading Inverse QFT (IQFT) and followed by a QFT operation, each implemented
with 5 1-qubit Hadamard gates and 10 CPhase gates.

• The c1 and c2 constraints (maximum buffer content and minimum output vol-
ume), are each implemented with a leading IQFT, a single CNOT and followed by

5

92 5. QISS: QUANTUM INDUSTRIAL SHIFT SCHEDULING ALGORITHM

a QFT. In total, this is 10 1-qubit Hadamard gates, 20 CPhase and 1 CNOT gate for
both conditions.

• The final c3 condition requires only a leading IQFT, because we do not need to
do any further calculations on the buffer qubits, and it therefore does not need to
be "reset" as part of the oracle. In addition to the IQFT, it is implemented with a
1-qubit X gate and a CNOT, for a total of 6 1-qubit gates, 10 CPhase gates and a
CNOT.

• In total, the oracle is thus implemented with 78 1-qubit gates, 60 CCPhase gates,
70 CPhase gates, 4 CCNOTs and 9 CNOTs.

Table 5.5: Total number of elementary gates required for Grover’s algorithm for QISS for scheduling one day
without a cost constraint, with the number of gates per component as in Table 5.4.

Circuit
component

1-qubit
gates

MCZ/
MCX

CCPhase CPhase CCNOT CNOT

Oracle 78 0 60 70 4 9

Initialization 10
Bi ni t 5
S1 4 20
-S2 4 20
IQFT 5 10
M AX (0, B̃) 4 6
QFT 5 10
-(Bmax +1) 5
c1 10 20 1
Bmax -Bi ni t +V ∗.. 5
-S1 4 20
c2 10 20 1
2∆-1 5
c3 6 10 1

Set output 1
Oracle† 78 60 70 4 9
Diffuser 16 1
Measurement 4

Total: 176 2 120 140 8 18

The complete implementation of Grover’s algorithm for the simplified model consists of
the following components:

• The oracle, as above, which includes initialization.

• A multi-controlled X gate to set the output qubit based on the result of the condi-
tion qubits.

• The inverse of the oracle to reset the circuit, which requires the same number of
gates as the oracle.

5.6. CONCLUSION

5

93

• Grover’s diffusion operator, which consists of 2 X-gates and 2 Hadamard gates per
shop qubit, and one multi-controlled Z gate over all shop qubits. This totals 2∗4+
2∗4 = 16 1-qubit gates and 1 MCZ gate.

• And finally, a measurement on each of the shop qubits.

• In total, the implementation of Grover’s algorithm for the simplified model (for a
single iteration) requires 176 1-qubit gates, an MCX and an MCX gate, 120 CCPhase
gates, 140 CPhase gates, 8 CCNOT gates and 18 CNOT gates.

5.6. CONCLUSION
We have introduced QISS, a quantum algorithm based on Grover’s adaptive search for
industrial shift scheduling problems with production target and intermediary storage
constraints, a situation found in settings such as the automotive industry. We show the
construction of a quantum circuit to implement the necessary Grover’s oracle for an ar-
bitrary number of days of factory operations, within the context of a simplified model
comprising two shops and one buffer. For small problem instances, we have numeri-
cally corroborated the performance of the algorithm. In particular, in our examples we
verify that

p
N applications of Grover’s rotation operator suffice to find the optimal solu-

tion, where N is the size of the solution space. This shows that an asymptotic quadratic
speedup can in principle be achieved over classical unstructured search. In practice, this
may be useful in at least two scenarios: (1) to obtain exact solutions to problems of small
or modest size, in the context of benchmarking heuristic algorithms designed to scale
to much larger, industrial problem sizes; (2) to use QISS as an integral component of a
heuristic strategy, where exact solutions for short time periods are used to construct a
solution for a longer time period.

Our work lays the foundation for future research in several directions. Firstly, in
the context of the simplified model, QISS could be used as a target algorithm to study
and benchmark the performance of quantum computing systems. Specifically, in the
pre-fault-tolerant era one could test the different circuit primitives, and investigate their
susceptibility to noise on different quantum computing platforms. Techniques to sup-
press, mitigate, or detect certain types of error may be found, which could allow for
improved results, and yield useful insights for running the algorithm in the future on
fully fault-tolerant machines. In the fault-tolerant era, QISS could be incorporated into
application-level benchmark frameworks [60].

Secondly, we have focused on a simplified shift scheduling model with only two
shops and a single buffer. It would be interesting to develop Grover’s oracles for more
complex, more realistic instances of industrial shift scheduling, such as the one shown
in Figure 5.1. For example, new circuit primitives may need to be designed due to the
intricacies resulting from multiple and/or shared buffers (see Section 5.3.4). Moreover,
while the resulting circuits would very quickly become intractable to simulate on a clas-
sical computer, even for a single day, it would allow a quantitative investigation of the
additional circuit complexity arising from the presence of multiple shops and buffers.

Thirdly, in this work we have developed quantum circuits at the logical level, which
assumes qubits to be perfectly noiseless. To implement these circuits in practice on

5

94 5. QISS: QUANTUM INDUSTRIAL SHIFT SCHEDULING ALGORITHM

quantum computers, which are always subject to some degree of noise, a fault-tolerant
quantum error correction scheme would be necessary. Quantum error correction intro-
duces significant resource overheads in terms of the number of required qubits and gate
operations. Key quantities of interest such as the total number of physical qubits and the
total computational runtime can be estimated through frameworks incorporating differ-
ent layers of assumptions on the architecture of a fault-tolerant quantum computer, and
the compilation of quantum programs [22, 154]. Subsequently, one could compare these
estimates to those of classical computing approaches, and seek to identify the scale at
which QISS may deliver a speedup in practice for unstructured search, taking into ac-
count the gap in execution time for basic quantum and classical circuit operations [14,
84].

Finally, we have not investigated whether the industrial shift scheduling problem is
amenable to solution by dynamic programming methods, however we note that quan-
tum algorithms capable of exploiting optimal substructure have been described in [9].
Therefore, if a speedup over unstructured search can be obtained classically with dy-
namic programming, it may also be possible to incorporate this into QISS.

ACKNOWLEDGEMENTS
For this chapter, we thank Vladislav Samoilov and Nikolas Beulich for providing the ini-
tial problem statement and for stimulating discussions, and Ewan Munro and Marvin
Erdmann for their contributions to the paper and the overall project.

6
ASSESSING THE REQUIREMENTS

FOR INDUSTRY RELEVANT

QUANTUM COMPUTATION

In this chapter, we use open-source tools to perform quantum resource estimation to
assess the requirements for industry-relevant quantum computation. Our analysis uses
the problem of industrial shift scheduling in manufacturing and the quantum indus-
trial shift scheduling algorithm. We use existing scenarios from literature for multiple
qubit technologies for our initial resource estimations, and we find that superconduct-
ing qubits are the most promising for our application. Based on these findings, we do
further resource estimations based on current and theoretical high-fidelity supercon-
ducting qubit platforms. We find that the execution time of gate and measurement op-
erations determines the overall computational runtime more strongly than the system
error rates. Moreover, achieving a quantum speedup would not only require low system
error rates (10−6 or better), but also measurement operations with an execution time
below 10ns. This rules out the possibility of near-term quantum utility for this use case,
and suggests that significant technological or algorithmic progress will be needed before
quantum utility can be achieved.

This chapter is based on the following article:

• Anna M. Krol, Marvin Erdmann, Ewan Munro, Andre Luckow, and Zaid Al-Ars.
“Assessing the Requirements for Industry Relevant Quantum Computation”. In:
Proceedings of the 2024 IEEE International Conference on Quantum Computing
and Engineering (QCE). Montréal, Canada, 2024. arXiv: 2408.02587 [quant-ph]

CODE AVAILABILITY
A full implementation of QISS can be found at https://github.com/anneriet/QISS,
see also Chapter 5.

95

https://arxiv.org/abs/2408.02587
https://github.com/anneriet/QISS

6

96 6. REQUIREMENTS FOR INDUSTRY RELEVANT QUANTUM COMPUTATION

6.1. INTRODUCTION
Industrial shift scheduling is an essential part of efficiently planning and running op-
erations in the manufacturing sector. The challenge is to find the optimal production
schedule for an end-to-end manufacturing system with multiple production sites. This
schedule must comply with numerous constraints, including legal regulations and lim-
ited intermediate storage between the production sites. In volume-intensive industry
sectors such as the automotive industry, one must additionally meet a production target
corridor. The optimization goal is to minimize labor costs while satisfying all constraints.

The Quantum algorithm for Industrial Shift Scheduling (QISS) [115] provides the first
fully quantum approach to finding exact solutions to volume-constrained industrial la-
bor planning problems. Based on Grover Adaptive Search (GAS) [31, 66], it inherits the
asymptotic quadratic speedup of Grover’s algorithm over classical unstructured search
methods such as brute-force or random search.

However, the problem size at which this quadratic speedup leads to a practical
speedup is subject to limitations. On the one hand, it is impractical to seek exact so-
lutions for very large problems, because: 1) the solution space grows exponentially with
the problem size; and 2) the constraints typically impose very little structure on the so-
lution space. Hence, one must resort to (classical) heuristic approaches, such as sim-
ulated annealing [107] or tensor network methods [16]. On the other hand, for suf-
ficiently small problems where finding exact solutions may be achievable, the inferior
clock speed of quantum computers compared to classical computers will tend to wash
out the quadratic speedup [84]. A natural question is then: does a regime exist where
QISS can return exact solutions with a runtime that is both acceptable in a real-world
setting, and superior to that of classical unstructured search?

In this chapter, we investigate this question systematically by estimating the re-
sources required for the execution of QISS (described in Section 6.2.3 below) on a fault-
tolerant quantum computer using the surface code [61] for quantum error correction,
as a function of problem size. Through comparison with the runtime of classical un-
structured search, we evaluate the prospects for a practical speedup using QISS under
various scenarios, each with different assumptions about the characteristics of the quan-
tum computer. Using open-source resource estimation tools, we find the resources re-
quired for a speedup to be highly demanding, far out of reach for all existing and planned
technology. By exploring different parameter scenarios, we quantify the role of key met-
rics such as qubit error rates and operation execution times in the quest for achieving a
speedup.

In terms of the number of qubits, we find that currently planned quantum computers
(i.e. those illustrated in Figure 6.1) will not be large enough to tackle instances of the shift
scheduling problem where a classical unstructured search of the solution space becomes
infeasible. This is broadly in line with the conclusions of other recent work to assess the
required resources for quantum utility [84, 22, 64, 45].

The chapter is organized as follows. Background information about current quan-
tum computing platforms, quantum error correction and the QISS algorithm is given
in Section 6.2. An overview of the resource estimation process is given in Section 6.3.
Section 6.7 assesses the resource requirements for the execution of QISS using quan-
tum computers that may be accessible in the near-to-mid term, while Section 6.8 in-

6.2. BACKGROUND

6

97

vestigates the prospects for a speedup using idealized technology with fast, high-fidelity
operations. Our conclusions and outlook can be found in Section 6.9.

6.2. BACKGROUND
In this section, we give background information on current and planned quantum com-
puting platforms, quantum error correction codes, and we provide a brief overview of
our use case, the QISS algorithm and the modifications we made to the QISS algorithm.

6.2.1. QUANTUM COMPUTING TECHNOLOGIES

Quantum computers are being developed by numerous academic, governmental, and
industrial organizations worldwide today, covering several different types of qubit tech-
nologies. The key figures of merit characterizing these systems include: the total number
of qubits, the limiting physical error rate, the degree of qubit connectivity, and the time
required to execute physical operations such as quantum gates and measurements. No-
tably, there is currently no single platform type or device that leads across all such figures
of merit.

The first two quantities (the number of qubits and the error rate) are particularly
important for the goal of achieving large-scale, reliable quantum computation. Increas-
ingly, hardware manufacturers are providing technology roadmaps for the coming 5 to
10 years of development, with the number of qubits occupying a central role. In Fig-
ure 6.1, we illustrate the number of qubits planned by different manufacturers, using
publicly available data. The first devices with more than one thousand qubits are al-
ready available, while within a decade there are commitments to building devices with
up to 100000 qubits.

6.2.2. QUANTUM ERROR CORRECTION

The availability of quantum computers with hundreds of qubits, together with gate error
rates around one percent, has begun to drive a wave of research in practical implemen-
tations of quantum error correction (QEC) codes [166, 58, 113, 2, 151, 24, 83]. A QEC
code leverages multiple noisy physical qubits to encode a single logical qubit, whose
error rate is lower than that of a physical qubit. For a given QEC code, the number of
physical qubits required to encode a logical qubit depends on the error rate of physical
qubits, as well as the required error rate of the logical qubit [70, 53, 161]. Errors on logical
qubits can be detected using a set of non-destructive ‘syndrome’ measurements, while
an accompanying decoder algorithm determines which operation(s) should be applied
to correct an error. Quantum logic gates can be applied to a logical qubit by a suitable
sequence of gates and measurements on the underlying physical qubits.

Quantum error correction will be essential to achieving quantum computational
utility for industry-sized problems. On the other hand, QEC carries a significant resource
overhead, which must be carefully quantified to predict the scale at which a computa-
tional utility may be obtained for a given use case.

In this work, our resource estimation uses the surface code as the quantum error
correction scheme. The surface code is a leading candidate for large-scale fault-tolerant
quantum computation, and can be readily implemented on 2D planar devices such as

6

98 6. REQUIREMENTS FOR INDUSTRY RELEVANT QUANTUM COMPUTATION

superconducting qubit chips [61].

2017 '18 '19 '20 '21 '22 '23 '24 '25 '26 '27 '28 '29 '30 '31 '32 '33
Year

10

100

1000

10,000

100,000

 N
um

be
r o

f p
hy

sic
al

 q
ub

its

IBM

IBM modular

Google

IonQAtom computing

QuEra

Quantinuum

Xanadu

Rigetti

Oxford Quantum Circuits

Intel (quantum dots)

Intel

Quantum computing roadmap

Superconducting qubits
Trapped ion qubits
Photonic qubits
Neutral atom qubits
Quantum dot qubits

Current systems (2024/Q3)
Planned systems

Figure 6.1: Quantum computing roadmap of the number of physical qubits by various manufacturers, inspired
by [82]. Data can be found in Table 6.1.

6.2.3. QUANTUM OPTIMIZATION FOR INDUSTRIAL SHIFT SCHEDULING
In this section we provide a brief overview of our industrial shift scheduling problem of
interest, and the algorithm designed to solve it, the Quantum Industrial Shift Scheduling
algorithm (QISS); full details may be found in [115].

We consider the simplified automotive production line shown in Figure 6.2. This
model consists of two shops: a body shop and a paint shop, with a single shared storage
buffer between them. To model the effect of labor regulations, each shop has a fixed set
of four possible working hours (i.e. shifts) per day. Choosing to operate a shop for a given
number of hours results in a corresponding production cost and vehicle output. The
intermediate storage buffer cannot be filled beyond its maximum capacity, or emptied
below its minimum capacity. The goal is to find a shift schedule for each shop such
that an (annual) production volume target is met, up to some tolerance, with minimal
operating costs.

Figure 6.2: The structure of the simplified model for industrial shift scheduling, in which a body shop and a
paint shop share a storage buffer [115]

QISS [115] uses Grover adaptive search to find the optimal solution with high proba-
bility, following a total of O(

p
N) applications of the corresponding Grover rotation op-

6.2. BACKGROUND

6

99

Table 6.1: Data used to generate Figure 6.1

Company Modality Designation Year # of qubits Released? Source Note

IBM Superconducting Canary 2017 5 yes [190]
Albatross 2018 16 yes [190]
Penguin 2019 20 yes [190]
Falcon 2020 27 yes [190]
Eagle 2021 Q4 127 yes [190]

Osprey 2022 Q4 433 yes [190]
Condor 2023 Q4 1121 yes [34]

Kookaburra 2025 4158 [190] # of qubits from [120]
Cockatoo 2027 [190] # of qubits is not specified
Blue Jay 2033 100000 [190] Also listed as 2000 (logical) qubits

IBM Superconducting Heron 2023 Q4 133 yes [190]
modular Flamingo 2024 156 [190]

Crossbill 2024 408 [120]
Heron 2024 399 [190] 133×3

Flamingo 2025 1092 [190] 156×7
Starling 2029 200 [190]
Blue Jay 2033 100000 [190] Also listed as 2000 (logical) qubits

Google Superconducting Foxtail 2017 22 yes [46]
Brislecone 2018 Q2 72 yes [46]
Sycamore 2019 Q3 53 yes [46] Has 53 ‘effective’ qubits

M3 2025+ 1000 [142]
M4 - 10000 [142]
M5 - 100000 [142]
M6 - 1000000 [142]

Rigetti Superconducting Agave 2017 Q2 8 yes [41]
Acorn 2017 Q4 19 yes [41]

Aspen-1 2018 Q4 16 yes [41]
Aspen-4 2019 Q1 13 yes [41] Higher fidelity than Aspen-1
Aspen-7 2019 Q4 28 yes [41]
Aspen-9 2021 Q1 32 yes [41]

Aspen-11 2021 Q4 40 yes [41]
Aspen-M-1 2022 Q1 80 yes [41]

Ankaa-2 2024 Q1 84 yes [40]
Lyra 2025 336 [144]

- 2026 1000 [144]
- 2028 4000 [144]

Oxford Quantum Superconducting Lucy 2022 8 yes [185]
Circuits OQC Toshiko 2023 Q4 32 yes [145]

Intel Superconducting - 2017 Q3 17 yes [143]
Tangle lake 2018 Q1 49 yes [86]

Quantum dots Tunnel falls 2023 Q3 12 yes [132]

IonQ Trapped ions Harmony 2019 11 yes [181]
Aria 2022 21 yes [91]

Forte 2023 32 yes [181]
Forte enterprise 2024 35 [186]

Tempo 2025 64 [186]
- 2026 256 [181]
- 2027 384 [181]
- 2028 1024 [181]

Quantinuum Trapped ions H1 2020 20 yes [155]
H2-1 2023 Q2 32 yes [155]
H2-2 2024 Q2 56 yes [187]

Xanadu Photonic X2 2018 2 yes [138]
X4 2019 4 yes [138]
X8 2020 Q4 8 yes [138]

X12 2020 Q4 12 yes [150]
Borealis 2022 Q2 216 yes [128]

Atom computing Neutral atoms Phoenix 2021 Q3 100 yes [38]
- 2024 1180 [157]

QuEra Neutral atoms Aquila 2023 Q3 256 yes [203]
- 2024 ’>256’ [165] Not plotted
- 2025 ’>3000’ [165] Plotted as 3000 qubits
- 2026 ’>10000’ [165] Plotted as 10000 qubits

6

100 6. REQUIREMENTS FOR INDUSTRY RELEVANT QUANTUM COMPUTATION

erator. Here, N is the total size of the solution space, where for n days of factory op-
eration we have N = 16n ; the constant factor of 16 represents the number of combina-
tions of shifts for the two shops each day. In this work we use an adapted version of the
QISS buffer constraint, which reduces the required number of ancilla qubits. This gives
us a total qubit count of 6n + 11+ ⌈

log2(19n)
⌉

for scheduling n days of factory opera-
tions [115]. This is explained in more detail in Section 6.2.4.

6.2.4. ADDITIONAL BUFFER CONSTRAINT
Because of (hardcoded) limitations in the quantum simulator and the resource estima-
tion tools that we used, we need to reduce the number of qubits used by the QISS algo-
rithm [115]. With the reduction in qubits, we can check the correctness of our algorithm
for larger problem sizes than would otherwise be possible because of these limitations
(see also Section 6.5).

To reduce the number of qubits required in the QISS algorithm, we introduce an ad-
ditional constraint that disqualifies any solution that results in a negative number of
units in the buffer. In practice, this means that shop 2, which takes units out of the
buffer, is not allowed to be idle (i.e. assigned to work, but with no stock to work on).

In [115], the number of units in the buffer is set to zero if it would otherwise hold
a negative number, using the M AX (0, B̃) operator. Because the oracle needs to be a
reversible computation, the M AX (0, B̃) operator requires many ancilla qubits to store
this negative buffer value. But if the number of units in the buffer exceeds the maximum
value of Bmax , the solution is disqualified through use of a single condition qubit per day
of scheduling.

We can use the same construction for a minimum number of items in the buffer.
This means that the M AX (0, B̃) operator and all its ancilla qubits can be replaced by a
single condition qubit and corresponding constraint check. The modified circuit, shown
in Circ. 6.1. This modification reduces the need for the 6n ancilla qubits for scheduling
n days, while adding one additional condition qubit per day. This reduces the total qubit
count by approximately 45%, from 11n +11+⌈

log2(19n)
⌉

to 6n +11+⌈
log2(19n)

⌉
.

|qS1〉 □
|qS2〉 □

|qb〉 Binit S1 9S2 QF T † • QF T 9(Bmax +1) QF T † • QF T (Bmax +1)

|a〉
|c1,min〉 X |1〉 if Bout ≥ 0

|c1,max〉 |1〉 if Bout ≤ Bmax

Circuit 6.1: Circuit for the evaluation of the additional minimum buffer capacity condition Bout ≥ 0, with gates
as defined in [115]. The CNOTs are controlled by the most significant bit (MSB) of the register |qb〉. The buffer
register is returned to its original value Bout through a quantum Fourier transform and by adding the value
of Bmax + 1. The original formulation required the use of a register of ancilla qubits |a〉 to implement the
M AX (0, B̃) operator. With this modification, these ancilla qubits are not required and can be omitted, at the
cost of adding one additional condition qubit (|c1,min〉) per day of scheduling.

6.3. RESOURCE ESTIMATION FOR FAULT-TOLERANT QUANTUM COMPUTING

6

101

6.3. RESOURCE ESTIMATION FOR FAULT-TOLERANT QUANTUM

COMPUTING
Given a target quantum algorithm and an (assumed) quantum computer, the goal of
resource estimation is to quantify the required size of the quantum computer and the
runtime for complete execution of the computation. The target algorithm (QISS, in this
work) is provided in the form of a quantum circuit using a high-level instruction set. The
high-level instructions are convenient for the construction of algorithms, but do not take
into account the need for quantum error correction, or the constraints imposed by the
supported instruction set and the architecture of the quantum computer.

Besides the target quantum circuit encoding the computation to be performed, one
of the key inputs to resource estimation is the characteristics of the target quantum com-
puter to be used, which is described in Section 6.3.1. At the input stage the user must also
specify the error budget, which can be determined independently based on the details of
the target application. The error budget strongly influences the hardware requirements,
because it determines the overhead that must be introduced to perform quantum error
correction. The influence and division of our error budget is explained in more detail
in Section 6.3.2. Additionally, the user must make a choice for an error correction code.
Section 6.3.3 describes the influence the code can have on the estimation result.

For the most accurate estimation of the required resources, the quantum circuit
needs to be compiled into instructions that can be directly executed on the target hard-
ware, in such a manner that the executable output circuit is fault-tolerant (i.e. robust to
noise below a certain threshold). This compilation process consists of multiple steps, in-
cluding: gate decomposition, qubit mapping and routing, resource scheduling and op-
timization, encoding into a quantum error correction scheme, and translation of gates
into the device’s native gateset [22, 45, 103]. However, at the present time many of the
inputs to such a computation remain uncertain, given that quantum computers and the
supporting software stack remain at an early stage of development. For quantum re-
source estimation, we instead make reasoned assumptions and approximations about
the compilation procedure and the architecture of the quantum computer, allowing use-
ful predictions to be obtained.

We will first explain in detail the different steps of the process in Section 6.3.4, and
then give an example for a problem size of ten days in Section 6.3.5.

6.3.1. CHARACTERISTICS OF TARGET DEVICE

The key properties of the target device that can be configured in the resource estimation
tools presented in Section 6.4 include the standard error rates due to gate operations,
measurements, and qubit idling. Additionally, one must specify an error rate for physical
T-gates, which influences the resources required for T-state distillation. When not other-
wise specified, we assume T-gate error rates are the same as 1-qubit gate error rates, and
that the idle error rate is the same as the measurement error rate.

6.3.2. ERROR BUDGET

The error budget is the allowed error rate after execution of the whole circuit, and repre-
sents the fraction of times the circuit is allowed to fail (i.e. to return an incorrect answer).

6

102 6. REQUIREMENTS FOR INDUSTRY RELEVANT QUANTUM COMPUTATION

For Grover-based algorithms such as QISS, it is relatively easy to verify whether the
solution obtained satisfies the desired search criteria. In our case, we seek a solution with
an objective function value that is lower than that of any previously found solution. This
means that we have a relatively high tolerance for errors in our algorithm. Therefore, we
choose an error budget of ϵ= 0.25 for our application.

Increasing the error budget increases the average time to solution, and decreases
the chance that the optimal solution has been found after

p
N application of the Grover

rotation operator. We have accounted for this by setting the number of rotations to
p

N
rather than π

4

p
N ≈ 0.79

p
N for our algorithm.

The error budget is the sum of three components: the error budget for logical qubits,
the budget for rotation gate synthesis, and the budget for T-state distillation. In our com-
putations, the total error budget ϵ is divided equally among the three components, such
that each has a value of ϵlog = ϵdis = ϵrot = ϵ/3 [22]:

1. Logical qubits: The error budget for logical qubits is the fraction of runs that are al-
lowed to fail from an error in one the of logical qubits. A lower logical qubit error budget
lowers the maximum allowed error rate for each logical qubit, which increases the re-
quired code distance and therefore the number of physical qubits.

2. Rotation gate synthesis: A lower error budget for rotation gate synthesis means an
increased number of T-states required for the decomposition of each rotation gate [109],
and thereby the total number of T-states required. This tends to increase the number of
T-state factories and therefore the total number of physical qubits and/or the runtime of
the algorithm.

3. T-state distillation: A lower error budget for T-state distillation means a lower max-
imum error for the distillation of each T-state. This influences the choice of the type of
T-factory, and can mean an increase in code distance per round of distillation, an in-
crease in the number of distillation rounds, or both.

By dividing our error budget equally, we do not take into account the runs which
fail due to more than one error. Our effective error budget is thus slightly lower, at (1−
(1−0.25/3)3) ≈ 23%. This equal division might not be the most optimal division of the
error budget, since all three parts are unlikely to contribute equally to the final estimated
resources. The optimal division will depend on all factors of the resource estimation, and
is outside of the scope of this chapter.

We illustrate the influence of each of the three quantities in the resource estimation
process in Figure 6.4.

6.3.3. QUANTUM ERROR CORRECTION CODE
A number of parameters of the chosen QEC code influence the corresponding resource
requirements, including the code threshold and the crossing pre-factor. Ultimately,
these determine the code distance required to satisfy the error budget for the compu-
tation. In turn, the code distance strongly influences the encoding overhead (i.e. the
ratio of physical to logical qubits), and the logical cycle time (i.e. the time required to
perform operations such as error detection, correction, and logical gates).

6.3. RESOURCE ESTIMATION FOR FAULT-TOLERANT QUANTUM COMPUTING

6

103

In all of our experiments we focus on the surface code, which is a leading candidate
for large-scale fault-tolerant quantum computing [108, 61]. We make use of the in-built
surface code models in the Azure Quantum Resource Estimator (AQRE), which are de-
scribed in detail in [125].

6.3.4. PROCESS OF RESOURCE ESTIMATION
The process of quantum resource estimation can be summarized in the following five
steps, shown schematically in Figure 6.3. A more elaborate schematic overview can be
found in Figure 6.4.

3.
T-factories

1. Resource
 counting

Quantum
circuit

 5. Total
number of
physical

qubits

4. Total
runtime

of logical qubits

of
T-states 2. Decomposition

of non-Clifford gates

Qubits for
T-state
distillation

Circuit depth

Figure 6.3: A simplified schematic overview of the process of resource estimation for fault-tolerant quantum
computation. A more complete version of the diagram can be found in Figure 6.4.

1. Counting of the logical resources required by the input circuit (i.e. the circuit that
encodes the target application);

2. (Abstracted) decomposition of all non-Clifford gates in the input circuit into se-
quences of Clifford gates and T-states;

3. Determination of the type and number of T-state factories required to supply the
required T-states within the runtime of the computation;

4. Calculation of the total estimated runtime for executing the complete circuit;

5. Calculation of the total number of physical qubits required.

Note that this division of steps is a simplification of the full process of resource estima-
tion. Other approaches may, for example, use a different subdivision of the process, or
use similar steps in a different order.

1. Logical resource counting: The first step in the process is the circuit compilation, using
the assumption that all operations in the target circuit will be implemented in practice
via a standard instruction set of gates and/or measurements. For example, an arbitrary
rotation around either the Y or X axis is decomposed into a product of Hadamard-type
gates and a rotation around the Z axis.

Additional logical ancilla qubits are needed to facilitate interactions between logical
qubits. How many ancilla qubits are needed depends on the topology of the target de-
vice, and for the most accurate estimator results, a full mapping of the input circuit onto

6

104 6. REQUIREMENTS FOR INDUSTRY RELEVANT QUANTUM COMPUTATION

the target qubit layout is required. If the topology is not known or mapping is not feasi-
ble, assumptions about the qubit layout and the overhead introduced by mapping can
be used instead.

For example, one may assume a 2D planar device with nearest-neighbor connectiv-
ity, with alternating rows of logical algorithm qubits (i.e. those being used explicitly for
computation) and logical ancilla qubits [22].

2. Decomposition into Clifford and T-states: Unlike the set of Clifford gates, which in the
surface code can be applied directly to logical qubits using methods of lattice surgery,
non-Clifford gates must be implemented through a combination of Clifford gates and
the use of magic states [109, 29], with the most commonly used magic state being the
T-state.

To decompose non-Clifford gates, a sequence of Clifford gates and T-states needs
to be found that can approximate the non-Clifford gate to the required fidelity. For
Toffoli gates, a standard construction from the literature may be used [95]. For other
non-Clifford operations such as arbitrary rotations around the Z axis, a decomposition
is obtained using a recursive algorithm whose runtime grows with the specified preci-
sion [162, 48]. For large circuits with stringent precision requirements, it becomes infea-
sible or impractical to decompose all non-Clifford gates.

Instead, in resource estimation the error budget can be combined with existing re-
sults from the literature to calculate an average number of T-states required for the de-
composition of each non-Clifford gate. The total number of required T-states can then
easily be calculated by multiplying this average and the number of non-Clifford gates
obtained in the resource counting step [22].

3. Determination of the number and type of T-state factories: To implement the quantum
circuit within the specified error budget, high-fidelity T-states are prepared using T-state
factories.

Since state injection begins with a non-error-corrected physical T-gate, the resulting
logical state inherits the noise of the physical operation. Subsequently, high-quality T-
states, which have a fidelity consistent with the target accuracy of the computation, are
purified from multiple imperfect, noisy T-states using sophisticated quantum circuits
known as T-state distillation factories. Different ways of implementing T-state factories
have been proposed, with the type of factory chosen influencing the required number of
qubits and the runtime of each factory [22, 29, 65].

4. Estimating runtime: The algorithm’s runtime is limited by one of two parallel pro-
cesses: the circuit’s execution and the T-state distillation. The circuit execution time
depends on the degree of parallel gate execution that is assumed possible, the specific
details of the quantum error correction code used, and the execution time of underlying
physical operations such as two-qubit gates, measurements, and qubit resets.

The time needed for T-state distillation also depends on these factors. However, the
number of distillation factories can be chosen to either minimize the number of qubits
(by using only one T-state factory) or to minimize the runtime by finding the number of
factories able to produce all needed T-states at the same time as the circuit execution.

6.3. RESOURCE ESTIMATION FOR FAULT-TOLERANT QUANTUM COMPUTING

6

105

A common assumption for resource estimation is that the rate of T-state consumption
is constant. In other words, we assume that the computation requires an equal number
of T-states at any moment during its execution. One may relax this assumption and in-
corporate circuit-specific information on the T-state requirements during various stages
of the computation, at the expense of introducing further modeling and computational
complexity to the resource estimation procedure.

5. Total number of physical qubits: The total number of physical qubits required to
execute the computation depends on a number of factors. Primarily, any quantum error
correction scheme has an intrinsic overhead, where multiple physical qubits are used to
encode a single logical qubit. The resource footprint of this encoding overhead depends
strongly on the error correction code being used, the error budget of the computation,
and the predominant error rate of the physical qubits.

Secondly, the algorithm design and compilation process can have a significant in-
fluence the required number of qubits. For example, the need for logical qubit routing
can be reduced by designing the algorithm in such a way that each qubit only interacts
with its nearest neighbors. Using more sophisticated mapping algorithms can reduce
the number of physical qubits required for mapping, at the cost of increasing the run-
time of the compilation process [172]. The device topology also influences the number
of physical qubits. For architectures with high connectivity, the need for physical qubit
routing may be reduced compared to e.g. a device with only one-dimensional (linear)
qubit connectivity.

For resource estimation, we use assumptions about the influence of device connec-
tivity and how it is used, instead of running the computationally expensive task of full
mapping and scheduling of the algorithm.

The number of physical qubits for the circuit execution and the T-state distillation
can be calculated separately and then added together to find the total number of qubits
required.

6.3.5. ANALYTICAL EXAMPLE OF RESOURCE ESTIMATION
To get some insight into how the resource estimates are calculated, we explicitly show
the calculations going into the estimations for our industrial shift scheduling algorithm
for a fixed problem size of ten days, and one application of the corresponding Grover
oracle. This calculation follows the steps shown in Figure 6.4. The relevant input values
for the example are listed in Table 6.2, the intermediate and output values can be found
in Table 6.3.

The algorithm is written as a Q# program and compiled to QIR using the standard Q#
compiler built into the AQRE. We outline the steps and calculations behind the resource
estimator using this example, for the “qubit_gate_ns_e3" parameter set (i.e. the ‘Flat
10−3’ scenario of Table 6.6). We set the error budget to be ϵ= 0.001, which we divide into
three equal parts into error budgets for the logical circuit execution ϵlog, the error budget
for rotation gates synthesis ϵsyn and the error budget for the T-state distillation ϵdis:

ϵ= ϵlog +ϵsyn +ϵdis , ϵlog = ϵsyn = ϵdis =
ϵ

3
= 0.0003 (6.1)

6

106 6. REQUIREMENTS FOR INDUSTRY RELEVANT QUANTUM COMPUTATION

 4. Total runtime

3. T-factories

5. Total
number
of qubits

 1. Resource counting

Type of T-state
distillation
factories

(Abstracted)
circuit

compilation

2. Decomposition
of non-Clifford

gates

Number of
 logical cycles

Quantum
circuit

Number of physical
qubits for logical qubits

Physical
qubit

properties

Physical
qubit

properties

Number of
T-factories†

Total runtime of
the algorithm†

Logical
cycle
time*

Number of physical qubits for
T-state distillation

Total number of
physical qubits

Error
budget

Algorithmic
qubits

Number of
qubits per
factory

Error
budget

Input

Model
dependent

process

Output

Legend

Number of
logical qubits

Qubit
layout

Maximum
logical qubit

error rate

Clifford gates and
new circuit depth

Other circuit
characteristics

Non-Clifford gates T-states

Error
budget

Figure 6.4: Schematic overview of the process of resource estimation as used in the Microsoft Azure Quantum
Resource Estimator [22], Qualtran [154] and Bench-Q [4]. Red outlined circles show the (user) input, blue
outlines mark the model dependent processes and green outlines show the output of the estimation.
* Logical cycle time can be an input value or can be calculated from the (input) gate characteristics, the code
distance required to achieve the logical qubit error rate and the characteristics of the error correction code.
† The algorithm runtime can be calculated by which takes the most time: the logical circuit execution or the T-
state distillation. Alternatively, the number of distillation factories can be chosen so that the T-state distillation
does not increase the total runtime, but takes less than or as much time as the logical circuit execution.

The number of logical qubits and gates were obtained using the logical counts as
output by the AQRE. To improve algorithm performance the AQRE uses a compilation
scheme that delegates the expensive non-Clifford rotation operations to ancilla qubits.
To implement a rotation gate such as Rz (θ) to a qubit, the qubit is first entangled with
an ancilla by a joint Pauli measurement, after which a series of Clifford and T-states is
applied to the ancilla to apply the rotation θ. By measuring the ancilla, the phase θ is
kicked back to the algorithm qubit. By using this compilation technique, multiple rota-
tions can be synthesized in parallel [22]. The ancilla qubits and measurement operations
this technique requires are counted among the values listed in Table 6.2.

For a problem size of ten days, this technique adds 38 ancilla qubits to the 78 qubits
needed for the algorithm execution [115], bringing the total to 116 algorithmic qubits
(Qalg). The additional measurement operations account for most of the counted mea-
surements operations: of the Mmeas = 5858 measurements, 4 ·ndays = 40 are for measur-
ing the state of the shop qubits.

The AQRE determines the number of logical qubits Q, the minimum number of log-
ical cycles Cmin, and the required number M of T-states as follows [22]:

6.3. RESOURCE ESTIMATION FOR FAULT-TOLERANT QUANTUM COMPUTING

6

107

Table 6.2: Input values, parameters and resource counting results for the analytical resource estimation exam-
ple.

Symbol Description Value Symbol Description Value

ndays # of days to schedule 10 Qalg # of algorithmic qubits 116
ϵ Error budget 0.001 Mmeas # of measurement operations 5858
p Measurement error rate 0.001 MR # of single-qubit rotation gates 7938
pT T-state error rate 0.001 MT # of T-gates 912
t2Qgate Two-qubit gate time 50 ns MTof # of Toffoli gates 5820
tmeas Measurement time 100 ns DR Rotation depth 3653

a Surface code parameter [22] 0.03 A Values for determining
the number of T-states [22, 111]

0.53
p∗ Surface code parameter [22] 0.01 B 5.3

Q = 2Qalg +
⌈√

8Qalg

⌉
+1 (6.2)

Cmin = (Mmeas +MR +MT)+
⌈

A log2

(
MR

ϵsyn

)
+B

⌉
DR +3MTof (6.3)

M =
⌈

A log2

(
MR

ϵsyn

)
+B

⌉
MR +4MTof +MT (6.4)

From Equation (6.2), we can calculate that this circuit will require Q = 264 logical qubits.
Using Equations (6.3) and (6.4), with the values listed in Table 6.2, we calculate that the
circuit will consume M = 175014 T-states and take a minimum of Cmin = 101575 logical
time steps. We will assume that the total number of logical time steps will be equal to the
minimum required number for the logical circuit execution (i.e. the T-state distillation
will not increase the total runtime of the algorithm). That means that we can use the
number of logical cycles and the number of logical qubits Q to calculate the (maximum)
logical qubit error rate P as:

Q ·Cmin ·P = ϵlog ≤ ϵ/3 (6.5)

This gives us a maximum logical qubit error rate of P = 1.24 ·10−11. Using Equation (6.6),
we find that we need a (minimum) code distance of d = 19 to achieve the logical error
rate. The required number of physical qubits per logical qubit is thus n(d) = 722 (Equa-
tion (6.7)), and the number of physical qubits required for encoding all of the logical
qubits qlog =Q ·n(d) = 190608.

d =
⌈

2log(a/P)

log(p∗/p)
−1

⌉
odd

(6.6)

n(d) = 2d 2 (6.7)

The logical cycle time for the surface code is calculated using Equation (6.8), from the
two-qubit gate time t2Qgate and the measurement time tmeas: τ(d) = (4 ·50ns+2 ·100ns) ·
19 = 7600ns. This gives a total algorithm runtime of t = 7600ns ·101575 = 0.772s (Equa-
tion (6.9)).

6

108 6. REQUIREMENTS FOR INDUSTRY RELEVANT QUANTUM COMPUTATION

τ(d) = (4 · t2Qgate +2 · tmeas) ·d (6.8)

t = τ(d) ·Cmin (6.9)

Table 6.3: Intermediate and output values for the analytical resource estimation example.

Symbol Description Value

ϵsyn Error budget for rotation gate synthesis 0.0003
ϵlog Error budget for logical circuit execution 0.0003
Q Number of logical qubits 264
Cmin Minimum number of logical cycles 101575
P Logical Clifford error rate 1.24 ·10−11

d Code distance 19
n(d) Number of physical qubits per logical qubit 722
τ(d) Logical cycle time 7600 ns

ϵdis Error budget for T-state distillation 0.0003
M Number of T-states 175014
F Number of T-state distillation factories 23
D1, Dlast Code distance for T-state distillation rounds 5, 17
PT (D) Logical T-state error rate 1.90 ·10−9

M(D) Number of T-states produced per distillation 1
n(D) Number of qubits per factory 18000
τ(D) Total distillation runtime 101µs

t Total algorithm runtime 0.772 s
qlog Physical qubits for logical qubits 190608
qdis Physical qubits for T-state distillation 414000
qtotal Total number of physical qubits 604608

The next step is to find the number of distillation factories F capable of producing the
required M T-states during the runtime of the algorithm. First, we use Equation (6.10) to
calculate the required logical T-state error rate PT (D) = 1.90 ·10−9.

M ·PT (D) = ϵdis ≤
ϵ

3
(6.10)

The logical output error rate of the distillation units is calculated as in Table 6.4, using
the input logical T-gate error PT and logical Clifford error P . The required output error
rate of 1.90 · 10−9 cannot be achieved in one round of distillation with an input T-gate
error rate of 0.001, which means that multiple rounds of distillation will be needed.

We first consider the last round of distillation. To use the formula for logical output
error rate from Table 6.4: PT (D) = 35P 3

T + 7.1P , we initially assume that the input T-
gate error (PT) does not contribute to the output error rate of the T-factory PT (Dlast),
so that we can calculate the maximum input logical Clifford error rate P . We find P ≤
1.90 · 10−9/7.1 = 2.68 · 10−10. We use this in Equation (6.6) to find a code distance of
Dlast = 17 for this distillation round, which we use with Equation (6.11) to calculate the
actual (input) Clifford error rate P (17) = 3 ·10−11.

P (d) = a

(
p

p∗

) d+1
2

(6.11)

6.4. AUTOMATED TOOLS FOR RESOURCE ESTIMATION

6

109

We can then use this to find the maximum allowed input T-state error rate for this
round of distillation, using: 35P 3

T ≤ PT (Dlast)−7.1P → PT ≤ 3.64 ·10−4. This is the max-
imum allowed output error for the first distillation round. Many rounds of distillation
can be required to reach a certain T-gate error rate, but for this example, we only need
two.

Table 6.4: Characteristics of the distillation units used in the resource estimator. Table adapted from [22], with
calculation for time changed to 11τ(d) for consistency with resource estimator output. Characteristics are
given for physical and logical space efficient and Reed-Muller (RM) preparation 15-to-1 distillation units.

distillation unit acceptance probability # qubits runtime output error rate

15-to-1 space eff.
physical

1−15pT −356p 12 46tmeas pT (D) = 35p3
T +7.1p

15-to-1 space eff.
logical

1−15PT −356P 20n(d) 13τ(d) PT (D) = 35P 3
T +7.1P

15-to-1 RM prep.
physical

1−15pT −356p 31 23tmeas pT (D) = 35p3
T +7.1p

15-to-1 RM prep.
logical

1−15PT −356P 31n(d) 11τ(d) PT (D) = 35P 3
T +7.1P

For the first round of distillation, we have an input (physical) T-gate error rate pT =
0.001, and an output (logical) error rate PT (D1) ≤ 3.64 ·10−4. From this, we can calculate
the required logical Clifford error rate P ≤ PT (D1)/7.1 = 5.13·10−5 and the corresponding
code distance D1 = 5 as before, using the output error rate in Table 6.4. The acceptance
probability for this type of T-factory is 1−15PT −356P = 0.966. To get an output of 15
T-states with 99.9% probability, we require 18 distillation units per factory for the first
round.

We can calculate the time required by both rounds of distillation using Table 6.4.
For the first round, we use "space efficient" logical distillation units, and for the second
round we use“RM preparation" logical distillation units. This makes the total runtime
for both rounds τ(D) = 101µs. Each factory produces M(D) = 1 T-state.

F =
⌈

M ·τ(D)

M(D) · t

⌉
(6.12)

Using Equation (6.12), this gives us F = 23 T-state distillation factories. The first dis-
tillation round uses 18 · 20n(D1 = 5) = 18000 qubits, while the second round of dis-
tillation uses 1 · 31n(Dlast = 17) = 17918 qubits. Each factory thus requires n(D) =
max(18000,17918) = 18000 qubits, and in total qdis = F ·n(D) = 414000 physical qubits
are required for the 23 T-factories.

The total number of physical qubits is thus qtotal = qlog + qdis = 190608+ 414000 =
604608 qubits.

6.4. AUTOMATED TOOLS FOR RESOURCE ESTIMATION
We compare three different automated tools to estimate the resources required for a sin-
gle day of operations in our industrial shift scheduling problem: Qualtran [154], Bench-
Q [4] and the Azure Quantum Resource Estimator (AQRE, [22]). Figure 6.5 shows the

6

110 6. REQUIREMENTS FOR INDUSTRY RELEVANT QUANTUM COMPUTATION

number of physical qubits and the total runtime estimated by the three tools. We ana-
lyze each case in more detail below.

0 100 200 300 400 500 600
Number of physical qubits (x1000)

10 ms

100 ms

1 s

10 s

Es
tim

at
ed

 ru
nt

im
e

Azure (Qiskit input)

Bench-Q

Azure (Q# input)

Qualtran
(one T-factory)

Qualtran
(five T-factories)

Number of qubits vs runtime
 for different resource estimation tools

Figure 6.5: Estimated total number of physical qubits vs computational runtime for one day of operations of
the industrial shift scheduling problem defined in Section 6.2.3, as estimated by Bench-Q, Qualtran and the
AQRE. In all three cases, the built-in models of superconducting qubits were used, with an error rate of 0.001
and an error budget of 0.001.

6.4.1. QUALTRAN

Qualtran is a project developed by Google, consisting of a library with quantum abstrac-
tions and a rudimentary resource estimator [154]. It includes qubit, T-state factory and
rotation cost models from [22] and [65]. The logical resources of our circuit were counted
using the Bloq abstraction, generated from the same QASM code as used for the AQRE
and Bench-Q estimates. The resulting counts were used as the input for Qualtran, us-
ing the GidneyFowler models [65], with the SevenDigitsOfPrecisionConstantCost rotation
cost model and the simplifiedSurfaceCode QEC scheme. This gives the following estima-
tion result: 111000 physical qubits, and a total runtime of 1.3 seconds.

6.4.2. BENCH-Q

Bench-Q is a resource estimation tool developed by Zapata AI as part of the DARPA
Quantum Benchmarking program [158]. It includes built-in models of trapped-ion and
superconducting qubits and supports QASM input through the use of Qiskit. For the re-
sults in Figure 6.5, we used a Qiskit implementation of the industrial shift scheduling al-
gorithm described in Section 6.2.3, with the "BASIC_SC_ARCHITECTURE_MODEL" and
an error budget of 0.001. Bench-Q outputs an estimate of 348000 physical qubits, and a
total runtime of 6.2 seconds.

6.5. EXTRAPOLATING TO
p

N ITERATIONS

6

111

6.4.3. AZURE QUANTUM RESOURCE ESTIMATOR
The AQRE is a cloud-based framework developed by Microsoft that abstracts the layers
of a quantum computer stack. It allows the user to customize physical characteristics
such as noise parameters, gate and measurement times, the error budget, and the quan-
tum error correction code. The input quantum circuit can be provided in either Q# or
Qiskit [125]. The AQRE has been used for quantum resource estimation for various ap-
plications in [22, 45, 81].

The influence of gate decompositions and resource counting can clearly be seen in
Figure 6.5 in the difference between the estimates obtained using Q# and Qiskit. For
a single day of industrial shift scheduling, when using the AQRE with Qiskit as the in-
put language we obtain an estimate of 529000 physical qubits, and a runtime of 72 ms.
On the other hand, when using Q#, the AQRE estimates 460000 physical qubits, and
a runtime of 50 ms. Using Q# produces more optimal counts for the number of logi-
cal resources, because the AQRE uses (abstractions of) optimization techniques through
which some operations are implemented with additional measurements to reduce the
total required number of T-states when compiling the Q# circuit. With fewer T-states,
fewer factories and logical cycles are required, leading to fewer physical qubits and a
shorter estimated runtime. The AQRE does not use the same optimization techniques
on the circuit when it is input using Qiskit, because (integration with) this type of T-state
optimization is not currently available. We expect that Qiskit can be used to produce
similar results to the Q# input by tailoring the circuit optimization and gate decomposi-
tions to this specific use case.

We will use the AQRE with Q# input for our resource estimations.

6.5. EXTRAPOLATING TO
p

N ITERATIONS
For full runs of Grover Adaptive Search (GAS) we need to make estimates for the re-
sources required to run

p
N iterations of Grover’s search. Due to limitations in the circuit

size that we were able to submit to the AQRE, we use the following method to obtain the
resources required for all

p
N rotations of Grover’s search.

For each loop of GAS, we run a circuit with a randomly determined number of oper-
ations of the Grover rotation operator. If we want to have the same error budget for each
circuit, then for longer circuits the error budget will be lower per logical gate and per
logical qubit. This means more logical time steps and more physical qubits are required
for these longer circuits.

The number of applications of the Grover rotation operator per loop of GAS is be-
tween zero and a number m, which is increased every time the loop does not result in
an improved solution. Every time it does find an improved solution, m is reset to 1 [115].
This means that within the total of

p
N iterations, we are often executing circuits with a

low number of iterations, and not as many longer circuits. That the algorithm will land
on a single circuit containing

p
N applications of the Grover rotation operator will be

rare. Doing estimates based on this longest possible circuit will give an upper bound,
but in reality most runs will be for much shorter circuits. The lower bound will be given
by multiplying estimates for a circuit with a single Grover rotation by the total allowed
number of rotations,

p
N . This would be the number of resources required for a run of

GAS where only circuits with one Grover rotation are selected, which might be the case

6

112 6. REQUIREMENTS FOR INDUSTRY RELEVANT QUANTUM COMPUTATION

if the maximum allowed number of iterations m is reset to 1 (almost) every loop.
For getting an upper bound for the number of resources required by our algorithm,

we need to run resource estimates for circuits with
p

N applications of the Grover oper-
ator. Because of AQRE limits, we can only do that directly for problem sizes up to 7 days
(
p

N = 16384)1. For bigger problem sizes, we instead use an approximation that we now
explain.

The simplest way to make such approximations is to do the resource estimation for
a single application of the Grover rotation operator for a given problem size, but reduce
the error budget for this single iteration ϵ1 such that the combined error budget for n
iterations ϵn is equal to the error budget of a circuit that contains all

p
N iterations. This

scaling is shown in Equation (6.13).

ϵ(n) = n ·ϵ1 = ϵn (6.13)

C (n,ϵn) ≈ n(Mmeas +MR +MT +3MTof)+
⌈

A log2

(
nMR

ϵ1n/3

)
+B

⌉
nDR = nC (1,ϵ(n))

(6.14)

M(n,ϵn) ≈
⌈

A log2

(
n ·MR

n ·ϵ1/3

)
+B

⌉
nMR +n(4MTof +MT) = nM(1,ϵ(n)) (6.15)

d(n,ϵn) ≈
⌈

2log(3 ·a ·Q ·n ·C (1,ϵ(n))/(n ·ϵ1)

log(p∗/p)
−1

⌉
odd

= d(1,ϵ(n)) (6.16)

From this follow Equations (6.14) to (6.16), which are modified from the equations
in [22] or Section 6.3.5. The code distance for the T-factories is essentially the same as
for the logical qubits, using Equation (6.16) with n ·M(1,ϵ(n)) instead of n ·C (1,ϵ(n). The
rest of the estimation results follow from the results of these equations.

The two main resources we are interested in are runtime and number of qubits. For a
set problem size, the estimation for the number of qubits depends only on the number of
qubits required per logical qubit, and the number of qubits required for the T-factories.
The first is purely dependent on the minimum code distance to achieve the required
logical qubit error rate. We assume that for circuits with the same code distance, the
same number and type of T-factories are selected. We further assume that the setup at
the start and the measurements at the end of the circuit do not contribute much to the
total circuit depth or to the error budget, so that the gate counts and depth of a circuit
with n iterations are equal to n times a circuit with one application of the Grover rotation
operator. And finally, we assume that the probability of errors occurring in an iteration
is independent of the other iterations, and that the error budget is divided equally over
all iterations.

To check the influence of these assumptions, estimations were made up to a problem
size of seven days. The results of these can be found in Figure 6.6. As is clear from the
plots, the estimations using the scaled error budget correspond closely to the estimates
for the circuits with

p
N iterations. Therefore, this is the method we will be using for all

our experiments when the required circuit length exceeds the limits of the AQRE.

1Runs for problem sizes bigger than this number gave the following error: "It took longer than the max timeout
of 10 minutes to execute one of the steps of resources estimation, so the job was stopped."

6.6. SCENARIOS FROM BEVERLAND ET AL.

6

113

1 2 3 4 5 6 7
Problem size (number of days)

10 1

100

101

102

103

104

Ru
nt

im
e

(s
ec

on
ds

)

second

minute

hour

Estimated runtime for N iterations
N times the est. of 1 iteration, EB = 0.25

N times the est. of 1 iteration, EB = 0.25/ N

Estimate of N iterations, EB = 0.25

(a) Estimated runtime for
p

N Grover rotations.

1 2 3 4 5 6 7
Problem size (number of days)

0

200

400

600

800

1,000

Nu
m

be
r o

f p
hy

sic
al

 q
ub

its
 (x

10
00

)

for 1 iteration and for N iterations

Estimate of 1 iteration, EB = 0.25
Estimate of 1 iteration, EB = 0.25/ N

Estimate of N iterations, EB = 0.25

Estimated number of physical qubits

(b) Estimated number of physical qubits for
p

N Grover rota-
tions.

Figure 6.6: Resource estimation results for different methods of error budget (EB) scaling, for problem sizes
from one to seven days. The estimates are based on resource estimator results for the superconducting qubits
with a flat error rate of 10−3 (see Table 6.6). Estimates were made using the scenario for superconducting
qubits with a flat error rate of 10−3 (see Table 6.6), for the QISS algorithm [115] with a single Grover rotation and
a constant error budget of 0.25, for a single Grover rotation and a scaled error budget, calculated as 0.25/

p
N ,

and for the algorithm containing
p

N Grover rotations with a constant error budget of 0.25. To get estimates
for

p
N applications of the Grover rotation operator, the runtime results from a single rotation were multiplied

by
p

N . Qubit number estimates are not multiplied, the difference between 1 and
p

N iterations is caused only
by the difference in error budget.

6.6. SCENARIOS FROM BEVERLAND ET AL.
Beverland et al. (2022) use six scenarios in their resource estimation: two based
on superconducting qubits, two on Majorana qubits, and two based on trapped-ion
qubits [22]. These scenarios are included as predefined scenarios in the AQRE. We will
use these scenarios to estimate the quantum resources for our use case.

The parameters are summarized in Table 6.5, and the results are plotted in Figure 6.7.
The scenarios based on trapped-ion qubits start from a problem size of 7 days. The com-
putations for smaller problem sizes did not give results because of limitations of the re-
source estimator when constructing T-factories.

From the six scenarios, using the Majorana qubits with an error rate of 10−4 requires
the highest number of physical qubits. This can be seen clearly in Figure 6.7b. More
physical superconducting qubits are required than trapped-ion qubits when the error
rate for both is 10−3, but when the error rate is 10−4, the exact same number of physical
qubits are required for these two technologies. A similar number of physical qubits is
required when using Majorana qubits with error rates of 10−6 or superconducting and
trapped-ion qubits with error rates of 10−4.

Consistent with the results in [22], trapped-ion qubits are the slowest technology by
several orders of magnitude. The runtime required by the Majorana qubits is approxi-
mately the same as for the superconducting qubits. This is at odds with the results in [22],
where Majorana qubits are consistently faster than other technologies. This difference
could be caused by differences in problem size, error budget or characteristics of the
circuit, such as the number of T-gates compared to the circuit length.

6

114 6. REQUIREMENTS FOR INDUSTRY RELEVANT QUANTUM COMPUTATION

We will use scenarios based on superconducting qubits for the rest of our resource
estimates for several reasons: 1) There are no current Majorana-based quantum systems
that we can use to check the validity of the parameter values for the ‘Majorana’ scenar-
ios; 2) the runtime of the trapped-ion qubits means it is unlikely that speedup will be
achieved for this application; 3) superconducting qubits perform consistently well for
this application; and 4) there are current systems with more than a thousand supercon-
ducting qubits [34, 157] and roadmaps are available for superconducting systems up to
a million qubits.

Table 6.5: Parameters for the resource estimator six qubit scenarios from [22], of which results are plotted in
Figure 6.7.

Name
Major.
10−4

Major.
10−6

Supercond.
10−3

Supercond.
10−4

Trapped ion
1093

Trapped ion
1094

1Q meas. error rate 10−4 10−6 10−3 10−4 10−3 10−4

1Q gate error rate - - 10−3 10−4 10−3 10−4

2Q gate error rate* 10−4 10−6 10−3 10−4 10−3 10−4

T-gate error rate 10−2 10−2 10−3 10−4 10−6 10−6

1Q meas. time 100 ns 100 ns 100 ns 100 ns 100µs 100µs
1Q gate time - - 50 ns 50 ns 100µs 100µs
2Q gate time* 100 ns 100 ns 50 ns 50 ns 100µs 100µs
T-gate time 100 ns 100 ns 50 ns 50 ns 100µs 100µs

* Two-qubit joint measurements for the Majorana qubits.

1 2 4 6 8 10 12 14 16 18 20
Problem size (number of days)

10 2

10 1

100

101

102

103

Ru
nt

im
e

(s
ec

on
ds

)

second

minute

hour

15 minutes

100 ms

10 seconds

for the predefined qubit scenarios

Majorana 10 4

Majorana 10 6
Supercon. 10 3

Supercon. 10 4
Trapped ion 10 3

Trapped ion 10 4

Estimated runtime for a single rotation

(a) Estimated runtime for a single Grover rotation.

1 2 4 6 8 10 12 14 16 18 20
Problem size (number of days)

0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f p
hy

sic
al

 q
ub

its
 (x

10
00

)

for the predefined qubit scenarios
Majorana 10 4

Supercon. 10 3

Trapped ion 10 3

Majorana 10 6

Supercon. 10 4

Trapped ion 10 4

Estimated number of physical qubits

(b) Estimated number of physical qubits required for a single
Grover rotation.

Figure 6.7: Resource estimator results for the different scenarios from [22], for a single Grover rotation with
an error budget of 0.25. The runs for trapped-ion qubits start at a problem size of 7 days because of resource
estimator limitations. The exact same number of qubits are required for the algorithm for trapped-ion or
superconducting qubits with error rates of 104.

6.7. NEAR-TERM SUPERCONDUCTING QUBITS
We base our quantum resource estimates on superconducting qubit technology, a choice
that we make for several reasons. Firstly, multiple hardware developers have long-term

6.7. NEAR-TERM SUPERCONDUCTING QUBITS

6

115

roadmaps for superconducting qubit technologies, as shown in Figure 6.1. Secondly,
previous quantum resource estimation results [22] have shown that superconducting
qubits perform consistently well in terms of both the total computational runtime and
the number of physical qubits, which we have also verified for our use-case (see Sec-
tion 6.6). Finally, published characteristics of superconducting qubits are available from
several different sources, allowing us to extrapolate from current technologies to make
our estimates.

At the time of writing, no superconducting qubit quantum computer has surpassed
the threshold for error correction with the surface code, in terms of all of the relevant
physical error rates [61, 30, 199]. Therefore, the scenarios that we consider for resource
estimation relate to future systems, where all figures of merit are below the threshold for
QEC. Previous fault-tolerant resource estimation work has assumed all gates and oper-
ations to have identical error rates [22]. We use two of these scenarios: the supercon-
ducting qubits with ‘flat’ error rates of 10−3 and 10−4. Besides these, we also consider
parameter sets that better reflect the profile of existing systems.

Specifically, we construct two scenarios based on the current state-of-the-art param-
eters reported in [2]. The first scenario is obtained by decreasing these reference error
rates by one order of magnitude; we refer to this as the ‘reduced error rate’ (RER) sce-
nario. The second scenario is based on a hybrid parameter set combining the figures of
merit in [2] and [35]. Concretely, [35] introduces a qubit measurement technique with a
shorter duration and higher fidelity than [2], as well as an improved qubit idle error rate
that we calculate from the reported decay time of 85.8µs. The remainder of the parame-
ters in this second scenario are drawn from [2]; in particular, to ensure that the two-qubit
error rate is below the surface code threshold, we use the value without crosstalk re-
ported in that reference. We refer to this second parameter set as the ‘fast measurement’
(FM) scenario. The two scenarios effectively allow us to separately probe the influence of
improved error rates and faster measurements on the resources required. The parameter
values for all scenarios are given in Table 6.6.

Table 6.6: Parameters corresponding to the different scenarios for near-term superconducting qubits, of which
results are plotted in Figures 6.8 and 6.9. ’Error rate’ is abbreviated with ‘ER’, values in bold are those changed
compared to the reference scenario [2].

Name
Flat
1093[22]

Flat
1094[22]

Ref. [2] RER[2] FM[2, 35]

1Q gate ER 1093 1094 1.09×1093 1.09×1094 1.09×1093

2Q gate ER 1093 1094 6.05×1093 6.05×1094 4.90×1093

Idle ER 1093 1094 2.46×1092 2.46×1093 1.63×1093

1Q meas. ER 1093 1094 1.96×1092 1.96×1093 5.00×1093

1Q meas. time 100 ns 100 ns 500 ns 500 ns 140 ns
1Q gate time 50 ns 50 ns 25 ns 25 ns 25 ns
2Q gate time 50 ns 50 ns 34 ns 34 ns 34 ns

We begin by investigating the resource requirements as a function of the number of
days of operation in our industrial shift scheduling problem, for a single application of
the Grover rotation operator of the QISS algorithm. To interpret the results, we recall
two of the basic space-time properties of the surface code. Firstly, for a surface code

6

116 6. REQUIREMENTS FOR INDUSTRY RELEVANT QUANTUM COMPUTATION

of distance d , d rounds of syndrome measurements are performed to protect against
measurement errors. As a result, the execution time for a logical cycle grows linearly
with d . Secondly, the number of physical qubits required to construct a logical qubit
grows proportional to d 2.

The results for the different scenarios are shown in Figure 6.9. All computations were
performed using the Microsoft Azure Quantum Resource Estimator [22], which we have
selected after comparing different resource estimation tools (see Section 6.4). The total
runtime for each case has an approximately linear growth in the problem size, which
can be partly explained by the linear increase of the number of logical operations in
the Grover oracle [115], which is the same for all scenarios. The total runtime is deter-
mined by multiplying the number of logical cycles by the execution time for a single
cycle, which in turn is a function of the gate and measurement times and the code dis-
tance. For larger problem sizes, a larger code distance is generally required to meet the
error budget. However, because the code distance is always rounded up to the nearest
odd number, the required code distance increases in steps and the same distance is used
for a range of problem sizes, as we show in Figure 6.8. This results in the piecewise linear
growth of the runtime shown in Figure 6.9.

Comparing the results for the two flat error rate scenarios, the runtime for the 10−4

case is roughly half that of the 10−3 case, because the required code distance for the
former is found to be around half that of the latter (7 vs 13 and 15, see Figure 6.8). Mean-
while, the runtime for the FM scenario grows more mildly than that of the RER scenario.
For the particular parameters we have chosen, the longer measurement time of RER
means that its logical cycle time is always larger.

1 2 4 6 8 10 12 14 16 18 20
Problem size (number of days)

0

5

10

15

20

25

30

35

40

45

50

Co
de

 d
ist

an
ce

for near-term superconducting qubits

Reduced error rates
Fast measurements
Supercon. 10 3

Supercon. 10 4

Code distance at different problem sizes

Figure 6.8: Code distance for the resource estimation of a single Grover rotation with the near-term qubit
scenarios, with characteristics as outlined in Table 6.6.

The total number of physical qubits required is computed as the sum of two contri-
butions: 1) the number of physical qubits required by the circuit itself; and 2) the number
of qubits required by the T -state factories. In turn, contribution 1) has two components:
one that grows linearly in the number of days, resulting from the need to encode a larger
number of shift choices and to check the corresponding optimization constraints, and
another that grows quadratically in the required code distance, resulting from the en-

6.8. HIGH-FIDELITY QUBITS

6

117

coding of logical qubits to physical qubits. The required code distance also has a depen-
dency on the number of days, through the error rate required to meet the error budget,
as can be seen in Figure 6.8. Meanwhile, contribution 2) depends on the required code
distance and on the rate at which T states are consumed. Because the number of op-
erations in the Grover oracle increases linearly with the problem size [115], the T -state
consumption rate remains constant. Overall, we find that the number of physical qubits
required in each scenario also follows an approximately linear growth in the number of
days, as shown in Figure 6.9.

1 2 4 6 8 10 12 14 16 18 20
Problem size (number of days)

0

1

2

3

4

5

Ru
nt

im
e

(s
ec

on
ds

)

for near-term superconducting qubits
Reduced error rates
Fast measurements
Supercon. 10 3

Supercon. 10 4

Estimated runtime for a single rotation

(a) Estimated runtime for a single Grover rotation.

1 2 4 6 8 10 12 14 16 18 20
Problem size (number of days)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Nu
m

be
r o

f p
hy

sic
al

 q
ub

its
 (i

n
m

illi
on

s) for near-term superconducting qubits

Reduced error rates
Fast measurements
Supercon. 10 3

Supercon. 10 4

Estimated number of physical qubits

(b) Estimated number of physical qubits for a single Grover
rotation.

Figure 6.9: Resource estimation results for the scenarios with characteristics given in Table 6.6.

From these results, it is clear that industrial shift scheduling requires a number of
qubits that (far) exceeds the technology that will be available in the near future (see Fig-
ure 6.1). Furthermore, running the QISS algorithm until the best solution is found will
require ∼pN Grover’s rotations [115], and for scenarios that are feasible in the near-term
(such as those considered in this section), the runtime of a single Grover rotation is al-
ready on the order of seconds.

6.8. HIGH-FIDELITY QUBITS
In this section, we turn to consider the resources required to run the QISS algorithm un-
til completion, i.e. to execute the ∼pN Grover rotations necessary to return the optimal
solution with high probability. Our goal is to identify the characteristics of a system with
high-fidelity qubits that would theoretically enable a quantum speedup for the indus-
trial shift scheduling problem. We consider five scenarios with flat error rates up to 10−9,
and a scenario with perfect qubits with an error rate of zero. Due to limitations of the
resource estimator, we use a scaled error budget to obtain the resources required to exe-
cute the

p
N iterations. This is explained in detail in Section 6.5, while the results of the

resource estimations are discussed in Section 6.8.2.

6.8.1. CHARACTERISTICS OF THE HIGH-FIDELITY QUBIT SCENARIOS

In this section, we provide more detail about our choice of characteristics for our high-
fidelity qubit scenarios, which are found in Table 6.7. The estimation results are plotted

6

118 6. REQUIREMENTS FOR INDUSTRY RELEVANT QUANTUM COMPUTATION

in Figure 6.10.

Table 6.7: Parameters for the resource estimator for high-fidelity superconducting qubits plotted in Fig-
ures 6.10 and 6.11.

Name 10−3 10−4 10−6 10−8 10−9 perfect

1Q meas. error rate 10−3 10−4 10−6 10−8 10−9 0
1Q gate error rate 10−3 10−4 10−6 10−8 10−9 0
2Q gate error rate 10−3 10−4 10−6 10−8 10−9 0
T-gate error rate 10−3 10−4 10−6 5×10−8 5×10−8 0
Idle error rate 10−3 10−4 10−6 10−8 10−9 0

1Q meas. time
1Q gate time
2Q gate time
T-gate time

100 ns
50 ns
50 ns
50 ns

100 ns
50 ns
50 ns
50 ns

10 ns
5 ns
5 ns
5 ns

10 ns
5 ns
5 ns
5 ns

1 ns
0.5 ns
0.5 ns
0.5 ns

0.2 ns
–
–
–

Table 6.7 shows the error rates for the qubits used in the estimates plotted in Fig-
ure 6.11. The gate times are scaled according to the measurement time in the plot: in the
first set, the measurement operation takes 1 ns and gate operations take 0.5 ns, in the
second set, measurement takes 10 ns and gates take 5 ns. In the third set, measurement
takes 100 ns and gate operations take 50 ns.

For the scenarios for superconducting qubits that are plotted in Figure 6.10, we use
different measurement times for different error rates. The superconducting qubits used
in previous resource estimations have flat error rates of 10−3 and 10−4 [22] and gate and
measurement times of 50 ns and 100 ns, respectively. Based on this we set the gate/mea-
surement time for the scenarios with error rates of 10−6 and 10−8 to 5/10 ns and for the
scenario with error rate of 10−9 the gate/measurement time will be 0.5/1 ns.

The AQRE can only be used for qubits with error rates bigger than zero. To get esti-
mates for perfect qubits, we used the estimated logical qubits and the logical depth as
output by the AQRE. To get the runtime, the logical depth was multiplied by a value of
0.2 ns. This represents a quantum computer with a clock frequency of 5 GHz, that does
not use any error correcting methods but does take some mapping and gate decompo-
sitions into account.

When the gate error rate is below a certain limit compared to the required logical
T-gate error rate, the AQRE cannot calculate the number and type of T-factories. To cir-
cumvent this, we set the minimum T-gate error to 5 ·10−8. Even with this, no estimates
could be made for problem sizes below 4 days for the scenarios with error rates of 10−8

and 10−9, and below 2 days for the scenario with error rate of 10−6. These are shown as
missing data points in Figure 6.10.

For the brute-force search, we set the time required for a checking a single guess at
1 ns. This is much shorter than it takes for an actual guess for the best solution, which in-
cludes calculations and requirement checks. The value of 1 ns was chosen to represent a
parallel implementation of the search, where a new guess is completed (on average) ev-
ery nanosecond. How long an actual brute-force search takes depends on many factors,
including quality of implementation and resources available for parallel execution. The
runtime plotted here serves as an indication for the exponentially increasing classical
execution time.

6.8. HIGH-FIDELITY QUBITS

6

119

When decreasing gate error rates to 10−8 or 10−9, we reach the limits of what the
AQRE can be used for. At these error rates, the AQRE cannot calculate T-factories. De-
creasing the error rate for T-gates further is not possible, and the estimation for the num-
ber of physical qubits required is most likely fully determined by the T-gate error and fac-
tors that we have no influence over. It is likely that a real quantum computer with such
low qubit error rates requires less qubits than are estimated here and has other limiting
factors that we cannot predict from current technologies.

6.8.2. RESULTS FOR THE HIGH-FIDELITY QUBIT SCENARIOS

The flat error rate scenarios investigated in the previous section had gate error rates of
10−3 and 10−4, gate execution times of 50 ns, and measurement times of 100 ns [22]. We
consider three additional high-fidelity scenarios, with error rates of 10−6, 10−8 and 10−9.
We further assume that advances in qubit technology will lead to an improvement in all
figures of merit simultaneously, taking the measurement time to be 10 ns for the 10−6

and 10−8 scenarios and 1 ns for the 10−9 scenario. The execution time for all gate types
is half of the specified measurement time, i.e. 5 ns and 0.5 ns. Our assumptions, the
construction and execution of the computations for these high-fidelity scenarios are dis-
cussed in more detail in Section 6.8.1.

The results of the resource estimation with the high-fidelity scenarios are shown in
Figure 6.10. We compare the runtime with a classical brute-force search, assuming a set
of parallel processes with a combined completion frequency of 1 GHz, meaning that 109

guesses at the best solution are completed every second. For error rates of 10−3 and 10−4,
the number of physical qubits is of the order of a few million for problem sizes up to 20
days. However, the quantum algorithm does not exhibit a speedup over classical brute-
force search until the complete computation takes a over a century. For error rates be-
tween 10−6 and 10−8 with a measurement time of 10 ns, the quantum algorithm becomes
faster than the classical brute-force search around a problem size of 12 days, with exe-
cution times on the order of weeks. For a very low physical error rate of 10−9, the quan-
tum algorithm achieves a speedup for scheduling 11 days, taking a little over 2 hours
compared to almost 5 hours using the classical approach. A quantum computer with
completely error-free qubits would enable a speedup over classical brute-force search
for problem sizes larger than 7 days. However, even in this case the total runtime would
be of the order of months for scheduling 20 days of operations.

To further investigate the influence of error rates and measurement execution times,
we focus on the particular case of scheduling for 12 days of operation. We consider dif-
ferent combinations of the two system figures of merit, and plot the runtime and the
number of physical qubits in Figure 6.11. When a measurement takes only 1 ns, all of the
tested scenarios are faster than the brute-force approach for this problem size, except
the one with an error rate of 10−3. When measurements take 10 ns or more, all scenar-
ios are slower than the classical approach. These results clearly show that the error rate
has less influence on the overall runtime than the measurement execution time. For ex-
ample, decreasing the error rate from 10−3 to 10−9 gives a speedup of approximately an
order of magnitude, whereas a reduction in measurement time translates directly into
the same reduction in total runtime.

6

120 6. REQUIREMENTS FOR INDUSTRY RELEVANT QUANTUM COMPUTATION

1 2 4 6 8 10 12 14 16 18 20
Problem size (number of days)

10 6

10 3

100

103

106

109

1012
Ru

nt
im

e
(s

ec
on

ds
)

second

minute

hour
day
week
month
year
decade
century
millennium

1 million years

millisecond

Error - tmeas
10 3 - 100ns
10 4 - 100ns
10 6 - 10ns
10 8 - 10ns
10 9 - 1ns
perfect
classical

microsecond

for high-fidelity superconducting qubits
Estimated runtime to solution

(a) Estimated runtime for arriving at the best solution.

1 2 4 6 8 10 12 14 16 18 20
Problem size (number of days)

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

 N

um
be

r o
f p

hy
sic

al
 q

ub
its

for high-fidelity superconducting qubits

10 3, tmeas = 100ns
10 4, tmeas = 100ns
10 6, tmeas = 10ns

10 8, tmeas = 10ns
10 9, tmeas = 1ns
perfect qubits

Estimated number of physical qubits

(b) Estimated number of qubits for arriving at the best solu-
tion.

Figure 6.10: Resource estimation results for different scenarios based on high-fidelity superconducting qubits,
with error rates from 10−3 to 10−9 and measurement times of 100 ns to 1 ns. The execution time for all gate
types is half of the specified measurement time. Full characteristics can be found in Table 6.7.

105 106 107 108

Runtime (seconds)
1,000

10,000

100,000

1,000,000

10,000,000

 N
um

be
r o

f p
hy

sic
al

 q
ub

its

tmeas = 1 ns tmeas = 10 ns tmeas = 100 ns

day week month year

for scheduling 12 days

Error rate: 10 3

Error rate: 10 4
Error rate: 10 6

Error rate: 10 8
Error rate: 10 9

Classical

Estimated number of physical qubits and runtime

Figure 6.11: Resource estimator results for scheduling twelve days for superconducting qubits error rates from
10−3 to 10−9 and measurement times of 1 ns, 10 ns and 100 ns. The execution time for all gate types is half of
the specified measurement time. Full characteristics can be found in Table 6.7.

6.9. CONCLUSION

This work was motivated by the question of whether a speedup could realistically be
achieved for industrial shift scheduling using the QISS algorithm. We have compared
a number of scenarios with different system parameters, covering quantum comput-
ers that could feasibly be available in the near or medium term, as well as hypotheti-
cal high-fidelity scenarios that would require significant technological improvements.
We find conclusively that the near-term scenarios will not deliver a quantum speedup,
while even the high-fidelity scenarios would require execution time of measurement op-
erations to be below 10 ns. This is in line with existing work investigating the plausibility
of quantum speedups using Grover-based algorithms, which emphasized that the slow
execution time of quantum operations compared to classical ones is a major obstacle for
such approaches [84, 14].

6.9. CONCLUSION

6

121

Besides hardware improvements to reduce gate and measurement times, there are
two further areas where future work could significantly change the prospects for a quan-
tum speedup for large industrial optimization problems. Firstly, novel quantum error
correction schemes could result in a faster logical clock cycle, which could occur if, for
example, the required code distance is smaller. In turn, this could be achieved for QEC
codes with a higher threshold than the surface code, although we emphasize that the cy-
cle time for a QEC code is determined by many other factors besides its threshold. Sec-
ondly, advances in quantum algorithms could lead to approaches that achieve beyond-
quadratic speedups, potentially significantly reducing the crossover point at which a
practical quantum speedup can be realized.

For future work, one can consider interesting experimentation by executing small in-
stances of the QISS algorithm on quantum computers that will be available within the
next decade. For example, the results of Figure 6.10 suggest that in the 10−3 and 10−4 flat
error rate scenarios (which may be considered realistic with hardware improvements)
one could execute the algorithm on problem sizes of around 7 to 9 days, with a runtime
in the order of hours or days. It may then be of interest to systematically study the impact
of executing fewer than the maximum number of Grover iterations, in order to deter-
mine the trade-off in runtime and solution quality. With fewer iterations the probability
of obtaining the optimal solution is reduced, however in practice one may be interested
instead in obtaining a good approximate solution. In this context, one could investigate
the probability of obtaining a solution satisfying some acceptable approximation ratio,
as a function of the number of iterations and the number of trials, where independent
trials may also be parallelized over multiple quantum processors. It may then be of inter-
est to compare the performance of this heuristic quantum approach to that of classical
heuristics.

7
CONCLUSION

Because of recent stagnating single-thread performance and limited potential for further
miniaturization of transistors, the computing industry is looking towards new technolo-
gies as the basis for the next generation of computing. One of these new technologies
is quantum computing. Current quantum hardware does not yet fulfill the criteria for
building a quantum computer that achieves quantum supremacy, quantum utility or
quantum advantage.

Besides improvements in quantum hardware, the complete quantum computing
stack will also need to be made ready for programming of millions of qubits, which is
not feasible with current quantum programming languages. This gives us our main re-
search question:

• How can we make the quantum computing stack ready for utility-scale quantum
computing?

We have split this into the following five research questions:

1. What are useful high-level abstractions for programming quantum computers?

2. How can existing high-level abstractions such as unitary decomposition be im-
proved?

3. Can the performance of quantum algorithms be improved through compiler opti-
mizations?

4. What does a quantum algorithm for a real-world use-case look like?

5. What are the requirements for practical quantum computing?

We have developed answers to these questions over the course of this dissertation.
For each question, we will summarize our findings and provide an outlook for future
research directions.

123

7

124 7. CONCLUSION

1. What are useful high-level abstractions for programming quantum comput-
ers?
This dissertation introduces a number of effective high-level abstractions to imple-
ment quantum computing applications. These abstractions have also been use in
the implementation of the algorithms presented in this dissertation, represented
as high-level quantum operators and functions. In the following, we will list these
high-level abstractions, split between the different application domains covered in this
dissertation.

In the circuit construction for unitary decomposition algorithms, many of the same
set of (multi-qubit) operators are often used. These are:

• Generic single and multi-qubit gates, which can be decomposed using a unitary
decomposition method.

• Multi-qubit gates with a single control qubit. This encompasses both controlled
arbitrary (multi-qubit) gates, where the gate is only applied if the control qubit
is in state |1〉, and quantum multiplexors or uniformly controlled quantum gates,
where different gates are applied based on the state of the controlling qubit. Both
can be decomposed using quantum demultiplexing.

• Uniformly controlled (rotation) gates, which can be decomposed with the Gray
code method if the gate is a rotation gate.

• State preparation, which can be implemented using a decomposition method for
generic quantum gates or a method tailored to state preparation.

For hybrid classical-quantum algorithms, such as variational quantum eigensolvers,
we have implemented the following abstraction:

• (Explicit) parameterization of the circuit, which can be used with classical opti-
mizers to update the relevant values for each iteration of the algorithm.

For Grover’s adaptive search, Grover’s algorithm and constraint-bound (integer) opti-
mization problems like the quantum industrial shift scheduling algorithm, the following
set of abstractions was used:

• Grover’s adaptive search, which is a hybrid algorithm which required support for
using the (parameterised) quantum algorithm within a classical loop.

• Constructs used in Grover’s algorithm, such as equal superposition of all the states
in the solution space, applying the inverse of a user-defined operator (such as the
oracle), the diffusion operator and measurement of multiple qubits.

• Storing encoded (binary) numbers using qubit registers.

• Quantum adders in the Fourier basis, which uses phase-gates controlled by multi-
ple qubits.

• Quantum Fourier transforms and inverse quantum Fourier transforms.

7

125

• Setting a qubit register to |0〉 when the encoded number is below zero.

• Flipping condition qubits to |1〉 when a number encoded on a qubit register is be-
low or above a certain value, which might be updated between iterations of the
algorithm.

• Using a specific output qubit in |−〉 which is used to apply the phase shift to spe-
cific marked qubit states.

Future research directions:

• Some of the high-level abstractions listed above are already available in the quan-
tum programming languages we used for our implementations (OpenQL, Q# and
Qiskit), but many are not. Each abstraction that was not already available needed
to be implemented and debugged before we could start implementing the overall
algorithm.

The list of abstractions above can thus be used to develop a (domain-specific)
quantum programming language or function library. With such a programming
language or library, developing new quantum algorithms will be quicker and eas-
ier, which will enable the development of more sophisticated, larger-scale algo-
rithms than is feasible to program with any currently available quantum program-
ming language.

2. How can existing high-level abstractions such as unitary decomposition be im-
proved?
With our block-ZXZ based decomposition method, we show how we can decompose an
arbitrary n-qubit gate into at most 22

48 4n − 3
2 2n + 5

3 CNOT gates. This is (4n−2 −1)/3 less
than the best previously published work [173]. More specifically, we can construct a gen-
eral three-qubit operator with at most 19 qubits, which is currently the least known for
any exact decomposition method.

To arrive at this decomposition algorithm, we used the optimizations presented
by [139] and [173], gate commutation and gate merging to optimize the block-ZXZ de-
composition [50].

When implementing unitary decomposition in OpenQL, two optimizations were
implemented to take advantage of the internal structure of the input or intermediate
unitary matrices, which can drastically reduce the length of the resulting circuit. With
these optimizations, the final gate count can be much lower than the numbers predicted
by the formula, which are the maximum possible gate count for a given decomposition
method.

Future research directions:

• Our block-ZXZ based decomposition follows the same structure as the quan-
tum Shannon decomposition, and has the same benefit of using recursion on
generic quantum gates. This means that the decomposition can take advantage of
the known optimal decompositions for two-qubit unitary gates, and other small-
circuit optimizations, heuristic methods or optimal decompositions for three or
more qubit gates when these become available.

7

126 7. CONCLUSION

• Other than general unitary gates, the decomposition uses only single qubit gates
and diagonal gates. This simplifies the structure and presents further opportu-
nity for optimization down the line, such as accounting for specific hardware con-
straints like connectivity when decomposing the diagonal gates.

• The circuit output of the decomposition can be compiled to any universal gateset.
The resulting circuit will have the same overall structure with an equal number of
two-qubit gates when the gateset includes a two-qubit gate that is equivalent to
the CNOT gate up to single qubit gates.

• If these circuits are executed on a quantum execution platform which has a more
permissive gateset, the diagonal gates can also be implemented with uniformly
controlled Z-gates [141] instead of CNOTs.

• Other decomposition methods, like the QR, QSD and Cartan decompositions,
have been generalized to higher-dimensional quantum systems [94], which may
offer practical advantage over two-level qubits [119]. If our decomposition is also
generalizable to multi-level quantum systems, it may result in more optimal gate
counts for these types of systems as well.

• For simple controlled arbitrary multi-qubit gates, there might be a more optimal
decomposition method than quantum demultiplexing, since these types of gates
have much fewer degrees of freedom than quantum multiplexors. If a more ef-
ficient method is found, it would reduce the total gate count resulting from the
overall decomposition.

3. Can the performance of quantum algorithms be improved through compiler opti-
mizations?
We have implemented a unitary decomposition method and efficient parameterization
in the OpenQL programming framework. With the implementation of unitary decompo-
sition, OpenQL can now be used for any quantum algorithm that uses arbitrary unitary
gates. One such algorithm is QiBAM [167], which cannot be implemented without uni-
tary decomposition.

We have compared our implementation of unitary decomposition to Qubiter and
to the UniversalQCompiler. Our implementation is based on (unoptimized) quantum
Shannon decomposition, which is up to 10 times more efficient in the number of gen-
erated gates than Qubiter and only 50% less efficient than the implementation of UQC.
Although the execution time of the decomposition is O(8n) for matrices of size 2n ×2n ,
for the decomposition of up to 10-qubit gates, our implementation is 10 to 100 times
faster than Qubiter and about 500 times faster than the implementation in UQC.

We have also introduced OpenQLPC, an efficient approach to parametric com-
pilation for hybrid quantum-classical algorithms, and implemented it in OpenQL.
OpenQLPC is designed to be modular, scalable, usable, future-proof and fast. We com-
pared wall-clock compilation time of OpenQLPC with OpenQL, Qiskit and PyQuil. The
total compilation time was measured using the MAXCUT benchmark from [133].

Experimental results show that for the compilation of MAXCUT circuits, the total
compile times of OpenQL and OpenQLPC are between 10 and 20 times faster than Qiskit,

7

127

respectively. PyQuil has the slowest compilation, about 60 times longer than OpenQLPC.
In addition, comparing compile times of multiple compile iterations relative to single
iterations shows that OpenQLPC is the fastest, followed by Qiskit which is 1.2x slower,
while OpenQL took the most time being 1.8x slower than OpenQLPC.

Tests were also done for the complete MAXCUT benchmark, which includes a clas-
sical optimizer and simulation of the circuit in each iteration. These tests, with shorter
circuits but more iterations than before, show that the improvements made in OpenQLPC

result in a decrease of 40 to 70% in (accumulated) compilation time. This makes
OpenQLPC faster than all other tested languages. For the total execution time of the
MAXCUT benchmark, the performance of the simulators has more influence than the
compile times of the languages. The simulator used with PyQuil is still the slowest op-
tion by far, but the Qiskit Aer simulator is 2 to 3 times as fast as the QX simulator used
by OpenQL and OpenQLPC. Even so, the faster compile time of OpenQLPC does lead to a
clear speed-up of the complete benchmark.

This clearly shows that compiler optimizations can be used to improve the per-
formance of quantum algorithms. Furthermore, a single compilation of a quantum
circuit is projected to become more computationally expensive as more sophisticated
mapping, optimization and error-correcting algorithms are created and implemented,
which will further increase the cost of repeated compilations in hybrid algorithms and
increase the impact of our approach.

Future research directions:

• The implementation of unitary decomposition in OpenQL can be updated to use
the block-ZXZ based decomposition method presented in Chapter 2, which can
generate a circuit with fewer CNOT gates than is possible with QSD. Both decom-
positions have the same high-level structure, which means that the circuit-level
and execution time optimizations presented in this dissertation will still provide
the same, or similar, benefit with the new decomposition method.

• When the presented method of efficient parameterization is extended to and in-
tegrated in quantum systems and simulators, it can be used to decrease the data
transfer for hybrid algorithms, which will improve the latency bottleneck caused
by the movement of data over the entire stack of HPC and QPU systems. Because
we define the static and dynamic parts of an algorithm explicitly, only the updated
parameter values need to be transferred to the classical control systems of the
QPU. To implement such an extension requires explicit access to these classical
control systems.

4. What does a quantum algorithm for a real-world use-case look like?
In a collaboration with BMW, Germany and Entropica Labs, Singapore, we have devel-
oped the Quantum Industrial Shift Scheduling algorithm (QISS), a quantum algorithm
based on Grover’s adaptive search for industrial shift scheduling problems with produc-
tion target and intermediary storage constraints, a situation found in settings such as the
automotive industry.

We show the construction of a quantum circuit to implement the necessary Grover’s
oracle for an arbitrary number of days of factory operations, within the context of a sim-

7

128 7. CONCLUSION

plified model comprising two shops and one buffer. For small problem instances, we
have numerically corroborated the performance of the algorithm. In particular, in our
examples we verify that

p
N applications of Grover’s rotation operator suffice to find the

optimal solution, where N is the size of the solution space. This shows that an asymp-
totic quadratic speedup can in principle be achieved over classical unstructured search.

In practice, this may be useful in at least two scenarios: (1) to obtain exact solutions
to problems of small or modest size, in the context of benchmarking heuristic algorithms
designed to scale to much larger, industrial problem sizes; (2) to use QISS as an integral
component of a heuristic strategy, where exact solutions for short time periods are used
to construct a solution for a longer time period.

Future research directions:
Our work lays the foundation for future research in several directions.

• In the context of the simplified model, QISS could be used as a target algorithm to
study and benchmark the performance of quantum computing systems. Specif-
ically, in the pre-fault-tolerant era one could test the different circuit primitives,
and investigate their susceptibility to noise on different quantum computing plat-
forms. Techniques to suppress, mitigate, or detect certain types of error may be
found, which could allow for improved results, and yield useful insights for run-
ning the algorithm in the future on fully fault-tolerant machines. In the fault-
tolerant era, QISS could be incorporated into application-level benchmark frame-
works [60].

• We have focused on a simplified shift scheduling model with only two shops and a
single buffer. It would be interesting to develop Grover’s oracles for more complex,
more realistic instances of industrial shift scheduling. For example, new circuit
primitives may need to be designed due to the intricacies resulting from multiple
and/or shared buffers (see Section 5.3.4). Moreover, while the resulting circuits
would very quickly become intractable to simulate on a classical computer, even
for a single day, it would allow a quantitative investigation of the additional circuit
complexity arising from the presence of multiple shops and buffers.

• In Chapter 5 we have developed quantum circuits at the logical level, which as-
sumes qubits to be perfectly noiseless. To implement these circuits in practice on
quantum computers, which are always subject to some degree of noise, a fault-
tolerant quantum error correction (QEC) scheme would be necessary. QEC intro-
duces significant resource overheads in terms of the number of required qubits
and gate operations. Key quantities of interest such as the total number of physi-
cal qubits and the total computational runtime can be estimated through frame-
works incorporating different layers of assumptions on the architecture of a fault-
tolerant quantum computer, and the compilation of quantum programs [22, 154].
Subsequently, one could compare these estimates to those of classical computing
approaches, and seek to identify the scale at which QISS may deliver a speedup in
practice for unstructured search, taking into account the gap in execution time for
basic quantum and classical circuit operations [14, 84].

7

129

• Finally, we have not investigated whether the industrial shift scheduling problem
is amenable to solution by dynamic programming methods, however we note that
quantum algorithms capable of exploiting optimal substructure have been de-
scribed in [9]. Therefore, if a speedup over unstructured search can be obtained
classically with dynamic programming, it may also be possible to incorporate this
into QISS.

5. What are the requirements for practical quantum computing?
We have approached this question through the QISS algorithm, and by evaluating
whether a speedup could realistically be achieved for industrial shift scheduling using
QISS. We have compared a number of scenarios with different system parameters, cov-
ering quantum computers that could feasibly be available in the near or medium term,
as well as hypothetical high-fidelity scenarios that would require significant technologi-
cal improvements.

We find conclusively that the near-term scenarios will not deliver a quantum
speedup, while even the high-fidelity scenarios would require that measurement op-
erations take at most 10 ns. This is in line with existing publications investigating the
plausibility of quantum speedups using Grover-based algorithms, which emphasize
that the long execution time of quantum operations compared to classical ones is a
major obstacle for such approaches [84, 14]. As we have seen in Figure 1.3, for a quan-
tum algorithm with cubic, quartic or super-polynomial speedup (such as Shor’s), the
execution time of quantum operations is less critical but will still need to be improved
before a quantum computer will be faster than its classical counterpart.

Future research directions:
Besides hardware improvements to reduce gate and measurement times, there are two
further areas where future work could significantly change the prospects for a quantum
speedup for large industrial optimization problems.

• Firstly, novel QEC schemes could result in a faster logical clock cycle, which could
occur if, for example, the required code distance is smaller. This could be achieved
by using a (novel) QEC scheme with a higher error threshold than the surface code,
although we emphasize that the cycle time for a QEC code is determined by many
other factors besides its threshold.

• Secondly, advances in quantum algorithms could lead to approaches that achieve
beyond-quadratic speedups, potentially significantly reducing the crossover point
at which a practical quantum speedup can be realized.

For future work that builds more directly upon the work presented in Chapter 6, one
can consider interesting experimentation by executing small instances of the QISS
algorithm on quantum computers that will be available within the next decade. For
example, the results of Figure 6.10 suggest that in the 10−3 and 10−4 flat error rate
scenarios (which may be considered realistic with hardware improvements) one could
execute the algorithm on problem sizes of around 7 to 9 days, with a runtime in the
order of hours or days. It may then be of interest to systematically study the impact of
executing fewer than the maximum number of Grover iterations, in order to determine

7

130 7. CONCLUSION

the trade-off in runtime and solution quality. With fewer iterations the probability of
obtaining the optimal solution is reduced, however in practice one may be interested
instead in obtaining a good approximate solution. In this context, one could investigate
the probability of obtaining a solution satisfying some acceptable approximation ratio,
as a function of the number of iterations and the number of trials, where independent
trials may also be parallelized over multiple quantum processors. It may then be of
interest to compare the performance of this heuristic quantum approach to that of
classical heuristics.

This brings us back to the main research question: How can we make the quan-
tum computing stack ready for utility-scale quantum computing?
For the quantum stack to be ready for utility-scale quantum computing, several major
improvements will need to be made to prepare for programming and compiling circuits
with millions of qubits.

• We will need high-level abstractions that will speed up programming of quantum
computers, allow for (easier) debugging and will allow for programming millions
of qubits.

• The classical component of the compilation and compute of (hybrid) quantum
algorithms will need to be improved.

• More algorithms for real-world use-cases will need to be developed, which will
provide a basis for improvements across the quantum stack that will lead to quan-
tum utility.

• We need to do quantum resource estimation for real use-cases, in order to have
insights into what utility-scale quantum computing will look like.

ACKNOWLEDGMENTS

Thank you to everyone who helped me on this journey. I could never have done this
without you. There are many more people than those I could thank here, so I would also
like to extend my thanks to everyone who helped me along the way even if your name is
not on this list.

First and foremost, I would like to thank Zaid Al-Ars, my supervisor, mentor and pro-
motor, who took me under his wing when I was suddenly without a PhD supervisor.
Thank you for all the weekly meetings, for always giving me the confidence, motivation
and guidance on how to continue my research. Thank you for your unwavering enthusi-
asm in my ideas and in my work and for not giving up on me when I hit some dark times
during the pandemic winters. And thank you for your willingness to correct some truly
terrible first drafts and for teaching me the importance of catchy titles and nice graphics.

I also need to thank Peter Hofstee, who was often geographically far away but closely
involved when it counted. Thank you for your valuable insight during our meetings, and
especially for encouraging me to do an internship with BMW in Munich. It was a great
addition to my PhD and a fantastic experience that I will carry with me in any future
endeavors.

Thanks to Koen Bertels, who supervised my Master’s thesis and who started me on
this PhD journey. When I came to you to ask about doing my Master’s thesis with you,
you immediately started encouraging me to do a PhD as well. Thank you for your unwa-
vering optimism and enthusiasm during my Master’s thesis, which helped to convince
me to give this whole PhD thing a try.

Thanks to Aritra Sarkar, who started me on unitary decomposition during my Mas-
ter’s thesis and who was my fellow PhD under Zaid. Thank you for your insights in our
weekly meetings and beyond, and for always being available to answer my PhD related
questions, both the technical ones and my many questions about the TUDelft bureau-
cracy.

Thanks to everyone I worked with and met during my internship at BMW in Munich.
Thanks to Marvin Erdmann, my supervisor at BMW, for his encouragement, his advice
and his insights. We still need to play that game of DnD sometime. Thanks to Ewan
Munro, Madrid-based CTO of Entropica labs, Singapore, for his collaboration on and
contributions to the two papers we wrote together, which became of much higher quality
through his feedback, his in-depth questions, his scientific curiosity and his (re)writing
of certain sections. Although we ended up in the muck of discussions sometimes, I have
learned a lot through (re)examining, reasoning through and occasionally defending my
work (and thanks to Marvin for intervening and mediating when necessary). Thanks to
Andre Luckow, for asking great questions and heading the Emerging Technologies de-
partment, which includes many great people that helped make my BMW internship a
really great experience for me: Jinyu Lee, Youran Song, Hyerim Park, Rudi Finz̆gar, Leo

131

7

132 7. CONCLUSION

Hölscher, Florian Kiwit, Ann Christin Rathje, Lukas Müller, Philipp Ross, Chris Wittig,
Marwa Marso, Carlos Riofrio, Max Passek, Chris Wittig and others.

And thanks to everyone I worked with during my time at the TUDelft, the interns
(Neil Eelman), MSc students (Koen Mesman, Huub Donkers, Smaran Adarsh). Thanks
to Matthias Möller for the meetings and discussions. Thanks to Sebastian Feld and
his group, who I also had a lovely time in Seattle with: Medina Bandic, Nikiforos
Paraskevopoulos, Matthew Steinberg, Luise Prielinger and Pablo le Henaff, who I also
want to thank for his hard work on OpenQL. My fellow TAs and office mates: Christiaan
Boerkamp and Yongding Tian. And the support staff of the QCE department, which in-
cludes Francis Bulters, Paul de Wit, Trisha de Jonge, Laura de Groot, among others. And
thanks to all other TUDelft student and employees that I interacted with over the years,
even something as "simple" as explaining my PhD topic has provided me with new mo-
tivation, ideas and clarity over the years.

Thanks to Pepijn, for being such a good friend, through all the good times and the
bad, for being better than me at Mario Kart and cooking (and many other things). You
are an amazing person and I am so, so, so glad that we are friends. Thanks to the "DnD
guys": Walewein, Alies, Anne, Jelte, Roemer and Wietske, to my old flatmate and friend
Josanne, to my oldest friends: Lotte and Fien, to the "space girls": Livia, Marleen and
Sascha, to my gilde Momus and my yearclub Zephyros. And thank you to all my other
friends as well, who I will not list because I cannot name you all, but please consider
yourself thanked.

Thanks to my old cat Beau, may you spend your time hunting paper scraps and laying
in the sun in cat heaven, and my Tinerfeños Müchner Delftse cats: Charlie and Lana, you
may not have a braincell but you are excellent lap-warmers. Thank you to Sophie von
Boeckmann, from the Tierhilfe, and Annina Angene, their foster mama, for taking care
of them before me. And additional thanks to my friends who I could count on to care for
my cats while I was away on holiday or at a conference: Pepijn, Josanne, Alies, Walewein,
Youran and Jinyu.

Thanks to my siblings and their families: Gerard, Nynke, Jits, Fas, Bas and little Lucy,
Mayke and the baby. Thank you for your support, your help and all the great discussions
over the breakfast, lunch and dinner table. I may have bragged a few times over the
years about how amazing and cool you all are, and I consider myself extremely lucky to
be related to you all.

And thanks to my parents, Adri and Jacqueline, for always encouraging me, listening
to me talk about all my latest interest, for coming to all my violin recitals, for driving me
to and from Munich and for everything else. I never could have done this without you.

BIBLIOGRAPHY

[1] Benoît Jacob (founder), Gaël Guennebaud (guru), and many more. The Eigen doc-
umentation. Accessed on: 20-07-2020. 2019. URL: http://eigen.tuxfamily.
org/index.php.

[2] Rajeev Acharya et al. Suppressing quantum errors by scaling a surface code logical
qubit. 2023. DOI: 10.1038/s41586-022-05434-1.

[3] Alfred V. Aho and Krysta M. Svore. Compiling Quantum Circuits using the Palin-
drome Transform. 2003. arXiv: quant-ph/0311008 [quant-ph].

[4] Zapata AI. Bench-Q. 2024. URL: https : / / github . com / zapatacomputing /
benchq (visited on 04/2024).

[5] G. Donald Allen. “Unitary Matrices”. In: Lectures on Linear Algebra and Matrices.
College Station, TX: Texas A&M University, 2003. Chap. 4, pp. 157–180.

[6] C. G. Almudever, L. Lao, R. Wille, and G. G. Guerreschi. “Realizing Quantum Algo-
rithms on Real Quantum Computing Devices”. In: 2020 Design, Automation Test
in Europe Conference Exhibition (DATE). 2020, pp. 864–872.

[7] Esteban Álvarez, Juan-Carlos Ferrer, Juan Carlos Muñoz, and César Augusto
Henao. “Efficient shift scheduling with multiple breaks for full-time employ-
ees: A retail industry case”. In: Computers & Industrial Engineering 150 (2020),
p. 106884. ISSN: 0360-8352. DOI: 10.1016/j.cie.2020.106884.

[8] Andris Ambainis. Quantum search algorithms. 2005. arXiv: quant-ph/0504012
[quant-ph].

[9] Andris Ambainis, Kaspars Balodis, Jānis Iraids, Martins Kokainis, Krišjānis Prūsis,
and Jevgēnijs Vihrovs. “Quantum speedups for exponential-time dynamic pro-
gramming algorithms”. In: Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms. SIAM. 2019, pp. 1783–1793.

[10] S. Borağan Aruoba and Jesús Fernández-Villaverde. “A comparison of program-
ming languages in macroeconomics”. In: Journal of Economic Dynamics and
Control 58 (2015), pp. 265–273. ISSN: 0165-1889. DOI: 10.1016/j.jedc.2015.
05.009.

[11] Frank Arute et al. “Quantum Supremacy using a Programmable Superconducting
Processor”. In: Nature 574 (2019), pp. 505–510. DOI: 10.1038/s41586- 019-
1666-5.

[12] Sahel Ashhab, Naoki Yamamoto, Fumiki Yoshihara, and Kouichi Semba. “Numer-
ical analysis of quantum circuits for state preparation and unitary operator syn-
thesis”. In: Phys. Rev. A 106 (2 Aug. 2022), p. 022426. DOI: 10.1103/PhysRevA.
106.022426.

133

http://eigen.tuxfamily.org/index.php
http://eigen.tuxfamily.org/index.php
https://doi.org/10.1038/s41586-022-05434-1
https://arxiv.org/abs/quant-ph/0311008
https://github.com/zapatacomputing/benchq
https://github.com/zapatacomputing/benchq
https://doi.org/10.1016/j.cie.2020.106884
https://arxiv.org/abs/quant-ph/0504012
https://arxiv.org/abs/quant-ph/0504012
https://doi.org/10.1016/j.jedc.2015.05.009
https://doi.org/10.1016/j.jedc.2015.05.009
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevA.106.022426
https://doi.org/10.1103/PhysRevA.106.022426

7

134 BIBLIOGRAPHY

[13] Abhishek Awasthi et al. “Quantum Computing Techniques for Multi-knapsack
Problems”. In: Lecture Notes in Networks and Systems. Springer Nature Switzer-
land, 2023, pp. 264–284. DOI: 10.1007/978-3-031-37963-5_19.

[14] Ryan Babbush, Jarrod R. McClean, Michael Newman, Craig Gidney, Sergio Boixo,
and Hartmut Neven. “Focus beyond Quadratic Speedups for Error-Corrected
Quantum Advantage”. In: PRX Quantum 2 (1 Mar. 2021), p. 010103. DOI: 10 .
1103/PRXQuantum.2.010103.

[15] R.N. Bailey, K.M. Garner, and M.F. Hobbs. “Using simulated annealing and ge-
netic algorithms to solve staff-scheduling problems”. In: Asia-Pacific Journal of
Operational Research 14.2 (1997), p. 27.

[16] W. P. Banner, Shima Bab Hadiashar, Grzegorz Mazur, Tim Menke, Marcin Zi-
olkowski, Ken Kennedy, Jhonathan Romero, Yudong Cao, Jeffrey A. Grover, and
William D. Oliver. Quantum Inspired Optimization for Industrial Scale Problems.
2023. arXiv: 2305.02179 [quant-ph].

[17] Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. “An
Application of Combinatorial Optimization to Statistical Physics and Circuit Lay-
out Design”. In: Oper. Res. 36 (1988), pp. 493–513.

[18] Jonathan F. Bard, Canan Binici, and Anura H. deSilva. “Staff scheduling at the
United States Postal Service”. In: Computers & Operations Research 30.5 (2003),
pp. 745–771. ISSN: 0305-0548. DOI: 10.1016/S0305-0548(02)00048-5.

[19] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Nor-
man Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter.
“Elementary gates for quantum computation”. In: Phys. Rev. A 52 (5 Nov. 1995),
pp. 3457–3467. DOI: 10.1103/PhysRevA.52.3457.

[20] Andreas Bayerstadler et al. “Industry quantum computing applications”. In: EPJ
Quantum Technology 8.1 (Nov. 2021), p. 25. ISSN: 2196-0763. DOI: 10 . 1140 /
epjqt/s40507-021-00114-x.

[21] David Beckman, Amalavoyal N. Chari, Srikrishna Devabhaktuni, and John
Preskill. “Efficient networks for quantum factoring”. In: Physical Review A 54.2
(Aug. 1996), pp. 1034–1063. ISSN: 1094-1622. DOI: 10.1103/physreva.54.1034.

[22] Michael E. Beverland, Prakash Murali, Matthias Troyer, Krysta M. Svore, Torsten
Hoefler, Vadym Kliuchnikov, Guang Hao Low, Mathias Soeken, Aarthi Sundaram,
and Alexander Vaschillo. Assessing requirements to scale to practical quantum ad-
vantage. 2022. arXiv: 2211.07629 [quant-ph].

[23] Susan Blackford, Ross Moore, and Nikos Drakos. LAPACK Users’ Guide. Accessed
on: 23-10-2020. URL: http://www.netlib.org/lapack/lug/node71.html.

[24] D. Bluvstein, Simon J Evered, Alexandra A Geim, Sophie H Li, Hengyun Zhou,
Tom Manovitz, Sepehr Ebadi, Madelyn Cain, Marcin Kalinowski, Dominik
Hangleiter, et al. “Logical quantum processor based on reconfigurable atom ar-
rays”. In: Nature 626.7997 (2024).

https://doi.org/10.1007/978-3-031-37963-5_19
https://doi.org/10.1103/PRXQuantum.2.010103
https://doi.org/10.1103/PRXQuantum.2.010103
https://arxiv.org/abs/2305.02179
https://doi.org/10.1016/S0305-0548(02)00048-5
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1103/physreva.54.1034
https://arxiv.org/abs/2211.07629
http://www.netlib.org/lapack/lug/node71.html

BIBLIOGRAPHY

7

135

[25] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding,
Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven. “Charac-
terizing quantum supremacy in near-term devices”. In: Nature Physics 14.6 (Apr.
2018), pp. 595–600. ISSN: 1745-2481. DOI: 10.1038/s41567-018-0124-x.

[26] Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel
Thomé, and Paul Zimmermann. “Comparing the difficulty of factorization and
discrete logarithm: a 240-digit experiment”. In: Advances in Cryptology – CRYPTO
2020. Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12171. Lecture
Notes in Computer Science. Santa Barbara CA, United States: Springer, Aug. 2020,
pp. 62–91. DOI: 10.1007/978-3-030-56880-1_3. arXiv: 2006.06197.

[27] Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel
Thomé, and Paul Zimmermann. “The State of the Art in Integer Factoring and
Breaking Public-Key Cryptography”. In: IEEE Security & Privacy 20.2 (2022),
pp. 80–86. DOI: 10.1109/MSEC.2022.3141918.

[28] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. “Tight Bounds on
Quantum Searching”. In: Fortschritte der Physik 46.4-5 (June 1998), pp. 493–505.
DOI: 10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.
co;2-p.

[29] S. Bravyi and A. Kitaev. “Universal quantum computation with ideal Clifford gates
and noisy ancillas”. In: Physical Review A 71.2 (Feb. 2005). ISSN: 1094-1622. DOI:
10.1103/physreva.71.022316.

[30] Sergey Bravyi, Andrew W. Cross, Jay M. Gambetta, Dmitri Maslov, Patrick Rall,
and Theodore J. Yoder. “High-threshold and low-overhead fault-tolerant quan-
tum memory”. In: Nature 627.8005 (Mar. 2024), pp. 778–782. ISSN: 1476-4687.
DOI: 10.1038/s41586-024-07107-7.

[31] David Bulger, William P Baritompa, Graham R Wood, et al. “Implementing pure
adaptive search with Grover’s quantum algorithm”. In: Journal of optimization
theory and applications 116.3 (2003), pp. 517–529.

[32] Stephen S. Bullock and Igor L. Markov. “Arbitrary two-qubit computation in 23
elementary gates”. In: Physical Review A 68.1 (July 2003). ISSN: 1094-1622. DOI:
10.1103/physreva.68.012318.

[33] J. M. Cargal. “Chapter 31: Geometric series”. In: Discrete Mathematics for Neo-
phytes: Number Theory, Probability, Algorithms, and Other Stuff. 1991. URL:
https://www.cargalmathbooks.com/lectures.htm.

[34] Davide Castelvecchi. “IBM releases first-ever 1,000-qubit quantum chip”. In: Na-
ture 624.238 (2023). DOI: 10.1038/d41586-023-03854-1.

[35] Liangyu Chen et al. “Transmon qubit readout fidelity at the threshold for quan-
tum error correction without a quantum-limited amplifier”. In: npj Quantum In-
formation 9.1 (Mar. 2023). DOI: 10.1038/s41534-023-00689-6.

https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1007/978-3-030-56880-1_3
https://arxiv.org/abs/2006.06197
https://doi.org/10.1109/MSEC.2022.3141918
https://doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
https://doi.org/10.1002/(sici)1521-3978(199806)46:4/5<493::aid-prop493>3.0.co;2-p
https://doi.org/10.1103/physreva.71.022316
https://doi.org/10.1038/s41586-024-07107-7
https://doi.org/10.1103/physreva.68.012318
https://www.cargalmathbooks.com/lectures.htm
https://doi.org/10.1038/d41586-023-03854-1
https://doi.org/10.1038/s41534-023-00689-6

7

136 BIBLIOGRAPHY

[36] Tim Chen and Stefan Natu. “Speeding up hybrid quantum algorithms with para-
metric circuits on Amazon Braket”. In: AWS Quantum Technologies Blog (Oct.
2023). URL: https : / / aws . amazon . com / blogs / quantum - computing /
speeding - up - hybrid - quantum - algorithms - with - parametric -
circuits-on-amazon-braket/ (visited on 08/19/2024).

[37] Frederic Chong and Margaret Martonosi. “Programming languages and compiler
design for realistic quantum hardware”. In: Nature 549 (Sept. 2017), pp. 180–187.
DOI: 10.1038/nature23459.

[38] Atom Computing. “Atom Computing Unveils First-Gen Quantum Computing
System, Closes $15M Series A”. In: hpcwire.com (July 2021). URL: www.hpcwire.
com/off- the- wire/atom- computing- unveils- first- gen- quantum-
computing-system-closes-15m-series-a/ (visited on 01/24/2024).

[39] Rigetti Computing. PyQuil documention. [Accessed: Aug. 4, 2023]. 2021. URL:
https://pyquil-docs.rigetti.com/en/stable.

[40] Rigetti Computing. “Rigetti Announces Public Availability of Ankaa-2 System
with a 2.5x Performance Improvement Compared to Previous QPUs”. In: Globe-
Newswire.com (Jan. 2024). URL: www.globenewswire.com/news- release/
2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-
of - Ankaa - 2 - System - with - a - 2 - 5x - Performance - Improvement -
Compared-to-Previous-QPUs.html (visited on 01/24/2024).

[41] Rigetti Computing. Scalable quantum systems built from the chip up to power
practical applications. URL: www.rigetti.com/what- we- build (visited on
01/24/2024).

[42] Standard Performance Evaluation Corporation. SPEC Benchmark Results for
SPECint 2017, 2006, 2000, 95 and SPECpower_ssj 2008. (1991–2024). URL: https:
//www.spec.org/ (visited on 08/19/2024).

[43] James R. Cruise, Neil I. Gillespie, and Brendan Reid. Practical Quantum Comput-
ing: The value of local computation. 2020. arXiv: 2009.08513 [quant-ph].

[44] G. Cybenko. “Reducing quantum computations to elementary unitary opera-
tions”. In: Computing in Science & Engineering 3.2 (2001), pp. 27–32. DOI: 10.
1109/5992.908999.

[45] W. van Dam, M. Mykhailova, and M. Soeken. “Using Azure Quantum Resource
Estimator for Assessing Performance of Fault Tolerant Quantum Computation”.
In: Proceedings of the SC’23 Workshops of The International Conference on HPC,
Network, Storage, and Analysis. New York, NY, USA: Association for Computing
Machinery, 2023, pp. 1414–1419. DOI: 10.1145/3624062.3624211.

[46] James Dargan. “Quantum Journey From the Search Engine to Google Sycamore”.
In: thequantuminsider.com (July 2022). URL: thequantuminsider.com/2022/
07/14/google-sycamore/ (visited on 01/24/2024).

[47] Robert Davis. “What is quantum utility?” In: ibm.com (Nov. 2023). URL: https:
//www.ibm.com/quantum/blog/what- is- quantum- utlity (visited on
07/02/2024).

https://aws.amazon.com/blogs/quantum-computing/speeding-up-hybrid-quantum-algorithms-with-parametric-circuits-on-amazon-braket/
https://aws.amazon.com/blogs/quantum-computing/speeding-up-hybrid-quantum-algorithms-with-parametric-circuits-on-amazon-braket/
https://aws.amazon.com/blogs/quantum-computing/speeding-up-hybrid-quantum-algorithms-with-parametric-circuits-on-amazon-braket/
https://doi.org/10.1038/nature23459
www.hpcwire.com/off-the-wire/atom-computing-unveils-first-gen-quantum-computing-system-closes-15m-series-a/
www.hpcwire.com/off-the-wire/atom-computing-unveils-first-gen-quantum-computing-system-closes-15m-series-a/
www.hpcwire.com/off-the-wire/atom-computing-unveils-first-gen-quantum-computing-system-closes-15m-series-a/
https://pyquil-docs.rigetti.com/en/stable
www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html
www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html
www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html
www.globenewswire.com/news-release/2024/01/04/2804006/0/en/Rigetti-Announces-Public-Availability-of-Ankaa-2-System-with-a-2-5x-Performance-Improvement-Compared-to-Previous-QPUs.html
www.rigetti.com/what-we-build
https://www.spec.org/
https://www.spec.org/
https://arxiv.org/abs/2009.08513
https://doi.org/10.1109/5992.908999
https://doi.org/10.1109/5992.908999
https://doi.org/10.1145/3624062.3624211
thequantuminsider.com/2022/07/14/google-sycamore/
thequantuminsider.com/2022/07/14/google-sycamore/
https://www.ibm.com/quantum/blog/what-is-quantum-utlity
https://www.ibm.com/quantum/blog/what-is-quantum-utlity

BIBLIOGRAPHY

7

137

[48] C. M. Dawson and M. A. Nielsen. The Solovay-Kitaev algorithm. 2005. arXiv:
quant-ph/0505030 [quant-ph].

[49] Alexis De Vos and Stijn De Baerdemacker. “A Unified Approach to Quantum
Computation and Classical Reversible Computation”. In: Reversible Computa-
tion. Ed. by Jarkko Kari and Irek Ulidowski. Cham: Springer International Pub-
lishing, 2018, pp. 133–143. ISBN: 978-3-319-99498-7.

[50] Alexis De Vos and Stijn De Baerdemacker. “Block-Z X Z synthesis of an arbitrary
quantum circuit”. In: Phys. Rev. A 94 (5 Nov. 2016), p. 052317. DOI: 10.1103/
PhysRevA.94.052317.

[51] Henning Dekant, Henry Tregillus, Robert Tucci, and Tao Yin. Qubiter at GitHub.
Accessed on: 23-10-2020. 2020. URL: https://github.com/artiste-qb-net/
qubiter.

[52] David Elieser Deutsch and Roger Penrose. “Quantum computational networks”.
In: Proceedings of the Royal Society of London. A. Mathematical and Physical Sci-
ences 425.1868 (1989), pp. 73–90. DOI: 10.1098/rspa.1989.0099.

[53] S. J. Devitt, W. J. Munro, and K. Nemoto. “Quantum error correction for begin-
ners”. In: Reports on Progress in Physics 76.7 (June 2013), p. 076001.

[54] David P. DiVincenzo. “The Physical Implementation of Quantum Computation”.
In: Fortschritte der Physik 48.9–11 (Sept. 2000), pp. 771–783. ISSN: 1521-3978. DOI:
10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e.

[55] Kathryn A. Dowsland. “Nurse scheduling with tabu search and strategic oscil-
lation”. In: European Journal of Operational Research 106.2 (1998), pp. 393–407.
ISSN: 0377-2217. DOI: 10.1016/S0377-2217(97)00281-6.

[56] Thomas G. Draper. Addition on a Quantum Computer. 2000. arXiv: quant-ph/
0008033 [quant-ph].

[57] Suguru Endo, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan. “Hybrid
Quantum-Classical Algorithms and Quantum Error Mitigation”. In: Journal of the
Physical Society of Japan 90.3 (2021), p. 032001. DOI: 10.7566/JPSJ.90.032001.

[58] A. Erhard et al. “Entangling logical qubits with lattice surgery”. In: Nature
589.7841 (2021).

[59] Ameneh Farahani and Hamid Tohidi. “Integrated optimization of quality and
maintenance: A literature review”. In: Computers & Industrial Engineering 151
(2021), p. 106924. ISSN: 0360-8352. DOI: 10.1016/j.cie.2020.106924.

[60] Jernej Rudi Finzgar, Philipp Ross, Leonhard Holscher, Johannes Klepsch, and An-
dre Luckow. “QUARK: A Framework for Quantum Computing Application Bench-
marking”. In: 2022 IEEE International Conference on Quantum Computing and
Engineering (QCE). IEEE, Sept. 2022. DOI: 10.1109/qce53715.2022.00042.

[61] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.
“Surface codes: Towards practical large-scale quantum computation”. In: Physi-
cal Review A 86.3 (Sept. 2012). ISSN: 1094-1622. DOI: 10.1103/physreva.86.
032324.

https://arxiv.org/abs/quant-ph/0505030
https://doi.org/10.1103/PhysRevA.94.052317
https://doi.org/10.1103/PhysRevA.94.052317
https://github.com/artiste-qb-net/qubiter
https://github.com/artiste-qb-net/qubiter
https://doi.org/10.1098/rspa.1989.0099
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
https://doi.org/10.1016/S0377-2217(97)00281-6
https://arxiv.org/abs/quant-ph/0008033
https://arxiv.org/abs/quant-ph/0008033
https://doi.org/10.7566/JPSJ.90.032001
https://doi.org/10.1016/j.cie.2020.106924
https://doi.org/10.1109/qce53715.2022.00042
https://doi.org/10.1103/physreva.86.032324
https://doi.org/10.1103/physreva.86.032324

7

138 BIBLIOGRAPHY

[62] Hartmut Führ and Ziemowit Rzeszotnik. On biunimodular vectors for unitary
matrices. 2015. arXiv: 1506.06738 [math.RT].

[63] Daniel J. Garcia and Fengqi You. “Supply chain design and optimization: Chal-
lenges and opportunities”. In: Computers & Chemical Engineering 81 (2015). Spe-
cial Issue: Selected papers from the 8th International Symposium on the Foun-
dations of Computer-Aided Process Design (FOCAPD 2014), July 13-17, 2014,
Cle Elum, Washington, USA, pp. 153–170. ISSN: 0098-1354. DOI: 10.1016/j.
compchemeng.2015.03.015.

[64] Craig Gidney and Martin Ekerå. “How to factor 2048 bit RSA integers in 8 hours
using 20 million noisy qubits”. In: Quantum 5 (Apr. 2021), p. 433. ISSN: 2521-327X.

[65] Craig Gidney and Austin G. Fowler. “Efficient magic state factories with a cat-
alyzed |CCZ〉 to 2 |T〉 transformation”. In: Quantum 3 (Apr. 2019), p. 135. ISSN:
2521-327X. DOI: 10.22331/q-2019-04-30-135.

[66] Austin Gilliam, Stefan Woerner, and Constantin Gonciulea. “Grover Adaptive
Search for Constrained Polynomial Binary Optimization”. In: Quantum 5 (Apr.
2021), p. 428. DOI: 10.22331/q-2021-04-08-428.

[67] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. “Quantum Random Ac-
cess Memory”. In: Phys. Rev. Lett. 100 (16 Apr. 2008), p. 160501. DOI: 10.1103/
PhysRevLett.100.160501.

[68] “Glossary: Quantum Advantage”. In: quera.com (). URL: https://www.quera.
com/glossary/advantage (visited on 07/02/2024).

[69] Gene H. Golub and Charles F. Van Loan. Matrix Computations. 4th ed.
The John Hopkins University Press. ISBN: 9781421407944. DOI: 10 . 56021 /
9781421407944.

[70] Daniel Gottesman. “An introduction to quantum error correction and fault-
tolerant quantum computation”. In: Quantum information science and its contri-
butions to mathematics, Proceedings of Symposia in Applied Mathematics. Vol. 68.
2010, pp. 13–58.

[71] Frank Gray. Pulse code communication. U.S. Patent no. 2,632,058. Mar. 1953.

[72] Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall.
“An adaptive variational algorithm for exact molecular simulations on a quan-
tum computer”. In: Nature Communications 10.1 (July 2019). ISSN: 2041-1723.
DOI: 10.1038/s41467-019-10988-2.

[73] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Comput-
ing. STOC ’96. Philadelphia, Pennsylvania, USA: Association for Computing Ma-
chinery, 1996, pp. 212–219. ISBN: 0897917855. DOI: 10.1145/237814.237866.

[74] Lov K. Grover. “Quantum Mechanics Helps in Searching for a Needle in a
Haystack”. In: Phys. Rev. Lett. 79 (2 July 1997), pp. 325–328. DOI: 10 . 1103 /
PhysRevLett.79.325.

https://arxiv.org/abs/1506.06738
https://doi.org/10.1016/j.compchemeng.2015.03.015
https://doi.org/10.1016/j.compchemeng.2015.03.015
https://doi.org/10.22331/q-2019-04-30-135
https://doi.org/10.22331/q-2021-04-08-428
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://www.quera.com/glossary/advantage
https://www.quera.com/glossary/advantage
https://doi.org/10.56021/9781421407944
https://doi.org/10.56021/9781421407944
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.79.325

BIBLIOGRAPHY

7

139

[75] Alexandre Guillaume, Edwin Y. Goh, Mark D. Johnston, Brian D. Wilson, Anita
Ramanan, Frances Tibble, and Brad Lackey. “Deep Space Network Scheduling
Using Quantum Annealing”. In: IEEE Transactions on Quantum Engineering 3
(2022), pp. 1–13. DOI: 10.1109/TQE.2022.3199267.

[76] Hubert de Guise, Olivia Di Matteo, and Luis L. Sánchez-Soto. “Simple factor-
ization of unitary transformations”. In: Physical Review A 97.2 (Feb. 2018). ISSN:
2469-9934. DOI: 10.1103/physreva.97.022328.

[77] Walter J. Gutjahr and Marion S. Rauner. “An ACO algorithm for a dynamic re-
gional nurse-scheduling problem in Austria”. In: Computers & Operations Re-
search 34.3 (2007). Logistics of Health Care Management, pp. 642–666. ISSN: 0305-
0548. DOI: 10.1016/j.cor.2005.03.018.

[78] H. Haffner, C. Roos, and R. Blatt. “Quantum computing with trapped ions”. In:
Physics Reports 469.4 (Dec. 2008), pp. 155–203. DOI: 10.1016/j.physrep.2008.
09.003.

[79] M Hafizi, S N S Jamaludin, and A H Shamil. “State of The Art Review of Quality
Control Method in Automotive Manufacturing Industry”. In: 530.1 (June 2019),
p. 012034. DOI: 10.1088/1757-899X/530/1/012034.

[80] Wei Hai-Rui, Di Yao-Min, and Zhang-Jie. “Modified Khaneja-Glaser Decomposi-
tion and Realization of Three-Qubit Quantum Gate”. In: Chinese Physics Letters
25.9 (Sept. 2008), p. 3107. DOI: 10.1088/0256-307X/25/9/004.

[81] E. Hansen, S. Joshi, and H. Rarick. “Resource Estimation of Quantum Multiplica-
tion Algorithms”. In: 2023 IEEE International Conference on Quantum Comput-
ing and Engineering (QCE). Vol. 2. IEEE. 2023, pp. 199–202.

[82] Ian Hellström. Quantum Computer Roadmaps. URL: https://ianhellstrom.
org/quantum.html (visited on 07/10/2024).

[83] B. Hetényi and J. R. Wootton. Creating entangled logical qubits in the heavy-hex
lattice with topological codes. 2024. arXiv: 2404.15989 [quant-ph].

[84] Torsten Hoefler, Thomas Haener, and Matthias Troyer. Disentangling Hype from
Practicality: On Realistically Achieving Quantum Advantage. 2023. arXiv: 2307.
00523 [quant-ph].

[85] Ernst Joachim Houtgast, Vlad-Mihai Sima, Koen Bertels, and Zaid Al-Ars. “Hard-
ware acceleration of BWA-MEM genomic short read mapping for longer read
lengths”. In: Computational Biology and Chemistry 75 (2018), pp. 54–64. ISSN:
1476-9271. DOI: 10.1016/j.compbiolchem.2018.03.024.

[86] Jeremy Hsu. “CES 2018: Intel’s 49-Qubit Chip Shoots for Quantum Supremacy”.
In: IEEE Spectrum (Jan. 2018). URL: spectrum.ieee.org/intels-49qubit-
chip-aims-for-quantum-supremacy (visited on 01/24/2024).

[87] Travis Humble, Alexander McCaskey, Dmitry Lyakh, Meenambika Gowrishankar,
Albert Frisch, and Thomas Monz. “Quantum Computers for High-Performance
Computing”. In: IEEE Micro 41 (Sept. 2021), pp. 15–23. DOI: 10.1109/MM.2021.
3099140.

https://doi.org/10.1109/TQE.2022.3199267
https://doi.org/10.1103/physreva.97.022328
https://doi.org/10.1016/j.cor.2005.03.018
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1016/j.physrep.2008.09.003
https://doi.org/10.1088/1757-899X/530/1/012034
https://doi.org/10.1088/0256-307X/25/9/004
https://ianhellstrom.org/quantum.html
https://ianhellstrom.org/quantum.html
https://arxiv.org/abs/2404.15989
https://arxiv.org/abs/2307.00523
https://arxiv.org/abs/2307.00523
https://doi.org/10.1016/j.compbiolchem.2018.03.024
spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy
spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy
https://doi.org/10.1109/MM.2021.3099140
https://doi.org/10.1109/MM.2021.3099140

7

140 BIBLIOGRAPHY

[88] Kazuki Ikeda, Yuma Nakamura, and Travis S. Humble. “Application of Quantum
Annealing to Nurse Scheduling Problem”. In: Scientific Reports 9.1 (Sept. 2019).
DOI: 10.1038/s41598-019-49172-3.

[89] Wafer World Inc. “How Small Can Transistors Get?” In: waferworld.com (Nov.
2021). URL: https : / / www . waferworld . com / post / how - small - can -
transistors-get (visited on 08/15/2024).

[90] QuEra Computing Inc. “Qauntum Noise”. In: QuEra Glossary (2023). URL: https:
//www.quera.com/glossary/noise (visited on 08/15/2024).

[91] IonQ. “IonQ Aria: Practical Performance”. In: ionq.com (Jan. 2024). URL: ionq.
com / resources / ionq - aria - practical - performance (visited on
01/24/2024).

[92] Raban Iten, Roger Colbeck, Ivan Kukuljan, Jonathan Home, and Matthias Chris-
tandl. “Quantum circuits for isometries”. In: Physical Review A 93.3 (Mar. 2016).
ISSN: 2469-9934. DOI: 10.1103/physreva.93.032318.

[93] Raban Iten, Oliver Reardon-Smith, Emanuel Malvetti, Luca Mondada, Gabrielle
Pauvert, Ethan Redmond, Ravjot Singh Kohli, and Roger Colbeck. Introduction to
UniversalQCompiler. 2021. arXiv: 1904.01072 [quant-ph].

[94] Gui-Long Jiang, Wen-Qiang Liu, and Hai-Rui Wei. “Optimal Quantum Circuits
for General Multi-Qutrit Quantum Computation”. In: Adv. Quantum Technol.
7.7 (2024), p. 2400033. DOI: 10 . 1002 / qute . 202400033. arXiv: 2310 . 11996
[quant-ph].

[95] Cody Jones. “Low-overhead constructions for the fault-tolerant Toffoli gate”. In:
Phys. Rev. A 87 (2 Feb. 2013), p. 022328. DOI: 10.1103/PhysRevA.87.022328.

[96] Petar Jurcevic et al. “Demonstration of quantum volume 64 on a superconduct-
ing quantum computing system”. In: Quantum Science and Technology 6.2 (Mar.
2021), p. 025020. ISSN: 2058-9565. DOI: 10.1088/2058-9565/abe519.

[97] Özgür Kabak, Füsun Ülengin, Emel Aktaş, Şule Önsel, and Y. Ilker Topcu. “Effi-
cient shift scheduling in the retail sector through two-stage optimization”. In: Eu-
ropean Journal of Operational Research 184.1 (2008), pp. 76–90. ISSN: 0377-2217.
DOI: 10.1016/j.ejor.2006.10.039.

[98] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus
Brink, Jerry M. Chow, and Jay M. Gambetta. “Hardware-efficient variational
quantum eigensolver for small molecules and quantum magnets”. In: Na-
ture 549.7671 (Sept. 2017), pp. 242–246. ISSN: 1476-4687. DOI: 10 . 1038 /
nature23879.

[99] Peter J. Karalekas, Nikolas A. Tezak, Eric C. Peterson, Colm A. Ryan, Marcus P.
da Silva, and Robert S. Smith. “A quantum-classical cloud platform optimized
for variational hybrid algorithms”. In: Quantum Science and Technology 5.2 (Apr.
2020), p. 024003. DOI: 10.1088/2058-9565/ab7559.

https://doi.org/10.1038/s41598-019-49172-3
https://www.waferworld.com/post/how-small-can-transistors-get
https://www.waferworld.com/post/how-small-can-transistors-get
https://www.quera.com/glossary/noise
https://www.quera.com/glossary/noise
ionq.com/resources/ionq-aria-practical-performance
ionq.com/resources/ionq-aria-practical-performance
https://doi.org/10.1103/physreva.93.032318
https://arxiv.org/abs/1904.01072
https://doi.org/10.1002/qute.202400033
https://arxiv.org/abs/2310.11996
https://arxiv.org/abs/2310.11996
https://doi.org/10.1103/PhysRevA.87.022328
https://doi.org/10.1088/2058-9565/abe519
https://doi.org/10.1016/j.ejor.2006.10.039
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1088/2058-9565/ab7559

BIBLIOGRAPHY

7

141

[100] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Complexity
of Computer Computations. Ed. by Raymond E. Miller, James W. Thatcher, and
Jean D. Bohlinger. Boston, MA: Springer US, 1972, pp. 85–103. ISBN: 978-1-4684-
2001-2. DOI: 10.1007/978-1-4684-2001-2_9.

[101] Nader Khammassi, Imran Ashraf, Xiang Fu, Carmina García Almudever, and
Koen Bertels. “QX: A high-performance quantum computer simulation plat-
form”. English. In: Proceedings of the 2017 Design, Automation & Test in Europe
Conference & Exhibition (DATE). Design, Automation and Test in Europe : DATE
17 ; Conference date: 27-03-2017 Through 31-03-2017. United States: IEEE, 2017,
pp. 464–469. ISBN: 978-1-5090-5826-6. DOI: 10.23919/DATE.2017.7927034.

[102] Nader Khammassi, Imran Ashraf, Adriaan Rol, Xiang Fu, Wouter Vlothuizen,
Hans van Someren, and more. OpenQL documentation. [Accessed: Aug. 4, 2023].
URL: https://openql.readthedocs.io/.

[103] Nader Khammassi, Imran Ashraf, J. V. Someren, R. Nane, A. M. Krol, M. A. Rol,
L. Lao, K. Bertels, and C. G. Almudever. “OpenQL: A Portable Quantum Program-
ming Framework for Quantum Accelerators”. In: J. Emerg. Technol. Comput. Syst.
18.1 (Dec. 2021). ISSN: 1550-4832. DOI: 10.1145/3474222.

[104] Navin Khaneja and Steffen J. Glaser. “Cartan decomposition of SU(2n) and con-
trol of spin systems”. In: Chemical Physics 267.1 (2001), pp. 11–23. ISSN: 0301-
0104. DOI: 10.1016/S0301-0104(01)00318-4.

[105] Min-Soo Kim, Seog-Chan Oh, Eun Hyo Chang, Sangheon Lee, James W. Wells,
Jorge Arinez, and Young Jae Jang. “A dynamic programming-based heuristic al-
gorithm for a flexible job shop scheduling problem of a matrix system in automo-
tive industry”. In: 2022 IEEE 18th International Conference on Automation Sci-
ence and Engineering (CASE). 2022, pp. 777–782. DOI: 10 . 1109 / CASE49997 .
2022.9926440.

[106] Youngseok Kim et al. “Evidence for the utility of quantum computing before fault
tolerance”. In: Nature 618 (June 2023), pp. 500–505. DOI: 10.1038/s41586-023-
06096-3.

[107] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated Anneal-
ing”. In: Science 220.4598 (1983), pp. 671–680.

[108] A.Y. Kitaev. “Fault-tolerant quantum computation by anyons”. In: Annals of
Physics 303.1 (2003), pp. 2–30. ISSN: 0003-4916. DOI: 10.1016/S0003-4916(02)
00018-0.

[109] A.Y. Kitaev. “Quantum computations: algorithms and error correction”. In:
Russian Mathematical Surveys 52.6 (Dec. 1997), p. 1191. DOI: 10 . 1070 /
RM1997v052n06ABEH002155.

[110] Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz, Joel
I.-J. Wang, Simon Gustavsson, and William D. Oliver. “Superconducting Qubits:
Current State of Play”. In: Annual Review of Condensed Matter Physics 11.Vol-
ume 11, 2020 (2020), pp. 369–395. ISSN: 1947-5462. DOI: 10.1146/annurev-
conmatphys-031119-050605.

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.23919/DATE.2017.7927034
https://openql.readthedocs.io/
https://doi.org/10.1145/3474222
https://doi.org/10.1016/S0301-0104(01)00318-4
https://doi.org/10.1109/CASE49997.2022.9926440
https://doi.org/10.1109/CASE49997.2022.9926440
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605

7

142 BIBLIOGRAPHY

[111] Vadym Kliuchnikov, Kristin Lauter, Romy Minko, Adam Paetznick, and
Christophe Petit. “Shorter quantum circuits via single-qubit gate approxima-
tion”. In: Quantum 7 (Dec. 2023), p. 1208. ISSN: 2521-327X. DOI: 10.22331/q-
2023-12-18-1208. URL: https://doi.org/10.22331/q-2023-12-18-1208.

[112] E. Knill. Approximation by Quantum Circuits. 1995. arXiv: quant-ph/9508006
[quant-ph].

[113] S. Krinner et al. “Realizing repeated quantum error correction in a distance-three
surface code”. In: Nature 605.7911 (2022).

[114] Anna M. Krol and Zaid Al-Ars. “Beyond quantum Shannon decomposition: Cir-
cuit construction for n-qubit gates based on block-Z X Z decomposition”. In:
Phys. Rev. Appl. 22 (3 Sept. 2024), p. 034019. DOI: 10.1103/PhysRevApplied.
22.034019.

[115] Anna M. Krol, Marvin Erdmann, Rajesh Mishra, Phattharaporn Singkanipa, Ewan
Munro, Marcin Ziolkowski, Andre Luckow, and Zaid Al-Ars. QISS: Quantum In-
dustrial Shift Scheduling Algorithm. Submitted to IEEE Transactions on Quantum
Engineering. 2024. arXiv: 2401.07763 [quant-ph].

[116] Anna M. Krol, Marvin Erdmann, Ewan Munro, Andre Luckow, and Zaid Al-
Ars. “Assessing the Requirements for Industry Relevant Quantum Computation”.
In: Proceedings of the 2024 IEEE International Conference on Quantum Com-
puting and Engineering (QCE). Montréal, Canada, 2024. arXiv: 2408 . 02587
[quant-ph].

[117] Anna M. Krol, Koen Mesman, Aritra Sarkar, and Zaid Al-Ars. “Efficient Parame-
terised Compilation for Hybrid Quantum Programming”. In: 2023 IEEE Interna-
tional Conference on Quantum Computing and Engineering (QCE). Vol. 2. 2023,
pp. 103–111. DOI: 10.1109/QCE57702.2023.10192.

[118] Anna M. Krol, Aritra Sarkar, Imran Ashraf, Zaid Al-Ars, and Koen Bertels. “Effi-
cient Decomposition of Unitary Matrices in Quantum Circuit Compilers”. In: Ap-
plied Sciences 12.2 (2022). ISSN: 2076-3417. DOI: 10.3390/app12020759.

[119] Benjamin P Lanyon, Marco Barbieri, Marcelo P Almeida, Thomas Jennewein,
Timothy C Ralph, Kevin J Resch, Geoff J Pryde, Jeremy L O’brien, Alexei Gilchrist,
and Andrew G White. “Simplifying quantum logic using higher-dimensional
Hilbert spaces”. In: Nature Physics 5.2 (2009), pp. 134–140. DOI: 10 . 1038 /
nphys1150.

[120] Steven Leibson. “Physicists Pushing Boundaries Of Physics Using Quantum
Computers”. In: Forbes.com (Aug. 2023). URL: www . forbes . com / sites /
tiriasresearch/2023/08/03/physicists- pushing- boundaries- of-
physics-using-quantum-computers/ (visited on 01/24/2024).

[121] Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, But-
ler W. Lampson, Daniel Sanchez, and Tao B. Schardl. “There’s plenty of room at
the Top: What will drive computer performance after Moore’s law?” In: Science
368.6495 (2020), eaam9744. DOI: 10.1126/science.aam9744. eprint: https:
//www.science.org/doi/pdf/10.1126/science.aam9744.

https://doi.org/10.22331/q-2023-12-18-1208
https://doi.org/10.22331/q-2023-12-18-1208
https://doi.org/10.22331/q-2023-12-18-1208
https://arxiv.org/abs/quant-ph/9508006
https://arxiv.org/abs/quant-ph/9508006
https://doi.org/10.1103/PhysRevApplied.22.034019
https://doi.org/10.1103/PhysRevApplied.22.034019
https://arxiv.org/abs/2401.07763
https://arxiv.org/abs/2408.02587
https://arxiv.org/abs/2408.02587
https://doi.org/10.1109/QCE57702.2023.10192
https://doi.org/10.3390/app12020759
https://doi.org/10.1038/nphys1150
https://doi.org/10.1038/nphys1150
www.forbes.com/sites/tiriasresearch/2023/08/03/physicists-pushing-boundaries-of-physics-using-quantum-computers/
www.forbes.com/sites/tiriasresearch/2023/08/03/physicists-pushing-boundaries-of-physics-using-quantum-computers/
www.forbes.com/sites/tiriasresearch/2023/08/03/physicists-pushing-boundaries-of-physics-using-quantum-computers/
https://doi.org/10.1126/science.aam9744
https://www.science.org/doi/pdf/10.1126/science.aam9744
https://www.science.org/doi/pdf/10.1126/science.aam9744

BIBLIOGRAPHY

7

143

[122] Taiwan Semiconductor Manufacturing Company Limited. “3nm Technology”.
In: tsmc.com (2022). URL: https : / / www . tsmc . com / english /
dedicatedFoundry/technology/logic/l_3nm (visited on 08/15/2024).

[123] Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline
Figgatt, Kevin A. Landsman, Kenneth Wright, and Christopher Monroe. “Exper-
imental comparison of two quantum computing architectures”. In: Proceedings
of the National Academy of Sciences 114.13 (2017), pp. 3305–3310. DOI: 10.1073/
pnas.1618020114.

[124] Jin-Guo Liu, Yi-Hong Zhang, Yuan Wan, and Lei Wang. “Variational quantum
eigensolver with fewer qubits”. In: Physical Review Research 1.2 (Sept. 2019). ISSN:
2643-1564. DOI: 10.1103/physrevresearch.1.023025.

[125] Sonia Lopez, Bradben, et al. Azure Quantum documentation (preview). Microsoft
2023. URL: https://learn.microsoft.com/en-us/azure/quantum/ (visited
on 07/2023).

[126] Andre Luckow, Johannes Klepsch, and Josef Pichlmeier. “Quantum Computing:
Towards Industry Reference Problems”. In: Digitale Welt 5.2 (Mar. 2021), pp. 38–
45. ISSN: 2569-1996. DOI: 10.1007/s42354-021-0335-7.

[127] Quantum Machines. Quantum Machines. [Accessed: Aug. 4, 2023]. URL: https:
//www.quantum-machines.co.

[128] Lars S Madsen, Fabian Laudenbach, Mohsen Falamarzi Askarani, Fabien Rortais,
Trevor Vincent, Jacob FF Bulmer, Filippo M Miatto, Leonhard Neuhaus, Lukas G
Helt, Matthew J Collins, et al. “Quantum computational advantage with a pro-
grammable photonic processor”. In: Nature 606.7912 (2022), pp. 75–81.

[129] Maximilian Balthasar Mansky, Santiago Londoño Castillo, Victor Ramos Puigvert,
and Claudia Linnhoff-Popien. “Near-optimal quantum circuit construction via
Cartan decomposition”. In: Phys. Rev. A 108 (5 Nov. 2023), p. 052607. DOI: 10.
1103/PhysRevA.108.052607.

[130] Sara Mattia, Fabrizio Rossi, Mara Servilio, and Stefano Smriglio. “Staffing and
scheduling flexible call centers by two-stage robust optimization”. In: Omega 72
(2017), pp. 25–37. ISSN: 0305-0483. DOI: 10.1016/j.omega.2016.11.001.

[131] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik.
“The theory of variational hybrid quantum-classical algorithms”. In: New Journal
of Physics 18.2 (Feb. 2016), p. 023023. DOI: 10.1088/1367-2630/18/2/023023.

[132] Jim McGregor. “Intel Tunnel Falls Into Quantum Computing”. In: Forbes.com
(June 2023). URL: www.forbes.com/sites/tiriasresearch/2023/06/15/
intel-tunnel-falls-into-quantum-computing/ (visited on 01/24/2024).

[133] Koen Mesman, Zaid Al-Ars, and Matthias Möller. “QPack: Quantum Approximate
Optimization Algorithms as universal benchmark for quantum computers”. In:
(2022). arXiv: 2103.17193 [cs.ET].

https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_3nm
https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_3nm
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1103/physrevresearch.1.023025
https://learn.microsoft.com/en-us/azure/quantum/
https://doi.org/10.1007/s42354-021-0335-7
https://www.quantum-machines.co
https://www.quantum-machines.co
https://doi.org/10.1103/PhysRevA.108.052607
https://doi.org/10.1103/PhysRevA.108.052607
https://doi.org/10.1016/j.omega.2016.11.001
https://doi.org/10.1088/1367-2630/18/2/023023
www.forbes.com/sites/tiriasresearch/2023/06/15/intel-tunnel-falls-into-quantum-computing/
www.forbes.com/sites/tiriasresearch/2023/06/15/intel-tunnel-falls-into-quantum-computing/
https://arxiv.org/abs/2103.17193

7

144 BIBLIOGRAPHY

[134] Adam R. Mills, Charles R. Guinn, Michael J. Gullans, Anthony J. Sigillito, Mayer M.
Feldman, Erik Nielsen, and Jason R. Petta. “Two-qubit silicon quantum processor
with operation fidelity exceeding 99%”. In: Science Advances 8.14 (Apr. 2022). DOI:
oi.org/10.1126/sciadv.abn5130.

[135] Matthias Möller and Cornelis Vuik. “On the impact of quantum computing tech-
nology on future developments in high-performance scientific computing”. In:
Ethics and Information Technology 19 (2017), pp. 253–269. URL: https://api.
semanticscholar.org/CorpusID:6864503.

[136] Ashley Montanaro. “Quantum speedup of branch-and-bound algorithms”. In:
Phys. Rev. Res. 2 (1 Jan. 2020), p. 013056. DOI: 10.1103/PhysRevResearch.2.
013056.

[137] Gary J. Mooney, Charles D. Hill, and Lloyd C. L. Hollenberg. “Entanglement in a
20-Qubit Superconducting Quantum Computer”. In: Scientific Reports 9.1 (Sept.
2019). ISSN: 2045-2322. DOI: 10.1038/s41598-019-49805-7.

[138] Patrick Moorhead. “Xanadu Brings Photonic Quantum Computing To The
Cloud”. In: Moor Insights & Strategy (Sept. 2020). URL: moorinsightsstrategy.
com/xanadu-brings-photonic-quantum-computing-to-the-cloud/ (vis-
ited on 01/24/2024).

[139] Mikko Möttönen and Juha J. Vartiainen. “Decompositions of general quantum
gates”. In: Trends in quantum computing research. Ed. by Susan Shannon. Nova
Science Publishers, 2006. Chap. 7, pp. 149–170. ISBN: 9781594548406.

[140] Mikko Möttönen, Juha J. Vartiainen, Ville Bergholm, and Martti M. Salomaa.
“Quantum Circuits for General Multiqubit Gates”. In: Phys. Rev. Lett. 93 (13 Sept.
2004), p. 130502. DOI: 10.1103/PhysRevLett.93.130502.

[141] Ken M. Nakanishi, Takahiko Satoh, and Synge Todo. Quantum-gate decomposer.
2021. arXiv: 2109.13223 [quant-ph].

[142] H. Neven and J. Kelly. Suppressing quantum errors by scaling a surface code log-
ical qubit. 2023. URL: https : / / research . google / blog / suppressing -
quantum-errors-by-scaling-a-surface-code-logical-qubit/ (visited
on 07/01/2024).

[143] Jordan Novet. “Intel shows off its latest chip for quantum computing as it looks
past Moore’s Law”. In: CNBC.com (Oct. 2017). URL: www.cnbc.com/2017/10/
10/intel-delivers-17-qubit-quantum-computing-chip-to-qutech.
html (visited on 01/24/2024).

[144] Dan O’Shea. Rigetti details new QPU roadmap, fab expansion, Bluefors partner-
ship. URL: www.insidequantumtechnology.com/news-archive/rigetti-
details- new- qpu- roadmap- fab- expansion- bluefors- partnership/
(visited on 01/24/2024).

[145] OQC. “OQC Honors Physicist Toshiko Yuasa with OQC Toshiko Platform, Secures
$100M Funding”. In: hpcwire.com (Nov. 2023). URL: www.hpcwire.com/off-
the-wire/oqc-honors-physicist-toshiko-yuasa-with-oqc-toshiko-
platform-secures-100m-funding/ (visited on 01/24/2024).

https://doi.org/oi.org/10.1126/sciadv.abn5130
https://api.semanticscholar.org/CorpusID:6864503
https://api.semanticscholar.org/CorpusID:6864503
https://doi.org/10.1103/PhysRevResearch.2.013056
https://doi.org/10.1103/PhysRevResearch.2.013056
https://doi.org/10.1038/s41598-019-49805-7
moorinsightsstrategy.com/xanadu-brings-photonic-quantum-computing-to-the-cloud/
moorinsightsstrategy.com/xanadu-brings-photonic-quantum-computing-to-the-cloud/
https://doi.org/10.1103/PhysRevLett.93.130502
https://arxiv.org/abs/2109.13223
https://research.google/blog/suppressing-quantum-errors-by-scaling-a-surface-code-logical-qubit/
https://research.google/blog/suppressing-quantum-errors-by-scaling-a-surface-code-logical-qubit/
www.cnbc.com/2017/10/10/intel-delivers-17-qubit-quantum-computing-chip-to-qutech.html
www.cnbc.com/2017/10/10/intel-delivers-17-qubit-quantum-computing-chip-to-qutech.html
www.cnbc.com/2017/10/10/intel-delivers-17-qubit-quantum-computing-chip-to-qutech.html
www.insidequantumtechnology.com/news-archive/rigetti-details-new-qpu-roadmap-fab-expansion-bluefors-partnership/
www.insidequantumtechnology.com/news-archive/rigetti-details-new-qpu-roadmap-fab-expansion-bluefors-partnership/
www.hpcwire.com/off-the-wire/oqc-honors-physicist-toshiko-yuasa-with-oqc-toshiko-platform-secures-100m-funding/
www.hpcwire.com/off-the-wire/oqc-honors-physicist-toshiko-yuasa-with-oqc-toshiko-platform-secures-100m-funding/
www.hpcwire.com/off-the-wire/oqc-honors-physicist-toshiko-yuasa-with-oqc-toshiko-platform-secures-100m-funding/

BIBLIOGRAPHY

7

145

[146] Emir Hüseyin Özder, Evrencan Özcan, and Tamer Eren. “A Systematic Literature
Review for Personnel Scheduling Problems”. In: International Journal of Infor-
mation Technology & Decision Making 19.06 (2020), pp. 1695–1735. DOI: 10 .
1142/S0219622020300050.

[147] C.C. Paige and M. Wei. “History and generality of the CS decomposition”. In: Lin-
ear Algebra and its Applications 208-209 (1994), pp. 303–326. ISSN: 0024-3795.
DOI: 10.1016/0024-3795(94)90446-4.

[148] Aidan Pellow-Jarman, Ilya Sinayskiy, Anban Pillay, and Francesco Petruccione.
“A comparison of various classical optimizers for a variational quantum linear
solver”. In: Quantum Information Processing 20.6 (June 2021). DOI: 10.1007/
s11128-021-03140-x.

[149] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. “A variational eigen-
value solver on a photonic quantum processor”. In: Nature Communications 5.1
(July 2014). ISSN: 2041-1723. DOI: 10.1038/ncomms5213.

[150] Rebecca Pool. “A new kind of quantum”. In: SPIE.org (Nov. 2020). URL: spie.
org/news/photonics- focus/novdec- 2020/a- new- kind- of- quantum
(visited on 01/24/2024).

[151] L. Postler et al. “Demonstration of fault-tolerant universal quantum gate opera-
tions”. In: Nature 605.7911 (2022).

[152] John Preskill. Quantum computing and the entanglement frontier. 2012. arXiv:
1203.5813 [quant-ph]. URL: https://arxiv.org/abs/1203.5813.

[153] Qiskit Development team. Qiskit documentation. [Accessed: Aug. 4, 2023]. 2020.
URL: https://qiskit.org/documentation/.

[154] Qualtran documentation. Google LLC 2023. URL: https : / / qualtran .
readthedocs.io/en/latest/index.html (visited on 11/2023).

[155] Quantinuum. “The Future of Quantum Hardware”. In: (). URL: www.quantinuum.
com/hardware (visited on 01/24/2024).

[156] Péter Rakyta and Zoltán Zimborás. “Approaching the theoretical limit in quan-
tum gate decomposition”. In: Quantum 6 (May 2022), p. 710. ISSN: 2521-327X.
DOI: 10.22331/q-2022-05-11-710.

[157] Quantum Computing Report. “Atom Computing Previews an 1180 Qubit
Neutral Atom Processor”. In: quantumcomputingreport.com (Oct. 2023). URL:
quantumcomputingreport . com / atom - computing - previews - an - 1180 -
qubit-neutral-atom-processor (visited on 01/24/2024).

[158] Quantum Computing Report. Zapata Introduces BenchQ, an Open-source Tool for
Quantum Computing Resource Estimation and Benchmarking. Dec. 2023. URL:
https://quantumcomputingreport.com/zapata- introduces- benchq-
an-open-source-tool-for-quantum-computing-resource-estimation-
and-benchmarking/ (visited on 04/30/2024).

[159] Riverlane. Deltaflow®. [Accessed: Aug. 4, 2023]. URL: https://www.riverlane.
com/products/.

https://doi.org/10.1142/S0219622020300050
https://doi.org/10.1142/S0219622020300050
https://doi.org/10.1016/0024-3795(94)90446-4
https://doi.org/10.1007/s11128-021-03140-x
https://doi.org/10.1007/s11128-021-03140-x
https://doi.org/10.1038/ncomms5213
spie.org/news/photonics-focus/novdec-2020/a-new-kind-of-quantum
spie.org/news/photonics-focus/novdec-2020/a-new-kind-of-quantum
https://arxiv.org/abs/1203.5813
https://arxiv.org/abs/1203.5813
https://qiskit.org/documentation/
https://qualtran.readthedocs.io/en/latest/index.html
https://qualtran.readthedocs.io/en/latest/index.html
www.quantinuum.com/hardware
www.quantinuum.com/hardware
https://doi.org/10.22331/q-2022-05-11-710
quantumcomputingreport.com/atom-computing-previews-an-1180-qubit-neutral-atom-processor
quantumcomputingreport.com/atom-computing-previews-an-1180-qubit-neutral-atom-processor
https://quantumcomputingreport.com/zapata-introduces-benchq-an-open-source-tool-for-quantum-computing-resource-estimation-and-benchmarking/
https://quantumcomputingreport.com/zapata-introduces-benchq-an-open-source-tool-for-quantum-computing-resource-estimation-and-benchmarking/
https://quantumcomputingreport.com/zapata-introduces-benchq-an-open-source-tool-for-quantum-computing-resource-estimation-and-benchmarking/
https://www.riverlane.com/products/
https://www.riverlane.com/products/

7

146 BIBLIOGRAPHY

[160] Marta Rocha, José Oliveira, and Maria Carravilla. “A constructive heuristic for
staff scheduling in the glass industry”. In: Annals of Operations Research 217.1
(June 2014), pp. 463–478. DOI: 10.1007/s10479-013-1525-y.

[161] J. Roffe. “Quantum error correction: an introductory guide”. In: Contemporary
Physics 60.3 (2019), pp. 226–245. DOI: 10.1080/00107514.2019.1667078.

[162] N. J. Ross and P. Selinger. Optimal ancilla-free Clifford+T approximation of z-
rotations. 2016. arXiv: 1403.2975 [quant-ph].

[163] Karl Rupp. “40 Years of Microprocessor Trend Data”. In: karlrupp.net (2018). URL:
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-
trend-data/ (visited on 08/19/2024).

[164] Karl Rupp. Microprocessor Trend Data Repository. 2022. URL: https://github.
com/karlrupp/microprocessor-trend-data (visited on 08/19/2024).

[165] John Russell. “QuEra Debuts 3-Year Roadmap to 10,000 Physical and 100 Logical
Qubits”. In: hpcwire.com (Jan. 2024). URL: www.hpcwire.com/2024/01/09/
quera-debuts-3-year-roadmap-to-10000-physical-and-100-logical-
qubits/ (visited on 01/24/2024).

[166] C. Ryan-Anderson et al. “Realization of Real-Time Fault-Tolerant Quantum Er-
ror Correction”. In: Phys. Rev. X 11 (4 Dec. 2021), p. 041058. DOI: 10 . 1103 /
PhysRevX.11.041058.

[167] Aritra Sarkar, Zaid Al-Ars, Carmen G. Almudever, and Koen L. M. Bertels. “QiBAM:
Approximate Sub-String Index Search on Quantum Accelerators Applied to DNA
Read Alignment”. In: Electronics 10.19 (2021). ISSN: 2079-9292. DOI: 10.3390/
electronics10192433.

[168] Aritra Sarkar, Zaid Al-Ars, and Koen Bertels. “QKSA: Quantum Knowledge Seek-
ing Agent”. In: Artificial General Intelligence: 15th International Conference,
AGI 2022, Seattle, WA, USA, August 19–22, 2022, Proceedings. Seattle, WA, USA:
Springer-Verlag, 2023, pp. 384–393. ISBN: 978-3-031-19906-6. DOI: 10 . 1007 /
978-3-031-19907-3_37.

[169] Aritra Sarkar, Zaid Al-Ars, and Koen Bertels. “QuASeR: Quantum Accelerated de
novo DNA sequence reconstruction”. In: PLOS ONE 16.4 (Apr. 2021), pp. 1–23.
DOI: 10.1371/journal.pone.0249850.

[170] Alistair Savage. “Introduction to Lie Groups”. In: Course notes of MAT1411/
MAT5158. University of Ottawa, 2015. eprint: https://alistairsavage.ca/
mat4144/notes/MAT4144-5158-LieGroups.pdf.

[171] Martin J.A. Schuetz, J. Kyle Brubaker, Henry Montagu, Yannick van Dijk, Johannes
Klepsch, Philipp Ross, Andre Luckow, Mauricio G.C. Resende, and Helmut G.
Katzgraber. “Optimization of Robot-Trajectory Planning with Nature-Inspired
and Hybrid Quantum Algorithms”. In: Phys. Rev. Appl. 18 (5 Nov. 2022), p. 054045.
DOI: 10.1103/PhysRevApplied.18.054045.

https://doi.org/10.1007/s10479-013-1525-y
https://doi.org/10.1080/00107514.2019.1667078
https://arxiv.org/abs/1403.2975
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data
www.hpcwire.com/2024/01/09/quera-debuts-3-year-roadmap-to-10000-physical-and-100-logical-qubits/
www.hpcwire.com/2024/01/09/quera-debuts-3-year-roadmap-to-10000-physical-and-100-logical-qubits/
www.hpcwire.com/2024/01/09/quera-debuts-3-year-roadmap-to-10000-physical-and-100-logical-qubits/
https://doi.org/10.1103/PhysRevX.11.041058
https://doi.org/10.1103/PhysRevX.11.041058
https://doi.org/10.3390/electronics10192433
https://doi.org/10.3390/electronics10192433
https://doi.org/10.1007/978-3-031-19907-3_37
https://doi.org/10.1007/978-3-031-19907-3_37
https://doi.org/10.1371/journal.pone.0249850
https://alistairsavage.ca/mat4144/notes/MAT4144-5158-LieGroups.pdf
https://alistairsavage.ca/mat4144/notes/MAT4144-5158-LieGroups.pdf
https://doi.org/10.1103/PhysRevApplied.18.054045

BIBLIOGRAPHY

7

147

[172] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. “Optimization of quan-
tum circuits for interaction distance in linear nearest neighbor architectures”. In:
Proceedings of the 50th Annual Design Automation Conference. DAC ’13. Austin,
Texas: Association for Computing Machinery, 2013. ISBN: 9781450320719. DOI:
10.1145/2463209.2488785.

[173] V.V. Shende, S.S. Bullock, and I.L. Markov. “Synthesis of quantum-logic circuits”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 25.6 (June 2006), pp. 1000–1010. ISSN: 1937-4151. DOI: 10 . 1109 / tcad .
2005.855930.

[174] V.V. Shende, I.L. Markov, and S.S. Bullock. “Smaller two-qubit circuits for quan-
tum communication and computation”. In: Proceedings Design, Automation and
Test in Europe Conference and Exhibition. Vol. 2. 2004, 980–985 Vol.2. DOI: 10.
1109/DATE.2004.1269020.

[175] Vivek V. Shende, Stephen S. Bullock, and Igor L. Markov. A Practical Top-down
Approach to Quantum Circuit Synthesis. 2004. arXiv: quant-ph/0406176v3.

[176] Vivek V. Shende, Igor L. Markov, and Stephen S. Bullock. “Minimal universal
two-qubit controlled-NOT-based circuits”. In: Physical Review A 69.6 (June 2004).
ISSN: 1094-1622. DOI: 10.1103/physreva.69.062321.

[177] Peter W. Shor. “Algorithms for quantum computation: discrete logarithms and
factoring”. In: Proceedings 35th Annual Symposium on Foundations of Computer
Science. 1994, pp. 124–134. DOI: 10.1109/SFCS.1994.365700.

[178] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer”. In: SIAM J. Comput. 26.5 (Oct. 1997),
pp. 1484–1509. ISSN: 0097-5397. DOI: 10.1137/S0097539795293172.

[179] Robert Smith, Will Zeng, Spike Curtis, Nick Rubin, Anthony Polloreno, Peter Kar-
alekas, Nikolas Tezak, Chris Osborn, and many more. Pyquil: Quantum program-
ming in Python. [Accessed: Aug. 4, 2023]. 2020. URL: https://github.com/
rigetti/pyquil.

[180] Robert S. Smith, Michael J. Curtis, and William J. Zeng. A Practical Quantum In-
struction Set Architecture. 2016. arXiv: 1608.03355 [quant-ph].

[181] Paul Smith-Goodson. “A Quantum Leap In AI: IonQ Aims To Create Quantum
Machine Learning Models At The Level Of General Human Intelligence”. In:
Forbes.com (June 2023). URL: www.forbes.com/sites/moorinsights/2023/
06 / 02 / a - quantum - leap - in - ai - ionq - aims - to - create - quantum -
machine - learning - models - at - the - level - of - general - human -
intelligence/ (visited on 01/24/2024).

[182] P. B. M. Sousa and R. V. Ramos. Universal quantum circuit for n-qubit quan-
tum gate: A programmable quantum gate. 2006. arXiv: quant - ph / 0602174
[quant-ph].

[183] Annalise Stockley and Keith Briggs. “Optimizing antenna beamforming with
quantum computing”. In: 2023 17th European Conference on Antennas and Prop-
agation (EuCAP). 2023, pp. 1–5. DOI: 10.23919/EuCAP57121.2023.10133700.

https://doi.org/10.1145/2463209.2488785
https://doi.org/10.1109/tcad.2005.855930
https://doi.org/10.1109/tcad.2005.855930
https://doi.org/10.1109/DATE.2004.1269020
https://doi.org/10.1109/DATE.2004.1269020
https://arxiv.org/abs/quant-ph/0406176v3
https://doi.org/10.1103/physreva.69.062321
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1137/S0097539795293172
https://github.com/rigetti/pyquil
https://github.com/rigetti/pyquil
https://arxiv.org/abs/1608.03355
www.forbes.com/sites/moorinsights/2023/06/02/a-quantum-leap-in-ai-ionq-aims-to-create-quantum-machine-learning-models-at-the-level-of-general-human-intelligence/
www.forbes.com/sites/moorinsights/2023/06/02/a-quantum-leap-in-ai-ionq-aims-to-create-quantum-machine-learning-models-at-the-level-of-general-human-intelligence/
www.forbes.com/sites/moorinsights/2023/06/02/a-quantum-leap-in-ai-ionq-aims-to-create-quantum-machine-learning-models-at-the-level-of-general-human-intelligence/
www.forbes.com/sites/moorinsights/2023/06/02/a-quantum-leap-in-ai-ionq-aims-to-create-quantum-machine-learning-models-at-the-level-of-general-human-intelligence/
https://arxiv.org/abs/quant-ph/0602174
https://arxiv.org/abs/quant-ph/0602174
https://doi.org/10.23919/EuCAP57121.2023.10133700

7

148 BIBLIOGRAPHY

[184] Brian D. Sutton. Computing the complete CS decomposition. 2008. arXiv: 0707.
1838 [math.NA].

[185] Matt Swayne. “OQC’s ’Lucy’ Becomes First European Quantum Com-
puter on Amazon Braket”. In: thequantuminsider.com (Feb. 2022). URL:
thequantuminsider . com / 2022 / 02 / 28 / oqcs - lucy - becomes - first -
european-quantum-computer-on-amazon-braket/ (visited on 01/24/2024).

[186] Dan Swinhoe. “IonQ announces two rack-mounted quantum computers”. In:
datacenterdynamics.com (Sept. 2023). URL: www.datacenterdynamics.com/
en/news/ionq-announces-two-rack-mounted-quantum-computers/ (vis-
ited on 01/24/2024).

[187] Dan Swinhoe. Quantinuum upgrades H2 quantum computer from 32 to 56 qubits.
June 2024. URL: https : / / www . datacenterdynamics . com / en / news /
quantinuum-upgrades-h2-quantum-computer-from-32-to-56-qubits/
(visited on 07/01/2024).

[188] Swamit S. Tannu and Moinuddin K. Qureshi. “Not All Qubits Are Created Equal:
A Case for Variability-Aware Policies for NISQ-Era Quantum Computers”. In: Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ASPLOS ’19. Provi-
dence, RI, USA: Association for Computing Machinery, 2019, pp. 987–999. ISBN:
9781450362405. DOI: 10.1145/3297858.3304007.

[189] Jörn-Henrik Thun and Daniel Hoenig. “An empirical analysis of supply chain
risk management in the German automotive industry”. In: International Journal
of Production Economics 131.1 (2011). Innsbruck 2008, pp. 242–249. ISSN: 0925-
5273. DOI: 10.1016/j.ijpe.2009.10.010.

[190] John Timmer. “IBM releases 1,000+ qubit processor, roadmap to error correc-
tion”. In: arstechnica.com (Apr. 2023). URL: https : / / arstechnica . com /
science/2023/12/ibm-adds-error-correction-to-updated-quantum-
computing-roadmap/ (visited on 01/24/2024).

[191] Robert R. Tucci. A Rudimentary Quantum Compiler(2cnd Ed.) 1999. arXiv:
quant-ph/9902062 [quant-ph].

[192] Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester,
and Liesje De Boeck. “Personnel scheduling: A literature review”. In: European
Journal of Operational Research 226.3 (2013), pp. 367–385. ISSN: 0377-2217. DOI:
10.1016/j.ejor.2012.11.029.

[193] Rodney Van Meter and Dominic Horsman. “A blueprint for building a quantum
computer”. In: Commun. ACM 56.10 (Oct. 2013), pp. 84–93. ISSN: 0001-0782. DOI:
10.1145/2494568.

[194] Juha J. Vartiainen, Mikko Möttönen, and Martti M. Salomaa. “Efficient Decom-
position of Quantum Gates”. In: Phys. Rev. Lett. 92 (17 Apr. 2004), p. 177902. DOI:
10.1103/PhysRevLett.92.177902. arXiv: quant-ph/0312218 [quant-ph].

[195] Farrokh Vatan and Colin P. Williams. Realization of a General Three-Qubit Quan-
tum Gate. Feb. 2004. arXiv: quant-ph/0401178 [quant-ph].

https://arxiv.org/abs/0707.1838
https://arxiv.org/abs/0707.1838
thequantuminsider.com/2022/02/28/oqcs-lucy-becomes-first-european-quantum-computer-on-amazon-braket/
thequantuminsider.com/2022/02/28/oqcs-lucy-becomes-first-european-quantum-computer-on-amazon-braket/
www.datacenterdynamics.com/en/news/ionq-announces-two-rack-mounted-quantum-computers/
www.datacenterdynamics.com/en/news/ionq-announces-two-rack-mounted-quantum-computers/
https://www.datacenterdynamics.com/en/news/quantinuum-upgrades-h2-quantum-computer-from-32-to-56-qubits/
https://www.datacenterdynamics.com/en/news/quantinuum-upgrades-h2-quantum-computer-from-32-to-56-qubits/
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1016/j.ijpe.2009.10.010
https://arstechnica.com/science/2023/12/ibm-adds-error-correction-to-updated-quantum-computing-roadmap/
https://arstechnica.com/science/2023/12/ibm-adds-error-correction-to-updated-quantum-computing-roadmap/
https://arstechnica.com/science/2023/12/ibm-adds-error-correction-to-updated-quantum-computing-roadmap/
https://arxiv.org/abs/quant-ph/9902062
https://doi.org/10.1016/j.ejor.2012.11.029
https://doi.org/10.1145/2494568
https://doi.org/10.1103/PhysRevLett.92.177902
https://arxiv.org/abs/quant-ph/0312218
https://arxiv.org/abs/quant-ph/0401178

BIBLIOGRAPHY 149

[196] Farrokh Vatan and Colin Williams. “Optimal quantum circuits for general two-
qubit gates”. In: Phys. Rev. A 69 (3 Mar. 2004), p. 032315. DOI: 10 . 1103 /
PhysRevA.69.032315.

[197] Dan Ventura and Tony Martinez. “Quantum associative memory”. In: Informa-
tion Sciences 124.1 (2000), pp. 273–296. ISSN: 0020-0255. DOI: 10.1016/S0020-
0255(99)00101-2.

[198] G. Vidal and C. M. Dawson. “Universal quantum circuit for two-qubit trans-
formations with three controlled-NOT gates”. In: Phys. Rev. A 69 (1 Jan. 2004),
010301(R). DOI: 10.1103/PhysRevA.69.010301.

[199] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg. “Surface code quantum com-
puting with error rates over 1%”. In: Phys. Rev. A 83 (2 Feb. 2011), p. 020302. DOI:
10.1103/PhysRevA.83.020302.

[200] Rui-Sheng Wang and Li-Min Wang. “Maximum cut in fuzzy nature: Models and
algorithms”. In: Journal of Computational and Applied Mathematics 234.1 (2010),
pp. 240–252. ISSN: 0377-0427. DOI: 10.1016/j.cam.2009.12.022.

[201] Wikipedia contributors. Transistor count — Wikipedia, The Free Encyclopedia.
2024. URL: https://en.wikipedia.org/w/index.php?title=Transistor%
5C_count&oldid=1237724570 (visited on 08/19/2024).

[202] Wallace Witkowski. “‘Moore’s Law’s dead,’ Nvidia CEO Jensen Huang says in jus-
tifying gaming-card price hike”. In: MarketWatch (Sept. 2022). URL: https://
www.marketwatch.com/story/moores-laws-dead-nvidia-ceo-jensen-
says-in-justifying-gaming-card-price-hike-11663798618 (visited on
08/15/2024).

[203] Jonathan Wurtz et al. Aquila: QuEra’s 256-qubit neutral-atom quantum com-
puter. 2023. arXiv: 2306.11727 [quant-ph].

[204] Jin Xie, Liang Gao, Kunkun Peng, Xinyu Li, and Li Haoran. “Review on flexible
job shop scheduling”. In: IET Collaborative Intelligent Manufacturing 1.3 (Aug.
2019), pp. 66–67. DOI: 10.1049/iet-cim.2018.0009.

[205] Ed Younis, Koushik Sen, Katherine Yelick, and Costin Iancu. QFAST: Quantum
Synthesis Using a Hierarchical Continuous Circuit Space. 2020. arXiv: 2003 .
04462 [quant-ph].

[206] Zhongqi Zhao, Lei Fan, and Zhu Han. “Hybrid Quantum Benders’ Decomposi-
tion For Mixed-Integer Linear Programming”. In: 2022 IEEE Wireless Communi-
cations and Networking Conference (WCNC). Austin, TX, USA: IEEE Press, 2022,
pp. 2536–2540. DOI: 10.1109/WCNC51071.2022.9771632.

[207] Fulai Zhu, Peiyu Xu, and Jiahao Zong. “Moore’s Law: The potential, limits, and
breakthroughs”. In: Applied and Computational Engineering 10 (Sept. 2023),
pp. 307–315. DOI: 10.54254/2755-2721/10/20230038.

https://doi.org/10.1103/PhysRevA.69.032315
https://doi.org/10.1103/PhysRevA.69.032315
https://doi.org/10.1016/S0020-0255(99)00101-2
https://doi.org/10.1016/S0020-0255(99)00101-2
https://doi.org/10.1103/PhysRevA.69.010301
https://doi.org/10.1103/PhysRevA.83.020302
https://doi.org/10.1016/j.cam.2009.12.022
https://en.wikipedia.org/w/index.php?title=Transistor%5C_count&oldid=1237724570
https://en.wikipedia.org/w/index.php?title=Transistor%5C_count&oldid=1237724570
https://www.marketwatch.com/story/moores-laws-dead-nvidia-ceo-jensen-says-in-justifying-gaming-card-price-hike-11663798618
https://www.marketwatch.com/story/moores-laws-dead-nvidia-ceo-jensen-says-in-justifying-gaming-card-price-hike-11663798618
https://www.marketwatch.com/story/moores-laws-dead-nvidia-ceo-jensen-says-in-justifying-gaming-card-price-hike-11663798618
https://arxiv.org/abs/2306.11727
https://doi.org/10.1049/iet-cim.2018.0009
https://arxiv.org/abs/2003.04462
https://arxiv.org/abs/2003.04462
https://doi.org/10.1109/WCNC51071.2022.9771632
https://doi.org/10.54254/2755-2721/10/20230038

CURRICULUM VITÆ

Anna Maria (Anneriet) KROL

17-01-1995 Born in Leiden, The Netherlands.

EDUCATION
2006–2013 High School, gymnasium cum laude

Bonaventuracollege, Leiden, The Netherlands

2013–2017 Bachelor of Science in Aerospace Engineering
Delft University of Technology, The Netherlands

2015–2016 Minor: Electrical Engineering for Autonomous Exploration Robots
Delft University of Technology, The Netherlands

2016–2017 Minor: Electro-Mechanical System Design
Erasmus exchange (6 months) at Aalborg University, Denmark

2017–2019 Master of Science in Computer Engineering
Delft University of Technology, The Netherlands

2020–2024 Ph.D. in Quantum and Computer Engineering
Delft University of Technology, The Netherlands

2023 Visiting researcher at BMW AG
München, Germany

151

LIST OF PUBLICATIONS

7. A. M. Krol and Z. Al-Ars (2024). "Beyond Quantum Shannon: Circuit Construction
for General n-Qubit Gates Based on Block Z X Z -Decomposition." In: Physical Re-
view Applied 22 (3 Sept. 2024), p. 034019, DOI: 10.1103/PhysRevApplied.22.034019,
arXiv: 2403.13692.

6. A. M. Krol, M. Erdmann, E. Munro, A. Luckow and Z. Al-Ars. (2024). "Assessing the
Requirements for Industry Relevant Quantum Computation." In: Proceedings of
the 2024 IEEE International Conference on Quantum Computing and Engineering
(QCE), Montréal, Canada, 2024, arXiv: 2408.02587.

5. A. M. Krol, M. Erdmann, R. Mishra, P. Singkanipa, E. Munro, M. Ziolkowski,
A. Luckow and Z. Al-Ars. (2024) "QISS: Quantum Industrial Shift Schedul-
ing Algorithm." Submitted to IEEE Transactions on Quantum Engineering,
arXiv: 2401.07763.

4. A. M. Krol, K. Mesman, A. Sarkar, M. Möller and Z. Al-Ars. (2023). "Efficient Para-
meterised Compilation for Hybrid Quantum Programming." In: Proceedings of
the 2023 IEEE International Conference on Quantum Computing and Engineering
(QCE), Bellevue, WA, USA, 2023, pp. 103–111, DOI: 10.1109/QCE57702.2023.10192,
arXiv: 2208.07683.

3. A. M. Krol, A. Sarkar, I. Ashraf, Z. Al-Ars and K. Bertels. (2022). "Efficient decom-
position of unitary matrices in quantum circuit compilers." In: Applied Sciences,
12(2), 759, DOI: 10.3390/app12020759, arxiv: 2101.02993.

2. N. Khammassi, I. Ashraf, J. V. Someren, R. Nane, A. M. Krol, M. A. Rol, L.
Lao, K. Bertels and C. G. Almudever. (2022). "OpenQL: A Portable Quantum
Programming Framework for Quantum Accelerators." In: Journal on Emerging
Technologies in Computing Systems 18, 1, Article 13 (January 2022), 24 pages,
DOI: 10.1145/3474222, arXiv: 2005.13283.

1. K. Bertels, A. Sarkar, T. Hubregtsen, M. Serrao, A. A. Mouedenne, A. Yadav,
A. M. Krol and I. Ashraf. (2020). "Quantum Computer Architecture: To-
wards Full-Stack Quantum Accelerators." In: 2020 Design, Automation & Test
in Europe Conference & Exhibition (DATE), Grenoble, France, 2020, pp. 1–6,
DOI: 10.23919/DATE48585.2020.9116502, arXiv: 1903.09575.

153

https://doi.org/10.1103/PhysRevApplied.22.034019
https://arxiv.org/abs/2403.13692
https://arxiv.org/abs/2408.02587
https://arxiv.org/abs/2401.07763
https://doi.ieeecomputersociety.org/10.1109/QCE57702.2023.10192
https://arxiv.org/abs/2208.07683
https://doi.org/10.3390/app12020759
https://arxiv.org/abs/2101.02993
https://doi.org/10.1145/3474222
https://arxiv.org/abs/2005.13283
https://doi.org/10.23919/DATE48585.2020.9116502
https://arxiv.org/abs/1903.09575

Propositions

accompanying the dissertation

PROGRAMMING QUANTUM COMPUTERS

by

Anna Maria KROL

1. Quantum utility will not be achieved without improving the performance of the
classical compilers, optimizers, micro-controllers and other classical technologies
required for quantum computing. This proposition pertains to this dissertation.

2. Current quantum programming languages are not suited for achieving quantum
utility. This proposition pertains to this dissertation.

3. Quantum computing will only be commercially successful if Shor’s algorithm is
generalized to unstructured search problems. This proposition pertains to this
dissertation.

4. Quantum computing will not solve the world’s biggest problems.

5. All journals should have strict guidelines for what mathematical notations can be
considered "common knowledge" in a field.

6. PhD candidates are among the best people to ask in-depth questions about any
subject, even those not related to their research area.

7. Although many quantum researchers want standardization in quantum comput-
ing, it is still too early and will lead to stagnation.

8. Although this should not be the case, the attractiveness of graphs and figures does
matter as much as the content.

9. For communication in an international context, there should be an "international"
English that borrows some features from the native languages of its many speak-
ers to improve clarity. This "international" English would include a more Dutch
or German approach to compound words, for example, so that "high school" is
written as "highschool" and "gate count" as "gatecount".

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotors prof. dr. H. P. Hofstee and dr. ir. Z. Al-Ars.

Stellingen

behorende bij het proefschrift

PROGRAMMING QUANTUM COMPUTERS

door

Anna Maria KROL

1. Quantumvoordeel zal niet worden bereikt zonder de prestaties van de klassieke
compilers, optimizers, microcontrollers en andere klassieke technologieën die
nodig zijn voor quantumcomputers te verbeteren. Deze stelling heeft betrekking
op dit proefschrift.

2. Huidige quantumprogrammeertalen zijn niet geschikt om quantumvoordeel te
bereiken. Deze stelling heeft betrekking op dit proefschrift.

3. Quantumcomputers zullen alleen commercieel succesvol zijn als Shor’s algoritme
wordt gegeneraliseerd naar ongestructureerde zoekproblemen. Deze stelling heeft
betrekking op dit proefschrift.

4. Quantumcomputers zullen de grootste problemen ter wereld niet oplossen.

5. Alle tijdschriften zouden strikte richtlijnen moeten hebben voor welke wiskundige
notatie kan worden beschouwd als "algemene kennis" in een vakgebied.

6. PhD-kandidaten behoren tot de beste mensen om diepgaande vragen te stellen
over elk onderwerp, zelfs onderwerpen die niet gerelateerd zijn aan hun onder-
zoeksgebied.

7. Hoewel veel quantumonderzoekers standaardisatie op het gebied van quantum-
computers willen, is het nog te vroeg hiervoor en zal dit leiden tot stagnatie.

8. Hoewel dit niet het geval zou moeten zijn, is de aantrekkelijkheid van grafieken en
figuren net zo belangrijk als de inhoud.

9. Voor communicatie in een internationale context zou er een "internationaal"
Engels moeten zijn dat enkele kenmerken leent van de moedertalen van haar
vele sprekers om de duidelijkheid te verbeteren. Dit "internationale" Engels
zou bijvoorbeeld een meer Nederlandse of Duitse benadering van samengestelde
woorden gebruiken, zodat "high school" wordt geschreven als "highschool" en
"gate count" als "gatecount".

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotors prof. dr. H. P. Hofstee en dr. ir. Z. Al-Ars.

	Summary
	Samenvatting
	Introduction
	A brief introduction to quantum computing
	Current state of quantum computing
	The future of quantum computing
	Challenges to address and research questions
	Contributions
	Outline

	Beyond Quantum Shannon: Circuit Construction for n-Qubit Gates
	Introduction
	 Notation and gate definitions
	Decomposing uniformly controlled rotations
	Full decomposition
	Optimization
	Conclusion

	Efficient Decomposition of Unitary Matrices
	Introduction
	Background
	Decomposing multi-controlled rotation gates
	Comparison of different decomposition methods
	Implementation in OpenQL
	Execution time and memory allocation
	Comparison to other programming languages
	Conclusion

	Efficient Parameterized Compilation for Hybrid Quantum Programming
	Introduction
	Background
	Design goals
	Parameterisation in OpenQLpc
	Comparison to other programming languages
	Experimental results
	Conclusion

	QISS: Quantum Industrial Shift Scheduling Algorithm
	Introduction
	Background
	Simplified model for shift scheduling
	Algorithm design and validation
	Gate requirements
	Conclusion

	Requirements for industry relevant quantum computation
	Introduction
	Background
	Resource estimation for fault-tolerant quantum computing
	Automated tools for resource estimation
	Extrapolating to sqrt(N) iterations
	Scenarios from Beverland et al.
	Near-term superconducting qubits
	High-fidelity qubits
	Conclusion

	Conclusion
	Acknowledgments
	Bibliography
	Curriculum Vitæ
	List of Publications

