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Abstract
The micro detail on surfaces can have a profound
effect on how rays bounce of it. In ray tracing, this
micro-surface is normally approximated with sta-
tistical models. We wish to figure out what the ef-
fect of normal interpolation and Phong tessellation
is on how rays reflect on the surface. This has been
Done by creating a ray tracers from scratch, that
uses height fields, with normal interpolation and
Phong tessellation. This ray tracer has then been
used to render 3 different micro-surfaces, which
were compared in order to understand the differ-
ence. The conclusion of this research was that both
smoothing techniques had little to no effect on the
reflection of rays on micro-surfaces with a high tri-
angle density. However on micro-surfaces with a
low triangle density, there was a much more pro-
nounced difference with the smoothing techniques.
A second conclusion was made which was that
rougher surfaces have a more spread out distribu-
tion of rays than smoother surfaces.

1 Introduction
Not all surfaces that appear smooth on the macro level, are
smooth on the micro level. A plethora of examples can be
found when searching for SEM (scanning electron micro-
scope) images. An example of this can be found in Figure
1 [1]. The roughness in materials can have a profound effect
on their interaction with light. This can influence whether a
surface has mirror like properties or not. In the field of ray
tracing this micro-surface is often approximated using statis-
tical models in order to reduce rendering time.

Figure 1: SEM image of an aluminum surfaces

[1]

Ray tracing is a technique used to generate images of 3D
models with realistic light interactions. Ray tracing works by
creating a ray for every pixel on the screen, which will then
hit and bounce on the surface of an objects and calculate what
color that pixel should be. This has many uses, from games
to animations and much more [2].

However, a big downside to ray tracing is that it often has
a severe cost in terms of performance. Due to these perfor-
mance costs, there has been a lot of research on trying to come
up with techniques to improve the speed of ray tracing algo-
rithms. For example, under some assumptions of the model,
ray-tracing can be optimized. This is the case of height fields.
While ordinary ray tracers use triangles to create any arbitrary

shape, height fields approximates geometry by replacing tri-
angles with a 2D array that determines what the height should
be at that point [3], see Figure 2 where each red dot repre-
sents a value in the height field. This allows for a significant
increase in performance. Nevertheless, height fields are still
a piecewise linear representation of the surface.

Figure 2: grid structure where each red dot is a value

There exist techniques to render flat triangles in a smoothed
way. This means that a model that exists of visibly flat trian-
gles, can be rendered such that it looks smooth. The smooth-
ing techniques that we shall consider in this paper are normal
interpolation [4] and Phong tessellation [2]. These techniques
apply a different kind of smoothing that can be combined to
compliments each others short comings.

During ray tracing, when a ray is shot at a surface from the
camera, it can reflect of the surface and continue to bounce
around until it escapes (until it does not hit anything). The
kind of reflection we shall use is called a polished reflec-
tion, which is the same kind of reflection as a mirror. This
is normally done to collect information about the surround-
ing of the ray-surface intersection. In our case, we are only
interested in the direction of the ray after it is done bouncing
around.

The purpose of this research paper is to figure out what the
effect of the previously mentioned smoothing techniques are
on the reflection of rays on micro geometry. Furthermore, this
must be done in a ray tracer that uses height fields as an in-
put. Due to the specific focus of the current subject, there has
not been a lot of research exploring the possibilities. To elab-
orate, there is sufficient research on height field ray tracers
[3], normal interpolation [4] and Phong tessellation [2]. Yet
it has proven difficult to find existing research which com-
bines these concepts in order to study ray reflection on micro-
geometry. One reason this subject is worth pursuing is that it
might lead to better approximations of statistical models.

All this leads us to the following research question: what
is the effect on the reflection of rays on micro geometry
when applying smoothing techniques on a height field? This
research question has been divided into the following sub-
questions: What are the effects of using normal interpolation,
Phong tesselation and a combination of those two techniques
on the reflection of rays on a micro surface.

2 Methodology
In order to answer the research question, we must show the re-
sults of all the smoothing techniques so that we may compare



them. A rendered image is usually the result of ray tracing, in
our case, the results will be the camera rays that are reflected
of a micro-surface. This can be done by taking a single micro-
surface, applying the different techniques and comparing the
results. This will then be repeated for varying micro-surfaces.
The micro-surfaces themselves were obtained from the fol-
lowing paper [5].

There is one thing to note about the experimental setup,
which is that an orthographic camera was used. Meaning the
rays shot from the camera all have the same direction but dif-
ferent starting positions. This is the opposite of a perspective
camera where the starting point is the same but the directions
are different. The orthographic camera is used because the
micro-surface can be approximated by a single point and thus
the direction of all the incoming rays will be the same. For the
same reason, the position of the reflected rays does not mat-
ter, since all the points on the micro-surface are approximated
by a single point, only the direction matters.

In order to compare the the reflected rays, we must be able
to visualize these rays. As has been stated earlier, only the
direction of the reflected ray is of importance. Because of
this, the the normal x, y, z representation of a ray rather in-
convenient for our purposes. A much more convenient way
to represent rays is with polar form. This form consist of two
angles that determine a direction and a length along that di-
rection. See Figure 3 for further clarification [6]. Since we
have no interest in the length of the vector but only its direc-
tion, we can discard the length part of the polar form.

Figure 3: polar coordinates visualised

[6]

Once all the angles of the reflected rays have been calcu-
lated, we can plot them on a graph with the x- and y-axis
being the two angles of the direction. Plotting the angles in a
naive way (by grouping ray together that have a certain range
in their angles) will result in a similarly deformed representa-
tion of a globe as common maps of the earth, see figure 4 [7].
This deformation can however be tolerated since the defor-
mation will be the same for all of the graphs. As a result, the
y-axis represents how much a ray is pointing upward. thus
rays that are pointing upwards will be on the top half of the
graph and those that point downward will be at the bottom
half.

Figure 4: deformation of mapping vectors to a plane

[7]

3 Heightfield
A height field is a data set composed of a 2-D array of num-
bers where the index corresponds to the location and the value
to the height at said location. This special data set allows ray
tracers to very quickly render a scene by taking advantage of
its properties. See Figure 5 for a two dimensional version of
a one dimensional height field for clarification.

Figure 5: 1 dimensional heightfield for a 2 dimensional world

The height field which is used for 3 dimensional renders
is 2 dimensional and thus forms a grid when looked at from
above, see figure 2. Each square, consisting of four points on
the height field, that makes up this grid is called a cell.

The implemented algorithm that traverses this height field
was inspired by ,but not the same as, the grid tracing algo-
rithm of Musgrave ([3]). How the algorithm traverses the
height field is by going through each cell in order that is hit
by a ray. This works by going through the following steps:

1. find intersection of camera ray with the bounding box of
the height field.

2. determine in which cell the rays enters (keep track of the
height of the ray)

3. calculate the coordinates of where the ray exits the cell
(also keep track of the height at this point)

4. if the height of any of the four corners of the cell are
between the heights of the entry and exit point, then per-
form an intersection test

5. if the intersection tests does not hit anything, then repeat
from step 2 with the next cell that the camera ray hits. If
no more cells can be hit then move on to the next ray



3.1 Grid traversal
At first, it might not be apparent how the traversal of this grid
improves rendering time. This will however become clearer
when we show how many cells in the grid have to be tested.
In Figure 6 we show every cell that is hit and subsequently
checked for intersection for a given ray. In normal ray tracers,
a ray will simply check every triangle (or in our case every
cell) to see if there is an intersection. This means that every
cell that is not hit by a ray is another intersection test that will
not have to be performed and thus safe time on rendering.

Figure 6: grid traversal with green highlight for hit cells

3.2 Cell-ray intersection
Calculating the intersections of the ray with the cells is an
important part of this algorithm. It works by checking for
intersections with the four sides of the cell. This will always
result in two intersections. Unless we hit a corner resulting
in one intersection or if we hit a side and are parallel with it
resulting in infinitely many intersections. These two points
are needed for step 4 of the algorithm. An intersection with
one side, in this example we calculate the intersection with
one of the vertical sides of the cell, is done by solving the
following formula:

Dx = x component of the direction of camera
Ox = x component of the origin of the camera
R = length of the ray
X = the x value of one of the sides

R*Dx + Ox = X
which becomes
R = (X-Ox)/Dx

With the calculated R we can determine the coordinates of
the hit point. However there is still an additional check that
must be done to determine if the hit point is actually on the
side and not on a line parallel to it.

Ystart, Yend = the start/end value of the side
hitpoint = R*D + O

Ystart <= Yhitpoint <= Yend

Once this is repeated for all four sides. We can return the
coordinates of the hit points. Do note that the x and y compo-
nents in the formula have to be switched if we check for the
horizontal sides of the cell.

3.3 Triangle-ray intersection
In step 4 of the algorithm we have to perform an intersection
test. This intersection is not done with the square cell. Rather,
the cell is split diagonally into two triangles. The result of this
split can be seen in Figure 7.

Figure 7: transformation of a cell into two triangles

Once we have our two triangles we can perform two sep-
arate intersection tests [8]. If there is an intersection with
both triangles, then we use the intersection with the smallest
R (thus it will be in front of the other hit point and cannot be
seen).

4 Normal interpolation
Normal interpolation is a surface shading techniques used to
make a model (made out of flat triangles) appear smooth.
This works by adjusting normal vectors in such a way that the
surface appears smooth. This smoothing is however a sort of
illusion since the actual geometry of the model remains the
same. Because of this there are also some artifacts.

4.1 Normal vectors
Normal vectors are assigned (or calculated) up directions of
triangles. These vectors determine what way a triangle is
facing. In order to calculate the normal of a triangle, you
can use the cross product of two different vectors that lay in
the surface of said triangle. This will result in a vector that
is perpendicular to the two vectors and thus create a correct
normal vector. See Figure 8 [9]. There is one thing to note
which is that the order of a cross product matters and if done
wrong, can result in a vector that points in the wrong direc-
tion. Therefore, when calculating a normal vector, the correct
order of vectors must be used in order to make sure the nor-
mal points upwards.

Figure 8: cross product between vector a and b

[9]



4.2 Uses
The purpose of normal vectors is to determine how light (or
any ray in general) will reflect off its assigned triangle. This
is useful to alter the way a material reflects light. In our case
we shall be using the normal vectors to make our model look
smooth. In other cases normal vectors can also be used to
imitate details.

4.3 Assigning normal vectors
The normal interpolation algorithm works by assigning a nor-
mal vector to each point in the height field. This means that
each triangle shall have 3 normal vectors on each of its cor-
ners. The algorithm to calculate these normals for each point
works as follows:

1. obtain all the triangles that use the current point, see Fig-
ure 9.

2. calculate the normal vectors of these triangles using the
cross product method.

3. average these normal vectors and assign them to the cur-
rent point

Figure 9: example of which triangles are slected when obtaining
normal vectors. The blue dot represents the selected point in the
height field

4.4 Interpolation
Once a ray intersects with a triangle, we can calculate where
exactly on the triangle it hit. This hit point can also be ex-
pressed in the following form where a, b and c are the three
vector positions of the triangle.

hitpoint = a + beta*(b-a) + gamma*(c-a)

The meaning of the beta variable is how much of the vector
from a to b is needed to get to the hit point. The same goes
for the gamma variable except then for the vector from a to c.
These two together can get to any point on the triangle. The
reason for using these variables is that it tells us how close the
hit point is to each corner. So a higher value of beta will result
in the hit point being closer the the b vector of the triangle.
We can also obtain an alpha variable (that determines how
close we are to the a vector) with the following formula:

alpha = 1-beta-gamma

The alpha, beta and gamma variable together from the
barycentric coordinates of the hit point on the triangle.

These barycentric coordinates are then used to obtain a new
normal vector for that specific point by interpolating the nor-
mal vectors of the triangles corners.

NA = normal vector of point a
NB = normal vector of point b
NC = normal vector of point c

normalNew = alpha*NA + beta*NB + gamma*NC

This new normal vector will then be used for the ray reflec-
tion and the shading thus creating a smooth transition from
the normal of one corner to the others. In order to visualise
this, Figure 10 shows an example where the normal on each
hit is used as a color.

Figure 10: small surface with randomized heights. Left without
smoothing and right with smoothing. Normal vectors have been
used as coloring

5 Phong tessellation
Phong tessellation is a smoothing techniques that divides tri-
angles into smaller pieces and then offsets those new points
to form a smoother surface. It was created by Boubekeur and
Alexa [2]. There are 2 main parts of this algorithm. The tes-
sellation of the triangles (dividing them) and the offsetting of
the newly generated points.

5.1 Tessellation
Tessellating a triangle means to divide the triangle into
smaller parts. This is done to allow more freedom on how
the triangle looks. A triangle can be divided more or less de-
pending on how much smoothing needs to be applied. In our
case this is done by first setting a number of new points along
the sides of the triangle that are equidistant, see Figure 11.

These new points are then used to divide the triangle into
new smaller pieces as can be seen in Figure 12.

The more points we initially put on the sides of the triangle,
the more we can smooth out the surface.



Figure 11: Points on triangle are equidistant

Figure 12: The result of the tessellation

5.2 Change point location
Just tessellating a triangle is not enough however. The only
thing this has accomplished is that we now have more trian-
gles that still make one big flat triangle. Each of the new
generated points has to be put into a new position in order to
create our smooth surface. For this we need 3 normal vectors
in the corner of the original triangle in order to determine how
we want the smoothing to look like. For example do we want
a saddle, concave or convex shape, see Figure 13 [2].

Figure 13: result of Phong tessellation for differing normal vectors

[2]

How to obtain the normal vectors has already been ex-
plained in the normal interpolation section. The algorithm
for offsetting each of the points works as follows with the
original triangle consisting of the vectors Vi, Vj and Vk:

1. project the point orthogonally onto the plane defined by
the point Vi and the normal vector at Vi

2. repeat step 1 for the point Vj and Vk
3. use the barycentric coordinates of the original point

(U,W and V) to combine the 3 projected points

See Figure 14 for a visualization of the process [2].
See Figure 15 for a rendered comparison of Phong tessel-

lation

6 Responsible Research
The content of this paper is heavily focused on computer
graphics. It also has had no need to involve people in its ex-

Figure 14: representation of the Phong tessellation

[2]

Figure 15: Left: a render without Phong tessellation. right: a render
with Phong tessellation

periments at any point, thus limiting potential ethical issues.
However, there are still some issues that occur even when
dealing with something as exact as computer graphics. The
things that are relevant in our case are proper citing and repro-
ducibility of results. The correctly citing of sources is simply
something that requires close attention. The reproducibility
of results has been ensured in two ways:

The codebase [10] has been uploaded to a repository and
can be freely downloaded.

Furthermore, the methodology has clearly explained how
the experiment will run. More exact details have also been
provided in the results section allowing for the experiments
to be replicated.

7 Results
The results have been grouped together based on what surface
was used. Furthermore, each surface has been rendered four
times with the differing smoothing techniques. Each render
has created a graph of the reflected (blue) camera rays and
and image of the surface. Each of the graphs has one red
dot in it, which represents a ray in the opposite direction of
the camera ray. This helps us identify how the initial camera
ray is transformed into the blue reflected rays. The camera
points down by 45 degrees in each render. The surfaces that
have been used are the al 1bar[5], the al 65bar[5] and one
randomly generated surface. The al 1bar and the al 65bar
differ in their roughness, where the latter is rougher than the
former.

al_1bar
al_65bar
al_1bar
al_65bar


Figure 16: smoothing: no smoothing, surface: al 1bar[5], size:
480 by 640

Figure 17: smoothing: normal interpolation, surface: al 1bar[5],
size: 480 by 640

Figure 18: smoothing: Phong tessellation, surface: al 1bar[5],
size: 480 by 640

Figure 19: smoothing: normal interpolation and Phong tessellation,
surface: al 1bar[5], size: 480 by 640

Figure 20: smoothing: no smoothing, surface: al 65bar[5], size:
480 by 640

Figure 21: smoothing: normal interpolation, surface: al 65bar[5],
size: 480 by 640

Figure 22: smoothing: Phong tessellation, surface: al 65bar[5],
size: 480 by 640

Figure 23: smoothing: normal interpolation and Phong tessellation,
surface: al 65bar[5], size: 480 by 640

al_1bar
al_1bar
al_1bar
al_1bar
al_65bar
al_65bar
al_65bar
al_65bar


Figure 24: smoothing: no smoothing, surface: random, size: 30 by
30

Figure 25: smoothing: normal interpolation, surface: random,
size: 30 by 30

Figure 26: smoothing: Phong tessellation, surface: random, size:
30 by 30

Figure 27: smoothing: normal interpolation and Phong tessellation,
surface: random, size: 30 by 30

8 Conclusions
What is the effect of smoothing techniques on how rays re-
flect of a micro-surface. That is the question that we set out to
answer. The generated results suggest two concepts of note.

When we look at the larger surfaces, the surfaces with size
480 by 640 (see Figure 16-23), we see that there is little to
no difference in their reflection graphs when the smoothing is
changed. We also see almost no difference between the ren-
dered images of the same surface. The conclusion we draw
from this is that smoothing techniques do not have a large im-
pact on the reflection of light on surfaces with a high triangle
density. The fact that there are more triangles in the surfaces
than there are rays being shot means that it is highly unlikely
that multiple rays bounce on the same triangle. Therefore,
adding more triangles with Phong tessellation or by altering
the normals with normal interpolation will not result in many
more unique ray directions. This does change however when
we look at the smaller surface of 30 by 30 (see Figure 24-27).
Here we can see a significant difference in both the rendered
image and the ray reflection graph. When no smoothing (see
Figure 24) is applied we can see that the ray reflect into lots of
dense directions. This makes sense when we know that mul-
tiple rays will likely hit the same triangle resulting in lots of
small groups. When Phong tessellation (see Figure 26) is ap-
plied on this small surface, we see that these groups are split
into more groups. This is consistent with our previous expla-
nation because there are now more triangles. What we see
with the normal interpolation (see Figure 25) is that the rays
tend to group up in a direction away from the camera (notice
how the concentration of points is horizontally π away from
the red dot). When Phong tessellation and normal interpo-
lation (see Figure 27) have been combined they look similar
to just normal interpolation. One oddity that Can be noticed
on Figure 25 and 27 is that there is a second (smaller) group
of points below the main group. This means that a significant
amount of rays reflect downward. This should not be possible
unless the rays somehow go through the surface. The most
likely explanation of this is that there is a floating point preci-
sion issue that causes some rays to end up below the surface
when being reflected. In short, smoothing techniques matter
more on surfaces with a lower triangle density.

Comparing the graphs of the al 65bar (see Figure 20-23)
and the al 1bar (see Figure 16-19) surface. We can see that
the reflected rays of the al 65bar are more spread out and
have a more gradual boundary with where the rays do not
go. This stays consistent throughout all the smoothing tech-
niques. What we can conclude is that a rougher surface will
result in a more spread out distribution of reflected rays.

8.1 Future work
There are still many more areas on this particular subject to
be studied that have not been covered in this paper. Studying
how the reflected ray distribution changes as the camera an-
gle changes has not been covered and could yield interesting
results. Improvements to the code can also be made. These
improvements include increasing the speed of the renders and
fixing the bug where rays penetrate the surface and go below
it. The increased speed is useful in order to render larger sur-
faces.

random
random
random
random
al_65bar
al_1bar
al_65bar
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