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Preface

Terahertz technology has received continuously increasing attention in recent years. A key enabler of this technology is the

photo-conductive antenna. A time-domain Norton equivalent circuit representing the antenna and a time-step algorithm

provide the tools for analysis and design of such structures. However, the antenna impedance impulse response must be

known beforehand. In this thesis, a more comprehensive characterization of the algorithm is provided through a detailed

investigation. A numerical error in its output is discovered, the source of which identified, and an error minimization

solution proposed. Using the newly acquired knowledge of the algorithm’s properties, an infinite photo-conductive slot is

analyzed. First, a time-domain energy balance equation is derived using switched capacitor formalism, and verified. Then,

a comparison to constant antenna impedance approximation is performed. A study on the frequency and time-domain

far-fields, as well as, on the influence of parameters is also performed. Finally, the analysis is extended to a 1D connected

array, in which the mutual coupling and performance are investigated.
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Chapter 1.

Introduction

In recent years, terahertz (THz) technology has received increasing attention. Possible applications include biomedical,

spectroscopy, security screening, and next generation communications [1]–[6]. In fact, the global THz technology market

size is estimated to be more than 450 million USD in 2022, and is expected to grow above 2.2 billion USD by 2030

[7]–[9]. Huge portion of the market is taken by imaging systems including security screening, followed by spectroscopy,

while communication systems capture the smallest portion [7]. The high interest in security arises from the ability of THz

waves to penetrate non-metallic materials, in addition to the potential of photo-conductive source to generate signals

with wide bandwidth. Although the antenna segment of the market corresponded to only 77 million USD in revenues

for 2022 [7], the antennas are integral part in the THz technology development. Specifically, the pulsed wave (PW) mode

photo-conductive antenna (PCA) allowed the development of many THz applications. As an example, a PW mode

photo-conductive connected array (PCCA) is proposed and evaluated in the design of a security imaging setup in [10].

Previously the main research focus was on increasing the radiated power by improving the photo-conductive materials.

Although improving the photo-conductor is undoubtedly important, modeling the dispersion and improving the

radiation efficiency was limited by the lack of mathematical tools. Needless to say, the dispersion and efficiency have a

huge impact on the radiated field. Moreover, the lack of tools limited PCAs to already established (but inefficient) dipole

antenna structures, such as the Auston switch. Fortunately, in recent years, more focus has shifted to the development

of tools representing the PCA - equivalent circuits. These tools allow for the design of more dispersive and efficient

structures.

1.1. Photo-Conductive Antennas

A photo-conductive source consists of metal terminals printed on the side of a photo-conductive material. The phenomena

governing the operation of these structures can be split in two phases - carrier generation and carrier recombination.

First, a temporally Gaussian laser excites the photo-conductive material. Consequently, electrons are freed from the

valence to conduction band. Naturally, this effect causes a rise in the material’s conductivity. Further, because the

terminals are biased by a DC source, an electric field is established across the photo-conductive gap. The conductivity

and bias field cause current flow.

Second, after a certain point in time, no new carriers are generated due to the Gaussian nature of the laser. Meanwhile,

the already generated electrons recombine to the valence band. This carrier recombination corresponds to decreasing

current. Because the recombination time is in the order of sub-pico seconds, the time-domain current response is narrow.

Consequently, frequencies up to the THz part of the spectrum are excited.

The concept is applied in antennas by patterning the metalized layer to form a radiating element. During this work, an

infinite leaky-wave slot shown in Fig.1.1(a) is analyzed due to its high dispersivity and well known analytical expressions

[11]–[13]. The slot is printed on a hz thick ground plane and has a width ws. The ground plane is at the interface between

two semi-infinite homogeneous dielectrics with εr,2 > εr,1. Optically pumping the photo-conductive feed with length

∆gap as shown in Fig.1.1(b), results in an excitation (current) as shown in Fig.1.1(c). In turn, the excitation launches a wave

on the slot, which leaks in the higher permittivity medium. In reality, the ground plane has a thickness. However, because

1
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(a) (b)

(c)
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∆𝑔𝑎𝑝

ℎ𝑧
𝑥

𝑦

𝑉𝑏

𝑉𝑏

Figure 1.1: Photo-conductive infinite leaky-wave slot; in (a) geometry, in (b) optical pumping by pulsed temporally Gaussian laser,

and in (c) electric current due to the optical pumping.

it is much smaller than the minimum wavelength, the ground plane is considered to be infinitesimally small (except in the

time evolution of the current). In case the optical power is more than enough to saturate a single feed, multiple feeds in a

connected array geometry can be used to improve the overall antenna efficiency.

1.2. Time-Domain Norton Equivalent Circuit

Equivalent time-domain circuits of PW mode PCA were proposed in the past [14][15]. These circuits model the charge

screening effect, also known as carrier scattering, as an additional (to the bias source) time-varying voltage generator.

Unfortunately, the additional generators often required a posteriori parameter calibration and made the circuits unsuitable

to use. To overcome this issue, a frequency-domain Norton equivalent circuit is proposed in [16]–[18]. Unfortunately,

the proposed circuit does not model well the physical phenomena over the whole spectrum. The problem stems from the

non-linearity of the time-domain differential equations describing the PCA. Obviously, the non-linearity prevents the

use of Laplace transform. Additionally, due to the non-linearities of the optical excitation, the use of methods such as

harmonic balance is also impossible. Fortunately, a time-domain Norton equivalent circuit was proposed recently in [19],

which proved to be an accurate PCA model. A short summary of the derivation procedure is provided for reference.

To derive the circuit, Maxwell’s equations must be solved at the photo-conductor’s boundary while complying to specific

boundary conditions. Applying the equivalence principle separates the problem to an internal (to the feed’s volume)

and external parts. Thus, by coating the volume’s surface with infinitesimally thin perfect electric conductor (PEC), the

fields in the internal and external regions are described as radiated by equivalent magnetic currents at the two sides of the

PEC. These internal and external magnetic currents equal to the cross product of the electric field at the interface and the

respective normal vector (inside and outside the volume)

m⃗eq,r⃗∈V = e⃗× n̂r⃗∈V , (1.1a)
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−

Figure 1.2: Norton equivalent circuit of a photo-conductive antenna.

m⃗eq,r⃗ /∈V = e⃗× n̂r⃗ /∈V . (1.1b)

With this in mind, the total internal magnetic field is the superposition of the scattered (by the internal magnetic current)

and the one due to the bias source (incident). On the other hand, the field in the external region is only scattered by

the external currents. Needless to say, the tangential components of the internal and external magnetic fields must be

continuous across the interface.

h⃗T
r⃗∈V,inc(t, Vb) + h⃗T

r⃗∈V,s(t, m⃗eq,r⃗∈V ) = h⃗T
r⃗/∈V,s(t, m⃗eq,r⃗ /∈V ). (1.2)

Moreover, the magnetic currents are equal in magnitude (same electric field), but opposite in direction (the internal

surface normal vector is opposite to the external)

−m⃗eq,r⃗∈V = m⃗eq,r⃗ /∈V = m⃗eq. (1.3)

Consequently, the incident field’s tangential component (at the boundary) can be expressed as sum of scattered fields’

tangential components

h⃗T
r⃗∈V,inc(t, Vb) = h⃗T

r⃗∈V,s(t, m⃗eq) + h⃗T
r⃗/∈V,s(t, m⃗eq). (1.4)

Further, for a small volume in terms of the wavelength, the electric field is uniform (spatially independent) inside the

volume. Thus, the electric field and by extension magnetic currents are proportional to the (also spatially independent)

voltage. In addition, the tangential magnetic field relation can be expressed as electric current through the circulation

integral (Ampere’s law)

iimpr(t, Vb) = iint(t, v) + i(t, v), (1.5)

where the impressed current iimpr corresponds to the incident field, the internal current iint to the internally scattered

field, and load current i to the externally scattered. The derived time-domain Norton equivalent circuit is shown in

Fig.1.2. Indeed, the voltage can also be expressed as the convolution of load current and antenna load’s impulse response

v(t) =

∫ ∞

−∞
i(t′)zant(t− t′)dt. (1.6)

In essence, the equivalent circuit represents the EM effects at the photo-conductor’s surface. By changing the PEC with

perfect magnetic conductor (PMC), a Thévenin equivalent circuit can be derived.

1.2.1. Time Evolution of the Load Current

The Drude-Lorentz model is used to derive an integral equation describing the load current’s time evolution in [20].

In short, the model relates the current density inside the photo-conductor to the time evolution of generated carriers,
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photo-conductor’s impulse response (carrier recombination), and carrier drift velocity. The number of generated charges

and carrier recombination response provide the charge density due to carriers freed at time t′′

n(t, t′′) = Ae−
1
2 (

t′′
σt

)2e−
t−t′′
τrec , (1.7)

where τrec is the recombination time, σt the standard deviation of the laser’s Gaussian temporal envelop, and

A =
P̃opt

hfc

T√
2πσ2

t

1

∆gapwshz
(1.8)

is the number of maximum released carriers per second inside the photo-conductor’s volume. The term P̃opt is the

absorbed optical power in the material, while T the repetition rate of the laser. Further, the drift velocity (of charges

generated at t′′) is a convolution between their acceleration and scattering impulse response (caused by material impurities)

v⃗e(t, t
′′) =

∫ t

t′′
e−

t−t′
τs

qe
m′

e

e⃗gap(t
′)dt′, (1.9)

where τs is the scattering time, and egap(t) = Eb − e(t) the magnitude of the electric field inside the photo-conductive

gap. Therefore, the total current density is the sum of the effects of all previously generated charges

j⃗(t) = A
q2e
m′

e

∫ t

−∞
e−

1
2 (

t′′
σt

)2e−
t−t′′
τrec

∫ t

t′′
e−

t−t′
τs e⃗gap(t

′)dt′dt′′. (1.10)

Needless to say, the current is the total current density through the photo-conductor’s cross section, while the gap’s

voltage is related to the (uniformly distributed) gap electric field through the line integral

i(t) = A
q2e
m′

e

∆gaphz

ws

∫ t

−∞
e−

1
2 (

t′′
σt

)2e−
t−t′′
τrec

∫ t

t′′
e−

t−t′
τs vgap(t

′)dt′dt′′. (1.11)

Essentially, the current’s time evolution is defined by highly non-linear integral equation of two nested convolutions. In

summary, a PCA is described by a system of two non-linear integral equations - the voltage expressed as the convolution

between the current and antenna impedance impulse response, and time evolution of the current.

The non-linearities limit the solution to the time-domain. Therefore, a numerical method has to be used to evaluate the

voltage and currents. By representing them as sums of rectangular basis functions with step size ∆t

v(t) ≃
∞∑

n=−∞
vn rect∆t

(t− tn), (1.12a)

i(t) ≃
∞∑

n=−∞
in rect∆t

(t− tn), (1.12b)

a time-step algorithm is derived. Obviously, the initial evaluation time must be chosen sufficiently early to ensure zero

initial conditions.

The photo-conductor, laser, antenna geometry, and numerical method parameters used during the span of this work are

as summarized in Table.1.1, unless otherwise specified.
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Table 1.1: Photo-conductor, laser, antenna geometry, and numerical method parameters used during this work.

PHOTO-CONDUCTOR
Bias Voltage Vb 30 V

Recombination Time τrec 300 fs

Scattering Time τs 8.5 fs

Effective Carrier Mass m
′

e 0.067me

LASER
Absorbed Optical Power P̃opt 50mW

Full Width at Half Maximum (FWHM) τp 100 fs

Repetition Rate T 12.5 ns

Wavelength λc 780 nm

ANTENNA GEOMETRY
Slot Width ws 10 µm

Feed Length (Delta-Gap) ∆gap 5 µm

Ground Plane Height hz 2 µm

Relative Permittivity of Lower Dielectric εr,1 1

Relative Permittivity of Upper Dielectric εr,2 11.7

Element Spacing (in arrays) ∆x 100 µm

NUMERICAL
Time-Step ∆t 0.2τs

Frequency-Step ∆f 2.5GHz

Start Time t0 −3σt

1.2.2. Fully Dispersive Approximation

Previously, the antenna was considered to be completely dispersive. In other words, the antenna impedance was constant

and real over the whole spectrum. Consequently, the antenna impulse response is represented by a Dirac delta function

zant(t) = F−1{Rant} = Rantδ(t). (1.13)

This dispersive approximation greatly simplifies the time-step procedure, and hence the analysis of PCAs, by removing

the convolution integral between the current and impedance impulse response

v(t) = Ranti(t). (1.14)

Consequently, the voltage and current update rules of this dispersive time-step algorithm are

vn =
e−

∆t
τrec e−

∆t
τs in−1 +Gpcm,(n)Vb

1/Rant +Gpcm,(n)
, (1.15a)

in = e−
∆t

τrec e−
∆t
τs in−1 + (Vb − vn)Gpcm,(n), (1.15b)

where Gpcm is the conductance of the photo-conductive material. However, even the most dispersive antenna structures

are not completely dispersive. Therefore, a more general time-step algorithm is required, which captures the antenna’s

non-dispersive effects.



6 Chapter 1. Introduction

1.3. Novelty of This Thesis

Although a non-dispersive time-step algorithm is proposed in [21], its performance, advantages, and disadvantages are

not investigated. This thesis aims to fill these gaps by performing a comprehensive study and characterization of the

algorithm. In fact, during the span of this work, a numerical error in the evaluated voltage and current was identified. A

comprehensive study on the cause followed, and an error minimization procedure was derived.

Further, the photo-conductive infinite leaky-wave slot was never analyzed using its actual (non-dispersive) impedance.

By applying the optimized time-step algorithm, a complete study on this antenna structure is performed capturing its

non-dispersive effects. The analysis spans an investigation on the far-fields, power spectral density, efficiency among others.

A comparison to the dispersive approximation is done. Also, a novel time-domain energy balance equation is derived.

Finally, the dispersive time-step algorithm cannot estimate the interactions between feeds in connected arrays. Hence,

such study was never performed previously. In this work, an analysis on the mutual coupling, far-fields, and active

impedance of 1D PCCAs is carried out.

The scope of this thesis is the following:

• Chapter 2: provides a comprehensive study on the time-step algorithm. Starts with the derivation and limitation

of an initial time-step algorithm using directly the impedance impulse response. Then, provides the derivation and

discussion of an improved time-step algorithm, supplemented by an investigation of the evaluated voltage and

current error. Follows with a proposed of error minimization procedure. Ends with expanding the algorithm to

connected arrays and discussing its error.

• Chapter 3: provides an analysis on infinite leaky-wave slot. Starts with the derivation of a time-domain energy

balance equation. Continues by providing comparison with the dispersive approximation. Follows by analyzing

the far-field and power spectral density. Ends with investigation on the radiated energy, bandwidth, and antenna

efficiency.

• Chapter 4: provides an analysis on the 1D connected array. Starts with expanding the energy balance equation to

multiple feeds. Continues by investigating the mutual coupling. Follows by discussing the magnetic currents and

far-fields. Ends with a discussion on the active admittance.



Chapter 2.

Time-Step Algorithm

To solve for the time-varying transient voltage and current across the photo-conductive gap. a time-step algorithm has to

be derived. Although such procedure is proposed in [21], comprehensive study and characterization of the algorithm

are not performed. Consequently, conducting the aforementioned study is highly relevant and useful in improving the

reliability of non-dispersive PCA analysis techniques.

In time-domain, the voltage across the antenna element is the convolution between current and the antenna’s impedance

impulse response

v(t) =

∫ t

−∞
i(t′)zant(t− t′)dt′. (2.1)

By using this relation and the time evolution of the current from [20], the time-step algorithm is derived. Naturally,

the antenna impedance impulse response zant must be known beforehand. Although a time-domain analysis of the

leaky-wave (LW) infinite slot is proposed in [22] and [23], analytical derivations for the time response of its impedance are

not available. Consequently, to determine zant, the impedance is evaluated in the frequency-domain using the spectral

analysis discussed in [13], and subsequently transformed to time-domain using the inverse Fourier-transform (IFT).

The chapter opens with a discussion on the recovery of the antenna impedance impulse response. This discussion is

followed by derivations of the original and an improved weight time-step algorithms. Then, a procedure for minimizing

the numerical error in the improved algorithm is proposed and discussed. Finally, the study is extended to a time-step

characterization in connected 1D arrays.

2.1. Discrete-Time Fourier Transforms

The frequency-domain response of a general function x(t) discretized by rectangular basis functions is evaluated using

the discrete-time Fourier-transform (DTFT)

X(f) = ∆t

∞∑
n=−∞

xne
−j2πftn , (2.2)

where the frequency-domain response X(f) is a continuous function and ∆t is the time-step. Additionally, as a

consequence of the Poisson summation, X(f) is a periodic function with periodicity defined by the sampling rate

fs = 1/∆t. However, due to the discrete computation environment, the frequency-domain response is also discretized

by rectangular basis functions with a frequency-step ∆f

X(f) ≃
∞∑

k=−∞

Xk rect∆f
(f − fk). (2.3)

For a signal of N samples, the valid frequency components are those containing integer number of cycles

fk = ∆fk =
fsk

N
=

k

N∆t
, (2.4)

7
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where∆f is related to the simulation time-length∆f = 1/N∆t. Therefore, the DTFT with a discrete frequency-domain

response is defined as

Xk = ∆t

N−1∑
n=0

xne
−j2πfktn . (2.5)

It must be noted that the requirement of integer number of cycles is a consequence of the periodicity enforced by the

discrete computational environments and Poisson summation.

Although the derived DTFT is sufficient to evaluate the frequency-domain response, using the fast Fourier-transform

(FFT) provides a significant computational advantage in terms of evaluation time. Therefore, it is useful to derive the

DTFT in terms of the discrete Fourier-transform (DFT). To that end, the frequency-component definition in Eq.2.4 and

property tn = t0 + n∆t (with t0 being the simulation start time) are substituted in Eq.2.5

Xk = e−j2πfkt0∆t DFT{x}, (2.6)

where the term ej2πfkt0 accounts for the phase shift at non-zero start time t0 ̸= 0 s. Usually, in discrete systems, the

output of the DFT must be divided by the number of samples to recover the signal’s amplitude spectrum. However, in

this case, the amplitude spectrum is directly recovered as a consequence of the time discretization of the continuous FT,

and by extension the multiplication with the time-step ∆t. More detailed derivations are included in Appendix.A.

2.1.1. Inverse Fourier Transform

The derivation of the discrete-frequency inverse Fourier-transform (DFIFT) is trivial and similar to the DTFT

xn = ∆f

N−1∑
k=0

Xke
j2πfktn , (2.7)

where the time-domain response is a discrete periodic function with periodicity T = 1/∆f . The number of samples

in both domains is equal. Furthermore, the DFIFT is represented in terms of the inverse DFT (IDFT) by substituting

Eq.2.4 and property tn = t0 + n∆t in Eq.2.7

xn =
1

∆t
IDFT{Xke

j2πfkt0}. (2.8)

2.2. Antenna Impedance

The antenna impedance is evaluated using the spectral analysis established in [11] and [13]. This analysis depends on a

narrow-slot approximation at which the minimum wavelength is much larger than the slot’s width. In this case, an edge

singular (quasi-TEM) mode is dominant represented by a zero-order Bessel function in the spectral domain [11]. However,

as the wavelength shrinks, the contributions of other modes increase. Unfortunately, no models exist incorporating these

modes. Modeling these higher modes requires the investigation of the transverse spatial currents and describing the total

contribution as a sum of additional new basis functions in the spectral domain. Yet, performing such study is out of the

scope of this work. Therefore, the current analysis is limited to the narrow-slot approximation.

2.2.1. Feed Length

The impedance is plotted in Fig.2.1(a-b) for different feed lengths ∆gap and slot width ws = 10 µm. The narrow-slot

limit is considered at λ2 = ws/0.35, where λ2 is the wavelength in the denser medium. In general, for the edge singular
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(a) (b)

(c)

Figure 2.1: Antenna impedance of an infinite leaky-wave slot for different feed lengths ∆gap and slot width ws = 10 µm;

in (a) the resistance R, (b) reactance X , and in (c) evaluated impulse response.

mode, the resistance and reactance increase faster with frequency for lower feed lengths. However, this effect is more

evident in the reactance, while the increase in the resistance is negligible. Nevertheless, the growth in both components

constitutes a growth in the impedance magnitude for decreasing feed lengths. Consequently, the discontinuity at the

narrow-slot limit increases as the feed length decreases.

Using Eq,2.8, the impedance impulse response of the antenna is recovered and plotted in Fig.2.1(c). It must be noted that

the impulse response is a real signal, i.e. the impedance is conjugate symmetric. The oscillations are due to the Gibbs

phenomenon occurring at the narrow-slot limit discontinuity. For smaller feed lengths, the oscillation amplitude is

larger corresponding to the larger discontinuity. Unfortunately, these oscillations are inherent consequences of the used

numerical evaluation.

2.2.2. Slot Width

The impedance is plotted in Fig.2.2(a-b) for different slot widthsws and feed length∆gap = 5µm. The narrow-slot limit

is the same as before at λ2 = ws/0.35. Naturally, the narrow-slot limit frequency (referred to as maximum frequency

fmax) is higher for smaller slot widths. It is evident that the discontinuity increases with the width. The corresponding

impedance impulse response is plotted in Fig.2.2(c). Obviously, the oscillations are slower for higher fmax. Moreover, the

careful observer notes that the discontinuity decreases for narrower slots, but the initial oscillation amplitude increases.

Essentially, the Gibbs phenomenon is non-linear - dependent on the maximum frequency and discontinuity magnitude.
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(a) (b)

(c)

Figure 2.2: Antenna impedance of an infinite leaky-wave slot for different slot widths ws and feed length ∆gap = 5 µm;

in (a) the resistance R, (b) reactance X , and in (c) evaluated impulse response.

2.3. Algorithm

Mathematically, a PCA is described by a set of two integral equations - one describing the time-domain relation of voltage

and current, and the other being the current’s time evolution derived from the Drude-Lorentz model

v(t) =

∫ t

−∞
i(t′)zant(t− t′)dt′, (2.9a)

i(t) = A
q2e
me

∆gapwz

ws

∫ t

−∞
e−

1
2 (

t′′−τd
σt

)2e−
t−t′′
τrec

∫ t

t′′
(Vb − v(t′))e−

t−t′
τs dt′dt′′. (2.9b)

Given the system’s initial conditions (zero at sufficiently early time), the voltage and current can be evaluated using a

time-step (also known as a marching-on) algorithm derived by time-discretizing these integral equations. This algorithm

has update rules for the voltage and current defined as

vn =
e−

∆t
τrec e−

∆t
τs ∆tzant,(0)in−1 + Vb∆

2
t zant,(0)Gpcm,(n) +∆tCn

1 + ∆2
t zant,(0)Gpcm,(n)

, (2.10a)

in = e−
∆t

τrec e−
∆t
τs in−1 + (Vb − vn)∆tGpcm,(n), (2.10b)

where Gpcm is the conductance of the photo-conductive material, and Cn describes the memory effects of the non-

dispersive system at sample n. For a detailed derivation refer to Appendix.B.2.

Overall, the analysis of photo-conductive antennas consists of evaluating the antenna impedance and retrieving the

impulse response. Then, by using the time-step algorithm and impulse response, the feed’s time-domain excitation is
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TIME-STEP
ALGORITHM

DTFT

DTFT

𝑣

𝑖

𝑍𝑎𝑛𝑡SPECTRAL 
TECHNIQUES

𝐼

DFIFT

𝑉
𝑧𝑎𝑛𝑡

Figure 2.3: Block diagram of the photo-conductive antenna analysis.

(a) (b)

Figure 2.4: Comparison between the evaluated impedance using spectral techniques (solid lines) and calculated using

the frequency-domain voltage and current (dashed lines) outputs of the time-step algorithm for different feed lengths ∆gap

and slot width ws = 10 µm; in (a) the resistance R, and in (b) reactance X .

evaluated. Finally, the frequency-domain of the excitation is recovered for further analysis. A block diagram of the analysis

procedure is shown in Fig.2.3.

To evaluate the performance of the time-step algorithm proposed in Eq.2.10, the calculated antenna impedance using the

frequency-domain voltage and current is compared to the one evaluated using spectral techniques. The impedance is

compared for different feed lengths and plotted in Fig.2.4. There is a large offset in the resistance between the calculated

impedance from V/I and the actual evaluated using spectral techniques. This offset is around R = 60 Ω at ∆gap = 2.5

µm. Additionally, there is a mismatch in the reactance. The reactance deviation generally grows with frequency.

Furthermore, the impedance is compared for different slot widths in Fig.2.5. Again, a large offset is observed in the

resistance and a mismatch in the reactance. This discrepancy between the evaluated and calculated impedance is related to

the oscillations in the impulse response observed earlier. The results of this time-step algorithm are unreliable for further

analysis. Therefore, an improved time-step algorithm is required, accounting for the large impedance discontinuity due

to the narrow-slot approximation.

2.4. Weight Function

To reduce the discontinuity, the use of a weight function is proposed in [21]. The non-discretized time-domain voltage-

current relation becomes ∫ t

−∞
v(t′)w(t− t′)dt′ =

∫ t

−∞
i(t′)h(t− t′)dt′, (2.11)

where w is the weight function, and h = F−1{H} = F−1{WZant} is a placeholder response resulting from the

frequency-domain multiplication of the weight and antenna impedance. This weight time-step algorithm has updated
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(a) (b)

Figure 2.5: Comparison between the evaluated impedance using spectral techniques (solid lines) and calculated using

the frequency-domain voltage and current (dashed lines) outputs of the time-step algorithm for different slot widths ws

and feed length ∆gap = 5 µm; in (a) the resistance R, and in (b) reactance X .

rules defined as

vn =
e−

∆t
τrec e−

∆t
τs h0in−1 + Vb∆th0Gpcm,(n) + Cn

w0 +∆th0Gpcm,(n)
, (2.12a)

in = e−
∆t

τrec e−
∆t
τs in−1 + (Vb − vn)∆tGpcm,(n). (2.12b)

The careful reader notes that the current’s update rule does not change, as it is directly derived from the Drude-Lorentz

model. A detailed derivation is provided in Appendix.B.4.

Undoubtedly, the weight function must be chosen such that it decreases with frequency in order to minimize the

discontinuity. The choice of weight should be based on the performance of the overall voltage and current evaluation

results. With this in mind, a brief examination of different weight options is described in Appendix.C, yet, the best choice

is found to be the weight function used in [21] - the squared antenna admittance W = Y 2
ant. As a result, the placeholder

function becomes the antenna admittance H = Y 2
antZant = Yant, and it is referred as such for the rest of this work.

2.4.1. Feed Length Dependence

The weight function is plotted in Fig.2.6(a-b) for different feed lengths. The magnitude of the weight exhibits the desired

behavior - decreasing with frequency. Additionally, as the impedance increases for smaller feeds, naturally the weight

decreases. Contrary to the no-weight algorithm, it is expected that smaller ∆gap results in better impedance match

between the spectral techniques evaluation and V/I calculation - lower discontinuity. Moreover, the weight approaches

infinity at DC corresponding to the zero impedance. In essence, this effect means there is no voltage drop across the

feed at DC, constituting no expected change in the DC bias field. However, the effect also posses a difficulty in the

evaluation of the IFT - improper integration over an infinite interval. Consequently, to solve this problem, the weight is

truncated at DC in order to allow the numerical evaluation of the weight impulse response, i.e. the weight is set to zero

W (f = DC) = 0 Ss
. This solution does not impact the overall analysis as the DC component is of no interest. The

weight impulse response is plotted in Fig.2.6(c). The peak and oscillation amplitude are larger for bigger feeds, due to the

larger weight magnitudes and discontinuities respectively. Nevertheless, the oscillation amplitude is decreased compared

to the impedance impulse response in Fig.2.1(c).

The antenna admittance (placeholder function) is plotted in Fig.2.7(a-b). The magnitude decreases with the frequency

and feed length. This decrease translates to smaller discontinuities. Moreover, the DC component is once again truncated

to allow the numerical evaluation of the IFT. The recovered admittance impulse response is plotted in Fig.2.7(c). As seen,

the oscillation amplitude is reduced due to the smaller discontinuity.
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(a) (b)

(c)

Figure 2.6: Weight function (squared antenna admittance) for different feed lengths ∆gap and slot width ws = 10 µm;

in (a) the real part, (b) imaginary part, and in (c) impulse response.

(a) (b)

(c)

Figure 2.7: Antenna admittance (placeholder function) for different feed lengths ∆gap and slot width ws = 10 µm;

in (a) the conductance G, (b) susceptance B, and in (c) impulse response.
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(a) (b)

Figure 2.8: Comparison between the evaluated impedance using spectral techniques (solid lines) and calculated from V/I (dashed lines)

for different feed lengths ∆gap and slot width ws = 10 µm; in (a) the resistance R, and in (b) reactance X .

To evaluate the performance of the weight algorithm in Eq.2.12, the impedance calculated from V/I is compared to

the evaluation using spectral techniques. The comparison is plotted in Fig.2.8. The weight time-step algorithm offers a

significant improvement. Although the match is not ideal, the resistance does not exhibit the large offset observed in

the no-weight algorithm. Furthermore, the match improves for smaller feeds - lower discontinuities. Nonetheless, the

mismatch increases with frequency. On the other hand, the reactance shows an improvement, but not as significant as

the resistance. These improvements confirm the oscillations as the root cause of the algorithm’s numerical error.

2.4.2. Slot Width Dependence

The weight is plotted in Fig.2.9(a-b) for different slot widths. In contrast to the smaller impedance at fmax for narrower

slots, the weight function increases resulting in larger discontinuity. This effect is especially noticeable for small widths.

Consequently, the weight function does not satisfy the desired behavior. The weight impulse response is plotted in

Fig.2.9(c). Referring to the larger discontinuities for narrower slots, the oscillation amplitude increases. Additionally, the

oscillation period decreases due to the higher maximum frequency. The antenna admittance is plotted in Fig.2.10(a-b).

Naturally, the admittance grows similarly to the weight. The impulse response is plotted in Fig.2.10(c). Faster and larger

oscillations are observed due to larger discontinuity and maximum frequency.

A comparison between the evaluated and calculated impedance is plotted in Fig.2.11. Compared to the no-weight algorithm

results, there is a significant improvement. At this point, it must be noted that typically PCAs are manufactured with slot

width ws = 10 µm and feed length ∆gap = 5 µm [24][25]. For these parameters, the weight algorithm performs well

for a coarse analysis. However, the remaining error must be minimized when a more accurate analysis is required.

2.5. Error

As seen, the error is a discrepancy between the evaluated impedance using spectral techniques and the one calculated from

the algorithm’s outputs. Thus, it is logical to investigate the error in terms of the difference between the two. However, in

connected 1D arrays, the active impedance is not known beforehand. Consequently, the error is investigated in terms of

the difference between the directly evaluated frequency-domain voltage V1 = F{v}, and the one estimated using the

evaluated current spectral techniques impedance V2 = F{i}Zant. To quantify the voltage error, the magnitude and

phase difference of V2 and V1 are normalized to the respective maximums of V1

E|V | =
|V2| − |V1|
max{|V1|}

, (2.13a)
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(a) (b)

(c)

Figure 2.9: Weight function for different slot widths ws and feed length ∆gap = 5 µm;

in (a) the real part, (b) imaginary part, and in (c) impulse response.

(a) (b)

(c)

Figure 2.10: Antenna admittance for different slot widths ws and feed length ∆gap = 5 µm;

in (a) the conductance G, (b) susceptance B, and in (c) impulse response.
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(a) (b)

Figure 2.11: Comparison between the evaluated impedance using spectral techniques (solid lines) and calculated from V/I (dashed lines)

for different slot widths ws and feed length ∆gap = 5 µm; in (a) the resistance R, and in (b) reactance X .

TIME-STEP
ALGORITHM
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DTFT

𝑣

𝑖

𝐸|𝑉|
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𝑍𝑎𝑛𝑡
𝑰𝒁𝒂𝒏𝒕

𝐸∠𝑉

VOLTAGE 
ERROR

CALCULATION

𝑉1

𝑉2

Figure 2.12: Block diagram of the algorithm’s voltage error analysis.

E∠V =
∠V2 − ∠V1

max{|∠V1|}
. (2.13b)

A block diagram of the error analysis is shown in Fig.2.12.

The V1 and V2 voltages are compared in Fig.2.13 for slot width ws = 10 µm and feed length ∆gap = 5 µm. The

magnitude difference is large. Additionally, it increases with the frequency power, at the component with highest power

|V2| − |V1| ≃ 1.5mV/GHz. On the other hand, the phase difference starts at ∠V2 − ∠V1 ≃ 2 deg and increases, in

general, linearly with frequency (reaching ≃ 12 deg at the narrow-slot limit). It must be noted that the truncation at the

narrow-slot limit (maximum frequency) in V2 appears due to the impedance’s truncation. While V1, as F−1{v}, is not

truncated because these frequencies are present in the time-domain signal.

The absolute voltage error is plotted in Fig.2.14. The plot confirms the previous observations - magnitude error is largest

at frequencies with higher power, and phase error increases linearly with frequency. The magnitude error reaches a

(a) (b)

Figure 2.13: Frequency-domain voltage comparison between V1 = F{v} and V2 = F{i}Zant,

for slot width ws = 10 µm and feed length ∆gap = 5 µm; in (a) the magnitude |V |, and in (b) phase ∠V .
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(a) (b)

Figure 2.14: Voltage error for slot width ws = 10 µm and feed length ∆gap = 5 µm;

in (a) the magnitude error E|V |, and in (b) phase error E∠V .

(a) (b)

Figure 2.15: In (a) active power spectral density comparison between voltage and current estimations, and in (b) active power error,

for slot width ws = 10 µm and feed length ∆gap = 5 µm.

maximum of |E|V || = 12%, and becomes |E|V || = 3% at fmax. This deviation is significant for an accurate analysis.

2.5.1. Active Power Error

The discrepancy between the v and i time-step algorithm outputs is more noticeable in the power spectral density (PSD),

due to the square law. Thus, it is useful to investigate the error in terms of active power. The power is evaluated using the

two outputs separately - the voltage with admittance, and current with impedance

P1 =
1

2
|V1|2ℜ{Yant}, (2.14a)

P2 =
1

2
|I|2ℜ{Zant}. (2.14b)

To quantify the PSD error, the difference between P2 and P1 is normalized to the maximum of P1

EP =
P2 − P1

max{P1}
. (2.15)

A block diagram of the power error analysis is shown in Fig.2.16.

The P1 and P2 evaluations are compared in Fig.2.15(a), and absolute power error is plotted in Fig.2.15(b). Obviously,

identically to the voltage error, the difference between P1 and P2 is higher at the frequencies with more power. The error

reaches a maximum of P2 − P1 ≃ 0.3 µW/GHz2; in terms of the defined power error, it corresponds to EP ≃ 20% -
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Figure 2.16: Block diagram of the active power error analysis.
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Figure 2.17: Block diagram of the energy error analysis.

a significant deviation for an accurate analysis. Although not plotted, it must be noted that the error increases for larger

feed lengths, due to larger discontinuity.

2.5.2. Radiated Energy Error

From Parseval’s theorem, the energy is equal in the time and frequency domains. Estimating the radiated energy directly in

the time-domain provides a quick evaluation method without frequency-domain conversions. Consequently, investigating

the deviation between the time-domain and frequency-domain energy is useful for providing error optimization guidelines.

The time-domain energy is calculated by integrating the instantaneous power
1
, and in the frequency-domain by integrating

P2

ETD = ∆t
1

2

∑
n

vnin, (2.16a)

EFD = ∆f
1

2

∑
k

|I|2ℜ{Zant}. (2.16b)

To quantify the energy error, the difference between ETD and EFD is normalized to EFD

EE =
ETD − EFD

EFD
. (2.17)

A block diagram of the energy error analysis is shown in Fig.2.17.

2.6. Error Analysis

As mentioned in Section.2.4.1, the weight and admittance contain singularities at DC, i.e. W (f = DC) → ∞ and

Yant(f = DC) → ∞. These singularities are associated with the cause of the observed error. In fact, decreasing the

frequency step (hence the first non-DC component moves closer to DC) reflects as an increase in the impulse responses.

This increase is especially noticeable in the time-domain weight. It is a consequence of including components with larger

magnitudes, and increases the IFT’s numerical evaluation error.

To solve this issue, the weight and admittance are additionally truncated between DC and a minimum frequency fmin.

1
A detailed derivation of the time-domain energy is provided in Chapter 3
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(a) (b)

Figure 2.18: In (a) additionally truncated weight function, and in (b) additionally truncated antenna admittance,

for slot width ws = 10 µm, feed length ∆gap = 5 µm, minimum frequency fmin = 20∆f , and frequency-step ∆f = 2.5GHz.

This additional truncation adds a second slower oscillation to the impulse responses. However, the new oscillation has no

significant influence on the overall algorithm performance due to two factors. First, the period of oscillation is much larger

than the recombination time - low fmin. Second, the new Gibbs oscillation has small amplitude, again as a consequence

of the low fmin. Although this solution does not improve or even causes a slight error increase in DC ≤ f < fmin,

these frequencies are relatively small and of no-interest in the analysis of PCAs. To visualize the additional truncation,

the weight and admittance are plotted in Fig.2.18 for minimum frequency fmin = 20∆f with frequency step ∆f = 2.5

GHz.

2.6.1. Voltage

The voltage error is plotted in Fig.2.19(a-b) for different minimum frequencies. The magnitude error in the non-truncated

spectrum decreases as the minimum frequency increases. Although, an increase is observed in the truncated spectrum.

Consequently, fmin must be chosen with care to not affect frequencies of interest. On the other hand, the phase error is

not dependent on the minimum frequency. To confirm the solution’s effectiveness, the error’s mean in the non-truncated

spectrum is plotted in Fig.2.19(c). Clearly, the error decreases with fmin validating the proposed solution.

2.6.2. Active Power

The absolute power error is plotted in Fig.2.20(a) for different minimum frequencies. At small fmin, the error is especially

noticeable. However, it significantly decreases for higher minimum frequencies. While, similarly to the voltage error,

it increases in the truncated spectrum. Furthermore, the error’s mean in the non-truncated spectrum is plotted in

Fig.2.20(b). The results conform to the previous observations - the error decreases with fmin.

2.6.3. Energy

The energy error is plotted in Fig.2.21 with respect to the minimum frequency. In contrast to the voltage and power

observations, the energy error decreases up to a certain fmin. Afterwards, the error starts to increase. In essence, excessively

increasing fmin removes huge portion of the spectral contents, which overcompensates for the numerical error and

introduces a negative discrepancy. This discrepancy constitutes a significant change in the impulse responses. Therefore,

the minimum frequency must be chosen such as to minimize the error while not significantly altering the time-domain

responses.
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(a) (b)

(c)

Figure 2.19: Voltage error for different truncations; in (a) the magnitude error E|V |, (b) phase error E∠V ,

and in (c) the mean non-truncated spectrum magnitude error with respect to fmin.

(a) (b)

Figure 2.20: In (a) active power error for different truncations, and in (b) mean power error in the non-truncated spectrum.

Figure 2.21: Energy error with respect to the truncation.
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(a) (b)

Figure 2.22: Frequency-domain magnitude deviation between the algorithm’s outputs with additional weight function truncation

and without truncation; in (a) the voltage deviation, and in (b) current deviation.

2.6.4. Voltage and Current Effects

Not unexpectedly, adding the non-physical truncation (between DC and fmin) alters the voltage and current. Thus,

to provide a complete characterization of the proposed solution, the truncation effects on the algorithm’s outputs are

investigated with respect to the non-truncated evaluations. The effects on the voltage and current are quantified by

normalizing the frequency-domain magnitude difference

DEV|V | =
|V | − |Vref |

|Vref |
, (2.18a)

DEV|I| =
|I| − |Iref |

|Iref |
, (2.18b)

whereV = F{v} and I are the outputs evaluated with the weight truncation, andVref and Iref are without truncation.

The voltage and current deviations are plotted in Fig.2.22 for different minimum frequencies. Generally, the current

changes with a constant ratio across the spectrum; naturally, larger weight truncation increases the deviation. On the

other hand, the voltage changes in a non-constant manner - the error in the truncated spectrum increases, while the effects

are minor in the middle part of the non-truncated spectrum.

2.7. Convergence

To ensure result convergence, the time-step must be sufficiently smaller than shortest time parameter, i.e. the scattering

time. However, reducing the time-step results in increased computational time. Therefore, it is useful to investigate the

convergence, deviation in the algorithm’s output from the actual signal, with respect to the time-step.

In order to characterize the convergence, a simulation is performed with sufficiently small time-step in terms of the

scattering time. The evaluated current is selected as a reference signal. Afterwards, the time-step is increased, and the

newly evaluated current is compared to the reference. Because the reference signal has a smaller time-step, it must be

down-sampled to the investigated signal. Additionally, only the samples in an interval containing mostly the non-zero

antenna response are considered. The deviation between the reference and investigated signals is quantified in terms of

the normalized root mean square error (NRMSE)

NRMSE =
1

max{iref} −min{iref}

√√√√ 1

nmax

nmax−1∑
n=0

(in − iref,(n))2, (2.19)
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Table 2.1: Time samples of several time-steps in terms of the scattering time and with start time at t = 0 s.

∆t Time Samples

iref 0.01τs t0 = 0 t1 = 0.01τs t2 = 0.02τs t3 = 0.03τs t4 = 0.04τs · · · tnmax

0.02τs t0 = 0 t1 = 0.02τs t2 = 0.04τs · · · tnmax

0.03τs t0 = 0 t1 = 0.03τs · · · tnmax

Figure 2.23: Normalized root mean square error (convergence) evaluated in a time interval of tnmax = 3 ps
and for reference signal with ∆t = 0.01τs.

where nmax is the sample index corresponding to the maximum considered time instance, i the investigated signal, and

iref the reference. To demonstrate the need for down-conversion, the time samples for several time-steps are shown in

Table.2.1 with start time chosen at zero for simplicity.

The NRMSE is plotted in Fig.2.1 evaluated in a time interval tnmax
= 3 ps and for reference at ∆t = 0.01τs. Evidently,

the error increases linearly with the time-step. Usually, the time-step is chosen as ∆t = 0.2τs resulting in 2% error.

2.8. Algorithm for Connected Arrays

In connected arrays, the wave component launched by a feed interacts with the other feeds, i.e. the feeds are coupled. This

interaction is described through the mutual impedance. Therefore, the voltage at feed q is dependent on the currents of

all Q feeds 

V1

.

.

.

VQ


=



Z11 . . . Z1Q

.

.

.

.
.
.

.

.

.

ZQ1 . . . ZQQ





I1

.

.

.

IQ


, (2.20)

where Zqq = Zs is the self-impedance, and Zqp the mutual impedance of elements q and p. The mutual impedance

describes the voltage component at element q due to the current at p. While the self-impedance is equal to the antenna

impedance Zant previously discussed, i.e. it describes the effects at the longitudinal point of the current. Moreover, the

impedance matrix Z is a Q×Q Toeplitz. Naturally, not multiplying by a weight causes the same abnormal behavior
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observed in the single feed algorithm. Consequently, multiplying both sides of the matrix equation with the same weight

W . . . 0

.

.

.

.
.
.

.

.

.

0 . . . W
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.

.

.
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
, (2.21)

where the weight matrix is W = WI , and Hqp = WZqp is the placeholder function of elements q and p. Similarly

to the impedance matrix, the placeholder matrix H is a Q×Q Toeplitz. Obviously, the time-domain voltage-current

relation at feed q is defined by the sum of convolutions

∫ t

−∞
vq(t

′)w(t− t′)dt′ =

Q∑
p=1

∫ t

−∞
ip(t

′)hqp(t− t′)dt′, (2.22)

where hqp = F−1{Hqp}. By time discretizing this relation and the current’s time-evolution, expanding the algorithm

to multiple feeds is vexing but trivial

vn = (w0 +∆th0Gpcm,(n))
−1(e−

∆t
τrec e−

∆t
τs h0in−1 +∆th0Gpcm,(n)V b +Cn), (2.23a)

in = e−
∆t

τrec e−
∆t
τs in−1 + (V b − vn)∆tGpcm,(n), (2.23b)

where vn is a Q× 1 vector containing the feed voltages at sample n, in the currents, V b the bias voltages, hn a Q×Q

matrix with the placeholder functions, Gpcm,(n) a diagonal Q×Q matrix containing the time-evolution of the material

conductance at the feeds, and Cn is Q× 1 vector containing the memory effects at each feed. The weight function is

chosen similarly to the single feed case - squared self admittance W = Y 2
s .

2.8.1. Mutual Impedance

The frequency-domain mutual impedance is plotted in Fig.2.24(a-b) for elements at two distances. Naturally, feeds with

larger spacing are more decoupled - wave component of p has higher attenuation at q. Thus, the mutual impedance

decreases with the distance. Additionally, it also decreases with frequency - the wave leaks faster at large f , resulting in

lower coupling. Therefore, opposite to the self impedance, the discontinuity at the maximum frequency decreases. For

reference, the mutual impedance impulse response is plotted in Fig.2.24(c). Indeed the Gibbs phenomenon is reduced,

especially at large distance. However, small oscillatory behavior is still observed.

2.8.2. Mutual Placeholder Function

The mutual and self-impedance are multiplied with the same weight - squared self-admittance. In contrast to the self-

placeholder function which is the self-admittance, the mutual placeholder function does not have any physical definition.

The frequency-domain mutual placeholder function is plotted in Fig.2.25(a-b). Although no apparent discontinuity is

observed, the spectral content is highly reduced - the majority of the content is located at lower frequencies. The impulse

response is plotted in Fig.2.25(c). There are no obvious oscillations, however, the impulse response decays much slower

due to the decreased spectral content.
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(a) (b)

(c)

Figure 2.24: Mutual impedance for elements at two distances; in (a) the resistance, in (b) reactance, and in (c) mutual impedance impulse response.

(a) (b)

(c)

Figure 2.25: Mutual placeholder function for elements at two distances; in (a) the real part, in (b) imaginary part, and in (c) mutual placeholder

impulse response.
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(a) (b)

Figure 2.26: Energy error with respect to the truncation; in (a) ∆f = 2.5GHz, and in (b) ∆f = 5GHz.

2.8.3. Energy Error

Similarly to the single feed algorithm, the error between the time and frequency domain energy is quantified with Eq.2.17.

The error, in a two feed 1D connected array, is plotted in Fig.2.26 with respect to the truncation. The feeds are spaced at

distance∆x = 100µm; both are biased byVb = 30V and excited by P̃opt = 50mW . Unlike the single feed case where

zero error can be achieved, it might not be possible to remove the energy error in the multiple feed case. The minimum

error is highly dependent on the geometry. The inability to fully optimize the error is attributed to the spectral content of

the mutual placeholder function. As the majority of the content is at low frequencies, increasing the truncation negatively

impacts the recovery of the impulse response
2
. The error in Fig.2.26(a) is for frequency resolution ∆f = 2.5GHz,

while in Fig.2.26(b) for ∆f = 5GHz. The error is evaluated for the same fmin (in terms of non-normalized frequency)

in both cases. No evident difference between the error is observed with respect to the frequency resolution.

2
The acute reader might wonder why the same weight is applied to the self and mutual impedance. A solution using two different weights was

considered, but not implemented / investigated due to time considerations.





Chapter 3.

Infinite Leaky-Wave Slot

One of the most used photo-conductive antenna topologies is the tapered infinite LW slot, also known as bow-tie.

Typically, the bow-tie is analyzed as a dispersive antenna with constant impedance. However, despite being broadband, in

reality the impedance varies across the spectrum. Consequently, the impulse response is not a delta function, and thus

the memory effects of the structure must be considered. Although the non-dispersive approximations allows for a good

average power estimate, it fails to characterize the frequency dependence. With this in mind, the dispersive time-step

algorithm allows for a more accurate frequency dependent analysis of these antenna structures. Moreover, as an analytical

model of the bow-tie does not exist, analysis of a non-tapered slot is performed in this work. Yet, this analysis is a good

starting point for describing the effects in tapered slots.

Before continuing with the analysis of the infinite leaky-wave slot, it is useful to derive an equation for the energy balance in

time-domain. The derivation is performed considering a cylindrical photo-conductive gap similar to [19]. Afterwards, the

power spectral density (PSD) of the dispersive time-step analysis is compared to the fully dispersive (constant impedance)

antenna approximation. Next, the far-field and radiated energy (in a pulse) of the infinite leaky-wave slot are studied, and

the derived energy balance equation is validated. Finally, a study on the antenna efficiency and bandwidth with respect to

antenna parameters is performed.

3.1. Energy Balance Equation

Consider a cylindrical photo-conductive gap placed symmetrically around the origin and oriented in ẑ. The gap has a

height∆z , and is biased by a source with potentialVb - the positive source terminal is in the lower half-space. Consequently,

the bias electric field E⃗b is oriented in ẑ from the positive to negative terminal, as shown in Fig.3.1(a). Prior to an optical

excitation, E⃗b causes a build up of positive and negative charges, p+ and n−
, with equal magnitude on the positive

and negative terminals respectively. After an optical excitation, an amount of charge ∆Q(t) flows through the photo-

conductor resulting in two effects. Firstly, the charge flow creates a transient current distribution j(t)ẑ, where ĵ(t) is

oriented along ẑ, as shown in Fig.3.1(b), adhering to the conventional current definition - flow of positive charge. Secondly,

a drop of charge by ∆Q(t) at the terminals leads to an electric potential drop. The electric potential drop is described as

a transient terahertz field e⃗(t) with opposite direction to E⃗b, as shown in Fig.3.1(c). Therefore, using the notation in [19],

the total gap electric field is e⃗gap(t) = Ebẑ − e(t)ẑ.

Fundamentally, the photo-conductive source is a switched capacitor with large capacitanceC , and discharge rate controlled

by an optical excitation. However, in contrast to a standard capacitor where no charge flows through the dielectric,

photo-conductive sources are discharged through the photo-conductor.

Assuming the photo-conductive source is fully charged, with Qini, at the optical excitation time t0 and according to [26],

the change in potential energy at time instance t is

∆U(t) =

∫ t

t0

vgap(t)i(t)dt. (3.1)

27
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Figure 3.1: Cylindrical photo-conductive feed with delta gap ∆z , and biased by a source with potential Vb. In (a), the bias electric field Ebẑ, shown in

red, causes a build up of positive and negative charges, p+ and n−
, before optical excitation on the positive and negative terminals respectively. In (b),

an optical excitation at time instance t causes a flow of charge ∆Q(t) over the photo-conductive gap; this flow of charge creates a current density

j(t)ẑ, shown in green. In (c), the charge decrease at the terminals creates a potential drop described by a transient terahertz field −e(t)ẑ, shown in

blue, opposing Ebẑ.

Since the current is equal to the charge’s rate of change, then

∆U(t) =

∫ t

t0

vgap(t)
dq(t)

dt
dt =

∫ Q(t)

Qini

vgap(q)dq. (3.2)

Furthermore, using the charge-voltage relation q(t) = Cvgap(t), ∆U(t) becomes

∆U(t) =
1

C

∫ Q(t)

Qini

q(t)dq =
1

2C
q2(t)

∣∣∣Q(t)

Qini

=
1

2
vgap(t)q(t)

∣∣∣Q(t)

Qini

. (3.3)

Considering the charge at t is less or equal to the initial charge at t0, Q(t) ≤ Qini, and the change of charge between t0

and t being ∆Q(t) = Qini −Q(t), therefore

∆U(t) = −1

2
vgap(t)∆Q(t). (3.4)

Consequently, from the potential energy to work relationW = −∆U , the total work performed in the photo-conductive

gap (for one laser repetition T ) is the total change of potential energy

Wdis = −
∫ U(t0+T )

U(t0)

∆U =
1

2

∫ Q(t0+T )

Qini

vgap(t)∆Q. (3.5)

In an infinitesimally small time step dt, the change of charge in dt is equal to the charge flow (current) across the gap

∆Q(t)/dt = i(t). Then, the total work performed in the gap for a period T is expressed as

Wdis =
1

2

∫ t0+T

t0

vgap(t)i(t)dt. (3.6)

As previously described, the total electric field in the gap is the superposition of the bias and transient terahertz fields, by

extension the total gap electric potential difference is vgap(t) = Vb − v(t), where v(t) is the transient terahertz electric

potential. As a result, from Eq.3.6 a relation between the transient terahertz, gap, and source energies is derived as

1

2
Vb

∫ t0+T

t0

i(t)dt =
1

2

∫ t0+T

t0

vgap(t)i(t)dt+
1

2

∫ t0+T

t0

v(t)i(t)dt. (3.7)
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Figure 3.2: Infinite leaky-wave slot printed on a ground plane of perfect electric conductor between two homogeneous dielectrics.

The product between the time-domain voltage and current is known as the instantaneous power

p(t) = v(t)i(t) (3.8)

supplied to the slot by the feed. Moreover, assuming lossless ground plane, th whole energy entering the slot (from

the feed) is radiated. Consequently, the supplied (by the DC source), dissipated in the gap, and radiated energies are

respectively

ESUP =
1

2
Vb

∫ t0+T

t0

i(t)dt, (3.9a)

EDIS =
1

2

∫ t0+T

t0

vgap(t)i(t)dt, (3.9b)

ERAD =
1

2

∫ t0+T

t0

v(t)i(t)dt. (3.9c)

Before validating this equality, the far-field radiated power spectral density (PSD) must be evaluated.

3.2. Comparison to the Fully Dispersive Approximation

Consider an infinite leaky-wave slot printed on a perfect electric conductor (PEC) ground plane as shown in Fig.3.2. The

slot is printed between two homogeneous dielectrics n = 1 and n = 2 with permittivity εr,1 = 1 and εr,2 = 11.7, and

is fed by a photo-conductive feed with length ∆gap = 5 µm. The width is ws = 10 µm. The higher density dielectric

n = 2 is located in the upper hemisphere z > 0.

To determine whether the non-dispersive (non-constant impedance) time-step algorithm provides an advantage over the

constant impedance (fully dispersive) approximation, the two methods are compared
1
. The non-dispersive analysis is

performed with the parameters described in Table.1.1. While in the completely dispersive analysis, the antenna impedance

is considered to be Rant = 50 Ω as shown in Fig.3.3.

The frequency-domain voltage and current magnitudes (of the non-dispersive and dispersive evaluations) are compared

in Fig.3.4(a-b). Considering the current, at frequencies f ≤ 1000 GHz, there is good agreement between the two

methods with a deviation of around 1 dB. On the other hand, at the spectrum’s tail (above 1000GHz), the dispersive

approximation largely overestimates the magnitude. Essentially, the reactance grows which increases the mismatch

between the internal and antenna loads. This behavior is not captured by the constant real impedance in the dispersive

1
The methods used to evaluate and compare the power spectral density and average radiated power are introduced later in this chapter.
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(a) (b)

Figure 3.3: Impedance comparison between the non-dispersive and fully dispersive analysis of the infinite leaky-wave slot; in (a) the resistance, and in

(b) reactance.

approximation. Furthermore, considering the voltage, the approximation largely overestimates the magnitude at low

frequencies below 400GHz. Referring to the actual antenna impedance in Fig.3.3, it goes to zero at DC corresponding

to a voltage drop. Therefore, as seen in Fig.3.4(c), the non-dispersive approximation largely overestimates the power

spectral density at low frequencies and in the spectrum’s tail.

Comparison between the radiated average power (of the non-dispersive and dispersive evaluations) and their difference

is plotted in Fig.3.5. Because the power spectral density is overestimated by the dispersive approximation, the radiated

average power is on average 0.75 dB higher than the actual radiated power.

3.3. Far-Field

An infinite leaky-wave slot radiates predominantly in the denser n = 2 medium. The space wave contribution in the

lower density n = 1 medium is considered negligible. Consequently, the far-field is evaluated only in n = 2 medium.

With this in mind, there are two relevant (to this analysis) approaches in evaluating the far-field - using the electric vector

potential, or the spectral convolution of Green’s functions and magnetic currents.

3.3.1. Electric Vector Potential Approach

The first method is using the spatial electric vector potential F⃗n(x, y, z) (in medium n) associated with the magnetic

currents on the slot m(x, y). Then, the electric field is the curl of this electric vector potential

E⃗n(x, y, z) = − 1

εn
∇× F⃗n(x, y, z), (3.10)

where εn is the permittivity of medium n. For a narrow slot (dominant edge-singular mode), the vector potential in the

denser medium is derived in [12] as

F⃗2(x, y, z) = −ε2

∫ ∞

−∞

e−jk2R(x−x′,y,z)

4πR(x− x′, y, z)
2vx(x

′)dx′x̂, (3.11)

where R(x, y, z) is the radial distance, vx the longitudinal spatial magnetic currents on the slot, and k2 the propagation

constant in medium n = 2.
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(a) (b)

(c)

Figure 3.4: Comparison between the non-dispersive and fully dispersive analysis of the infinite leaky-wave slot; in (a) the frequency-domain voltage

magnitude, in (b) current magnitude, and in (c) the power spectral density.

(a) (b)

Figure 3.5: In (a) comparison between the radiated average power estimated with the non-dispersive and fully dispersive approximation, and in (b)

their difference.
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3.3.2. Spectral Convolution Approach

The convolution of the spectral Green’s functions G̃EM(kx, ky) and spectral magnetic currents M⃗(kx, ky) is

E⃗(x, y, z) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
G̃EM(kx, ky)M⃗(kx, ky)e

−jkxxe−jkyydkxdky. (3.12)

At the stationary phase point (a single plane wave has a dominant contribution), the integrand can be separated into

slow-varying component and a component with known analytical integral solution. The slow-varying component can, in

essence, be treated as a constant and taken out of the integration. Therefore, the spectral integration in Eq.3.12 has an

analytical solution

E⃗FF (x, y, z) = jkzsG̃
EM(kxs, kys)M⃗(kxs, kys)e

−jkzs|z−z′| e
−jknr

2πr
, (3.13)

where kxs, kys, and kzs are the stationary phase point wave-number components, and z′ is the observation point (z′ > 0

m for n = 2, and z′ < 0m for n = 1). Both methods require knowledge of the magnetic currents.

3.3.3. Magnetic Currents

For a narrow infinite slot, the magnetic currents are well known M⃗(kx, ky) = Vx(kx)Mt(ky)x̂ with Vx(kx) and

Mt(ky) the longitudinal and transverse components respectively [11][27]

Vx(kx) = I
sinc(

∆gap

2 kx)

D(kx)
, (3.14a)

Mt(ky) = −J0(
ws

2
ky), (3.14b)

where I is the frequency-domain response of the evaluated current i(t) using the time-step algorithm, and D(kx) is the

dispersion equation derived in [11]

D(kx) =
1

2k0ζ0

2∑
n=1

(k2n − k2x)J0(
ws

4

√
k2n − k2x)H

(2)
0 (

ws

4

√
k2n − k2x). (3.15)

While mt(y) is known and has a closed form spatial FT, vx(x) is not and must be evaluated numerically using the spatial

IFT on Vx(kx)

vx =
1

2π

∫ ∞

−∞
I
sinc(

∆gap

2 kx)

D(kx)
e−jkxxdkx. (3.16)

Essentially, the analysis of PCAs consists of evaluating the antenna impedance and impulse response, using the time-step

algorithm to estimate the time-domain voltage and current, and finally evaluating the longitudinal slot voltage and

far-field using the frequency-domain response of the estimated current.

By using the electric vector potential, the field can be evaluated at any point (x, y, z) in space. However, the approach

requires the numerical evaluation of the spatial IFT in Eq.3.16, and the numerical integration over the slot’s length in

Eq.3.11 for each point of interest. On the other hand, the convolution method (at the stationary phase point) can only

be used to evaluate the far-field. However, it is a much faster approach, as it does not require evaluation of the spatial

IFT and integration over the slot’s length. Therefore, because the near-field is of no interest in this analysis, the second

method with a stratified media representation of G̃EM(kx, ky)
2

is used to evaluate the far-field.

2
The stratified media representation of the Green’s functions for the LW infinite slot are well known and discussed in previous works, as such they

are not discussed in this thesis.
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(a) (b)

Figure 3.6: For the photo-conductive infinite leaky-wave slot in (a) the electric far-field at R = 1m and ϕ = 0 deg, and in (b) current spectrum.

3.3.4. Temporal Far-Field

As a time-domain system, it is interesting and beneficial to investigate the far-field in time. To recover the temporal

far-field, simply the IFT is used on the evaluated spectral far-field e⃗(t) = F−1{E⃗(f)}. Using the linear property of

integration, the IFT of each vector component is evaluated separately

e⃗FF (t) = F−1{EFF
x (f)}x̂+ F−1{EFF

y (f)}ŷ + F−1{EFF
z (f)}ẑ. (3.17)

The temporal field is a real signal and as such, the spectral far-field is conjugate symmetric. Moreover, naturally the

spectral far-field carries the wave propagation information in terms of the phase. Thus, obviously the wave propagation

delay at the observed radial distance is noticeable in the recovered temporal far-field.

3.3.5. Evaluation

During the study, the slot is considered with a width ws = 10 µm, while the feed length is ∆gap = 5 µm. The

photo-conductor absorbs P̃opt = 50mW and is biased by Vb = 30 V . Finally, the denser medium is silicon with relative

permittivity εr,2 = 11.7, and the lower permittivity medium is vacuum.

The evaluated electric far-field magnitude, using the stratified media Green’s functions at a stationary phase-point, is

plotted in Fig.3.6(a) at R = 1m and ϕ = 0 deg inside the denser medium. For reference, the current magnitude is

plotted in Fig.3.6(b). Naturally, as the current decreases with frequency, the far-field also decreases.

The temporal field’s components are plotted in Fig.3.7 at broadside θ = 0 deg and ϕ = 0 deg. The electric field is

purely y-oriented at broadside. Moreover, the wave arrives at the observation point around t ≃ 11.41 ns after the feed’s

excitation. Considering the speed of light in silicon and distance of R = 1m, the wave should arrive at t = 11.4096 ns.

Observed and calculated time of arrival have a good match. In reality, the wave might arrive slightly later as a consequence

of the leakage time from the slot. At this point, it must be noted that (due to the DIFT) the time-domain is periodic with

periodicity of 1/∆f
3
. For a frequency step ∆f = 2.5GHz, this periodicity is T = 400 ps; thus, the wave is observed

at the 28th periodic segment.

The time-evolution of the temporal field magnitude is plotted in Fig.3.8 at ϕ = 0 deg for four time steps. The LW beams

are clearly visible. Finally, both time plots show the pulsed nature of the PCA.

3
The periodicity is a consequence of the Poisson summation discussed in Chapter.2.1.



34 Chapter 3. Infinite Leaky-Wave Slot

(a) (b)

(c)

Figure 3.7: Temporal electric far-field’s components, at R = 1m broadside (θ = 0 deg and ϕ = 0 deg),

of the photo-conductive infinite leaky-wave slot; in (a) x-component, (b) y-component, (c) z-component.

(a) (b)

(c) (d)

Figure 3.8: Temporal electric far-field, at R = 1m and ϕ = 0 deg, of the photo-conductive infinite leaky-wave slot;

in (a) t = 11.4090 ns, (b) t = 11.4096 ns, (c) t = 11.4103 ns and (d) t = 11.4109 ns.
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(a) (b)

(c) (d)

Figure 3.9: Wave propagating in a 400µm section of the infinite leaky-wave slot; in (a) t = 0 ps, (b) t = 0.4 ps, (c) t = 0.8 ps and (d) t = 1.2 ps.

3.4. Slot Wave

Similarly to the temporal far-field, it is interesting to investigate the wave propagating on the slot in time. To recover the

temporal evolution, the IFT of the longitudinal magnetic current, slot voltage, in Eq.3.16 is evaluated

v′x(x, t) = F−1{vx(x, f)}. (3.18)

Hence, first the spatial IFT ofVx(kx)must be evaluated, followed by the temporal IFT. This evaluation must be performed

for each longitudinal point of interest x.

The propagating wave on the slot is plotted in Fig.3.9 on a 400 µm part of the slot centered at the feed. The plot visualizes

the time-evolution for four steps.

3.5. Power Spectral Density

There are multiple equivalent approaches to evaluate the power spectral density (PSD) of the radiated wave. One method

is to use the frequency-domain voltage and current across the photo-conductive feed. Considering the ground plane

(on which the slot is printed) is perfect electric conductor (PEC), there are no losses as the wave propagates on the slot.

Consequently, the active power entering the slot leaks into the denser medium. The contribution associated with the

space in the less dense medium n = 1 is negligible - almost all of the radiated power is radiated in the higher permittivity

medium. Therefore, by using the frequency-domain voltage and current, the active power is

P =
1

2
ℜ{V I∗}. (3.19)
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Figure 3.10: Radiated power spectral density of the photo-conductive infinite leaky-wave slot.

Needless to say, the radiated PSD in the far-field (TEM wave) is evaluated using the Poynting vector

S⃗(θ, ϕ, r) = E⃗FF × H⃗FF =
1

2

|E⃗FF (θ, ϕ, r)|2

ζ2
r̂, (3.20)

where ζ2 is the wave impedance of the denser medium. The total power is captured in the upper hemisphere (denser

medium) associated with the dominant radiation mechanism

P =

∫ 2π

0

∫ π/2

0

|S⃗(θ, ϕ, r)| sin θdθdϕ. (3.21)

When a lossy conductor is used as the ground plane, the power entering the slot does not equal the power in the far-field.

In this case, the power losses must be considered when using the former approach or the PSD must be evaluated solely in

the far-field.

The PSD is plotted in Fig.3.10 for the parameters used in the previous far-field plots. The frequency-domain and far-field

evaluations are equivalent. In general, the power decreases with frequency due to the decreasing current, plotted for

reference in Fig.3.6(b). However, at low frequencies (close to DC), the antenna impedance also decreases which results in

a radiated power drop.

3.5.1. Average Power

The power level in Fig.3.10 are close to noise. However, the PSD represents the power radiated in one pulse with period

T . A photo-conductive antenna radiates millions of pulses in a second. Consequently, the average radiated energy per

second is

Prad =
1

T

∫ ∞

−∞
P (f)df. (3.22)

A photo-conductive system integrates the received power over multiple pulses. Naturally, higher power in a signal pulse

means lower integration time [16]. This fact is one of the reasons to improve the radiated power of PCAs.
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3.6. Energy

Referring to Eq.3.7 and following from Parseval’s theorem, the energy supplied to the slot in Eq.3.9(c) should be equal to

the one radiated in far-field (assuming lossless ground plane)

ERAD =
1

2

∫ t0+T

t0

v(t)i(t)dt = 2

∫ ∞

0

P (f)df, (3.23)

where the symmetry of the PSD is used. Therefore, in order to estimate the validity of the derived energy balance in

Eq.3.7, the energy in the far-field is compared to the time-domain estimation. Another beneficial validity check is to

compare the difference between supplied and dissipated energy to the radiated, i.e. ESUP −EDIS = ERAD . However,

before investigating the radiated energy, it is useful to provide a discussion on the saturation point.

3.6.1. Saturation Point

The saturation is related to the number of released carriers and drift velocity described by the Drude-Lorentz model. The

current density (and by extension the current) are related to the number of released carriers and drift velocity [20]

j⃗(t) =

∫ t

−∞
qenave(t, t

′′)v⃗e(t, t
′′)dt′′. (3.24)

Therefore, increasing the optical power increases the number of carriers in the photo-conductor. However, larger number

of carriers results in higher decrease of charges at the terminals. This charge reduction corresponds to larger voltage drop

in the gap - decrease in the gap electric field. From

v⃗e(t, t
′′) =

qe
me

∫ t

t′′
e−

t−t′
τs e⃗g(t

′)dt′, (3.25)

the lower gap electric field reduces the drift velocity. In turn, the lower drift velocity limits the increase in the current

density. At the saturation point, this limiting behavior becomes dominant and blocks the current from increasing.

Moreover, from Eq.3.25, it is seen that lower carrier’s effective mass and higher scattering time correspond to larger drift

velocity. Consequently, photo-conductors satisfying these conditions have higher saturation current.

3.6.2. Absorbed Optical Power

The time-domain energy evaluation is compared to the far-field’s in Fig.3.11(a) with respect to the absorbed optical power

P̃opt. As seen, the match is ideal. Moreover, the rate of energy increase is higher before the saturation point, and lower

after the saturation point. The radiated energy is linearly dependent on the absorbed optical power with rate of change

decreasing after the saturation point. Additionally, the radiated energy is compared to the difference of supplied and

dissipated in Fig.3.11(b) - no apparent deviation is observed between the two.

3.6.3. Bias Voltage

The time-domain energy evaluation is compared to the far-field’s in Fig.3.12(a) with respect to the bias voltage Vb. There

is no difference between the far-field and time-domain estimations. Additionally, the energy has a square relation to the

bias. Moreover, the radiated energy is compared to the difference of supplied and dissipated in Fig.3.12(b). Once again,

there is no difference between the two.
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(a) (b)

Figure 3.11: Radiated energy with respect to the absorbed optical power, the saturation point is marked with red dashed line;

in (a) comparison of time-domain and far-field estimation, and in (b) difference of supplied and dissipated to radiated energy.

(a) (b)

Figure 3.12: Radiated energy with respect to the bias voltage;

in (a) comparison of time-domain and far-field estimation, and in (b) difference of supplied and dissipated to radiated energy.
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(a) (b)

Figure 3.13: Radiated energy with respect to the laser’s full width at half maximum;

in (a) comparison of time-domain and far-field estimation, and in (b) difference of supplied and dissipated to radiated energy.

(a) (b)

Figure 3.14: Radiated energy with respect to the recombination time;

in (a) comparison of time-domain and far-field estimation, and in (b) difference of supplied and dissipated to radiated energy.

3.6.4. Full Width at Half Maximum

Next, the evaluated energy in time-domain is compared to the far-field’s in Fig.3.13(a) with respect to the laser’s full width

at half maximum τp (FWHM). Once again, the difference between the energy evaluations is negligible. In addition, the

relationship between the energy and FWHM is linear (or at least while τp is much smaller than τrec). However, the rate

of change is negligible compared to the optical power. The radiated energy is compared to the difference of supplied and

dissipated in Fig.3.13(b). Similar to before, no apparent difference is observed.

3.6.5. Recombination Time

Although the recombination time is dependent on the photo-conductive material and often not a design parameter, it is

useful to investigate its influence on the antenna’s performance. The time-domain and far-field energy evaluations are

compared in Fig.3.14(a) with respect to τrec. Obviously, there is no difference between the time-domain and far-field

estimations. Increasing the recombination time corresponds to linear growth in the radiated energy. The radiated energy

is compared to the difference of supplied and dissipated in Fig.3.14(b) - no deviation.

The results confirm the validity of the derived energy balance in Eq.3.7. Two different comparisons are performed -

radiated energy in far-field and time-domain, and difference between the radiated energy and supplied minus dissipated.

There is no observable difference between these comparisons for parameter sweeps over the absorbed optical power, bias

voltage, FWHM, and recombination time. Finally, it must be noted that the highest influence on the radiated energy has

the bias voltage with a square relation. While the energy is dependent on the other parameters linearly.
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(a) (b)

Figure 3.15: With respect to the absorbed optical power;

in (a) antenna efficiency (the saturation point is marked with red dashed line), and in (b) gap voltage.

3.7. Antenna Efficiency

In the photo-conductive antenna community, it is common to define the antenna efficiency in terms of the laser’s optical

power. However, from Eq.3.6 follows that the bias field is responsible for the work performed on the released charges.

Ergo, the antenna efficiency is defined as the ratio between the supplied and radiated energy in Eq.3.9

ηant =
ERAD

ESUP
. (3.26)

From these equations follows that the antenna efficiency is maximized when the transient voltage approaches the bias, i.e.

the gap voltage approaches vgap = 0 V .

The antenna efficiency is plotted in Fig.3.15(a) with respect to the absorbed optical power. Evidently, the antenna efficiency

has a larger rate of increase below the saturation point. Referring to the gap voltage plot in Fig.3.15(b), the drop in the

gap electric field decreases at the saturation point - the change is smaller. Consequently, the change in efficiency is also

diminished. In fact, due to saturation, the gap voltage never reaches 0 V . Therefore, in terms of efficiency, the optimal

absorbed optical power corresponds to the saturation point.

In terms of the bias voltage, the efficiency is plotted in Fig.3.16(a). Evidently, the efficiency is not influenced by the

bias voltage. By comparing Fig.3.15(a) to Fig.3.16(a), it is concluded that the saturation point is independent of the bias

voltage. Furthermore, the gap voltage is plotted in Fig.3.16(b). Obviously, higher bias corresponds to higher drift velocity,

and thus larger voltage drop - more radiated energy as observed in Fig.3.12. Therefore, to maximize the radiated energy

while retaining the saturation point efficiency, the bias voltage should be chosen close to the breakdown voltage of the

photo-conductive material.

Further, the efficiency is plotted in Fig.3.17(a) with respect to the FWHM. Similarly to the bias voltage, the FWHM has

no influence on the efficiency. However, referring to the gap voltage plot in Fig.3.17(b), it does not contribute significantly

to the voltage drop. Consequently, the FWHM has a negligible influence on the energy as also observed in Fig.3.13.

Finally, the efficiency is plotted in Fig.3.18 with respect to the recombination time. Similarly to the bias and FWHM, the

recombination time does not impact the efficiency. The gap voltage is plotted in Fig.3.18(b). Evidently, the recombination

time has a negligible effect on the maximum amplitude of the voltage drop. However, naturally, the longer existence of

carriers corresponds to a longer voltage drop. This behavior leads to a slight increase in the energy as seen in Fig.3.14.

Overall, the only parameter observed to influence the efficiency is the absorbed optical power. With this point in mind,

the largest efficiency increase is achieved at the saturation point. Additionally, despite that the bias voltage does not
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(a) (b)

Figure 3.16: With respect to the bias voltage; in (a) antenna efficiency, and in (b) gap voltage.

(a) (b)

Figure 3.17: With respect to the laser’s full width at half maximum; in (a) antenna efficiency, and in (b) gap voltage.

(a) (b)

Figure 3.18: With respect to the recombination time; in (a) antenna efficiency, and in (b) gap voltage.
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(a) (b)

Figure 3.19: In (a) comparison between the radiated power, and in (b) between the overall efficiencies

with and without accounting for lower frequency limit.

influence the efficiency, it has the greatest influence on the radiated energy. Therefore, to maximize the radiated energy,

the bias voltage should be close to the photo-conductor’s breakdown voltage.

3.7.1. Lower Frequency Limit

In reality, the quasi-optical lens is designed to operate above a certain frequency. For frequencies below this nominal

point, the lens is electrically small. Thus, the geometrical optics (GO) and physical optics (PO) approximations cannot be

applied.

Additionally, although the slot is considered infinite in the models, the physical slot has a certain length. This length

is chosen such that, at the frequencies of interest, the wave has already leaked by the time it arrives at the termination.

Meaning at the frequencies of interest, the slot is indeed approximated as infinite. However, at lower frequencies, the LW

attenuation constant decreases and the wavelength increases. Thus, the wave does not sufficiently leak until it reaches the

terminations, and the infinite slot approximation fails. Consequently, considerable portion of the power is dispersed

from the slot’s boundaries.

As a consequence, a more accurate efficiency is defined by considering the radiated power over a certain frequency

η′ant =

2

∫ ∞

f ′
P (f)df

ESUP
. (3.27)

Essentially, an additional efficiency is defined as

η′ =

0 for f < f ′,

1 for f ≥ f ′.
(3.28)

A comparison between the radiated power with and without accounting for this new efficiency is plotted in Fig.3.19(a).

Further, a comparison between the overall efficiencies is plotted in Fig.3.19(b). The considered minimum frequency f ′
in

the comparison is f ′ = 75GHz chosen as the quasi-optical link cut-off frequency in [20].
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(a) (b)

Figure 3.20: With respect to the absorbed optical power; in (a) bandwidth, and in (b) radiated power.

(a) (b)

Figure 3.21: With respect to the bias voltage; in (a) bandwidth, and in (b) radiated power.

3.8. Bandwidth

Investigating the change in the half-power point f−3dB (−3 dB point or bandwidth) with respect to the discussed

parameters is beneficial in providing complete design guidelines. Naturally, the bandwidth is defined as the frequency

point at which the radiated power drops by half from its maximum value.

The bandwidth is plotted in Fig.3.20(a) with respect to the absorbed optical power. Increasing the optical power

corresponds to a large drop in the bandwidth - inverse exponential relation. For reference, the PSD is plotted in Fig.3.20(b).

In fact, higher optical power leads to a disproportionate increase at lower frequencies. In essence, considering the laser’s

Gaussian temporal behavior, increasing P̃opt results in a larger charge density. Further, as the number of carriers is given by

the convolution of the photo-conductor’s impulse response (related to τrec) and the charge density [20], there are more

available charges at later time instances. Thus, the length of the time-domain response increases and frequency-domain

response becomes narrower.

In terms of the bias voltage, the bandwidth is plotted in Fig.3.21(a). As seen, the bias has no effect on the bandwidth.

Referencing the PSD plot in Fig.3.21(b), indeed higher bias increases proportionally the power at all frequencies.

Further, the bandwidth is plotted in Fig.3.22(a) with respect to the FWHM. Assuming τp is much smaller than τrec,

there is no significant decrease in the −3dB point. Obviously, under the same assumption, the PSD change in Fig.3.22(b)

is insignificant.

Finally, the bandwidth is plotted in Fig.3.23 with respect to the recombination time. This parameter also has an inverse

exponential relation, and the largest influence on the bandwidth. The PSD is plotted in Fig.3.23(b). Evidently, increasing

the recombination time moves power to lower frequencies. Considering the time-domain behavior, obviously the
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(a) (b)

Figure 3.22: With respect to the full width at half maximum; in (a) bandwidth, and in (b) radiated power.

(a) (b)

Figure 3.23: With respect to the recombination time; in (a) bandwidth, and in (b) radiated power.

response is longer for larger τrec. Therefore, it is expected that the frequency response is narrower.



Chapter 4.

1D Connected Array

The major advantage of the non-dispersive time-step algorithm is in the analysis of photo-conductive connected arrays

(PCCAs). In former analysis, the photo-conductive feeds are considered completely decoupled. As such, the wave

component, excited by a feed, does not interact with any other feeds. Thus, the constant impedance approximation can

be applied to each feed individually. By extension the total radiated power is the sum of the power supplied to the slot

by each feed. However, the feeds are not completely decoupled in reality. Therefore, a power loss is expected due to

coupling. The dispersive time-step algorithm provides the advantage of modeling the mutual interaction between feeds,

and intrinsically includes the associated power loss.

The novelty of the provided analysis originates from the new non-dispersive time-step algorithm. With this point in

mind, the chapter begins by expanding the energy balance equation to multiple feeds (also referred to elements) and

subsequently providing a validation. Then, the mutual coupling is discussed, characterized, and complemented by a

discussions on the embedded admittance and efficiency. Third, analysis on the far-field and active admittance of PCCA is

provided. A brief study of the far-field of progressively excited feeds is also included. Finally, a radiated power comparison

to an array modeled using the constant impedance approximation is made.

In a connected array, the total excitation is the superposition of the excitations Iq = F{iq} at all photo-conductive

sources [28]

Ie(kx) =

Q∑
q=1

Iqe
jkx(q−Qmid)∆x , (4.1)

where ∆x is the spacing between feeds, q the feed index, and Qmid = 0.5+Q/2 denotes the middle point on the slot in

terms of elements.

4.1. Energy Balance Equation

In an array, the total radiated energy is the sum of the energy supplied by each feed, assuming lossless ground plane.

Therefore, expanding the energy balance in Eq.3.7 is trivial - the contributions of all feeds must be considered

Q∑
q=1

1

2
Vb,q

∫ t0+T

t0

iq(t)dt =

Q∑
q=1

1

2

∫ t0+T

t0

vgap,q(t)iq(t)dt+

Q∑
q=1

1

2

∫ t0+T

t0

vq(t)iq(t)dt. (4.2)

Obviously, the total supplied, dissipated, and radiated energies are the sum of all respective contributions

ESUP =

Q∑
q=1

1

2
Vb,q

∫ t0+T

t0

iq(t)dt =

Q∑
q=1

ESUP,q, (4.3a)

EDIS =

Q∑
q=1

1

2

∫ t0+T

t0

vgap,q(t)iq(t)dt =

Q∑
q=1

EDIS,q, (4.3b)

45
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Figure 4.1: 2-element 1D photo-conductive connected array between two homogeneous dielectrics.

ERAD =

Q∑
q=1

1

2

∫ t0+T

t0

vq(t)iq(t)dt =

Q∑
q=1

ERAD,q. (4.3c)

The validity of this energy balance relation is confirmed similarly to the single feed relation. First, the radiated energy

evaluated in TD is compared to the far-field evaluation. Followed by a comparison between ERAD and the difference

of supplied and dissipated energies ESUP −EDIS . This validation is performed with respect to the absorbed optical

powers and bias voltage. Each element is considered to be excited by the same optical power P̃opt = P̃opt,q and bias

voltage Vb = Vb,q for ∀q.

Completely minimizing the energy error using the same weight, for the self and mutual impedance, can be unattainable

due to the mutual impedance spectral content distribution as discussed in Chapter.2.8.3. This task becomes more

unachievable for arrays with larger element spacing and more elements, i.e. larger edge element distance corresponding

to faster mutual impedance attenuation. With this point in mind, the TD to far-field energy comparison is made for

a 2-element array of feeds with length ∆gap = 2.5 µm, biased and excited by Vb = 30 V and P̃opt = 50mW , and

at distance ∆x = 100 µm. The 2-element PCCA is shown in Fig.4.1. These parameters correspond to the least error

EE < 1%.

4.1.1. Absorbed Optical Power

A comparison between the radiated energy evaluated in TD and far-field is plotted in Fig.4.2(a) with respect to P̃opt.

The difference between supplied and dissipated energy is compared to the radiated in Fig.4.2(b). First, the three energy

evaluations have an ideal match - validating the energy balance equation for connected arrays. Moreover, similarly to

the single feed PCA, the relation between the radiated energy and optical power is generally linear with rate of change

decreasing after the saturation point.

Obviously, the radiated energy by a 2-element 1D PCCA is roughly twice the radiated energy by a single feed PCA. The

critical reader might note that these results are for ∆gap = 2.5 µm, while the single feed PCA results presented in

Chapter.3.6.2 are for ∆gap = 5 µm. However, for a laser excitation uniformly distributed across the feed’s surface, the

delta gap does not influence the current time-evolution [20]

Aq =
P̃opt,q

hfc

TL√
2πσ2

t

1

∆gapwzws
, (4.4a)

iq(t) = Aq
q2e
me

∆gapwz

ws

∫ t

−∞
e−

1
2 (

t′′−τd,q
σt

)2e−
t−t′′
τrec

∫ t

t′′
vgap,q(t

′)e−
t−t′
τs dt′dt′′, (4.4b)
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(a) (b)

Figure 4.2: Radiated energy with respect to the absorbed optical power of a 2-element photo-conductive 1D connected array;

in (a) comparison of time-domain and far-field evaluation, and in (b) difference of supplied and dissipated to radiated energy.

(a) (b)

Figure 4.3: Radiated energy with respect to the bias voltage of a 2-element photo-conductive 1D connected array;

in (a) comparison of time-domain and far-field evaluation, and in (b) difference of supplied and dissipated to radiated energy.

where the ∆gap and height wz cancel out. The delta gap changes the impedance though, but the difference in the

resistance (influencing the active power) is negligible, while in the reactance (influencing the internal to antenna load

matching) is larger at the spectrum’s tail above f ≥ 1000GHz.

4.1.2. Bias Voltage

The TD and far-field evaluations are compared in Fig.4.3(a) with respect to Vb. The radiated energy is compared to

ESUP − EDIS in Fig.4.3(b). First, the energy evaluations have an ideal match. Second, the radiated energy has a square

relation to the bias voltage, similarly to the single feed PCA. Finally, once again the energy is roughly twice the energy

radiated by a single feed antenna.

Nevertheless, the radiated energy does not correspond to the energy of a single feed PCA multiplied by the number of

feeds in larger element arrays. In reality, lower radiated power is expected due to the mutual coupling.

4.2. Mutual Coupling

The analysis of the PCCA is incomplete without a study on the mutual coupling between elements. To this end, a

photo-conductive feed (referred as q = 2) is surrounded by two unbiased photo-conductive elements (referred as q = 1

and q = 3) acting as photo-conductive loads. The feed is biased by Vb, while all elements absorb equal optical power

P̃opt = P̃opt,q for ∀q. The loads are excited simultaneously at τe,1 = τe,3, and the feed at τe,2 = 0 ps. Thus, the loads’
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Figure 4.4: Photo-conductive antenna loaded with two photo-conductive loads (in magenta) surrounding the feed (in blue).

excitation delay is defined as

∆τ = τe,1 − τe,2 = τe,3 − τe,2. (4.5)

The 3-element (photo-conductive feed surrounded by two photo-conductive loads) structure used to study the mutual

coupling is shown in Fig.4.4.

The total supplied energy to the 3-element system is solely provided by the feed’s bias source ESUP = ESUP,2. Fur-

thermore, as there are no bias fields, the photo-conductive loads’ gap voltages are vgap,1 = −v1 and vgap,3 = −v3.

Consequently, the charges in the loads are accelerated in the opposite direction to the charges in the feed - the currents i1

and i3 are opposite to i2. Referring to the energy balance in Eq.4.2, the careful reader notices that the q = 1 and q = 3

contributions to the radiated energy become negative. These terms represent the induced energy in the loads by the wave

launched from the feed

EIND,q =
1

2

∫ t0+T

t0

vq(t)iq(t)dt for q = 1, 3. (4.6)

In essence, the total radiated energy is the difference between the energy entering the slot from q = 2 and exiting from

q = 1 and q = 3. On the other hand, all contributions to the dissipated energy are positive, and these terms still represent

the dissipated energy in moving the charges across the elements. In fact, all the dissipated energy at the loads is induced

from the slot, i.e. the terms cancel out in Eq.4.2.

Naturally, the mutual coupling is highly dependent on the element spacing ∆x and excitation delay ∆τ . Therefore, the

energies defined in Eq.4.3 and antenna efficiency (without accounting for the QO link) are studied with respect to these

two parameters. In the study, the elements’ delta gaps are ∆gap = 5 µm, while the absorbed optical power and bias

voltage (at the feed) are P̃opt = 50mW and Vb = 30 V .

4.2.1. Element Spacing

The supplied, radiated, and dissipated energies are plotted in Fig.4.5(a) with respect to the element spacing. The excitation

delay is ∆τ = 0 ps. At closely spaced elements, the reflections from the loads are larger. When these reflections arrive

back at the feed, the antenna impedance (seen from the feed) changes significantly. As a result, the feed current response is

altered more. This change corresponds to higher current, and hence more energy supplied by the DC source. The current

magnitude (at the feed) is plotted in Fig.4.6(b) for ∆x = 25 µm and ∆x = 100 µm. Indeed, the current increases for

smaller element spacing.

However, there is a substantial reduction in the radiated energy and increase in the dissipated energy due to two effects.

First, more energy is induced at the loads - the wave launched (by the feed on the slot) arrives while the loads are more
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(a) (b)

Figure 4.5: In (a) supplied, radiated, and dissipated energy, and in (b) antenna efficiency with respect to the element distance.

(a) (b)

Figure 4.6: Feed response of a photo-conductive antenna loaded with two photo-conductive loads;

in (a) the voltage magnitude, and in (b) current magnitude.

active and less energy has leaked by the time of arrival. Second, the impedance mismatch between the antenna and internal

loads increases as a result of the antenna impedance change. To verify the latter point, the voltage magnitude (at the feed)

is plotted in Fig.4.6(a). The voltage is lower for smaller element spacing indicating worse matching.

The antenna efficiency is plotted in Fig.4.5(b). Naturally, the radiated energy reduction and supplied energy increase result

in lower efficiency. On the other hand, the operating frequency of the array is increased (for smaller element distance).

4.2.2. Excitation Delay

The energies are plotted in Fig.4.7(a) with respect to the excitation delay. The element spacing is ∆x = 100 µm. The

load reflections do not arrive at the feed while being active - no change in the supplied energy. Yet, as the excitation delay

approaches the time of arrival, more energy is induced at the loads. Therefore, the radiated energy decreases, and total

dissipated energy increases. The antenna efficiency is plotted in Fig.4.7(b). The larger dissipated energy in the loads

corresponds to lower efficiency.

4.2.3. Cut-Off Frequency

Before investigating impedance seen by the feed (due to the photo-conductive load interactions), it is useful to define the

cut-off frequency. In connected arrays, destructive interference occurs at the frequency f0 (cut-off frequency) at which
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(a) (b)

Figure 4.7: In (a) supplied, radiated, and dissipated energy, and in (b) antenna efficiency with respect to the excitation delay.

the element spacing is equal to half of the effective wavelength ∆x = λ0/2 [28]–[30]

f0 =
c0

2∆x
√
εr,eff

, (4.7)

where c0 is the speed of light in vacuum, and εr,eff = (εr,1 + εr,2)/2 the effective wavelength. In essence, when

considering the wavelength, the phase difference between the wave components launched by the feeds becomes ≥ 180◦.

Consequently, this behavior has also a periodicity of f0.

4.2.4. Embedded Impedance

Instead of investigating the mutual coupling effects on the voltage and current separately, the analysis can be performed by

studying directly the impedance. With this point in mind, the impedance seen from the feed (element q = 2) is defined

as embedded

Zemb =
V2

I2
. (4.8)

It is a useful parameter to characterize the effects in the far-field and power due to the interactions between the elements.

The embedded impedance is plotted in Fig.4.8 for ∆x = 25 µm and ∆τ = 0 ps. The frequency is normalized to f0.

For reference, the impedance of an unloaded photo-conductive antenna is plotted with dashed black line. Indeed, the

impedance is overall lower corresponding to less radiated power[10]. Additionally, the reactance increases up to around

f = 0.5f0 (for ∆x = 25 µm, the cut-off frequency is f0 ≃ 2400 GHz), corresponding to the larger internal to

antenna load mismatch. On the other hand, there is a peak in the impedance corresponding to larger radiated power, but

the feed does not excite this part of the spectrum sufficiently.

The embedded impedance is plotted in Fig.4.9 for ∆x = 25 µm and ∆τ = 0 ps. At larger element spacing, more power

is radiated by the wave’s time of arrival at the photo-conductive loads. Additionally, the loads are less active when the

wave arrives. Consequently, the antenna behaves closer to a unloaded infinite leaky-wave (LW) slot.

The embedded impedance is plotted in Fig.4.10 for two excitation delays and ∆x = 100 µm. For the simultaneous

excitation, the wave arrives at the loads when they are less active. As a result, the reflections are small and the structure

approximates the infinite LW slot with no loads. On the other hand, when the excitation delay approaches the time of

arrival, the loads are no longer transparent. Thus, the elements interfere constructively at 0.5f0 and destructively at f0.

These constructive and destructive interferences corresponds to impedance maximas and minimas respectively.
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(a) (b)

Figure 4.8: Embedded impedance for ∆x = 25 µm and ∆τ = 0 ps of the photo-conductive antenna loaded by two unbiased photo-conductive

loads (the dashed black line is the impedance of unloaded antenna, and the yellow dashed line is the narrow-slot approximation maximum frequency);

in (a) the resistance, and in (b) reactance.

(a) (b)

Figure 4.9: Embedded impedance for ∆x = 100 µm and ∆τ = 0 ps of the photo-conductive antenna loaded by two unbiased photo-conductive

loads (the dashed black line is the impedance of unloaded antenna); in (a) the resistance, and in (b) reactance.

(a) (b)

Figure 4.10: Embedded impedance for different ∆τ and ∆x = 100 µm of the photo-conductive antenna loaded by two unbiased photo-conductive

loads (the dashed black line is the impedance of unloaded antenna); in (a) the resistance, and in (b) reactance.
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Figure 4.11: 5-element 1D photo-conductive connected array between two homogeneous dielectrics.

4.3. Magnetic Currents

As previously defined in Eq.4.1, the total excitation is the superposition of all individual feed excitations. Therefore, the

total spectral longitudinal magnetic current is

V (kx) = Ie(kx)
sinc(kx

∆gap

2 )

D(kx)
, (4.9)

while the transverse component Mt(ky) remains the previously discussed edge-singular function in the spatial domain

corresponding to a zero-order Bessel function in the spectral domain. Therefore, the spatial longitudinal magnetic current

becomes

vx =
1

2π

∫ ∞

−∞
Ie(kx)

sinc(
∆gap

2 kx)

D(kx)
e−jkxxdkx. (4.10)

The longitudinal magnetic currents are studied for simultaneously and progressively excited 5-element 1D PCCA shown

in Fig.4.11.

4.3.1. Simultaneous Excitation

The magnetic currents are plotted in Fig.4.12 for simultaneous feed excitation. The x-coordinate is normalized to the

effective wavelength of the investigated frequency. For f = 0.2f0 in Fig.4.12(a), the distance between the edge elements

is small with significant magnetic currents after the edge elements. Thus, the dominant radiation mechanism is expected

to be the LW mode. In Fig.4.12(b), the edge-to-edge distance is no longer small. There is concentration of magnetic

currents at the origin, and after the edge elements. Consequently, the space and LW modes are both dominant radiation

mechanism. Finally, for f = f0 in Fig.4.12(c), the wave components from each feed interfere destructively resulting in

lower radiated power.

4.3.2. Progressive Excitation

In [21], a distributed excitation of photo-conductive feeds is proposed, in which the feeds are successively excited as the

wave arrives. These structures result in high losses due to the high mutual coupling as seen in Chapter.4.2.2. However,

they provide a method to reinforce the LW beam in the direction of excitation. With this point in mind, the excitation

delay is defined as

∆τ = τe.,q+1 − τe,q. (4.11)
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(a)

(b)

(c)

(d)

Figure 4.12: Longitudinal magnetic currents of the 5-element simultaneously excited array with element spacing ∆x = 100 µm;

in (a) f = 0.2f0, in (b) f = 0.5f0, in (c) f = f0, and in (d) f = 2f0.
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(a)

(b)

(c)

(d)

Figure 4.13: Longitudinal magnetic currents of the 5-element progressively excited array with element spacing ∆x = 100 µm;

in (a) f = 0.2f0, in (b) f = 0.5f0, in (c) f = f0, and in (d) f = 2f0.

The magnetic currents of the 5 element progressively excited array are plotted in Fig.4.13. Evidently, below f ≤ 0.5f0, the

wave adds constructively at the feeds reinforcing the magnetic currents in the direction of successive excitation. On the

other hand, destructive interference appears for f = f0. Consequently, the magnetic currents in the successive excitation

direction are lower than in the opposite direction.
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4.4. Far-Field

Similarly to the infinite LW slot analysis, the far-field is evaluated with Eq.3.13 - spectral convolution of G̃EM(kx, ky)

and M⃗(kx, ky) = V (kx)Mt(ky)x̂ at the stationary phase point. In contrast to the infinite slot where the main mode is

the LW, in connected arrays the space wave (SW) is expected to be dominant [28].

The far-fields of the 5-element (shown in Fig.4.11) and a 10-element 1D PCCA are compared. All feeds are excited by an

optical pulse with P̃opt,q = P̃opt = 50mW , and are biased with Vb,q = Vb = 30 V for ∀q. The element spacing is

∆x = 100 µm. Thus, the cut-off frequency is f0 ≃ 594GHz.

4.4.1. Grating Lobes

The array is a periodic structure. As such, more than one maxima beam can occur in either dielectric when the element

spacing is larger than the wavelength (in this dielectric). The secondary (other than the main) maxima beams are known

as grating lobes [29][10][31]. This behavior is enforced by the Poisson summation and is analogues to aliasing in the DFT -

spectrum folding when the sampling period is less than twice the bandwidth. Therefore, grating lobes in the i medium

are expected after

fGL =
c0

∆x
√
εr,i

. (4.12)

For an element spacing ∆x = 100 µm, the grating lobe frequency in the higher density medium is fGL ≃ 876GHz.

4.4.2. Simultaneous Excitation

The electric far-field in the higher permittivity i = 2 medium is plotted in Fig.4.14 for simultaneously excited feeds. First,

the 10-element array has higher gain and around 3 dB more directivity than the 5-element. Second, grating lobes are

observed for f ≥ fGL in Fig.4.14(d-e). However, secondary maximas are also observed in Fig.4.14(b-c). These beams are

not grating lobes, but are associated to the LW mode. In fact, the LW arises due to the slot propagating wave after the

edge elements seen in Fig.4.12. Finally, at low frequencies and for small arrays, the far-field approximates the one radiated

by an infinite LW slot as observed in Fig.4.14(a). This behavior is caused by the small edge-to-edge element distance (in

terms of the wavelength). In essence, the wave sees the feeds as one element resulting in a dominant LW mode.

4.4.3. Progressive Excitation

The far-field is plotted in Fig.4.15 for progressively excited feeds. Evidently, the LW beam in the direction of successive

excitation is reinforced for frequency below f = 0.2f0 and f = 0.5f0 as seen in Fig.4.15(a-b). The beam in the

opposite direction is decreased due to destructive interference. However, at f = f0, destructive addition occurs at

each successive feed. Therefore, the beam in the successive excitation direction is no longer constructively reinforced as

observed in Fig.4.15(c). In fact, the beam in the opposite direction has negligibly higher magnitude. Finally, similarly to

the simultaneously excited array, grating lobes are observed in Fig.4.15(d-e). The two LW beams have comparatively the

same magnitude in Fig.4.15(e) due to the same mechanism as for f = f0 and periodicity f0.



56 Chapter 4. 1D Connected Array

(a) (b)

(c) (d)

(e)

Figure 4.14: Electric far-field of 5 and 10 element simultaneously excited arrays with element spacing ∆x = 100 µm;

in (a) f = 0.2f0, in (b) f = 0.5f0, in (c) f = f0, in (d) f = 1.5f0, and in (e) f = 2f0.
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(a) (b)

(c) (d)

(e)

Figure 4.15: Electric far-field of 5 and 10 element progressively excited arrays with element spacing ∆x = 100 µm;

in (a) f = 0.2f0, in (b) f = 0.5f0, in (c) f = f0, in (d) f = 1.5f0, and in (e) f = 2f0.
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4.5. Active Impedance

The active impedance is analogous to the embedded in the mutual coupling study. In other words, the impedance seen

from feed q is defined as active

Zact,q =
Vq

Iq
. (4.13)

The active impedance of the 5-element simultaneously excited array is plotted in Fig.4.16. The frequency is normalized to

f0. First, the symmetric feeds with respect to the origin have the same impedance, i.e. the impedance at the edge element

q = 1 equals the one at the other edge element q = 5, and at element q = 2 to q = 4.

Second, drops (or minimas) in the impedance are observed (marked with magenta). These drops correspond to less

radiated power [29][10]. The number of minimas corresponds to the number of unique distances between feeds. For

example, the central feed interacts with elements located at 100 µm and 200 µm, thus 2 minimas are expected and

observed. On the other hand, the edge feeds interact with elements at 4 different distance, thus 4 minimas are observed.

The drops coinciding to larger distances are smaller in magnitude, because elements at larger distance are less coupled.

Further, these drops should correspond to multiples of the cut-off frequency f0. However, in large array structures, the

interactions between the feeds’ wave components is more complex; as a result, the impedance drops shift. In fact, for a

3-element structure, the minimas are approximately at f0 as seen in Fig.4.10.

Third, in the internal feeds, some of the minimas correspond to negative impedance. Essentially, at these frequencies

more power is induced (at the feed) than supplied (to the slot). However, the total power in the slot (at these frequencies)

is still positive, i.e. no negative net balance. Thus, as expected, all of the power is supplied by the feeds. Finally, the active

impedance is initially capacitive, then inductive. This behavior is similar to the one observed in [28].

4.6. Power Spectral Density

To validate the previous observations, the power spectral density (PSD) at the feeds is studied. To that end, the PSD at

feed q is

Pq =
1

2
ℜ{VqI

∗
q }. (4.14)

Therefore, the total radiated PSD (assuming no ground plane losses) is simply the sum of the feed PSDs

P =

Q∑
q=1

Pq. (4.15)

The feed PSD of the 5-element simultaneously excited array is plotted in Fig.4.17. First, the symmetric feeds (with respect

to the origin) have the same PSD. This behavior is similar to and expected from the active impedance results. Second, the

active impedance minimas indeed correspond to drops in the radiated power. In addition, the negative active impedance

correlates to induced power from the slot to the feed.

The total radiated PSD is plotted in Fig.4.18. The total power net balance is positive satisfying the energy conservation -

power is solely supplied by the feeds. As a final remark, the array works well below 0.5f0, but has a significant decrease in

performance above this frequency.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.16: Active impedance of the 5-element simultaneously excited array (drops in the resistance are marked with dashed magenta lines);

in (a-b) the resistance and reactance of edge element q = 1, in (c-d) of element q = 2, in (e-f) of center element q = 3, in (g-h) of element q = 4,

and in (i-j) of edge element q = 5.
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(a) (b)

(c) (d)

(e)

Figure 4.17: Power spectral density of the 5-element simultaneously excited array (drops in the power are marked with dashed magenta lines);

in (a) at edge element q = 1, in (b) at element q = 2, in (c) at center element q = 3, in (d) at element q = 4, and in (e) at edge element q = 5.

Figure 4.18: Total power spectral density of the 5-element simultaneously excited array.
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Conclusion

To design a more dispersive and efficient photo-conductive antennas (PCAs), an equivalent circuit tool is required. In the

past, a frequency-domain circuit was proposed, but it does not represent well the PCA behavior over the whole spectrum.

This inability arises from the non-linear differential equation governing the current’s time evolution. Time-domain circuits

were also proposed, but they required a posteriori parameter calibration making them unsuitable for use during design.

Fortunately, a new time-domain Norton equivalent circuit that does not require parameter calibration was proposed

recently. Needless to say, the circuit requires knowledge of the antenna impedance impulse response. Unfortunately,

there is no time-domain analytical expression for the impulse response of the studied antenna structures - the infinite

leaky-wave (LW) slot and 1D connected array. Consequently, spectral analysis is used determine the antenna impedance in

the frequency-domain. The impedance impulse response is then recovered with the inverse Fourier transform (IFT). The

time-domain response is used in a time-step algorithm to evaluate the voltage and current across the photo-conductive

feed. This algorithm is derived through numerical methods, more specifically by representing the voltage and current as

sum of rectangular basis functions. Although this time-step procedure was proposed previously, its properties were never

studied. Moreover, the algorithm was never used in the analysis of the infinite LW slot and 1D connected array.

The thesis provides a derivation of a time-step algorithm using directly the antenna impedance impulse response. This

algorithm showed poor performance. The performance issue is proved to caused by the Gibbs oscillations arising from

the frequency-domain impedance discontinuity at the narrow-slot approximation limit. The performance is significantly

improved by using a weight function to decrease these discontinuities. A brief study showed that the best performing

weight function is the one proposed in previous work - squared antenna admittance. Moreover, detailed characterization

of the weight time-step algorithm is conducted. In fact, during the span of this work, an additional numerical error in the

algorithm’s outputs was discovered. The observed error is smaller in antennas with smaller feeds. Its source is identified as

the DC singularity in the antenna admittance. Error minimization is achieved by truncating the weight function from

DC to a minimum evaluated frequency. Increasing the minimum frequency decreases the voltage and power error. On

the other hand, the energy error is decreased until a certain point. After this point, the time-domain impulse responses

are altered significantly re-introducing error. Unfortunately, analytical expression for the minimum frequency is not

derived due to the non-linearities. Next, the error analysis is extended to 1D connected arrays, in which the self and

mutual-impedance are multiplied with the same weight function. Unfortunately, the spectral content distribution of the

mutual impedance limits the error minimization. In other words, the numerical error cannot be sufficiently minimized in

large arrays.

As a next step, a comprehensive analysis of the infinite LW slot is performed. At its start, a novel time-domain energy

balance equation is derived using a switched capacitor formalism for the photo-conductive feed. This new equation

is verified by comparing the far-field and time-domain energy. Further, a comparison between the fully dispersive

approximation and the newly enabled dispersive analysis is conducted. The comparison shows that the dispersive

approximation overestimates the radiated power at low frequencies and in the spectrum’s tail. Next, procedures to

evaluate the magnetic currents and far-fields in frequency and time-domain are discussed. Using these procedures, the

radiated energy, efficiency, and bandwidth of the PCA are characterized with respect to the absorbed optical power, bias

voltage, laser’s full width at half maximum (FWHM), and recombination time. The results show that the optical power

should be chosen at the saturation point and bias close to the photo-conductor’s breakdown voltage to maximize the

61
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radiated power and antenna efficiency. Additionally, higher recombination times move the power to lower frequencies.

For FWHM much shorter than the recombination time, increasing the FWHM only reduces the power in the spectrum’s

tail due to increasing internal to antenna load mismatch.

To complete the overall study, the 1D photo-conductive connected array (PCCA) is analyzed. Initially, the energy balance

equation is extended to multiple feeds and verified as before. During this verification, it is shown that the radiated energy

relation to the optical power and bias is the same as in the infinite LW slot. However, as expected, more power is radiated

due to the higher number of feeds. This radiated power might not equal the number of feeds multiplied by the power of

a single feed infinite slot due to mutual coupling. Therefore, the mutual coupling is investigated to provide improve the

PCCA design. With this point in mind, closely spaced elements have high mutual coupling increasing the dissipated

power and reducing efficiency. In addition, successively excited elements also have high mutual coupling. The embedded

impedance confirms the previous mutual coupling observations. Next, the far-fields of simultaneously excited arrays

show mostly a dominant space wave (SW) with a less dominant LW mode below the grating lobe frequency. However,

for small arrays, at low frequencies the dominant mode is the LW due to the short edge-to-edge element distance in terms

of the wavelength. Additionally, the LW beam reinforcing behavior of progressively excited arrays is verified. Finally,

the active impedance and power spectral density are studied. The results show good performance below half cut-off

frequency, but significantly reduced performance above.

All things considered, if more optical power is available than needed to saturate a single feed, the laser excitation should be

divided to multiple feeds. Exciting the photo-conductor at the saturation point provides the best efficiency with respect to

used optical power. Moreover, a bias voltage near the photo-conductor’s breakdown voltage maximizes the radiated power.

The cut-off frequency’s half point should be chosen slightly above the required bandwidth. Ultimately, decreasing the

element spacing increases the cut-off frequency, however, it also increases the mutual coupling and associated dissipation

losses - a trade-off that should be considered. Larger recombination time increases the radiated power, but greatly reduces

the bandwidth. The FWHM should be chosen as short as possible to improve the matching at the spectrum’s tail. On the

other hand, the spectrum’s main part is not influence by the FWHM, if it is much shorter than the recombination time.

5.1. Future Work

The discovered numerical error is a significant limitation to the algorithm’s performance and PCA analysis. Although the

proposed error minimization procedure works well for the infinite LW slot, it is impeded by the mutual impedance in the

PCCA analysis. Therefore, useful future research points concern improving the algorithm’s performance, and include:

• detailed investigation on more weight functions. The brief study provided in this thesis investigates functions that

do not alter the impedance phase, i.e. purely real functions. However, the squared admittance does contribute to a

phase change, and overall works well. Consequently, it is worth investigating the performance of not purely real

weights.

• investigation on different weights for the self and mutual impedance. The spectral content distribution of the

mutual impedance limits the algorithm’s performance when the same weight is used. Thus, it is useful to investigate

the feasibility and performance of an algorithm with different self and mutual weights.

• separating large feeds to smaller components. The error significantly decreases in feeds with smaller length.

Although it might be undesirable to use smaller feeds in the design, this advantage can still be used in the design

phase. Hence, it is beneficial to investigate the feasibility and performance when a large feed is described as the

superposition of many smaller feeds next to each other.

• simulating the impedance using a full-wave simulator. The used analytical expression is limited to the maximum

frequency at which the quasi-TEM mode is dominant. Using a full-wave simulator, the contributions of all modes
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are considered. Although it is unfeasible to simulate the impedance over all frequencies, it might be simulated until

the Nyquist frequency. In this case, it is expected that there will be no discontinuity. Yet, it must be mentioned

that the higher frequencies folded onto the spectrum will not be included.

• deriving analytical expression for higher order modes. Similarly, the impedance at higher frequencies can also be

estimated by deriving an analytical solution for the higher order modes.

• analytical expression for the antenna impulse response. The strength of the algorithm comes from a good knowledge

of the time-domain antenna impulse response. Consequently, it is useful to derive a time-domain analytical solution

for the response.

A detailed analysis of the photo-conductive infinite slot is provided. However, this study can be complemented by:

• extending the analysis to air cavity enhanced structures. In reality, PCAs are enhanced through a LW air cavity.

Thus, it is useful to expand the analysis to include these structures.

• extending the analysis to a PCA with a lens. Similarly as the air cavity, PCAs are used with lenses to improve the

directivity. Hence, it is also useful to expand the analysis to include a lens.

• comparing the analysis results to measurements. To verify the validity and performance of this analysis with respect

to the constant impedance approximation, the estimated radiated power should be compared to measurements.

For 1D connected arrays, studies on the radiated power, mutual coupling, far-fields, and array performance are performed.

This analysis can be further extended by:

• including air cavity and lens. Similarly to the infinite LW slot, PCCAs are enhanced using air cavity and lens. Thus,

it is useful to characterize arrays with these structures.

• comparing it to measurements. The results should be compared to measurements, in order to verify the accuracy

of the established analysis.

• investigation on the recombination time’s influence on the mutual coupling. Longer recombination times should

results in higher mutual coupling due to the longer time-domain current response. Therefore, it is beneficial to

investigate its influence on the mutual coupling.

• considering 2D structures. As a groundwork, 1D array is studied. However, in reality, PCCAs are designed as 2D

structures. Hence, the analysis should be expanded to 2D arrays.





Chapter A.

Discretized FT, IFT, & Convolution

A general Fourier transform (FT) pair discretized with rectangular basis functions in both domains is defined as

x(t) =

∞∑
n=−∞

xn rect∆t
(t− tn), (A.1a)

X(f) =

∞∑
k=−∞

Xk rect∆f
(f − fk). (A.1b)

A.1. Fourier Transform

Substituting the time-domain representation in the Fourier transform gives

X(f) =

∫ ∞

−∞
x(t)e−j2πftdt =

∫ ∞

−∞

∞∑
n=−∞

xn rect∆t
(t− tn)e

−j2πftdt. (A.2)

The n-th basis function is constant and bounded to tn −∆t/2 ≤ t ≤ tn +∆t/2, thus

X(f) =

∞∑
n=−∞

xn

∫ tn+∆t/2

tn−∆t/2

e−j2πftndt =

∞∑
n=−∞

xne
−j2πftn∆t. (A.3)

Both domains are discretized, and hence are periodic - the opposite domain is periodic due to Poisson summation. That is

to say, the frequency-domain is periodic because the function is discrete in time, and vice versa. Therefore, both domains

have periodicity of N -samples (the domains have equal number of samples), as such

Xk = ∆t

N−1∑
n=−0

xne
−j2πfktn . (A.4)

The frequency and time samples are fk = k/N∆t and tn = t0 + n∆t respectively, therefore

Xk = ∆t

N−1∑
n=−0

xne
−j2π k

N∆t
(t0+n∆t) = ∆te

−j2πfkt0

N−1∑
n=−0

xne
−j2π k

N n, (A.5)

where the discrete Fourier transform is recognized

Xk = ∆te
−j2πfkt0 DFT{x}. (A.6)
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A.2. Inverse Fourier Transform

Substituting the frequency-domain representation in the inverse Fourier transform gives

x(t) =

∫ ∞

−∞
X(f)ej2πftdf =

∫ ∞

−∞

∞∑
k=−∞

Xk rect∆f
(f − fk)e

j2πftdf. (A.7)

Again, the k-th basis function is constant and bounded to fk −∆f/2 ≤ f ≤ fk +∆f/2

x(t) =

∞∑
k=−∞

Xk

∫ fk+∆f/2

fk−∆f/2

ej2πfktdf =

∞∑
k=−∞

Xke
j2πfkt∆f . (A.8)

Considering the periodicity of both domains, the inverse Fourier transform is represented as

xn = ∆f

N−1∑
k=−0

Xke
j2πfktn . (A.9)

The frequency and time samples are fk = k/N∆t and tn = t0 + n∆t respectively, therefore

xn = ∆f

N−1∑
k=−0

Xke
j2π k

N∆t
(t0+n∆t) = ∆f

N−1∑
k=−0

Xke
j2πfkt0ej2π

k
N n. (A.10)

The frequency-step is ∆f = 1/N∆t, consequently

xn =
1

N∆t

N−1∑
k=−0

Xke
j2πfkt0ej2π

k
N n =

1

∆t
IDFT{Xke

j2πfkt0}, (A.11)

where the inverse discrete Fourier transform is recognized.

A.3. Convolution

Substituting the time-domain representation in the continuous time convolution

(x ∗ h)(t) =
∫ ∞

−∞
x(t′)h(t− t′)dt′ =

∫ ∞

−∞

∞∑
n=−∞

xn rect∆t
(t′ − tn)h(t− t′)dt′ (A.12)

Similarly to before, the n-th basis function is constant and bounded to tn − ∆t/2 ≤ t ≤ tn + ∆t/2, while the

convolution is evaluated at time t = tm

(x ∗ h)(tm) =

∞∑
n=−∞

xn

∫ tn+∆t/2

tn−∆t/2

rect∆t
(t′ − tn)h(tm − t′)dt′ =

∞∑
n=−∞

xnh(tm − tn)∆t. (A.13)

Therefore, the discrete-time convolution is

(x ∗ h)(tm) = ∆t

∞∑
n=−∞

xnhm−n. (A.14)



Chapter B.

Derivations of Time-Step Algorithms

The update rule for the antenna load current’s time evolution is the same for every algorithm. As such, it is useful to

derive it first. The time evolution is

i(t) = A
q2e
me

∆gapwz

ws

∫ t

−∞
e−

1
2 (

t′′−τe
σt

)2e−
t−t′′
τrec

∫ t

t′′
vgap(t

′)e−
t−t′
τs dt′dt′′ (B.1)

as a response to an optical excitation at time τe. The parameter A is the distribution amplitude of the electron density

(released electrons number) in a unit of volume during one laser pulse

A =
P̃opt

hfc

T√
2πσ2

t

1

∆gapwswz
(B.2)

with a unit of 1/m3s. The time-discretized current is

in = A
q2e
me

∆gapwz

ws
∆2

t

n∑
m=Ni

e−
1
2 (

tm−τe
σt

)2e−
tn−tm
τrec

n∑
q=m

vgap,(q)e
− tn−tm

τs , (B.3)

in which the double sum property

n∑
m=Ni

am

n∑
q=m

bq =

n−1∑
m=Ni

am

n−1∑
q=m

bq + bn

n∑
m=Ni

am (B.4)

is applied. Therefore, after performing trivial algebraic steps, the current can be written in terms of the previous time

index current as

in = e−
∆t

τrec e−
∆t
τs in−1 + vgap,(n)∆tGpcm,(n), (B.5)

where the property tn = tn−1 + ∆t is used, and Gpcm,(n) is the conductance at time tn of the photo-conductive

material

Gpcm,(n) = A
q2e
me

∆gapwz

ws
∆t

n∑
m=Ni

e−
1
2 (

tm−τe
σt

)2e−
tn−tm
τrec . (B.6)

Writing the gap voltage in terms of the bias and transient voltages results in the update rule for the current across the

photo-conductive feed

in = e−
∆t

τrec e−
∆t
τs in−1 + (Vb − vn)∆tGpcm,(n). (B.7)

For the first non-zero index, the update rule is

iNi = (Vb − vNi)∆tGpcm,(Ni). (B.8)

67



68 Appendix B. Derivations of Time-Step Algorithms

B.1. Fully Dispersive Time-Step Algorithm

For a fully dispersive antenna, the voltage current relation is

v(t) =

∫ ∞

−∞
i(t′)Rantδ(t− t′)dt′ = Ranti(t), (B.9)

For a discretized domain this relation is represented as

vn = Rantin. (B.10)

Substituting Eq.B.7 gives

vn = e−
∆t

τrec e−
∆t
τs Rantin−1 + VbRant∆tGpcm,(n) − vnRant∆tGpcm,(n). (B.11)

Therefore, the voltage update rule is

vn =
e−

∆t
τrec e−

∆t
τs in−1 +∆tVbGpcm,(n)

1/Rant +∆tGpcm,(n)
. (B.12)

The initial conditions are

vNi =
∆tVbGpcm,(Ni)

1/Rant +∆tGpcm,(Ni)
. (B.13)

B.2. Impedance Time-Step Algorithm

The time-domain voltage is given by the convolution of the antenna impedance impulse response and current

v(t) = (zant ∗ i)(t) =
∫ ∞

−∞
i(t′)zant(t− t′)dt′. (B.14)

Therefore the discretized-time relation is

vn = ∆t

∞∑
m=−∞

imzant,(n−m), (B.15)

where n denotes the sample at time step tn. Since the antenna is a causal system, and assuming the current is negligible

before time step tNi

zant,(n<0) = 0 Ω/s, (B.16a)

in<Ni = 0 A. (B.16b)

Applying these properties, simplifies the convolution to

vn = ∆t

n∑
m=Ni

zant,(n−m)im = ∆tzant,(0)in +∆t

n−1∑
m=Ni

zant,(n−m)im. (B.17)
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Finally, substituting Eq.B.7 in Eq.B.17 gives

vn = e−
∆t

τrec e−
∆t
τs ∆tzant,(0)in−1 + (Vb − vn)∆

2
t zant,(0)Gpcm,(n) +∆t

n−1∑
m=Ni

zant,(n−m)im. (B.18)

After performing trivial algebraic steps, the voltage update rule is derived as

vn =
e−

∆t
τrec e−

∆t
τs ∆tzant,(0)in−1 + Vb∆

2
t zant,(0)Gpcm,(n) +∆tCn

1 + ∆2
t zant,(0)Gpcm,(n)

, (B.19)

where

Cn =

n−1∑
m=Ni

zant,(n−m)im (B.20)

describes the memory effects of the antenna. For the first non-zero index, the update rule is

vNi
=

Vb∆
2
t zant,(0)Gpcm,(Ni)

1 + ∆2
t zant,(0)Gpcm,(Ni)

, (B.21)

B.3. Admittance Time-Step Algorithm

The time-domain current is given by the convolution of the antenna admittance impulse response and voltage

i(t) = (yant ∗ v)(t) =
∫ ∞

−∞
v(t′)yant(t− t′)dt′. (B.22)

Therefore the discretized-time relation is

in = ∆t

∞∑
m=−∞

vmyant,(n−m). (B.23)

Applying causality and zero initial conditions, the current becomes

in = ∆t

n∑
m=Ni

vmyant,(n−m) = ∆tyant,(0)vn +∆t

n−1∑
m=Ni

vmyant,(n−m). (B.24)

Substituting Eq.B.7, the relation is then

e−
∆t

τrec e−
∆t
τs in−1 + (Vb − vn)∆tGpcm,(n) = ∆tyant,(0)vn +∆t

n−1∑
m=Ni

vmyant,(n−m). (B.25)

By rearranging this equation, the update rule is derived as

vn =
e−

∆t
τrec e−

∆t
τs in−1 +∆tVbGpcm,(n) −∆tCn

∆tyant,(0) +∆tGpcm,(n)
, (B.26)

with a first non-zero index

vNi
=

Vb

yant,(0)/Gpcm,(Ni) + 1
. (B.27)
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B.4. Weight Time-Step Algorithm

The voltage-current relation for an algorithm with weight function is given by

(w ∗ v)(t) = (h ∗ i)(t). (B.28)

When time-discretized, and with applied causality and zero initial conditions, the relation becomes

∆tw0vn +∆t

n−1∑
m=Ni

wn−mvm = ∆th0in +∆t

n−1∑
m=Ni

hn−mim. (B.29)

Rearranging the equation gives

w0vn = h0in + Cn, (B.30)

where

Cn =

n−1∑
m=Ni

(hn−mim − wn−mvm) (B.31)

describes the memory effects. Substituting Eq.B.7 in Eq.B.30 gives

w0vn = h0e
− ∆t

τrec e−
∆t
τs in−1 +∆th0VbGpcm,(n) −∆th0vnGpcm,(n) + Cn. (B.32)

Therefore, the update rule is

vn =
e−

∆t
τrec e−

∆t
τs h0in−1 +∆th0VbGpcm,(n) + Cn

w0 +∆th0Gpcm,(n)
, (B.33)

with a firt non-zero index

vNi
=

∆th0VbGpcm,(Ni)

w0 +∆th0Gpcm,(Ni)
. (B.34)

B.5. Weight Algorithm for Connected Array

Extending the weight time-step algorithm to multiple feeds is taxing but trivial. The main consideration is that the relation

is a matrix equation describing the interactions between the feeds. The memory effects should take these interaction into

account, thus at feed q, they are described by

Cq,(n) =

n−1∑
m=Ni

(−wn−mvq,(m) +

Q∑
p=1

hqp,(n−m)ip,(m)). (B.35)

It can be shown that the update rule is a matrix equation

vn = (w0 +∆th0Gpcm,(n))
−1(e−

∆t
τrec e−

∆t
τs h0in−1 +∆th0Gpcm,(n)V b +Cn), (B.36a)

in = e−
∆t

τrec e−
∆t
τs in−1 + (V b − vn)∆tGpcm,(n). (B.36b)

For the first non-zero sample, the update rules are

vn = (w0 +∆th0Gpcm,(n))
−1∆th0Gpcm,(n)V b, (B.37a)
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in = (V b − vn)∆tGpcm,(n). (B.37b)

The voltage, current, and memory effect Q× 1 vectors contain the respective quantities at sample n

vn =



v1,(n)

.

.

.

vQ,(n)


, in =



i1,(n)

.

.

.

iQ,(n)


, and Cn =



C1,(n)

.

.

.

CQ,(n)


. (B.38)

The bias voltage is constant in time and its Q× 1 vector is

V b =



Vb,1

.

.

.

Vb,Q


. (B.39)

The photo-conductive conductance might be different at each feed depending on the excitation time, and its Q×Q

matrix at sample n is diagonal (the conductance is feed specific)

Gpcm,(n) =



G1
pcm,(n) 0 . . . 0

0 G2
pcm,(n) . . . 0

.

.

.

.
.
.

.

.

.

0 0 . . . GQ
pcm,(n)


. (B.40)

The placeholder function matrix is a Q×Q Toeplitz

hn =



h11,(n) h12,(n) . . . h1Q,(n)

h21,(n) h22,(n) . . . h2Q,(n)

.

.

.

.
.
.

.

.

.

hQ1,(n) hQ2,(n) . . . hQQ,(n)


. (B.41)

Only the placeholder matrix at the first index n = 0 is required for the algorithm. Finally, in an algorithm using the same

weight for the self and mutual impedance, the weight matrix is

wn = wnI, (B.42)

where I is Q×Q identity matrix.





Chapter C.

Study of Weight Functions

The weight functions are chosen purely real and positive, as such, the phase of the placeholder function has the same

phase as the antenna impedance

H = |Zant|ej∠Zant |W |ej0 = |ZantW |ej∠Zant . (C.1)

C.1. Inverse Frequency

The first studied function is the inverse frequency

W =
1

f
. (C.2)

(a) (b)

(c)

Figure C.1: Frequency-domain of inverse frequency weight and placeholder function; in (a) real part of placeholder function,

in (b) imaginary part of placeholder function, and in (c) weight function.
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(a) (b)

Figure C.2: Time-domain impulse responses (using inverse frequency); in (a) placeholder, in (b) weight.

(a) (b)

Figure C.3: Impedance comparison (using inverse frequency); in (a) the resistance, in (b) reactance.

(a) (b)

(c) (d)

Figure C.4: Voltage error (using inverse frequency); in (a) voltage magnitude comparison, in (b) phase comparison,

in (c) the voltage magnitude error, and in (d) phase error.



C.2. Triangular 75

(a) (b)

Figure C.5: Power error (using inverse frequency); in (a) active power spectral density comparison, in (b) the error.

C.2. Triangular

The second investigated function is the triangular

W = max(1− f

fmax
, 0), (C.3)

with fmax equal to the maximum frequency at which the quasi-TEM mode is dominant.

(a) (b)

(c)

Figure C.6: Frequency-domain of triangular weight and placeholder function; in (a) real part of placeholder function,

in (b) imaginary part of placeholder function, and in (c) weight function.
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(a) (b)

Figure C.7: Time-domain impulse responses (using triangular function); in (a) placeholder, in (b) weight.

(a) (b)

Figure C.8: Impedance comparison (using triangular function); in (a) the resistance, in (b) reactance.

(a) (b)

(c) (d)

Figure C.9: Voltage error (using triangular function); in (a) voltage magnitude comparison, in (b) phase comparison,

in (c) the voltage magnitude error, and in (d) phase error.
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(a) (b)

Figure C.10: Power error (using triangular function); in (a) active power spectral density comparison, in (b) the error.

C.3. Inverse Exponential

Third, inverse exponential is investigated

W = e−αf , (C.4)

where

α = − ln 0.01

fmax
(C.5)

is chosen such that to multiple the maximum frequency (at which the quasi-TEM mode is dominant) by 0.01.

(a) (b)

(c)

Figure C.11: Frequency-domain of inverse exponential weight and placeholder function; in (a) real part of placeholder function,

in (b) imaginary part of placeholder function, and in (c) weight function.
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(a) (b)

Figure C.12: Time-domain impulse responses (using inverse exponential); in (a) placeholder, in (b) weight.

(a) (b)

Figure C.13: Impedance comparison (using inverse exponential); in (a) the resistance, in (b) reactance.

(a) (b)

(c) (d)

Figure C.14: Voltage error (using inverse exponential); in (a) voltage magnitude comparison, in (b) phase comparison,

in (c) the voltage magnitude error, and in (d) phase error.
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(a) (b)

Figure C.15: Power error (using inverse exponential); in (a) active power spectral density comparison, in (b) the error.

C.4. Butterworth Filter Envelope

Finally, the performance of a Butterworth filter envelope is studied inverse exponential is investigated

W = |
n∏

k=1

1

jf/fc − ejπ
2k+n−1

2n

|, (C.6)

where the cut-off frequency fc = 1500GHz, and the filter order n = 5.

(a) (b)

(c)

Figure C.16: Frequency-domain of Butterworth filter envelope weight and placeholder function; in (a) real part of placeholder function,

in (b) imaginary part of placeholder function, and in (c) weight function.



80 Appendix C. Study of Weight Functions

(a) (b)

Figure C.17: Time-domain impulse responses (using Butterworth filter envelope); in (a) placeholder, in (b) weight.

(a) (b)

Figure C.18: Impedance comparison (using Butterworth filter envelope); in (a) the resistance, in (b) reactance.

(a) (b)

(c) (d)

Figure C.19: Voltage error (using Butterworth filter envelope); in (a) voltage magnitude comparison, in (b) phase comparison,

in (c) the voltage magnitude error, and in (d) phase error.
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(a) (b)

Figure C.20: Power error (using Butterworth filter envelope); in (a) active power spectral density comparison, in (b) the error.
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