
 
 

Delft University of Technology

Learning Structured Sparsity for Efficient Nanopore DNA Basecalling Using Delayed
Masking

Frensel, Mees; Al-Ars, Zaid; Peter Hofstee, H.

DOI
10.1145/3698587.3701357
Publication date
2024
Document Version
Final published version
Published in
BCB '24

Citation (APA)
Frensel, M., Al-Ars, Z., & Peter Hofstee, H. (2024). Learning Structured Sparsity for Efficient Nanopore DNA
Basecalling Using Delayed Masking. In BCB '24: Proceedings of the 15th ACM International Conference on
Bioinformatics, Computational Biology and Health Informatics Article 12 Association for Computing
Machinery (ACM). https://doi.org/10.1145/3698587.3701357
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3698587.3701357
https://doi.org/10.1145/3698587.3701357


Learning Structured Sparsity for Efficient Nanopore DNA
Basecalling Using Delayed Masking

Mees Frensel

meesfrensel@gmail.com

Delft University of Technology

Delft, The Netherlands

Zaid Al-Ars

Z.Al-Ars@tudelft.nl

Delft University of Technology

Delft, The Netherlands

H Peter Hofstee

hofstee@us.ibm.com

IBM/TU Delft

Austin, Texas, USA

Abstract
High accuracy nanopore basecalling uses large deep neural net-

works, requiring powerful GPUs, which is undesirable for sequenc-

ing experiments outside the lab. Research has shown that this can

be circumvented by using smaller models to increase efficiency

as well as basecalling speed. However, this comes at the cost of

reduced accuracy, going against the trend of increasingly more

complex models to extract the highest possible accuracy out of

the source data. We propose learning structured sparsity during

model training to find an improved trade-off between accuracy and

model size, and thus basecalling speed. Our work introduces an

improved pruning method with a delayed masking scheduler and

removes redundant masks, saving compute, and is optimized for

the basecaller training process. We find that the model size can

be reduced by up to 21× with a reduction in match rate of 0.1% to

1.3% compared to Bonito-HAC, using a standardized benchmarking

method. Our results indicate that the size of basecalling models

can be reduced drastically without affecting accuracy, as long as

researchers use appropriate training methods. Furthermore, our

work helps democratize nanopore DNA sequencing, broadening

the reach and impact of this technology.

The code with the masking mechanism to reproduce our results

is available at https://github.com/meesfrensel/efficient-basecallers.

CCS Concepts
• Computing methodologies→ Neural networks; Regulariza-
tion; • Applied computing → Computational genomics.

Keywords
Recurrent neural networks, Deep neural networks, Learning sparse

models, Model compression, Pruning, Nanopore sequencing, Base-

calling, Genomics

ACM Reference Format:
Mees Frensel, Zaid Al-Ars, and H Peter Hofstee. 2024. Learning Structured

Sparsity for Efficient Nanopore DNA Basecalling Using Delayed Masking. In

15th ACM International Conference on Bioinformatics, Computational Biology
and Health Informatics (BCB ’24), November 22–25, 2024, Shenzhen, China.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3698587.3701357

This work is licensed under a Creative Commons Attribution International 4.0 
License.
BCB ’24, November 22–25, 2024, Shenzhen, China
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1302-6/24/11
https://doi.org/10.1145/3698587.3701357

Basecalling
43%

Assembly, polishing, etc.
57%Nanopore

signal
Refined
assembly

Genome sequencing pipeline

Convolutions
3.5%

LSTM stack
87.5%

CRF decoder
9%

Nanopore
signal

Nucleotide
sequence

Basecalling a single read

Figure 1: Top: basecalling takes 43% of the time in a nanopore
genome sequencing pipeline. Bottom: during basecalling,
almost 90% of the computing time is spent computing the
LSTM layers’ outputs.

1 Introduction
Nanopore sequencers measure electric current as DNA molecules

pass through nanopores in a membrane, with these measurements

being converted into DNA sequences by basecalling software. The

current state-of-the-art basecaller, Oxford Nanopore Technologies’

Dorado, reaches 99.5% raw read accuracy and higher when using

the newest flowcells and most accurate model [4, 31]. Sequencers

like the MinION are highly portable, enabling off-grid experiments

in the field or remote locations. Examples of this are wastewater

analysis for pathogen detection [8, 44] and off-grid/remote species

analysis [11, 20], as well as relatively low-cost cancer detection and

research [3, 30]. However, achieving high-quality reads, essential

for downstream applications, requires a large amount of compute

to perform basecalling.

Dorado and other basecallers rely on deep neural networks

(DNNs) for their high accuracy. Over the years, these networks

have become larger and more complex, requiring large, powerful

and expensive GPUs to keep up with sequencing output. Figure 1

illustrates that about 43% of the time in the nanopore sequencing

pipeline is spent on basecalling when using human data [25], with

nearly 90% of this time dedicated to computing the Long Short-Term

Memory (LSTM) layers, as shown by profiling Dorado. When using

viral DNA data in a Read Until assembly, the basecalling step can

take more than 95% of the time [9]. This hampers field deployment

because, while mobile sequencing is very much possible, analyzing

the data is not.

The size of many DNNs is prohibitive to deployment on resource-

constrained devices due to their high memory requirements and

the substantial number of operations needed to process inputs.

Furthermore, the energy required to process DNNs is typically well

above the limits of mobile devices [14]. Neural networks are often

https://github.com/meesfrensel/efficient-basecallers
https://doi.org/10.1145/3698587.3701357
https://doi.org/10.1145/3698587.3701357
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3698587.3701357&domain=pdf&date_stamp=2024-12-16


BCB ’24, November 22–25, 2024, Shenzhen, China Mees Frensel, Zaid Al-Ars, and H Peter Hofstee

over-parameterized, resulting in significant redundancy in DNNs

[7]. Research indicates that it is often possible to prune at least half

of the parameters without affecting accuracy, and with an effective

retraining strategy, up to 90% of parameters can be removedwithout

significantly impacting accuracy [7, 14]. Recent work [38] explored

the possibilities of pruning basecallers specifically, but the authors

conclude that this approach does not lead to significant savings in

compute without sacrificing accuracy. However, their approach is

a single-shot pruning and fine-tuning method, which is known to

be suboptimal [15].

In this paper, we propose a pruning approach that is highly ef-

fective in reducing the size and computational complexity of DNNs

and apply it to basecalling models. Results show that the required

number of operations can be reduced by 21× and throughput is

increased by 2.4×, while maintaining accuracy within 1.3% of the

baseline model, Bonito-HAC. Pruning neurons decreases the num-

ber of calculations needed and the storage size on both disk and in

memory, reducing the size and energy requirements of the base-

calling pipeline.

Our contributions are threefold: we improve the speed and ro-

bustness of the original neuron selection method [41], firstly by

removing the input mask and simplifying the objective function,

and secondly by introducing a delayed masking penalty scheduler.

Third, our work is, to the best of our knowledge, the first application

of neuron selection on a real-world neural network, as well as the

first successful pruning approach for basecalling neural networks.

The paper is organized as follows. We provide the necessary

background on nanopore basecalling and related work on efficient

basecalling and pruning neural networks in Section 2. In Section

3, the limitations of unstructured pruning and concept of learning

structured sparsity are introduced, and we provide an in-depth

rundown of the neuron selection concept and its theoretical benefits.

Section 4 presents benchmark results as well as a basecalling speed

comparison, followed by an ablation study. Finally, Sections 5 and

6 present the discussion and conclusions, respectively.

2 Background
For readers unfamiliar with the nanopore sequencing workflow, a

brief background on its functionality and basecaller models is given

in Section 2.1. Related work on efficient basecallers and structured

RNN pruning is presented in Sections 2.2 and 2.3.

2.1 Nanopore Basecalling
Basecalling is the process of translating raw electrical signals gen-

erated by (nanopore) sequencers into nucleotide sequences of bases

(A, C, G, T/U). During sequencing, DNA or RNA molecules pass

through a nanopore, causing disruptions in an ionic current that are

characteristic of the sequence of bases. The changes in current are

recorded as raw signal data. Basecalling software analyzes these

signals to determine the corresponding DNA or RNA sequence.

This process is crucial for converting the raw data into meaningful

genetic information, which can then be used for various applica-

tions in genomics, such as genome assembly, variant detection, and

gene expression analysis. The accuracy and efficiency of basecalling

significantly impact the overall quality and usability of nanopore

sequencing data.

Nanopore signal Convolutions

LSTM1 LSTM2 LSTM3 LSTM4 LSTM5

CRF Decoder Nucleotide sequence

Figure 2: Bonito model architecture

Bonito, developed by Oxford Nanopore Technologies (ONT), is a

research basecaller that utilizes deep learning techniques to achieve

high accuracy in converting nanopore signals into nucleotide se-

quences [37]. Bonito’s model architecture, visualized in Figure 2,

primarily employs convolutional layers combinedwith LSTM layers

to handle the sequential nature of the signal data. The convolutional

layers are responsible for extracting features from the raw signal,

capturing local patterns, and reducing noise. These features are

then passed to LSTM layers, which are adept at handling sequen-

tial data and maintaining context over long sequences. The final

output layer of the model decodes the processed signal into base

sequences using a conditional random field (CRF) decoder, which

aligns the neural network outputs with the original sequence. This

hybrid architecture allows Bonito to effectively model the complex

relationships in nanopore signals, resulting in accurate basecalling

even with noisy inputs.

While Bonito is used as research software for basecaller (model)

development, Dorado, ONT’s production basecaller, represents the

current state-of-the-art and is optimized for high throughput base-

calling [4]. Building on the advancements of previous models like

Bonito, Dorado combines the most accurate models with a high

performance implementation of the neural network. It is optimized

specifically for GPUs like NVIDIA’s V100 and A100, making use of

the newest architectural advances. Dorado uses 16-bit floating point

numbers almost everywhere, and the LSTM layers are quantized to

8-bit integers to allow the highest throughput. Users can choose

from three different models: Fast, HAC (for high accuracy), and SUP

(for super accuracy), in order of increasing accuracy and compute

requirements.

2.2 Efficient Basecallers
Most research on nanopore basecallers, both by ONT and indepen-

dent researchers, has focused on using alternative neural network

types and architectures, with the goal of creating a basecaller that

is more accurate than ONT’s own basecaller, i.e. Bonito or one of

its predecessors [45, 27, 21, 18]. A small number of works have

nonetheless attempted to develop efficient basecallers that can run

on a battery-powered laptop for example, while keeping the accu-

racy at an acceptable level when compared to the state-of-the-art.

Recent research explored the possibilities of pruning basecallers

[38]. However, they only perform single-shot pruning and training,



Learning Structured Sparsity for Efficient Nanopore DNA Basecalling Using Delayed Masking BCB ’24, November 22–25, 2024, Shenzhen, China

and conclude that this approach does not lead to significant savings

in compute without sacrificing accuracy.

DeepNano-blitz is one of the first basecallers focused on low-

power hardware, without a GPU [5]. To get the highest throughput

possible, DeepNano-blitz uses a small networkwith four GRU (gated

recurrent unit) layers and a CTC decoder, which were also used by

Bonito at that point, doing the bulk of thework. By the same authors,

DeepNano-coral [33] is focused on power efficiency through the

use of the Coral Edge Tensor Processing Unit. It achieves real-time

basecalling of a single MinION device using just 10W of power by

shrinking and re-engineering the convolutional layers of Bonito and

replacing the recurrent layers with a different type of convolution.

Grzesik and Mrozek take a different approach, opting to use

existingONT basecallers on the JetsonXavier NX fromNVIDIA [12].

With an onboard GPU, it is one of the few single board computers

capable enough to run basecallers like Guppy. Impressively, the

Jetson Xavier NX is able to basecall 3.8M samples/s in its lowest

power configuration, or about two MinION sequencing outputs in

real-time, with the fast model. However, HAC throughput peaks at

only 480k samples/s, about a third of the MinION’s output. Notably,

by using the stock Guppy basecaller (now Dorado), accuracy is

as good as one can get and users benefit from improvements in

basecalling accuracy and speed that ONT provides in the future.

There is also a large body of research that uses dedicated hard-

ware accelerators for genomics algorithms [17, 16, 1]. These al-

gorithms can be effectively accelerated on hardware due to their

dataflow nature [2]. However, the accelerated algorithms are clas-

sical algorithms commonly based on dynamic programming [35]

such as Smith-Waterman or probabilistic analyses [34], which is

different from the LSTM-based approach used in Bonito.

2.3 Structured Pruning of RNNs
Pruning (deep) neural networks is the process of removing redun-

dant weights (connections) or neurons from a given network. This

section discusses related work on pruning RNNs in general, and

is not related to basecalling. Pruning received a lot of interest in

the past decade, starting with the research of Han et al. who pro-

pose the three step iterative pipeline of training, pruning, then

fine-tuning [14]. While their work results in a large reduction in

the number of connections, it does not focus on neuron (or struc-

tured) pruning, thus preventing effective reduction in computing

needs. Furthermore, this and many subsequent works focus on con-

volutional neural networks (CNNs) for computer vision tasks [22],

whose concepts, e.g. channel pruning, cannot be directly applied to

RNNs which operate on sequences.

While unstructured pruning methods that simply prune individ-

ual weights can be applied to LSTMs and other RNNs, these are of

limited use and a shift towards structured pruning is needed. Some

works focus on mathematically reducing the size of a network by

monitoring neuron activity [36] or using new criteria to identify

the optimal pruning rate [10]. Wang et al., focusing on an FPGA

implementation, prune the columns of weight matrices with the

smallest 𝐿1 norm [39]. Also on FPGA, a compression technique

with block-circulant is used instead of sparse matrices [40].

1 2 3 4 5 6 7

·105

81%

82%

83%

84%

85%

86%

87%

Number of parameters

A
c
c
u
r
a
c
y

Unstructured pruning: number of parameters vs. accuracy

Baseline

LSTM 4

LSTMs 4-5

LSTMs 2-4

LSTMs 1-5

Figure 3: With a simple strategy of pruning some percentage
of model weights and fine-tuning for two epochs, a signifi-
cant reduction in model size can be achieved. However, this
leads to unstructured sparsity (zeros in randomplaces) which
cannot be exploited for practical speedup.

Wen et al. present intrinsically sparse structures (ISS) for LSTMs

[42], one of the first works proposing to learn sparsity. Later re-

search adapts this method for gated recurrent units (GRUs) [24],

which is then improved by introducing the concept of neuron selec-

tion to structurally shrink the size of LSTM layers [41]. We further

adapt and improve this method in this paper.

3 Learning Structured Sparsity
The fundamental problem with most pruning methods is the lack

of structured sparsity. Intuitively, an element-wise operation on

a matrix that is 50% sparse, should take 50% less floating point

operations (FLOPs) compared to a fully dense matrix. Unfortunately,

conventional math and tensor libraries cannot take advantage of a

low degree of unstructured sparsity: most require sparsity levels of

99% and above to reduce the required computations [15]. This is

unrealistic for deep neural networks.

To get an idea of the obtainable level of sparsity, we follow the

𝐿1 regularization procedure originally described in [14] to prune

a pre-trained Bonito-HAC model by zeroing out the weights with

the smallest magnitude, until the desired sparsity percentage is

reached. Then, the resulting model is fine-tuned for two epochs

while keeping the ‘pruned’ weights set at zero.

The results of this pruning and fine-tuning are shown in Figure 3,

with different lines corresponding to pruning different sets of layers.

For each configuration, we start at 90% pruning rate closest to the

origin, and decrement this with 10% for each data point further

away from the origin. While we do not fine-tune the model over

the whole dataset for the same number of epochs, as described in

[14], the pattern is clear: pruning is an effective way of decreasing

the number of parameters with a minimal decrease in accuracy,

i.e. about 1.5% when pruning the middle three layers by 90%. As

mentioned before though, unstructured sparsity is not suitable for

speedup. This section will therefore focus on learning structured



BCB ’24, November 22–25, 2024, Shenzhen, China Mees Frensel, Zaid Al-Ars, and H Peter Hofstee

Input-to-hidden

mask �̂�

Hidden-to-hidden

mask𝑈

1 1

1

𝑠1 𝑠1

𝑠1

0 0

0

𝑠2 𝑠2

𝑠2

0 0

0

𝑠3 𝑠3

𝑠3

1 1

1

𝑠4 𝑠4

𝑠4

0 0

0

𝑠5 𝑠5

𝑠5

1 1

1

𝑠6 𝑠6

𝑠6

Mask 𝑠

⊗𝑊4,1

⊗𝑈3,2

Figure 4: Illustration of the masking mechanism

sparsity simultaneously with training to effectively speed up infer-

ence.

3.1 Neuron Selection
The principal optimization method used in this paper is structured

pruning of LSTMs through neuron selection, proposed originally

by Wen et al., which regularizes a neural network by adding a mask

over the neurons and penalizing nonzero mask entries [41]. By

making this penalty part of the loss function, the network can learn

the weights for accurate basecalling as well as which neurons are

required to maximize the accuracy, at the same time.

More specifically, by introducing a set of binary random vari-

ables, which can be interpreted as switches for individual neu-

rons, it is possible to structurally prune the LSTMs through neuron
selection. Let𝑊 = {𝑊𝑖 ,𝑊𝑓 ,𝑊𝑜 ,𝑊𝑐 } and 𝑈 = {𝑈𝑖 ,𝑈𝑓 ,𝑈𝑜 ,𝑈𝑐 } be
the input-to-hidden and hidden-to-hidden weight matrices, respec-

tively. Furthermore, let mask 𝑠 = {𝑠𝑖 }, which controls the presence

of the hidden neuron 𝑖 , where 𝑠𝑖 ∈ {0, 1} and |𝑠 | is the number of

hidden neurons, or the ‘hidden size’. While training, the weight

matrices are masked by ‘turning off’ rows and columns when the

input or output neurons are masked with 𝑠 . This gating mechanism

is visualized in Figure 4. For convenience, the original matrices𝑊

and 𝑈 are re-parameterized to �̂� = 𝑊 ⊙ 1𝑠⊤ and 𝑈 = 𝑈 ⊙ 𝑠𝑠⊤

where 1 is the all-ones column vector and ⊙ denotes the Hadamard

or element-wise matrix product.

Conceptually, the binary random variable 𝑠 is sampled from

a Bernoulli distribution with 𝑠𝑖 ∼ Bern(𝜋𝑠𝑖 ) where 𝜋𝑠𝑖 denotes

the probability of random variable 𝑠𝑖 taking value 1. However, it is

impossible to simply minimize its 𝐿0 norm by gradient optimization,

since the Bernoulli distribution is not differentiable. By remodeling

to a hard concrete distribution [26], a modification of the concrete

distribution [28], we obtain the following procedure to obtain mask

variable 𝑠:

𝑢 ∼ Uniform[0,1] ,

𝜏 = 𝜎 ((log𝑢 − log(1 − 𝑢) + log𝛼)/𝛽),
𝜏 = 𝜏 (𝜁 − 𝛾) + 𝛾,
𝑠 = min(1,max(0, 𝜏)),

(1)

where 𝜏 is a sample from the concrete distribution with location

and temperature parameters log𝛼 and 𝛽 , respectively, which is

then stretched to the (𝜁 ,𝛾) interval and clamped in a hard-sigmoid

fashion. Note that log𝛼 is directly optimized, not 𝛼 . This results in a

function that is differentiable and can therefore be implemented in

and optimized by machine learning frameworks with autograd like

PyTorch and TensorFlow. The probability of 𝑠 being non-zero, which

is used in the loss function, is then computed by the cumulative

density function Φ:

Φ𝑠 (𝑠 ≠ 0|𝜙𝑠 ) = 𝜎 (log𝛼 − 𝛽 log
−𝛾
𝜁
), (2)

where 𝜙 = {𝛼, 𝛽,𝛾, 𝜁 } denotes the parameters of the hard concrete

distribution.

3.2 Optimizing Training Time
The original method from [41] imposes an additional mask 𝑧 over

the input neurons of each LSTM layer. However, in our experiments

we find that none or only a couple of input neurons get pruned

in practice when the penalty is small. This can be attributed to

the fact that there are 4096 possible 5-mers that could be in the

nanopore
1
. Pruning away the input neurons removes too much

state information from the model, which has a large impact on the

model accuracy. This effect is observed in the original paper as well,

but the authors do not suggest any remedy except for lowering the

penalty value for the input neurons. However, this does not lead to

better model compression, but instead results in keeping all input

neurons for our model.

Since the neuron selection mechanism is not implemented in

the standard LSTM implementations in PyTorch, we resort to a

handwritten implementation in Python, with each tensor multi-

plication or other operation explicitly written out. This results in

highly inefficient training due to overhead, data movement, and

lack of parallelism. Therefore, by removing the input neuron mask

and its random sampling and preprocessing, training is more effi-

cient. This adjustment decreases the training time by 10–20% while

maintaining the effectiveness of the neuron selection mechanism.

Without the extra mask 𝑧, the loss function can be simplified a bit.

Given that | |𝑥 | | is the input size, which replaces the expectation of

the input masks with ‘active’ for each neuron, the loss and objective

functions are formulated as follows:

L(𝑊,𝑈 ,𝜙) = EΦ(𝑠 |𝜙 ) [E𝐷 (𝑊,𝑈 , 𝑠)]

+ λ
∑︁
𝑖

( | |𝑥 | | · Φ𝑠𝑖 (𝑠𝑖 ≠ 0|𝜙𝑠𝑖 ))

+ λ

𝑖≠𝑗∑︁
𝑖, 𝑗

(Φ𝑠𝑖 (𝑠𝑖 ≠ 0|𝜙𝑠𝑖 )Φ𝑠 𝑗 (𝑠 𝑗 ≠ 0|𝜙𝑠 𝑗 ))

+ λ
∑︁
𝑖

Φ𝑠𝑖 (𝑠𝑖 ≠ 0|𝜙𝑠𝑖 )

(3)

(𝑊 ∗,𝑈 ∗, 𝜙∗) = argmin

𝑊,𝑈 ,𝜙

L(𝑊,𝑈 ,Φ) (4)

3.3 Delayed Masking
Another new contribution is the addition of a warm-up scheduler to

prevent the model from collapsing at the start of training. We find

that at high penalty rates, e.g. > 3 · 10−7, the autograd optimizer is

eagerly pruning the model to reduce the value of the loss function,

1
There are always 5 bases in a nanopore at the same time, each base can be one of 4,

so there are 4
5 = 4096 total possible states.



Learning Structured Sparsity for Efficient Nanopore DNA Basecalling Using Delayed Masking BCB ’24, November 22–25, 2024, Shenzhen, China

0.5

1

1.5

L
o
s
s

Training loss over the first epoch

0 5,000 10,000 15,000 20,000 25,000
0

2

4

·10−7

Training step

λ
p
e
n
a
l
t
y

Figure 5: Top: training loss during the first epoch. After 6000
steps, the loss value sharply declines in a few thousand steps.
When λ is too large, the model size decreases so much within
this time, that it is not able to find patterns in the data at
all. Bottom: the proposed delayed masking schedule ensures
that a baseline accuracy has been established before starting
to mask more and more of the model.

but this happens so quickly that the model does not have enough

time to learn patterns in the data at all. The result is that the model

is pruned to a hidden size of (nearly) 0, with the accuracy also

sitting at 0%. This effect is a result of the model’s performance

during training: as can be seen in Figure 5 (top), the loss value stays

consistently high at 1.4–1.5 until dropping off after 6000 training

steps. It is at this state that the model grasps the structure of the

nanopore squiggle, as the validation accuracy jumps from 0 to about

70% in subsequent steps.

We propose a penalty scheduler to prevent this issue from hap-

pening at larger λ penalty values. By delaying the masking to a

later moment, we give the network time to train and learn before

more aggressively turning off neurons. For example, using a step

function from a modest 0.5 · 10−7 at the start, to λ’s intended value

at 10000 training steps (see Figure 5) keeps the model at about 90%

of its original size for the first part of training. After this time, the

full penalty value is used and the model is masked much more

aggressively. While we use a step function with a fixed step mo-

ment in this paper, more elaborate schemes using linear or sigmoid

functions and a dynamic step moment can be tested in the future.

The penalty warm-up is a novel contribution that we believe can

benefit any application that is learning structured sparsity in a

neural network.

3.4 Efficient Inference
During training, the weight mask is recalculated with every forward

step, with each neuron being (de-)activated based on a random

sample from its entry in 𝑠 . As the neurons are ‘selected’ over the

course of the training steps, the probability of a neuron being active

is generally not truly zero, to allow correction based on the output

accuracy. Consequently, no practical speedup is obtained over the

complete starting model. When training is complete, the model can

be structurally pruned by removing rows and columns that are all

zeros from �̂� and𝑈 , as well as the bias vector. Then, these weights

can be used for a plain LSTM layer with a reduced hidden size of

| |𝑠 | |0.
To motivate and quantify the benefit of smaller LSTM layers,

consider that the computational intensity is dominated by the hid-

den size: the approximate number of FLOPs per batched LSTM step

is 𝑁 ×𝐷 × (𝐼 +𝐷) × 8 FLOPs
2
where 𝑁 is the batch size and 𝐼 and 𝐷

are the input and hidden size, respectively. An LSTM with an input

and hidden size of 384, like Bonito’s, therefore requires 2.4M FLOPs

for a single timestep with batch size 1. If the hidden size is reduced

to around 120, as shown in Table 1 with λ = 6 · 10−7 for example,

the inference step requires just 484k or 0.2× the FLOPs. This re-

duction of the hidden size 𝐷 for the LSTM’s O(𝐷2) computational

complexity results in a substantially more efficient model.

3.5 Evaluation of Alternative Pruning Methods
In the process of enhancing the efficiency of nanopore basecalling

models, we evaluated several alternative pruningmethods proposed

in the literature. Despite their promise, the methods discussed in

this section did not perform as well in our specific application

as reported in the original papers. For example, the Selfish-RNN

sparse-to-sparse training method proposed in [23] did not perform

nearly as well as the standard dense training method. Using the

implementation provided by the authors, the final match rate was

10–13% lower than the baseline. This could be due to the model

being small from the start, without being trained on the data at full

size first.

The C-LSTM method involves compressing LSTM networks us-

ing block-circulant matrices, which significantly reduce the number

of parameters and computational complexity [40]. The approach

uses block-circulant instead of sparse matrices to compress weight

matrices and reduces the storage requirement from O(𝑘2) to O(𝑘)
and FFTs to reduces the computational complexity from O(𝑘2)
to O(𝑘 log𝑘). Although this technique demonstrated impressive

results on FPGA implementations, it did not translate well to our

GPU-based environment. The block-circulant structure introduced

challenges in adapting the model to our specific basecalling tasks,

and we were not able to successfully train a model.

A linear surrogate of the LSTM cell using linear recurrence [29]

is a promising replacement for the standard LSTM cells in the LSTM

layers. As a precursor to linear state-space models like S4 [13], it

changes the iterative nature of recurrent models to a parallel scan

algorithm. This parallel linear recurrence can be efficiently com-

puted by parallel solvers like GPUs and thus appears to be a good

alternative. For our basecalling application, however, experiments

show that the accuracy did not get close to the baseline accuracy.

Similar to Selfish-RNN, accuracy was about 9–11% below baseline.

Despite the initial promise of these methods, our experiments

highlight the importance of domain-specific optimization. The

unique challenges posed by nanopore basecalling, such as elec-

trical noise and highly variable sequencing speed, necessitate prun-

ing techniques that can maintain high accuracy while efficiently

2×4·2 because the LSTMhas 4 gates that each operate on the input, and amultiplication

and addition have to be performed for each element.



BCB ’24, November 22–25, 2024, Shenzhen, China Mees Frensel, Zaid Al-Ars, and H Peter Hofstee

reducing computational requirements. This suggests that not all

sparsification methods are created equal, and that one can not di-

rectly apply a single best method to any application. As such, our

focus shifted towards structured sparsity and neuron selection,

which proved to be most effective for our purposes.

4 Experiments and Results
4.1 Experimental Setup

Hyperparameters. The model is trained with nearly the same

hyperparameter settings as in [32], using the Adam optimizer with

initial learning rate = 1.5e-3, 𝛽1 = 0.9, 𝛽2 = 0.999, weight decay =

0. The learning rate is linearly increased for the first 5000 training

steps from 0 to the initial optimizer rate as a warm-up, then de-

creased using a cosine function to a minimum of 1e-5 by the final

step. The batch size is doubled from 64 to 128, and the initial learn-

ing rate is increased accordingly from 1e-3 to 1.5e-3. Gradients are

clipped between -2 and 2 to improve model stability. All standard

LSTM parameters are initialized from N(0, 0.05).
For the neuron selection mechanism, we initially choose λ =

2 · 10−7 with smoothing parameter set 𝜙 = {𝛽 = 2/3, 𝛾 = −0.1, 𝜁 =

1.1}. 𝛼 is a learnable parameter directly trained as log𝛼 , initialized

from N(1.5, 0.1) which corresponds to a 90% probability that a

neuron is active on average. Since the model contains no dropout

layers, the dropout keep ratio does not have to be increased.

Computational Environment. The experiments are run in an HPC

environment [6] on nodes with Xeon E5-6448Y 32C CPUs @ 2.10

GHz and an NVIDIA A100 80GB PCIe GPU. In this environment,

a full training run of 5 epochs takes 23.5 hours to complete. We

use Python 3.9.8 with PyTorch 1.12.1. To deterministically find the

throughput numbers in Figure 8, we disable the cuDNN backend

in PyTorch. Other dependencies and versions are listed in the code

repository on GitHub.

4.2 Datasets
The training, evaluation, and test datasets are the same benchmark

datasets from [32], in which the authors propose a standardized

benchmark for nanopore basecaller evaluation. We use the cross-

species task for training and evaluation of all models. Therefore,

our results are not directly comparable to [32], focusing solely on

the human task.

The dataset consists of 3 human datasets from [19], 1 Lambda

phage dataset sequenced in-house [32], and 60 bacterial datasets

encompassing 26 different bacterial species originally published

in [43]. All data is sequenced using R9.4 or R9.4.1 pore chemistry.

Notably, performance improvements in newer pore chemistries,

such as the current R10.1, are expected to similarly enhance our re-

sults, reflecting the ongoing advancements in nanopore sequencing

technology. However, the larger number of bases present in R10.1

pores could increase sensitivity to pruning. We hypothesize that

the convolutional layers extract all relevant information from the

signal, therefore not negatively impacting pruning potential, but

this point warrants further investigation.

4.3 Basecalling Accuracy
For evaluating our work, we reference the benchmark established

in [32], which addresses the need for standardized benchmark-

ing in nanopore sequencing, where basecalling accuracy is crucial

and often improved through new neural network architectures.

Due to varying evaluation metrics and datasets across different

publications, it has been challenging to differentiate between data-

driven and model-driven improvements. By using this compre-

hensive benchmark, we ensure fair and consistent comparisons of

our basecaller with state-of-the-art models, thereby validating our

performance claims.

The primary results are shown in Figure 6, highlighting the

performance of Bonito fast, HAC, and our method with different

pruning rates denoted by λ𝑥 for λ = 𝑥 · 10−7. The AUC (Figure

6a), with reads sorted by decreasing PhredQ score, shows that all

models have a clear correlation between read quality and average

match rate. This conclusion is backed up by the high amount of

separation in the PhredQ quality scores (in Figure 6b), allowing

downstream applications to use this as a measure of certainty that

a base is correct. Bonito-HAC performs best with an AUC of 0.848

and our pruned model with λ = 2 · 10−7 following closely behind

with an AUC of 0.847. The match rates differ by just 0.13%, while

the number of FLOPs required is decreased by 2.8×.
Pass rates are an important measure against ‘cheating’: basecall-

ing models could achieve higher match rates by skipping reads that

are harder to basecall correctly [32]. However, as can be seen in

Figure 6c, the models with higher pruning rates do not sacrifice

the pass rate for accuracy. This is important but not straightfor-

ward, as many experiments with prune/fine-tune methods resulted

primarily in very low pass rates.

Overall, the trend is that at higher pruning rates all metrics tend

to suffer somewhat equally: we do not observe that pruning affects

some metric more than others. This is both positive and negative,

as on one hand smaller models could be useful for users who do

not care about that one metric, allowing them to save on compute.

On the other hand, being able to play with the penalty value to get

just the precision you need at the least amount of compute is useful

for users who do not have a data center at their disposal.

4.4 Basecalling Throughput
Smaller models are theoretically faster at basecalling than large

models. As explained in Section 3.4, the number of FLOPs for a

single inference step is mostly dependent on the hidden size, and

the input size has some influence as well. Our method’s focus is on

reducing the layer’s hidden size, which has an O(𝑛2) effect on the

computational complexity, though by propagating the hidden mask

to the next LSTM layer, this holds for input size as well. By reducing

the hidden size with 1/3, the number of FLOPs decreases by 2×,
while the accuracy is barely affected. Furthermore, by allowing the

match rate to drop by 0.4%, it is possible to reduce the LSTM stack’s

theoretical FLOPs by 7.2×.
The possible gains from reducing the hidden size are illustrated

with the mask𝑈 , as shown in Figure 7. Since we induce structured

sparsity, we can ‘physically’ remove neurons and the corresponding

rows/columns from the model. During training, which neurons are

important, is automatically decided by backpropagation, and during



Learning Structured Sparsity for Efficient Nanopore DNA Basecalling Using Delayed Masking BCB ’24, November 22–25, 2024, Shenzhen, China

0 0.2 0.4 0.6 0.8 1

0.84

0.86

Fraction of reads

A
v
e
r
a
g
e
m
a
t
c
h
r
a
t
e

HAC (0.848) λ2 (0.847)

λ4 (0.845) λ6 (0.843)

λ8 (0.841) λ10 (0.841)

λ20 (0.835) Fast (0.835)

(a) AUC of match rate sorted by average read
PhredQ score

HACλ2 λ4 λ6 λ8 λ10 λ20Fast

6

8

10

P
h
r
e
d
Q
s
c
o
r
e
s

Correct

Incorrect

(b) Separation of PhredQ scores of correct and
incorrectly called reads

HACλ2 λ4 λ6 λ8 λ10λ20Fast
98%

98.5%

99%

99.5%

100%

P
a
s
s
r
a
t
e

(c) Overall pass rates

Figure 6: Benchmark results showing Bonito Fast and HAC models, and our work for different λ penalties

0 192

0

100

200

300

Û1: 85.1% sparse

0 192

Û2: 97.0% sparse

0 192

Û3: 96.4% sparse

0 192

Û4: 69.5% sparse

0 192

Û5: 54.2% sparse

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Illustration of the masks of the hidden-to-hidden weight matrix𝑈 for each LSTM layer in the λ4 model

inference, we benefit by reloading the LSTM cells with smaller

hidden sizes as well as the input sizes equal to the hidden size

(output size) of the previous layer. This results in faster inference

during basecalling, improving energy usage and throughput.

The resulting throughput speedup achieved with structured spar-

sity depends on many factors besides the number of FLOPs, which

includes batch size, sequence length among others. Figure 8 shows

the average throughput of the whole neural network (see the ar-

chitecture in Figure 2) for different models, with constant batch

size and sequence length. The curve shows the direct relationship

between the theoretical gains and real throughput increase: at λ2,
throughput is already 1.5× higher than the baseline. Notably, the

fastest model λ20 is 2.4× faster compared to the HAC baseline. By

reducing the model size, memory requirements are reduced accord-

ingly which opens up room for increasing the batch size. As a result,

more data is processed in less time, increasing overall throughput

even more.

4.5 Ablation Study
To thoroughly evaluate the impact of structured pruning on our

basecalling model, we conduct an ablation study focusing on vary-

ing λ values, which control the neuron penalty during training.

Another way to think about this, is how sensitive the model is to

varying λ penalty values. This study is essential to understand the

0 1 2 3 4 5 6 7

·106

2

4

6

·106

HAC

λ2

λ4
λ6
λ8
λ10

λ20
Fast

Theoretical FLOPs

T
h
r
o
u
g
h
p
u
t
(
s
a
m
p
l
e
s
/
s
)

Figure 8: Theoretical FLOPs for the LSTM stack compared to
the basecalling throughput of the whole neural network

trade-offs between model size, throughput, and read accuracy. Our

findings are illustrated in Figure 9 summarized in Table 1.

For λ = 2 · 10−7, we observed no significant change in basecall-

ing accuracy compared to the baseline model, while achieving a

2.8× reduction in FLOPs. This indicates that a moderate sparsity

penalty can effectively prune the network without compromising

performance. Increasing the penalty to 4 · 10−7, the match rate

decreases by a further 0.2% while compressing the model to a fifth



BCB ’24, November 22–25, 2024, Shenzhen, China Mees Frensel, Zaid Al-Ars, and H Peter Hofstee

0 1 2 3 4 5 6

·106

83%

83.5%

84%

84.5%

HAC

λ2λ4
λ6

λ8λ10

λ20
Fast

Theoretical FLOPs

M
a
t
c
h
r
a
t
e

Figure 9: Results of the ablation study comparing FLOPs and
match rate

λ penalty Match Hidden sizes

FLOPs

(Improvement)

Baseline 84.14% 384, 384, 384, 384, 384 5.90𝑀

2 · 10−7 84.01% 213, 126, 119, 291, 324 2.07𝑀 (2.8×)
4 · 10−7 83.92% 149, 68, 74, 212, 261 1.16𝑀 (5.1×)
6 · 10−7 83.70% 111, 48, 55, 179, 229 0.81𝑀 (7.2×)
8 · 10−7 83.47% 96, 39, 48, 155, 201 0.63𝑀 (9.3×)
10 · 10−7 83.39% 82, 36, 38, 133, 190 0.52𝑀 (11.4×)
20 · 10−7 82.81% 55, 22, 21, 88, 145 0.28𝑀 (21.0×)

Fast 82.83% Input & hidden size: 96 0.36𝑀 (16.0×)
Table 1: Ablation study of the penalty parameter of the LSTM
layers

of its original size. This level of pruning strikes a good balance

between maintaining accuracy and enhancing efficiency.

At higher penalty values, such as λ = 8 · 10−7, the model ex-

periences a more noticeable drop in accuracy (around 0.7%), but

the model FLOPs are drastically reduced, by more than 9× in the

LSTM layers. This suggests that while aggressive pruning can sig-

nificantly decrease computational requirements, it may also impact

the model’s performance. These results highlight the importance of

selecting an appropriate sparsity penalty to balance the trade-offs

between model efficiency and basecalling accuracy, which is similar

to selecting a basecalling model from Bonito/Dorado’s Fast, HAC

or SUP models.

Overall, the ablation study underscores the potential of struc-

tured pruning to optimize nanopore basecalling models, making

high-quality sequencing more accessible for field applications. The

results show the great performance benefit of learning which neu-

rons should be active at the same time as learning the connection

weights between them. Between Bonito’s Fast and HAC models, we

consider λ = 6 ·10−7 the best trade-off between accuracy and speed,

measuring just 0.44% below HAC’s match rate while achieving a

7.2× reduction in FLOP count, ending nicely in between Bonito’s

models.

5 Discussion
In this paper, we propose learning structured sparsity to make base-

calling neural networks substantially more efficient while maintain-

ing high accuracy. This makes nanopore sequencing faster, cheaper,

and more accessible by using less compute resources. Moreover,

our results show the extent to which the state-of-the-art models are

over-parameterized when considering their accuracy. As previous

works on efficient basecalling rightly point out, the ever-increasing

accuracy, and as a result, size of these models does not outweigh

the implications of resulting compute requirements for everyone.

Moreover, available power and compute can be a decisive variable

in selecting a basecalling model.

Aside from pruning, the other most common approach to model

compression, be it for storage or compute savings, is quantization.

By representing numbers with fewer bits or even as integers, one

can save space and utilize specialized hardware to do these lower

precision computations. Mixed precision math is widely used in

Dorado and the Rubicon paper performed an in-depth analysis [38]

that can be readily integrated with our work, as quantization is

orthogonal to pruning. Furthermore, because the input size is fixed,

the convolutional layers cannot be adjusted, limiting the overall

reduction in parameters and FLOPs. We therefore recommend fur-

ther research into whole-model structural pruning, in combination

with quantization.

6 Conclusion
This paper presents a new pruning approach to enhance the effi-

ciency of DNNs through the use of structured sparsity in the LSTM

layers, and applies this to nanopore DNA basecalling models. By

leveraging neuron selection techniques to prune redundant param-

eters, we can significantly reduce the computational and memory

requirements of the basecalling models without compromising ac-

curacy. Notably, our smallest model is 21× more efficient with a

reduction in match rate of 1.3% compared to Bonito-HAC. This

advancement is particularly beneficial for field deployments of

portable sequencing devices like the MinION, where high-quality

basecalling needs to be performed on resource-constrained hard-

ware.

Our experimental results demonstrate that structured pruning

can achieve substantial improvements in model size and basecalling

throughput of up to 21× and 2.4×, respectively, enabling efficient

basecalling on devices with limited compute resources. This ap-

proach facilitates DNA analysis in various field applications, by

allowing users to select an appropriate trade-off between accuracy

and basecalling time for their demands and available resources.

There is ample room to maneuver this spectrum, with a through-

put increase between 1.5 − 2.4× and an accuracy drop of 0.1% –

1.3% compared to the baseline Bonito-HAC model. Future work

will explore further structured optimization techniques and better

delayed masking schedulers to further improve the performance

and efficiency of basecalling models.

Acknowledgments
This research was performed with the support of the Eureka Xecs

project TASTI (grant no. 2022005).



Learning Structured Sparsity for Efficient Nanopore DNA Basecalling Using Delayed Masking BCB ’24, November 22–25, 2024, Shenzhen, China

References
[1] Nauman Ahmed et al. 2019. GASAL2: a GPU accelerated sequence alignment

library for high-throughput NGS data. BMC Bioinformatics, 20, 1, (Oct. 25, 2019),
520. doi: 10.1186/s12859-019-3086-9.

[2] Nauman Ahmed et al. 2015. Heterogeneous hardware/software acceleration

of the BWA-MEM DNA alignment algorithm. In 2015 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). 2015 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD). (Nov. 2015), 240–246. doi:

10.1109/ICCAD.2015.7372576.

[3] Timour Baslan et al. 2021. High resolution copy number inference in cancer

using short-molecule nanopore sequencing. Nucleic Acids Research, 49, 21,
(Dec. 2, 2021), e124. doi: 10.1093/nar/gkab812.

[4] Mark Bicknell. Dorado — the future of basecalling. London Calling 2023, Lon-

don, (May 19, 2023). Retrieved Apr. 18, 2024 from https://nanoporetech.com/re

source-centre/london-calling-2023-dorado-future-basecalling.

[5] Vladimír Boža et al. 2020. DeepNano-blitz: a fast base caller for MinION

nanopore sequencers. Bioinformatics, 36, 14, (July 30, 2020), 4191–4192. doi:

10.1093/bioinformatics/btaa297.

[6] [SW] Delft High Performance Computing Centre (DHPC), DelftBlue Super-

computer (Phase 2) 2024. url: https://www.tudelft.nl/dhpc/ark:/44463/DelftBl

uePhase2.

[7] Misha Denil et al. 2013. Predicting parameters in deep learning. In Proceedings
of the 26th International Conference on Neural Information Processing Systems -
Volume 2 (NIPS’13). Curran Associates Inc., Red Hook, NY, USA, (Dec. 5, 2013),

2148–2156. Retrieved Mar. 15, 2024 from.

[8] Megan B. Diamond et al. 2022. Wastewater surveillance of pathogens can

inform public health responses. Nature Medicine, 28, 10, (Oct. 2022), 1992–1995.
Number: 10 Publisher: Nature Publishing Group. doi: 10.1038/s41591-022-019

40-x.

[9] Tim Dunn et al. 2021. SquiggleFilter: an accelerator for portable virus detection.

InMICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO ’21). Association for Computing Machinery, New York, NY, USA,

(Oct. 17, 2021), 535–549. isbn: 978-1-4503-8557-2. doi: 10.1145/3466752.3480117.

[10] Nikolaos Gkalelis et al. 2020. Structured pruning of LSTMs via eigenanalysis and

geometricmedian formobilemultimedia and deep learning applications. In 2020
IEEE International Symposium on Multimedia (ISM). 2020 IEEE International

Symposium on Multimedia (ISM). (Dec. 2020), 122–126. doi: 10.1109/ISM.2020

.00028.

[11] Glen-Oliver F. Gowers et al. 2019. Entirely off-grid and solar-powered DNA

sequencing of microbial communities during an ice cap traverse expedition.

Genes, 10, 11, (Nov. 2019), 902. Number: 11 Publisher: Multidisciplinary Digital

Publishing Institute. doi: 10.3390/genes10110902.

[12] Piotr Grzesik et al. 2021. Metagenomic analysis at the edge with jetson xavier

NX. In Computational Science – ICCS 2021 (Lecture Notes in Computer Science).

Maciej Paszynski et al., (Eds.) Springer International Publishing, Cham, 500–

511. isbn: 978-3-030-77970-2. doi: 10.1007/978-3-030-77970-2_38.

[13] Albert Gu et al. 2021. Efficiently modeling long sequences with structured state

spaces. (Oct. 31, 2021). doi: 10.48550/arXiv.2111.00396.

[14] Song Han et al. 2015. Learning both weights and connections for efficient

neural networks. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1 (NIPS’15). MIT Press, Cambridge,

MA, USA, (Dec. 7, 2015), 1135–1143. Retrieved Mar. 15, 2024 from.

[15] Torsten Hoefler et al. 2021. Sparsity in deep learning: pruning and growth for

efficient inference and training in neural networks. The Journal of Machine
Learning Research, 22, 1, (Jan. 1, 2021), 241:10882–241:11005.

[16] Ernst Joachim Houtgast et al. 2015. An FPGA-based systolic array to accelerate

the BWA-MEMgenomicmapping algorithm. In 2015 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS).
2015 International Conference on Embedded Computer Systems: Architectures,

Modeling, and Simulation (SAMOS). (July 2015), 221–227. doi: 10.1109/SAMO

S.2015.7363679.

[17] Ernst Joachim Houtgast et al. 2018. Hardware acceleration of BWA-MEM

genomic short read mapping for longer read lengths. Comput. Biol. Chem., 75,
(Aug. 1, 2018), 54–64, C, (Aug. 1, 2018). doi: 10.1016/j.compbiolchem.2018.03.0

24.

[18] NengHuang et al. 2022. SACall: a neural network basecaller for oxford nanopore

sequencing data based on self-attention mechanism. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 19, 1, (Jan. 2022), 614–623. Con-
ference Name: IEEE/ACM Transactions on Computational Biology and Bioin-

formatics. doi: 10.1109/TCBB.2020.3039244.

[19] Miten Jain et al. 2018. Nanopore sequencing and assembly of a human genome

with ultra-long reads. Nature Biotechnology, 36, 4, (Apr. 2018), 338–345. Pub-
lisher: Nature Publishing Group. doi: 10.1038/nbt.4060.

[20] Ineke Knot. How do i use portable genomics in the field? WILDLABS Tech

Tutors, (Aug. 13, 2020). Retrieved Feb. 20, 2024 from https://www.wildlabs.net

/event/how-do-i-use-portable-genomics-field.

[21] Hiroki Konishi et al. 2021. Halcyon: an accurate basecaller exploiting an en-

coder–decoder model with monotonic attention. Bioinformatics, 37, 9, (June 9,
2021), 1211–1217. doi: 10.1093/bioinformatics/btaa953.

[22] Tailin Liang et al. 2021. Pruning and quantization for deep neural network

acceleration: a survey. Neurocomputing, 461, (Oct. 21, 2021), 370–403. doi:
10.1016/j.neucom.2021.07.045.

[23] Shiwei Liu et al. 2021. Selfish sparse RNN training. (June 15, 2021). arXiv:

2101.09048[cs]. doi: 10.48550/arXiv.2101.09048.

[24] Ekaterina Lobacheva et al. 2020. Structured sparsification of gated recurrent

neural networks. Proceedings of the AAAI Conference on Artificial Intelligence,
34, 4, (Apr. 3, 2020), 4989–4996. Number: 04. doi: 10.1609/aaai.v34i04.5938.

[25] Qian Lou et al. 2020. Helix: algorithm/architecture co-design for accelerat-

ing nanopore genome base-calling. In Proceedings of the ACM International
Conference on Parallel Architectures and Compilation Techniques (PACT ’20).

Association for Computing Machinery, New York, NY, USA, (Sept. 30, 2020),

293–304. isbn: 978-1-4503-8075-1. doi: 10.1145/3410463.3414626.

[26] Christos Louizos et al. 2018. Learning sparse neural networks through l_0

regularization. (June 22, 2018). arXiv: 1712.01312[cs,stat]. doi: 10.48550/arXiv

.1712.01312.

[27] Xuan Lv et al. 2020. An end-to-end oxford nanopore basecaller using convolution-

augmented transformer. In 2020 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM). 2020 IEEE International Conference on Bioinformatics

and Biomedicine (BIBM). (Dec. 2020), 337–342. doi: 10.1109/BIBM49941.2020.9

313290.

[28] Chris J. Maddison et al. 2017. The concrete distribution: a continuous relaxation

of discrete random variables. (Mar. 5, 2017). arXiv: 1611.00712[cs,stat]. doi:

10.48550/arXiv.1611.00712.

[29] Eric Martin et al. 2018. Parallelizing linear recurrent neural nets over sequence

length. In International Conference on Learning Representations. https://open

review.net/forum?id=HyUNwulC-.

[30] Josephine B. Oehler et al. 2023. The application of long-read sequencing in

clinical settings. Human Genomics, 17, 1, (Aug. 8, 2023), 73. doi: 10.1186/s40246
-023-00522-3.

[31] Oxford Nanopore Technologies. 2024. Nanopore sequencing accuracy. Oxford

Nanopore Technologies. Retrieved Jan. 23, 2024 from https://nanoporetech.co

m/platform/accuracy.

[32] Marc Pagès-Gallego et al. 2023. Comprehensive benchmark and architectural

analysis of deep learning models for nanopore sequencing basecalling. Genome
Biology, 24, 1, (Apr. 11, 2023), 71. doi: 10.1186/s13059-023-02903-2.

[33] Peter Perešíni et al. 2021. Nanopore base calling on the edge. Bioinformatics,
37, 24, (Dec. 11, 2021), 4661–4667. doi: 10.1093/bioinformatics/btab528.

[34] Shanshan Ren et al. 2018. Efficient acceleration of the pair-HMMs forward al-

gorithm for GATK HaplotypeCaller on graphics processing units. Evolutionary
Bioinformatics Online, 14, 1176934318760543. doi: 10.1177/1176934318760543.

[35] Shanshan Ren et al. 2019. GPU accelerated sequence alignment with traceback

for GATK HaplotypeCaller. BMC Genomics, 20, 2, (Apr. 4, 2019), 184. doi:
10.1186/s12864-019-5468-9.

[36] Nikita Semionov. 2019. Pruning of Long Short-Term Memory Neural Networks:
Passes of Redundant Data Patterns. Master thesis. Tilburg University. Cognitive

science and artificial intelligence, (Dec. 2019). 63 pp. https://arno.uvt.nl/show.c

gi?fid=153975.

[37] [SW] Chris Seymour, Bonito: A PyTorch Basecaller for Oxford Nanopore Reads

2019. url: https://github.com/nanoporetech/bonito.

[38] Gagandeep Singh et al. 2024. RUBICON: a framework for designing efficient

deep learning-based genomic basecallers. Genome Biology, 25, 1, (Feb. 16, 2024),
49. doi: 10.1186/s13059-024-03181-2.

[39] Shaorun Wang et al. 2019. Acceleration of LSTM with structured pruning

method on FPGA. IEEE Access, 7, 62930–62937. Conference Name: IEEE Access.

doi: 10.1109/ACCESS.2019.2917312.

[40] Shuo Wang et al. 2018. C-LSTM: enabling efficient LSTM using structured

compression techniques on FPGAs. In Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA ’18). Asso-

ciation for Computing Machinery, New York, NY, USA, (Feb. 15, 2018), 11–20.

isbn: 978-1-4503-5614-5. doi: 10.1145/3174243.3174253.

[41] Liangjian Wen et al. 2020. Structured pruning of recurrent neural networks

through neuron selection. Neural Networks, 123, (Mar. 1, 2020), 134–141. doi:

10.1016/j.neunet.2019.11.018.

[42] WeiWen et al. 2018. Learning intrinsic sparse structures within long short-term

memory. (Feb. 11, 2018). arXiv: 1709.05027[cs]. doi: 10.48550/arXiv.1709.05027.

[43] Ryan R. Wick et al. 2019. Performance of neural network basecalling tools for

oxford nanopore sequencing. Genome Biology, 20, 1, (June 24, 2019), 129. doi:
10.1186/s13059-019-1727-y.

[44] Karin Yaniv et al. 2023. Wastewater monitoring of SARS-CoV-2 in on-grid,

partially and fully off-grid bedouin communities in southern israel. Frontiers
in Water, 5. doi: 10.3389/frwa.2023.1136066.

[45] Yao-Zhong Zhang et al. 2020. Nanopore basecalling from a perspective of

instance segmentation. BMC bioinformatics, 21, (Apr. 23, 2020), 136, Suppl 3,
(Apr. 23, 2020). doi: 10.1186/s12859-020-3459-0.

https://doi.org/10.1186/s12859-019-3086-9
https://doi.org/10.1109/ICCAD.2015.7372576
https://doi.org/10.1093/nar/gkab812
https://nanoporetech.com/resource-centre/london-calling-2023-dorado-future-basecalling
https://nanoporetech.com/resource-centre/london-calling-2023-dorado-future-basecalling
https://doi.org/10.1093/bioinformatics/btaa297
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://doi.org/10.1038/s41591-022-01940-x
https://doi.org/10.1038/s41591-022-01940-x
https://doi.org/10.1145/3466752.3480117
https://doi.org/10.1109/ISM.2020.00028
https://doi.org/10.1109/ISM.2020.00028
https://doi.org/10.3390/genes10110902
https://doi.org/10.1007/978-3-030-77970-2_38
https://doi.org/10.48550/arXiv.2111.00396
https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1109/SAMOS.2015.7363679
https://doi.org/10.1016/j.compbiolchem.2018.03.024
https://doi.org/10.1016/j.compbiolchem.2018.03.024
https://doi.org/10.1109/TCBB.2020.3039244
https://doi.org/10.1038/nbt.4060
https://www.wildlabs.net/event/how-do-i-use-portable-genomics-field
https://www.wildlabs.net/event/how-do-i-use-portable-genomics-field
https://doi.org/10.1093/bioinformatics/btaa953
https://doi.org/10.1016/j.neucom.2021.07.045
https://arxiv.org/abs/2101.09048 [cs]
https://doi.org/10.48550/arXiv.2101.09048
https://doi.org/10.1609/aaai.v34i04.5938
https://doi.org/10.1145/3410463.3414626
https://arxiv.org/abs/1712.01312 [cs, stat]
https://doi.org/10.48550/arXiv.1712.01312
https://doi.org/10.48550/arXiv.1712.01312
https://doi.org/10.1109/BIBM49941.2020.9313290
https://doi.org/10.1109/BIBM49941.2020.9313290
https://arxiv.org/abs/1611.00712 [cs, stat]
https://doi.org/10.48550/arXiv.1611.00712
https://openreview.net/forum?id=HyUNwulC-
https://openreview.net/forum?id=HyUNwulC-
https://doi.org/10.1186/s40246-023-00522-3
https://doi.org/10.1186/s40246-023-00522-3
https://nanoporetech.com/platform/accuracy
https://nanoporetech.com/platform/accuracy
https://doi.org/10.1186/s13059-023-02903-2
https://doi.org/10.1093/bioinformatics/btab528
https://doi.org/10.1177/1176934318760543
https://doi.org/10.1186/s12864-019-5468-9
https://arno.uvt.nl/show.cgi?fid=153975
https://arno.uvt.nl/show.cgi?fid=153975
https://github.com/nanoporetech/bonito
https://doi.org/10.1186/s13059-024-03181-2
https://doi.org/10.1109/ACCESS.2019.2917312
https://doi.org/10.1145/3174243.3174253
https://doi.org/10.1016/j.neunet.2019.11.018
https://arxiv.org/abs/1709.05027 [cs]
https://doi.org/10.48550/arXiv.1709.05027
https://doi.org/10.1186/s13059-019-1727-y
https://doi.org/10.3389/frwa.2023.1136066
https://doi.org/10.1186/s12859-020-3459-0

	Abstract
	1 Introduction
	2 Background
	2.1 Nanopore Basecalling
	2.2 Efficient Basecallers
	2.3 Structured Pruning of RNNs

	3 Learning Structured Sparsity
	3.1 Neuron Selection
	3.2 Optimizing Training Time
	3.3 Delayed Masking
	3.4 Efficient Inference
	3.5 Evaluation of Alternative Pruning Methods

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Datasets
	4.3 Basecalling Accuracy
	4.4 Basecalling Throughput
	4.5 Ablation Study

	5 Discussion
	6 Conclusion
	Acknowledgments

