
 
 

Delft University of Technology

The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be
Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine
Learning

Angus, Lindsay; Starmans, Martijn P.A.; Rajicic, Ana; Odink, Arlette E.; Jalving, Mathilde; Niessen, Wiro J.;
Visser, Jacob J.; Sleijfer, Stefan; Klein, Stefan; van der Veldt, Astrid A.M.
DOI
10.3390/jpm11040257
Publication date
2021
Document Version
Final published version
Published in
Journal of Personalized Medicine

Citation (APA)
Angus, L., Starmans, M. P. A., Rajicic, A., Odink, A. E., Jalving, M., Niessen, W. J., Visser, J. J., Sleijfer, S.,
Klein, S., & van der Veldt, A. A. M. (2021). The BRAF P.V600E Mutation Status of Melanoma Lung
Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using
Machine Learning. Journal of Personalized Medicine, 11(4), Article 257.
https://doi.org/10.3390/jpm11040257
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/jpm11040257
https://doi.org/10.3390/jpm11040257


Journal of

Personalized 

Medicine

Article

The BRAF P.V600E Mutation Status of Melanoma Lung
Metastases Cannot Be Discriminated on Computed Tomography
by LIDC Criteria nor Radiomics Using Machine Learning

Lindsay Angus 1,2,*,† , Martijn P. A. Starmans 2,3,† , Ana Rajicic 1, Arlette E. Odink 2, Mathilde Jalving 4,
Wiro J. Niessen 2,3,5, Jacob J. Visser 2 , Stefan Sleijfer 1, Stefan Klein 2,3,‡ and Astrid A. M. van der Veldt 1,2,‡

����������
�������

Citation: Angus, L.; Starmans,

M.P.A.; Rajicic, A.; Odink, A.E.;

Jalving, M.; Niessen, W.J.; Visser, J.J.;

Sleijfer, S.; Klein, S.; van der Veldt,

A.A.M. The BRAF P.V600E Mutation

Status of Melanoma Lung Metastases

Cannot Be Discriminated on

Computed Tomography by LIDC

Criteria nor Radiomics Using

Machine Learning. J. Pers. Med. 2021,

11, 257. https://doi.org/10.3390/

jpm11040257

Academic Editor: Luigi Minafra

Received: 27 January 2021

Accepted: 24 March 2021

Published: 1 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands;
a.rajicic@erasmusmc.nl (A.R.); s.sleijfer@erasmusmc.nl (S.S.); a.vanderveldt@erasmusmc.nl (A.A.M.v.d.V.)

2 Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands;
m.starmans@erasmusmc.nl (M.P.A.S.); a.odink@erasmusmc.nl (A.E.O.); w.niessen@erasmusmc.nl (W.J.N.);
j.j.visser@erasmusmc.nl (J.J.V.); s.klein@erasmusmc.nl (S.K.)

3 Department of Medical Informatics, Erasmus MC, 3015 GD Rotterdam, The Netherlands
4 Department of Medical Oncology, University Medical Center Groningen, University of Groningen,

9713 GZ Groningen, The Netherlands; m.jalving@umcg.nl
5 Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands
* Correspondence: l.angus@erasmusmc.nl; Tel.: +31-107-044-375
† These authors contributed equally.
‡ These authors contributed equally.

Abstract: Patients with BRAF mutated (BRAF-mt) metastatic melanoma benefit significantly from
treatment with BRAF inhibitors. Currently, the BRAF status is determined on archival tumor tissue
or on fresh tumor tissue from an invasive biopsy. The aim of this study was to evaluate whether
radiomics can predict the BRAF status in a non-invasive manner. Patients with melanoma lung
metastases, known BRAF status, and a pretreatment computed tomography scan were included.
After semi-automatic annotation of the lung lesions (maximum two per patient), 540 radiomics
features were extracted. A chest radiologist scored all segmented lung lesions according to the
Lung Image Database Consortium (LIDC) criteria. Univariate analysis was performed to assess
the predictive value of each feature for BRAF mutation status. A combination of various machine
learning methods was used to develop BRAF decision models based on the radiomics features and
LIDC criteria. A total of 169 lung lesions from 103 patients (51 BRAF-mt; 52 BRAF wild type) were
included. There were no features with a significant discriminative value in the univariate analysis.
Models based on radiomics features and LIDC criteria both performed as poorly as guessing. Hence,
the BRAF mutation status in melanoma lung metastases cannot be predicted using radiomics features
or visually scored LIDC criteria.

Keywords: melanoma; machine learning; lung neoplasm/metastases; tomography; X-ray computed;
proto-oncogene proteins B-raf

1. Introduction

Cutaneous melanoma is an aggressive skin cancer most commonly occurring on the
ultra-violet light exposed skin of Caucasians [1,2]. In Europe, it is the 8th most common
malignancy in men and the 5th most common in women, with an annual incidence of
144,200 new cases and 27,100 deaths [3]. In the coming years, the incidence of melanoma is
expected to increase rapidly, resulting in an increased melanoma-associated mortality [4].

The introduction of new systemic treatment modalities, including immunotherapy
and BRAF inhibitors, has significantly improved the prognosis of patients with metastatic
melanoma [5]. Approximately 50% of melanomas harbor a mutation in the BRAF gene,
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with p.V600E being the most common variant [6–8]. Patients with BRAF-mutant (BRAF-
mt) melanoma benefit significantly from treatment with BRAF inhibitors and onset of
response is often rapid [9]. To enhance response rates and duration of response, patients
are usually treated with a combination of a BRAF and a MEK inhibitor [10–13]. Due to
the therapeutic consequences, determination of the BRAF mutation status in patients with
metastatic melanoma is mandatory according to the European Society of Medical Oncology
guidelines [14].

Currently, the BRAF mutation status is usually determined by molecular analysis of a
metastatic lesion [15]. However, tissue biopsies are invasive, thereby exposing patients to
potential risks including bleeding, infection and in case a lung biopsy is taken the risk of
pneumothorax. In addition, molecular analyses can be time-consuming, especially when
the tumor specimen has been archived at another hospital. Since patients with metastatic
melanoma can experience rapidly progressive disease with life-threatening symptoms
and an urgent medical need for systemic therapy, faster and less invasive diagnostics to
determine the BRAF mutation status may significantly improve patient management.

Recently, various tumor characteristics have been predicted non-invasively using
quantitative imaging features, also referred to as “radiomics”. In non-small cell lung cancer,
radiomics on computed tomography (CT) can predict tumor stage and epidermal growth
factor receptor (EGFR) mutation status [16–24]. In patients with primary colorectal cancer,
a CT radiomics signature that was associated with BRAF mutation status [25]. CT-based
radiomics has been applied to predict response to immunotherapy in melanoma lymph
node metastases [26], but with little success (area under the curve (AUC) of 0.64). The value
of radiomics for predicting BRAF mutation status has not been investigated. If CT-based
radiomics could predict BRAF mutation status with a high positive predictive value, this
may provide a faster and more patient-friendly alternative to determine the BRAF mutation
status in metastatic melanoma.

The aim of this study was to evaluate the utility of CT-based radiomics to predict
BRAF mutation status (mutant versus wild type) in metastatic melanoma. In metastatic
melanoma, lung metastases are relatively easy to annotate on CT as compared to other
metastases since they can be clearly distinguished from healthy lung tissue. Therefore,
the aim of this study was to evaluate the utility of CT-based radiomics to predict BRAF
mutation status (mutant versus wild type) in melanoma lung metastases.

2. Materials and Methods
2.1. Data Collection

This study was approved by the Erasmus MC institutional research board (MEC-
2019-0693). Anonymized patient data was used and therefore need for written informed
consent was waived by the Institutional Review Board. All patients diagnosed with
metastatic melanoma at the Erasmus MC between January 2012 and February 2018 were
included retrospectively if they met the following pre-specified criteria: known tumor
BRAF mutation, diagnostic contrast-enhanced thoracic CT scan prior to commencement
of any systemic therapy, and at least one lung metastasis of ≥10 mm evaluable according
to Response Evaluation Criteria In Solid Tumors (RECIST) v1.1 [27]. Patients with BRAF
mutations other than p.V600E were excluded from the analysis, since BRAF inhibitors
may be less effective in patients with other BRAF mutations [28]. Formalin-fixed paraffin-
embedded material of the primary tumor and/ or metastasis is tested for BRAF (exon 15)
using a polymerase chain reaction based assay or next generation sequencing as part of
standard care.

2.2. Radiomics

Lung metastases were measured according to RECIST v1.1 [27]. For 3D segmentation,
up to two lung lesions ≥ 10 mm were selected by a clinician supervised by an experienced
chest radiologist. In patients with >2 lung metastases of ≥10 mm, either the two largest or
the two most easily distinguishable lesions were segmented (i.e., two separate lesions were
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preferred over two adjacent lesions). Using in-house developed software [29], selected lung
metastases were segmented semi-automatically using a lung window for visualization. The
result was visually inspected and manually corrected when necessary by an experienced
chest radiologist to ensure that the semi-automatic segmentation resembled the manual
segmentation. The clinician and chest radiologist were both blinded for BRAF mutation
status. From each segmented lesion, 540 radiomics features were extracted to quantify
intensity, shape and texture. Details are described in Supplementary Materials 1. To create
a decision model using these features, the Workflow for Optimal Radiomics Classification
(WORC) toolbox was used (Figure 1) [30–32]. Details are described in Supplementary
Materials 2. In brief, the creation of a decision model in WORC consists of several steps,
including selection of relevant features, resampling and machine learning techniques
to identify patterns to distinguish BRAF-mt from BRAF wild type (BRAF-wt) lesions.
WORC performs an automated search including a variety of algorithms for each step and
determines which combination of algorithms maximizes the predictive performance on the
training set. The open-source code for the feature extraction and model optimization has
been published [33].

Figure 1. Schematic overview of the radiomics approach: adapted from Vos and Starmans et al. [32]. Inputs to the algorithm
are (1) contrast-enhanced thoracic CT images of patients with BRAF mutated or BRAF wild type metastatic melanoma and
(2) a segmentation of the lung metastasis. Processing steps include (3) feature extraction and (5) the creation of a machine
learning decision model, using (4) an ensemble of the best 50 workflows from 100,000 candidate workflows, which are
different combinations of the different processing and analysis steps (e.g., the classifier used).

2.3. Scoring by Radiologist

An experienced chest radiologist (certified for 8 years) scored the segmented lung
lesions. There are no guidelines to differentiate histologic subtypes in lung metastases;
therefore, the Lung Image Database Consortium (LIDC) criteria were used. These criteria
were developed to standardize the description of radiological features of lung abnormalities
in clinical practice [34]. The following LIDC features were rated: subtlety, calcification,
internal structure, lobulation, likelihood of malignancy, margin, sphericity, spiculation and
texture (see Table S1 for the rating system). The radiologist was blinded for the BRAF
status, but not to the diagnosis of metastatic melanoma and had access to the CT scan, age
and sex of the patient.
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2.4. Experimental Setup

To assess the predictive value of quantitative imaging features (i.e., radiomics features)
and LIDC features, five models were trained and tested using WORC based on: (1) auto-
matically extracted radiomics features only (2) similar to model 1, but only including the
largest lesion per patient; (3) similar to model 1, but only including patients with NRAS and
BRAF wild type melanoma for the comparison with BRAF-mt; (4) manually scored LIDC
features only; and (5) a simple benchmark model. Model 2 was applied to assess a potential
bias for patients with multiple lesions. Model 3 was included because activating NRAS
mutations could potentially result in a similar phenotype as BRAF-mt, since mutations in
both genes lead to activation of the mitogen-activated protein kinase (MAPK) pathway.
The simple benchmark model was evaluated in a similar way as model 1, i.e., using all
lesions and automatically extracted radiomics features. Model 5 was applied to compare
the performance of WORC to a simple benchmark machine learning model, which uses
binary logistic regression with LASSO (least absolute shrinkage and selection operator)
feature selection (i.e., ElasticNet).

2.5. Statistics

To assess the predictive value of the individual features, the Mann–Whitney U test
was performed for univariate analyses of continuous variables and Pearson’s chi-squared
test was used for categorical variables. For radiomics, p-values were corrected for multiple
testing using the Bonferroni correction according to the default in WORC. A p-value of
<0.05 was considered to be statistically significant.

Evaluation of the radiomics models was performed using a 100× random-split cross-
validation. In each iteration, the data was randomly split into 80% for training and 20%
for testing in a stratified manner to guarantee a similar distribution of the classes in the
training and test set as compared to the original set. Metastases from the same patients
were always grouped together in either the training or test set. To eliminate the risk of
overfitting, in each iteration, all model optimization was performed strictly within the
training set by using a second internal 5× random-split cross-validation (see Figure S1).
The final model consists of an ensemble of the 50 best workflows, i.e., combination of
methods and parameters, each defined by a specific set of hyperparameters. This final
model may be different in each of the 100× random-split cross-validation iterations. For
each of the five models described in the experimental setup, these sets hyperparameters
are included with the code [33]. Details are described in Supplementary Materials 2.

The performance of all four models was described by the AUC of the receiver operating
characteristic (ROC) curve, accuracy, sensitivity, specificity, negative predictive value (NPV)
and positive predictive value (PPV). The positive class was defined as BRAF-mt. For each
metric, the average over the 100 cross-validation iterations and a 95% confidence interval
(CI) were reported. The 95% CIs were constructed using the corrected resampled t-test
based on the results from all 100 cross-validation iterations, thereby taking into account
that the samples in the cross-validation splits are not statistically independent [35]. ROC
confidence bands were constructed using fixed-width bands [36].

3. Results
3.1. Study Population

In total, 103 patients were included, see Figure S2 for a flowchart of patient inclusion.
Characteristics of these patients and their CT scans are summarized in Table 1. The
median age was 65 years (interquartile range (IQR) 52–72) and 50.5% of the patients were
men. BRAF mutation status was either determined on the primary tumor (N = 20), local
recurrence (N = 3), or metastasis (N = 79). In these lesions, BRAF p.V600E was detected
in 51 patients, whereas 52 patients had BRAF-wt melanomas. In total, 103 CT scans were
acquired from 10 different CT scanners, resulting in in the inclusion of data acquired
with different acquisition protocols (Table 1). Although for all acquisition parameters the
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difference between BRAF-mt and BRAF-wt was not statistically significant, the difference
in tube current reached almost statistical significance (p = 0.05).

Table 1. Patient and imaging characteristics. Values in parentheses are percentages unless indicated otherwise.

Patient BRAF-mt (N = 51) BRAF-wt (N = 52) p-Value

Age (years) † 59 (50–69) 66 (57–74) 0.048
Sex 0.768

Male 25 (49) 27 (52)
Female 26 (51) 25 (48)

Primary tumor localization 0.027
Skin 49 (96) 42 (81)
Mucosal 0 (0) 6 (11)
Unknown 2 (4) 4 (8)

Determination of BRAF-mutation status 0.851
Primary tumor 9 (18) 11 (21)
Local recurrence 1 (2) 2 (4)
Metastasis 40 (78) 39 (75)
Unknown 1 (2) 0 (0)

NRAS mutation status $ Not applicable
Mutant - 22 (42)
Wild type - 23 (44)
Unknown - 7 (2)

Imaging
Acquisition protocol

Slice thickness (mm) †,1 1.5 (1.5, 1.5) 1.5 (1.5, 1.5) 0.23
Pixel spacing (mm) † 0.68 (0.64, 0.74) 0.67 (0.61, 0.73) 0.16
Tube current (mA) † 405 (278, 553) 333 (210, 490) 0.05
Peak kilovoltage †,1 120 (120, 120) 120 (118, 120) 0.44
Contrast Agent 0.84

Visipaque 320 35 37
Ultravist 1 0
Omnipaque 1 1
Optiray 0 1
Unknown 14 13

Number of segmented lesions per patient 0.54
One 20 (39) 17 (33)
Two 31 (61) 35 (67)

Values in parentheses are percentages unless stated otherwise. † Values are median (Inter quartile range). $ NRAS and BRAF mutations are
mutually exclusively occurring; hence, we did not test for significance between BRAF wild type versus mutant cases. 1 Other values than
those given in the median and inter quartile range do occur.

3.2. Radiomics and LIDC Features and Models

In total, 169 lung metastases in 103 patients were segmented. Figure 2 illustrates
randomly selected segmentations of lung metastases from patients with BRAF-mt and
BRAF-wt metastatic melanoma. Median volume of segmented lung lesions was 18.3 mL
(IQR: 7.3–48.6 mL). None of the radiomics or LIDC features were significantly different be-
tween BRAF-mt and BRAF-wt lung metastases, as none of the features had a p-value < 0.05
after Bonferroni correction. LIDC criteria scores are shown in Table S2. Using all 169 lung
metastases, the radiomics model (model 1) resulted in a mean AUC of 0.49, sensitivity of
0.61 and specificity of 0.37 (Figure 3A, Table 2). Model 2, i.e., only inclusion of the largest
lesion per patient, slightly improved the performance (AUC of 0.65), whereas model 3,
i.e., only inclusion of BRAF-wt melanoma who were also NRAS wild type, still had a poor
performance (AUC of 0.49) (Figure 3B,C, Table 2). In addition, model 4, i.e., based on the
LIDC features scored by a radiologist, resulted in an AUC of 0.46 (Figure 3D). The simple
benchmark (model 5) resulted in a similar performance (AUC of 0.50).
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Figure 2. Examples of BRAF wild type (A,B) and BRAF mutant (C,D) lung metastases of four patients with metastatic
melanoma. Contours of the segmentations of the selected metastases are shown in red.

Figure 3. Receiver operating characteristic (ROC) curve of the radiomics model of all lesions (A), only the largest lesion
(B), only BRAF wild type lesions with NRAS wild type (C) and LIDC features (D). The crosses identify the 95% confidence
intervals of the 100× random-split cross-validation; the blue curve is fit through their means.

Table 2. Performance of the models for BRAF mutation prediction based on different sets of features and lesions.

Model 1
Radiomics All

Lesions—WORC

Model 2
Radiomics

Largest Lesion

Model 3
Radiomics NRAS

Wild Type

Model 4
LIDC All Lesions

Model 5
Radiomics All

Lesions—
Benchmark

AUC 0.49 [0.38, 0.59] 0.65 [0.51, 0.79] 0.49 [0.37, 0.61] 0.46 [0.38, 0.55] 0.50 [0.42, 0.58]
Accuracy 0.48 [0.39, 0.57] 0.61 [0.50, 0.72] 0.65 [0.58, 0.71] 0.49 [0.42, 0.56] 0.50 [0.43, 0.57]

Sensitivity 0.61 [0.44, 0.77] 0.61 [0.42, 0.80] 0.94 [0.87, 1.00] 0.29 [0.11, 0.48] 0.56 [0.32, 0.80]
Specificity 0.37 [0.22, 0.52] 0.60 [0.38, 0.82] 0.08 [0.00, 0.17] 0.66 [0.46, 0.86] 0.44 [0.20, 0.69]

NPV 0.53 [0.39, 0.66] 0.61 [0.46, 0.76] 0.35 [0.00, 0.75] 0.52 [0.42, 0.61] 0.43 [0.21, 0.66]
PPV 0.45 [0.37, 0.53] 0.63 [0.48, 0.77] 0.67 [0.62, 0.72] 0.44 [0.30, 0.58] 0.47 [0.37, 0.56]

Abbreviations: AUC: area under the receiver operating characteristic curve; NPV: negative predictive value; PPV: positive predictive value.

4. Discussion

The results of this study show that there is no association between radiomics features
of lung metastases and the BRAF mutation status in patients with metastatic melanoma.
Our model using only the largest lesion per patient performed best with a moderate
mean AUC, but still none of the features had any individual discriminative value. In
addition, the performance confidence intervals (e.g., the sensitivity and specificity) still
included many values below the performance of guessing. The LIDC criteria as scored
by a thorax radiologist also failed to discriminate the BRAF mutation status in melanoma
lung metastases.

Despite the remarkable success of BRAF inhibitors and immunotherapy in patients
with metastatic melanoma, only a subset of patients benefits from these therapies [11,37].
Tools to select the patients most likely to benefit are of great interest and this has resulted in
several radiomics studies aiming to predict tumor response. Similar to our study, previous
radiomics models, either to predict therapy response or survival, had a low to moderate
performance in metastatic melanoma [26,38,39]. In the largest radiomics study in melanoma
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thus far, 483 lesions from 80 melanoma patients were included and a greater morphological
heterogeneity of lymph nodes determined by CT was associated with immunotherapy
response, resulting in a moderate AUC of 0.64 [26]. However, the model performed poorly
in lung and liver lesions (AUC of 0.55). Comparable to our CT-based findings, a recent
study showed that radiomics features derived from 18F-FDG positron emission tomography
(PET) to determine the BRAF p.V600E mutation status also had a moderate performance
(AUC of 0.62). They studied 176 lesions, including 18 lung lesions from 70 patients with
melanoma (35 BRAF-mt and 35 BRAF-wt) [40]. To the best of our knowledge, this PET
study [40] and our CT study are the first melanoma studies aiming to predict BRAF p.V600E
mutation status, showing that neither PET nor CT radiomics features can discriminate
between patients with BRAF-mt and BRAF-wt melanomas. We therefore believe that our
comprehensive study provides insight into the potential of radiomics in this area, which
can guide future research [41].

The lack of discrimination between BRAF-mt and BRAF-wt melanoma could poten-
tially be explained by activating mutations in the NRAS gene in BRAF-wt melanoma. Since
NRAS and BRAF are involved in the same pathway, i.e., the MAPK pathway, activating
NRAS and BRAF mutations could result in a similar phenotype. Therefore, we evaluated an
additional model which only included NRAS wild type lesions in patients with BRAF-wt
melanoma (model 3). In our cohort of patients with BRAF-wt melanoma, 22 out of 45
(49%) patients—with known NRAS mutation status—had a NRAS mutation. Exclusion
of all patients with NRAS mutation or unknown NRAS mutation status resulted in an
AUC of 0.54 (95% CI 0.44–0.64). Based on these findings, it is very unlikely that inclusion
of NRAS mutant melanomas negatively impacted our results. In addition, our findings
are supported by the low predictive value of PET radiomics in the same setting in which
patients with NRAS mutations were also excluded [40].

Our study was designed for a comprehensive evaluation of the relationship between
CT imaging features and the BRAF mutation status in melanoma lung metastases. To our
knowledge this is currently the largest CT-based radiomics study on the BRAF mutation sta-
tus in patients with metastatic melanoma and with 103 subjects even large for a radiomics
study [42]. It is unlikely that treatment-related resistance mechanisms influenced the out-
come, since the study population was treatment-naïve, thereby reflecting the appearance of
untreated melanoma lung metastases. The investigated patient population only included
melanoma patients for whom correct determination of the BRAF status is of utmost impor-
tance for rapid treatment stratification. The WORC radiomics method applied has been
previously validated to predict mutation status of several genes in other tumor types, such
as lipoma and liposarcoma [32], desmoids [43], gastrointestinal stromal tumors [44], liver
cancer [29,45], prostate cancer [46] and mesenteric fibrosis [47]. In these previous studies,
the radiomics models had a much better performance (mean AUCs between 0.71–0.89) and
multiple features were statistically significant in univariate statistical testing. In the current
study, none of the radiomics features had any discriminative value; therefore, it can be
concluded that radiomics features of melanoma lung metastases are not related to the BRAF
mutation status. WORC includes a wide variety of radiomics approaches and automatically
optimizes the combination, thereby evaluating many different approaches. Moreover, a
different normalization method, combining z-scoring with a logarithmic transform and
a correction term to better cope with outliers and non-normally distributed features [48],
yielded similar negative results (model 1: AUC of 0.49). Hence, it is unlikely that a different
radiomics approach will lead to a positive result.

In addition to the radiomics analysis, a radiologist visually evaluated the lesions.
Similar to radiomics results, the radiologist could not discriminate between BRAF-wt
and BRAF-mt lesions by applying the LIDC criteria. Although radiomics can potentially
correlate imaging features with clinical outcome even in cases where a radiologist cannot,
the relation between quantitative imaging features and clinical outcome is considered
stronger when clinical outcomes can be discriminated visually by a radiologist. This
was not evident in the current study and it can be considered additional evidence that
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a CT-based radiomics signature probably does not exist for the BRAF mutation status in
melanoma lung metastases. Although radiomics is promising in other fields of research,
it is not expected that all cytogenetic changes are associated with morphological changes.
Consequently, it is unlikely that every DNA alteration can be detected by radiomics.

Our study has several limitations. Firstly, the BRAF mutation status was often deter-
mined on other tumor tissue than the segmented lung metastases. The BRAF status was
determined on biopsy material from a lung metastasis, which did not necessarily match
the segmented lung lesion, in only 12 patients. Although the concordance rate of the BRAF
mutation status between primary melanoma and metastases is quite high [8,49,50], a recent
meta-analysis showed a pooled discrepancy rate of 13.4% between primary melanomas
and metastases and a 7.3% discrepancy rate between metastatic sites [51]. Hence, tu-
mor heterogeneity might have caused misclassification of BRAF mutation status, thereby
negatively affecting the results. Ideally, in prospective radiomics studies, genomic and
radiomics analyses are performed on the same tumor site. Secondly, the segmentation
of regions of interest (ROI) was performed semi-automatically. Automatic segmentation
methods may improve the consistency of the segmentations and thus affect the radiomics
model. However, due to the clear distinction of lung lesions and their surroundings, it is
not expected that automatic segmentation will substantially alter the results. Thirdly, the
heterogeneity in the acquisition protocols may have negatively affected the performance or
our radiomics model. These variations may have led to variations in the imaging features,
which complicate the recognition of patterns. Using a single acquisition protocol would
give an estimate of the performance unaffected by such variations. However, the varia-
tions in the acquisition protocols were small, making it unlikely this significantly affected
the results of the current study. Feature selection methods based on feature test-retest
reproducibility could be investigated in future work [52,53]. The difference in tube current
between BRAF-mt and BRAF-wt almost reached statistical significance and could have
been implicitly used by the model to distinguish these lesions. However, our results show
that, despite this difference, the performance of the model was similar to guessing. Lastly,
although training data were strictly separated from test data in cross-validation, we did
not validate our findings on an independent, external dataset.

5. Conclusions

In summary, our study demonstrates that neither CT-based radiomics features, nor
CT-derived LIDC features scored by a radiologist can discriminate between BRAF mutant
and BRAF wild type lung metastases in patients with metastatic melanoma. Therefore, CT-
based parameters cannot replace determination of BRAF mutation status on tumor tissue.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11040257/s1, Figure S1: Visualization of the 100× random split-cross validation, including
a second cross validation within the training set for the model optimization., Figure S2: Flowchart of
patient inclusion., Table S1: LIDC Nodule Characteristics, Definitions and Ratings., Table S2: LIDC
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