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ABSTRACT 

Additive manufacturing is a collection of concepts using a bottom-up, layer-by-layer approach and may have 

many advantages in fabricating more lightweight and durable component design (Roy, et al., 2008). Lighter 

and more durable components could enable more energy efficient travel and contribute greatly to 

environmental protection of the earth or deep space travel.  

However, present day design methods are unsuitable for the complex nature of optimally designing such 

detailed and organic shapes (Marler & Arora, 2004). As such, stochastic optimisation techniques such as the 

standard genetic algorithm (SGA) have been applied in numerous engineering design cases, initially yielding 

promising yet strongly varying results. These varying, unreliable results are limiting the broader application 

of such stochastic techniques in engineering design, which requires clear explanation of a design method. 

The inexplicability of experimental results is caused by a very poor understanding of how such stochastic 

optimisation process work (Sorensen, et al., 2017). This research used a simple design case study of thickness 

distribution on a flat fuselage plate to investigate the mechanisms through which a GA interacts on such 

problem. The fuselage design was optimised for fatigue damage tolerance per unit weight on various levels 

of granularity using an adapted analytical model.  

To analyse the optimisation process, a functional definition of what GAs “should be doing” was determined. 

These GA functions were used to evaluate and compare different heuristic designs. Furthermore, a sensitivity 

study was performed on the mutation rate and initial population of the GA.  

The results of this study provided evidence that the standard genetic algorithm (SGA) design of crossover 

and random mutation is unreliable, inefficient and deceptive, while an improved GA (IGA) design using 

concepts such as signalling of relative allele strength, mutation filtering and selection bias can create a 

reliable, better performing and understandable optimisation process in the context of the design case.  

Furthermore, a broader discussion on the results demonstrated that standard crossover and the improved 

mutation are inherently more similar than we expected, thus questioning whether it is not more important 

to design a set of search heuristics through better understanding of the fitness space, rather than the 

application of a flawed, nature-inspired standard crossover and random mutation. This research questions 

whether we should name these heuristics crossover and mutation in the first place.  

Through these insights, this research contributed to ongoing research in understanding GAs, which, if better 

understood, could assist engineers in finding improved designs of additively manufactured components. 
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EX-1 Crossover  T-S RD-I SP-C 
     

0.1 N/A^m 30 mid 10 20 238 

EX-2 Crossover  T-S RD-I TP-C 
     

0.1 N/A^m 30 mid 10 20 239 

EX-3 Crossover  T-S RD-I U-C 
     

0.1 N/A^m 30 mid 10 20 240 

EX-4 Initial PRAS T-S DD-I U-C 
     

0.1 N/A^m 30 low 10 20 313 

EX-5 Initial PRAS T-S DD-I TP-C 
     

0.1 N/A^m 30 low 10 20 314 

EX-6 Initial PRAS T-S DD-I U-C 
     

0.1 N/A^m 30 high 10 20 315 

EX-7 Initial PRAS T-S DD-I TP-C 
     

0.1 N/A^m 30 high 10 20 316 

EX-8 Initial PRAS T-S DD-I SP-C 
     

0.1 N/A^m 30 high 10 20 317 

EX-9 Initial PRAS T-S DD-I SP-C 
     

0.1 N/A^m 30 low 10 20 319 

EX-10 Granularity T-S RD-I U-C 
     

0.1 N/A^m 150 mid 10 20 284 

EX-11 Mutation T-S RD-I 
 

U-M 
    

0.1 N/A^m 30 mid 10 20 176 

EX-12 Mutation T-S RD-I 
 

RS-M X 
   

0.1 N/A^m 30 mid 10 20 178 

EX-13 Mutation T-S RD-I 
 

RSM-M X 
   

0.1 N/A^m 30 mid 10 20 179 

EX-14 Mutation T-S RD-I 
 

RSAA-M X X 
  

0.1 N/A^m 30 mid 10 20 182 

EX-15 Mutation T-S RD-I 
 

RSAASS-M X X X 
 

0.1 N/A^m 30 mid 10 20 258 

EX-16 Mutation T-S RD-I 
 

RSAASSEUE-
M 

X X X X 0.1 N/A^m 30 mid 10 20 289 

EX-17 Mutation T-S RD-I U-C U-M 
    

0.1 N/A^m 30 mid 10 20 147 

EX-18 Mutation T-S RD-I U-C RSM-M X 
   

0.1 N/A^m 30 mid 10 20 189 

EX-19 Mutation T-S RD-I U-C RS-M X 
   

0.1 N/A^m 30 mid 10 20 135 

EX-20 Mutation T-S RD-I U-C RSAA-M X X 
  

0.1 N/A^m 30 mid 10 20 183 

EX-21 Mutation T-S RD-I U-C RSAASS-M X X X 
 

0.1 N/A^m 30 mid 10 20 270 

EX-22 Mutation T-S RD-I U-C RSAASSEUE-
M 

X X X X 0.1 N/A^m 30 mid 10 20 287 

EX-23 Initial PRAS T-S DU-I U-C RSAASSEUE-
M 

X X X X 0.1 N/A^m 30 low 10 20 290 

EX-24 Initial PRAS T-S DU-I U-C U-M 
    

0.1 N/A^m 30 low 10 20 291 

EX-25 Initial PRAS T-S DU-I U-C RS-M X 
   

0.1 N/A^m 30 low 10 20 292 

EX-26 Initial PRAS T-S DU-I U-C RSAA-M X X 
  

0.1 N/A^m 30 low 10 20 298 

EX-27 Initial PRAS T-S DU-I U-C RSAASS-M X X X 
 

0.1 N/A^m 30 low 10 20 300 

EX-28 Initial PRAS T-S DD-I U-C RS-M X 
   

0.1 N/A^m 30 high 10 20 302 

EX-29 Initial PRAS T-S DD-I U-C RS-M X 
   

0.1 N/A^m 30 low 10 20 303 

EX-30 Initial PRAS T-S DD-I U-C RSAA-M X X 
  

0.1 N/A^m 30 low 10 20 297 

EX-31 Initial PRAS T-S DD-I U-C RSAA-M X X 
  

0.1 N/A^m 30 high 10 20 304 

EX-32 Initial PRAS T-S DD-I U-C RSAASS-M X X X 
 

0.1 N/A^m 30 low 10 20 305 

EX-33 Initial PRAS T-S DD-I U-C RSAASS-M X X X 
 

0.1 N/A^m 30 high 10 20 306 

EX-34 Initial PRAS T-S DD-I U-C RSAASSEUE-
M 

X X X X 0.1 N/A^m 30 high 10 20 306 
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EX-35 Initial PRAS T-S DD-I U-C RSAASSEUE-
M 

X X X X 0.1 N/A^m 30 low 10 20 307 

EX-36 Initial PRAS T-S DD-I U-C U-M 
    

0.1 N/A^m 30 low 10 20 308 

EX-37 Initial PRAS T-S DD-I U-C U-M 
    

0.1 N/A^m 30 high 10 20 309 

EX-38 Initial PRAS T-S DU-I U-C RSAASSEUE-
M 

X X X X 0.2 N/A^m 30 low 10 20 310 

EX-39 Initial PRAS T-S DU-I U-C RS-M X 
   

0.2 N/A^m 30 low 10 20 311 

EX-40 Initial PRAS T-S DU-I U-C U-M 
    

0.2 N/A^m 30 low 10 20 312 

EX-41 Mutation Rate T-S RD-I U-C RS-M X 
   

0.05 N/A^m 30 mid 10 20 227 

EX-42 Mutation Rate T-S RD-I U-C RSAA-M X X X 
 

0.05 N/A^m 30 mid 10 20 231 

EX-43 Mutation Rate T-S RD-I U-C RSAASS-M X X X 
 

0.05 N/A^m 30 mid 10 20 259 

EX-44 Mutation Rate T-S RD-I U-C U-M 
    

0.05 N/A^m 30 mid 10 20 276 

EX-45 Mutation Rate T-S RD-I U-C RSAASSEUE-
M 

X X X X 0.05 N/A^m 30 mid 10 20 321 

EX-46 Mutation Rate T-S RD-I U-C RS-M X 
   

0.1 N/A^m 30 mid 10 20 228 

EX-47 Mutation Rate T-S RD-I U-C RSAA-M X X 
  

0.1 N/A^m 30 mid 10 20 232 

EX-48 Mutation Rate T-S RD-I U-C RSAASS-M X X X 
 

0.1 N/A^m 30 mid 10 20 266 

EX-49 Mutation Rate T-S RD-I U-C U-M 
    

0.1 N/A^m 30 mid 10 20 277 

EX-50 Mutation Rate T-S RD-I U-C RSAASSEUE-
M 

X X X X 0.1 N/A^m 30 mid 10 20 322 

EX-51 Mutation Rate T-S RD-I U-C RS-M X 
   

0.15 N/A^m 30 mid 10 20 229 

EX-52 Mutation Rate T-S RD-I U-C RSAA-M X X 
  

0.15 N/A^m 30 mid 10 20 233 

EX-53 Mutation Rate T-S RD-I U-C RSAASS-M X X X 
 

0.15 N/A^m 30 mid 10 20 267 

EX-54 Mutation Rate T-S RD-I U-C U-M 
    

0.15 N/A^m 30 mid 10 20 278 

EX-55 Mutation Rate T-S RD-I U-C RSAASSEUE-
M 

X X X X 0.15 N/A^m 30 mid 10 20 323 

EX-56 Mutation Rate T-S RD-I U-C RS-M X 
   

0.2 N/A^m 30 mid 10 20 230 

EX-57 Mutation Rate T-S RD-I U-C RSAA-M X X 
  

0.2 N/A^m 30 mid 10 20 234 

EX-58 Mutation Rate T-S RD-I U-C RSAASS-M X X X 
 

0.2 N/A^m 30 mid 10 20 268 

EX-59 Mutation Rate T-S RD-I U-C U-M 
    

0.2 N/A^m 30 mid 10 20 279 

EX-60 Mutation Rate T-S RD-I U-C RSAASSEUE-
M 

X X X X 0.2 N/A^m 30 mid 10 20 320 

EX-61 Granularity T-S RD-I U-C RSAA-M X X 
  

0.1 N/A^m 150 mid 10 20 186 

EX-62 Granularity T-S RD-I U-C RSAASS-M X X X 
 

0.1 N/A^m 150 mid 10 20 187 

EX-63 Granularity T-S RD-I U-C RS-M X 
   

0.1 N/A^m 150 mid 10 20 272 

EX-64 Granularity T-S RD-I U-C U-M 
    

0.1 N/A^m 150 mid 10 20 273 

EX-65 Granularity T-S RD-I U-C RSAASSEUE-
M 

X X X X 0.1 N/A^m 150 mid 10 20 288 

EX-66 Generations T-S RD-I U-C RSAASS-M X X X 
 

0.1 N/A^m 150 mid 10 40 275 

EX-67 Generations T-S RD-I U-C RSAASSEUE-
M 

X X X X 0.1 N/A^m 150 mid 10 40 325 

*Changing variable with respect to the preceding experiments in this list, improves understandability of the experimentation matrix 

** Experiment ID in database with all experiments. Experiment list shown in this report contains a fraction of total number of experiment run 
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1. INTRODUCTION 

The aircraft and space industry continue to seek lighter and more durable designs of structures or 

components. Traditional subtractive and formative manufacturing techniques have physical limits in 

achieving more lightweight designs of aircraft components, while larger structures often requiring joining 

methods such as fastening and bonding.  

Additive manufacturing, on the other hand, is a collection of concepts using a layer-by-layer approach and 

may have many advantages in fabricating lightweight component and structure design. Even lighter 

components could enable more energy efficient travel which could facilitate further deep space travel and a 

reduced environmental pressure.  

While efforts in overcoming the manufacturing and quality challenges are being done, the close to unlimited 

design freedom to create more organic shapes has still been limited by traditional design methods (Yang & 

Zhao, 2015). Therefore, optimisation algorithms are necessary to support humans in designing more 

complex, natural forms where the design variables n are in the range n > 100.  

Due to the complex nature of these design problems, gradient-based optimization methods are generally not 

applicable nor effective due to smooth and continuous gradient information being absent or very difficult to 

obtain. Most of these problems can be formulated as combinatorial optimisation problems (ElMaraghy, et 

al., 2012).  

Genetic algorithms (GA), a class of evolutionary algorithms, have been found useful heuristics on such 

problems in engineering design applications, specifically in thickness distribution optimisation. For example, 

a butterfly valve disc thickness distribution design the maximum stress was decreased with 61% and 

maximum flow was increased with 17%, while mass was reduced by 6%, as compared to an initial 

manufacturer design (Caraballo, et al., 2017). Another example is that of crenellation of fuselage plates, 

where optimized designs showed a 10% fatigue life improved as compared to an initial design that was 

developed based on experience (Lu, et al., 2016).  

However, there is still discrepancy between theory and empirical observations in GA applications in higher 

ranges of n, particularly because no empirical basis seems to exist for a generally accepted theoretical 

description (Sorensen, et al., 2017). Such scale is necessary, as small ranges of n would imply a limited design 

freedom, thus removing the potential benefits of additive manufacturing. This discrepancy makes the 

optimal design of GAs and the predictability of their functioning difficult to achieve. Improving the 

understanding of GAs mechanisms could significantly improve the design possibilities and thus allow us to 

benefit from additive manufacturing and many other bottom-up design approaches. 

Empirical evidence supports that variations of GAs can have a large influence on the results, both positively 

and negatively (Wolpert & Macready, 1997). As such, the arbitrary choice of the SGA with standard heuristics, 

arbitrary choice of parameters and objective functions would be inappropriate. As far as we know, no 

empirical information has been published on the effect of GA heuristic variations and parameters on the 
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thickness distribution optimisation of flat fuselage plates, as well as the influence of objective function 

variations.  

More generally, wide acceptance of GAs in engineering design has not yet been established due to this lack 

of understanding GAs. To enable broader acceptance in engineering design, it is of great importance that we 

create a better understanding of the mechanisms of the GA.  

The objective of this research is to improve reliability (expressed as the probability that the GA is able to find 

known, optimal solutions) in thickness distribution optimization models of crenellated aircraft fuselage plates 

by (1) improving the standard genetic algorithms and (2) finding suitable objective functions. Specifically, 

these objectives will be tested in the range of t = 3 , 3 < n < 150.  

We expect the trial-and-error exploration of different GA heuristics to contribute valuable information on 

how the GA mechanisms work on a simple design case study of crenellation and provide a basis for further 

understanding the fascinating interaction between evolutionary algorithms and engineering design. 
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2. THEORETICAL FRAMEWORK 

In this chapter the reader is introduced to existing engineering models for the thickness distribution 

optimisation of flat plates, as well as the standard genetic algorithm. 

First, we introduce the phenomenon of crenellation, as it was shown to enhance the fatigue tolerance of 

metallic plates. To the best of our knowledge, no analytical model to describe this phenomenon exists.  

Therefore, second, to develop such model, an analytical bonded-stiffener fatigue crack growth model (Rans, 

et al., 2015) developed by Rans, Rodi and Alderliesten is presented which will be adapted in the methods 

section in an attempt to describe fatigue crack growth for crenellated metal plates. By doing so, it would 

become possible to define a simplified design case study of crenellation upon which a genetic algorithm could 

be studied in detail.  

Third, as for the optimisation model for this research, the standard genetic algorithm (SGA), also referred to 

as the canonical genetical algorithm (CGA), is introduced in order to build a common, basic understanding of 

the genetic algorithm.   

 

2.1. CRENELLATION 

2.1.1. THEORY 

 

Crenellations are one-sided, systemic variations in plate thickness 

(Fig 1b) and were first studied as a new design philosophy in skin 

and stringer geometries on laser beam welded (LBW) stiffened, 

Al2139-T8, large centre cracked flat panels by Uz et al in 2008 (Uz, 

et al., 2009). The idea was to modify the stress intensity factor (SIF) 

distribution along the crack growth period by which the cumulative 

fatigue life was expected to improve without any additional weight 

increase. 

The mechanism has been mathematically described by Uz et al (Uz, 

et al., 2009) as follows.  

Consider a cracked, metallic plate for which the fatigue crack 

propagation (FCP) behaviour can be described by the Paris Law (
𝑑𝑎

𝑑𝑁
= 𝐶Δ𝐾𝑚 ; Δ𝐾 =  𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛) . 

Constant amplitude loading with a cyclic far field stress creates a stress intensity factor (SIF) range Δ𝐾𝑎 at 

the crack tip. If this SIF range is increased for half of the crack length and reduced with the same factor for 

the other half, it seems to be possible to increase the cumulative fatigue life compared to when the crack is 

driven by the original SIF range for the entire length. 

Figure 1 Flat panel and crenellated panel design (Uz, et 

al., 2009) 
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For example, the lifetime in stress cycles 𝑁 of a crack driven by SIF range of Δ𝐾𝑎 over a small crack increment 

of 2 Δ𝑎 can be determined as 

 𝑁𝑟𝑒𝑓 =
2Δ𝑎

𝐶Δ𝐾𝑎
𝑚 ( 1 ) 

assuming that the crack increment of 2Δ𝑎 is short enough, such that the increase in SIF as a result of the 

incremental increase crack length is negligible.  

Also neglecting any loading history effects, if it is possible to reduce Δ𝐾𝑎 by a factor 𝑡 for the first half of the 

crack increment, and increase it with the same factor for the second half, the modified fatigue life is then 

described as 

 𝑁𝑚𝑜𝑑 =
Δ𝑎

𝐶(Δ𝐾𝑎 − 𝑡Δ𝐾𝑎)𝑚
+

Δ𝑎

𝐶(Δ𝐾𝑎 + 𝑡Δ𝐾𝑎)𝑚
 ( 2 ) 

As such, the hypothesis was formed that for any value of 𝑡 in the interval (0,1) the modified fatigue life 

exceeds the reference value 

 𝑁𝑚𝑜𝑑 > 𝑁𝑟𝑒𝑓 ( 3 ) 

Details for the examination of this inequality are given in the Appendix. The argumentation above seems to 

indicate that fatigue life gain in the slow growth region will be higher than the life shortening in the fast 

growth region as a result of modifications in the SIF range. To understand the expected phenomenon in more 

detail, let us consider the available empirical data. 

2.1.2. EMPIRICAL EVIDENCE 

Empirical evidence has shown that the shape of the SIF distribution as a result of crenellation is rather more 

complex than the described step-function above. Crenellated panels showed significantly improved fatigue 

lives compared to flat reference panels under constant amplitude loading (Fig 2). Under variable amplitude 

loading, the improvement increased further due to more efficient crack retardation in thinner regions of the 

crenellated panel (figure added to appendix) (Uz, et al., 2009).  

Simple variations have empirically shown to improve the overall fatigue life and buckling performance per 

unit weight (Quinn, et al., 2011). 
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Figure 2 Comparison of a vs N curves of reference and crenellated panels under constant amplitude loading (Uz, et al., 2009) 

Figure 3 Experimental crack growth rates for varying crack lengths on a crenellated plate under constant amplitude loading (Uz, et al., 2009) 
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As the design concept of crenellation offers possibilities for tailoring of the damage tolerance attributes of 

objects, the concept may be used to develop “optimal crenellation patterns” for different parts of the 

airframe with the accompanying weight savings. The overarching goal is to find a suitable method to optimise 

the problem of crenellation design. 

For any optimisation to take place, the natural next step would be to consider ways in which the 

phenomenon can be captured in a model. For this, the next section of this chapter introduces an analytical 

model which will be adapted in this research to model a simplified crack growth response under crenellation 

patterns. 

  

2.2. FATIGUE CRACK GROWTH MODEL FOR BONDED STIFFENERS 

2.2.1. THEORY 

Theoretically the number of unique solutions using a 

bottom-up manufacturing approach as additive 

manufacturing can become near to indefinite. 

Manufacturing and testing of every design solution is 

not feasible. Therefore, the possibility to design very 

efficient structures is determined by how accurately and 

computationally inexpensively we can model (thus 

predict) the failure behaviour of a very large range of 

design solutions. Analytical models, though much more 

difficult to find, offer such an inexpensive and simple 

way to evaluate design solutions. If such an overarching 

model can accurately predict failure in many different 

failure modes (fatigue life, but also buckling, torsion, 

bending, etc), optimisation algorithms would be able to 

search the entire solution space for the most efficient 

designs depending on de designer objectives with 

complex trade-offs and constraints.  

For the scope of this research, the evaluation of design 

solutions is limited to fatigue damage tolerance where 

the thickness can be redistributed along the plate width. 

To model the phenomenon of crenellation (varying 2D 

thickness) in metallic plates in terms of fatigue damage, an analytical model for the prediction of crack growth 

for cracked panels containing bonded stiffeners by Rans et al is adapted (Rans, et al., 2015). The model is 

compactly presented below, for the interested reader the full paper can be found in the references. 

Figure 4 Westegaard stress distribution for an intact stiffener ahead of 

the crack tip (Rans, et al., 2015) 
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In this case, the general approach in modelling crack growth in a metallic, crenellated plate relies on linear 

elastic fracture mechanics (LEFM) and Mode I stress intensity factors. The model decomposes the bonded 

stiffened panel into three stiffener conditions,  

• Intact stiffeners ahead of the crack tip. These stiffeners provide additional stiffness ahead of the crack 

tip, thus reducing crack growth. 

• Broken stiffeners behind the crack tip. These stiffeners transmit load into the panel along the crack 

flanks, thus increasing crack growth. 

• Bridging stiffeners over the crack. These stiffeners bridge load over the crack, thus reducing crack 

growth.  

By dividing the complex cracked stiffened panel into these components (see Appendix B. for a visual of these 

components), the SIF for each of the more simple conditions could be developed. The overall SIF for the 

stiffened crack panel can then be found through addition of the components. 

 

SIF DUE TO INTACT STIFFENER AHEAD OF THE CRACK 

 

Consider a symmetric cracked panel with a single bonded stiffener ahead of the crack tip, as shown in Figure 

4 Westegaard stress distribution for an intact stiffener ahead of the crack tip Figure 4. Furthermore, assume 

that the stress state in the panel ahead of the crack tip follows the Westergaard stress distribution 

Where x is the distance from the crack centre along the crack plane and 𝜎𝑠𝑘𝑖𝑛 the far field stress carried by 

the panel in the cracked condition, determined as 

 𝜎𝑠𝑘𝑖𝑛 = 
𝑃𝑠𝑘𝑖𝑛  −  𝐹𝑖𝑛𝑡𝑎𝑐𝑡

𝑊 ∙  𝑡𝑠𝑘𝑖𝑛
 ( 5 ) 

where the 𝜎𝑠𝑘𝑖𝑛 is unknown in Eq 2 since the value of 𝐹𝑖𝑛𝑡𝑎𝑐𝑡 is unknown. This model solves this issue through 

the assumption of an isostrain condition between the stiffener and skin panel. Thereafter, it follows for the 

stiffener 

 
𝜎𝑦𝑦,𝑠𝑡 = 

𝐸𝑠𝑡

𝐸𝑠𝑘𝑖𝑛
∙

𝜎𝑠𝑘𝑖𝑛

√1 − (
𝑎
𝑥)

2
  𝑓𝑜𝑟 (𝑋𝑠𝑡 − 

𝑊𝑠𝑡

2
)≤ x ≤ (𝑋𝑠𝑡 +

𝑊𝑠𝑡

2
)   

( 6 ) 

 
𝜎𝑦𝑦,𝑠𝑘𝑖𝑛 = 

𝜎𝑠𝑘𝑖𝑛

√1 − (
𝑎
𝑥)

2
  𝑓𝑜𝑟 a ≤ x ≤W 

( 4 ) 
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The total load carried by the stiffened panel in Figure 4 is equivalent to the sum of the far field loads in the 

skin and the intact stiffener. As such, the integral of the stress distributions along the skin 𝜎𝑦𝑦,𝑠𝑘𝑖𝑛 (Eq 1) and 

the stiffener 𝜎𝑦𝑦,𝑠𝑡 (Eq 3) must be in equilibrium with the far field applied loads 𝑃𝑠𝑘𝑖𝑛  +  𝑃𝑠𝑡,𝑖𝑛𝑡𝑎𝑐𝑡 .  

 𝑃𝑠𝑘𝑖𝑛  + 𝑃𝑠𝑡,𝑖𝑛𝑡𝑎𝑐𝑡  =  ∫ 𝜎𝑦𝑦,𝑠𝑘𝑖𝑛 ∙ 𝑡𝑠𝑘𝑖𝑛  ∙ 𝑑𝑥 + ∫ 𝜎𝑦𝑦,𝑠𝑡 ∙ (
𝐴𝑠𝑡

𝑊𝑠𝑡
) ∙ 𝑑𝑥

𝑊𝑠𝑡

𝑊

𝑎

 ( 7 ) 

Rearranging for 𝜎𝑠𝑘𝑖𝑛  

 
𝜎𝑠𝑘𝑖𝑛  =  

𝑃𝑠𝑘𝑖𝑛  +  𝑃𝑠𝑡,𝑖𝑛𝑡𝑎𝑐𝑡 

∫
𝑡𝑠𝑘𝑖𝑛

√1 − (
𝑎
𝑥)

2
 ∙ 𝑑𝑥 + ∫ (

𝐸𝑠𝑡

𝐸𝑠𝑘𝑖𝑛
) ∙ (

𝐴𝑠𝑡

𝑊𝑠𝑡
)

1

√1 − (
𝑎
𝑥)

2
∙ 𝑑𝑥

𝑊𝑠𝑡

𝑊

𝑎

 
( 8 ) 

Following the definition of the stress intensity factor, the value of 𝐾𝑖𝑛𝑡𝑎𝑐𝑡 with 𝑛 number of intact stiffeners 

ahead of the crack tip in terms of the far field stress from a Westergaard distribution can be written as 

follows, 

 

𝐾𝑖𝑛𝑡𝑎𝑐𝑡  = 𝜎𝑠𝑘𝑖𝑛 √𝜋𝑎 =  
(𝑃𝑠𝑘𝑖𝑛  +  ∑ (𝑃𝑠𝑡,𝑖𝑛𝑡𝑎𝑐𝑡)𝑖

𝑛
𝑖=1  ) √𝜋𝑎

∫
𝑡𝑠𝑘𝑖𝑛

√1 − (
𝑎
𝑥)

2
 ∙ 𝑑𝑥 + ∑

[
 
 
 

∫ (
𝐸𝑠𝑡

𝐸𝑠𝑘𝑖𝑛
) ∙ (

𝐴𝑠𝑡

𝑊𝑠𝑡
)

1

√1 − (
𝑎
𝑥)

2
∙ 𝑑𝑥

𝑊𝑠𝑡

]
 
 
 

𝑖

𝑛
𝑖=1

𝑊

𝑎

 

( 9 ) 

The described model provides a way to describe crack growth in terms of fluctuating plate thickness, with 

the largest difference with crenellation being that the materials are the same. Assuming that this model can 

be adapted to describe crenellation and thus evaluate any given design solution, a method to heuristically 

optimize the crenellation pattern would have been found.  

 

2.3. STANDARD GENETIC ALGORITHM 

2.3.1. GENETIC ALGORITHM 

The genetic algorithm is a population-based, stochastic heuristic optimisation method inspired by natural 

evolution.  The idea is to improve the value of a set of solutions in terms of the objective function by 

iteratively introducing forms of random variation, random exchange of information and selection pressure. 

At every iteration, called a generation, a population of solutions exchange attributes using rules for exchange 

of information, called crossover, and variation, called mutation. This new set of solutions is then subjected 

to selection pressure, where weak solutions are removed from the population. While it can be empirically 
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shown that a genetic algorithm can yield very good optimisation results (Sorensen, et al., 2017), their 

performance is still very hard to predict. As such, a discrepancy between theory and experiments exists.  

This discrepancy is thought to originate from decisions and assumptions that are made during the setup of 

an optimisation model for a problem. These include 1) the number and type (continuous or discrete) of 

design variables, 2) sets of design variables 3) the choice of starting solutions 4) number of design cycles 5) 

methods for handling infeasible solutions 6) number of independent runs performed and the design of the 

GA itself (Sorensen, et al., 2017) 

As a high-level algorithm, the GA can be understood through the following steps, as shown in pseudo-code 

in Algorithm 1. First, a set 𝒢𝒾𝓃𝒾𝓉 of initial solutions 𝑠𝑖 where  𝑖, … , 𝑁𝑝𝑜𝑝 are generated at random. For each 

solution 𝑠𝑖 the objective function 𝐹(𝑠𝑖) is evaluated. As long as the termination condition T is not reached, a 

selection heuristic is applied to find a subset 𝒢𝓅𝒶𝓇ℯ𝓃𝓉𝓈 of the strongest solutions in which each solution is 

assigned a probability of reproduction Pr,i.  

Based on this reproduction probability, solutions are randomly selected to exchange genetic information 

using a crossover heuristic. Crossover is repeated until a set 𝒢ℴ𝒻𝒻𝓈𝓅𝓇𝒾𝓃ℊ of size 𝑁𝑝𝑜𝑝 is created.  

Thereafter, random variation is introduced using a mutation heuristic and the resulting set becomes the 

𝒢𝒸𝓊𝓇𝓇ℯ𝓃𝓉.  

This process repeats until the termination condition is 

reached at which the 𝒢𝒸𝓊𝓇𝓇ℯ𝓃𝓉  will turn into the 𝒢𝑓𝑖𝑛𝑎𝑙 .  

The termination condition can involve a fixed number of 

iterations, a minimal increase in value of the previous 

generations, or any other criterion. As a result, the average 

solution value in terms of the objective function is likely to 

have increased over the generations. Important to note is 

that this concerns a stochastic search algorithm and 

therefore the algorithm might produce different outcomes 

for every run.  

Each of the initialisation, selection, crossover or mutation 

steps can be viewed as an exchangeable component of the algorithm through which variations of the SGA 

can be constructed. While the SGA is applied in most cases, it can be shown that these standard heuristics 

do not always yield the best outcome (Wolpert & Macready, 1997). This implies that a GA can be designed 

for better or worse and thus requires us to understand the mechanisms through which it works. 

Fogels claimed that genetic algorithms are not fundamentally different than any other optimisation 

technique as they traverse the solution space using a population in whatever direction that might lead to an 

optima (or peak). The only way genetic algorithms are different from other evolutionary algorithms is in the 

particular heuristics they use, specifically crossover and mutation.  
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Assuming that this is true, then we must thoroughly understand the roles and mechanisms of crossover and 

mutation. A common issue is that not enough well-defined ways of looking at genetic algorithm behaviour 

have been generated, inhibiting rigorous analysis and further empirical exploration (Mitchell, et al., 1991).  

 

2.3.2. REPRESENTATION & TERMINOLOGY 

In order for a GA to optimise a design problem each solution must be represented in such a way that the GA 

heuristics can modify the solution. Similar to nature, where our phenotypic expressions (e.g. eye colour) is 

represented by a gene in our DNA, the engineering design solution space must be encoded in so-called 

genotypes or chromosomes (these terms are used interchangeably). Consequently, GAs can work with a 

variety of problems without the GA heuristics needing to be problem-specific. 

Figure 5 depicts a number of key concepts for the GA. First, the population is a set of solutions which are 

each represented by a chromosome. Each solution chromosome consists out of an array of genes. Each gene 

can have a value, which is called an allele.  

 

 

2.3.3. STANDARD CROSSOVER & MUTATION 

 

The traditional view is that crossover is mainly responsible for exploitation of the genetic material of the 

existing population of solutions, while the role of mutation is of exploration of new genetic material by 

introducing new alleles into the population. However, the relative benefits of crossover or mutation are still 

debated amongst researchers (Senaratna, 2005).  

Crossover (sometimes referred to as recombination) is the most complex of GA heuristics. Originally inspired 

by the genetic recombination during meiotic sexual reproduction, the general intention was to 

approximately imitate the effects of breeding in natural populations by combining the genetic information 

Figure 5 A schematic overview of a population of solutions encoded in binary chromosomes consisting of genes and alleles. Image downloaded from: 

(Shyalika, n.d.) 
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of two (or more) parents in some manner. Do 

note that the specifics between biological 

recombination and GA crossover are very much 

different due to the many simplifications. 

The original standard form of crossover as 

introduced by Holland (Holland, 1992) is one-

point crossover, yet in most research and 

applications of GAs also two-point and uniform 

crossover are used (generally called n-point 

crossover) (Back, et al., 2000). Therefore these 

are viewed as the standard heuristics and are 

shown in Figure 6. 

These n-point crossovers take two parent 

chromosomes and based on n randomly chosen 

crossover points alternate the two parent 

chromosomes. As a result, two offspring chromosomes that inherit characteristics of their parent 

chromosomes are created. In the case of uniform crossover, a logical extensions of n-point crossover, each 

gene of either the parent alleles is chosen with equal probability.  

The mutation heuristic has been the most elementary heuristic in the GA. Its primary function is to introduce 

new genetic material by randomly changing the genotypes of individuals in the population. It was inspired 

by the mutation observed in biological genetics where transcription errors in DNA led to minor changes in 

the chromosomes. Most research uses uniform mutation (real representation) or flip-mutation (binary 

representation) which is applied to each gene independently. As such, the number of genes changed in an 

individual is not fixed. While uniform mutation is perceived as the standard, many other mutation heuristics 

exist but their mechanisms are just as poorly understood (Soni & Kumar, n.d.). 

2.3.4. GENETIC ALGORITHMS IN ENGINEERING DESIGN  

In engineering design problems SGA’s are generally applied in a black-box manner, meaning that without any 

knowledge of the mechanisms of optimisation or the nature of the solution space, the results are obtained 

through an arbitrary choice in the GA heuristics and fitting of parameters. One reason is that in contrast to 

purely mathematical analytical functions, the structure of the objective function (or fitness landscape in GA 

terms) in engineering design is very difficult to accurately describe due to imperfectness (noise, 

multimodality, high order dimensionality, deceptiveness) (Roy, et al., 2008). Another issue is that the 

implications of using specific GA heuristic combinations is not theoretically understood (Sorensen, et al., 

2017).  

Anecdotal evidence of the arbitrary choice of heuristics and parameters can be seen by sampling a number 

of engineering design studies which use GAs for optimisation, shown in Table 3. Each study makes use of 

standard GA components for crossover and mutation, while some studies don’t have a mutation mechanisms 

Figure 6 Standard crossover heuristics for binary chromosomes (obtained from 

(Goldberg & Sastry, n.d.)) 
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at all. Population sizes vary strongly, just like the crossover and mutation rates. Many employ additional 

strategies in order to cope with difficulties in optimisation specific to the problem definitions in those studies. 

Further details on the implementations of GAs in these studies can be found in the respective papers.  

Table 3 Parameters of various engineering design studies with genetic algorithm ranging between 1993 - 2017. G = number of genes, P = permutations, - = not 

specified 

Parameter Lu et al. (2017) 
(Lu, 2017) 

Fonseca et al. 
(1993) (Fonseca & 
Fleming, 1993) 

Soremekun et al. 
(2001) 
(Soremekun, et 
al., 2001) 

Cheng et al. (1998) 
(Cheng & Li, 1998) 

Caraballo et al. 
(2017) (Caraballo, 
et al., 2017) 

Object Variable fuselage 
plate thickness 

Gas turbine 
engine 

Composite 
laminate 

Truss structure Butterfly valve 
disc 

Dimensionality 𝐺 =  5, 10 

𝑃 =  1.1𝑒12 

- 𝐺 =  14 

𝑃 =  65536 

𝐺 =  60, 120 

 

𝐺 =  10 

𝑃 =  12.9𝑒9 

Variable type Binary Binary Integer Binary Real-valued 

Constraint 
handling 

Mapping function, 
data structuring 

- Data structuring Penalty function Tournament 
(Corne & Knowles, 
2007) 

Objectives 2 4 1 2 4 

N 20, 32, 100 80 15-75 400 25 

Pc 0.5 - 1.0 0.6 0.6 

Pm 0.2, 0.2 - 0.01, 0.9 0.01 0.01 

Selection Tournament (3) Rank Linear Rank Stochastic 
Remainder 
Selection 
(Goldberg & E., 
1989) 

Tournament (not 
specified) 

Crossover - Two-Point Single-Point Uniform Uniform 

Mutation Bit-flip Bit-flip Bit-flip & Swap - - 

Additional 
strategies 

Minimal weight 
objective as 
constraint 

Progressive 
articulation of 
preferences DM, 
fitness sharing 
(Friedrich, et al., 
2009) 

Multiple- and 
variable elitist 
selection (Bäck & 
Hoffmeister, 
1991) 

Pareto-set filter 
(Marler & Arora, 
2004) 

Topology 
optimisation 
combined with 
NSGA-II (Deb, et 
al., 2002) 
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3. RESEARCH PLAN 

 

Summarizing from the literature review, a number of knowledge gaps that prohibit the wider application GAs 

in engineering design were identified. First, the key functions of the GA are not clear. Based on what 

understanding do we evaluate the applicability of a GA design for a specific optimisation problem? How do 

we gain confidence in this? Literature did not contain any reasoning on this part. Second, it is not clear to 

what extent the roles of crossover or mutation heuristics in serving the functions of a GA are unique as 

literature showed no substantiation on why certain heuristics were used. Third, it is not clear what effect 

quantitative parameters such as problem granularity or heuristics-specific parameters such as the mutation 

rate have the optimisation process of a GA. Fourth, the objective functions are not evaluated in terms of 

whether they accurately capture the intention of the engineering designer, such that the optimisation leads 

to trivial or sub-optimal solutions.  

Based on these knowledge gaps, the goals of this research became to increase understanding on 1) the 

mechanisms of the standard GA and 2) how to determine suitable objective functions. 

 

Figure 7 Research approach employing an iterative formulation of genetic algorithm components as more knowledge about the optimisation process is 

collected 
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To support the goals of this research an approach was determined, as schematically shown in Figure 7. First, 

the research efforts will be scoped by defining a set of research questions that will yield understanding in 

regards of the research goals, after which a suitable crenellation case study will be determined. A general 

framework in which the crenellation case study can be solved by a GA must be formulated along with a 

systematic way of testing these GA components. Certain choices on which heuristics and parameters are of 

most interest to investigate will be made in the Methods chapter. Finally, a method to investigate the 

performance of different GA design must be devised in order to draw some conclusions and provide 

recommendations for further research. 

 

3.1. RESEARCH QUESTIONS & HYPOTHESES 

In order to scope the research efforts, a number of primary and secondary research questions were 

determined.  

1. What is the relative importance of crossover and mutation heuristics in the optimisation process of a 

genetic algorithm designed for damage tolerance of flat panels? 

 

1.1. Are there specific functions in the optimisation process of a GA which need to be fulfilled in this 

application? 

 

1.1.1. Our hypothesis is that specific GA functions can be defined in the optimisation process for 

damage tolerant flat panels 

 

1.2. How well do the standard crossover and mutation heuristics fulfil these functions within this 

context?  

 

1.2.1. Our hypothesis is that standard heuristics are not well suited for their intended functions in 

designed for damage tolerant flat panels 

 

1.3. Could a less random mutation heuristic increase the reliability of the GA in identifying optimal 

design solutions for damage tolerant flat panels? 

 

1.3.1. Our hypothesis is that the filtering of potential mutations in the mutation heuristic will 

improve the search results of a GA 

 

1.4. Under what conditions, if any, do we need both crossover and mutation heuristics in a GA designed 

for identifying optimally damage tolerant flat panels? 

 

1.4.1. Our hypothesis is that crossover is not a necessary component in GA optimisation for damage 

tolerant flat panels 
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2. To what extent do quantitative parameters of the GA influence the optimisation process when 

designing for damage tolerant flat panels? 

 

2.1. What correlations are there between the population size and the reliability of a GA for varying 

values of the population size? 

 

2.1.1. Our hypothesis is that a larger population size leads to higher reliability of the GA in finding 

optimal results 

 

2.2. What correlations are there between the mutation rate and the reliability of a GA for varying 

values of the mutation rate? 

2.2.1. Our hypothesis is that a higher mutation rate will not always lead to higher reliability of the 

GA in finding optimal results 

 

3. Can a simple objective function be formulated that captures the intentions of a designer a priori? 

3.1.1. Our hypotheses is that simple objective functions will a priori lead to trivial solutions which 

the designer did not intend to achieve 

3.1.2. Simplified models may be sufficient to capture the essential behaviour of a genetic algorithm 

 

4. METHODS  

 

To answer the research questions and study the behaviour of GAs in an engineering design application, a 

simple GA optimisation routine was developed for a relevant engineering design problem – the optimisation 

of thickness distribution for a crenellated fuselage skin panel. The basis for this optimisation is the damage 

tolerance behaviour of the panel in the presence of a fatigue crack. The choice for this design problem was 

made due to the simplicity of defining the design optimisation in a GA framework, the availability of analytical 

models that describe the damage tolerance behaviour, and the potential to critically evaluate the resulting 

optimized designs.  

This chapter will outline the details of the GA optimisation framework used in this study, how the design 

problem was formulated and integrated into this framework and how the performance of the GAs was 

systematically studied. 

 

4.1. OVERALL GA FRAMEWORK 

Through an iterative process the routine depicted in Figure 8 was created for the optimisation of thickness 

distribution for a crenellated plate.  
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The overarching optimisation routine starts with the definition of a mathematical formulation (block 1) of 

the design variables and the objective of the design optimisation. Its primary function is to ensure an 

encoding of the design problem such that GA heuristics are applicable and the analytical fatigue model can 

be used to accurately evaluate damage tolerance of each solution. Furthermore, it incorporates a notion of 

feasible solutions through equality and inequality constraints. 

The second block in the routine concerns the genetic algorithm (block 2) and it is configured using a number 

of GA parameters and heuristics. Its primary function is to vary solutions using a set of heuristics in order to 

search the space of possible design solutions. The GA heuristics used can be either standard or custom to 

this research, which will be expanded upon in Section 4.3. 

Following the application of heuristics to a set of solutions, a termination condition is checked, and if not 

triggered, the set of design solutions is evaluated using a fatigue crack growth model (block 3) for crenellated 

plates. Its primary function is to ensure an accurate estimation of the damage tolerance for a given 

crenellated plate design solution. 

The overarching model can be extended with a number of models which evaluate different failure modes. 

Fatigue crack growth was chosen due to the availability of an analytical model which greatly reduces the 

computation time of a design optimisation run compared to FEM models, an issue raised by Lu et al (Lu, et 

al., 2016). This gives us the ability to study the genetic algorithm mechanisms in more detail, the main interest 

of this research.  

The fatigue crack growth results are passed back to the GA after which it applies heuristics for recombining 

and mutating the set of solutions based on these results. This cycle continues until the termination condition 

is triggered and at that point the design optimisation run is completed.  

Figure 8 Overarching routine for a design optimisation run including 1) problem formulation, 2) genetic algorithm and 3) fatigue crack growth model for 

crenellated plates 
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The termination condition for this study was defined as 20 iterations between the genetic algorithm and the 

fatigue model, as it was empirically determined to reveal most of the optimisation behaviour while 

minimizing unnecessary computation. The final output of the overarching model is a set of more optimal 

solutions. As this process is stochastic, each experiment was run 10 times in order to capture the average 

behaviour of the optimisation process. This number was iteratively determined by looking how much the 

end-state of the optimisation would change for every additional run. In order to compare results amongst 

different experiments, the randomness was seeded such that for each experiment, the results would be 

reproducible if started with the same seed, rather than be different for every time an experiment would be 

run.  

 

4.2. DESIGN PROBLEM FORMULATION OF CRENELLATION  

 

The following section describes the detailed formulation of the crenellation problem (block 1) in the 

optimisation routine. 

Consider a plate of width 𝑊 with a systemically 

varying thickness described by a function 𝑡𝑛𝑖
(𝑥) 

where 𝑥  is the distance along the plate width 

where 0 <  𝑥 <  𝑊 . Depending on the 

granularity γ of the problem formulation, the 

plate width is divided into a number of partitions 

𝑛𝑖  of equal width ∆𝑥  where 1 <  𝑖 <  𝛾 and 

∆𝑥 =  
𝑊

𝛾
.  Each partition can have a thickness 𝑡𝑛𝑖

 

which is independent from the other partition 

thicknesses. 

A crack of length 𝑎0  is introduced and the 

crenellated plate is repeatedly loaded with a far-

field stress 𝑆𝑚𝑎𝑥 . Due to this loading, the crack 

grows incrementally with ∆𝑎 for each load cycle 

∆𝑁. The loading continues until the crack reaches 

length 𝑎𝑚𝑎𝑥. At that point, the crenellated plate 

will have sustained a number of load cycles 𝑁𝑙𝑖𝑓𝑒.  

The optimisation problem can be defined as 

finding a combination of design variables 𝑠 

which maximizes an objective function 𝐹(𝑠), such that 

�̂�  =  max
𝑠 ∈ Ω

𝐹(𝑠) 

Figure 9 Design problem formulation of a crenellated plate loaded by a far-field stress 
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Where the vector  �̂� is the global maximum.  

4.2.1. DESIGN REPRESENTATION 

The optimisation problem of crenellation patterns was formulated as a combinatorial optimisation problem 

using an indirect integer representation. An indirect representation, consisting of both a genotype-

phenotype and phenotype-fitness mapping, was chosen because it improves the reproducibility and 

generalizability of the insights in this research. Due to this representation, the standard and problem-

independent crossover and mutation heuristics can be further developed and easily tested on other 

problems in literature. Furthermore, it makes it possible to control the size of the genotypic solution space, 

and thus problem complexity, through the granularity parameter γ. This control over complexity made it easy 

to investigate how these GA heuristics perform under ranges of complexity. 

As such, the fitness function is decomposed into two parts,  

𝐹𝑔(𝑠): Ω𝑔 → Ω𝑝 

𝐹𝑝 (𝑡𝑠𝑖
(𝑥)) : Ω𝑔 → ℝ 

Where 𝐹 = 𝐹𝑝°𝐹𝑔 = 𝐹𝑝 (𝐹𝑔(𝑠)). The genotype-phenotype mapping 𝐹𝑔 is determined by the representation. 

𝐹𝑝 represents the fitness function which assigns a fitness value to any solution 𝑠 ∈  Ω𝑝. The GA heuristics are 

applied to the solutions in Ω𝑔.  

Integer representation was chosen for similar reasons, as the discreteness largely reduces the number of 

possible thickness levels, as compared to a floating point and continuous representation. Contrary to a binary 

(𝝌 =  𝟐) representation, an integer (𝝌 − 𝒂𝒓𝒚) representation does offer more flexibility to define the exact 

granularity one wishes to optimise for. It was expected that small variations in thickness levels would not 

contribute to better insights on the mechanisms of GA heuristics [ref], thus the problem formulation was not 

investigated and limited to 3 thickness levels such that 𝝌 =  𝟑.  

As such, the genotypic solution space can be described as, 

Ω𝑔  =  {0,1,2}𝛾 

With the length of the vector equal to γ and the size of the solution space |Ω𝑔|  =  𝜒𝛾.   

Careful consideration was given to further reduce the biases of representational mappings. First, the 

genotype-phenotype mapping was chosen uniformly redundant, meaning that each phenotype is 

represented by the same number of genotypes, namely a 1-to-1 relation in this case. As a result, no neutral 

sets of solutions exist and therefore no neutral mutation of crossover exists.  

Moreover, a high locality representation was defined to ensure that the difficulty of the problem is not 

worsened due to a mapping which introduces additional randomness (Rothlauf, 2006). Third, a uniform 

scaling representation was defined since non-uniformly scaled representations have shown to modify the 
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dynamics of GA search in not well understood ways (Rothlauf, 2006). As the subjects of this research are the 

GA heuristics & parameters, it was chosen to exclude this influence. Figure 10 shows the genotypic and 

phenotypic representation of the design problem for 𝛾 =  6. 

 

 

4.2.2. OBJECTIVE FUNCTIONS 

The goal is to optimize the fatigue life 𝑁𝑙𝑖𝑓𝑒 of the plate through the distribution of thickness over the 

partitions, while minimizing the weight of the plate. In order to evaluate the value of a given crenellated 

plate design, an objective function that best captures the designers intent must be determined in 

mathematical terms. This objective function will yield a score for each design solution which the genetic 

algorithm can use as a signal for the optimisation of the design problem. A well-known limitation of the SGA 

is that it can only work with a single numeric value. Therefore, multiple objectives must be reduced to a 

single value. 

In this research, three objective functions are investigated. The first objective function 𝐹1(𝑠) only considers 

the fatigue life 𝑁 of the crenellated plate. As one might imagine, a designer might initially only be interested 

in finding solutions with the best performance on fatigue life. This objective function captures just that 

intention. 

The second objective function considers the fatigue life 𝑁 over the cross-sectional surface area 𝐴 of the 

plate. In this case, the designer has understood that he wants to optimise for fatigue life per unit of weight 

and has taken the cross-sectional surface as a logical expression for the plate weight. 

A third objective function contains the addition of the material constant 𝑚 as a power function on the cross-

sectional surface area A of the plate. As known in the Paris equation, the material constant has a strong 

influence on the crack growth rate in a plate. At this point, the designer has realized that the fatigue crack 

growth model contains an expression with this material constant and has included it in the objective function. 

Figure 10  a) crenellation pattern (γ=6) and b) encoding of crenellation pattern in a genotype and phenotype 
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Table 4 Overview of the objective functions investigated in this research 

4.2.3. DESIGN CONSTRAINTS 

One of the challenges when defining the solutions space for 

GAs is ensuring that the produced offspring solutions 

remain feasible. In this study, a symmetry design constraint 

was applied to the genotypic solution space to ensure that 

the fatigue life of design solutions would not be dependent 

on the crack starting location on either side of the plate. It 

is assumed that cracks start at either of those locations since 

these are the locations which have high stress 

concentrations due to stringers. Every design solution complying with this design constraint is part of the 

feasible genotypic solution space ℱ𝑔.  

𝐹𝑝 (𝑡𝑠𝑖
(𝑥)) : ℱ𝑔 → ℝ 

As a result of this constraint, the number of partitions with variable thickness is divided into half. Second, 

the allowable thickness levels for each gene were constrained to 3 distinct levels, namely the allele 

translation from integers to thickness was fixed 0:2.0, 1:3.0, 2:4.0mm 

Table 5 Summary of the default problem definition settings unless stated otherwise in the experiment setup 

𝑾 (mm) 𝒂𝟎(mm) 𝒂𝒎𝒂𝒙(mm) ∆𝒂 (mm) 𝒕𝒎𝒊𝒏 (mm) 𝒕𝒎𝒂𝒙(mm) ∆𝒕 (mm) 𝜸 (-) 𝝌 (-) 

150 37 145 1 2 4 1 30 3 

 

4.2.4. MATERIAL PROPERTIES & LOADING CONDITIONS  

Table 6 provides an overview of the material properties used in this research in comparison with the 

reference study on crenellation. For the loading a stress of  𝑆𝑚𝑎𝑥  =  22000 𝑀𝑃𝑎 was employed.  

Table 6 Summary table of material properties used in this research. 

Name C [-] m [-] E-mod [MPa] Poisson [-] Source 

AL2024-T3 1.86e-11 4.05 72500 0.33 Efatigue.com 

AL2139-T8 2.74e-7 2.6 72400 0.33 Reference study 
(Uz, et al., 2009) 
(Lu, et al., 2016) 

𝐹1(𝑠) = 𝑁 𝐹2(𝑠) =
𝑁

𝐴
 𝐹3(𝑠) =

𝑁

𝐴𝑚
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4.2.5. ASSUMPTIONS & LIMITATIONS 

 

The problem definition is not representative of an (aerospace) design challenge. The design problem is highly 

simplified for the purpose of investigating a less complex interaction between the GA and the design 

problem. As such it is sufficient to gain a better understanding of the GA, which is the primary goal of this 

research.  

A number of assumptions & limitations underpin the simplification: 

• The design problem is limited to a single bay while not having stringers on both sides of the fuselage 

• It assumes an initial crack starting point on the left side of the plate, originating from a stress 

concentration at the base of a hypothetical stringer.  

• The model assumes a crack growth from an initial crack length to a final crack length in order to 

ensure that the crack growth can be described by the fatigue crack growth model within the linear 

Paris range 

• The problem assumes a straight crack front where no turning of the crack is permitted. With 

crenellation patterns of identical material and relatively small variations of thickness, it is assumed 

that the lower and upper crack front progress equally fast thus creating a straight crack front. 

• The model assumes a perfect variation in fatigue stress with no additional, secondary forces due to 

temperature, plastic deformation or impact 

• The problem definition assumes that there are no defects in the crenellation shapes 

• Also, the Paris equation constants C and m are known to be affected in some degree by specimen 

thickness, which is not taken into account in the model (Schijve, 2009) 

 

4.3. ANALYTICAL FATIGUE MODEL FOR CRENELLATED PLATES  

 

To evaluate the value of feasible crenellation design solutions in terms of fatigue damage tolerance, a model 

which can predict the fatigue life of a given crenellated plate was needed. For this, the analytical model for 

bonded stiffeners by Rans et al (Rans, et al., 2015) was adapted to be suitable for crenellated plates of a 

single material.  

4.3.1. MODEL 
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The model summarized by Equation 10 aims to calculate the fatigue life 𝑁 for a fatigue crack growing from 

an initial crack length 𝑎0 to a final crack length of 𝑎𝑚𝑎𝑥 over a crenellated plate of shape 𝑡𝑠𝑖
(𝑥), such that 

For more details on the intermediate steps of creating the model the reader is referred to either Appendix B 

of this research or the paper on bonded stiffeners (Rans, et al., 2015). 

The primary function of the analytical model is to capture the damage tolerance behaviour with sufficient 

accuracy to allow for the study of GA heuristics, the main object of investigation of this research. To validate 

the suitability of this model for that purpose, its predictions were compared with experimental data from 

the reference study by Uz et al (Uz, et al., 2009) of which the outcomes will be shown in the Results chapter.  

Another important motivation to choose this analytical model is that it takes a short time to evaluate as 

compared to FEM alternatives, even for highly granular definitions with γ = 150, which enables the 

investigation of how the GA interacts with these problem definitions without being constrained by the 

evaluation time, which was mentioned as an important constraint in the reference study (Lu, et al., 2016). 

This also enables the investigation of heuristics that require more frequent evaluations. 

This model introduces additional assumptions & limitations as compared to those mentioned in the problem 

definition section. First, the model only accounts for the stiffness ahead of the crack tip when calculating the 

stress at the crack tip for each increment, not behind it. Second, the Paris equation constants C and m are 

known to be affected in some degree by specimen thickness, which is not taken into account in the model 

(Schijve, 2009). Third, the model assumes a perfect variation in fatigue stress with no additional, secondary 

forces due to temperature, plastic deformation or impact. 

 

4.3.2. VERIFICATION OF FATIGUE MODEL 

The analytical model for fatigue crack growth in crenellated plates as introduced in the previous chapter was 

verified with experimental data from Uz et al (Uz, et al., 2009). Figure 13 and 14 show the results of the 

model verification with a double bay flat plate containing a single large thickness increase, as well as a single 

bay crenellated plate. These were patterns were chosen due to the availability of experimental data. The 

material properties and loading conditions were summarized in the methods chapter. A number of 

discrepancies between the analytical fatigue model prediction and experimental data can be found. 

First, the model underestimates crack growth rates for all crack lengths where 37 < a < 247 mm in a flat plate.  

 

𝑁 = ∫
Δ𝑎

𝐶 ∗ (σ𝑒𝑓𝑓√π𝑎)
𝑚

𝑎𝑚𝑎𝑥

𝑎0

= ∫
Δ𝑎

𝐶 ∗

(

 
 
 
 

𝑆𝑚𝑎𝑥√π𝑎

2 ∗ ∫
𝑡𝑠𝑖

(𝑥)

√1 − (
𝑎
𝑥)

2

𝑊

𝑎
𝑑𝑥

)

 
 
 
 

𝑚

𝑎𝑚𝑎𝑥

𝑎0

 

( 10 ) 
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Second, the model overestimates the crack retardation effect towards larger thickness steps (15mm). Both 

in Figure 13 (a = 143) and Figure 14 (a = 143) the model crack growth rate prediction rapidly decreases.  

Third, the model underestimates the crack retardation effect towards smaller thickness steps (+- 3mm), 

especially in the longer period working towards the step increase in thickness. For instance, in Figure 14 

where 37 < a < 55 mm and  100 < a < 120 mm.  

Fourth, the model underestimates the crack acceleration after a smaller and larger thickness decrease (+-

3mm and 15mm). In Figure 13 we can see that after the crack has progressed through the 15mm stringer, 

the model underestimates the crack growth rates consistently as the slope of the experimental data da/dN 

graph is much steeper than the slope of the model prediction. In Figure 14 we can see a similar prediction 

error for smaller thickness decreases, as the initial crack growth rate of the model following a thickness 

decrease (a = 37mm) is too low, as well as the peak in crack growth rate at the second thickness decrease (a 

= 95 mm) is missing from the analytical model prediction. On the contrary, the FEM model prediction by 

Huber et al highly overestimates this peak.  

A likely reason for this underprediction is that the analytical model does not take into account the additional 

stress at the crack tip due to broken material in the wake of the crack. As such, at a thickness decrease, the 

crack growth rate should rise strongly since the relatively large area of material in close proximity to the crack 

tip carries a large part of the load  (Rans, et al., 2015). 

Fifth, model does accurately predict the crack growth rates on the thicker crenellated sections, such as in 

Figure 14 where 60 < a < 95 mm and 120  < a < 140 mm.  

Last, the model does not take into account load history effects, which can effectively reduce the crack growth 

rate in thinner plates due to the creation of plastic zones around the crack tip (Schijve, 2009). 

Undoubtably, this analytical model does not capture the crack growth behaviour of crenellated plates very 

well. Nonetheless, it does capture some important characteristics with which the genetic algorithm will be 

able to differentiate between design solutions. As our research questions are more focussed on 

understanding the behaviour of genetic algorithms, the current engineering model was considered sufficient 

for the application on this case study. 
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4.4. BRUTE FORCE OPTIMISATION 

 

Provided the (simple) analytical model and the crenellation design problem definition, it was possible to 

determine the true optimal solution through a complete enumeration and evaluation of all possible solutions 

in a reasonable amount of time for granularities up to γ = 15, 𝜒 =  3.  

Figure 12 Verification of analytical model for a single large thickness deviation (Uz, et al., 2009) 

Figure 12 Verification of the analytical FCP model for a double bay flat plate configuration (Uz, et al., 2009) 
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The primary goal of this research 

is the better understand how the 

GA heuristics interact with the 

problem definition of 

optimisation a crenellated 

fuselage plate.  

In order to investigate the 

behaviour, a transparent method 

was necessary. Transparency 

means understanding if what the 

GA was doing with the alleles is 

something preferable or not. To 

know this, the end-state of a given 

allele should be known.  

For each objective function for a 

course granularity of γ = 3 and γ = 15, we can approximate the optimal solutions for two levels of granularity 

through a brute-force method of enumeration of all possible solutions. Alleles that are part of the optimal 

solution, we call Positive Alleles (PA, green) and those that are not Negative Alleles (NA, red). These are 

custom definitions for this research and their meaning will further be expanded upon in Section 4.5 when 

introducing the custom heuristics. Error! Reference source not found. shows the optimal results for each o

bjective function.   

4.5. HEURISTICS 

In order to influence the optimisation of a GA, several standard and custom heuristics were investigated.  

The custom heuristics for this research focused on mutation, while for crossover only standard heuristics 

were considered, as the broad definition for mutation, that of a random change to a genotype, allowed for 

a much wider design freedom for custom heuristics to search the solution space.  

This section first introduces a number of custom definitions and measures used in this research, as these 

provide the basis of understanding the custom mutation heuristics introduced thereafter. Furthermore, a 

number of custom initialisation heuristics are introduced. The section concludes with a summary of default 

values for hyperparameters in the optimisation. 

4.5.1. CUSTOM DEFINITIONS & MEASURES 

POPULATION RELATIVE ALLLE STRENGTH 

The measure Population Relative Allele Strength 𝑃𝑅𝐴𝑆𝑗 , was created to demonstrate how relatively 

important in terms of population fitness a given allele 𝑗 is in the population and how this develops over the 

Figure 13 Schematic overview of the optimal solutions per objective function grouped by granularity 
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generations. Given that the number of alleles in a population ranges between  0 <  𝑗 <  𝛾 ∙ (𝜒 − 1), PRAS is 

calculated as follows, 

 𝑃𝑅𝐴𝑆𝑗,𝑒𝑓𝑓  =  
∑ 𝐹(𝑠𝑖)𝜃𝑖,𝑗𝑖

𝐹𝑝𝑜𝑝
 ( 1 ) 

Where 𝐹𝑝𝑜𝑝 is the total fitness of the population, 𝜃𝑖,𝑗 a binary value which tells whether a certain solution 𝑠𝑖 

contains the allele j through a delta function where 𝜃𝑖,𝑗 ∈ {0,1} and  0 ≤ 𝑃𝑅𝐴𝑆𝑗 ≤ 1. The delta function is 

evaluated as follows, 

 𝜃𝑖,𝑗 = 𝛿(𝐴𝑗 − 𝑎𝑖,𝑗) ( 2 ) 

Which only returns a binary value based on the delta of two values, such that 𝛿(0) = 1 and else 𝛿 =  0. We 

have positive alleles where 𝐴𝑗  =  1 and negative alleles where 𝐴𝑗  =  0 as determined by the objective 

function and depicted in Figure 14.  The variable 𝑎𝑖,𝑗 resembles whether the solution 𝑖 contains the given 

allele 𝑗 (𝑎𝑖,𝑗 =  1), or not (𝑎𝑖,𝑗 = 0). The difference between the optimal allele value 𝐴𝑗 and solution allele 

value 𝑎𝑖,𝑗  is placed in the delta function, ensuring that both positive and negative alleles optimal states 

converge to 𝑃𝑅𝐴𝑆 =  1. In short, when a solution does not contain the optimal state for a given allele at the 

time of evaluation, its fitness is not attributed to the PRAS of the allele being evaluated. 

Either when the optimal end-states of alleles are not known, or for graphs on a more granular level, the non-

effective PRAS can be calculated, which means that 𝐴𝑗 is always equal to 0, as we do not know the optimal 

end-state.  According to Eq 1 and 2, NAs then navigate to PRAS = 0 and positive ones to PRAS = 1, which also 

allows for better readability when more graphs are presented, such as in Figure 14.  

Figure 14 This figure shows an example of the relative strength per gene section and allele (right, γ=15, F=F3) for a single GA run only using uniform crossover.  
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Important to note is that PRAS is not equivalent to the diversity of alleles in a given population, nor does it 

explicitly represent the fitness of a single allele. It represents the relative portion of population fitness that 

an allele is part of and thus might implicitly provide us information on the strength of the concerned allele 

when normalized based on its frequency in the population. The base layer of alleles is not included in the 

PRAS calculations, as they are always present in every solution and therefore will have PRAS = 1.    

As an example, Figure 11 shows the average PRAS per gene section for 10 trials of an experiment with U-C, 

where γ = 15, 𝜒 =  3.  As such, the graph shows how the contribution to fitness an allele has over time. A 

population is fully optimised when all positive alleles have reached the upper range (PRAS=1) and all the 

negative alleles the lower range (PRAS=0). In the Figure we can see that the gene sections D and E, containing 

only PAs, have been fully optimised at PRAS = 1, while gene sections A and B, containing only NAs, are not 

fully optimised towards PRAS = 0.  

Table 7 Overview of allele naming conventions based on end-state PRAS values 

 𝑷𝑹𝑨𝑺𝒋,𝒆𝒇𝒇  =  𝟏  (“ubiquitous”) 𝑷𝑹𝑨𝑺𝒋,𝒆𝒇𝒇  =  𝟎  (“extinct”) 

PA Fully present in all solutions  Not present in any solution 

NA Not present in any solution Fully present in all solutions 

At a given generation, the population relative allele strength over frequency (PRASF) can be calculated as, 

 𝑃𝑅𝐴𝑆𝐹𝑗  =  
∑ 𝐹(𝑠𝑖)𝜃𝑖,𝑗𝑖

𝐹𝑝𝑜𝑝
∗  

1

𝐹𝑗
 ( 4 ) 

where F is the frequency of occurrence of allele j. The addition of the population frequency of an allele is a 

method for normalization to allow for a proper comparison between PRAS values.  

 

GA FUNCTIONS, EVENTS AND RATES 

Given the concept of allele end-states, a number of GA functions which the GA should be designed for can 
be determined. After all, each PA must obtain a PRAS of 1, while each NA must obtain a PRAS of 0.  The 
hypothesis is that a good GA design should maximize the performance of the GA on these functions. Figure 
15 provides a visual explanation of the 8 different GA functions based on whether an allele has a positive or 
negative end-state.  

For a PA, the GA function should be reintroduce extinct PAs and subsequently progress them (no. 1 and 2, 
green), while avoiding the elimination and suppression of those PAs (no. 3 and 4). Inversely, for a NA, the GA 
function should be to avoid reintroducing extinct NAs and progressing them (no. 5 and 6). It should, however, 
eliminate ubiquitous NAs and suppress them up unto extinction from the population (no. 7 and 8).  

On a practical note, the GA function events are registered at each generation for each allele during the 
optimisation. If the allele decreased in PRAS, a suppression event is registered. Alternatively, if its PRAS 
increased, then a progression event is registered. If an allele becomes ubiquitous due to a PRAS of 1, a 
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ubiquity event is registered. In similar fashion an extinction event is registered when an allele has a PRAS of 
0.  

Elimination events are registered when an ubiquitous allele is removed from a solution, leading to a PRAS < 
1. Vice versa for (re)introduction events, where PRAS becomes larger than 0.  

GA function rates resemble the average change in PRAS for a single event and are calculated for the different 

GA functions, introduction, progression, suppression and elimination. The effective function rates are 

calculated by dividing the total the PRAS by the associated events for the desired functions (no. 1, 2, 7 and 

8, green). Thus, the effective progression rate can be calculated as, 

𝑃𝑅𝑒𝑓𝑓 = 
∆𝑃𝑅𝐴𝑆

∆𝐸
=  

∑𝑃𝑅𝐴𝑆𝑃𝐴,𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑒𝑑  + ∑𝑃𝑅𝐴𝑆𝑁𝐴,𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑒𝑑 

∑ 𝐸𝑃𝐴,𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑒𝑑  + ∑𝐸𝑁𝐴,𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑒𝑑   
 

Where 𝐸 represents an event. This measure shows how much on average the events contributed to the GA 

functions and tells how effective the heuristic design was in choosing which solutions to alter using which 

alleles. A more effective GA design is expected to have higher effective GA function rates, rather than simply 

have more events associated with the desired GA functions. 

Finally, an aggregate GA function score can used for quickly comparing GAs in order to understand to what 

degree they perform what we intended. This function does not fulfil a complete evaluation on the quality of 

such a GA and should be interpreted with caution. It can be calculated as follows, 

𝐺𝐴𝑠𝑐𝑜𝑟𝑒 = ((𝑃𝑅𝑒𝑓𝑓  − 𝑆𝑅𝑒𝑓𝑓) ∗  (𝑃𝐸 −  𝑆𝐸))  + ((𝐼𝑅𝑒𝑓𝑓  − 𝐸𝑅𝑒𝑓𝑓) ∗  (𝐼𝐸 −  𝐸𝐸))  

∗ (𝑃𝑅𝐴𝑆 𝑒𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 −  𝑃𝑅𝐴𝑆 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒) 

Figure 15 Schematic explanation of GA functions of introduction, progression, suppression and elimination in terms of PRAS per allele end-state 
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Where PR = progression rate, SR = suppression rate, IR = introduction rate, ER = elimination rate, PE = 

progression events, EE = elimination events, SE = suppression events and IE = introduction events.  

The extinction and ubiquity are not defined in the GA score because they are considered to be a resultant of 

the mechanisms that are designed for increasing the effective progression and/or suppression rate, while 

introduction and elimination are functions that require a different mechanism. As such, the GA functions 

score should not double count the contribution of such progression or suppression mechanisms.  

 

4.5.2. CUSTOM MUTATION HEURISTICS 

The following section will describe the detailed mechanisms of the custom mutation heuristics used in this 

research. The intention was to avoid particular naming as much as possible in order to improve the 

reproducibility of this research, however some naming specific to this research was unavoidable. Table 8 

provides an overview of the 5 custom mutation heuristics, their components and 3 associated meta concepts. 

These meta-concepts were distilled in order to make comparison with other research more convenient. To 

the best of our knowledge, research that has applied an identical meta concept are listed in the table. 

 

Table 8 Custom mutation heuristic components grouped per mutation heuristic with references to meta concepts and literature if available 

 

The 3 meta concepts are 1) PRAS signaling, 2) mutation filtering and 3) selection bias. A general introduction 

is provided below, where a more detailed description is provided in each of the custom mutation heuristics. 

 

 

Custom mutation 
components  

Relative 
Strength 
(RS) 

Adaptive 
allele 
(AA) 

Solution 
Memory 
(M) 

Strong 
solutions 
(SS) 

Enumeration of Ubiquitous 
and Extinct alleles (EUE) 

Meta concept PRAS 
Signalling 

Mutation 
Filtering 

Mutation 
Filtering 

Selection 
bias 

Selection bias 

Literature references (if 
any) 

 Glover et al, (Forrest 
& Mitchell, 1993) 

  

1. RS-M X     

2. RSAA-M X X    

3. RSM-M X  X   

4. RSAASS-M X X  X  

5. RSAASSEUE-M X X  X X 
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PRAS signaling 

The standard GA applies a uniformly random mutation to determine which gene to alter to which allele. This 

meta concept changes that notion by removing the pure randomness with a signal using PRAS. Rather than 

uniformly random choosing which gene and allele the mutate, the PRAS values of each allele influence the 

probability that an allele is mutated towards for a solution that does not yet have this allele.  

Mutation filtering 

This concept applies a filter to applying the proposed mutations by the GA. The standard GA does not have 

this, it applies every mutation which is “proposed” by the algorithm. In this research, the filtering is done 

based on the incremental fitness that such a mutation would provide for the solution. Based on that 

incremental fitness, a rule can determine whether a proposed mutation should be applied to the solution or 

not. 

Selection bias 

The standard GA has a selection bias when it comes to crossover, as solutions with a higher fitness generally 

have a higher chance of being selected as a parent in most selection heuristics. However, mutation heuristics 

do not have such a notion in the SGA. The selection bias in this research applies to mutation heuristics in the 

sense that a solution with a high relative fitness in the population has a higher change to be mutated. 

Mutation 1.  | Relative strength (RS-M) 

Concepts included are PRAS Signalling 

Relative strength mutation was designed to have a bias towards the top 50% of alleles with the highest ratio 

of relative strength over frequency in the current population. The alleles are sorted in descending order 

based on the PRASF of the alleles. If each of these alleles are already present on the given solution, a zero 

frequency allele is chosen uniformly random and added to the solution. If there are no zero frequency alleles, 

mutation does not take place. 

Figure 16 Schematic overview of relative strength mutation (RS-M) mutation 
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As such, this mutation introduces a more volatile environment where alleles which after introduction 

improve the fitness of their solution significantly have a much higher probability to be introduced on other 

solutions in a following mutation event. If there are many allele with the same high value of PRAS, the 

heuristic loops through the population matrix from top left to right going from top row to bottom.  

Mutation 2.  | Relative strength adaptive allele (RSAA-M) 

Concepts included are PRAS signalling and mutation filtering.  

Inspired by Lamarckian evolution (Whitley, et al., 1994), this mutation adapts and checks each mutation 

event on whether it increases the solution fitness or not. If so, it accepts the mutation, else it continues to 

find another beneficial allele to mutate towards. In many ways this is similar to a local “gradient” search 

heuristic which searches the local solution space neighbourhoods for improvements.  

This local search can be thought of as a kind of learning that happens during the lifetime of the solution (i.e. 

within a single generation). The learnt “behaviour” can also improve an individual’s chance of survival as well 

as their genetic makeup. The consideration is whether such learnt behaviour should be encoded in the 

genotype or not, or only used to increase the fitness of that solution temporarily for that generation. In our 

case, we chose to encode the learnt improvements through a mutation in the genotype as these beneficial 

mutations could then be passed on to the children in the next generation.  

The mutation goes through the RS list, and if exhausted, uniformly random chooses a 0-frequency allele to 

mutate towards if it increases the fitness of the solution.  

 

 

 

Figure 17 Schematic overview of relative strength allele adaptation (RSAA-M) mutation 



       

46 

 

Mutation 3.  | Relative strength memory (RSM-M) 

Concepts included are PRAS signalling and solution memory 

A role of mutation is considered to be that of maintaining genetic diversity in the population. RSMM adds a 

population level diversity mechanism to the RSM heuristic, as every mutated solution is checked for 

duplicates against the current population. If a duplicate is found, the mutation is rejected and another 

mutation is performed, up until a maximum of 25 attempts, after which mutation does not take place. RSM 

mutation uses the same mutation heuristic as RS-M, but adds another layer of diversity preservation 

 

 

Mutation 4.  | Relative strength adaptive allele strong solutions (RSAASS-M) 

Concepts included are PRAS signalling, mutation filtering and selection bias 

RSAASS-M introduces an a-symmetry in mutation rate for solutions based on their relative fitness rank in the 

population. If a solution is part of the top 50% of solutions in the current population, the mutation rate for 

this solution increases to 75%.    

This mutation is largely equivalent to RSAA-M, only that the mutation probability for the upper 50% of the 

population in terms of fitness is significantly higher. This implies that the positive mutations are propagated 

more specifically on the strongest solutions in the population and therefore the survival probability of this 

allele after mutation is expected to be higher. 

 

Figure 18 Schematic overview of relative strength memory (RSM-M) mutation 
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Mutation 5.  | Relative strength adaptive allele strong solutions enumeration (RSAASSEUE-M) 

Concepts included are PRAS signalling, mutation filtering and selection bias 

The difference in this algorithm is that it includes not only 0-frequency alleles, but also the ubiquitous alleles. 

Furthermore, it enumerates each of the ubiquitous and 0-frequency alleles, in order to prevent sampling to 

concentrate on a number of alleles which do not yield improved fitness.  

 

 

If sampled allele is present, then remove it, if not present, then add it. As such the GA does not have any 

explicit knowledge of the allele end-state. 

Important to note is that with crossover, the population can naturally grow as each crossover event creates 

2 offspring, while mutation changes a single solution and thus creates a single offspring. However, when 

selection splits the population in half in terms of fitness and removes the bottom half, it must be resized to 

the original population size. Whenever only mutation in this research, the surviving population is duplicated 

in order to return to the full population size.  

Figure 19 Schematic overview of relative strength adaptive allele strong solutions (RSAASS-M) mutation 

Figure 20 Schematic overview of relative strength adaptive allele strong solutions enumeration (RSAASSEUE-M) mutation 
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4.5.3. CUSTOM INITIALISATION METHODS AND POPULATIONS  

As described in the GA introduction, first, a set 𝒢𝒾𝓃𝒾𝓉  of initial solutions 𝑠𝑖  where  𝑖, … , 𝑁𝑝𝑜𝑝  needs to be 

generated. The experiments in this research have initial populations that can either be generated at random 

and predetermined. If not random, the populations can either be uniform or diverse. The below description 

details how the initial populations are created in each case.  

Random diversified (RD-I) 

For the majority of the experiments the populations are generated at random and ensured to be as diverse 

as possible. It was ensured that the avg initial PRAS did not deviate too much from 50% in order not to bias 

the results based on better or worse initial conditions. The initial avg PRAS ended up being 58%. Further 

experimentation on the effect of strong and weak initial populations would provide more insight into the  

effect this initial condition. The initialisation process in Figure 21 repeats until the population size has been 

reached.  

 

 

 

 

 

 

Determined diverse (DD-I) and uniform (DU-I) 

Initial populations of 10 solutions were created by hand picking solutions for experiments with γ = 15 which 

required a uniform/diverse and a low/high initial PRAS. These solutions were designed for the 3rd objective 

function ( 𝐹3(𝑠) =
𝑁

𝐴𝑚
 ), where the optimal solution would become known through brute force enumeration 

of all possible solutions. Please note that the GA itself would not have received any direct information on the 

optimal solutions and that this brute force method is for evaluation purposes only. These optimal solutions 

are presented and elaborated upon in the first section of the results chapter.  

In the definition of non-random, pre-determined populations there was no particular consideration about 

which solution to give which allele values except for that the population matrix in general should result in a 

low or high initial PRAS level. In the diverse populations consideration was made to make the populations 

diverse enough while biasing them towards a high or low initial PRAS.  

Figure 21 Schematic view of the random diversified initialisation heuristic 
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A careful look at the population matrix of both uniform low and high initial PRAS will show the shapes of the 

initial population plates. Since they are uniform, each solution has the same shape and thus the aggregate 

population matrix will be a singular shape as well.  

 

4.6. GA OPTIMISATION APPROACHES 

4.6.1. EXPERIMENTAL MATRICES 

Considering that the overall GA optimisation framework with its design problem, analytical model and 

(custom) heuristics have been defined, a systemic approach to experimenting with this framework needs to 

be detailed. The experimental matrices in Table 9, Table 10 and Table 11 provide an overview of the 

experiments in this research. Table 9 concerns experiments for heuristics with varying objective function and 

granularity where combinations with ‘X’ did not end up being reported in the results & analysis due to the 

lack of informative value as the optimal solution ended up being trivial – a full block of material.  

Figure 22 Initial populations genotype matrix consisting of diverse and uniform populations, and high or low initial PRAS strength 
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Table 9 Experimental matrix for testing GA designs for varying objective function and granularity 

 

Table 10Table 9 concerns experiments for heuristics initial populations with a variation on mutation rate. Its 

primary function what to provide understanding on how the initial population composition affects the 

optimisation end results under various GA design conditions. 

Table 9 Table 11 concerns experiments for various GA designs with crossover and mutation and mutation 

rates to understand the influence on the optimisation performance. 

 

Table 10 Experimental matrix for testing GA design for varying initial populations and mutation rate 

Parameters & heuristics Crossover Crossover and mutation                           

Initialisation   Initial 
PRAS 

Pm SPC TPC UC UC  UM UC RSM UC RSMM UC RSAAM UC RSAASSM UC RSAASSEUE M 

DD-I High 0.1 EX-8 EX-7 EX-6 EX-37 EX-28 - EX-31 EX-33 EX-34 

DD-I Low EX-9 EX-5 EX-4 EX-36 EX-29 - EX-30 EX-32 EX-35 

DU-I High - - - - - - - - - 

DU-I Low - - - EX-24 EX-25 - EX-26 EX-27 EX-23 

0.2 - - - EX-40 EX-39 - - - EX-38 

Problem 
parameters 

 Crossover only Mutation only                                                                              Crossover and mutation 

𝑭(𝒔) γ G SPC TPC UC UM RSM RSM
M 

RSAA
M 

RSAA
SSM 

RSAAS
SEUE 
M 

UC  
UM 

UC 
RSM 

UC 
RSM
M 

UC 
RSAAM 

UC 
RSAASS
M 

UC 
RSAASSE
UE M 

𝑵 5 20 X X X - - - - - - - - - - - - 

15 X X X X X X X X X X X X X X X 

𝑵

𝑨𝒎
 

5 - - - X X X X - - - - - - - - 

15 EX-
1 

EX-
2 

EX-
3 

EX-
11 

EX-
12 

EX-
13 

EX-14 EX-
15 

EX-16 EX-17 EX-
19 

EX-
18 

EX-20 EX-21 EX-22 

150 - - - - - - - - - EX-64 EX-
63 

- EX-61 EX-62 EX-65 

40 - - - - - - - - - - - - - EX-66 EX-67 
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Table 11 Experimental matrix for testing GA designs for varying mutation rate 

 Parameter               Crossover and mutation 

Mutation rate UC  UM UC RSM UC RSMM UC RSAAM UC RSAASSM UC RSAASSEUE M 

0.05 EX-44 EX-41 - EX-42 EX-43 EX-45 

0.1 EX-49 EX-46 - EX-47 EX-48 EX-50 

0.15 EX-54 EX-51 - EX-52 EX-53 EX-55 

0.2 EX-59 EX-56 - EX-57 EX-58 EX-60 

 

4.6.2. DEFAULT HYPERPARAMETERS 

In the GA a number of hyperparameters must be defined (Back, et al., 2000). The default settings for various 

parameters, unless stated otherwise, are shown in Table 12. A population size of 20 was chosen in relation 

to the number of genes and alleles and iteratively determined by running experiments. A relative small 

population would unnecessarily limit the optimisation, while a large population would not provide a realistic 

constraint often present in real optimisations. Larger population generally require more computational effort 

and one does not want have unnecessarily large populations if the same results  can be achieved with a 

smaller population. The number of generations was chosen following a similar approach. 

The number of trials is important as a stochastic process is investigated. Thus, the results of the optimisation 

are different after each trial (or run). The number of trials was iteratively chosen by determining whether the 

average results with an additional trial would continue to change much. The number of trials was minimized 

since each additional trial requires significant computational time. Tournament size was chosen based on 

what was often found in literature (Back, 1994) 

 

 Table 12 Default genetic algorithm hyperparameter settings unless stated otherwise 

 

 

 

 

Variable Npop Pm Pc Rs T Generations Trials 

Value 20 0.1 1 0.5 0.3 20 10 
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5. RESULTS & ANALYSIS 

The results of this research can be divided into several components. First, the fatigue crack growth model is 

verified with experimental data. Second, different type of objective functions for the optimisation of 

thickness distribution are investigated mathematically. Third, the GA variations are tested on ranges of 

granularity γ. Fourth, a sensitivity study on the GA parameters is performed.  

5.1. HEURISTIC CONCEPTS 

5.1.1. CROSSOVER ONLY 

Experiment trials with UC had higher avg. end-state PRAS values than SPC and TPC (Figure 23). UC trials 

reached an average of 0.93, while SPC and TPC improved to 0.82 and 0.86 respectively. The avg PRAS effective 

for each experiment followed a nonlinear path over the generations with most of the improvement taking 

part in the first 10 generations. 

Experiment trials with UC had the highest GA objective function score of 23.0, while TPC and SPC concluded 

with 9.7 and 6.0 respectively. With respect to GA function rates, none of the experiments was able to 

introduce nor eliminate any alleles in(to) the population as demonstrated by the introduction and elimination 

rate with a value of 0. 

Progression rates (0.17-0.18) were balanced among the experiments, while larger differences were observed 

for the suppression rates (0.13-0.16). UC demonstrated the lowest suppression rate of 0.13 PRAS per 

suppression event. Most progression events were observed in the UC experiment trials, as well as for the 

number of ubiquity events. The inverse is demonstrated for the suppression and extinction events. 

The cumulative number of progression events is larger than the suppression events for each GA. A similar 

observation can be made for the ubiquity events as compared to the extinction events. Introduction and 

elimination events are zero for all GAs.  

Figure 23 Avg. PRAS over generations for each crossover only experiment 
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Closer inspection on the allele and gene section level of detail (Figure 23) demonstrated that UC trials were 

able to progress the gene sections A, B, D and E more in terms of PRAS than SPC and TPC. The PA gene 

sections (D,E) reached levels of avg PRAS of 0.98, while the NA gene section (A, B) decreased far less in PRAS 

to levels as high as 0.41. 

Figure 24 Avg. PRAS effective over generations (top left), GA function rates (top right) and GA function events over generations (bottom) per crossover only GA 
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Isolating the gene sections D and E (Figure 25) 

revealed that these alleles produced more 

progression and ubiquity events, as well as less 

suppression and extinction events. What 

stands out is the large relative difference in 

extinction events related to UC trails in 

comparison to SPC and TPC trials.  

 

 

 

 

5.1.2. MUTATION ONLY 

Experiment trials with mutation only GAs demonstrated a larger spread in avg. end-state PRAS as compared 

to crossover only GAs (Figure 27). Trials with RSAASSEUE-M consistently resulted in the highest achievable 

avg. PRAS effective of 1.0. Other mutation heuristics RSAASS, RSAA and RS showed little spread in their avg 

end-state PRAS (0.81 – 0.89), providing improvements between 42% and 56% of the initial avg. RAS. RSM 

demonstrated the lowest avg. end-state PRAS of 0.71, an improvement of only 25%. RSAASSEUE-M reached 

the highest GA objective function score of 55.9 while the RSAASS-M ended second place with a score of 10.8. 

The trials with UM contain an inexplicable error in the initial population. Even though the initial population 

is the same, the initial PRAS in the experimental data is not equivalent to that of the other initial populations. 

Nonetheless,  

Each of the mutation heuristics was able to perform all of the GA functions, except for RSAASSEUE-M which 

demonstrated an elimination rate of 0 as it did not produce any elimination events. With respect to 

introduction, RSAASSEUEM demonstrated the highest rate of 0.35. The spread amongst introduction and 

elimination rates was relatively large (0.11 – 0.35) as compared to the other GA functions, where the spreads 

were 0.17 – 0.23 and 0.16 – 0.20 for progression and suppression respectively.  

Figure 25 Overview of GA function events per experiment with a change in extinction events 

w.r.t. the baseline 
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Each of the experiments demonstrated a linear trend for the cumulative number of introduction events 

between 0 < g < 20. UM demonstrated the same trend for each of the other functions, however most other 

experiments seem to reach plateaus generally visible at g = 5. The exception to this is RSM which showed 

linear trends for other functions more similar to UM.  

 

Further investigation into the gene sections and single runs per allele a number of patterns were observed. 

First, RSM demonstrated that it could increase the avg RAS per gene section within 0 < g < 5 for the gene 

Figure 26 Avg PRAS over generations per gene section overall (left) and isolated for NAs (right) for RS and RSAA 
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section A (NA) and D (PA) seen by the respective decrease and increase in average RAS within that range (). 

A similar but much less pronounced optimisation effect can be seen for the other gene sections.  

The main limitation of RS is that it continued to introduce NA alleles into the population which can be seen 

by the relative high number of introduction events on NA gene sections A, B and C (Figure 29). A secondary 

limitation is that RS was not able to eliminate any NA alleles of gene sections A, B and C that had become 

ubiquitous in the population.  

Figure 27 Avg. PRAS effective over generations (top left), GA function rates (top right) and GA function events over generations (bottom) per mutation only GA 
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RSAA demonstrated improved end-state RAS for gene sections B and D. The events produced by these trials 

indicate improvements on the main limitation of RSM, as the number of introduction events on NA alleles 

nearly disappeared. On the other hand, RSAA trials did not achieve more elimination events of ubiquitous 

NAs on gene sections A, B and C (Table X).  

 

 

 

 

 

Figure 29 Total number of events per GA function, gene section and allele end-state for RS-M 

Figure 28 Avg PRAS over generations per gene section overall (left) and isolated for NAs (right) for RSAASS, RSAASSEUE and RSM 
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Furthermore, the extinction events for NA gene sections A, B and C reduced as these NA alleles were not 

reintroduced and eliminated again, which would otherwise have counted towards extinction events  

 

 

 

Investigating the PA gene sections D and E for RSAA 

shows that there were no more elimination events, 

while event related to the other GA functions remained 

close to the values produced by RS (Figure below). 

Another observation is that while NAs demonstrated 

less introduction events, when they did occur, those 

alleles more often progressed and became ubiquitous as 

compared to the RS trials (Figure 31). Investigating the 

trials on those alleles shows that these trials correlate 

with the average PRAS of various PAs. 

RSAASS trials showed a slight increase in introduction 

events on NA gene sections A, B and C (Figure 32), yet these introductions did not correlate with an increase 

in ubiquitous NAs. Furthermore a difference with RSAASS trials was the increased introduction and 

progression rates (Figure 27) compared to RSAA and RS. Thus, for every introduction or progression event, 

more PRAS was changed.  A notable observation is that RSAASS was able to fully optimise PA gene sections 

D and E to avg RAS = 1 within 0 < G < 20 (Figure 28). 

 

Figure 31 Hitchhiking of negative alleles (orange, red) with positive 

alleles (teal, green) in RSAA-M  

Figure 30 Total number of events per GA function, gene section and allele end-state for RSAA-M 

Figure 32 Total number of events per GA function, gene section and allele end-state for RSAASS-M 
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Figure 28 demonstrates the inability to eliminate ubiquitous NAs remains present in RSAASS.  Trails with 

RSAASSEUE show that the GA is able to consistently convergence on the optimal solutions with an avg. PRAS 

= 1. The gene level shows how the ubiquitous NAs are eliminated and suppressed to RAS = 0 until no 

ubiquitous NAs were left (Figure 28).  

 

RSM trials were not able to effectively optimise the design problem with an average end-state PRAS of 0.71 

(Figure 28). While RSM hardly eliminated any alleles, it demonstrated a lot of variation in PRAS within the 

bounds of 0 < PRAS < 0.9 (). The same observation can be made in the number relatively high number of 

introduction, progression, suppression and extinction events (Table below).   

 

Figure 33 Total number of events per GA function, gene section and allele end-state for RSAASSEUE-M 

Figure 35 Total number of events per GA function, gene section and allele end-state for RSM-M 

Figure 34 Total number of events per GA function, gene section and allele end-state for U-M 
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5.1.3. CROSSOVER AND MUTATION 

In comparison with the mutation only and crossover only experiments, the trials with both crossover and 

mutation heuristics made it possible for more versions of the GA to reach higher levels of end-state average 

PRAS (Figure 36).  Each mutation only GA except for RSAASSEUE increased their end-state RAS through the 

inclusion of UC. However, UC alone reached higher end-state PRAS than many of the crossover and mutation 

GAs.  

Furthermore, SPC and TPC outperformed mutation only GAs RS, RSM and RSAA in the levels of end-state 

RAS. The GA objective function score of RSAASSEUE decreased with the addition of UC from 23.9 to 15.9, a 

decrease of 33% (Figure 40). The standard GAs in any case were not able to reach levels higher than 0.79 avg 

end-state RAS (UC UM).  

Generally, the addition of UC seemed to reduce the number of introduction and elimination events, as well 

as their rates (Figure 36). Exceptions to this are UC UM and UC RS, where this effect is much smaller, or even 

Figure 36 Avg. end-state PRAS (top left), GA function rates and scores (top right) and GA function rates and events (bottom) per GA grouped by crossover, mutation or both 
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negligible.  An important observation was that in every case the addition of UC decreased the number of 

generations required for the experiments to reach their avg PRAS plateaus (Figure 36). This observation 

correlates with the fact that the addition of UC led to higher end-state levels of PRAS.  

UC, RSAASSEUE experiment trails were the only combination of crossover and mutation to achieve an 

average end-state RAS of 1.0 consistently with a GA objective function score of 15.9. According to our GA 

objective function, it did so less efficiently as RSAASSEUE which had a score of 23.9.  

 

UC,RSAA and UC,RSAASS came close to each other with a GA objective function score of 8.4 and 8.2 

respectively. The introduction rate of UC,RSAASS remained higher, however this increase did not propagate 

to the progression and suppression rates as it did with the mutation only GA. The gene section level shows 

that the inability to eliminate ubiquitous NAs was the limitation for UC RSAASS to further progress on avg 

PRAS. A comparison between events in Figure 37 shows this difference in elimination events in gene section 

A, B and C.  

 

 

 

Figure 37 Total number of events per GA function, gene section and allele end-state for UC with RSAASS-M or RSAASSEUE-M 

Figure 38 Total number of events per GA function, gene section and allele end-state for UC,UM 
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The addition of UC to UM rates led to more frequent 

events of smaller size in terms of PRAS. The data in 

Figure 38 shows how the SGA (U-C, U-M) 

reintroduces and progresses NAs, while repeatedly 

eliminating PAs. Results of this experiment further 

showed that in the progression events on PA gene 

sections was 6% (1149 vs 1085) higher and 

suppression events on NA gene sections were 30% 

higher than on PA sections. As such, this means that 

PA genes progressed more often in PRAS and NA 

were suppressed more often in PRAS.  

Figure 39 shows how these events correlate with a 

decreasing avg PRAS for NA gene sections A and B, 

while the avg PRAS for PA gene sections D and E are 

increasing. However, the end-state PRAS of these gene 

section are far from the optimal states. Especially the NA gene sections seem further away from the optimal 

(0.4 PRAS), even though the change in PRAS from generation 0 to 20 is the largest.  

 

The difference in avg PRAS effective 

per GA experiment group with either 

mutation only or both crossover and 

mutation is shown in Figure 40. UC 

primarily results in an increase of end-

state PRAS except for UC, 

RSAASSEUEM, which achieve the same 

result without UC.  

Furthermore, UC seems to increase 

the PRAS increase in earlier stages of 

the optimisation, roughly within the 

generations range of 0 < G < 10. This 

effect is still present with 

RSAASSEUEM, yet it is the smallest 

effect among all GAs.  

 

 

 

Figure 39 Avg PRAS per gene section over generations for UC, UM 

Figure 40 Optimisation path comparison between mutation only and crossover with mutation. Axes 

shortened to better indicate the differences for readability purposes 
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5.2. INITIAL POPULATION 

 

5.2.1. HIGH VERSUS LOW INITIAL RAS OF A DIVERSE POPULATION  

The following graphs show the avg. PRAS effective for various GAs starting at either a low or high PRAS 

effective population. Crossover only GAs (Figure 41, left) show a clear constraint when starting at a low avg 

PRAS population, optimising from 21% to up to 58% avg PRAS (UC). These results further demonstrate that 

UC is better able to optimise when starting at a low level of avg PRAS.  

Crossover and mutation GAs (Figure 41, right) show that the addition of mutation enables the GA to improve 

optimisation for lower levels of initial avg PRAS. Many of the GAs optimise towards an asymptote of +-80% 

avg PRAS, except for UC,RSAASSEUEM, which is able to optimise towards 100% avg PRAS regardless of the 

lower initial state.  

Higher levels of avg PRAS makes it posssible for all GAs to optimise to 100% avg PRAS, except for the SGA, a 

key observation. The SGA even decreases in avg PRAS providing a strong indication that there exists a from 

of counteracting force towards the asymptote of 80% avg PRAS.  

 

Further investigation of the GA function events demonstrates that UC, UM with a high initial PRAS yields a 

bias towards introducing of NAs while eliminating Pas (Figure 42). This reflects in a negative GA objective 

functions score of -1.1, indicating that the GA is doing the opposite of what we intended it to do.  

Figure 41 Avg. PRAS per GA for high and low initial PRAS with only crossover (left) and both crossover and mutation (right) 
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Figure 42 Total number of events per GA function, gene section and allele end-state for UC,UM, gamma = 15 and initial PRAS = high 

The highest GA objective score is achieved by the UC, RSAASSEUEM combination when starting at low levels 

of initial PRAS (Figure 43). This GA has high values for the introduction, progression and suppression rates 

while reaching 100% avg. PRAS after 20 generations.  

Figure 43 Avg. end-state PRAS for low and high initial strength populations (top left) and their GA function rates with events (top right, bottom) 
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This IGA has a higher introduction rate as compared to the 2nd scoring IGA, that with UC, RSAASSM. Both 

progression and suppression rates are identical. Not only is the introduction rate higher, another observation 

is that this GA has a relative higher number of progression events than all other GAs starting at lower initial 

PRAS. 

The difference in GA function rates between the 2nd best and 3rd best scoring GAs (concerning selection bias) 

mainly differ on introuction and progression rates.  

Further comparison on GA function rates and events in Figure X shows that introduction rates and events 

increase for lower levels of initial PRAS in the case of crossover and mutation GAs. Furthermore its visible 

that the SGA with UC,UM has a much higher number of progression, suppression and elimination events than 

all other GAs.   

5.3. PARAMETERS 

This section shows the experimental results of a sensitivity study where quantitative parameters such as 

the mutation rate and problem granularity were varied.  

5.3.1. MUTATION RATE 

The mutation rate varied from 5% to 20% while the default setting for other experiments in this research 

was a mutation rate of 10%.  

Overall the results demonstrate that the IGAs became 

independent on the mutation rate while the SGA (baseline) 

was negatively correlated with an increasing mutation 

rate. Furthermore, it shows that a lower mutation rate of 

5% strongly increased the end-state avg PRAS of the SGA. 

It seems that the asymptote that often stops the 

progression of UC, UM shifts up with a lower mutation rate 

as depicted in Figure 44. 

The GA function rates and events show that the difference 

is likely to be driven by a change in the number of 

progression, suppression and elimination events, rather 

than changes in the GA function rates.   

Furthermore there are fluctuations in the rates for some 

experiments. In the case of UC, RSM we see that the 

introduction rate drops to 0 at Pm = 15%, yet for other ranges it remains stable at around 0.1. For UC, 

RSAASSM the results show a similar behaviour at Pm = 5% and 15% for the elimination rate.  

An additional question is whether an increased mutation rate makes mutation heuristics less dependent on 

the initial strength of the population. Error! Reference source not found. provides an overview of the avg e

Figure 44 Avg PRAS over generations for UC,UM with varying Pm 
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nd-state PRAS for varying initial population 

strength (low vs mid) while maintaining a high 

level of mutation rate (0.2). A primary 

observation is that lower initial population 

does not affect UC,RSAASSEUE in reliability as 

it reaches 93% PRAS with a likely continuation 

to 100%, yet it does take a higher number of 

generations to achieve this level of PRAS. This 

is in contrast to UC,UM, which rapidly 

optimises to the same PRAS level as when 

starting with a mid-strength initial population.  

 

 

 

 

 

 

 

 

 

Figure 45 End-state PRAS (top right) and GA functions rates with events (bottom) for a varying mutation rate Pm 
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5.3.2. GRANULARITY 

Granularity determines the number of genes and alleles used in describing the design problem. Increasing 

the granularity increases the complexity of the problem through a higher degree of freedom for the GA 

heuristics. Nonetheless, the complexity of the objective function remains the same as the objective function 

remains the same (𝐹3).  

Results in Figure 46 show that the avg. end-state PRAS negatively correlates with a higher granularity for 

each experiment group. Higher granularity decreases the introduction rate for UC, RSAASSEUEM while the 

number of introduction events increases. Furthermore, the number of progression events also increases, yet 

this does not come with a reduction in progression rate. 

 

Figure 46 End-state PRAS (top left) and GA functions rates with events (top right and bottom) for a varying granularity and generations = 20 
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Figure 47 shows the avg PRAS effective over generations for each of these experiment groups. While 

experiments with a lower granularity (γ = 15) led to higher end-state PRAS values, these experiments were 

benefitted due to a higher initial population.   

Further extension of the number of the generations for two experiments showed that UC, RSAASSEUEM 

was able to continue optimisation towards PRAS = 100%, while UC, RSAASSM levelled off at around 81%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47 Avg PRAS effective over generations for varying granularity per experiment group 
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6. DISCUSSION 

A literature study on genetic algorithms applied to engineering design revealed that in many cases the 

choices on genetic algorithm search heuristics is arbitrary. Engineers fall back on the standard genetic 

algorithm (SGA), typically applied with single point crossover and uniform mutation. These decisions are 

driven by a lack of understanding of genetic algorithm search heuristics, as well as their interaction with 

various characteristics of a design problem. Consequently, the results with the SGA have shown themselves 

to be uncertain, which on its turn has strongly limited the application of genetic algorithms in engineering 

design (Wolpert & Macready, 1997). This is unfortunate, as capturing the benefits of a manufacturing 

technique such as additive manufacturing requires a reliable design methodology for highly granular and 

“organic” components for the inherent combinatorial design complexity. The research goal was to improve 

our understanding of these search heuristics, both standard and improved, on a simple design case study of 

thickness distribution. The analysis of the results has brought forward a thesis along with 2 supporting 

statements.   

The following discussion aims to inform practitioners on the nuances when applying GAs to their design 

problems, as well as bring up more research questions.  

The application of the nature-inspired genetic 

algorithms on damage tolerant fuselage design 

is flawed and deceptive 
Currently, at best, the standard genetic algorithm model is a simplified representation of natural evolution 

that has proven to be able to optimise some design cases, yet we know very little on when its reliable and 

how it interacts with specific design problems (Sorensen, et al., 2017). 

Overall findings of this case study indicate that the application of SGAs can be ineffective and even deceptive, 

supported by the fact that none of the experiments with the SGAs were able to find the optimal crenellated 

plate reliably. On average, the SGA with UC and UM still reached a PRAS end-state of 79%. However, findings 

on several IGA designs indicate that reliable GA designs can be achieved. The best performing IGA reached 

an average PRAS end-state between 90% - 100% depending on a range of conditions for the optimisation.  

While these high-level results provide us indications of what search heuristics work under these design case 

conditions, analysis of lower-level results led to two insights, which are each presented in the form of a 

supporting statement.  

The role of crossover and mutation has long been a topic of discussion (Senaratna, 2005). What clearly is not 

understood, is to what degree crossover and mutation resemble a fundamental truth about genetic 

algorithms. As part of this fundamental truth it is assumed that any type of pure randomness is sufficient for 

a reliable genetic algorithm optimisation.  



       

70 

 

The role of crossover is currently thought to be exploiting the alleles in the current population by exploring 

stronger combinations of alleles. That of mutation is considered to be exploring the solution space by 

creating random allele variance in the population. However, the exact mechanisms, or heuristics, through 

which they fulfil these roles have been widespread and very hard to reproduce (Sorensen, et al., 2017) In this 

context, pure randomization is randomness not limited or “biased” by any signal, yet  that which only relies 

on a “flip-coin”. Evidence of this assumption can be found in the GAs that engineers currently report in 

literature, as well as in the standard open source code package for GAs which only contains standard 

mutations using pure randomization (reference).  

Statement on SGA: Random mutation is a deceptive heuristic due to its counteracting 
of a constructive crossover, while crossover is severely limited in its functionality.  

The notion that any type of pure randomization is beneficial to the optimisation is flawed. A large share of 

inexplicability of the SGA optimisation process comes from the uniform mutation heuristic due to its pure 

randomness. Through experimentation with both standard crossover and mutation in the design of flat 

panels, we found that random mutation is suboptimal and that it counteracts the beneficial GA functions of 

crossover for mutation rates between 0.05 – 0.2. 

Supporting results 

Solution quality (PRAS) 

Pure randomization on its own, in the form of uniform mutation, did very poorly when used without 

crossover, leading to a fluctuating average PRAS end-state of 50% (Figure 48). Combining both standard 

crossover and mutation led to balanced avg PRAS of 79% (Figure 48). Unexpectedly, crossover alone resulted 

in PRAS 93% (Figure 49) demonstrating that in this case crossover alone would have been better than 

constructing fitter solutions without mutation. Furthermore, it supports the hypothesis that mutation 

counteracts the constructive function of crossover. 

GA functions 

UC alone did very well on progression and suppression leading to an average PRAS end-state of 89% (Table 

13). It could not progress any further as crossover on its own could not perform the GA functions of allele 

introduction or elimination. Further results show that crossover is able to progress PAs more often and better 

than when combined with uniform mutation.  

Initial population 

Although the avg. PRAS decreased with a mid- and high-level initial PRAS, at a low-level initial PRAS, the 

addition of UM strongly increased the ability for the GA to reach higher levels of avg PRAS (78%). UC only 

resulted in much lower levels (58%) for low-level initial PRAS, making it very constrained to the initial 

population strength.  

https://deap.readthedocs.io/en/master/api/tools.html
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Mutation rate 

Another result supporting that pure randomization can be harmful is that the avg PRAS showed a negative 

correlation with the mutation rate. Higher mutation rates led to lower avg PRAS levels after 20 generations. 

Figure 48 Schematic view of the optimisation process for crossover and mutation SGAs 

 

Figure 49 Schematic view of the optimisation process for crossover only SGAs 
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This makes sense as a higher mutation rate, in the case of uniform mutation, will only lead to a higher level 

of disruption of strong solutions. This result implies that the mutation rate for SGAs has been chosen 

arbitrarily in other engineering research should be considered as irresponsible. While some researchers solve 

this issue through a sensitivity study, the fact that there are several hyperparameters such as population size 

and tournament size, makes it a very time consuming effort to find a combination of the best settings for a 

given application. Add to that the difficulty to explain why a certain combination of settings is optimal, and 

the application of SGAs on engineering design becomes unrealistic.  

Summary  

As such, it seems that using UM for the inclusion of introduction and elimination functions came at the cost 

of interrupting the progression and suppression benefits that crossover has, as crossover alone reaches 

higher avg PRAS when the initial population is sufficiently strong and diverse. As we cannot ensure nor 

validate these conditions, we conclude that the application of SGA with random mutation is deceptive.  

Possible reasons 

A logical reason for the limiting effect of uniform mutation is that it has a higher probability of destructing 

high fitness solutions than creating them. While there is a probability that UM leads to a positive mutation, 

the experimental results confirm that its unlikely to benefit the optimisation.  

Table 13 Number of GA function events per gene section and end-state grouped by experiment (gamma = 15, F = N/Am ) 
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Figure 50 schematically depicts why the probability for UM to destruct becomes higher when solution fitness 

reaches higher optimality. The values show how many levels of thickness would yield a positive increment 

towards the optimal solution. As the solution becomes highly optimal, the number of possible thickness 

levels that yield positive increments decreases.  

The counter effect of mutation can be further supported by the fact that we see that the avg PRAS of the 

initial population only affects the avg end-state PRAS of the SGA to a small degree. We see that in both cases 

the SGA converges towards an avg end-state PRAS of 79%, even though the high PRAS initial population 

started on a higher level of avg PRAS (82%). This decline also supports the argument that there exists some 

counteracting effect, where the destructive effect of uniform mutation increases when the optimality of the 

solutions in the population increases. Schematically this is shown in Figure 52. 

This makes sense, as with weaker initial populations the alleles that are not necessary (NA), or necessary (PA) 

for the optimal solution are likely (not) present in the population. Standard crossover cannot introduce nor 

eliminate these alleles and it needs the function of mutation to introduce or eliminate these. This finding is 

not insignificant, as in real applications one does not know how strong the initial designs really are. If they 

are initially weak, the GA with random mutation will show strong progress, providing the practitioner with 

the impression that optimal solutions have been achieved, while in fact, these solutions are still far from 

optimal (as our SGA experiment with a low initial population reach an average of PRAS = 78%). Furthermore, 

the output solutions are likely to be different each run and therefore will be considered unreliable. 

While one may argue that the disruptive effect of mutation must be considered in relation to selection 

pressure, since selection pressure doesn’t care whether mutation is positive or destructive, it simply needs 

some variance in the gene pool in order to keep optimising. We don’t fully agree with this. Why must a 

mutation destroy a strong solution in the first place? While selection pressure acts as a solution filtering 

method, results in this research show that including a mutation filtering, which is in some sense similar to 

selection pressure, before propagating a mutation can yield better optimisation results. It may be of interest 

to research how the reliability of the SGA and IGA changes with different selection heuristics and pressures, 

however we consider it unlikely that changes herein will make the SGA overall more reliable as an 

optimisation method since the same principles of a disruptive uniform mutation still apply.  

Figure 50 Schematic overview demonstrating that solutions of higher fitness have less potential positive mutations 
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While crossover might be able to mix a set of stronger solutions when stronger selection pressure is applied, 

uniform mutation will become only more disruptive as the number of negative mutations will become even 

larger when mutating stronger solutions. As such, there exists this counter balancing effect of uniform 

mutation that stands in the way of finding the most optimal solutions which makes the heuristic deceptive.  

Limitations 

A critical note on the results is that the number of mutation events was much lower in PRAS compared to 

UM just by the difference in heuristic design. UM looped through each gene and had a probability Pm that 

the gene would get mutated, while with IGA, the mutation rate was applied on a solution level rather than 

gene level. Effectively, this could have meant that the mutation rate on the solution level for UM was much 

higher than Pm, as the probability that the solution would mutate at least one gene in the SGA would be 

𝑃𝑚 ∗ 𝛾, rather than just Pm. Whether this had a significant effect on the results should be considered an 

important validation to do in further research.  

More generally speaking, the limitations of applying the SGA on design cases are numerous. While our results 

show that crossover through the combination of stronger alleles will counter balance the beforementioned 

disruptive effect of uniform mutation, our results show that the optimisation process becomes very slow. 

Even if, in the very unlikely event, it would optimise to highly optimal end-state after a very long time, this 

would not make it a practical optimisation approach in engineering design or any other application where do 

not have to liberty, as so to speak, to wait for millions of years as nature would have done. Of course, this 

SGA does not in any form imitate the complex behaviour found in nature.  

Statement on IGA: Heuristic design should be driven by GA functions and knowledge 
of the fitness space, rather than be based on flawed nature-based models. Crossover 
is not a fundamental heuristic of the GA, rather it is a type of mutation using guided 

randomization.  

By designing and investigating numerous IGAs based on GA functions - the things the GA is expected to do – 

we were able to show that an improved mutation can create a reliable optimisation methods despite not 

including the standard crossover heuristic. Through the construction of a mutation heuristic based on a 

balanced fulfilment of GA functions, we were able to create a reliable and explainable GA for the 

identification of damage tolerant crenellated plates in a simplified representation. This balanced fulfilment 

was achieved by employing forms of guided randomization using concepts as mutation filtering, PRAS and 

selection bias. 

Supporting results 

Solution quality (PRAS) 

To support these statements we shall discuss a number of insights. First, the best performing IGA was 

RSAASSEUEM which reliably optimised towards 100% end-state PRAS within 20 generations for all 

granularities except gamma = 75. In this case of high granularity, the guided mutation was still the only 

heuristic to continue optimisation towards 98% PRAS. It is assumed that a few more generations would have 
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led to a reliable 100% optimisation, demonstrating that increased granularity is likely to increase the time 

needed for optimisation,  yet it does not introduce a constraint in the maximum fitness achievable. On its 

own, crossover performed well with 89% PRAS. The addition of UC with RSAASSEUEM showed an increase in 

optimisation speed, but it was not necessary in order to create a reliable GA. Figure X and Y summarize our 

findings to support our statement.  

 

 

 

 

 

 

 

 

 

 

 

 

GA functions 

More detailed results on the GA function events in Table 13 indicate that guided mutation was able to cover 

the traditional functions of progression and suppression reserved for crossover, while allowing for 

introduction and elimination yet reducing the counteracting function of traditional random mutation.  

The traditional SGA with UC,UM has an undesired high number of introduction events on NA gene sections 

A, B and C, as discussed in the previous statement, while RSAASSEUE-M has zero.  

Figure 51 Schematic view of the optimisation process for mutation only GAs using pure or guided randomization 
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Comparing UC and RSAASSEUE-M on the GA functions of progression and suppression, we can see that the 

undesired progression of NA decreases from 147 to 136. For progression of Pas, it can be seen that there is 

a large drop from 396 to 328. The number of suppression of NAs remains equal in total with a slight 

redistribution per gene section and the undesired suppression of PAs does not change significantly. These 

results indicate guided mutation was able to fulfill the roles of crossover fairly well, except for the progression 

of PAs were it lacked, yet in total as it could introduce and eliminate it was a sufficient comprise in being able 

to reach the optimal solution with PRAS 100%.  

If we then compare the addition of UC with RSAASSEUE-M to understand why the addition led to a faster 

optimization, we see that the number of progression events on PAs increases back to 364, which is closer to 

the level of UC only with 396 events. Furthermore, the undesired suppression events on PAs makes a large 

drop from 137 to 101, where the desired suppression of NAs increases strongly from 453 to 543 as well. An 

undesired effect is that the progression of NAs also increases again from 136 to 157.  

Initial population 

Lower initial populations led to optimization limitations for most IGAs, while high initial populations would 

ensure that all IGAs would reach PRAS 100%. Only RSAASSEUEM was unaffected by the initial population, 

making it a reliable GA.  

 

Figure 52 Schematic view of the optimisation process for crossover and mutation using pure or guided randomization 
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Granularity 

The IGA showed that increased granularity (gamma = 150) did not inhibit it from further optimization as it 

achieved 98% after 40 generations. The optimization did slow significantly, yet it did not come at the cost of 

reliability. Furthermore, its likely that a well-informed set of search heuristics becomes more important. 

UC,RSAASS, while being very similar, levelled out at 83% PRAS. Whether  

Mutation rate 

Further results showed that all the IGAs became independent of the mutation rate. This is likely to be due to 

the fact that the mutation rate did not affect the number of mutations on a solution, like standard mutation, 

but only the probability that a mutation would take place. Furthermore, in the IGA each mutation was 

ensured to be beneficial, or it wouldn’t be propagated. Thus, increasing the mutation rate would just increase 

the number of not-propagated mutation events if only bad mutation would be left.  

Possible reasons 

How can these results support our understanding of crossover and mutation? If these heuristics are 

supposedly different elements of a GA, then why does RSAASSEUEM yield reliable high levels of PRAS without 

UC, which is considered a critical component of the GA? 

Further investigation through the perspective of GA functions shows that crossover and guided mutation are 

not that different. First, the signalling of allele strength. RSAASSEUE was able to “select” alleles likely to yield 

positive increments in fitness by using PRAS as a signal in mutation. PRAS was constructed by relating the 

fitness of solutions in a population to the occurrence of certain alleles.  

Crossover traditionally does the same, but then through parent selection. When two parents get selected in 

tournament selection, implicitly we are estimating the strength contribution of their specific alleles in 

relation to their superior fitness in the population. Crossover then uses the set of alleles in the parent 

solutions to “mutate” both parents into different solutions yet with the same set of alleles. In this sense, the 

candidate list of alleles with highest PRAS is also a set of potentially strong alleles. The difference is then that 

crossover samples entire solutions, while RSAASSEUEM samples specific alleles.  

Just like with RSAASSEUEM, alleles in high fitness parents have a higher likelihood of being mutated towards 

in others solutions when using uniform crossover. Therefore we derive that both methods utilize implicit ways 

of signalling which alleles are likely to yield fitter solutions through some modification. Therefore both 

methods attempt to fulfil the GA functions of progression and suppression optimally.  

Another similarity is the selection bias used in RSAASSEUEM. Crossover employs a similar bias as the selection 

of high fitness solutions through a tournament selection. This means that on average the stronger solutions 

will produce more offspring solutions and share their alleles. In RSAASSEUEM the same happens through the 

selection bias we introduced, as the strong solutions are more likely to get a positive mutation and thus be 

more likely to produce offspring in the next generation due to their increased fitness.  
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Both heuristics also employ a mutation filtering strategy. Where RSAASSEUEM does so explicitly by 

evaluating the fitness increment of a potential mutation, crossover applies several mutations and is 

dependent on the selection, colloquially referred to as survival of the fittest, to cumulatively evaluate and 

propagate beneficial mutations in the population. Nonetheless, the outcome of both heuristics is driven in 

the same direction – progression or suppression of the right alleles through filtering of beneficial mutations. 

Yet, the key difference is that crossover does this cumulatively through selection, while RSAASSEUEM does 

this on a single mutation event basis.  

A key difference between RSAASSEUEM is the number of changes a single mutation event can apply to a 

given solution. In the case of crossover, a solution is likely to be changed on multiple genes. The number of 

genes that are mutated during each crossover event differs since UC considers the possible mutation of each 

gene separately. In contrast to RSAASSEUEM, which only applies a single mutated gene when a mutation 

event takes place. This could explain why the addition of UC with RSAASSEUEM still yields an increase in 

optimisation speed, as crossover increases the number of positive mutations. Yet, it might also introduce 

some negative mutations, however our results indicate that overall this might not be harmful to the 

optimisation.  

Another key difference is that crossover is still more likely to yield a negative mutation than RSAASSEUEM, 

which may explain why RSAASSEUE-M also reduced the number of progression events on NAs in comparison 

with UC (Table 13). While both heuristics employ a mutation filtering strategy, crossover does so implicitly 

through the use of survival of the fittest, while RSAASSEUEM does so explicitly by evaluating the increment 

of fitness per allele during a mutation event. This delay in evaluation in crossover still makes it possible that 

negative mutations are applied to strong solutions. An extreme example would be when crossover yields two 

offspring solutions that are both less fit than their parents – which is possible.  

The expected probability that RSAASSEUEM yields a negative mutation would be considered small and this 

would be dependent on the spread in fitness increments that a given NA could have. A given allele does not 

have a fixed fitness contribution, rather the fitness contribution is dependent on the solution that it is part 

of. As such, if certain alleles have a high spread in fitness increments depending on the solution context, and 

if part of those increments are positive while the allele is not part of the optimal solution, then RSAASSEUEM 

will propagate that allele. Further research is would be necessary to precisely determine the implications of 

such negative mutations on the optimisation process.   

We conclude from our results that its more important to have a heuristic, or set of heuristics, that together 

fulfil the GA functions, rather than limiting ourselves to the standard definitions of crossover and mutation 

inspired by nature. Whether we call them crossover or mutation in the first place then becomes irrelevant.  

The same controversial conclusion that crossover is a form of mutation was made by David Fogel, as 

documented in a summary on a debate between the roles of crossover and mutation by (Senaratna, 2005).  

Limitations  
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So if guided mutation is a better functioning heuristic based on GA functions, what are some important 

limitations of this heuristic? Under which condition must an engineering designer be cautious in applying 

these genetic algorithms? A number of limitations is discussed grouped by specific topics of interest to 

engineering design.  

The importance of understanding the fitness space  

While experimental results with RSAASSEUEM were promising as well as insightful to better understanding 

important mechanisms of the GA, this heuristic is expected to have limitations.  

The first limitation would be when a solution space is largely flat in terms of potential positive mutations in 

the fitness space – called plateaus (Fonseca & Fleming, 1995). These plateaus are problematic as the changes 

in fitness are very small, even near to zero. This can make the optimisation directionless, leading to a state 

of genetic “drift” where the population changes in terms of genotypes, yet not in fitness (Fonseca & Fleming, 

1995).  In this case of RSAASSEUM, which would require positive fitness increments to guide its mutation, 

this would make it default back to the zero frequency alleles which is likely to lead to genetic drifting or the 

absence of any mutation.  

Furthermore, this heuristic would probably not work on rugged plateaus, meaning that to cross such a 

plateau, you would need many small positive, but also small negative changes. Since this heuristic only 

accepts positive changes, it would not allow to traverse a lightly rugged plateau (Weise, et al., 2009).  

Additionally, this mutation is likely to fail in problems where only the combination of certain design 

characteristics unlocks fitness increases, while all intermediate solutions do not. This concept was coined the 

Royal Road Function by Mitchell et al. (Mitchell, et al., 1991). Figure 53 shows such an example with binary 

values where only the combination of 4 alleles in a single block unlocks a large jump in fitness. Such a fitness 

landscape would require the heuristic to contain some manner of mutation blocks of genes, else it would be 

impossible to arrive at such solution. Currently, the RSAASSEUEM heuristic treats alleles separately and it 

would not get any reinforcing “signal” to build this block. However, the SGA would be expected to have 

similar issues, as even with random changes the intermediate solutions would have to survive selection, or 

the small chance that these 4 are combined into the last solution would have to occur.   

Furthermore, it is confusing to mention that GAs are proficient in creating building blocks, when in fact not 

all design problems require the formation of building blocks to reach the optimal solution, as seen in this 

Figure 53 Schematic overview demonstrating how a “building” blocks of alleles unlocks fitness while single alleles don't 
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research. While SGA must be proficient in optimising problems with building blocks, where our IGA might 

not, it does not mean that the SGA will do well in problems where building blocks are not required. This again 

shows how important the understanding of the fitness space is in order to correctly identified the heuristic 

requirements. We are not sure if this led to the inappropriate application of SGA as seen in literature, yet the 

research did not indicate any thorough investigate into the characteristics of the fitness space, thus it seems 

plausible. In this research they demonstrate that crossover is essential on Royal Road functions (Jansen & 

Wegener, 2005), yet it’s likely that adapting RSAASSEUEM to handle blocks of alleles rather than single alleles 

would yield similar, or even more reliable, results than single or two point crossover. As such, we argue to it 

doesn’t prove that crossover is essential, rather that understanding of the fitness space is essential to design 

a proper set of heuristics. 

As these examples illustrate, knowledge of the fitness space is crucial in order to understand how certain 

heuristics will interact on it. Even though evolutionary algorithms, including genetic algorithms, have shown 

potential in handling complex fitness spaces including discontinuities, multimodality, disjoint feasible spaces 

and noisy functions, the results of the SGA on the case study show what limitations exist when heuristic 

design is not informed by knowledge on fitness space characteristics. This research has not studied the fitness 

space of the solution space in detail. It would be of interest to determine how the results of this research 

were influenced by the characteristics of the fitness space.  

Engineering design requires solving complex fitness spaces 

It is known that the fitness space in this research is rather simplified. While two competing objectives (weight 

versus damage tolerance) did exist, it is realistic to expect several additional objectives such as stiffness and 

buckling resistance in the engineering design of fuselage plates, as well as having more complex models 

which more accurately capture the real behaviour.  

Often, these multi-objective optimisations yield more complex fitness spaces (Fonseca & Fleming, 1995). 

Through the application of several engineering models, one effectively increases the complexity of the fitness 

value and thus fitness space.  

First, these fitness spaces are more likely to contain more hard trade-offs as increasing number of competing 

objectives are introduced. In this case study, we had a single optimal solution. However, it is likely that in 

these cases there exists several equal optimal solutions (= identical fitness values), with some more optimised 

for certain objectives than others. 

Solution fitness has an important role in guiding the optimisation process of a GA. A key issue with the fitness 

score is that GAs require a single scalar value upon which selection through “survival of the fittest” occurs. 

In practice, objective functions are thus combined and aggregated into a scalar function according to some 

understanding of the problem.  However, as the unexpected results of the trivial, full block solution in this 

research demonstrate, capturing the true intention of a designer is not trivial.  

Additionally, creating an objective function that balances many objectives is likely to lead to poor performing 

solutions on most objectives, rather than more optimal solutions for less objective functions. If the designer 
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does not know how much has been sacrificed for the satisfaction of another objective function, it will be 

more difficult to make a good trade-offs. As such, it may be insightful to try several, extreme, objective 

function weights in order to find out what the designer truly cares about, something that is unlikely to be 

clear a priori of the optimisation. 

Setting the weights for in competing objectives is likely to remain an activity for the designer. Due to its 

nature it does not allow for a single, perfect solution, but rather a grouping of perfect solutions, often 

referred to as the Pareto-optimal set (Fonseca & Fleming, 1995), based on what value the designer places on 

some trade-offs. In theory, the GA functions in this research would remain the same, namely for the given 

objective function to find progress PAs and suppress NAs. What changes is the distribution of fitness 

increments that an allele has given all possible solution contexts.  

However, we may assert that knowledge of engineering models will provide benefits in designing appropriate 

heuristics for the genetic algorithm. For instance, one could learn about the structure of the fitness space 

through more detailed understanding of the interaction of various mathematical models. This knowledge 

could inform the decision on the proper heuristic design, say if the fitness space is mainly characterized by 

fitness blocks, as discussed previously. In the context of this research, without further investigation in the 

physical models, it is very hard to tell what effect these models have had on the results of this research. 

Further research would be of interest to understand this better.  

It is likely that RSAASSEUEM will still face challenges in optimisation in such complex functions. First, the IGA 

will continue to work with the fitness value as described in the previous parts of this thesis. Alleles that are 

beneficial in terms of several models will likely receive higher fitness increments and thus quickly propagate 

within the population using RSAASSEUEM, compared to those alleles which are beneficial in less models.  

Third, the risk of a path dependency in multi-objective optimisation is likely to become larger with increasing 

number of models. As the optimisation progresses in a certain direction, certain PAs will consistently yield 

negative fitness increments, even though they might have been part of a solution contained in the optimal 

solution set. These alleles would have yielded positive increments if the population of solutions had evolved 

in a different direction. To understand in what degree this inhibits a reliable GA, further research is necessary. 

It is expected that RSAASSEUEM will have difficult in such an optimisation, as this set of heuristics is strongly 

oriented to fitness increments and does not permit very random moves that could that it out of a certain 

path.    

Fourth, any limitations or errors in any (engineering) models are likely to be extrapolated in the objective 

function and thus influence the optimisation process. This concerns a general issue with GAs, as these 

algorithms are not able to evaluate errors. Increasing the number of (imperfect) models increases the 

number of errors when assumptions and limitations are stacked. It would of interest for further research to 

knowingly introduce certain errors into the optimisation and track to what extent these influence the 

optimisation process. To the best of our knowledge no research has been published about this.  

Finally, if there is very limited knowledge of the fitness landscape, more implicit strategies might still work. 

For instance, engineering designers might test various types of heuristics specifically designed to work well 
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with certain fitness landscape characteristics to derive what characteristics are likely to be present in the 

fitness space. This would increase the confidence of certain designs over time.  

These examples provide evidence of the importance in understanding the general features of a fitness space 

to understand what heuristics are applicable. Some research directions in defining features of the fitness 

space are the development of statistical measures to determine the presence of features of interest or 

understanding the correlation structure of fitness spaces (Forrest & Mitchell, 1993) 

Higher granularity engineering problems 

In engineering design, granularity will be higher than presented in the case study of this research. Every 

additional gene increases the length of a genotype and thus the degree of freedoms. A higher number 

degrees of freedom is another manner to increase the complexity. Also, granularity may be increased by 

introducing several material options, more detailed shapes and hierarchy of designs. Similar to DNA, these 

concepts must be encapsulated in a genotype for the mechanisms of heuristics search to work on. 

Furthermore, in engineering there are often various levels of designing features. Often, design starts on the 

higher level and increasingly designs smaller features. In the case of the GA, it would struggle with designing 

on different levels. While it may be suitable to sub design the configuration of a certain fuselage plate, as 

done in this research, incorporating this design in a higher level, say the entire fuselage, would at this point 

not be feasible. For this, the potential solutions must be configurable in a single genotype. 

The question is what type of granularity is required for finding more optimal solutions. Granularity as we 

investigated in this research makes it more difficult for the GA to identify the optimal solution, yet since we 

know the optimal solution, we know that it hardly brought any additional fitness. This indicates that we must 

consider what type of granularity is likely to yield larger jumps in solution fitness. As such, a progressively 

refined search employed by (Lu, et al., 2016) seems to be a proper approach to only adding granularity if 

beneficial. A more interesting direction of research into granularity would be to investigate the effect of 

adding different material options. 

However another issue is that all constraints need to be defined in the genotype, or through some genotype-

phenotype mapping. However a genotype-phenotype mapping that causes unfeasible solutions to map to 

the same phenotype would cause an increase in genetic drift, hence causing both the SGA and RSAASSEUEM 

to receive poor signals for improving the genotype. 

It is not possible to say whether the same levels of avg. PRAS would have been reached if the initial population 

would have been on the same level. Nonetheless, results for these experiments when providing 40 

generations demonstrate that RSAASS runs into a limit, while RSAASSEUEM is able to continue optimising 

towards 100% PRAS.  

The heuristic components necessary for effective optimisation 

While the better understanding of RSAASSEUEM provides inspiration for further experimentation, designing 

such heuristics was not without any risks. Many improved heuristic designs turned out to be undesirable 
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after investigation of the experimental results. As such, these results demonstrate that the design of 

heuristics requires careful consideration and that the perspective of GA functions can provide guidelines. 

While this research had the benefit of knowing the optimal solutions in order to benchmark the heuristics, 

in real life applications this luxury does not exist. This warrants a critical discussion on the heuristics evolving 

around the question whether each component of the IGA is really necessary. 

While RS-M was able to propagate PAs, the results show that its limitation was that it kept introducing NAs 

into the population. This is likely to happen when a large share of the alleles have similar PRAS values when 

a population has converged. In that case, the algorithm will get a list of potential alleles with identical scores 

to mutate towards. By definition that the population has converged, the mutation will reach the fallback and 

introduce a zero frequency allele. If the solution has converged on a level of high fitness, the probability that 

the introduced allele is a NA is high, thus potentially resulting in a stagnant optimisation. As such, the fallback 

of the mutation heuristic became a limitation on its effectives in directing the mutation. 

The final limitation that each of the mutation heuristics except for RSAASSEUEM shared was the inability to 

eliminate ubiquitous NAs. Initially, the concept of optimisation and literature was focused on ensuring that 

alleles which could improve the fitness could be identified and “built” onto the solutions. However, it became 

clear that it would be just as important to remove bad parts of the designs as well in order to reach the 

optimal designs. While this can be viewed as anecdotal to this research, it provides an important message 

that engineering designers can be biased in how to design custom GAs while overlooking key aspects in the 

design of an effective GA. 

One may wonder whether the assumption that the traditional selection heuristic is a necessary component 

in the GA given the design RSAASSEUEM, as this heuristic was designed to avoid negative mutations, a 

filtering function that traditionally happens at the moment when selection filters out these bad moves by 

sub selecting the population based on relative fitness. Further research would be necessary to investigate 

the effects of removing the traditional selection heuristic from the RSAASSEUEM on the optimisation process. 

There exists a possibility that the function of selection is also included in the RSAASSEUEM.  

Methodology of this research  

While it may seem that the RSAASSEUEM heuristic is more efficient due to a lower number of generations it 

takes to reach a level of PRAS, efficiency should ideally be measured in terms of how often a solution 

evaluation takes place. Especially in engineering design since an evaluation often times requires most 

computational effort. In retrospect, using a definition of number of solution evaluations would be a more 

suitable axis to use as some researchers have done (Forrest & Mitchell, 1993).  

Furthermore, in order to fully understand the contribution of each component (mutation filtering, selection 

bias and PRAS signalling) in the reliability of the optimisation process of RSAASSEUEM, further research is 

necessary which would include cross experiments with just AASS or RSSS and include the EUE in all other 

experiments.  
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In contrast to RSAASSEUEM, crossover does allow for the small probability that a weaker solution is selected 

as a parent. Also, crossover does perform strongly on the GA functions of progression and suppression. Does 

this ability in allowing some negative combinations to more effectively sort alleles? It would be of interest to 

investigate what the importance is of allowing some negative moves at points in the optimisation process. 

Currently, RSAASSEUEM does not allow any negative moves and it should be evaluated whether there exists 

a specific contribution of these negative moves.  

Concluding remarks 

Possible reasons why we have always thought that crossover and mutation were distinct, is because of our 

overly dependence on inspiration from nature when it comes to genetic algorithms. Results of this research 

have demonstrated that the SGA has strong limitations while a more scientific approach to GA design can 

lead to more reliable optimisation methods.  

The discussion further argued that the design of heuristics should be driven by the requirement of fulfilling 

all GA functions, while letting the characteristics of the fitness landscape determine the precise mechanisms 

of these heuristics. This is in stark contrast with what we have seen in the literature, where SGAs are applied 

without critical evaluation of their applicability to a given problem.  

As such, this discussion ends with the statement that nature-inspired model of the SGA is flawed and can be 

deceptive in regards to the optimisation that its presents. 

While further research is a clear requirement, the above discussion of the results in our eyes provides enough 

evidence to warrant a more cautionary approach when applying GAs to engineering design as compared to 

what was found in the literature. 
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7. CONCLUSIONS & FURTHER RESEARCH 

 

7.1. CONCLUSIONS 

These conclusions have been made within the scope of this research. Thus, further research is necessary to 

support whether these conclusions hold on other design cases than the crenellated plate for fatigue 

damage tolerance, as the fitness space would different.  

1. What is the relative importance of crossover and mutation heuristics in the optimisation process of a 

genetic algorithm designed for damage tolerance of flat panels? 

 

1.1. Are there specific functions in the optimisation process of a GA which need to be fulfilled in this 

application? 

 

1.1.1. Our hypothesis is that specific GA functions can be defined in the optimisation process for 

damage tolerant flat panels 

1.1.2. Our conclusion is that certain GA functions of allele introduction, progression, suppression 

and elimination correlate with improved optimisation results for damage tolerant plates. 

Designing heuristics based on GA functions allows for better understanding and explainability of 

the genetic algorithm.  

 

1.2. How well do the standard crossover and mutation heuristics fulfil these functions within this 

context?  

 

1.2.1. Our hypothesis is that standard heuristics are not well suited for their intended functions in 

designed for damage tolerant flat panels 

1.2.2. Our conclusion is that both heuristics are not well suited for the identified GA functions in the 

context of designing for damage tolerance flat plates. Mutation counteracts the ability for 

crossover to progress and suppress the right alleles, while crossover is unable to introduce nor 

eliminate certain alleles. 

 

1.3. Could a less random mutation heuristic increase the reliability of the GA in identifying optimal 

design solutions for damage tolerant flat panels? 

 

1.3.1. Our hypothesis is that a mutation heuristic which utilizes information about previous searches 

leads to more reliable outcomes 

1.3.2. Our conclusion is that the addition of PRAS signalling, filtering of mutation and a selection bias 

provides a reliable GA in the case of designing optimal crenellated plates  

 

1.4. Under what conditions, if any, do we need both standard crossover and mutation heuristics in a 

GA designed for identifying optimally damage tolerant flat panels? 
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1.4.1. Our hypothesis is that in any case crossover is not a necessary component in GA optimisation 

for damage tolerant flat panels 

1.4.2. Our conclusion is that crossover is a type of mutation in terms of the GA functions and 

therefore does not constitute a necessary component for the GA. In order to create more reliable 

GAs, it’s more important design heuristics which fulfil each GA function to some degree.  

 

2. To what extent do quantitative parameters of the GA influence the optimisation process when 

designing for damage tolerant flat panels? 

 

2.1. What correlations are there between the granularity and the reliability of a GA for varying values 

of the population size? 

 

2.1.1. Our hypothesis is that a larger population size leads to higher reliability of the GA in finding 

optimal results 

2.1.2. Our conclusion is that a higher granularity negatively correlates with the reliability of SGAs, 

while it does not affect the reliability of a GA utilizing PRAS signalling, mutation filtering and a 

selection bias within the range γ <= 75. Optimisation does require more generations with 

increased granularity.  

 

2.2. What correlations are there between the mutation rate and the reliability of a GA for varying 

values of the mutation rate? 

2.2.1. Our hypothesis is that a higher mutation rate will not always lead to higher reliability of the 

GA in finding optimal results 

2.2.2. Our conclusion is that the SGA is negative correlated with the mutation rate as random 

mutation increasingly destructs the constructing of higher order and more optimal solutions. 

The IGAs become independent of the mutation rate due to signaling of PRAS.  

 

2.3. What correlations are there between the initial population strength and the reliability of a GA for 

varying values of the population size? 

2.3.1. Our hypothesis is that a higher mutation rate will not always lead to higher reliability of the 

GA in finding optimal results 

2.3.2. Our conclusion is that Initial population has an effect on the time to optimal convergence but 

not on the reliability of the IGA 

 

3. Can a simple objective function be formulated that captures the intentions of a designer a priori? 

3.1.1. Our hypotheses is that simple objective functions will a priori lead to trivial solutions which 

the designer did not in tend to achieve 

3.1.2. Our conclusion is that a simple objective function is not likely to capture the true intention 

of an engineering designer and that  
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7.2. RECOMMENDATIONS FOR FUTURE RESEARCH 

This section highlights the suggestions for further research grouped by each component of the solution 

framework shown in the methods section.  

• Engineering models 

o Determining methods to characterize fitness space elements produced by engineering 

models, such that this information can inform the design or applicability of certain heuristics. 

If no proper ways of determining characteristics of the fitness space exist, the design of 

heuristics is severely limited to trial and error methods in finding effective GAs, which is likely 

to limit a wider application. This statement is somewhat contradicting to make, as a full 

characterisation of the fitness landscape would imply that no optimisation will be necessary 

since the optimal solution can already be identified.  

 

o Studying the propagation of known engineering model errors through the GA optimisation 

process with either one of multiple models. Understanding the propagation could prevent 

engineering designers in getting misled by the GA results. 

 

o Dynamic objective functions which can be used to steer search in a given direction, find a set 

of more optimal solutions, and then steer iteratively towards another objective as a way to 

avoid suboptimal solutions and provide designers several optimal designs based on the 

weights they provide to certain trade-offs (e.g. weight vs damage tolerance). 

 

• GA heuristics 

o Research the effect of changing several alleles in a single mutation event to understand 

whether it can make the search process more efficient. UC was argued to faster than 

RSSAASSEUEM  because it can process multiple changes in a single mutation event. Adding 

this capability to RSAASSEUEM is expected to make it more efficient. This could be especially 

relevant for optimising higher granularity and complexity engineering problems.  

 

o Research the effect of processing blocks of alleles in as a single mutation and whether this 

enables the heuristic to be more applicable to Royal Road type of functions. Understanding 

whether the heuristics are more customizable will provide confidence on how to design 

heuristics for solving certain characteristics of the fitness space. 

 

o Research more advanced ways of implicitly communicating allele strength, such as 

maintaining historic view of (relative) allele strength. This could be more relevant for complex 

and large optimisation problems where efficiency over time becomes important. Also, it could 

decrease the chance that a GA converges on a sub-optimal solution space, as it maintains and 

is aware of a full history of allele strength or combinations of alleles.  Alternatively to PRAS, 
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which considers the current population, an historic records of alleles could be used to guide 

the mutation direction. If an allele historically had a low chance of leading to a positive 

mutation, then we could become more confident that in fact it’s a negative allele. We don’t 

have to be limited to what’s possible in nature. 

 

 

• Problem formulation 

 

o Extend the genotype with genes that affect the fitness of several alleles, such as by adding a 

gene for material choice. Since these genes are likely to have more interdependencies with 

other alleles, adding more of such genes would provide additional challenges for the design 

of heuristics.  

 

o Researching methods to accommodate proper levels of hierarchy in design optimisation using 

genetic algorithm genotypes, as well as proper levels of granularity. Traditionally, key domains 

such as structural integrity, propulsion and electrical systems have been separated in design. 

Yet, optimising across these boundaries, rather than isolated, can provide additional efficiency 

gains. How to incorporate all these domains and engineering models in a single genotype such 

that we can maintain a reliable GA optimisation would be paramount  to capture the full 

potential of this optimisation technique.  
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8. APPENDIX 

 

A. MATHEMATICAL DEMONSTRATION INEQUALITY CRENELLATION  

 

The following equations were first documented in (Uz, et al., 2009) and provided a first hypothesis that the 

fatigue life of a flat plate can be improved through thickness variations. 

 𝑁𝑟𝑒𝑓 =
2Δ𝑎

𝐶Δ𝐾𝑎
𝑚 ( A2 ) 

 

 𝑁𝑚𝑜𝑑 =
Δ𝑎

𝐶(Δ𝐾𝑎 − 𝑡Δ𝐾𝑎)𝑚 
+  

Δ𝑎

𝐶(Δ𝐾𝑎 + 𝑡Δ𝐾𝑎)𝑚 
 ( A2) 

 

 
2𝑎

𝐶Δ𝐾𝑎
𝑚 <

𝑎

𝐶(Δ𝐾𝑎 − 𝑡Δ𝐾𝑎)𝑚 
+  

𝑎

𝐶(Δ𝐾𝑎 + 𝑡Δ𝐾𝑎)𝑚 
 ( A3) 

 

 
2𝑎

𝐶Δ𝐾𝑎
𝑚 <

𝑎

𝐶Δ𝐾𝑎
𝑚 (

1

(1 − 𝑡)𝑚 
+  

1

(1 + 𝑡)𝑚 
)  ( A4) 

 

 2 <
1

(1 − 𝑡)𝑚 
+  

1

(1 + 𝑡)𝑚 
  ( A5) 

 

 

 𝑓 (𝑡)′ = 𝑚 (
1

(1 − 𝑡)𝑚+1 
+  

1

(1 + 𝑡)𝑚+1 
) ( A6) 

 



       

90 

 

 

Figure 54 Comparison of a vs N curves of reference and crenellated panels under variable amplitude loading (Uz, et al., 2009) 

B. ANALYTICAL FATIGUE MODEL 

MODEL 

First, consider that a load 𝑆𝑚𝑎𝑥 is applied to the crenellated plate in Figure 8. As a result, a far-field stress 

𝜎𝑠𝑘𝑖𝑛  will be present in the plate.  

 𝜎𝑠𝑘𝑖𝑛 = 
𝑆𝑚𝑎𝑥

 ∫ 𝑡𝑠𝑖
(𝑥) 𝑑𝑥  

𝑊  ( 1) 

Assume that the stress state of a uniform thickness plate ahead of the crack tip can be expressed according 

to the Westergaard stress distribution, given as, 

 
𝜎𝑖𝑠𝑜 = 

𝜎𝑠𝑘𝑖𝑛

√1 − (
𝑎
𝑥)

2
 𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑊  

( 2 ) 

 

The stress field 𝜎𝑖𝑠𝑜 along the cracked, cross-x`x`sectional area must equal the total load applied. 
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 𝑆𝑚𝑎𝑥 = ∫ 𝜎𝑖𝑠𝑜 ∗ 𝑡𝑠𝑖
(𝑥) 𝑑𝑥

𝑊

𝑎

 ( 3 ) 

Then, substituting Equation 11 in Equation 12 gives the following expression for the effective stress 𝜎𝑒𝑓𝑓 

around the cross-sectional area in terms of the variable thickness function 𝑡𝑠𝑖
(𝑥). We can take 𝜎𝑠𝑘𝑖𝑛 

outside of the integral as it is not dependent on crack length 𝑎 and it represents the far field stress on the 

plate. 

 
𝑆𝑚𝑎𝑥 = 𝜎𝑠𝑘𝑖𝑛  ∫

𝑡𝑠𝑖
(𝑥)

√1 − (
𝑎
𝑥
)
2
𝑑𝑥

𝑊

𝑎

 
( 4 ) 

Rearranging for 𝜎𝑠𝑘𝑖𝑛 for along the cross-sectional area gives us the following equation, which represents 

the far field stress in terms of crack length 𝑎 and the cross-sectional area. 

 

𝜎𝑠𝑘𝑖𝑛  =  𝜎𝑒𝑓𝑓 = 
𝑆𝑚𝑎𝑥

∫
𝑡𝑠𝑖

(𝑥)

√1 − (
𝑎
𝑥)

2
𝑑𝑥

𝑊

𝑎

 

( 5 ) 

The magnitude of the stress field in the cross-sectional area is dependent on the cross-sectional area 𝐴 of 

the plate. The size of the cross-sectional area is dependent on the crack length 𝑎, since the crack will reduce 

the cross-sectional area when it grows. 

According to the definition of the stress intensity factor, the value of 𝐾 of a cracked plate can be written in 

terms of the far field stress 𝜎𝑒𝑓𝑓.  

 𝐾 = 𝜎𝑒𝑓𝑓 ∗ √𝜋𝑎 ( 6 ) 

By substituting Equation 14 in Equation 15, we have can calculated the stress intensity factor around the 

crack tip based on a crenellated plate. The stress intensity factors can then be used to calculate the number 

of load cycles ∆ 𝑁𝑖  are needed to grow the crack with an increment of ∆𝑎𝑖 , where the number of increments 

𝑖 ranges from (1 ,
𝑎𝑚𝑎𝑥 − 𝑎0 

∆𝑎
), such that a crack growth rate can be determined, 

 
𝑑𝑎𝑖

𝑑𝑁
= 𝐶 ∗ 𝐾𝑖

𝑚 ( 7 ) 

 ∆𝑁𝑖 = 
∆𝑎𝑖

𝑑𝑎𝑖

𝑑𝑁

 ( 8 ) 
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Total fatigue life is then obtained by substituting Equation 16 in Equation 17 and sequentially integrating 

Equation 17 after the substitution.  

 𝑁 = ∫
𝑑𝑎

𝐶 ∗ ∆𝐾𝑚

𝑎𝑚𝑎𝑥

𝑎0

 ( 9 ) 

Further substituting Equation 15 and subsequently Equation 14, we will arrive at the following expression 

of fatigue life, 

 

𝑁 = ∫
Δ𝑎

𝐶 ∗ (σ𝑒𝑓𝑓√π𝑎)
𝑚

𝑎𝑚𝑎𝑥

𝑎0

= ∫
Δ𝑎

𝐶 ∗

(

 
 
 
 

𝑆𝑚𝑎𝑥√π𝑎

2 ∗ ∫
𝑡𝑠𝑖

(𝑥)

√1 − (
𝑎
𝑥)

2

𝑊

𝑎
𝑑𝑥

)

 
 
 
 

𝑚

𝑎𝑚𝑎𝑥

𝑎0

 

( 10 ) 

This rather extensive equation for the fatigue life 𝑁 of a cracked, crenellated plate becomes difficult the 

interpret. For this reason we attempt to simplify it as much as we can. 

Using the knowledge from the literature review on crack growth behaviour in crenellated panels, we aim to 

derive an analytical model suitable for predicting crack growth rates in crenellated panels. 

 𝑁𝑙𝑖𝑓𝑒 = ∑ 𝑑𝑁

𝑎𝑚𝑎𝑥

𝑎0

 ( 11 ) 

By changing the material placement through manipulation of the thickness function 𝑡𝑠𝑖
(𝑥), different values 

for the fatigue life can be achieved. The fatigue life is calculated based on a analytic model which calculates 

the number of fatigue cycles 𝑁 are necessary to let the crack grow with an increment of ∆𝑎. The fatigue life 

increments ∆𝑁 can be summed, such that we arrive at the total fatigue life, described by Equation 20.  

 

EFFECTIVE STRESS IN FRONT OF THE CRACK 

Equation 14 shows an analytical solution for the effective stress for a given, load, crack length, thickness 

function and position x along the width of a panel. 

Referencing to the denominator of equation 14, the evaluation of the crenellation area in front of the crack 

for each crack increment can be calculated using linear algebra. The integral can be considered a function 

𝑓(𝑥), such that integration leads to, 
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𝑓(𝑥) =  
1

√1−(
𝑎

𝑥
)
2
 

  ;   𝐹(𝑥) =  𝑥 √1 −
𝑎2

𝑥2
+ 𝐶   

such that for one container 𝑛𝑖  in front of the crack at a certain distance 𝑥𝑛𝑖
 from the centre of the crack the 

integral expression can be evaluated as, 

 

[
 
 
 

∫
1

√1 − (
𝑎
𝑥)

2

  

𝑑𝑥

𝑤
]
 
 
 

𝑛𝑖

= [ 𝑥 √1 −
𝑎2

𝑥2
+ 𝐶]

𝑥=𝑥𝑛𝑖
+

1
2
∆𝑎

− [ 𝑥 √1 −
𝑎2

𝑥2
+ 𝐶]

𝑥=𝑥𝑛𝑖
−

1
2
∆𝑎

 
 

The total number of crack growth steps to be evaluated is equivalent to the maximum crack length divided 

by the step change in crack length, such that, 

𝑎𝑡𝑜𝑡 = 
𝑎𝑚𝑎𝑥

∆𝑎
 

Where the first crack length is equal to the initial crack length, 

𝑎𝑘 = 𝑎0 

Build-up of a matrix A with the ranges from the initial crack length to the total crack set out against the 

width of the panel can be determined as,  

𝑨 =  [

𝑎𝑘
𝑎𝑘+1

⋮
𝑎𝑡𝑜𝑡

] [𝑥𝑛𝑖
𝑥𝑛𝑖+1

𝑥𝑛𝑡𝑜𝑡] 11 

The indexes of matrix A determine the inputs of 𝑎 and 𝑥 for the evaluation of the integral in equation 7. The 

results of these integrations must be multiplied by the respective thickness of each container at an equal 

point and summated, such that, 

𝐴𝑡 = 𝐵 12 

Where 𝑡 is a vector of thickness levels at each container (i.e. the crenellation pattern) and 𝐵 a vector with 

the summation of the area in front of the crack for a certain crack length and crenellation pattern. 

Equation 12 can be expanded for clarity purposes as follows, 
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[
 
 
 
 
 
 
 
 
 
 
∫

1

√1 − (
𝑎𝑘

𝑥𝑖
)
2

  

𝑑𝑥

𝑤

∫

𝑤

∫

𝑤

∫

𝑤

⋱ ⋱

∫

𝑤

⋱ ⋱
]
 
 
 
 
 
 
 
 
 
 

[

𝑡𝑛𝑖

𝑡𝑛𝑖+1

⋮
𝑡𝑛𝑡𝑜𝑡𝑎𝑙

] =  

[
 
 
 
 
 
 
 
 
 
∑ 𝑡𝑛𝑖

∫
1

√1 − (
𝑎𝑘

𝑥𝑖
)
2

  

𝑑𝑥

𝑤

𝑛𝑡𝑜𝑡𝑎𝑙

𝑛𝑎

∑

∑
]
 
 
 
 
 
 
 
 
 

13 

 

It can be observed in equation 7 that when 𝑎 > 𝑥, the square root will become a complex number as the 

term inside the square root will be negative. These values will be considered as 0, as their area is assumed 

to no longer contribute to the resistance of crack growth. This means that as soon as the crack length is equal 

to the position 𝑥𝑖  of the container, the term will evaluate to 0. With a relative small container width ∆𝑥 

compared to the total panel width 𝑊, this should be a fair approximate to start with. 

After these calculations, the effective stress can be evaluated for each crack length and crenellation pattern. 
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C. CALCULATION OF THE PRASF 

 

 

The below schematic provides a visual example of how a mutation candidate list (CL) Glover et al, 2016 of 

two arbitrary alleles can be constructed based on RASF. Important to note from Figure X is that at no point 

do any of the GAs have knowledge about the optimal end-state of an allele as the algorithm only uses the 

definition of PRAS.  
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D. GA TERMINOLOGY & STANDARD GENETIC ALGORITHM 

 

 

Table 14 Equivalent terms in mathematical and genetic algorithm optimisation 

Mathematical Genetic algorithm 

Objective function Fitness function 

Value Fitness 

Solution Individual 

Set of solutions Population 

Decision variable Gene 

Feature Gene 

Decision variable value Allele 

Array of decision variables Genotype 

Array of decision variables Chromosome 

Engineering design Phenotype 

Initial set of solutions Initial population 

Old solutions Parents 

New solutions Children / Offspring 

Search heuristic Crossover 

Search heuristic Mutation 

Iteration Generation 
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