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ABSTRACT: The application of Deep Reinforcement Learning (DRL) for the management of engineer-
ing systems has shown very promising results in terms of optimality and scalability. The interpretability
of these policies by decision-makers who are so far mostly familiar with traditional approaches is also
needed for implementation. In this work, we address this topic by providing a comprehensive overview of
POMDP- and DRL-based management policies, along with simulation-based implementation details, for
facilitating their interpretation. By mapping a sufficient statistic, namely a belief state, to the current opti-
mal action, POMDP-DRL strategies are able to automatically adapt in time considering long-term sought
objectives and the prior history. Through simulated policy realizations, POMDP-DRL-based strategies
identified for representative inspection and maintenance planning settings are thoroughly analyzed. The
results reveal that if the decision-maker opts for an alternative, even suboptimal, action other than the one
suggested by the DRL-based policy, the belief state will be accordingly updated and can still be used as
input for the remainder of the planning horizon, without any requirements for model retraining.

1. INTRODUCTION
Managing engineering systems is vital for ensur-
ing societal progress, enhancing quality of life, and
maximizing economic returns. However, the uncer-
tainty associated with the prediction of deteriora-
tion mechanisms experienced by engineering sys-
tems poses a challenge to making informed main-
tenance decisions. Information from inspections
and/or monitoring can be collected in order to sup-
port decision-making, yet recurrent costs are then

incurred. With the objective of minimizing engi-
neering systems life-cycle costs while still ensuring
an appropriate level of safety, inspection and main-
tenance (I&M) actions should be timely planned,
considering, among others, reliability and cost met-
rics. In recent years, increasing attention has been
devoted to the development of risk-based inspec-
tion and maintenance planning methods, assisting
decision makers with life-cycle plans, maintenance
interventions, and data collection.
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Existing risk-based I&M methods can be catego-
rized according to their approach to solving the cor-
responding complex decision-making under uncer-
tainty and imperfect information problem. By sim-
plifying the global I&M decision problem to a lo-
cal optimization of predefined decision rules, some
methods are successful in identifying static policies
for planning I&M actions, usually based on opti-
mized time intervals or damage/reliability thresh-
olds (Luque and Straub, 2019). These methods can
be intuitive, but their optimality mainly depends on
the designer’s experience in defining heuristic de-
cision rules, while delimiting their search in a re-
stricted policy subspace. On the other hand, meth-
ods based on Markov Decision Processes (MDPs)
and Partially Observable Markov Decision Pro-
cesses (POMDPs) offer a principled mathematical
approach for decision-making under uncertainty,
globally solving the I&M stochastic optimization
problem (Papakonstantinou and Shinozuka, 2014).
By selecting the current action as a function of the
belief state, i.e., a sufficient statistic correspond-
ing to the dynamically updated action-observation
history, POMDPs generate adaptive I&M policies
that account for updated information and previ-
ously scheduled maintenance actions. As recently
demonstrated in the literature, POMDP-based poli-
cies outperform conventional and state-of-the-art
heuristic-based strategies (Morato et al., 2022).

Additional computational complexities arise
when dealing with multi-component engineering
systems due to the fact that I&M policies should
be optimally identified in high-dimensional state,
action, and observation spaces. While still rely-
ing on dynamic programming-based POMDP prin-
ciples, multi-agent Deep Reinforcement Learn-
ing (DRL) methods address the aforementioned
computational challenge by approximating poli-
cies and/or discounted long-term cost metrics with
neural networks (Andriotis and Papakonstantinou,
2019). DRL approaches have been applied for
the management of multi-component engineering
systems (Morato et al., 2023), providing substan-
tial cost savings compared to other state-of-the-art
I&M methods. Along with optimality and scalabil-
ity benefits, DRL methods can also generate I&M

policies for settings under budget and/or safety con-
straints, additionally supporting decision makers to
meet specific safety requirements and enabling op-
timal resource allocation (Andriotis and Papakon-
stantinou, 2021).

While the benefits offered by DRL policies have
been clearly demonstrated for a wide range of data
collection and intervention planning engineering
applications in terms of optimality and scalabil-
ity, better interpretability by decision-makers (e.g.,
operators, designers, and other stakeholders) ac-
customed to traditional calendar- and/or condition-
based policies is also a practical need. In this
work, we thoroughly describe the fundamentals
of POMDP- and DRL-based management policies,
propose simulation-based methods for facilitating
their interpretation, and investigate their intrinsic
adaptability and safety properties. In addition, we
are looking into the effects of manual user interven-
tions at the time of deployment, for any possible
reason, on the action sequence prescribed by the
learned policies. Overall, with this investigation,
we aim to analyze and demonstrate the flexibility,
safety, and interpretability of POMDP-DRL agent-
based policies, towards accelerating adoption in
real-world settings and improving the understand-
ing of AI-driven decisions for engineering systems
management.

2. ANALYSIS AND INTERPRETATION OF
AGENT-BASED POLICIES

2.1. POMDP-based policies
A partially observable Markov decision pro-
cess (POMDP) can be defined as a 7-tuple
⟨S,A,O,T,Z,R,γ⟩ controlled stochastic process in
which an agent acts under uncertainty and imper-
fect information. At every decision step, the agent
reasons based on the current belief b, i.e., the prob-
ability distribution over states s ∈ S, takes an ac-
tion a ∈ A, and then the state randomly transitions
to state s′ ∈ S, according to a stochastic transi-
tion model, T (s,a,s′) := p(s′|s,a). At that point,
the agent perceives the subsequent state follow-
ing an observation model Z(o,s′,a) := p(o | s′,a),
and finally receives a reward R(s,a), discounted to
its present value via the factor γ . The decision-
making problem corresponding to the optimal in-
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spection and maintenance planning for engineering
systems can be adequately formulated as a POMDP,
in which the agent reasons in a stochastic environ-
ment (i.e., a probabilistic deterioration model) and
under imperfect information (i.e., measurement un-
certainty associated with relevant inspection tech-
niques).

A POMDP policy (π : B → A) prescribes actions
as a function of the current belief, with the main
objective of identifying the optimal policy, π∗(b),
that maximizes the value function V (b), i.e., the
discounted sum of expected rewards. In a struc-
tural reliability context, this is often translated to
the minimization of the discounted total expected
cost, E[cT ]. The cost model can be defined as:

cT = cins + crep + cF (1)

where cins and crep refer to inspection and repair
costs, respectively, and the failure risk corresponds
to the failure probability weighted by the failure
consequences, i.e., cF = pFc f . Note that follow-
ing formal POMDP terminology, costs are defined
as negative rewards.

Optimal POMDP policies π∗(b) can be ef-
ficiently identified via point-based solvers,
parametrized as a function of a finite set of
α-vectors, each of which is associated with a
specific action. The decision-maker (e.g., operator,
designer, etc.) then selects inspection and/or
maintenance actions according to the current belief
state. At each decision point, the α-vector and
corresponding action that maximize the value
function V ∗(b) are chosen:

V ∗(b) = max
α∈Γ

∑
s∈S

b(s)α(s) (2)

The expected total cost can be thus simply com-
puted as the weighted sum of the expected total cost
corresponding to the specific α-vector at deteriora-
tion state s, and the probability of being in that state
b(s). After taking action a and collecting observa-
tion o, the belief b is updated via Bayes’ rule:

b(s′) =
p(o | s′,a)
p(o | b,a) ∑

s∈S
P(s′ | s,a)b(s) (3)

Since beliefs are dynamically updated, POMDP
policies are inherently adaptive as opposed to static

decision rules, e.g., calendar- or condition-based
maintenance approaches. Within a POMDP frame-
work, decisions are influenced over time by prior
information as well as previously taken actions,
and each policy realization is hence tailored to its
particular action-observation sequence. POMDP
adaptive strategies can, however, be easily inter-
preted by simulating a set of policy realizations,
from which meaningful statistics can be computed
and outstanding trends can be easily identified. The
decision maker can gain practical insights by, for
instance, generating and analyzing an action his-
togram, where the percentage of expected actions
is represented over the decision horizon. While
policy realizations can be simulated from the ini-
tial belief, many other scenarios can be similarly
examined starting from beliefs at varying decision
horizon points and/or conditional to specific action-
observation sequences, as the learned alpha-vectors
cover the entire belief space. In a structural re-
liability context, one can additionally explore the
expected failure probability resulting from a com-
puted POMDP-based policy by simulating the evo-
lution of the belief states associated with the sub-
space of failure states.

Additionally, POMDP-based policies provide
flexibility to the decision maker if an alternative
action rather than the one suggested by the policy
should be taken due to practical, economic, or any
other reasons, at any specific decision step. In that
case, the remaining actions can still be selected by
following the original policy, while the expected to-
tal cost, and corresponding economic regret, result-
ing from the user-defined action can be straightfor-
wardly computed through a Bellman backup oper-
ation, as:

V (b)= ∑
s∈S

b(s)R(s,a)+γ

[
∑

o∈O
p(o | b,a) ·V (bs′)

]
(4)

where b and bs′ correspond to the current and up-
dated beliefs, respectively, and R(s,a) stands for the
reward associated with the action taken.

2.2. Multi-agent DRL-based policies
Finding I&M policies for multi-component engi-
neering systems is a challenging computational
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problem, as explained in Section 1. While still
stemming from POMDP dynamic programming
principles, multi-agent deep reinforcement learning
(DRL) methods offer additional scalability bene-
fits, being capable of efficiently identifying optimal
I&M strategies for very high-dimensional systems.
In order to do that, they approximate policies, value
functions, or both, with neural networks. When
dealing with multi-component systems, adjusting
the networks’ weights at the training stage accord-
ing to system metrics is key in order to encourage
collaborative behavior among agents, all seeking a
common objective, e.g., minimization of the system
costs and risks (Morato et al., 2023).

In general, multi-agent DRL methods can be
categorized as value-, policy-based, or actor-critic
methods. The former parametrizes the action-value
function, and at the deployment stage, the policy,
π(a|b), selects the actions that lead to the maxi-
mum action-value function, Q(a,b), assuming in-
dependent control behavior among l ∈ NC compo-
nent agents at the current belief state, b:

π(a(l)|b) = argmax
a(l)

Ql(a(l),b) (5)

Alternatively, the policy itself can be parametrized
by component networks, directly selecting the ac-
tion at the current belief state, b:

π(a|b) =
NC

∏
l=1

πl(a(l)|b) (6)

Combining both approaches, actor-critic DRL
methods approximate components’ policies with
actor networks steered by value function predic-
tions generated from a critic network. This en-
ables a global cooperative behavior as actors can
be trained based on a system metric estimated by
the critic. At the deployment stage, however, ac-
tions are directly selected from the surrogated pol-
icy in both policy-based and actor-critic methods.
A detailed overview of actor-critic DRL methods
for managing high-dimensional engineering sys-
tems can be found in Andriotis and Papakonstanti-
nou (2019).

In the aforementioned DRL methods, each com-
ponent agent receives the belief state as an in-
put following either a centralized or decentralized

scheme. In the former, agents are informed about
the belief state of all agents in the system, while
in the latter, each agent only receives local infor-
mation, i.e., its own belief state. In any case,
the above-mentioned approaches select actions as
a function of the belief state, yielding substan-
tial benefits compared to other static optimization
methods. Influenced by the experienced action-
observation sequence from all components, DRL
policies are also intrinsically adaptive. As for the
case of POMDP-based policies, one can straightfor-
wardly interpret the strategy by observing summary
statistics over policy realizations, which can be
computed through simulation-based methods (e.g.,
Monte Carlo). This is further illustrated in the nu-
merical experiments (Section 3) for the case study
of a 9-out-of-10 system subject to fatigue deterio-
ration.

DRL-based policies also offer flexibility at the
practical implementation stage. If the decision
maker opts for an alternative user-defined action
rather than the one suggested by the original pol-
icy, for any possible reason, the subsequent actions
can still be selected without the need for retraining.
In that case, the component beliefs should be sim-
ply updated according to the newly chosen actions
and collected observations, and used for the next
step. The regret associated with an alternative pol-
icy can be also numerically calculated, providing
further insights to the decision maker.

3. NUMERICAL EXPERIMENTS
3.1. Optimal inspection and maintenance plan-

ning for a structural component
We analyze here a POMDP-based strategy aimed at
managing an offshore wind turbine structural com-
ponent subject to fatigue over a 20-year horizon
by optimally scheduling, at each time step t, do-
nothing, inspect, or repair actions. To probabilis-
tically characterize the fatigue deterioration evolu-
tion, the annual crack growth is described through
Paris’ law:

dt+1 =

[(
1−m

2

)
CFMY mSm

R π
m/2n+d1−m/2

t

]2/(2−m)

(7)
where the crack depth is denoted as d, propagating
according to crack growth parameters ln(CFM) ∼
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Figure 1: Action histogram based on 10,000 policy
realizations from the examined POMDP-based policy.

N(µ =−27.7903,σ = 0.3473) and m= 3, over n=
106 annual cycles. The applied cyclic loading is
driven by the expected stress range SR = qΓ(1 +
1/h), described through parameters q and h, and
accounting for local effects via the geometric factor
Y ∼ LN(µ = 1,σ = 0.1). At the first time step,
the crack size is specified as d0 ∼ Exp(µ = 0.1235
mm), becoming the initial belief, and a component
failure corresponds to the event in which the crack
size exceeds a critical value, dc = 16 mm.

If an inspection is conducted, the crack size is
observed with measurement uncertainty defined by
the Probability of Detection curve, PoD(d) = 1−
1/(1 + [d/0.45]0.9), while the component returns
to its initial condition, d0, after a repair. In terms
of costs, inspection and repair actions incur cins =
103 and crep = 104 monetary units, respectively,
whereas a system failure costs cF = 106 monetary
units, all discounted yearly by a factor of γ = 0.94.
The I&M decision problem is here formulated as
a POMDP, which is then solved through the SAR-
SOP point-based solver (Kurniawati et al., 2008).
The reader is directed to (Hlaing et al., 2022) for a
more detailed description of this case study.

Analyzing a POMDP-based I&M strategy
The resulting POMDP policy is analyzed in a
simulation-based environment by running 10,000
policy realizations. Fig. 1 shows the correspond-
ing annual action histogram, representing the per-
centage of inspection and repair actions, whereas
the resultant annual failure probability is illustrated

0 5 10 15 20
Time (years)

10 6

10 5

10 4

10 3

p F
 (-

) median

mean

75th perc.

25th perc.

Figure 2: Component failure probability summary
statistics over time corresponding to the analyzed
POMDP-based policy.

in Fig. 2. We can observe that the first inspection
is always performed at year 6 and the first repair
action is often planned two years after that. Fre-
quent I&M actions are planned in the middle of the
component’s lifetime in order to effectively control
the failure risk, yet I&M actions are logically less
prescribed at the end of the horizon.

In this study, we also investigate the effect of se-
lecting an alternative action rather than the optimal
one suggested in the POMDP policy. We consider
the following scenario: the optimal POMDP pol-
icy is followed up to year 7, but at that point, the
decision-maker re-evaluates unforeseen economic
restrictions, and she/he cannot follow the POMDP-
prescribed repair (Rep) action. Now, the poten-
tial alternative actions are: (i) do-nothing (DN), in
which case the fatigue deterioration will naturally
progress according to the defined transition model,
and (ii) inspect (Ins), in which case a crack can ei-
ther be detected or not.

The total expected cost, E[cT ], associated with
alternative actions is computed from Equation (4),
where the value associated with the updated belief,
V (bs′), is still estimated from the original POMDP
policy. Fig. 3 represents the breakdown of the nor-
malized expected total cost associated with all ex-
amined actions with respect to the original one. It
can be observed that, in this case, a do-nothing ac-
tion is the most suboptimal choice, as it results in a
high failure risk from avoiding the required mainte-
nance action. Logically, a repair action still needs
to be prescribed the following year but no further
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Figure 3: Breakdown of the total expected cost, E[cT ],
resulting from the investigated user-defined actions, all
normalized with respect to the original POMDP policy.

inspections are longer planned. Interestingly, an in-
spection action is less suboptimal, since more infor-
mation is gathered and there is a probability that the
deterioration condition is better than expected, in
which case the corresponding inspection outcome
and subsequent actions would result in a significant
reduction of risk and repair costs, as compared to
the do-nothing action related policy sequence.

3.2. Optimal management of a multi-component
engineering system

In this second application, we investigate a DRL-
based I&M policy identified for optimally manag-
ing a 9-out-of-10 system subject to fatigue deterio-
ration. With the objective of minimizing the dis-
counted expected total cost throughout a 30-year
horizon, the decision maker can either do-nothing,
inspect, or repair any component each year. Com-
ponent inspections and repairs costs incur c(l)ins = 1
and c(l)rep = 20 monetary units, respectively, and a
system failure results in a cost equivalent to cF =
50,000 monetary units, all discounted in time by a
factor γ = 0.95.

At each time step, t, components deteriorate
according to the crack growth law described in
Eq. 7, with material parameters ln(CFM)∼ N(µ =
−35.2,σ = 0.5) and m = 3.5, an applied stress
range SR ∼N(µ = 70,σ = 10 N/mm2) over n= 106

annual cycles, and an initial crack size specified
as d0 ∼ Exp(µ = 1 mm). In this setting, the geo-
metric factor is considered as a deterministic value,
Y = 1. If an inspection is conducted, the crack size

is partially observed with measurement uncertainty
described by PoD(d) ∼ Exp(µ = 8). A compo-
nent fails if the crack size exceeds a critical value,
dc = 20 mm, and the system fails if any two com-
ponents fail. The I&M decision-making problem is
here encoded as a deterioration rate POMDP, where
the non-stationary damage evolution is defined as a
function of the deterioration rate. To facilitate infer-
ence, the continuous crack size is discretized into
|Sd| = 30 states. The reader is directed to (Morato
et al., 2023) for a more detailed description of the
case study. The formulated POMDP is solved
via a deep decentralized multi-agent actor-critic
scheme (Andriotis and Papakonstantinou, 2019),
featuring ten control agents guided by a critic, all
parametrized with fully connected neural networks.
Specifically, actor and critic networks include two
hidden layers of 100 and 200 neurons, respectively.
During the training, the learning rate is adjusted
from 10−4 to 10−5 for the actor, and from 10−3

to 10−4 for the critic. Besides, the exploration
noise linearly decreases from an initial 100% ran-
dom noise to a random noise of 1% over the first
20,000 episodes, remaining constant afterward. At
the deployment stage, each component actor indi-
cates the optimal action as a function of all compo-
nent belief states.

Interpreting a DRL-based I&M strategy
In this specific case, the identified DRL policy is
fully described by the trained component actors net-
works. To analyze the produced strategy in terms of
decisions and safety, action histograms and failure
probability statistics are computed via Monte Carlo
simulations.

The percentage of inspection and repair actions
are represented over decision steps for each com-
ponent in Fig. 4. The decision maker can gain
valuable insights by observing when/where the ac-
tions are usually planned. The shown policy ran-
domly identified a few of the components to apply
initial inspections, as all of them are equally impor-
tant, with the same deterioration model and beliefs.
Without any loss of generality, other training sets
we performed showed the same trends, with differ-
ent components now randomly identified as being
initially inspected.
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Figure 4: Action histogram showcasing 10,000 realizations simulated from the investigated DRL-based policy.
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Figure 5: Component and system failure probability summary statistics over time corresponding to the analyzed
DRL-based strategy.

In order to provide insights with respect to safety,
the expected failure probability is also simulated
over 10,000 policy realization and shown in Fig.
5, delimited by 25th and 75th percentiles. Based
on this representation, the expected component and
system failure probability can be assessed against
relevant regulations and can be easily translated
into a risk-based metric. By additionally examin-
ing the presented percentiles, we can infer that the
failure probability is often lower than its expected
value. As mentioned before, POMDP- and DRL-
based policies also offer additional flexibility to the

decision-maker. Let us consider a similar scenario
as in the previous example: we are now at year
11 and the decision maker is evaluating the con-
sequences associated with the selection of an alter-
native user-defined action that year due to a prac-
tical restriction that does not allow her/him to fol-
low the DRL-prescribed policy. Still relying on the
original DRL policy, the total expected cost associ-
ated with the remaining decision steps can be com-
puted by selecting subsequent actions based on the
related updated belief states. As a result of this pro-
cess, Fig. 6 showcases the normalized expected to-
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Figure 6: Breakdown of the total expected cost, E[cT ],
resulting from the investigated user-defined actions, all
normalized with respect to the original DRL policy.

tal cost with respect to the original policy, when the
following actions are taken at year 11: (i) original
policy (Orig), (ii) repairs are substituted by inspec-
tions (No-rep), (iii) all components are inspected
(Ins-All), (iv) no I&M actions are planned for any
component (DN-All), and (v) all components are
repaired (Rep-All). The results reveal that the cost
only increases by 1.1% if repairs are avoided and
4.7% when all components are inspected at that
step, whereas a global do-nothing action is 7.7%
more costly. Repairing all components is, however,
very suboptimal as the cost surges more than 250%
compared to the original action.

4. CONCLUSIONS
POMDP-DRL policies prescribe actions as a func-
tion of the sufficient statistic that corresponds to
the action-observation sequence history, whereby a
specific policy realization is tailored to previously
taken actions and collected information. This paper
shows that POMDP-DRL adaptive strategies can be
easily interpreted via simulation methods, provid-
ing valuable insights to decision-makers, who may
also straightforwardly evaluate the consequences of
selecting an alternative action rather than the one
suggested by the POMDP-DRL policy, without the
need for retraining neural network architectures or
value iteration methods.
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