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Abstract
Genomics has revolutionized our understanding of evolution, hereditary diseases, and more. The ad-
vent of long-read DNA sequencers i.e. Oxford Nanopore Technologies’ innovations, has opened many
new research potentials in genomics. These sequencers produce significantly longer DNA reads, facil-
itating novel applications. However, this technological leap brings challenges, particularly in accurate
basecalling which is the process of converting raw sequenced measurements into digital base pair se-
quences. While advances in basecalling accuracy have been steadily improving over the years, the
computational intensity remains a bottleneck in genomic analysis workflows, demanding costly high-
end GPUs for probabilistic neural network models.

The main problem this thesis addresses is the implementation of an accelerated hardware solu-
tion for the compute-intensive process of basecalling long-read sequences. The thesis presents an
FPGA-based implementation of the computationally demanding Long Short-Term Memory (LSTM) lay-
ers within the basecalling network known as Bonito. However, due to the lack of floating-point arithmetic
units available on the FPGA, the FPGA implementation could not achieve competitive performance
compared to GPUs.

While the FPGA implementation falls short of GPU performance, it serves as a possible stepping
stone toward developing an ASIC solution for implementing the Bonito LSTM layers or potentially imple-
menting the entire Bonito model. An ASIC implementation has the potential for superior performance
up to 9 times faster than a GPU implementation while additionally being cost-effective. This suggests
that ASICs hold promise as a future direction for accelerating long-read sequence basecalling, allowing
for faster and more affordable genomics research.
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1
Introduction

Genomics is an important field of science enabling research to understand better the evolution of hu-
manity and other organisms to curing hereditary diseases andmuchmore. With the advent of long-read
DNA sequencers developed by i.e. Oxford Nanopore Technologies over the past decade, a new large
step has been made in genome sequencing allowing for much larger preserved DNA reads up to 500
times longer than was possible before; ushering in a new generation of sequencing that allows for
a multitude of new applications. However, with the introduction of new technology, there are always
difficulties in the early stages which is not different for long-read sequencing. While improved greatly
over the years, the accuracy of long-read sequencing has been a challenging facet where only recently
accuracy has been high enough to be utilized for non-experimental genomics analysis.

Long-read sequencing can be subdivided into two phases: measuring the DNA using chemical
processes, and converting the measured signals into digital representations of the base pairs of the
measured DNA. The conversion of the measurement to the base pairs is called basecalling. While
both phases contribute to the accuracy of long-read sequencing, the main challenge currently lies in
the measurement output of the sequencer. Due to a multitude of factors, these measurements can
not be deterministically converted to base pairs, therefore, requiring probabilistic models to perform
these conversions. However, the problem is that due to the continued increase in accuracy over the
years, these probabilistic models have become larger over those years, dramatically increasing com-
putational intensity. Currently, basecalling has the longest process duration in long-read genomics
analysis workflows while additionally requiring expensive high-end compute hardware to run those
probabilistic models.

This thesis looks at accelerating the basecalling process for Oxford Nanopore Technology long-
read sequencers using FPGAs. The basecalling models are identified and one model, called Bonito,
is selected to accelerate. The Bonito model has neural network layers, called long short-term memory
(LSTM) layers, that take up the majority of the computing time of the models. This thesis provides
an FPGA implementation for the LSTM layers that are present in the Bonito model. Moreover, the
thesis analyzes the potential benefits of converting the FPGA implementation to an ASIC, which can
theoretically achieve comparable results to high-end graphic cards.

1.1. Problem definition and research questions
The main problem this thesis addresses is the implementation of an accelerated hardware solution for
the compute-intensive process of basecalling.

To address this problem, we focus on answering the following research questions.

1. What are the main computational bottlenecks faced by basecalling applications?

2. What hardware architectures and designs are suitable for eliminating these bottlenecks?

3. What is the expected performance gain of using these architectures for our application?
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2 1. Introduction

1.2. Thesis outline
Chapter 2 of the thesis looks at the background of the thesis project, discussion long-reads, and the
long-read pipelines. Moreover, it discusses why it has been chosen to accelerate the basecalling pro-
cess of the long-read pipelines. Chapter 3 first looks at the state of the art of long-read basecallers and
discusses the reason for selecting the Bonito model. After that, it explores the Bonito and explains its
architecture. Chapter 3 closes off by exploring the different possible methods to implement the Bonito
model. Chapter 4 discusses LSTMs and outlines how the FPGA implementation of the LSTMs of the
Bonito model is implemented. Chapter 5 evaluates FPGA implementation, the FPGA implementation
is evaluated on three aspects: FPGA resource utilization, performance, and validity. Last, Chapter 6
discusses the potential of implementing the FPGA implementation on an ASIC and discusses other
future avenues to be further researched or implemented to enhance the current implementation.

1.3. Contributions
This thesis has multiple contributions, these contributions are as follows:

• A state-of-the-art analysis of long-read basecalling implementations providing an overview of the
development of basecallers.

• Documentation of the Bonito model and its inner workings which is not provided by the maintainer
Oxford Nanopore Technology. Moreover, the models are evaluated for performance.

• An evaluation of possible implementation methods for Bonito on FPGAs.

• A VHDL implementation of the LSTM layers of the Bonito model. Compared to existing LSTM
implementation in literature, this thesis implementation deals with significantly larger layer sizes
and multiple layers.

• A evaluation of the VHDL implementation and a comparison to the GPU counterpart implemen-
tation of Bonito.

• A explorative study that looks at the possibilities and potentials of mapping this LSTM implemen-
tation to an ASIC.



2
Background

Since the end of the 20th century, the field of genomics has been on the rise, with various factors
contributing to its development. First, it became evident that many diseases can be traced back to the
malfunctioning of a single gene was largely incorrect. In almost all cases, there is a complex interaction
of many different genes involved. With genomics, the focus shifted from solely examining individual
genes to additionally studying the interconnectedness of genes [1].

A large field of genomics is sequencing, which is the process of determining the precise order of
nucleotides in a DNA (bases A, C, T, and G) or RNAmolecule (bases A, U, T, and G), to enable the study
of genetic information and various biological processes. Currently, many facilities utilize 2nd generation
sequencing, also known as short-read sequencing, which has been in existence since 2005. However,
around 2014 Oxford Nanopore technology introduced a sequencer capable of reading much longer
reads, approximately 50 to 500 times larger. This technology is referred to as long-read sequencing or
3rd generation sequencing. The longer reads provided by this technology offer numerous advantages
in genomics. Nonetheless, long-read sequencing has presented several challenges that need to be
addressed for its widespread viability and adoption in the field [1].

This chapter will first analyze the difference between short and long reads and the challenges of long
reads. After that, the long read pipeline will be analyzed to identify potentials to use for acceleration on
an FPGA (Field-Programmable Gate Array). Subsequently, a stage from the pipeline will be chosen to
use for further acceleration.

2.1. Short reads and long reads
Long-read sequencing has emerged as a promising solution to address the main challenge encoun-
tered in short-read sequencing methodologies. By producing longer contiguous reads of the genome,
long-read sequencing significantly simplifies the genome assembly process compared to short reads.
Genome assembly refers to the reconstruction of all the fragmented pieces of the genome before they
are separated from each other. Short reads typically consist of an average of 200 base pairs per read,
while Oxford Nanopore long reads offer an average of 100 thousand base pairs per read. Considering
the human genome, this implies that approximately 450 million short reads are required for assembly,
whereas only 900 thousand long reads are needed [2]. The apparent advantage of long reads becomes
evident as the genome is split into fewer DNA pieces, simplifying the puzzle of reassembling them into a
complete genome, facilitating the correct alignment of long repeat sequence regions, and determining
haplotypes [3]. A haplotype is a specific combination of genetic variations on a chromosome inherited
as a unit [1].

However, long-read sequencing faced multiple challenges in its early stages, including being slow,
error-prone, and expensive. Nevertheless, improvements have been made over the past decade
[2]. In 2015, sequencers had an accuracy of approximately 60%, with large variability, making early
genome assembly highly challenging or nearly impossible [4]. Today, state-of-the-art PacBio and Ox-
ford Nanopore Technologies (ONT) sequencers have achieved an average accuracy of around 99% in
their highest accuracy modes [2]. This improvement in accuracy has played a crucial role in enabling
more reliable and efficient genome assembly using long-read sequencing technologies.

3



4 2. Background

While long-read sequencing with current technology still suffers from not high enough accuracy, it
is undoubtedly that with current trends long-read sequencing will replace short-read sequencing, and
that short-read will mostly be applied with hybrid approaches [5][6][7].

2.2. The long-read pipeline
The long-read analysis can be viewed as a pipeline. However, there is not one definitive pipeline as
there aremultiple different applications to apply to the DNA sample. The following are themost common
pipeline stages:

• DNA sample collection and preparation

• Sequencing the DNA

• Basecalling the sequenced data

• Analysis

– Read alignment and variant analysis

– De novo genome assembly

While there are undoubtedly more analysis applications the listed workflow above is currently the
most well-proven analysis method that benefits by using long-sequencing [2]. It is important to note that
the first three steps (collecting/preparation, sequencing, and basecalling) are fundamental to the long
read pipeline and are as such present in each pipeline no matter the application [2][8]. The following
sections go more in-depth on the pipeline stages.

2.2.1. DNA sample collection
This is a bio-chemistry stage of the pipeline, which includes gathering the DNA, isolating it, and prepar-
ing it to be sequenced by the nanopore sequencer. This stage will be briefly described as it does fit
entirely into the scope of the thesis.

Human DNA is gathered from patients or test subjects by often collecting their blood, however, other
methods like saliva, muscle tissue, etc. are possible but less common. The blood of the patients is
chemically cleaned by removing the red blood cells, as they contain no DNA, and keeping the white
blood cells which do contain DNA. These white blood cells are destroyed with salt so that the DNA can
come out and then the DNA is chemically isolated [9]. The process of isolating long-reads compared
to short-reads is more complex as the isolation process has to be more delicate in long-reads. In long-
reads, High Molecular Weight DNA Isolation (HMW-DNA) is applied to isolate the DNA, HMW-DNA
allows for reads isolated in length over 50 kbases [10].

After the DNA is isolated, it has to be prepared by a technique called library preparation. This library
preparation can be used for multiple applications but the main applications are:

• Applying motor and attachment proteins, these proteins help the DNA strains travel to the
nanopores in the sequencer and attach to the pores, to be pulled through. To attach these proteins
to the DNA, a piece of adapter DNA is attached to the DNA to be pulled through. This adapter
DNA allows the proteins to attach to the DNA [11].

• Barcoding which is a cost-reducing technique where barcode sequence is added to the DNA,
so that multiple patients’ DNA can be batched to safe cost, and later after sequencing can be
separated by looking for the barcode sequence for each patient in the result [12].

• Chemically treat the DNA to be reinforced to result in longer reads or by improving accuracy
[11].
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2.2.2. Sequencing DNA
Nanopore sequencers are long-read sequencers designed by Oxford Nanopore Technologies. While
there is a lot of chemistry and physics involved in these sequencing techniques, a nanopore is essen-
tially a hole where the DNA can be pulled through, see Figure 2.1. The DNA travels to the nanopore
by means of the motor protein attached after sampling, when it arrives at the nanopore the DNA is
caught and split from double-strand DNA (dsDNA) to single-strand DNA (ssDNA), after which one of
the split strands is to be pulled through the pore [13]. The nanopore is pulled through the pore with
speeds of around 260 base pairs per second (bps) or for bigger sequencers 400 bps. At the same
time, a sensor attached on both sides of the nanopore measures the bases at the same sampling
speed as the DNA goes through the pore, so 260 and 400 samples per second. This sensor runs a
current through the DNA and by measuring the corresponding impedance of the DNA, this impedance
can be converted into an analog signal as seen in Figure 2.1 [12]. Matching the rates of sampling and
pulling remains a challenge as it leads to ”blurry” measurements. The nanopores can be arranged in
a 2-dimensional array allowing the nanopore sequencing process to be greatly parallelizable, greatly
improving throughput.

Figure 2.1: Visualization of DNA going through a nanopore and measured to an analog signal [14]

2.2.3. Basecalling
After the DNA has been sequenced, the raw sequenced data have to be basecalled. The output of
the sequencer is an analog signal, which is not useful to analyze for DNA variations, etc. To make the
sequenced data useful, it has to be converted to base pairs (A, C, T, G), as seen sketched in Figure
2.1, this process is called basecalling [13].

Compared to short-read sequencing, long-read basecalling is a much more challenging process.
As mentioned before, this challenge mainly lies in the speed at which the DNA strain is pulled through
the nanopore during sequencing. If the speed at the strain goes through the port is too high the signal of
individual bases may influence the neighboring base pairs, conversely, if the speed is slow a stuttering
signal is induced making it apparent as if there are multiple repeating bases even though there is only
one. Therefore, this varying speed introduces non-deterministic results out of the sequencer requiring
also probabilistic models and algorithms to process it [15].

Currently, this basecalling is the most computationally heavy process in the pipeline and is thus the
slowest stage currently in the pipeline [2][8]. While it is very dependent on the hardware used to perform
basecalling and not a lot of studies can be found on speed analysis, the time to basecall can lay between
5 to 10 hours which is significantly slower than sequencing [2][8]. There are efforts to perform real-time
synchronous basecalling and sequencing, however, this will currently result in a loss of accuracy or
using a lot more resources to keep up with the throughput of the sequencer [13]. For instance, the fully
saturated nanopores on an Oxford Nanopore Promethion 48 (the largest nanopore sequencer) require
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around 4 A100 GPUs using lower accuracy and 20 in the highest accuracy configuration [16][17]. This
is very expensive and power consuming, totaling as of the time of writing at $60,000 to $300,000 in
cost and 1200W to 6000W in power consumption [18], while the Promethion itself costs around $600
[2].

2.2.4. Post-sequencing analysis
The following sections discuss a small sample of the main and most well-proven post-sequence anal-
ysis applications.

Read alignment and variant analysis
Variant calling is the process of finding variations by comparing the sequenced genome with a database
of genomes. This is one of the primary applications of genome analysis [2].

However before the variations can be detected between samples and the database, the sample
reads have to be aligned to the database reads, this process is called read alignment. In the initial
stages of long-read analysis, this alignment used very complex and sensitive algorithms. However,
the current reads are accurate enough that the current alignment process does not require complex
algorithms and the process can be achieved relatively quickly and is most of the time baked-in with
basecallers as a post-processing step [8]. Additionally, dynamic programming algorithms are intro-
duced that allow base-by-base alignment [2].

There are a couple of main variations that can occur between the sample and database, these are
isolated single nucleotide variations, insertions, deletions, and shortened and extended DNA repeat
regions [19]. The process of variant calling has been improved significantly by using long-reads over
short-reads as the longer-reads allow better detection of repetition length as those most often spanned
over multiple short-reads, which makes the alignment with the reference genome unreliable and not
feasible for short-read sequencing [2].

Traditionally variant calling has always been performed by comparing samples to databases, newer
implementations also deploy deep-neural networks to detect variations which makes it connection-
less to a database [20], which allows also the possibility of creating more portable devices. Current
implementations have a runtime for variant calling ranging from 1 to 2 hours [8].

De novo genome assembly
De novo genome assembly is the process of reassembling the sequenced genome. This process is
as mentioned before made easier by the long-read sequencing, as there are fewer reads necessary
to reassemble the genome. The most applied technique to assemble genomes is by utilizing string
graphs where entire reads are compared to each other using minimizers and MinHash techniques [2].

However, the challenges in this pipeline stage are not algorithmic but again depend more on the
accuracy of the sequencer and basecalling process. Currently, most of the time in de novo assembly
is spent on correcting the reads from the sequencer [21]. The process of assembling a telomere to
telomere (begin to end of the chromosomes) genome error-free has only recently become possible by
utilizing every possible new technique to improve read accuracies [2].

2.3. Basecalling challenges
Considering the discussed long-read pipeline, it seems that the most interesting part is the basecalling
stage, due to its time bottleneck and accuracy implications. DNA preparation and sequencing clearly
fall out of the domain of Computer Engineering, and thus pose little potential. However, compared to
the post-sequencing analysis methods it seems that the main challenges still lay in the low accuracy of
the basecalling and sequencing process, so by further improving the basecalling process a lot of post-
sequencing analysis methods will benefit too. Additionally, this leads to another point that basecalling
is the core stage of all long-read analysis, as all subsequent tools require a basecalled sequence, not
the analog signal. Lastly, the basecalling process is currently very slow, it takes up a large chunk of the
entire long-read pipeline. Therefore improving this part of the process by accelerating will be a great
benefit for a lot of users of these pipelines.



3
Exploring basecallers

This chapter will describe the exploration of basecallers. It will look at the state-of-the-art techniques
used to perform basecalling, compare several basecalling solutions to each other, and end by selecting
the most suitable basecaller to consider for acceleration. This selected basecalling solution will in turn
be analyzed further to examine its bottlenecks and strengths. Finally, there will be looked at suitable
methods to implement this selected basecaller on an FPGA.

3.1. State-of-the-art of basecalling
While discussing the pipeline, it was already mentioned that the process of basecalling for Oxford
Nanopore sequencers is not a deterministic process. This is due to the fact that the sample interval
and the speed that the DNA strain goes through are not always synchronous, resulting in base pair
readings blurring other base pairs and stuttering resulting in false repetitions [15]. For this reason, the
state-of-the-art implementations are currently exclusively built on stochastic or probabilistic models,
being neural networks or hidden Markov models [2].

While numerous basecallers have been made in the past decade, only a few will be selected to be
highlighted here to demonstrate and compare different architectures of neural networks. The current
space of basecallers can be divided into 4 categories:

• Neural network implementations

– Recurrent neural networks
– Convolutional neural networks
– Transformers

• Other implementations

– Hidden Markov models

3.1.1. Recurrent neural networks
A recurrent neural network (RNN) is an artificial neural network specifically designed to handle sequen-
tial or time series data. These deep learning algorithms are extensively employed for solving ordinal or
temporal problems, including language translation, natural language processing (NLP), speech recog-
nition, and image captioning [22]. The problem of basecalling can be closely mimicked to a speech
recognition problem. Converting an analog signal to a sequence of speech-to-words for speech recog-
nition is very similar to converting the analog signal from the nanopore sensor to bases (letters) A, C,
T, G during sequencing [23].

What sets RNNs apart is their inherent ”memory” capability, enabling them to leverage information
from preceding inputs to impact the current input and output. In contrast to traditional deep neural
networks that treat input and output as independent entities, recurrent neural networks rely on the
previous elements within the sequence to determine their output [22].

7



8 3. Exploring basecallers

Oxford Nanopore, in its initial stages, introduced three distinct models for their sequencing technol-
ogy: Albacore, Guppy, and Scrappie. Among these models, Albacore was designed as the earliest
(2017) and used a CPU implementation, while later (2018) Guppy and Scrappie were developed by
using GPU implementations. Guppy was the most accurate while also being a stable model at the
time, while Scrappie was more experimental and served as a testing ground for new features and
enhancements that were being considered for integration into Guppy [24].

These implementations by Oxford Nanopore first used only a single layer of RNNs, which resulted
in still very low read accuracy of around 88% [25]. This accuracy is too low to perform any useful
post-sequencing analysis [2]. Around the same time Oxford Nanopore was developing its GPU imple-
mentations, another basecalling architecture was developed by Haotian Teng et al. called Chiron [26].
This architecture modeled a new architecture by introducing newer developments from the research
of speech-to-text applications. Chiron combined deep learning with RNNs; this meant that the raw
nanopore signal was first fed into convolutional neural network (CNN) layers before going into the RNN
layers. By utilizing a CNN, the model extracts useful features of the raw signal instead of feeding just
the signal into the RNN directly. By training the model, the CNN can be trained to extract features of
the raw signal that provide better information to the RNN layer. Haotian Teng et al. state that using both
CNN layers and RNN layers is crucial in basecalling networks otherwise accuracy will drop significantly
[26].

Additionally, Chiron introduced a statistical post-processing layer called connectionist temporal clas-
sification (CTC) decoder to get to the final basecalled sequence output. The CTC decoder solves the
variable speed problem of the DNA strain going through the nanopore better. Essentially what this
layer adds is that a new label is added to the existing A, C, T, and G labels; this label is a null label
that allows the RNN to output nothing if it is most likely that the input signal stuttered. With this new
label, the CTC decoder predicts the most likely sequence given the output of the RNNs, however, it
also takes previously predicted sequences into account [27]. While the accuracy increased, the model
was however very slow; 100x slower than the Oxford Nanopore implementations [25]. However, Ox-
ford Nanopore developed another model called Flappie based on Guppy that used the CTC decoder
without the CNN layers [25]. Next to this, Flappie introduced a ”flip-flop” mechanism which means that
the output from a layer is reversed when it is put in the consecutive layer [28]. While the reason is never
stated in literature why the exact reason for this ”flip-flop” architecture is developed, it is most likely that
this is due to the measurement of the sensor being bi-directional. This means that the DNA strain could
have passed through the nanopore in either direction causing the sensor reading to be reversed. It is
likely that continuously flipping the outputs between layers increases accuracy as it is analyzed from
both directions. This model eventually replaced Scrappie in being the experimental line and Scrappie
fell out of development [29]. A year into development, Flappie was also archived suggesting that it is
most likely that it has been incorporated into Guppy [13][25], however due to Guppy being proprietary
software it is impossible to be certain.

In 2020, Oxford Nanopore made an open-source version of a basecaller called Bonito/Dorado.
Bonito and Dorado are the same model, the only difference is that Bonito is written in Python using
PyTorch while Dorado is written in C++ [30][31]. For ease of reading only Bonito will be mentioned,
however, most comments will apply to both and it will be specified when something is different for Do-
rado. While there is little to no literature attached to these models, by examining the commit history of
the code repositories themodel’s development has been very analogous to the development mentioned
earlier with Guppy and its experimental models (Flappie, Scrappie) [30]. However, the current imple-
mentation of Bonito has shifted in 2022 to a model very similar to that of Chiron, although the reason
for this design shift is not documented it is clear that it is a good architecture as currently, Bonito is the
most accurate basecalling model to date by achieving a read accuracy of 93% [32]. However, there are
changes compared to the Chiron CNN-RNN-CTC architecture: the ”flip-flop” mechanism from Flappie
is introduced and the CTC layer has been changed to a conditional random field (CRF) decoder as
a post-processing layer [30]. Instead of the CTC predicting the most likely sequence given the previ-
ous prediction, the CRF decoder is more granular predicting the most likely base given its neighboring
bases [33]. This CRF is considered superior over CTC from benchmarking improving performance
over 4% [32]. Altogether, Bonito is currently the leading basecalling tool available having little compe-
tition, Bonito’s model is speculated to be copied over into Guppy [32]. It has high accuracy but is still
considered slow [34], however, its higher accuracy enabled better post-sequencing analysis leading it
to be the most popular [30].
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3.1.2. Convolutional neural networks
Other models try to perform basecalling by removing the RNN from the models and creating full CNN
models. There are three prominent models developed, CasaulCall, URnano, and MinCall, that use
full CNN networks which arose around 2020 [32]. The main problem these models tried to solve was
that the RNN models were slow [35][36][37]. The main bottleneck lies in the recurrent nature of RNNs,
meaning that the computation of the subsequent inference is dependent on the previous inference
making unrolling and parallelization complex [35]. CNNs on the contrary are very parellizable making
them in terms of speed very competitive, but they compromise on accuracy with MinCall having a very
low 63% read accuracy, whilst CasaulCall and URnano having 88% and 90% accuracy respectively
[32]. The read accuracies of URnano and CasaulCall were competitive at the time with URnano being
on par with Guppy at the time [37].

CasaulCall and MinCall are very similar to the Bonito implementations with the RNN layers stripped
away, the architectures are roughly a CNN-CTC network [35] [36]. URnano uses a slightly different
approach instead of having the neural network outputting the sequence of bases, the neural network
outputs a base mask. This base mask is fed into the label transformer algorithm which performs a per
base conversion instead on a per sequence basis with CTC [37]. As seen with the CRF which also
uses a more per-base approach, this approach leads apparently to better accuracy compared to CTC
[32].

Currently, none of these three networks are in active use nor development, making the analysis
from Haotian Teng et al. quite plausible that basecaller neural networks require both CNNs and RNNs
[26]. The most likely reason for these models to be abandoned is that the accuracy is too low compared
to RNN networks and in the case of URnano being actually 2x-3x slower than Guppy in 2020 [37].

3.1.3. Transformers
A transformer model is a type of neural network that acquires contextual understanding and meaning
by analyzing the relationships among sequential data elements, such as the words in a sentence.
Utilizing a set of mathematical techniques known as attention or self-attention, transformer models can
discern subtle connections between remotely positioned elements within a sequence and can identify
how they influence and rely on each other. These sophisticated algorithms enable the transformer to
grasp long-range dependencies in the data, leading to more accurate contextual comprehension [38].

By this description, transformers seem quite similar to RNNs, however, solve some problems at-
tached to RNNs. RNNs are trained sequentially, this leads to two problems that transformers do not
suffer from. First, sequential training means that parallelizing the inference is more difficult for RNNs.
Another problem in RNNs is exploding and vanishing gradients, due to the recurrent properties of RNNs
training results in feedback loops. These feedback loops make it difficult to train RNNs as it is difficult to
keep the gradients bounded as the gradients tend to explode to infinity or vanish to zero over time [39].
Due to the attention algorithms, transformers do not have a recurrent structure meaning they are highly
parallelizable [40]. Moreover, this means that the aforementioned problems of RNNs do not apply to
transformers [41]. Another benefit of transformers is that pre-trained models can easily be used for
other tasks, resulting in less training time [41].

Currently, there are two prominent transformer models for basecalling SACall and CATCaller [32].
Both these models are based on a CNN-transformer-CTC model [42][43]. While SAcall is based on
the transformer model, CATCaller is based on a lite-transformer model [32]. This lite-transformer is
different in that the convolutions, called lightweight convolutions, in the transformer layer are sharing
weights. These lightweight convolutions reduce the model complexity allowing lite-transformer models
to be run on edge devices [44]. While these models claimed to be designed for speed, SACall is not
faster than Guppy [42] and CATCaller claims to be 4x faster than SACall it does not make any speed
comparison to Guppy [43] making comparisons very difficult. Accuracy-wise the transformer models
seem to be not competitive. As from the benchmark result of Marc Pagès-Gallego et al., RNNs are
superior to transformer models [32]. Since the transformer models are still using CTC decoders, these
results might be more competitive if they use a CRF decoder instead as the current RNN basecallers.

3.1.4. Hidden Markov models
Hidden Markov Models (HMM) are statistical models that relate a sequence of observations to a se-
quence of hidden states. It is useful for predicting future observations or classifying sequences based
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on the hidden process generating the data [45]. While a lot of literature claims that hidden Markov
models were used as the first basecallers for long read analysis [2][25][26][32], it seems to be difficult
to find any HMM implementations for basecallers. One HMM basecaller could be found called Nanocall
[46]. The model is trained using Expectation Maximization (EM) which is very standard for HMMs. At
the end of the HMM inference, Nanocall applies a Viterbi decoder to get the output. The Viterbi decoder
is similar to a CTC decoder, however, it only considers the current sequence to predict the sequence
output instead of including neighboring sequences [46]. The inference of HMMs and thus Nanocall are
very lightweight computations compared to neural networks.

It seems however that hidden Markov models have completely fallen out of favor and current imple-
mentations have completely shifted towards neural networks. While hidden Markov models are easier
to accelerate, the accuracy in basecalling with neural networks is much higher for neural networks than
for hidden Markov models [2].

3.1.5. Choosing a model
After comparing and discussing different models and architectures, it was decided to choose the Bonito
model to accelerate on an FPGA to demonstrate Fletcher and Tydi, two technologies developed by
the Accelerated Big Data Systems (ABS) group from TU Delft. Fletcher is a framework that helps to
integrate FPGA accelerators that use an Apache Arrow back-end [47]. Bonito switched over at the end
of 2022 to the POD5 file format from the older FAST5 file format [30]. The POD5 file format stores data
in Apache Arrow tables, this means that data is stored in a columnar format allowing for more efficient
data readouts for acceleration purposes [48]. POD5 using Apache Arrow means that more tools are
available, like Fletcher, as Apache Arrow is general-purpose and popular while FAST5 is just designed
for Nanopore sequencing. Bonito is currently the only major basecaller using POD5 making it ideal to
implement with Fletcher.

Next to the POD5 argument, Bonito is currently the most accurate basecalling solution while also
relatively being speed competitive [32]. Bonito is also the most widely used next to Guppy but Bonito
is an open-source basecaller and Guppy is proprietary making it impossible to know how Guppy is
implemented exactly. Additionally, all the other basecallers from literature have no published source
code or have been unmaintained for several years making it not compelling to create an accelerator
from them. Additionally, full CNN models are not very suitable to accelerate on FPGAs as it is hard to
beat GPUs with CNNs since GPUs have dedicated hardware for tensor calculus.

3.2. Deep-dive into Bonito
Since Bonito is the chosen model to accelerate, this section will dive deeper into the neural network
components that Bonito consists of and benchmark the model to identify the most computationally
heavy components of the network. After this analysis, multiple implementation options will be explored
to decide the best way to implement the Bonito on an FPGA.

3.2.1. Analyzing Bonito
As mentioned before, Bonito is a model by Oxford Nanopore and it uses a CNN-RNN-CRF model.
However, this classifier CNN-RNN-CRF does not describe the model completely as there are many
more granular components present in the model. Moreover, Oxford Nanopore does not provide any
literature or documentation about the design decision or how the model works, therefore, the model is
”reverse-engineered in this section to provide such documentation. By delving into the config files of
the models, it is possible to construct an overview of the model, as seen in Figure 3.2 [30]. There are
three models provided by Bonito: Fast, High Accuracy, and Super Accuracy (presumed from the ab-
breviation SUP). The Fast and High-accuracy models can be used for real-time basecalling depending
on the amounts of nanopores present in the sequencers (sequencer throughput) and the computational
throughput of the basecaller. The super model is generally used in a catch-up mode meaning the out-
put of the sequencer is buffered [13]. Moreover, there are two models for each accuracy model for a
sequencing speed of 260 base pairs per second (bps) and 400 (bps), these models do not differ from
each other architecturally, the only difference is that the weights are different.

A convolutional block consists of multiple subfunctions, as seen in Figure 3.1. While the most com-
putationally heavy and important part is the convolution, a batch normalization, and a swish activation
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function are performed after the convolution. The batch normalization is used to speed up training, it
allows for faster training speeds by normalizing the output from the convolution to network-wide normal-
ization making it not too high or too low to be processed by subsequent layers [39]. The swish activation
function is not standard but is more recently becoming popular over the more standardized ReLU ac-
tivation function [49]. Activation functions are often simple but very crucial to allow for non-linearity in
the neural network as all other components like convolution, RNN, etc. are linear equations [39]. Swish
is a type of sigmoid-weighted linear unit (SiLU) activation that looks like 𝑆𝑤𝑖𝑠ℎ(𝑥) = 𝑥 ⋅ 𝜎(𝛽𝑥) where
𝛽 is a trainable parameter which allows for tweaking the linearity of the activation function; if 𝛽 → 0
the function becomes linear by the increasing 𝛽 the sigmoid function will be more pronounced. The
convolutions are all 1-dimensional convolutions with a convolution kernel of size 16. As seen in Figure
3.2, the convolution sizes the input up to the size of the RNNs, starting from 1 and ending up at 96,
384, or 1024 depending on the model size.

1 2 8 3 5 1 4

8 3 5 1
*

Convolution 1D Swish activation Batch normalization

Figure 3.1: Architecture of convolutional block in the Bonito models

The RNNs in the models are called LSTMs (long-short-term memory), LSTM is a variant of RNN as
traditional RNNs are barely used anymore. Traditional RNNs suffer a lot from the vanishing gradient
problem because they only keep track of short sequences and forget older inputs; this is called short-
termmemory. LSTMs add an additional long-termmemory which allows older inputs to affect the current
data thus meaning that these older gradients do not vanish. The long-short termmemory allows LSTMs
to analyze data on a granular scale but still can keep correlation between distant data [39]. The LSTMs
have a size of 98 in the fast model, 384 in the high accuracy model, and 1024 in the super model; these
sizes do not change between layers. As mentioned before with Flappie, Bonito also uses the ”flip-flop”
mechanism which means that the output will be reversed between layers.

After the LSTMs, the output is again reduced using a linear layer, also called a fully connected layer
(FC). The reason for this fully connected layer is not clearly known due to the lack of documentation.
Normally, FC layers let all inputs interact with each other to create more interdependency between the
output of the previous layer, and the output is reduced back to the training labels. However, here the
output goes into another linear layer, the linear CRF Encoder, which consists of an FC layer and a CRF
encoder. The FC layer scales up the data so that the CRF encoder can output scores in a linear-chain
CRF. This linear-chain CRF can be used to calculate the log probability of a particular (aligned) output
sequence [50]. As a guess the first linear layer is to classify the output of the LSTMs for the CRF
decoder as the first stage of the linear CRF decoder is also an identical linear layer, hence it does not
make sense that it is to reduce data size for the CRF decoder.

Additionally, there are some small layers like clamp and permute that are not very computationally
heavy. The clamp layer clamps the output between boundary values so that the output is not too large
or too small for the next layers. These boundary values are defined in the model config and thus not
trained. The permute layer turns the input tensor around axes, it is not very clear from documentation
or literature why one would apply this layer, however.

3.2.2. Benchmarking Bonito
The amount of parameters seems to be heavily dependent on the size of the LSTMs used. The dif-
ference between models is only significant in the sizes of the LSTM. The super model has 7× more
parameters than the high accuracy model which in turn has 14× more parameters than the fast model.
To further attest to this claim, the model has been benchmarked. The benchmark was run on a server
with an Intel Xeon E5-2620 CPU and a NVIDIA RTX 2080Ti GPU. Figure 3.3 shows the trace of the
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runtime of a single inference through the Bonito model. The trace clearly shows that nearly all the pro-
cessing time of the inference is spent on the RNN calculations, demonstrating clearly that the LSTM is
the bottleneck in the calculations.

Figure 3.3: Trace of an inference of the Bonito network

Next to the trace, it is also interesting to see how the models compare to each other. The result
of this benchmark can be seen in Table 3.1. Dorado has been chosen to be benchmarked as well
and clearly from the table it is apparent that it is much faster than Bonito. This speed difference is not
surprising, however, as mentioned by the maintainers of both Dorado is for practical use while Bonito
is more for training purposes and model development and analysis [30][31]. This is mainly because
of Bonito using Python which is easier to develop for and experiment with than C++ used by Dorado
but Python being an interpreted language means it induces more overhead. The models between
Dorado and Bonito are as said before equivalent. The super model is also significantly slower than
the other models which scale not linearly with the number of model parameters. This indicates that
computationally the throughput decreases faster for larger LSTM sizes.

Table 3.1: Performance comparison of Bonito and Dorado

Bonito Dorado
Duration (H:M:S) Reads per second Duration (H:M:S) Reads per second

Fast model 00:24:53 53.6 00:03:09 424.5
High accuracy model 00:33:21 40.0 00:17:31 76.2
Super model 03:00:41 7.4 01:46:32 12.6

3.2.3. Implementing Bonito
There are multiple avenues to explore to implement Bonito from scratch. The first possibility is to build
the entire model from scratch in VHDL or Vivado High-Level Synthesis (HLS). While this would give
the most control over the project’s implementation, it would also be a lot of work and require a lot of
research in each layer to understand how to implement it while also making it performant. AMD has
however introduced over the years a lot of frameworks and tools to use to more easily implement neural
networks on FPGAs, an example being FINN [51]. FINN is a tool that allows generating dataflow-style
architectures on an FPGA based on pre-trained neural networks. While that description fits nicely with
Bonito being a pre-trained model, there are some caveats as some layers are not supported mainly
being RNNs. Since the core of the models are RNNs, this means that this makes FINN not feasible.
Moreover, FINN does not support the swish activation function and CRF layer, however, this is much
less of a concern since these are not very complicated layers; the CRF layer is essentially an FC layer,
which is supported, with a quite lightweight scoring algorithm after it.

Next to FINN, there is still another tool available to help implement it called Vitis-AI, also by AMD.
Vitis-AI is more of a blanket term for a collection of AI IPs, libraries, tools, and models. The main
workflow of Vitis-AI is using a pre-built model from the so-called ”Model Zoo” provided by AMD. This
model can be adjusted to be more in line with the model to be implemented but this adjusting is very
limited, so models may need to be nearly one-to-one and can differ only in size for some layers [52].
After selecting a good model implementation is quite easy, as the models from Model Zoo have already
been deployed and tested on FPGAs. While Vitis AI states that RNNs are supported, all links leading
to documentation and models on GitHub are broken. It seems that the RNNs from Vitis AI have been
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dropped since going to version 3 in 2022. This means that using Vitis AI and Model Zoo is not possible
to implement Bonito.

Before going all the way down to low-level hardware design VHDL/HLS, a last attempt was explored
to use a higher-level approach by combining C𝜆ash and HaskTorch. C𝜆ash is a high-level synthesis
language like Vivado HLS but instead of HLS using C++, it uses Haskell. Haskell in turn has a Torch
implementation called HaskTorch which makes it easy to run Bonito in Haskell as Bonito is built using
PyTorch which is a Torch implementation for Python. While running the model is possible, it seems to
be very hard to make HaskTorch and C𝜆ash work together as HaskTorch is designed really for CPU
and GPU implementations. After a lot of trying this solution seemed to be also a dead end.

A final possibility without going to a from-scratch implementation is looking into the AMD VCK5000
Versal FPGA. Versal is an FPGA card specifically designed for neural network acceleration by offering
special hardware blocks on the FPGA for neural networks. Access to this FPGA has been granted
by the Heterogeneous Accelerated Compute Clusters at ETH Zürich to use for this project. While
on the product it specifies that it can be used for CNNs and RNNs [53], if one looks deeper into the
documentation there is no trace to be found about RNNs. The documentation only specifies how to use
the special hardware blocks for CNNs and those blocks seem to only have CNN capabilities meaning
that utilizing this FPGA for RNNs would be equivalent to any other FPGA of equal resource capability.

It seems now that every high-level implementation gets stuck on not being able to implement LSTMs,
it seems to be important to explore why this limitation exists before starting a from-scratch implementa-
tion. While the lack of RNN support in models can be due to the higher popularity of full CNN networks,
there might also be more reasons for there being such low support. After research, it seems that the
internal storage (SRAM) of the FPGA seems to be the main bottleneck on FPGAs. This means that a
lot of the time LSTM implementation needs to stream from DRAM which is significantly slower [54][55].
Therefore, it is important to find out the means to make this memory management work on an FPGA,
but for that first, a better understanding must be acquired to find out why LSTMs are more memory
intensive than i.e. CNNs.

This also marks a turning point in the thesis that the focus shifts away from creating a demonstrator
using Fletcher and Tydi to implementing the LSTM part of Bonito. The decision was made to only focus
on the LSTM because clearly there is a bottleneck that potentially can be solved but also the LSTM
has a lot less research compared to other layers i.e. CNN, FC, etc. CNNs for instance can be easily
generated so by dropping the Fletcher and Tydi part not a lot of interesting research potentials remain
there.
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LSTM accelerator design

This chapter will examine the entire design process of implementing the LSTM layers of Bonito on an
FPGA. First, the LSTM layer will be analyzed theoretically to understand the workings of LSTMs. Af-
ter that, an FPGA will be selected for use in implementation based on the requirements imposed by
the LSTM layer. Before going into the low-level implementation of the hardware components, first an
abstract overview is shown of the design system architecture and the components will be abstractly out-
lined. After the overview, each component will be described in more detail including design challenges
and iterations.

4.1. Background of LSTMs
Long-term short-term memory (LSTM) is a variant of RNN that can overcome the vanishing gradient
problem. Instead of an RNN only having short-termmemory hidden layer (ℎ𝑡), LSTMs additionally add a
long-termmemory called cell state (𝑐𝑡) to the neuron. The long termmemory is used to store information
over longer time steps. The hidden layer ℎ𝑡 and the cell state 𝑐𝑡 are the recursive components of the
LSTM meaning that at the next inference, they are reinserted into the LSTM cell; see Figure 4.1. The
long-term memory is updated by a function of a forget gate 𝑓𝑡 and an input gate 𝑖𝑡. The forget gate
decides which information from the previous long-term memory should be ignored and which should
be kept. The input gate combined with the cell input gate 𝑐𝑡 determines which information from the
current input should be added to the long-term memory. The cell input gate 𝑐𝑡 is often denoted in code
as 𝑔𝑡 due to the tilde and confusion with the cell state 𝑐𝑡. The hidden layer ℎ𝑡, the short-term memory,
is a function of the long-term memory 𝑐𝑡 and an output gate 𝑜𝑡. The output gate decides how much the
short-term memory and input information should be outputted. LSTM uses both sigmoid and hyperbolic
tangent activation functions [56].

The input 𝑥𝑡, hidden layer ℎ𝑡, and cell state are vectors. The hidden layer and the cell state vectors
have to be always equal in size and they parameterize the output size of the LSTM. The input vector
can differ from the hidden layer and the cell state vectors denoting the input size. Whilst Figure 4.1 only
shows the activation function 𝜎 or 𝑡𝑎𝑛ℎ, the gates’ decision-making cannot only be performed by these
functions as they are not parameterizable, meaning they cannot be altered and trained. Therefore,
before the activation each gate performs an inner product between a weight vector stored in the gate
and the input and hidden vector. After the inner product optionally a bias vector can be added to the
product result [56].

Whilst the inputs of the cells are vectors, the cells themselves produce a scalar value. Therefore,
there have to be as many cells equal to the output size of the LSTM to obtain the full output vectors.
By combining all those cells together, the inner products of the gates of each cell combined can be
modeled as a matrix-vector multiplication for each gate. The resulting gate equations can be seen
in Equation 4.1 to 4.4, which shows that there are 8 matrix-vector multiplications; 4 multiplications
between the input vector and input weights and 4 between the hidden vector and hidden weights.
These weight matrices have dimensions of ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒×𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 and ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒×ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒
for the input weights and hidden weights respectively. Subsequently, the gates use a hyperbolic tangent
or a sigmoid (Equation 4.7) to bind the vector output of the matrix-vector multiplication to the interval
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Figure 4.1: Visualization of an LSTM cell [57]

(−1, 1) and (0, 1) respectively. Equation 4.5 and 4.6 show the equations to get the final short-term
memory ℎ𝑡 (output) and long-term memory 𝑐𝑡. These equations use Hadamard products (⊙) which is
an element-wise product between the gate vectors. This is because, in a cell after the gate operations,
all operations are using local values of the cell therefore when combining multiple cells this results in a
Hadamard product [56].

𝑖𝑡 = 𝜎(𝑊𝑖_𝑖𝑛𝑝𝑢𝑡𝑥𝑡 +𝑊𝑖_ℎ𝑖𝑑𝑑𝑒𝑛ℎ𝑡−1 + 𝑏𝑖) (4.1)

𝑓𝑡 = 𝜎(𝑊𝑓_𝑖𝑛𝑝𝑢𝑡𝑥𝑡 +𝑊𝑓_ℎ𝑖𝑑𝑑𝑒𝑛ℎ𝑡−1 + 𝑏𝑓) (4.2)

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐_𝑖𝑛𝑝𝑢𝑡𝑥𝑡 +𝑊𝑐_ℎ𝑖𝑑𝑑𝑒𝑛ℎ𝑡−1 + 𝑏𝑐) (4.3)

𝑜𝑡 = 𝜎(𝑊𝑜_𝑖𝑛𝑝𝑢𝑡𝑥𝑡 +𝑊𝑜_ℎ𝑖𝑑𝑑𝑒𝑛ℎ𝑡−1 + 𝑏𝑜) (4.4)

𝑐𝑡 = 𝑓𝑡⊙ 𝑐𝑡−1 + 𝑖𝑡⊙ 𝑐𝑡 (4.5)

ℎ𝑡 = 𝑜𝑡⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (4.6)

𝜎(𝑥) = 1
1 + 𝑒−𝑥 (4.7)

These equations above demonstrate well why this layer is significantly more compute-intensive
compared to a convolutional layer. By analyzing the equations by counting atomic operations, where
the activation functions are considered atomic but the matrix-vector multiplications are split into a multi-
plication and an addition, it is possible to see how intensive it is. The number of operations in a matrix-
vector multiplication is 𝑛(2𝑚−1), for the Bonito model the input size is equal to the hidden/output size,
therefore, this simplifies to 2𝑛2 −𝑛 where 𝑛 is the layer size, scaling this up to 8 the matrix-vector mul-
tiplications this results in 16𝑛2 − 8𝑛 cycles for the 8 matrix-vector multiplications. After that, there are
per cell 4 bias additions, 5 activation functions, 3 multiplications (Hadamard product), and 1 addition;
since these are per cell these operations are all equal to 𝑛 resulting in 13𝑛. Combining the results each
inference has 16𝑛2 + 5𝑛 operations, meaning that there are 16.9 million atomic operations for each
inference in the Bonito super model where the layer size is 1024.
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Memory requirements and FPGA selection
In terms of FPGA implementation, the most important thing to validate before implementing anything
is if these weights, biases, etc. can be stored and accessed timely at all in FPGAs. As seen from the
theoretical analysis of the LSTM layer, the memory requirements are quite demanding, especially for
FPGAs where on-chip storage is scarce, of around 50MB on a high-end FPGA (AMD Alveo U250) [58];
compare that to a high-end CPU having 290MB (AMD Ryzen Threadripper PRO 5995WX ) [59] and a
high-end GPU having 70MB (NVIDIA A100) [60]. However, off-chip storage on FPGA is often plenty,
but the bandwidth is in turn limited on the off-chip memory.

For an LSTM to function, there are ten different data stores required: an input data store, a hid-
den/output data store, and eight weight data stores for each gate. The hidden and input data sizes
are equal since in the Bonito model the input and hidden vector dimensions are the same. Using the
knowledge of the LSTM and Bonito, the memory requirements per LSTM layer can be calculated as
seen in Table 4.1. The input/hidden storage size seems to be very high for a single vector input and
output, as for a single 1024 vector the storage should only be 2KB. However, the table value is different
as most often in neural networks the input is batched into multiple vectors making the input essentially
a matrix. In Bonito, this batch is additionally split into chunks. This chunking is not a simple further
subdivision of the reads from the sequencer, this is because, with the chunks, the neighboring chunks
overlap partially with each other. Due to the lack of documentation on Bonito, the exact reason for this
overlap is not clear. Bonito has for all its models specified a chunk size of 1.000 with an overlap of 50.
This chunk size is used in Table 4.1 to determine the memory requirements of the input and hidden
storage, the batch size would multiply this number even further however the batch size numbers lay
above 100 which would move up the memory requirements over 100MB of on-chip memory which is
practically impossible on an FPGA at the time of writing.

Table 4.1: Memory requirements of a Bonito LSTM layer (16 bits)

Model Input/Hidden Size Input & Hidden Storage (MB) Weight Storage (MB)
Super model 1024 4.0 16.8
HAC model 384 1.5 2.4
Fast Model 98 0.38 0.15

With the memory requirement available, selecting an FPGA to implement for is possible. After
researching, it seems that there are two main FPGA contenders for the implementation, those being:
the AMD Alveo U280 and the AMD VCK5000 Versal. Table 4.2 shows the corresponding memory
specification of these FPGAs. The reason for them being the main contenders is that the Alveo U280 is
the FPGA with the most internal memory available at the Quantum & Computer Engineering Cluster at
TU Delft while the Versal as mentioned before is available via theHeterogeneous Accelerated Compute
Clusters at ETHZürich which enables easier implementation of the other layers of Bonito for future work.

Table 4.2: Memory specification of the AMD Alveo U280 [61] and AMD VCK5000 Versal [53]

Alveo U280 VCK5000 Versal
Internal SRAM (MB) 41 24
Internal SRAM bandwidth (TB/s) 30 24
External DDR (GB) 32 16
External DDR bandwidth (GB/s) 38 103
External HBM (GB) 8 N/A
External HBM bandwidth (GB/s) 460 N/A

Since the first target is to implement the Super model of Bonito, none of these FPGAs can internally
store 5 layers of this model. However, with the Alveo U280, it is possible to deploy a double buffering
scheme for the weight memories. This double buffering means that whilst one layer is calculated the
next layer is loaded in, this prevents the calculations from stalling between layer calculations due to
the weights fetching from DRAM. The Alveo additionally offers an HBM which is DRAM memory with a
higher bandwidth which can help by loading the next layer weights during calculations faster. However,
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due to the large chunk size, it is expected that the normal DDR memory is fast enough. For double
buffering, there is only a need for 2 × 16.8 + 4 = 37.6𝑀𝐵 of storage since the input and hidden/output
storage can be flipped after each layer. Considering this, the choice for FPGA has fallen on the Alveo
U280.
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4.2. System architecture
Before starting an implementation, an initial abstract system architecture is laid out. An overview of
this abstract architecture can be seen in Figure 4.2. This architecture is based on the implementation
using a layer-for-layer approach; as mentioned in the memory requirement exploration, the only way
to implement the Super model of bonito on the available FPGAs is by using a layer-for-layer approach.
This layer-for-layer approach entails that for each subsequent layer, the weights have to be read from
an external memory. However, an LSTM layer is additionally stateful, meaning that the calculations
are dependent on a state determined from previous calculations. The state in the LSTM layer consists
evidently of the long-term memory/cell state (𝑐𝑡) and short-term memory/hidden state (ℎ𝑡). This state
cannot be discarded in layer transitions as this will invalidate the calculation in the next iteration of
calculations in the layers. Consequently, on a layer transition, the state of the new layer should be
read from the external memory while the state of the finished layer should be written back to the ex-
ternal memory. Next to the weights being loaded in, the biases of the gates in the LSTM cells should
additionally be loaded into cells from the external memory.

OutputInput

PEs

External Memory

Input memory
Hidden/output memory

Weights memory

Controller

Figure 4.2: Abstract overview of system architecture

The following list abstractly outlines each component from the overview in Figure 4.2:

• Processing Engines (PEs): The PEs are the computational units of the implementation each
PE will be equivalent to an LSTM cell. The PEs additionally store the biases and the cell state.

• External memory: This is an off-chip memory, the memory type DDR or HBM memory will be
decided upon later depending on the computational throughput of the implementation. The ex-
ternal memory will store all the accompanied data for each layer: the weights, the biases, and
the layer state.

• Input/Output stream: These are not necessarily components but the input of the first LSTM layer
is streamed in from outside the FPGA and subsequently the output of the last layer is streamed
out of the FPGA. The streams are both possible input/output of the PEs.

• Input and hidden/output memory: This is on-chip memory, this memory consists of two mem-
ories an input memory and a hidden/output memory. An input vector from the input memory will
be fed to the PEs and the output vector of the PEs will be written to the hidden/output memory,
with exceptions in the first and last layer as mentioned before. Additionally to the input vector,
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the last output vector will be reinserted into the PEs as a hidden vector, hence the name of the
memory hidden/output memory. The input and hidden/output memory will not be a fixed memory
but more a functionality applied to 2 memories. The reason being that the output of one layer
is the input of another layer, this means that the hidden/output memory will function as an input
layer in a subsequent layer and for the input memory vice versa.

• Controller: The controller is an over-arching component that enables synchronization between
data transfers from the various memories, i.e. the weights input of the PEs should be synchro-
nized with the corresponding input and hidden data put into the PEs. Moreover, it keeps track
of when to switch between layers and commands the necessary components to retrieve the next
layer data (weights, state, and biases) from the external memory while additionally managing that
the state is written back to the external memory.

The architecture is designed from scratch as there is not a lot of literature on LSTM implementation
on FPGA, and the ones that exist are of very small sizes. An architecture that exists that inspired this
project’s design a little bit is an LSTM implementation by H. Wang et al. [62], however, their architecture
is different in a couple of aspects:

1. They only use a one-layer model therefore the entire switching out on layer transitions is not
present.

2. Their LSTM layer is a bi-directional layer meaning that the input data is analyzed from both direc-
tions in the layer. This is not present in the Bonito model, however, the computational approach
can be applied to a uni-directional LSTM as the computational approach is the same in both
directions.

Besides this, their implementation inspired the architecture on a computational level but everything is
essentially designed from scratch.
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4.3. Component design
This section examines how the previously outlined components in the system architecture are imple-
mented. The design process of the implementation is split into three sections:

• Processing engines which discusses the core LSTM calculating units and how they can be
mapped to the hardware available in the chosen FPGA.

• Memory management which discusses the arrangement of the internal memories and external
memories and how they are those memories can be connected to each other.

• Control and final architecture which discusses the final ensemble of all the components to-
gether. Moreover, it outlines the design of the control units that link and synchronize the memory
management and PEs together.

The FPGA implementation designed in this thesis is developed using the Xilinx Vivado toolchain,
including simulations, synthesis, and implementation. All inter-component communication is designed
using the AMBA AXI4 specification. AXI4 is used mainly due to it providing a consistent, fully specified,
and popular component interface specification and additionally because all the IPs1 of Xilinx in Vivado
are designed using this component interface [63], thus allowing for easy communication between those
IPs and self-made components. Moreover, the design process of each component has gone through
the following list of design steps in nearly all cases:

1. Outlining design requirements of the component

2. Sketch on paper a basic architecture of the component

3. Implement the component in VHDL

4. Write a testbench in VHDL to test the validity of the component and check if it correctly interacts
with other connected components by emulating those other components.

5. Synthesizing the component to obtain the resource consumption on the FPGA.

Naturally, these steps will be iterated over if redesigns are necessary due to possible excessive
resource consumption. While additionally, these steps can be quite time-consuming as each little com-
ponent has to be tested, it will result in much less work when finishing up the design in the end and
ensuring the final validity of the design. Moreover, in VHDL testing a smaller design is orders of mag-
nitude times faster than testing the whole design, so this will reduce the amount of test iterations of the
complete final architecture.

4.3.1. Processing engines
The processing engines are the core calculating part of the LSTM implementation. Processing engines
(PEs) do not generally store the data to be processed but most often stream in data and subsequently
stream out transformed output data, the exception being that the long-termmemory is stored in the PEs,
however, this is considered a state and not an output product. Before starting the implementation of the
PEs, it is important to first take into consideration the data format to be used in the system architecture.
After selecting a data format, there will be looked at ways of mapping the LSTM algorithm onto the
selected FPGA given its constraints.

Data format
The data format is a crucial design decision during FPGA development to try to obtain the right balance
in resource consumption and accuracy. The Bonito model used a 32-bit floating-point, also called single
precision, data format at the beginning of this thesis project. However, during the course of the thesis,
this actually changed to using a 16-bit floating-point (half precision) data format. The arithmetic units of
a GPU aremainly designed for floating point operations, while GPUs can perform integer operations this
1IP stands for intellectual property, however in the context of Vivado it is better to interpret it primarily as a library component
written by Xilinx (or any other company) that is additionally their intellectual property. In this thesis, it will mean a pre-made
component of Xilinx unless stated otherwise.
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is most often not at the same level of performance. Since there are very few restrictions on FPGAs,
it is possible to utilize data formats other than floating-point, i.e. most predominantly fixed-point. In
the fixed point format, as the name implies, the decimal point is fixed between an integer part and a
decimal part, where both these parts have some amount of bits assigned to them. With a floating-point,
the decimal point can float and consist of two parts: a fractional part and an exponent part which can be
represented as fraction×2exponent . Floating-point arithmetic has more accuracy as the representable
range through the floating decimal point is much larger than that of fixed-point. However, the resulting
hardware generated for floating-point arithmetic is oftenmuch larger than fixed point due to the following
aspects:

• A floating-point operation often consists of multiple atomic arithmetic operations. For example in
a floating-point multiplication, the exponents have to be added while the fractional parts have to
be multiplied.

• Floating points have to be aligned. This can be in the case of an addition that the exponents
of the inputs should be aligned having to additionally shift the fractional part. Additionally, in the
output of a floating-point operation, the resulting fractional part has to be realigned so that the
most significant bit is equal to a 1.

• There might also be rounding circuitry. There are multiple rounding modes in floating-point, while
historically a truncation was applied resulting in no extra hardware, with the introduction of the
widely-used floating-point standard IEEE754 the default requires some rounding, however, there
is still the possibility for using different modes [64].

Conversely, in fixed-point arithmetic, these points are not present or less hardware-intensive [65].
Fixed-point addition and subtraction are equal algorithmically to integer addition and subtraction. Fixed-
point multiplication requires somewhat more hardware to perform multiplication, it can be done by
doing integer multiplication however the output has to be scaled depending on the inputs. However,
FPGAs, like the one used in this project, most often have dedicated hardware on-chip to perform fast
arithmetic called digital signal processors (DSPs). These DSPs are fixed hardware blocks that cannot
be reconfigured and are generally faster andmore resource efficient than if one would design something
themselves using reconfigurable resources. These DSPs can perform fixed point arithmetic using little
or no additional supporting reconfigurable resources, while this is certainly not the case with floating
point [66]. Therefore, it is most often encouraged that designers would first explore the possibility
of using fixed-point compared to floating-point. Typically in applications that are mapped from CPU
or GPU implementations to FPGA, the CPU or GPU implementations use floating-point as that is by
far the most common way on those platforms to implement real numbers. However, there is a high
possibility that those numbers do not even require the large range provided by floating point, making
them have a small or no error when they are converted into a fixed point format. For this reason, the
same will be explored about the data of Bonito to verify if a conversion to fixed-point is possible.

To verify if converting the data in the Bonito network from half precision to fixed point requires not
only the weight data from the LSTMs of Bonito but also the input data requires verifying. Getting the
weight data out of the model is not hard as these are already separately stored. The data to be analyzed
is retrieved from Bonito’s super model, however, it is assumed that these results will not differ extremely
for the HAC and fast model. Before doing any conversion, the original data is analyzed to determine
the range of the data, see Table 4.3. The first thing to notice from the statistics of the original data is
that the data is signed, this means that one bit in the fixed-point data format has to be reserved for a
sign indicating positive and negative numbers. Furthermore, it is apparent that 95% of the weight data
is in the order of magnitude of 10−1, while the maximum or minimum value does not exceed the value
of 5. Utilizing this knowledge, using a fixed point representation of 16-bits with one sign bit, 3-bits for
the integer part to allow for the values exceeding 4, and the rest (12-bits) for the fractional part seems
for an optimal fixed-point format; this format can also be denoted as s16/12 for signed, a total of 16-
bits, and a 12-bit fractional part. The process of analyzing this conversion is performed by loading in
the data in Python and using a library to convert the data to a fixed-point format, in this case s16/12.
Then convert it back and subtract the absolute value of the conversion from the original to obtain the
absolute error, as seen in Table 4.4. The results of the conversion are promising as 25% of weights
have no error after conversion, except for the input weights of layer 1.
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Table 4.3: Statistics of the original Bonito weight data

Original Absolute
Weights Mean SD Max Min Mean 95th percentile 3rd quartile median 1st quartile 5th percentile

Layer 0 input -1.16E-03 0.093 1.555 -2.240 6.81E-02 1.76E-01 9.42E-02 5.32E-02 2.45E-02 4.76E-03
hidden -6.82E-04 0.148 3.109 -2.453 1.09E-01 3.03E-01 1.50E-01 8.09E-02 3.67E-02 4.76E-03

Layer 1 input -3.61E-04 0.129 2.818 -2.607 9.32E-02 2.61E-01 1.27E-01 6.90E-02 3.13E-02 6.06E-03
hidden -1.36E-04 0.157 3.287 -2.785 1.15E-01 3.18E-01 1.59E-01 8.68E-02 3.95E-02 6.06E-03

Layer 2 input 2.33E-04 0.125 4.859 -2.973 9.01E-02 2.50E-01 1.23E-01 6.70E-02 3.06E-02 5.94E-03
hidden 2.49E-05 0.162 3.973 -3.527 1.18E-01 3.28E-01 1.62E-01 8.75E-02 3.97E-02 5.94E-03

Layer 3 input 7.71E-05 0.124 2.775 -4.445 9.05E-02 2.46E-01 1.24E-01 6.85E-02 3.15E-02 6.15E-03
hidden -9.08E-04 0.147 2.924 -2.799 1.06E-01 2.96E-01 1.46E-01 7.95E-02 3.64E-02 6.15E-03

Layer 4 input -1.39E-04 0.128 3.617 -3.908 9.34E-02 2.54E-01 1.28E-01 7.07E-02 3.25E-02 6.34E-03
hidden 5.61E-04 0.141 4.172 -3.451 1.02E-01 2.82E-01 1.40E-01 7.66E-02 3.51E-02 6.34E-03

Table 4.4: Absolute error of the conversion of the Bonito weights to a 16-bit fixed point with 3-bit integer part and 12-bit fractional part

s16/12
Weights Mean SD Max Min 95th percentile 3rd quartile median 1st quartile 5th percentile

Layer 0 input 9.83E-05 7.13E-05 2.44E-04 0 2.14E-04 1.53E-04 1.07E-04 3.05E-05 0
hidden 8.48E-05 7.23E-05 2.44E-04 0 2.14E-04 1.22E-04 9.16E-05 0 0

Layer 1 input 8.99E-05 7.21E-05 2.44E-04 0 2.14E-04 1.37E-04 9.16E-05 0 0
hidden 8.27E-05 7.23E-05 2.44E-04 0 2.06E-04 1.22E-04 8.39E-05 0 0

Layer 2 input 9.09E-05 7.20E-05 2.44E-04 0 2.14E-04 1.45E-04 9.16E-05 0 0
hidden 8.21E-05 7.24E-05 2.44E-04 0 2.06E-04 1.22E-04 7.63E-05 0 0

Layer 3 input 9.07E-05 7.19E-05 2.44E-04 0 2.14E-04 1.45E-04 9.16E-05 0 0
hidden 8.56E-05 7.22E-05 2.44E-04 0 2.14E-04 1.22E-04 9.16E-05 0 0

Layer 4 input 8.98E-05 7.20E-05 2.44E-04 0 2.14E-04 1.37E-04 9.16E-05 0 0
hidden 8.70E-05 7.22E-05 2.44E-04 0 2.14E-04 1.22E-04 9.16E-05 0 0
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Moreover, the maximum error is still 1 order of magnitude smaller than the 5th percentile of the
original data and the 95th percentile of the error is 3 orders of magnitude smaller than the 95th percentile
of the original data. Other fixed-point formats have been checked, however, reducing the integer bits
to 2 results in a very high maximum error which seems to be unpreferable as these large values have
a lot of impact on these small numbers, so having a high error on them can lead to very erroneous
results of the whole network.

While the fixed-point results of the weights are very promising, verifying the input data is on the
contrary very challenging. This is mainly due to the input data of the Bonito network not being the input
of the LSTMs as the input of the network is going first through the CNN layers, etc. Intercepting the
data after these initial layers proved to be challenging as well because the Bonito network internally is
constructed quite complexly due to multi-threading which makes it quite challenging to alter the network
or debug the network to retrieve input samples. Another possibility to validate the impact caused by
conversion to fixed-point is to fully run the Bonito network with half-precision and another run with
fixed-point and check the output accuracy by means of validation tools provided by Bonito. However,
as mentioned before GPUs do not regularly use fixed-point, therefore there is no support in PyTorch
[67] meaning that is virtually impossible to validate the conversion this way. Lastly, as a last resort is
converting the input in the LSTM to fixed-point using the library used for the weight analysis and then
converting it back to half precision. This way it is possible to at least introduce the errors caused by the
conversion, however, the calculations are still in half precision. While this method did work, it was so
slow that even a single inference took more than 3 minutes, after which the process was killed because
this would not be a possible method, as it would take way too much time to run the entire network. This
concluded the path of using fixed-point as it would be impossible to verify that converting the network
to this data format would not decrease the accuracy too much, even though it showed a lot of potential.

The results of the fixed-point analysis mean that the only other option is to use floating-point. There
is another solution which is quantizing the weights into 8-bit or even 4-bit integers. However, this is
only applied to the weights and is mainly utilized to reduce I/O bandwidth as the weights are scaled
to float point by multiplying the integer weights with a floating point scaling factor which means that
calculations are still performed in floating point [67]. Add to this that the implementation would most
likely be computationally bound and not I/O bound due to the chunk size as mentioned before, this
means that this quantization is not necessary and only increases the computation time and thus the
entire inference time.

However, in floating-point there are two different 16-bit formats, the first one ”half precision” has
already been discussed while the second one is bfloat16. A bfloat16 is different from half precision in
that a bfloat16 has the same size exponent part as a single precision 32-bit floating-point which means
that its fractional part is smaller and thus less accurate however it has a larger representable range. A
half precision has an exponent size of 5 bits and a fraction of 10 bits, while a bfloat16 has an exponent
size of 8 bits and a fraction of 7 bits. While it seems that the fraction part is more important than the
exponent part looking back at Table 4.3, however, it depends on the range of the input data. Thus at
first face value, it seems that half precision is the best format, however, switching over to a bfloat16 later
is not complicated as this only means tweaking some settings and does not result in any component
redesign.

Outlining design
With the data format chosen, being 16-bit floating point, it is possible to look at designing the architecture
for the processing engines. As mentioned before, the processing engines should transform the input
data using the LSTM algorithms to obtain the correct inference data. From the theoretical analysis of
the LSTMs, recall equations 4.8 to 4.13, the LSTM inference can be divided into two phases: a matrix-
vector multiplication phase (Equation 4.8 to 4.11) calculating the gate outputs and a post-processing
phase (Equation 4.12 and 4.13) combining the gate outputs to obtain the cell state and hidden state.

𝑖𝑡 = 𝜎(𝑊𝑖_𝑖𝑛𝑝𝑢𝑡𝑥𝑡 +𝑊𝑖_ℎ𝑖𝑑𝑑𝑒𝑛ℎ𝑡−1 + 𝑏𝑖) (4.8)

𝑓𝑡 = 𝜎(𝑊𝑓_𝑖𝑛𝑝𝑢𝑡𝑥𝑡 +𝑊𝑓_ℎ𝑖𝑑𝑑𝑒𝑛ℎ𝑡−1 + 𝑏𝑓) (4.9)

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐_𝑖𝑛𝑝𝑢𝑡𝑥𝑡 +𝑊𝑐_ℎ𝑖𝑑𝑑𝑒𝑛ℎ𝑡−1 + 𝑏𝑐) (4.10)

𝑜𝑡 = 𝜎(𝑊𝑜_𝑖𝑛𝑝𝑢𝑡𝑥𝑡 +𝑊𝑜_ℎ𝑖𝑑𝑑𝑒𝑛ℎ𝑡−1 + 𝑏𝑜) (4.11)
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𝑐𝑡 = 𝑓𝑡⊙ 𝑐𝑡−1 + 𝑖𝑡⊙ 𝑐𝑡 (4.12)

ℎ𝑡 = 𝑜𝑡⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (4.13)

To more clearly describe these separate phases, the equation can be rewritten as Equations 4.14
to 4.27. These clearly show the matrix-vector phase in Equations 4.14 to 4.21 and the post-processing
phase in Equations 4.22 to 4.27.

𝑖𝑎𝑐𝑐_𝑖𝑛𝑝𝑢𝑡 = 𝑊𝑖_𝑖𝑛𝑝𝑢𝑡𝑥𝑡 (4.14)

𝑖𝑎𝑐𝑐_ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑊𝑖_ℎ𝑖𝑑𝑑𝑒𝑛ℎ𝑡−1 (4.15)

𝑓𝑎𝑐𝑐_𝑖𝑛𝑝𝑢𝑡 = 𝑊𝑓_𝑖𝑛𝑝𝑢𝑡𝑥𝑡 (4.16)

𝑓𝑎𝑐𝑐_ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑊𝑓_ℎ𝑖𝑑𝑑𝑒𝑛ℎ𝑡−1 (4.17)

𝑐𝑎𝑐𝑐_𝑖𝑛𝑝𝑢𝑡 = 𝑊𝑐_𝑖𝑛𝑝𝑢𝑡𝑥𝑡 (4.18)

𝑐𝑎𝑐𝑐_ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑊𝑐_ℎ𝑖𝑑𝑑𝑒𝑛ℎ𝑡−1 (4.19)

𝑜𝑎𝑐𝑐_𝑖𝑛𝑝𝑢𝑡 = 𝑊𝑜_𝑖𝑛𝑝𝑢𝑡𝑥𝑡 (4.20)

𝑜𝑎𝑐𝑐_ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑊𝑜_ℎ𝑖𝑑𝑑𝑒𝑛ℎ𝑡−1 (4.21)

𝑖𝑡 = 𝜎(𝑖𝑎𝑐𝑐_𝑖𝑛𝑝𝑢𝑡 + 𝑖𝑎𝑐𝑐_ℎ𝑖𝑑𝑑𝑒𝑛 + 𝑏𝑔) (4.22)

𝑓𝑡 = 𝜎(𝑓𝑎𝑐𝑐_𝑖𝑛𝑝𝑢𝑡 + 𝑓𝑎𝑐𝑐_ℎ𝑖𝑑𝑑𝑒𝑛 + 𝑏𝑓) (4.23)

𝑐𝑡 = 𝜎(𝑐𝑎𝑐𝑐_𝑖𝑛𝑝𝑢𝑡 + 𝑐𝑎𝑐𝑐_ℎ𝑖𝑑𝑑𝑒𝑛 + 𝑏𝑐) (4.24)

𝑜𝑡 = 𝜎(𝑜𝑎𝑐𝑐_𝑖𝑛𝑝𝑢𝑡 + 𝑜𝑎𝑐𝑐_ℎ𝑖𝑑𝑑𝑒𝑛 + 𝑏𝑜) (4.25)

𝑐𝑡 = 𝑓𝑡⊙ 𝑐𝑡−1 + 𝑖𝑡⊙ 𝑐𝑡 (4.26)

ℎ𝑡 = 𝑜𝑡⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (4.27)

From these rewritten Equations 4.14 to 4.27, a list of necessary arithmetic components can be
assembled for each phase can be described, allowing the construction of a single processing engine,
this list is as follows:

• Matrix-vector multiplication phase

– Multiply accumulator

⋄ Adder
⋄ Multiplier

• Post-processing phase

– A sigmoid unit

– A hyperbolic tangent unit

– Adders

– Multipliers

First, the two phases will be designed separately after which those design results will be put together
and connecting them.
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Matrix-vector multiplier
Firstly, there will be a look at implementing the matrix-vector multiplication units. Calculating a full
matrix-vector multiplication in a single cycle, especially of the Bonito sizes, is impossible; this means
that the matrix-vector calculation has to be segmented. Looking at the resources provided by the Alveo
U280, there are 9024 DSPs available. Dividing those DSPs over the 8 matrix-vector calculating units
means that each matrix-vector multiplication unit has access to 1128 DSPs. Looking at the Bonito
model, the super model is a matrix-vector multiplication of a matrix of size 1024 × 1024 and a vector
of size 1024. This shows great potential for completely unrolling a single axis of the matrix-vector
multiplication, with unrolling meaning that a single axis is calculated in one cycle, provided that each
index uses only one DSP. Whilst in the matrix there are two possible axes to unroll, see Equation 4.28
and 4.29, the Equations have lines added to them to illustrate the segmentation of the calculation over
time where each line equals a clock cycle2. The most optimal axis of the matrix to unroll is the vertical
axis as seen in Equation 4.28. The reason for this is that the resulting calculation in a cycle in Equation
4.28 has no dependency whilst the resulting calculation in Equation 4.29 is completely dependent on
each other. The result of this is that Equation 4.28 are simple parallel multiply accumulations, whilst
Equation 4.29 results in multipliers and massive serial adder trees to combine all the multiplication
results which due to serial nature probably slow down clock speed considerably.

[
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

] × [
𝑥
𝑦
𝑧
] = [

𝑎 × 𝑥 + 𝑏 × 𝑦 + 𝑐 × 𝑧
𝑑 × 𝑥 + 𝑒 × 𝑦 + 𝑓 × 𝑧
𝑔 × 𝑥 + ℎ × 𝑦 + 𝑖 × 𝑧

] (4.28)

[
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

] × [
𝑥
𝑦
𝑧
] = [

𝑎 × 𝑥 + 𝑏 × 𝑦 + 𝑐 × 𝑧
𝑑 × 𝑥 + 𝑒 × 𝑦 + 𝑓 × 𝑧
𝑔 × 𝑥 + ℎ × 𝑦 + 𝑖 × 𝑧

] (4.29)

The initial design is based on the fixed-point format as it showed great promise. Implementing a
fixed-point design proved to be relatively easy due to the fixed-point packages released in VHDL-2008,
this package allows the use of fixed-point formats in VHDL code without resorting to standard logic
vectors. While this design was in the near stages of completion, it was still scrapped in favor of the half
precision floating-point format for the reason mentioned in the data format section. While the VHDL-
2008 library also provided a similar floating-point package, this package is not very publicly endorsed
on fora due to the fact that it does not support any pipelining, alternatively, it is considered better to
use the floating-point IPs provided by Xilinx to perform arithmetic operations. As mentioned before,
the IPs include an AXI4 streaming interface allowing them to be applied more easily to the PEs in
the design. Additionally, this IP has a configuration page that allows for easy setting of the exponent
and fraction part of the floating-point to be calculated, this means that switching between different
formats over the whole system design is fairly easy as long as the bit-width of the data format does not
change. The floating-point IP does not support a multiply-accumulate configuration, which would be
the most ideal implementation for a matrix-vector multiplication. However, the IP does support a fused
multiply-add (FMADD) configuration, see the left side of Figure 4.3. In this configuration, the IP has
two DSP configurations medium usage using 1 DSP and full usage using 3 DSPs, the medium usage
will compensate for fewer DSPs by replacing them with LUTs [68]. Since for the super model it is only
possible to use 1 DSP, the medium usage seems ideal. However, an issue arises due to the latency
of the IP, the IP has a minimum latency of 1 clock cycle, which means that the FMADD result is only
available after 2 clock cycles. This is not a problem if the implementation only requires FMADDs as
the IP allows for pipelining but in this case, where an accumulation is required it results in a stall every
other cycle as the result is not ready every cycle to be reinserted in the FMADD.

Due to the latency reason, the FMADD-configured IPs are not usable, making it necessary to opt for
a new design. This design utilizes the floating point IP two times: once configured as a multiplier and
another configured as an accumulator, see right of Figure 4.3. However, this design puts forward a de-
cision to which IP the DSP is assigned. Looking at the resource consumption of both IP configurations
it is best to assign the DSP to the multiplier as it saves 332 LUTs while assigned to the accumulator only
2In the result of Equation 4.28 the cycle segmentation are illustrated by | + | and not just a single line.
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Figure 4.3: The fused multiply-add unit (left) compared to the multiply-accumulate unit (right)

38. This difference in LUT consumption means that the DSP will be used for the core operation and a
multiplication requires more hardware than an addition. The accumulator IP will continuously accumu-
late until the AXI4 last signal, indicating the last transaction, is triggered on the input, the accumulator
will reset once it outputs the last signal itself.

Post-processing phase
The post-processing phase follows after the accumulation is finished and it combines those accumula-
tion results from each gate output to calculate the cell state (𝑐𝑡) and hidden state (ℎ𝑡), Equations 4.30
to 4.35 show the post-processing these relating equations.

𝑖𝑡 = 𝜎(𝑖𝑎𝑐𝑐_𝑖𝑛𝑝𝑢𝑡 + 𝑖𝑎𝑐𝑐_ℎ𝑖𝑑𝑑𝑒𝑛 + 𝑏𝑔) (4.30)

𝑓𝑡 = 𝜎(𝑓𝑎𝑐𝑐_𝑖𝑛𝑝𝑢𝑡 + 𝑓𝑎𝑐𝑐_ℎ𝑖𝑑𝑑𝑒𝑛 + 𝑏𝑓) (4.31)

𝑐𝑡 = 𝜎(𝑐𝑎𝑐𝑐_𝑖𝑛𝑝𝑢𝑡 + 𝑐𝑎𝑐𝑐_ℎ𝑖𝑑𝑑𝑒𝑛 + 𝑏𝑐) (4.32)

𝑜𝑡 = 𝜎(𝑜𝑎𝑐𝑐_𝑖𝑛𝑝𝑢𝑡 + 𝑜𝑎𝑐𝑐_ℎ𝑖𝑑𝑑𝑒𝑛 + 𝑏𝑜) (4.33)

𝑐𝑡 = 𝑓𝑡⊙ 𝑐𝑡−1 + 𝑖𝑡⊙ 𝑐𝑡 (4.34)

ℎ𝑡 = 𝑜𝑡⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (4.35)

The set of Equations 4.30 to 4.35 result in the following list of atomic operations to be performed by
the post-processing design.

• 8 additions

• 3 multiplication

• 3 sigmoid activations

• 2 hyperbolic tangent activations

The first step in designing the post-processing phase is transforming the set of Equations 4.30 to
4.35 into a timeline to demonstrate sequentially all the arithmetic operations that are performed and
how they depend on each other. A visualization of this timeline can be seen in Figure 4.4. With this
timeline, a more optimal list of required floating-point operations can be assembled by analyzing how
many parallel operations are performed, this list is as follows:

• 3 adders

• 2 multiplication

• 2 sigmoid activations

• 1 hyperbolic tangent activations
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Figure 4.4: Timeline of an optimal sequence to perform the post-processing phase
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Since each processing engine contains already 8 multipliers and accumulators, resource-wise it is
most optimal to reuse those to perform the multiplications and additions. However, this means that
the output of multiplication results has to be diverted away from entering the accumulator and values
have to be inserted from outside into the accumulator, as seen on the left in Figure 4.5. However,
this modification makes the design much more complex to implement in VHDL and additionally, the
accumulator is more difficult to use as an adder due to the interface. One would think that since the
input of the adders is already an accumulated value the interfacing is not hard but the last signals reset
the accumulators thus the last signals have to be intercepted as well resulting in a lot more circuitry.
Moreover, in the normal case of addition if the value is not in the accumulator the addition takes two
cycles because the accumulator only accepts one input per cycle. For these reasons, it has been
decided to go for the design on the right of Figure 4.5 and go for separate adder-configured IPs but
keep the multiplier modification. The adders do not require a lot of hardware to be implemented while
the multipliers do especially without DSPs as discussed before. Currently, the design uses 3 adder-
configured IPs to allow for the optimal throughput but if this results in too much hardware it can be
opted to use fewer adders and perform the addition sequentially instead of in parallel.

X

+

ACC

Accumulator

MUX

Multiplier output

X

+

ACC

Accumulator

MUX

Add input

Multiplier output

Figure 4.5: MAC with (optional) add input and multiplier output

The activation functions sigmoid and hyperbolic tangent (tanh) are more difficult to compute in hard-
ware. These activation functions are both not linear, being exponential and hyperbolic functions (see
Equation 4.36 and 4.37) for sigmoid and tanh respectively.

𝜎(𝑥) = 1
1 + 𝑒−𝑥 (4.36)

tanh(𝑥) = 𝑒2𝑥 − 1
𝑒2𝑥 + 1 (4.37)

Due to their non-linearity, these functions are not trivial to implement in hardware, therefore, most
often in hardware design, there is a trade-off between hardware complexity and accuracy loss due
to approximation [69]. To make this trade-off decision, multiple activation function techniques will be
analyzed.

• Xilinx IPs: The first implementation is designing a pipeline using the IPs provided by Xilinx. By
examining Equation 4.36 and 4.37, a pipeline can be constructed as seen in Figure 4.6 and
4.7 where each dotted box indicates a clock cycle. The additions and multiplications can be
performed by the multipliers in the MAC unit and adders existing in the PEs. The reciprocal
and exponential would require their own IPs. While the reciprocal uses only 17 LUTs and the
exponential requires 167 LUTs for half precision, the exponential IP also has a hard requirement
to use 2 DSPs [68]. Since the implementation has allocated all DSPs to the MACs, this makes
this implementation of activation not applicable. Moreover, it is not well documented how this
exponential is implemented algorithmically or how accurate they are.
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Figure 4.6: Pipelining of the sigmoid function using floating-point IPs
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Figure 4.7: Pipelining of the tanh function using floating-point IPs

• Non-linear piece wise approximation: A very accurate implementation is using non-linear
piece-wise approximation [70]. In this design, the sigmoid curves are approximated by construct-
ing logarithmic piecewise functions. While this is very accurate, it also requires a lot of resources
to calculate the logarithmic functions, amounting to around 11 DSPs; and as mentioned before
this is too much for this design.

• CORDIC: CORDIC, which stands for ”Coordinate Rotation Digital Computer,” is a digital algorithm
used for efficiently calculating various trigonometric and other transcendental functions using only
simple arithmetic and bit-shifting operations. The CORDIC algorithm operates by iteratively ro-
tating a vector in a coordinate system by small angles until the desired trigonometric value is
achieved [71]. It can approximate the sigmoid and tanh functions with very high accuracy [72] and
Xilinx even provides IPs to perform CORDIC operations. However, these IPs consume around
3000 LUTs which is too much to use them in the implementation.

• Look-up tables: This approximation works by indexing a look-up table with the input data to
look up what the corresponding output is. The accuracy is naturally dependent on the amount
of entries in the look-up tables, where more entries result in more generated hardware. The
accuracy hardware trade-off is not very competitive compared to other approximations as a lot of
LUTs are required to still have fairly low accuracy [73][74].

• Piece-wise linearization: The piece-wise linearization method seems to be a popular approach
to perform activation function approximation on FPGAs [75][76]. Piece-wise linearization is a
mathematical technique used to approximate a complex nonlinear function with a series of linear
segments. The idea is to break down the nonlinear function into smaller intervals where it behaves
more linearly. The piece-wise linearization is particularly interesting as the existing multipliers and
adders can reused to calculate the linear segments in the form of 𝑦 = 𝑎𝑥 + 𝑏, resulting in low
additional needed hardware to implement this.

• Range-addressable look-up tables: Range-addressable look-up tables (RaLUTs) are very simi-
lar to look-up tables approximation. However, in RaLUTS the index address of the LUT is variable
in width, allowing for very granular and coarse indexing steps between entries. This variability is
useful for asymptotic functions like the sigmoid and tanh. As seen in Figure 4.8, the derivative
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value is very high in both functions in the area around 𝑥 = 0, while the derivative quickly goes
to zero outside this area. This can be used in a RaLUT by using a lot of entries around zero
as values change quickly there, and using fewer and fewer entries when it goes to zero. There
is, however, little to no information on how to construct such a RaLUT and it seems to be only
mentioned as a possible approximation but is rarely used.
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Figure 4.8: Plot of sigmoid function and hyperbolic tangent (tanh)

After considering all these implementation options, the decision has fallen to use piece-wise lin-
earization to approximate the activation functions. The reason for this decision mainly comes from the
balance it strikes between accuracy and hardware consumption, while additionally having the ability
to reuse the hardware of the MACs to perform the linear calculations. Z. Li et al. [75] published re-
search on piece-wise linearization of the sigmoid activation function. They provide multiple piece-wise
linearization functions of which they state that 10 pieces is optimal due to little gains from having more
pieces. This piece-wise function is shown in Equation 4.38. However, a pre-made piece-wise function
does not exist for tanh meaning that one has to be created from scratch. Since the creation method is
well documented by Z. Li et al. the same method will be applied to make the tanh piece-wise function.

𝑝𝜎_10(𝑥) =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

0 𝑥 ≤ −8
0.00252𝑥 + 0.01875 −8 < 𝑥 ≤ −4.5
0.02367𝑥 + 0.11397 −4.5 < 𝑥 ≤ −3
0.06975𝑥 + 0.25219 −3 < 𝑥 ≤ −2
0.14841𝑥 + 0.40951 −2 < 𝑥 ≤ −1
0.2389𝑥 + 0.5 −1 < 𝑥 ≤ 1
0.14841𝑥 + 0.59049 1 < 𝑥 ≤ 2
0.06975𝑥 + 0.74781 2 < 𝑥 ≤ 3
0.02367𝑥 + 0.88603 3 < 𝑥 ≤ 4.5
0.00252𝑥 + 0.98125 4.5 < 𝑥 ≤ 8
1 𝑥 > 8

(4.38)

First, the curvature of the tanh will be determined using Equations 4.39 to 4.41 to see which parts
of the tanh are the least linear. Plotting the curvature, see Figure 4.9, it is apparent that the curvature
of the tanh is the largest around the area of 𝑥 = 1.
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𝑑𝑡𝑎𝑛ℎ(𝑥)
𝑑𝑥 = 𝑠𝑒𝑐ℎ(𝑥)2 (4.39)

𝑑2𝑡𝑎𝑛ℎ(𝑥)
𝑑𝑥2 = −2𝑠𝑒𝑐ℎ(𝑥)2𝑡𝑎𝑛ℎ(𝑥) (4.40)

𝑐𝑢𝑟𝑣𝑒(𝑡𝑎𝑛ℎ) =
|𝑑

2𝑡𝑎𝑛ℎ(𝑥)
𝑑𝑥2 |

(1 + (𝑑𝑡𝑎𝑛ℎ(𝑥)𝑑𝑥 )
2
)
3/2 (4.41)
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Figure 4.9: Plot of the derivative and curvature of the hyperbolic tangent (tanh)

The method starts by sampling 𝑛 samples uniformly from the tanh function (�⃗�), see Equation 4.42.
As seen in Figure 4.41, the figure has asymptotes on 𝑦 = −1 and 𝑦 = 1 from 𝑥 = −4 and 𝑥 = 4
respectively, therefore the samples are sampled uniformly from [−4, 4] (�⃗�). The sample size is 1000,
the same as in the reference paper.

�⃗� = 𝑡𝑎𝑛ℎ(�⃗�) (4.42)

According to the paper, the piece-wise linear function can be constructed using Equation 4.43,
where 𝑚 equals the number of linearized pieces.

𝑝(𝑥) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

−1 𝑥 ≤ 𝑏1
𝛽1 + 𝛽2(𝑥 − 𝑏1) 𝑏1 < 𝑥 ≤ 𝑏2
𝛽1 + 𝛽2(𝑥 − 𝑏1) + 𝛽3(𝑥 − 𝑏2) 𝑏2 < 𝑥 ≤ 𝑏3
⋮ ⋮
𝛽1 + 𝛽2(𝑥 − 𝑏1) + 𝛽3(𝑥 − 𝑏2) + ⋯ + 𝛽𝑚(𝑥 − 𝑏𝑚−1) 𝑏𝑚−1 < 𝑥 ≤ 𝑏𝑚
1 𝑥 > 𝑏𝑚

(4.43)

The piece-wise functions from Equation 4.43 are placed in matrix A (Equation 4.45) for each input
sample and are activated using the step function 𝛿𝑥𝑖>𝑏𝑗 (Equation 4.44).

𝛿𝑥𝑖>𝑏𝑗 = {
0 𝑥𝑖 ≤ 𝑏𝑗
1 𝑥𝑖 > 𝑏𝑗

(4.44)
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𝐴 =
⎡
⎢
⎢
⎣

1 𝑥1 − 𝑏1 (𝑥1 − 𝑏2)𝛿𝑥1>𝑏2 ⋯ (𝑥1 − 𝑏𝑚−1)𝛿𝑥1>𝑏𝑚−1
1 𝑥1 − 𝑏1 (𝑥1 − 𝑏2)𝛿𝑥1>𝑏2 ⋯ (𝑥1 − 𝑏𝑚−1)𝛿𝑥1>𝑏𝑚−1
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑛 − 𝑏1 (𝑥𝑛 − 𝑏2)𝛿𝑥𝑛>𝑏2 ⋯ (𝑥𝑛 − 𝑏𝑚−1)𝛿𝑥𝑛>𝑏𝑚−1

⎤
⎥
⎥
⎦

(4.45)

With the matrix from Equation 4.45 and the tanh samples (�⃗�), the 𝛽 vector can be calculated to
obtain the final piece-wise function, see Equation 4.46.

𝛽 = (𝐴𝑇𝐴)−1 𝐴𝑇�⃗� (4.46)

The difficult part is selecting the right values for 𝑏 the bounds of the pieces. The paper is not really
clear how these are bounds i.e. in Equation 4.38 are selected. However, they derive them somehow
from the curvature of the function. Trying to do this for tanh resulted in subpar results therefore it was
chosen to choose the optimal bound values for tanh by brute forcing using a script for every combination
of bounds in the interval [−4, 4] and selecting the one with the smallest error. This is subsequently
done from 4 to 14 pieces, as seen in Figure 4.10; the average absolute error is calculated according to
Equation 4.47.

𝑒𝑎𝑣𝑔 =
∑𝑛𝑖=1 |𝐴𝛽 − �⃗�|𝑖

𝑛 (4.47)
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Figure 4.10: The error due to the piece-wise linearization against the number of utilized pieces

From the results from Figure 4.10, it has been decided to use the 16 pieces as themax error plateaus
after that value. Figure 4.11 shows the error of the 16 pieces and clearly shows that as expected the
error around |𝑥| = 1 is the largest as the curvature and non-linearity is the highest there as discussed
in Figure 4.9. The final resulting piece-wise function is shown in Equation 4.48.
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𝑝𝑡𝑎𝑛ℎ_16(𝑥) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

−1 𝑥 ≤ −4
0.00739𝑥 − 0.97183 −4 < 𝑥 ≤ −2.5
0.05619𝑥 − 0.84983 −2.5 < 𝑥 ≤ −1.75
0.18788𝑥 − 0.61937 −1.75 < 𝑥 ≤ −1.25
0.36098𝑥 − 0.40300 −1.25 < 𝑥 ≤ −1.0
0.50082𝑥 − 0.26316 −1.0 < 𝑥 ≤ −0.75
0.69131𝑥 − 0.12029 −0.75 < 𝑥 ≤ −0.5
0.87373𝑥 − 0.02908 −0.5 < 𝑥 ≤ −0.25
0.99007𝑥 −0.25 < 𝑥 ≤ 0.25
0.87373𝑥 + 0.02908 0.25 < 𝑥 ≤ 0.5
0.69131𝑥 + 0.12029 0.5 < 𝑥 ≤ 0.75
0.50082𝑥 − 0.26316 0.75 < 𝑥 ≤ 1.0
0.36098𝑥 + 0.40300 1.0 < 𝑥 ≤ 1.25
0.18788𝑥 + 0.61937 1.25 < 𝑥 ≤ 1.75
0.05619𝑥 + 0.84983 1.75 < 𝑥 ≤ 2.5
0.00739𝑥 + 0.97183 2.5 < 𝑥 ≤ 4
1 𝑥 > 4

(4.48)
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Figure 4.11: The error due to the piece-wise linearization using 16 pieces

With the piece-wise functions in Equation 4.38 and 4.48, the sigmoid and tanh functions can be
implemented in hardware. The hardware design consists of three stages, as seen in Figure 4.12. The
first stage consists of the sigmoid/tanh decision-maker, this component determines the slope and offset
value depending on in which segment the input lays. This decision-making is essentially a look-up table
for the slope and offset value with as input the boolean output of comparators which check if the input
lay in a selected segment. Due to the segments purposely being powers of 2, these comparisons are
very lightweight as only a few bits of the exponent and fraction parts of the floating point have to be
analyzed. Next to the slope and offset, the decision-maker unit additionally outputs the input value to
calculate the linearization in the subsequent stages with the slope and offset. Moreover, it outputs an
optional value output for the asymptotic outputs which require no linearization calculation, if this value
is outputted the input, slope, and offset outputs are disabled by being flagged as invalid, and vice-versa
for the value output when the slope and offset are being outputted.
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Figure 4.12: Implementation of a sigmoid or a tanh decision-maker

With the activation functions implemented, it is possible to make the final post-processing timeline
as seen in Figure 4.13, with the activation functions unrolled as seen in Figure 4.12. Altogether, the
post-processing phase has 11 stages of calculations, as seen in Figure 4.13.
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Figure 4.13: Timeline of a sequence to perform the post-processing phase with sigmoid and tanh performed as piece-wise
linearization

Initial design
With both hardware designs for the matrix-vector phase and the post-processing phase ready, the PE
architecture can be finalized. The primary state machine of the PEs can be seen in Figure 4.14. There
are two phases in the matrix-vector phase as the matrix-vector calculation has a latency of 2 cycles,
this means that if the input triggers the last signal the MACs output the last output two cycles later. In
this finishing state, inputs have to be set to not ready meaning that the PEs are not ready to process
new data which is equally valid for the post-state, otherwise the next inference will be started from the
input side. In the post-stage 11, the output is ready and the PE does not go to the next state until this
output is ready to be received on the receiving side.

Figure 4.15 shows the architecture of the PE. As outlined in the post-processing design, there is
a need for 3 multipliers, therefore 3 of the MAC units are in the form in which the multiplication can
be diverted away from the accumulator. Additionally, there are post-buffers in the design where the
outputs of each post-state can be stored and are used again as inputs in the subsequent post-state.
In total, there are 9 of the post-buffers as the sigmoid and tanh produces at maximum 3 outputs each,
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Figure 4.14: Flowchart of states in the PE state machine

while additionally having three decision-makers in parallel. However, these post-buffers do make the
post twice as slow as the result has to be writing the result and reading cannot occur in the same clock
cycle. Additionally, there is a mention of the 𝑐𝑡 and bias inputs shown in Figure 4.15, however, these
will be later discussed in the section about memory management.
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Figure 4.15: Abstract hardware architecture of the processing engines

However, after synthesizing the PEs it became apparent that resource consumption was really ex-
cessive, especially in LUTs, as seen in Table 4.5 that shows the result of a partially finished implemen-
tation. During the design phases, the LUTs were not really taken into consideration as they were hard
to predict and the resource estimation tool in Vivado is not very accurate. After these results, it is clear
that implementing the super model is not possible, only if the design of the matrix-vector multiplication
is also segmented over the y-axis 5 times; which additionally leads to 5x less performance naturally.

It is clear that the implementation has to be downsized in some way. The focus was therefore shifted
to the HAC model. The number of PEs is now 384 instead of 1024, while this is only a reduction of
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Table 4.5: Resource utilization of partially finished PE for super model

Num PEs LUT Flip-Flops DSPs
1024 428.63% 211.57% 90.78%

2.3x instead of the required 5x, there are also more DSPs available so LUTs can be replaced by DSPs
allowing the MACs to be fully implemented with 3 DSPs. However, there are not enough DSPs to use
only full DSP MACs but this results in utilization of 102% (see Table 4.6). This overflow in DSPs can be
reduced to 100% by replacing some MACs with 1 DSP MACs (as used in the super model) in a ratio
of 372 full DSP MACs and 12 1 DSP MACs. However, by using 1 DSP MACs, the LUT consumption
naturally becomes higher again, see Table 4.6

Table 4.6: Resource utilization of PE for HAC model

Num PEs LUT Flip-Flops DSPs
Full DSP MACs 384 203.98% 111.56% 102.13%

Partial 1 DSP MACs 384 208.14% 111.56% 100%

Iteration
After looking further into the documentation and having gained more experience over the course of the
project, a possibility was found to configure the fused multiply-add IP in a non-blocking manner. The
non-blocking allows the fused-multiply add to be calculated without any latency, this means that every
clock cycle an FMADD operation can be performed and that the output is already present before the
next rising edge; allowing the output to be reinserted in the next cycle as the additive. This means that
there are no problems with time dependency on the accumulation anymore. Additionally, this simplifies
the design in many aspects:

• Due to the non-blocking configuration and zero latency, the FMADD units do not have ready
signals anymore which also reduces the amount of flip-flops used as the inputs do not have to be
buffered in the case the FMADD is not ready.

• The multiplication output does not have to be diverted away in the post-state as the FMADD can
be used as a multiplier by using a 0 as an additive. This means that there is no need for different
FMADD designs unlike with the MACs.

• The FMADDs can also be used as an adder by calculating 𝑦 = 𝑎𝑑𝑑1×1+𝑎𝑑𝑑2 using the FMADD,
which means that there is no need for separate adders.

• The activation functions can be calculated within 2 cycles as opposed to 3 with the MACs, as
the linearization calculation 𝑦 = 𝑎𝑥 + 𝑏 can be calculated in 1 cycle, which means that the post-
processing has 9 stages as opposed to 11, see Figure 4.16.

Moreover, due to the non-blocking and less complex design, the post-processing has been reduced
to 1 cycle instead of 2 for each stage, meaning for each inference the post sequence is reduced from 18
to 9 cycles. This reduction is possible because there is no ready check and a value can be immediately
inserted into the next arithmetic unit because it does not have to be buffered in the post buffers. The
post buffers are still used to store the result of the 𝑜𝑖𝑛𝑝𝑢𝑡+𝑜ℎ𝑖𝑑𝑑𝑒𝑛+𝑜𝑏𝑖𝑎𝑠 result, see Figure 4.16, and to
store the value output of the activation decision-maker if it does not have to go through the linearization.
Using the FMADD units the current PE design is as shown in Figure 4.17. In the current configuration,
the FMADD IPs use 3 DSPs, as seen before this results in more DSPs than available which means
that a few PEs have to be configured using 1 DSP. The total resulting resource consumption can be
seen in Table 4.7, where it has been chosen to use the DSPs as much as possible resulting in 370 PEs
with 3 DSPs and 14 with 1 DSP. Additionally, the LUT utilization is still high but it is not expected that
the memory management will take up too much resources.
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Figure 4.17: Abstract hardware architecture of the processing engines using fused multiply-add

Table 4.7: Resource utilization of the PE after the design iteration

PE type Num PEs LUT Flip-Flops DSPs
Full DSP 370 90.00% 11.81% 98.40%
LUT/DSP 14 5.63% 0.45% 1.24%
Total 384 95.63% 12.26% 99.65%
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4.3.2. Memory management
After finishing the designs of the PEs, the infrastructure for streaming in and out the data has to be
designed. Memory management is notoriously hard in hardware description languages due to having to
orchestrate many distributed memories without any pre-made foundation for the memory infrastructure
[77]. Naturally, this allows for a very granular and performant design but at the cost of a lot of verbosity
and programming errors in the design process resulting in a lot of testing iteration making it time-
intensive.

First, the external memory of the design is to be determined, HMB or DDR. Then the memory
infrastructure is designed and a timeline of the schedule of the dataflow. Finally, there will be a look at
how to implement the distributed internal memories.

External memory
Before calculating and determining which external memory to use, first, an assessment of the data
transfers for each layer has to be made. The following list shows all the data transfers:

• Reading in the cell state (𝑐𝑡) and writing it back on when the layer is finished.

• Reading in the biases

• Writing out the hidden state of the previous layer and reading in the hidden state for the next layer

• Reading in the weights

For these transfers, the data size can be determined as seen in Table 4.8; all data has a bit-width
of 16 bits. The cell state, hidden state, and biases are all vectors of size 384, however, there are 4 bias
vectors. The weights naturally dominate the data transfers being 8 matrices of 384 × 384. Altogether,
this results in a transfer size of 2.37 MB per layer.

Table 4.8: Transfer sizes of data per layer

Transfer Transfer times Transfer size Total size
Cell state 2 0.77 KB 1.54 KB
Hidden state 2 0.77 KB 1.54 KB
Biases 1 3.07 KB 3.07 KB
Weights 1 2.36 MB 2.36 MB
Total 2.37 MB

Since the PE design is now known, it is possible to determine the amount of clock cycles per layer.
The matrix-vector calculation takes 384 cycles plus the additional 9 cycles for the post and while using
a chunk size of 1000, this results in each layer taking 3.93 × 105 cycles to calculate. Moreover, the
HBM has a bandwidth of 460 GB/s while the DDR has a bandwidth of 38 GB/s. This means that the
transfer time to transfer the 2.37 MB per layer is 62.2𝜇𝑠 and 8.48𝜇𝑠 for DDR and HBM respectively.
This means that to not oversaturate the maximum clock speed is 6.31 GHz and 46.35 GHz for DDR
and HBM respectively. These clock speeds are unreachable on FPGAs, therefore it is safe to say that
the implementation is computationally bound. Additionally, this means that the DDR will suffice and
that there is no need for HBM. Moreover, HBM also requires additional hardware resources than DDR
which are already lacking in this LSTM implementation.

Memory Architecture Design
In Figure 4.18, the abstract dataflow and required memories can be seen. Moreover, due to the imple-
mentation being computationally bound, it is possible to apply a double-buffering method. However,
the representation in Figure 4.18 is not possible to realize on the FPGA as the DDR DRAM has only
an interface of 512 bits, this interface is provided by the DDR IP which abstracts the DDR interface and
instead delivers an AXI4 interface. To utilize this interface in the implementation, it has been chosen
to use a bus interface of 512 bits to transfer data to the internal memories, see Figure 4.19.
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The bus has to be bi-directional as the LSTM state has to be written back to DRAM, this complicates
the design a little bit, however, this can be solved by utilizing the tri-state buffers on the FPGA. Each
component has a bus interface with these tri-state buffers, these buffers allow the bus interfaces to
read and write from the bus or go in a high-impedance state when the current bus interface is idle. This
high-impedance mode ensures that an idle interface does not interrupt the communication on the bus
between two other interfaces.

By using a bus there is also a need to schedule, see Table 4.9, the read/write process over the bus
as, naturally, the DRAM cannot provide all the transfer data in one cycle and it is not allowed that two
different interfaces write to the bus at the same time. The first transfers in the schedule are to read in the
cell state (𝑐𝑡) and biases for the current computing layer. Transferring these is possible as during the
matrix-vector multiplication this data is not needed yet, only in the post phase, this provides a window
of 384 to transfer the cell state and biases which should take only 60 cycles, therefore double buffering
is not applied to these memories. After that, the transfer order is not that critical, the hidden state of the
previous layer is written out which is buffered in the Input Hidden/Output Bus Interface since the last
inference of the previous layer. After that, the largest transfers occur of the weights which is followed
by reading the hidden state of the next layer. The hidden of the next layer is buffered in the Next layer
hidden buffer (see Figure 4.19), this buffer is only used for the first inference of a layer as hidden input
for the PEs, for the subsequent inferences the output of the PEs is used, as mentioned before. After
this, the bus waits until the last inference has occurred and the 𝑐𝑡 memory in the PEs is flagged as
valid, after which the 𝑐𝑡 state is written back to the DRAM. To organize the transfers, the DRAM bus
interface has an additional output to all the other bus interfaces indicating the bus state. The bus states
are the transfers seen in Table 4.9 and an additional IDLE state in which every bus interface goes in
high-impedance mode, using these bus states the other bus interfaces can be coordinated.

The DRAM bus interface has another task next to coordinating, which is writing and reading from
the DDR DRAM. The data that the DRAM has to store for each layer is a cell state, hidden state, 4 bias
vectors, and 8 weight matrices, which amount to 2.37 MB as mentioned before or a total of 11.85 MB.
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Figure 4.19: Implementation of the memory architecture

Transfer DRAM operation Size (bits) Cycles
𝑐𝑙𝑎𝑦𝑒𝑟 Read 384 × 16 12
I bias Read 384 × 16 12
F bias Read 384 × 16 12
G bias Read 384 × 16 12
O bias Read 384 × 16 12
ℎ𝑙𝑎𝑦𝑒𝑟−1 Write 384 × 16 12
𝐼𝑖𝑛𝑝𝑢𝑡 weight Read 384 × 384 × 16 4608
𝐼ℎ𝑖𝑑𝑑𝑒𝑛 weight Read 384 × 384 × 16 4608
𝐹𝑖𝑛𝑝𝑢𝑡 weight Read 384 × 384 × 16 4608
𝐹ℎ𝑖𝑑𝑑𝑒𝑛 weight Read 384 × 384 × 16 4608
𝐺𝑖𝑛𝑝𝑢𝑡 weight Read 384 × 384 × 16 4608
𝐺ℎ𝑖𝑑𝑑𝑒𝑛 weight Read 384 × 384 × 16 4608
𝑂𝑖𝑛𝑝𝑢𝑡 weight Read 384 × 384 × 16 4608
𝑂ℎ𝑖𝑑𝑑𝑒𝑛 weight Read 384 × 384 × 16 4608
ℎ𝑙𝑎𝑦𝑒𝑟+1 Read 384 × 16 12
𝑐𝑙𝑎𝑦𝑒𝑟 Write 384 × 16 12

Table 4.9: Schedule for reading and writing to the DRAM
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Since this is a fraction of the 32 GB that DRAM can store, it is possible to structure the data in DRAM
so that it is easy to manage. The resulting DRAM address can be seen in Figure 4.20, where 3 bits
are assigned to indicate the layer, 4 bits to indicate the data type (states, biases, weights), and 13 bits
to index the data types where 13 bits is based on the 4608 data blocks sized 512 bits for the weights.
The remaining bits are unused and set to zero.

Layer Data type Index

20 17 13 033 ...

Figure 4.20: DRAM address

The weight manager and ”Input Hidden/Output Manager” in Figure 4.19 manage the data flow from
the internal memories to the PEs. The weight manager reads from one of the weight memories to
enable the double buffering, in the meanwhile the weights bus interface writes to the other memory.
The memory from which they read and write to naturally switches between layer changes. The ”Input
Hidden/Output Manager” essentially acts similarly and switches between reading and writing from the
input/hidden buffers for each layer. The hidden state is actually buffered inside the manager and when
the manager outputs the hidden value to the PEs, it concurrently writes it to the hidden/output buffer
memory. After the last inference, there is no next inference therefore the hidden state is written to the
bus interface to be written to DRAM while concurrently writing to the hidden/output buffer memory.

Distributing Internal Memory
The final piece of the memory architecture is assigning the different internal memory types to the mem-
ories. The Alveo U280 FPGA has two types 960 UltraRAMs (URAMs) and 2016 Block RAMs (BRAMs).
The main difference in this use case is the read latency and the size of the memory. The URAMs can
read a data entry in one cycle while a BRAM takes two cycles. A URAM primitive can hold 288 kb
(kbits) of data while the BRAM can hold 36 kb of data. A 36 kb BRAM can additionally be subdivided
into two BRAMs of 18 kb with each 18 kb having its own interface; the URAMs do not have such a
feature.

RAM type Primitive size (kb) Number available On-Chip Size (MB)
URAM 288 960 34.56
BRAM 36/18 2016 9.07
Total 43.63

Table 4.10: Alveo U280 SRAMs specification

However, there is a problem due to a trade-off between the data width of the memory against
memory utilization. This problem is of course lessened by the changing from the super model to the
HAC model, however, it is still apparent in the weight memories as for each weight memory each cycle
384 × 16 = 6144 bits have to be read, while a URAM only has a data width of 72 bits. This means
that 86 URAMs are required to satisfy the data width of 6144 bits, which takes up 3.1 MB of storage
while a single weight matrix only uses 295 KB of storage meaning only 10% of the URAMs are utilized
while storing the weights, which is naturally very inefficient. A way to solve this data-width problem
is by ”over-clocking” the URAMs as the data width can be reduced by the amount the clock speed of
the URAMs is increased, as the single data request can be split over the extra clock cycle obtain from
”over-clocking”. However, instead, it has been decided to store the weights in BRAM as the BRAM
are smaller memories meaning that less space is wasted by having a larger data width. It is not easy
to calculate the amount of BRAMs that are generated due to the BRAMs having a variable data width
depending on the data depth, however, the IP used to generate the BRAMs states that 86 36kb BRAMS
are used meaning that the weights memory utilization is bumped up to 76%.

Conversely, the inputs/hidden buffers are implemented using URAMs as these do not require a large
data width as each cycle only 1 input (16 bits) is read from the memory. While the utilization is not great
for both memories being 33%, combined they are just two memories storing 1.5MB which is marginal
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compared to the 35 MB available. It does show that utilizing the URAMs is not as straightforward and
would have added more design complexity if the super model was to be fitted onto the FPGA.

The SRAMs do not allow different read-write data widths, therefore, to write to the weights memory,
the weight data has to be buffered in the weights bus interface to assemble the 6144 bit data from
the 512 bit data from the data bus. Moreover, this issue is more problematic after the last inference
in a layer when the final result has to be written to the bus interface and hidden/output buffer memory,
as this memory has a data width of 16 bits meaning that the computation must stall for 384 cycles.
However, this stall amounts only to 0.09% of the complete inference cycles which is marginal.

4.3.3. Control
The system architecture’s final element is a controller that orchestrates and synchronizes all the afore-
mentioned components. The controller unit is at its core a counter which counts from 0 to 383. This
counter value is outputted to the weight memory and input/hidden memory which subsequently outputs
the corresponding value from their memory. Moreover, in every two layers, the values in each input
vector have to be read in reverse from the input/hidden memory, this is done by subtracting the counter
value from 383 and combining it with the chunk value to get the read address. This naturally results
in overhead as 384 is not a power of 2, so the values for every chunk from 384 to 512 are unutilized.
However, due to the poor utilization of the URAMs (33%), this overhead is negligible as the resulting
address is 14-bit while the URAM block allows for 19-bit addressing. When the counter reaches 383,
concurrently, a last signal is raised which triggers the PEs to go to the post-processing phase. At the
same time during the counting, the DRAM interface is triggered to start running through the schedule
to fetch and write the states, biases, and weights. The controller also listens to the bus state to check if
the cell state and biases of the current layer are read in already, otherwise, it blocks the PEs from start-
ing the post until those values are finished reading in. However, this stalling is very unlikely because
as mentioned before reading in those values takes approximately 60 cycles while the matrix-vector
calculation takes 384 cycles, but it is added as a precaution.

Going back to the last signals emitted from the control unit, a multi-dimensional last signal is used
which is inspired by the Tydi interface specification [78]. While a multi-dimensional last signal is not
in the AXI4 specification, it does help to easily communicate the ending of a single inference and
additionally signal the last inference of the entire layer. This second last signal is controlled by a different
counter which counts the chunk progress from 0 to 999 representing the chunk size of 1000. After 1000
is reached the control unit resets its counters a restarts the counters and the entire process starts for the
next layer. The information of the current layer is additionally outputted to i.e. the ”input hidden/output
manager which uses this information to take the input from the input instead of the memories in the
first layer or output it to the output instead of writing it to memory in the last layer, or, it uses it also to
know when to read the input vectors in reverse.

Moreover, the controller manages the initialization of the system by loading the weights as due to
the double buffering mechanism used in the design, it is necessary that the weights of the first layer
are already pre-loaded into the SRAMs before inference.



44 4. LSTM accelerator design

4.4. Full system design
With all the components outlined and implemented, Figure 4.21 shows the final architecture of the
FGPA implementation of Bonito. The architecture is implemented by using a layer-by-layer approach,
meaning that one of the five Bonito layers is computed at a time. More layers to perform pipelining
cannot be implemented due to hardware limitations as by using of 16-bit floating point, which is not
natively supported on the used FPGA, the hardware can only perform 8×384 multiply-accumulate op-
erations which is equivalent to a single layer of the Bonito high-accuracy (HAC) model. However, some
optimizations have been performed such as double-buffering. Since there is enough space in on-chip
memory for two layers, by using double-buffering the next layer can be loaded from external memory
(DRAM) into another on-chip memory while the current layer is being computed. This double-buffering
allows for immediate switching and continuation of computing the next layer when a layer is finished.
Moreover, since the FPGA in this implementation is compute-bound, this allows the implementation
to be continuously busy with computing layers and not be stalled with memory transfers. Next to the
weights, which are the largest memory transfers, for each layer the biases and the long and short-term
memory state vectors have to be loaded from DRAM and additionally the memory state vectors of the
previous layer have to be written back to the DRAM. As seen in Figure 4.21, all these layer data have to
be written and read from different components, therefore, a data bus has been designed for the DRAM
for more organized DRAM access.
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Figure 4.21: Final architecture of the FPGA implementation



5
Evaluation

This chapter focuses evaluating on the implemented design from the previous chapter. The implemen-
tation will be evaluated on the following points:

• Resource utilization: Validates if the implemented design fits on the FPGA.

• Performance: Compares the FPGA performance to the Bonito LSTM layers on the GPU.

• Validity: Statistically compare the output of the LSTM layers to a known functioning baseline
implementation on a CPU or GPU.

5.1. Resource utilization
With the implementation finished, the design can be synthesized and implemented on the FPGA. Table
5.1 shows the synthesis results of the implementation, there are two results:

• Full DSP: This is the utilization by using full DSPs (3 DSPs) for the fused multiply adds (FMADD).
However, as seen from Table 5.1 and as discussed before, this results in too much DSP usage.

• Max available DSP: This implementation replaces 2 of the DSPs with LUTS in the FMADD units
leaving 1 DSP, to achieve a DSP utilization under 100%. However, doing so naturally increases
LUT utilization which in turn exceeds 100%.

Implementation LUT FF URAM BRAM DSP
Full DSP 98.40% 13.17% 26.04% 68.28% 102.13%
Max available DSP 100.63% 13.17% 26.04% 68.28% 99.65%

Table 5.1: Resource utilization of the implementation on the U280

As mentioned before, the DSPs use around 95% of the LUT consumption, this means that the rest
of the components utilize the remaining 5%. After going through the utilization reports, it becomes
apparent that 3.8% of this 5% is spent on the weights manager, which is the component that reads
from one of the two double-buffered weight memories. However, scaled up to 8 weight memories,
every cycle 8 of the 16 memories have to be read. To alternate between reading from 8 memories and
in another layer from the other 8 memories, a very large MUX is required of 2 × 8 × 6144 = 98304
bits to switch between the two. This large MUX is implemented using LUTs thus resulting in the 3.77%
resource utilization. While it is possible to reduce the data width by ”overclocking” the memories and
buffering the results in flip flops, this will still result in around 98% which is additionally very hard to
impossible to route and place on the FPGA for the implementor.

After these results, there was looked at different/newer FPGAs that with perhaps smaller transistor
technology, which might not be available to this project but exist on the market. After searching, the
U250 came into view, while first overlooked as it is not available at the Q&CE cluster at TU Delft,
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and thought of having less due to being labeled lower than the U280, this FPGA has more primitive
resources (LUTs, etc.) available than the U280. The difference between the U280 and the U250,
however, is that the U250 has no HBM like the U280. The HBM is most likely replaced by the primitive
resources on the FPGA, since this project does not use HBM the U250 is a good target to synthesize
to. The synthesis results of the implementation can be seen in Table 5.2. Using the Alveo U250
allows all the FMADDs to be implemented with full DSPs and results in good utilization of the other
primitive resources. The drawback is that this FPGA is available only at theHeterogeneous Accelerated
Compute Clusters at ETH Zürich for which there was little time left to apply for using it and setting up and
testing the implementation. Moreover, as seen later in the performance results, the performance will
not be competitive on an FPGA, therefore, due to time constraints, there is more value in demonstrating
the validity of the implementation than showing that it can run on the FPGA.

Implementation LUT FF URAM BRAM DSP
Full DSP 74.24% 9.93% 19.53% 51.21% 75.00%

Table 5.2: Resource utilization of the implementation on the U250

5.2. Performance
The performance of the implementation will be compared to the equivalent HAC model Bonito GPU
implementation. The performance of the GPU implementation will be examined by analyzing the trace
of an inference and measuring the time spent on the LSTM layers. For this analysis, the NVIDIA RTX
2080 Ti is used which is the best GPU available at theQ&CE cluster at TU Delft. If the amount of FLOP
(floating-point operations) is combined with the LSTM time, the FLOPS (FLOPS) can be determined
which is a general computational throughput metric. The number of FLOP for a matrix multiplication
of (𝑛 × 𝑝) ⋅ (𝑝 × 𝑚) is 𝑛𝑚(2𝑝 − 1), this is with considering a fused multiply-add as 2 FLOP. Where
𝑛 = 𝑝 = 384, the layer size, and 𝑚 is the batch size which is 𝑚 = 96 × 1000 = 96000 for the GPU as
the GPU batches the chunks in batches of 96. Scaling this up to 8 matrix multiplications and 5 layers
FLOP = 8 × 5 × 𝑛𝑚(2𝑝 − 1) = 566 GFLOP. The FLOPS on the GPU is shown in Table 5.3.

Device TFLOP Compute time (ms) TFLOPS
GPU 1.13 40.4 28.00

Table 5.3: Computational throughput of the HAC Bonito model on a NVIDIA RTX 2080 Ti

Conversely, on the FPGA the FLOPS can be calculated, however, since the the design is not im-
plemented it is not possible to obtain a clock speed. Therefore, as an estimation, a clock speed of
200MHz has been chosen which is typical for an FPGA implementation. Moreover, a FLOP/cycle has
to be established for the FPGA implementation to combine with the frequency to obtain FLOPS, since
the FPGA performs 384 × 8 = 3072 FMADDs per cycle this is the FLOP/cycle. Using this frequency
and FLOP/cycle, the FLOPS can be determined which is 614.4 GFLOPS. This FLOPS can be used
to get an estimated required frequency to match the GPU implementation which is 4.67 GHz which is
completely impossible to achieve as theoretically the FMADDs max out on 850 MHz, which means that
computationally it is impossible to obtain the same performance as a GPU.

Device TFLOP Estimated compute time (ms) TFLOPS Required frequency (GHz)
FPGA 1.13 940 1.23 4.67

Table 5.4: Computational throughput of the HAC Bonito model on an FPGA, with the required frequency to match the GPU

5.3. Validation
An important aspect of the implementation is validating the design. Continuous validation is espe-
cially important in hardware design as due to the massive amount of signals, interconnectedness, and
parallelism, it is very easy to make a mistake that will get harder to detect and fix over time. This is
why every little component described in the previous chapter has gone through testing to make sure it
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works. Until this point, however, the components have only been tested on their own for validity. Test-
ing these components is done by placing the component in a VHDL testbench file. In this testbench file,
time-sequential VHDL code is written to emulate the components that interact with it. This testbench
can in turn be simulated using a simulator that produces signal waves like an oscilloscope, see Figure
5.1. While this simulation output is great for validating for the hardware designer, the output in Figure
5.1 shows only the waves for ∼10 clock cycles for ∼10 data signals which is only ∼1% of the data flow.
Making it impossible to show the validity of the system in this report this way.

Figure 5.1: Simulation example of time-sequential VHDL code

Therefore, another way has to be decided to show validity in the report. The best way to show the
validity of the system is to measure the accuracy of the output of the implementation and compare it
to the baseline Bonito GPU implementation and subsequently use the benchmarks by i.e. M. Pagès-
Gallego et al. [32] to validate the implementation result in read accuracy compared to other basecaller.
However, this is also complicated to achieve because the FPGA implementation only has the imple-
mentation of the LSTM layers, while the CNN and linear layers are absent as discussed before. As
only a part of the basecalling implementation is implemented, the data would have to be first fed into
the GPU implementation then taken out of the GPU implementation, to be then fed into the FPGA im-
plementation, and feed the FPGA back into the GPU implementation to finish it off. As seen during the
fixed-point analysis, it proves very difficult to get the data out of the GPU implementation, moreover, the
implementations run on different computers adding more difficulty. Therefore, this is also not a viable
option.

The decision has fallen on validating the implementation by comparing the implemented design to
a CPU-based design and comparing the accuracy between the two. The CPU implementation is a
Python script that is modeled to be equivalent to the Bonito LSTM layer implementation but without
multithreading, etc. which makes it difficult to work with the LSTM in isolation on the Bonito GPU
implementation. The FPGA implementation is run in the Vivado simulator, as running on the FPGA is
not possible as mentioned before. While using the Vivado simulator works, it is, however, very slow
and requires a lot of compute resources from the host to simulate the implementation. The memory
requirement is high due to the implementation having to be compiled into code that can be run in the
simulator, while the simulator itself is slow due to the simulator having to keep track of thousands of
signals at each time increment. At first, it was tried to simulate the design on a desktop PC with an
AMD Ryzen 7 3700X with 32 GB DDR4 RAM, however, this was not enough to simulate the design
as it ran out of RAM. Fortunately, it is possible to run the Vivado simulator on the Q&CE servers,
which provides 254 GB RAM with an AMD EPYC 7542 CPU. While it is not optimal to perform Vivado
simulation on a server CPU compared to a desktop CPU due to it being a very single-threaded process,
the amount of RAM on the server allows the simulation to run which is naturally more important. The
Python implementation is run on the aforementioned desktop PC.

To validate the implementation, two tests are run: a single-layer inference and a full model inference.
The single-layer test is used to evaluate the error induced by one layer alone, while the full-model test
evaluates how this error will cascade over the 5 LSTMs. To perform the tests, a chunk sample is
extracted from the Bonito model using the variable watch debug tool, additionally, the weights and
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biases of pre-trained models are provided in a Pickle file by Oxford Nanopore. This Pickle file can
easily be read by Python meaning that the Python implementation has all the data it needs. Getting the
input, weight, and bias data into the VHDL simulation is a bit more tricky as VHDL is primarily designed
as hardware description language, therefore, performing I/O operations with the simulating PC to load
in the input, weight, and bias data is a bit convoluted. The current process to provide the data to the
simulation is by converting the data, which is a 16-bit float, to 16-bit hexadecimal characters to make
a 4-character hex string. These hex strings are then placed in text files, which are in turn read by the
VHDL simulation. These hex strings can be interpreted as an array of bits (std_logic_vector) by VHDL
and subsequently cast to a half-precision type. The same process happens in reverse when writing
out the results and reading them back into Python to perform statistical analysis.

It was initially planned to infer the entire chunk of 1000 vectors, however, this seemed to be im-
possible given time constraints due to how slow the simulation is. After testing only one inference,
the simulation took around 25 minutes to complete plus 40 minutes of compile time. Therefore, it was
opted to go for only 10 inferences per layer. These 10 inferences took 6 hours and 5 minutes in total
to complete for one layer, which indicates that the simulation speed slows down over time. For this
reason and, additionally, that the Q&CE website states that an X11-Forwarding SSH session will be
terminated after 10 hours, it has been chosen to segment the full-model inference over 5 simulations,
one for each layer, taking around 30 hours to complete.

The results of single-layer inference can be seen in Figure 5.2 (left). What is interesting to note is
that the error of the single-layer seems to correlate with the error of the activation functions as seen in
Figure 5.2. Additionally, what is interesting to note when looking into the outliers (above the 99.9% line)
is that they had larger outputs on the interval 𝑎𝑏𝑠([1.0, 4.0]) out of one or more of the accumulators.
These larger accumulations had already errors around [10−3, 10−2] which suggests accuracy loss due
to accumulation. When in the design the accumulator was still split from the multiplier the accumulator
accumulated into a larger bit-width which results in a smaller error when accumulating, once the output
is requested the accumulation is reduced back to 16-bit. However, with the fused multiply-add this
is not possible as the input and output all have to be 16-bit, therefore, offering a lower resolution in
accumulation. It seems that both factors influence the error.
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Figure 5.2: Error of 1 layer inference (left) compared to the error of the activation functions (right)

The results of the multi-layer inferences can be seen in Figure 5.3. The figure shows the results of
subsequent layer inferences, meaning that the output of the 2 Layer inference is the input for the 3 Layer
inference and so forth. Surprisingly, the error is not increased accumulative or multiplicative, which one
would first expect due to the output with the error being fed into a new layer as input. However, here the
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error increases and then decreases in subsequent layers. A possible explanation for this phenomenon
is that errors are canceling out over time as all the erroneous samples from the output of the previous
layer are recombined in the next layer with the matrix multiplication. This might explain the large error
peak in layer 2, which slowly regresses back to the mean activation function error due to more samples
being recombined with each subsequent layer inference.
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6
Discussion and performance projections

In this chapter, the focus is shifted to exploring areas to investigate in the future using the implemen-
tation. Potential research directions will be discussed that are beyond the scope of the present work
and could offer incremental improvements on the current implementation based on the lessons learned
during the thesis project.

6.1. ASIC implementation
As the evaluation has shown implementing LSTMs of this size is not competitive on an FPGA compared
to a GPU. However, the implemented design can function as a proof-of-concept to be implemented on
an ASIC (application-specific integrated circuit). The clock speed formatching the implementation to the
GPU is 4.6 GHz which is too high for the FPGA. While 4.6GHz is also very high in most ASIC designs,
the clock speed of an ASIC can most often be 10x higher than an FPGA, therefore, implementing the
design on an ASIC will improve the performance over an FPGA.

6.1.1. FPGA hard-copy
Implementing this design on an ASIC is not a fast process and would potentially require additional
effort. A relatively easy option is to order an ASIC hard copy of the FPGA implementation. This is
a service that takes the FPGA and the implementation of the design and implements it on an ASIC
without the reconfigurability of the FPGA, meaning that the ASIC logic cannot change like an FPGA.
This conversion service offers quite some benefits with a (hard copy) ASIC over an FPGA:

• Reduced power consumption: As mentioned before the logic in an FPGA is implemented with
LUTs (lookup tables). As the suggests, this is essentially a read-only memory (ROM) contain-
ing the truth tables of the desired logic. While great for reconfigurability, this is intrinsically not
as efficient transistor-wise compared to implementing the logic with logic gates at the transistor
level because the look-up table requires an address decoder, an output mux, etc. Due to having
fewer transistors the power consumption is reduced by a factor of 3 to 6 because there are fewer
transistors switching [79][80].

• Non-volatility: The ASIC implementation is non-volatile, the reconfigurability is stripped away,
the ASIC is also more stable and secure as the design is ”hard coded” on the die. Conversely, the
FPGA has to flash its interconnects (to route signals correctly) and LUTs on power loss by load-
ing the implementation (bitstream) from memory on booting, which takes time. However, more
importantly, this configuring can lead to all kinds of security and error-inducing issues [79][81].

• Unit cost: Somewhat contradicting to expectations onsemi, a company that offers such service,
claims a unit price for hard copy ASICs of 25% to 75% compared to the price of the FPGA [79],
which is surprising due to fact that it is a custom silicon fabrication. Moreover, FPGAs often have
very high pin count which is most often not fully utilized by reducing the pin count for an ASIC to
full utilization the packages can be reduced in size making fabrication cheaper [80].

51
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However, these services do not offer any real speed-ups compared to their FPGA implementations
which is a little unexpected, as this might be because the ASIC keeps the grid logic floorplanning layout
of the FPGA, see Figure 6.1, which is not optimized for specific applications. Moreover, these service
providers warn against IP locking which means that your implementation is not directly mappable to
FPGA because of proprietary IP utilization in the design [79]. These proprietary IPs have often en-
crypted source codes which in the best-case scenario can be obtained monetarily or worst-case not at
all, meaning that the IP has to be replaced with something with obtainable source code. This thesis
implementation is, however, IP-locked due to utilizing the floating-point IPs by Xilinx meaning that these
would have to be replaced with a custom implementation.

Figure 6.1: Schematic illustration of an FPGA die [82]

6.1.2. Custom ASIC
While mapping the FPGA implementation directly to an ASIC has quick time to market, minus having
to create custom floating-point units, it still does not address the speed performance issue compared
to the GPU. To address this, there has to be looked more at custom optimizations like routing and die
floorplanning to increase clock speed and throughput per cycle to increase performance. However,
by looking at the FPGA primitive resource distribution, see Figure 6.2, it is apparent that a relatively
small portion of the die is allocated to the DSPs, while Figure 6.2 would probably not be the exact
distribution of the Alveo FPGA used in this project, it shows a very typical FPGA resource distribution.
In an implementation, like this thesis project, where the throughput is constrained by DSPs, one would
conversely want as many DSPs as possible which makes this distribution quite ineffective. However,
one could validly state that the LUT utilization in this thesis project implementation is also high (75%), as
seen before in the evaluation section. This high LUT utilization is because the DSPs in the Alveo FPGAs
cannot perform floating-point operations natively, therefore, the LUTs have to accompany the DSPs to
perform floating-point operations which is not hardware efficient. Moreover, the DSPs are also capable
of performing features that are not utilized in this implementation thus resulting in unutilized transistors.
By designing an ASIC the arithmetic units can be completely designed to be specialized in performing
fused multiply-add operations in floating-point, which would use significantly fewer transistors.

Combining these insights, the conclusion can be drawn that an FPGA is not laid out well enough



6.1. ASIC implementation 53

Figure 6.2: Typical primitive resource distribution of an FPGA die [82]

to optimally perform the LSTM calculations, leaving quite some potential optimizations. However, the
additional transistors that become available due to the optimizations can not be directly assigned to
the implementation and automatically make the design more performant. Therefore, there will now
be a look at how to utilize these transistors by exploring architectural changes to accommodate them.
Before performing further analysis on the ASIC design to obtain some preliminary result estimation, it
must be stated that assumptions about the transistor performance increases have to be made. This is
because there is no formula to estimate the area utilization (transistor usage) in converting an FPGA
implementation to an ASIC implementation. Additionally, the optimization is on a spectrum where on
the one side with low effort there is the hard copy, while optimizing further it is naturally pushed further
away from the hard copy but by requiring more time and using more design budget. The hard copy can
give a baseline to estimate transistor utilization improvements. The hard copy service providers state
that the power consumption is improved 3 to 6 times compared to the FPGA without stating any speed
differences while stating that this reduction is coming from replacing LUTs with logic gates. Suppose
it is assumed that the power consumption scales linearly with the transistor count, it can be assumed
that just by doing a hard copy there are potentially 3 to 6 times more transistors available. With already
5 times more transistors one can potentially pipeline the entire 5 layers of the model, see Figure 6.3.
By fully pipelining the design, 5 layers can be calculated at the same time. Moreover, the fully pipelined
implementation also eliminates the need for any additional external DRAM as everything can be stored
on-chip. Fully pipelining the design also simplifies the entire architecture as input/output data does not
have to be buffered only the hidden state and the cell state. Moreover, the states and weights do not
have to be switched out every layer switch, and the weights data does not have to be double buffered.
Naturally, storing all five layer weights on-chip increases the SRAM utilization but this only occupies
11.85 MB with each weight memory taking up 2.37 MB. Moreover, due to the design being an ASIC
the memory utilization can be better optimized for the data width of the application, leading to better
memory utilization than in the FPGA implementation. Moreover, SRAMs can take up a lot of chip area
so optimizing the SRAM to be as close to 12 MB as possible can leave more area for floating point units.
Finally, the on-chip memory can also be implemented as read-only memories (ROMs) which is even
more efficient than SRAMs as the weight memories do not have to be written to. However, using ROMs
will sacrifice changing the weights, for instance when Oxford Nanopore offers newly trained weights.

Additionally, by looking at the resource distribution as seen in Figure 6.2, say with some optimization
and making dedicated floating point units, with some optimism, the transistor count increases to 10 fold
instead of 5. Looking back to the matrix-vector multiplication optimization, see Equation 6.1, in addition
to pipelining, two parallel accumulations per layer are possible, as seen in Equation 6.2. The parallel ac-
cumulations can be added together in the post, leading only to two extra cycles in the post-processing,
one extra for the input and one for the hidden input, while being twice as fast in accumulation.
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Figure 6.3: A fully pipelined Bonito implementation

Moreover, due to having more efficient (shorter) signal paths due to optimizing the transistor us-
age, additionally, in an ASIC the clock frequency can be increased significantly compared to an FPGA.
This is because each clock cycle the signals have to go through fewer transistors and each transistor
adds a delay to the signal. While an FPGA has clock speeds around 100 to 200 MHz, it is common
for ASICs to have clock speeds 10x higher in the of 1 to 2 GHz [83]. Combining that with the fact of
pipelining and parallel accumulations a speed up of 100x can be achieved over the FPGA implementa-
tion. Looking back at the performance evaluation, the computational throughput of the FGPA with 1.13
TFLOPS/s, theoretically, the ASIC can achieve around 113 TFLOPS/s which vastly outperforms the
benchmark GPU (RTX 2080Ti) of 28 TFLOPS/s. However, when looking at NVIDIA A100 which are
the GPUs paired by Oxford Nanopore with their sequencers, that GPU can still theoretically perform
156 TFLOPS/s [84] showing how performant high-end GPUs are.

While the ASIC implementation shows potential, this is, as mentioned before, a preliminary look at
such an implementation. Moreover, ASIC implementations are not without monetary risks. Manufac-
turing an ASIC is already a large investment resulting in costs of 10 to 100 million dollars [85]. Such
investments are naturally risky and require good market evaluation to validate if that investment can
be returned. Moreover, the design process of an ASIC is significantly longer due to validation because
if there is a bug in your hardware there is no way of fixing it once manufactured, losing potentially a lot
of money. Conversely, a bug in an FPGA implementation can be fixed with an update by reconfiguring
the hardware [83]. However, by analyzing the price-per-unit the ASIC shows potential over an A100
GPU. By calculating using similar silicon wafer properties as an A100 GPU, a preliminary analysis of
the price-per-unit can be performed.
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Integrated circuits (IC), like an ASIC, aremade from awafer which is a circular slice of semiconductor
material (typically crystalline silicon) and by using photolithography [86]. From such a silicon wafer,
multiple rectangular IC dies are made, see Figure 6.4. By utilizing the data from TSMC (one of the
largest silicon manufacturers), at the time of writing these silicon wafers have a diameter of 300mm
(∼12 inches) [87] with a reticle limit of 858mm² [88] which indicate the maximum area of an IC die.
An NVIDIA A100 GPU has a die size of 826mm² [60], therefore, in this analysis, the same value of
826mm² using square dies is chosen since the comparison is against the A100 GPU as it is used by
Oxford Nanopore.

Figure 6.4: Abstract representation of a silicon wafer (circle) and silicon dies (squares) [89]

However, as seen in Figure 6.4, obviously it is not possible to fully utilize the circular area of the wafer
for the dies since the dies are rectangular. The dies per wafer (DPW) can subsequently be calculated
by utilizing Equation 6.3 [90], where 𝑑 is the wafer diameter and 𝑆 is the area of the dies. Using Equation
6.3, this is approximated to result in 66 dies using a 300mm wafer and 826mm² dies. A 300mm silicon
wafer from TSMC using 3nm technology costs around $20,000 [91] which allows for calculating the
price per die. However, before calculating the price per die, it is important to note that the die yield is a
considerable factor, as with TSMC’s 3nm manufacturing process the yield is reported to be about 55%
[92]. Accounting for all these parameters, the price per die would be around $550. To get to the final
ASIC the die has to be packaged, tested, etc., therefore, a margin of double the die cost is taken as an
estimation to account for that, resulting in a price-per-unit of $1,100. Comparing this price-per-unit to
an NVIDIA A100 of around $45,000 shows that in terms of cost, the ASIC implementation shows a lot
of potential. However, as mentioned before, sales volume is very important as silicon manufacturers
naturally do not make wafers in small volumes, nevertheless, given the price difference and interest in
genomics, it is not unusual to assume a large volume of i.e. 100,000 units.

𝐷𝑃𝑊 = 𝜋𝑑2
4𝑆 − 0.58𝜋𝑑

√𝑆
(6.3)

6.2. Fixed-point analysis
While the possibility of fixed-point arithmetic instead of floating-point has already been explored at the
beginning of the design phase of the project, it is still a possible improvement over floating-point in this
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implementation. Due to time constraints, the validation of a possible fixed-point implementation could
not be finished, in the current state, it still shows potential as it does not seem that this implementa-
tion needs the large dynamic range of floating-points. In the discussion of choosing a data format of
Section 4.3.1, it was already shown that the weight quantization has a low error, in the order of 10−5.
Combining that quantization error, with the observed error as seen in Section 5.3 evaluating the ac-
curacy of the floating-point LSTM implementation which is 2 orders of magnitude larger, we estimate
that the impact of using fixed-point is low to marginal due to the effect of the activation functions. Be-
cause the fixed-point arithmetic units are more efficient to implement than floating-point units [93], it
should be possible to increase the computational throughput this way further in an ASIC than using
floating-point. Moreover, even for the FPGA implementation, the DSPs on the FPGA can perform mul-
tiple integer operations simultaneously per DPS and only require 1 DSP fused multiply-add over 3 for
the floating-point, meaning that the computational throughput could be much higher. Moreover, 1 DSP
in fixed-point arithmetic can perform 3 fixed-point computations at the same time, further increasing
computational throughput. In total, this would allow for 9x computational throughput improvement over
a floating-point implementation, thus theoretically also a 9x improvement over an NVIDIA A100 GPU
when this fixed-point implementation would be implemented on an ASIC. However, the first step is to
validate the Bonito model with fixed-point quantization which is, as discussed before in Section 4.3.1,
not trivial to do.

6.3. Activation functions
As seen with the evaluations, the error of the layer outputs seems to correlate with the error of the
activation functions. However, due to the limited amount of resources on the FPGA, any other imple-
mentation than lookup tables (LUT) and piece-wise linearization (PWL) was not possible, as the PWL
method could reuse hardware and the LUT methods just the FPGA LUTs. However, as seen in Figure
6.5, there is no more potential in PWL as having more pieces does not lower the error anymore. How-
ever, in the case of an ASIC with more resources, it is possible to delve into more accurate activation
function implementations, like CORDIC, etc. as discussed in Section 4.3.1 on implementing activation
functions. With more accurate activation functions, it will also be interesting to see if the error is actually
correlated to the activation function or if some other factors are at play.
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Figure 6.5: The error due to the piece-wise linearization against the number of utilized pieces
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6.4. FPGA PCIe interface
In order to perform I/O externally on AMD Alveo Data Center Cards, the use of the PCIe interface is
required. However, due to time constraints, this PCIe interface is not implemented. Moreover, the
FPGA implementation does not fit on the available FPGAs at the Q&CE clusters at TU Delft, therefore,
the implementation was not run on any physical device, it was only simulated. Due to it not being
run physically, the PCIe interface addition was dropped for other efforts on the thesis as it is only an
interface to communicate outside the FPGA and is not a core functionality of the FPGA implementation.
If someone wants to further develop the FPGA implementation, i.e. for the U250, the PCIe interface
has to be implemented, however, since the performance on the FPGA is not as performant as the
GPU implementation it is not really recommended to further develop it unless better optimizations are
possible on the FPGA implementation. The current implementation has an AXI4 streaming interface
for the external I/O, so adding the PCIe interface probably only requires using the PCIe IP from Xilinx
and maybe some FIFO IPs for buffering.





7
Conclusions and recommendations

7.1. Conclusions
This thesis aims to find an implementation of an accelerated hardware solution for the compute-intensive
process of basecalling. The thesis lays the foundation of an accelerator for basecalling nanopore se-
quenced long reads. As identified during analyzing those Oxford Nanopore long-read pipelines, the
basecalling showed to be the main computational bottleneck in both time and accuracy. While great
improvements in basecalling accuracy have been made over time by developing and training newer
models, there seemed to be little focus on the computational throughput aspects. After selecting a
model and analyzing that model, it became apparent that the LSTM (Long short-term memory) layers
of the machine learning models were taking up around 90% of computation time, making the thesis
shift more to accelerating those LSTM layers over accelerating the whole basecalling network. The
support of LSTM layers on FPGA through libraries, etc. is very little or not in usable states, therefore, a
from-scratch implementation in VHDL was chosen which enables more control in optimization but also
makes developing it more difficult.

While outlining and researching LSTM implementations on FPGA, it was difficult to find LSTM im-
plementation of the size and amount of layers used in the Bonito model. Most of the LSTM imple-
mentations in literature were only for small layers and few implementations were available, indicating
on-chip memory as a limitation. Therefore, validating the performance and capacity of on-chip and
off-chip memory was crucial before starting such an implementation. However, after implementing the
arithmetic units, contrary to expectations, the memory was not the limiting factor but the amount of
arithmetic units that could fit on the FPGA was. The limitation of arithmetic units is mainly because the
arithmetic accelerators on the FPGA cannot natively perform floating-point operations, meaning that
multiple of these accelerators and reconfigurable logic have to be combined to facilitate a floating-point
unit. This severely limits the possibility of performing more optimizations on the FPGA regarding the
arithmetic units on the FPGA which made it impossible to create an FPGA implementation that is com-
petitive to even the benchmark GPU (NVIDIA RTX 2080Ti), while that GPU is not even the best GPU
on the market. This means that running the LSTM on FPGAs is not feasible as it does not offer any real
benefit over the GPU implementation. The GPU implementation has better integration with the host
system (i.e. PyTorch), better performance, and comparable energy consumption.

However, while the FPGA implementation itself is not competitive, it can serve as a starting point
for developing an application-specific integrated circuit (ASIC) for Bonito LSTM inferences or even the
whole Bonito model. The main problems with the FPGA are that it has no floating point units and the
FPGA primitive resources are not well laid out to facilitate maximum computational throughput. In an
ASIC, these elements can be optimized allowing for higher computational throughput making it, with a
preliminary theoretical analysis, comparable to a high-end GPU like an NVIDIA A100. Moreover, utiliz-
ing fixed-point arithmetic over floating-point makes the ASIC up to 9 times faster than an A100 GPU but
due to issues with validation, it is not certain yet if fixed-point quantization will lead to too much accuracy
loss. However, developing an ASIC from this design is not a trivial effort requiring additional design and
validation effort. Moreover, manufacturing an ASIC has a high monetary investment with more risks
than an FPGA implementation due to hardware bugs and potential loss of investment. Nevertheless,
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60 7. Conclusions and recommendations

analyzing the potential price-per-unit of such an ASIC implementation, the estimated price-per-unit is
$1,100 which is significantly less than an NVIDIA A100 GPU costing around $40,000.

7.2. Recommendation
Based on the findings of this thesis the following are recommendations for future work:

• Further exploring the possibilities of implementing the Bonito model on an ASIC as discussed in
Section 6.1.

• Fully validate fixed-point quantization possibilities as discussed in Section 4.3.1 and 6.2.

• Further look into the activation functions as the activation functions in the current implementation
functions seem to be the main contributor of accuracy loss, see Section 4.3.1 and 6.3.
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