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Abstract
Developers do not want to reinvent the wheel when developing software systems. Open-source software

repositories are packed with resources that may assist developers with their work. Since Github enabled
repository tagging, a new opportunity arose to help developers find the needed resources tailored to
their needs. The current work proposes two similar repository approaches enhanced by a tag hierarchy
generation approach that is used in our recommender systems. The first approach provides advanced
repository indexing, and it is constructed as a wrapper around the Google Programmable Search, and
the second approach is based on the GitHub Search API. During the study, we developed and deployed
a fully-fledged framework that allows us to create, label, weigh and evaluate any tag hierarchy and our
recommending approaches.

Analyzing the results collected by our evaluation framework, we concluded that the Google Search
approach is preferred over the GitHub approach from both accuracy and user perspective point of view.
The Google Search approach outperformed the baseline by 18.75%, but also the GitHub Search by more
than 100% concerning the MAP (Mean Average Precision) metric.

1 Introduction
Developers do not want to reinvent the wheel when establishing a new software system. Open-source software
repositories are packed with resources that may assist developers with their work. Our research intends to
assist developers in locating such resources, allowing them to concentrate on the essential functions of an
application or system rather than implementing fundamental functionalities from scratch.

Each repository tag englobes knowledge about the application that is developed in a particular repository,
and a set of tags represents the architecture, and the overall system characteristics and dependencies [1].
Since GitHub enabled the repository tagging, a new opportunity arose to help the developers to find the
needed resources based on their needs.

The currently available literature and tools do not offer many solutions directly related to recommending
similar repositories which are tailored and based on the researcher or developer’s needs. Recommender
systems and tools can identify comparable repositories [2, 3], but they focus on static approaches that can be
used just for a small number of repositories (e.g. Java Repositories). Furthermore, some of these approaches
are limited to their training data and cannot adapt to newly published repositories or technologies.

During our research, we aim to address the recommendation generality gap in recommending similar
repositories. Furthermore, we aim to study the use of tag hierarchies in such a holistic recommender system.

To address various elements of both our hierarchy component and recommender systems, we hope to
answer the following research question and sub-questions:

How accurate and useful is a similar repository recommender built on the tags and the hierarchy?

• How useful and accurate is a similar recommender repository based on tags?

• How to identify and create a reliable hierarchy based on tags and the relationships between them? (e.g.
Java Framework−−−−−−−−→ Spring Testing−−−−−→ JUnit)

• How to assess the performance when a hierarchy is used in a similar repository recommender system
based on repository tags?

• What search techniques are preferable when it comes to Similar Repository recommender?

To address the tag hierarchy that will be used in the recommender system, we look into the k-graph
created by Izadi et al. [4]. The k-graph incorporates the relationships between different technologies. The
k-graph is mined, and a dependency hierarchy is created and analyzed using clustering techniques and a self-
made app, "Hierarchy Visualiser"1. For a similar recommendation system, we used two different approaches:
one explores the GitHub Search API (4.3.2), and the other one is based on the Google Programmable
Search engine (4.3.3). Both approaches output a ranked list containing repository recommendations based
on a search query. The tag hierarchy is integrated into our approaches as a sub-recommending system that
recommends topic tags based on a search query.

1https://hierarchy-visualiser.herokuapp.com/
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The similar repository recommender approaches are evaluated using an expert scenario-based evaluation
[5]. During the study, an evaluation framework was developed and deployed2. The evaluation framework
implements the search approaches and the baseline, collects user feedback and retrieves, validates and auto-
matically computes the results.

We demonstrate that the Google approach outperforms GitHub’s state-of-the-art "best match" search by
18.75% in terms of MAP (Mean Average Precision). We also discovered that GitHub’s Search API approach
does not provide a reliable method of recommending similar repositories based on tags and a tag hierarchy,
outperforming the Google Approach by more than 100%.

To ensure the replicability of our study, we provide two replication packages. The first replication package
contains the front-end3 of our approaches (e.g. hierarchy data visualisation, labeling, evaluation), and the
second one contains the back-end4 implementation of our approaches (e.g. hierarchy construction, google
recommendations, automatic statistics and evaluation).

2 Related Work
A recommender system aims to generate meaningful recommendations for different entities that may interest
a group of users. In our case, the users who may benefit from such a recommender system are the developers
or researchers searching for programming "tools" to maximize their productivity or make their life easier
with existing repositories that may achieve their goals. Similar work was conducted by Izadi et al. [4] that
studied the recommendation topic in the context of software repositories using multi-label classification,
assigning topics tags for input repositories. They brought a reliable solution for automatically classifying
software entities such as GitHub repositories. Their system achieved outstanding performance concerning
the topic recommendations with a maximum LRAP score of 0.805 for the LR, TF-IDF model trained in
just 30 minutes with a prediction processing time of 0.4 seconds and topics with a high R@5 score of 0.890
can be suggested by their algorithm. Furthermore, the authors concluded that GitHub enabled repository
owners to specify the primary aspects of their repositories using a few basic textual phrases. The authors
developed several multi-label classifiers to select subjects (topics/tags) for repositories based on their name,
description, README files, wiki pages, and file names.

Ponzanelli et al. [2] also studied the same type of recommender system but from a holistic approach.
Their recommender system, Libra, tracks web search results, pages visited, and code typed and updated
by the developer in the web browser and the IDE. The analysis performed by Libra does not treat the
contents of resources as plain text (as Izadi et al. [4]) but instead considers their diverse composition. Their
approach aids developers in picking relevant results from a web search by considering the popularity of
a particular resource and the developing process as a whole. The authors concluded that Libra supports
developers in picking relevant results from a web search by assessing the prominence of a given resource and
the complementarity of a result with the obtained knowledge context by holistically examining the contents.
Two studies assessed the use of the tool during development and its applications in an industrial setting to
determine its utility throughout development.

Izadi et al. [6] further studied the topic of recommender systems using repository tags. The authors focus
on two recommender models for labelling software projects considering the semantic link between subjects.
To do this, they created a knowledge graph that captures the semantic relationships between repository
tags. Their approach outperforms the baselines that neglect these relationships, improving by at least 25%
in terms of Average Success Rate. We consider that the information from their knowledge graph can further
be "mined" to obtain more data about the relationships between the topics (such as a tag/topic hierarchy).

The authors/developers of RepoPal [3] provide an unique technique for detecting comparable projects on
GitHub. Their method is based on three heuristics and two data sources (i.e., GitHub stars and README
files) that have not been explored in earlier publications. Using a thousand Java repositories, they build a
recommender system named RepoPal that is compared to a previous state-of-the-art solution called CLAN
(Closely reLated ApplicatioNs).

RepoPal uses two data sources (i.e., GitHub stars and README files) that might intuitively aid in

2https://hierarchy-visualiser.herokuapp.com/#/evaluation
3https://github.com/andrei5090/SimilarRepoRecommender/tree/main/webapp
4https://github.com/andrei5090/SimilarRepoBackend

3

https://hierarchy-visualiser.herokuapp.com/#/evaluation
https://github.com/andrei5090/SimilarRepoRecommender/tree/main/webapp
https://github.com/andrei5090/SimilarRepoBackend


identifying related repositories but have not been examined in earlier research. One technique is based only
on similarities in API method invocations, while another is based on tags that do not exist in GitHub.
To assess RepoPal’s efficacy, they conducted experiments on one thousand Java projects on GitHub and
compared them to the state-of-the-art technique CLAN. The authors observed that RepoPal outperformed
CLAN by 30% in terms of F1-score.

The authors observed that when the star rating of a repository decreases, the retrieval quality of RepoPal
may suffer (e.g. recommendation quality decreases). GitHub has many repositories written in programming
languages other than Java (e.g., Python, PHP, C++), as well as combinations of various programming
languages, but the evaluation focuses only on Java since CLAN was built around Java.

Recommender systems such as the one presented by Ponzanelli et al. [2] offer intelligent assistance to
programmers throughout their work. In general, this recommender system focuses primarily on IDEs but
not on the general context of a user searching for solutions such as searching on web browsers. The authors
developed a recommender system called Libra. Libra is a comprehensive recommender system that augments
the web browser with a specialized interactive navigation chart.

Libra tracks web search results, pages visited, and code typed and updated by the developer in both the
web browser and the IDE. The analysis performed by Libra does not treat the contents of resources as plain
text but instead takes into consideration their diverse composition. It aids developers in picking relevant
results from a web search by considering the popularity of a particular resource and the developing process
as a whole.

The study offers a good overview of what data is needed to establish a software hierarchy using data
directly collected from the users. The paper also provides a framework for analyzing the recommender
system from a user perspective (not just a numerical one) using controlled experiments. On the other hand,
the controlled experiments use a small number of people (16), and it is not clear what type of users the
authors are using in their controlled experiments (they offer an example of university students), but testing
the usefulness just on university students may not be the best alternative.

In the work by Lopez et al. [7], the authors propose the concept of utilizing software metrics to assist
developers in selecting the libraries that are most suited to their needs. They suggest constructing library
comparisons based on metrics taken from various sources, including software repositories, problem track-
ing systems, and Q&A websites. The authors aim to empower developers to make educated decisions by
combining this information and summarizing it on a result page.

The authors found eight metrics that may help assess a particular library’s usefulness (popularity, release
frequency, issue response and closing times, recency, backwards compatibility, migrations, fault-proneness,
performance and security). The authors found that a dedicated web page that summarizes each library
based on the metrics mentioned above may improve the programmers’ choices when searching what libraries
they use in their codebase.

The authors offer selection criteria based on the user perspective (e.g. library usefulness) but also metrics
that may be useful in establishing a tag-relationship hierarchy of software repositories (e.g. Java Framework−−−−−−−−→
Spring Testing−−−−−→ JUnit). One such metric is the "popularity" metric that may help us categorize hierarchies
that may have similar trees (e.g. from the popularity metric, the library IziToast is more probable to be used
with Vue or React than Nuxt, even if Nuxt is an enhanced version of Vue). The short-come of the paper is
the fact that their results are still preliminary and not all their metrics were thoroughly tested yet.

The existing available literature and technologies do not provide many straightforward answers for propos-
ing comparable repositories matched to the needs of the researcher or developer. There are recommender
systems and tools that can find comparable repositories [2, 3], but they are static and can only be utilized for
a limited number of repositories (e.g. Java Repositories). Our research aims to provide a holistic approach
to recommending similar repositories that can automatically recommend new technologies or repositories
without any human intervention.

3 Problem Description
The Open Source Software community on GitHub hosts a set of repositories R = {r1, r2, r3, r4, ..., rn} where
ri represents a software repository. Some software repositories ri can be characterised by software topics
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(tags) added by the repository’s developers where ri = t1, t2, ..., tn where each ti is a topic tag. Figure 1 and
Figure 2 represent similar software repositories with similar, but not identical defined tags.

We aim is to recommend similar software repositories, based on tags and hierarchy. The hierarchy is
composed by a recursive data structure (tree)
H = {{n1, w1, [t11, t12, ..., t1n], c1 : [n2, w2, [t21, t22, ..., t2n], c1 : {...}]..} where n1 represents the name of the
node in the hierarchy, w1 represents the weight of the node and [t11, t12, ..., t1n] a list of topics available in
the node and c1 that represents a list of the children of a node.

4 Repository recommendation
In this section, we first analyze the Hierarchy building topic, and then we look into how such a hierarchy
can be visualized and labelled with the purpose of repository recommendation. Finally, we use the hierarchy
combined with search engines such as GitHub Search API or Google Search to look into how such a Hierarchy
can be used to recommend similar repositories. Figure 3 illustrates the overall workflow of our repository
recommendation.

4.1 The Hierarchy
In order to achieve our goal of recommending similar repositories, we established that a tag (topic) hierarchy
is needed to organize the topics featured and curated on GitHub. Two approaches were used in order to
create such a hierarchy. The first try is using expert knowledge and manual work to characterize and establish
relationships between the tags that were further used to create a hierarchy. The second approach is using
an automatic approach to characterise the topic/tags. Each topic representation is then used with various
clustering techniques to establish a topic hierarchy.

4.1.1 Manual built Hierarchy

The manually built hierarchy considered expert knowledge about a selection of GitHub Topics established
by Izadi et al. [6]. Each group of topics was manually labelled into sub-groups and then arranged into
a dependency hierarchy (e.g. Frontend Framework−−−−−−−−→ (React, JavaFX) Language−−−−−−→ (Javascript, Java)). We
concluded that the manual creation of such Hierarchies is unreliable since the manual work is tedious, prone
to error and hard to update when new technologies are considered in a pre-existing Hierarchy.

Figure 1: Vue Software Repository with highlighted tags

Figure 2: React Software Repository with highlighted tags
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4.1.2 Automated built Hierarchy

The automatic build Hierarchy considers the SED-KGraph constructed by Izadi et al. [6]. Each topic (tag)
is represented in the graph as a node, where each inbound or outbound edge represents the relationship
between the tags. One such an example is:

• AWS is−a−−−→ service

• AWS is−used−in−field−−−−−−−−−−−−→ cloud-computing

• AWS provided−by−−−−−−−−→ amazon

• AWS provides−functionality−−−−−−−−−−−−−−−→ as-a-service

• AWS provides−functionality−−−−−−−−−−−−−−−→ distribution

• AWS provides−functionality−−−−−−−−−−−−−−−→ hosting

• Terraform works−with−−−−−−−−→ AWS

• Amazon provides−product−−−−−−−−−−−→ AWS

Each tag is represented as a matrix M =



AWS ADA AJAX . . . ZERONET
is−a−−−→ x11 x12 x13 . . . x1n

is−based−on−−−−−−−−→ x21 x22 x23 . . . x2n

...
...

...
...

...
...

works−with−−−−−−−−→ xm1 xm2 xm3 . . . xmn


where each row is represented by a relationship in the k-graph related to the current tag (e.g. is−a−−−→), and

Figure 3: General Approach
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each column represents a specific tag. For a tag T, the matrix MT starts full of 0’s entries, and when a
relationship and tag are present for T, the value changes to 1. E.G., as seen in the list above, AWS will have
in its representation the value 1 to the entry corresponding to the relationship is−a−−−→ and the tag "Service".

Each tag representation is then clustered using clustering algorithms such as K-Means or Agglomerative
Clustering.

4.1.3 K-Means Clustering

As seen in the Figure 4, the clusters obtained by applying the K-Means algorithm with the representation M
(4.1.2) are well defined, but this is not enough since the K-means clustering does not produce a hierarchical
structure.

4.1.4 Agglomerative Clustering

Agglomerative Clustering was used in order to create the automated hierarchy. As seen in the snapshot
dendrogram in Figure 5, it can be observed that the hierarchical structure of this clustering technique, (e.g.
material design, is the closest to bootstrap, and both are related to markdown). Based on such a hierarchical
structure, we can make cuts, as seen in the Figure 5. Taking into account each cut, we merge the closest
entries and continue with cuts until we reach the top of the dendrogram. Each cut step is stored locally, and
after the cutting process ends, by using a recursive function, every cutting step is turned into a Hierarchy
Level. This is done by taking into account the superior cuts, such that a current entry in the hierarchy is
the child of a more extensive or equal cluster.

4.2 Hierarchy Visualisation
During the automatic hierarchy generation 4.1.4, it was concluded through expert evaluation that it is hard
to manipulate and visualize such a hierarchy just based on textual information (such as the contents of
the clusters). This is why we developed a fully-fledged web app5 that helps with labelling, weighing and
evaluating the hierarchy as seen in Figure 6.

Figure 4: K-Means Clustering using the representation presented in 4.1.2

5https://hierarchy-visualiser.herokuapp.com/
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4.3 Repository Recommender
This subsection will present the main approaches we used to recommend similar repositories to the user and
the use of the Hierarchy 4.1.4 in the recommendation process. The first approach is based on the GitHub
API, and the second is based on a wrap-around of the Google Search Engine and the GitHub API.

4.3.1 Hierarchy And Recommendations

To recommend repositories based on tags, the user needs to input the existing repository tags, and a piece
of optional textual information about the repository’s contents, since only 5% of all repositories available on
GitHub contain topics/tags assigned to them [4]. A user is given an unordered list of available tags L = [x1,
x2, x3...xn] that contains all the tags available in the hierarchy. When a tag is used in a search query, the
list L is re-ordered based on the closest tags to the input one. Assume that list L1 = [Vue, Python, Java,
Angular, Ada]. According to the Hierarchy, Vue is closest to Angular, Python, Java, and Ada (in this order);
the List L1 will reorder all the entries basen on the closeness of the input tags to the rest of the tags.

Figure 5: Agglomerative Clustering Dendrogram Snapshot With Highlighted Cut
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4.3.2 GiHub Recommendations

To perform a similar repository recommendation using the GitHub API, the user needs to input the search
query as presented in 4.3.1. Based on the user query, a GitHub-compliant query [8] is written and fed into
the GitHub API in order to be consumed and provide similar repositories available in their open-source
repository database. A query Q has the following form Q = {text : TI, tags : [t1, t2, t3, ...]} where ’TI’ is the
textual information provided by the user, and t1, t2... are the tags chosen by the user using the hierarchy
recommendation approach presented above. Each query Q is processed into a query where Q∗ has the form
Q∗{q =′ TI + topic : t1 + topic : t2 + topic : t3 + ...′} and ’+’ represents a blank space. The query Q∗

is fed into the GitHub API using the "Best Match" search option [9] to obtain an ordered list of similar
repositories.

4.3.3 Google Recommendations

Similar to 4.3.2, a query Q∗ is built based on a query Q. The only difference is that Q∗ is used in a wrap-
around Google Search Engine where Q∗ = {q =′ TI + t1 + t2 + t3 + ...′} no longer contains the qualifier
’topic :’. Each query is then fed into the Google Programmable Search Engine [10] that acts as the wrapper
around the Google Search Engine. The wrapper uses this search query to look for repositories on GitHub,
the main open-source community repository host. Similar wrapping techniques are used in the field of
code retrieval already [11, 12, 13], since a specialized search engine’s algorithms currently include advanced
indexing and ranking processes driven by the user interaction with data [14], making this strategy preferable
to the traditional GitHub internal search. The Search Engine uses the following parameters:

• Search engine keywords (tuning keywords): repository

• Available in Site Restricted JSON API: [’github.com’]

• Knowledge Graph Entities: [’Repository (version control)’, ’Software Repository’]

.
Each search request is fed using the Restricted JSON API available in the Google Programmable search.

When a query is performed in the Google API, the results map all the information on Github.com, including
discussions, issues and README files. Only the first six pages of results are considered in our approach
since, through an organic search, more than 90% of the search users choose a result from the first page,
almost 5% on the second page, and just 3% find good results on the pages 3, 4, 5 or 6 [15, 16]. When all the
search results are gathered, they are filtered using the following rules:

• The link starts with "https://github.com"

• The link respects the GitHub repository path:
"https://github.com/{AUTHOR}/{REPOSITORY_NAME}"

• The link does not contain in the {AUTHOR} placeholder the word ’topics’ or ’blog’

After each result is filtered, the information for each repository is retrieved and validated by the GitHub
API [1] verifying if the repository link maps to an existing repository and if the repository is available in an
open-source form. The retrieved data from the GitHub API is sorted in the same order as the one provided
by the Google Programmable search API, providing an ordered list of similar repositories.

5 Experimental Setup and Results
This section describes our experimental setup. We begin by stating the study’s research goals, followed by
explaining our hierarchy generation assessment but also the assessment of our similar repository recommender
approaches. Following this, we present our baseline and the platform that facilitated the evaluation in
contrast to the numerical results.
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5.1 Research Question
How accurate and useful is a similar repository recommender built on the tags and the hierarchy?

5.1.1 Sub-Research Questions

• RQ1: How useful and accurate is a similar recommender repository based on tags?

• RQ2: How to identify and create a reliable hierarchy based on tags and the relationships between
them? (e.g. Java Framework−−−−−−−−→ Spring Testing−−−−−→ JUnit)

• RQ3: How to assess the performance when a hierarchy is used in a similar repository recommender
system based on repository tags?

• RQ4: What search techniques are preferable when it comes to Similar Repository recommender?

The hierarchy assessment aims to address the RQ3 using two different types of development stages. In
the first stage, we manually evaluated the quality of the clusters generated by the agglomerative clustering
algorithm at the cuts 60, 50, 40, 30, 20, 10, 8, 6, 4, 3, 2, 1 with different methods such as "Ward", "Average"
[17] and metrics such as "Euclidean", "Cosine"[18], as presented in the subsection 4.1.4. Based on the
available results in the expert evaluation stage, we establish a simple yet efficient heuristic for concluding
whether a hierarchy is good enough to be used in our similar repository recommender; more details will be
presented in the results section 5.3.

5.1.2 Expert Evaluation

In the following list, we will explain the different approaches we analyse during the expert evaluation. All
the items below can be visualized independently using our platform (hierarchy section)6.

• Method: Single, Similarity: Cosine - The resulted hierarchy is an unbalanced tree. At the cut corre-
sponding to 60 clusters, there exists a cluster that contains more than 90% of all the available tags.
At the cut level 5 to 2, there are still singleton clusters. There is no need to analyze the contents
of the clusters since more than 90% of the data results in the same cluster and does not provide any
hierarchical information.

• Method: Single, Similarity: Cosine - Produces similar results as the one presented above. It does not
provide hierarchical information since most of the data is condensed in one cluster.

• Method: Single, Similarity: Minkowski - Similar results as the others using the Single Method.

• Method: Complete, Similarity: Cosine - The resulted hierarchy is non-balanced; close to the root are
singleton clusters, and there is a cluster around level 50 with more than 80% of the available tags.

• Method: Complete, Similarity: Euclidean - The resulted hierarchy is more balanced than the ones
produced using the Single Method. There are no more singleton clusters close to the root, but there is
still a cluster that contains more than 60% of the available tags at the cut level 60.

• Method: Complete, Similarity: Minkowski - The resulted hierarchy is similar to the one above that
uses Euclidean similarity; the main difference between them is that around the cut level 60, there is a
cluster that contains around 50% of the available tags. The hierarchy is more balanced than the ones
above, and the contents of the clusters are also consistent compared with all of the above.

• Method: Average, Similarity: Euclidean, Minkowski - The resulted hierarchy is still unbalanced, with
a node around the 50th cut that contains around 70% of all the available tags.

• Method: Average, Similarity: Cosine - The resulted hierarchy is more balanced than all the above
methods and metrics. The data is evenly spread among the clusters, and it captures the connections
between the topics (e.g. unreal-engine lands in the same cluster with the other engines and then merges
into a bigger cluster that captures the "gaming tags" such as Twitch, Game-Jam)

6https://hierarchy-visualiser.herokuapp.com/#/hierarchy
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• Method: Weighted, Similarity: Cosine - Provides similar results to the method above but misses the
connection of some topics, e.g. AI with Image Processing or AI with synthetic biology.

• Method: Centroid, Similarity: Euclidean - Provides the most unbalanced hierarchy compared will all
the methods above. It contains a cluster that includes almost all of the tags around the cut 50.

• Method: Median, Similarity: Euclidean - Produce a result almost identical to the Centroid-Euclidean
method above.

• Method: Ward, Similarity: Euclidean - Provides the most balanced hierarchy compared with all the
methods and metrics above. The hierarchy produced with these parameters keeps the qualities of the
Average-Cosine method but also captures some information about the relationship between some topics
(e.g. AI with Synthetic Biology)

5.1.3 Heuristics

Based on the data collected during the Expert Evaluation 5.1.2, we developed some heuristics that allow us
to cross out some hierarchies without paying too much attention to the actual contents of each cluster inside
the hierarchy.

• If the hierarchy is unbalanced, starting from the root to the bottom, and expert should analyse the
contents of the closest clusters to the root. If the clusters are singleton clusters (the cluster’s content
contains just one tag), or if the clusters at a central cut (the middle level of the hierarchy) contain just
a few tags compared with the other ones at the same level, cross out the hierarchy.

• A manual hierarchy should be created for certain tags so that, from an expert perspective, the items
belong in the same category (cluster); for example, most front-end technologies should be merged
in the same cluster. An expert should analyse the initial items of a hierarchy before applying any
clustering algorithm to them. They should also verify the generated hierarchy with the manually
created hierarchy, and see if the expectations are met. If the expectations are not met, they should
try to analyze the generated clusters and discover if there are certain relationships between the tags
that were not thought of; if there are, they should revise the manually created hierarchy and repeat
the process. If the expectations are not met after a few iterations of this heuristic, the hierarchy must
be crossed out.

5.2 Similar Repository Recommendation Assessment
To evaluate our Similar Repository Recommendation using the approaches presented in 4.3, we developed a
fully-fledged web app7 that implements the approaches and allows an exhaustive expert evaluation through
a scenario-based evaluation [5].

5.2.1 Scenario Based Evaluation

The scenario-based evaluation consists of ten scenarios (Appendix A) that are analyzed by experts in the
Computer Science field. Each expert is given one scenario at a time; they have to understand the scenario
and write a query that depicts the needs illustrated by the scenario. Each scenario is represented in a
textual form by a Software Engineering Project that needs to be implemented. All scenarios follow the same
structure:

• Background about the person/company that needs the software.

• Background about the client’s needs (e.g. soft/hard requirements) in a textual form without many
technical details.

• The actual task for which the user has to write a search query that may lead to a Similar Repository
that already implements the needed functionalities.

7https://hierarchy-visualiser.herokuapp.com/#/evaluation
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Each user has to write a search query for each scenario (e.g. A.1) that is composed of a textual component
and a recommended tag list (4.3.1) component as presented in 4.3. Each query produces three ordered lists
that represent our two approaches presented in 4.3 and our baseline. The expert needs to analyse all the
results and then choose the ones that are most relevant to the presented scenario.

5.2.2 Baseline

The baseline we are using to compare our approaches (4.3) is the classic GitHub "Best Match" Search Engine
[9]. For the baseline, we use only the textual information compared with our two other approaches that also
use a recommended tag list 4.3.1.

5.2.3 Web Platform

We created and launched an online web app to help with the expert review of the Recommender Systems.
On top of the Hierarchy Visualisation feature presented in 4.2, we developed an evaluation system based on
the Scenario-Based Evaluation procedure in 5.2.1. The Platform provides an initial overview of the tasks;
then, it requests some data about the Experts that will start the evaluation process. When the information
is collected, the expert begins the actual evaluation process. The specialist will receive one scenario and
details about the steps needed to perform the evaluation:

• Analyse scenario.

• Write a query containing textual information and a tag list (the expert is instructed to focus more on
the tags than on the textual information).

• Perform the query and analyse the results.

• Start the evaluation and select the relevant repositories to the scenario.

• Submit the evaluation.

When each scenario evaluation is submitted, the specialist will be presented with another scenario, until all
the available scenarios were evaluated. Figure 7 represents the evaluation query search based on a scenario,
Figure 8 depicts the search results based on the query, and Figure 9 depicts the repository selection from all
of the three alternatives.

5.3 Results
In this subsection, we present the results of our approaches (4.3). Firstly, we will analyse the feedback
received based on the scenario-based evaluation (5.2.1), using the evaluation platform we developed for this
research paper (5.2.3) to answer the RQ1, RQ3 and RQ4. Secondly, we will look into the hierarchy assessment
and present the results of using the hierarchy in our approaches to answer the RQ2. All the results below
and also some other metrics can be live computed based on the current state of the feedback database and
retrieved using our exposed JSON statistics endpoint8.

5.3.1 Demographics

Firstly, we are looking into some information about the experts that evaluated our approaches (based on
the user responses) using the scenario-based evaluation. In our study participated 14 people in total, as it
can be seen in Table 1, where 71% were males, and 29% were women with an average age of around 18 -
22 years, as it can be seen in Table 2. 85% of the participants have a Bachelor’s or equivalent in Computer
Science related fields, as seen in Table 3. As it can be observed in Table 4, the average experience of the
participants in Computer Science related fields is around 4 years.

8https://similar-repo-backend.herokuapp.com/statistics
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Table 1: Gender distribution
Male Female Other Total Participants
10 4 0 14

Table 2: Age Distribution
18 - 22 25 - 30 30 - 35
12 1 1

Table 3: Education Distribution
Bachelor’s or equivalent Master’s or equivalent Postdoctorate or equivalent
12 1 1

Table 4: Experience in Computer Science related field
< 1 Year 1 - 2 Years 2 - 4 Years 4 - 6 Years 6 - 8 Years 8 - 10 Years > 10 Years
1 3 5 2 1 0 2

5.3.2 Scenario Results

This subsection first summarizes the overall statistics of the evaluation and then gives insights into the
performance of our methods in a scenario-based manner. Table 5 summarizes the average completion time
for each scenario A in minutes and seconds. The average completion time of the entire evaluation process
takes around 63 minutes per evaluation expert. Furthermore, the accommodation time of the user with the
platform is around 27 minutes, taking into account the time it takes on average for each user to evaluate the
first two scenarios (A.1, A.2).

Table 5: Average Completion Time
Scenario A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10
MIN:SEC 19:28 09:48 04:47 06:25 06:40 06:36 01:35 03:04 02:37 03:35

Table 6 summarizes the scenario metrics using main evaluation metrics MAP@3, P@3, and Re@3 (Re-
call@3) [19, 20]. The MAP@K metric is especially important for this type of recommendation system since
our approaches provide a ranked list of similar repositories for each scenario. It may be observed in Table 6
that the first approach (GitHub) fails to outperform both the Google approach but also the Baseline in terms
of all the metrics for all the scenarios. On the other hand, the Google approach outperforms the Baseline in
terms of MAP@3 and Re@3.

Table 6: Scenario Metrics
Scenario A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10
GitHub MAP@3 0.09 0.15 0.12 0.01 0.34 0.07 0.01 0.08 0.08 0.25
Google MAP@3 0.44 0.42 0.45 0.34 0.36 0.36 0.50 0.21 0.45 0.46
Baseline MAP@3 0.38 0.26 0.58 0.32 0.51 0.27 0.43 0.39 0.26 0.37
GitHub P@3 0.08 0.11 0.12 0.10 0.26 0.02 0.01 0.08 0.08 0.24
Google P@3 0.43 0.16 0.38 0.20 0.34 0.20 0.48 0.20 0.37 0.46
Baseline P@3 0.35 0.21 0.56 0.60 0.40 0.30 0.26 0.35 0.20 0.28
GitHub Re@3 0.25 0.23 0.15 0.00 0.38 0.07 0.08 0.08 0.08 0.30
Google Re@3 0.21 0.54 0.50 0.50 0.50 0.30 0.58 0.30 0.33 0.60
Baseline Re@3 0.57 0.53 0.76 0.49 0.61 0.38 0.50 0.58 0.55 0.41

Table 7 analyses the number of "hits" for each approach. A feedback result is considered a "hit" if
our recommender system retrieves at least one relevant item. It can be observed that on average, the first
scenario A.1 received more answers than the other scenarios. It may also be seen that the number of entries
using the Google approach is lower than all the other approaches. An error caused this in the Google search
engine, and the evaluation system invalidated some results. The Google Search Approach outperformed the
GitHub approach and the baseline in the number of "hits". Furthermore, as in the previous metrics, the
GitHub approach did not outperform any of the other approaches.
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Table 7: Scenario Hits
Scenario A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10

Hits GitHub 3 3 2 1 5 1 1 1 1 4
# entries GitHub 14 13 13 13 13 13 12 12 12 12

Hits Google 10 8 7 5 5 5 6 6 6 7
# entries Google 12 11 10 10 10 10 10 10 9 10

Hits Baseline 9 10 10 9 11 6 7 7 5 7
# entries Baseline 14 13 13 13 13 13 12 12 12 12

5.3.3 Approaches Results

This subsection will present the Overall approach results. Table 8 depicts our recommender system’s overall
statistics and metrics. The GitHub approach (4.3.2) provided no recommendations in 76% of the searches,
the Google approach (4.3.3) and the Baseline provided recommendations in 81% and 80%, respectively,
of the searches. On average, the Baseline outperformed the Google approach in terms of the number of
recommended results but also in terms of the average number of relevant items. On the other hand, in
terms of overall MAP@3 for all the approaches, the Google approach outperformed the Baseline approach
by 18.75%. In terms of Recall@3, the Google approach outperformed the baseline by 16.50%. The Google
and Baseline approaches outperformed the GitHub approach in all the metrics presented in Table 8.

Table 8: Search Approaches Overall Results
GitHub Google Baseline

Average Recommendation Time 0.1 sec. 1.6 sec. 0.1 sec.
Empty Entities 76% 19% 20%
Non-Empty Entities 24% 81% 80%
Average number of results 2.4 9.6 11.9
Average number of relevant items 0.69 2.02 3.03
Proportion of relevant items 0.28 0.21 0.25
MAP@3 0.13 0.57 0.48
Overall Recall@3 0.11 0.49 0.42

6 Discussion
As seen in the demographics subsection 5.3.1, a total of 14 participants evaluated our similar repository
recommender approaches. The average age of participants, the education distribution, and the experience in
Computer Science Related Topics may impact the overall evaluation results. Our evaluation approach aims
to evaluate the system using real-life scenarios, exposing the user to both familiar (e.g. A.1 - one-page website
development) but also unfamiliar topics (e.g. A.6 - RIFD identification in an Airport) related to software
development requirements, as received from a real-life client. We consider that the quality of the query is
influenced by the time the user spends on the scenario and the overall experience of the user developing
actual software. We believe that the understanding of the scenario and a good knowledge of the available
technologies, influence the search for a similar repository.

Based on the results available in Table 5 (average completion time) and Table 6, we consider that the
Google approach outperforms the Baseline approach when the user spends more time understanding the task
in-depth.

We also observed that the GitHub approach could not be used in combination with tags. We noticed
that the GitHub approach rarely returns any recommendation when more than one tag is used. We searched
for more information about this behaviour and concluded that the GitHub search API could not search
using tags properly. We assume that the GitHub Search API uses the "Best Match" search on the textual
information and filters it with the tags. Since GitHub does not automatically add tags to repositories and
there are a small number of repositories labelled with tags, the GitHub API cannot return any results.
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We consider that even though the Google approach performs the best compared with the other ap-
proaches, it cannot be used in a free application. Since the free Google Search cannot be used or scrapped
without launching the "reCAPTCHA" system, Google’s programmable search needs to be used instead (paid
service). During our evaluation and validation of the data, we reached an average cost of 1.7 euros for each
evaluation process (per user).

7 Responsible Research
In this section, we examine the potential challenges to the study’s validity, how we overcame these concerns,
and the reproducibility of the methods we used during our study regarding possible validity issues.

7.1 Internal Validity
These types of threats correspond to the correctness of the ground truth of relevant items chosen by the
experts during the evaluation procedure, but also the subjectiveness of the users for each evaluation scenario.
We address this problem by giving the evaluators specific guidelines before starting the evaluation task and
during the task (availability of the guidelines during the evaluation process and instructions that are displayed
directly in the scenario - e.g. A.1). The subjectiveness is reduced by manually sampling the results and
checking if the ground truth respects the guidelines. If it does not, the response is invalidated.

Another threat may be the failure of the external services we are using in our approaches (e.g. Google
Programmable Search). To solve this issue, we implemented an automated "flagging" system that invalidates
the results if the external dependencies fail or are unavailable during the evaluation.

7.2 External Validity
These types of threats correspond to the generability and effectiveness of our approaches. There are cases
when our system cannot provide proper recommendations since the input data does not correspond with
any available open-source repository (e.g. a specific quantum-computing algorithm) at a particular point
in time. We solved this by developing our approaches in such a way that, at some point in time, when an
open-source repository that corresponds with the search query will be available, the recommender system
would be able to recommend it (the recommendation model is not static).

7.3 Construct Validity
These types of threats correspond with the capabilities of our fully-fledged application (5.2.3) that is used
to generate and visualise hierarchies but also to recommend and evaluate similar repositories. The contents
of the hierarchy may change over time according to the open-source community trends; this also means that
the user approaches should be updated based on the new trends or data. Due to this data volatility, our
system allows the hierarchical data to be changed in an accessible way by updating the K-Graph used for
clustering (4.1.4). Furthermore, the approaches automatically adapt (as long as the hierarchy keeps the
same format) to the newly created hierarchy, due to the Front-End Back-End architecture. The whole web
app was developed using a "component structure", where every Graphical User Interface (GUI) component
is reusable (when one component changes its structure/functionality, the functionality will be available on
every page that is using the component automatically).

7.4 Reproductibility
To ensure that this paper can be easily reproduced, we provide two replication packages containing all the
data we used for our study and the existing frameworks/tools we used to answer the research questions. The
first replication package9 contains the front-end application that allows to reproduce the data visualisation
presented in section 4.2, the search methods we considering during our research (4.3.2, 4.3.3) but also the
evaluation framework we developed for this study presented in subsection 5.2.1. The second replication
package10 contains the hierarchy builder presented in subsection 4.1.4, the statistics (evaluation metrics)
presented in subsection 5.3 and the Google Search approach endpoints.
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8 Conclusions and Future Work
This paper analyses whether a similar repository recommender system built on tags and a tag hierarchy can
be created and used reliably. We also analyse how a tag hierarchy can be established, evaluated and used in
such a recommender system. Furthermore, we looked into how to evaluate such a recommender system but
also what search approaches are preferred by the experts when searching for similar repositories.

The results show that a similar repository recommender system based on tags and a hierarchy is valuable
and accurate from an expert perspective. The results also show that a tag hierarchy can be used to recom-
mend similar tags to the users during the similar repository search procedure. During the study, we developed
and deployed a fully-fledged framework (web-app 5.2.3) that allows us to create, label, weight, and evaluate
any tag hierarchy (both manually created or automatically created). Based on the results, we concluded
that the hierarchy provides reliable recommendations that improve the search for similar repositories.

During our study, we established some heuristics that allow us to assess the performance of any hierar-
chy in combination with the web app. Moreover, we developed and deployed a scenario-based evaluation
framework that allows the use of the hierarchy in searching for similar repositories using the Google (4.3.3)
and GitHub (4.3.2) search approaches in comparison with our Baseline. We concluded, based on the evalu-
ation results, that the Google Search approach is prefered over the GitHub approach both from an accuracy
perspective and also from a user perspective. The Google Search approach outperformed the Baseline by
18.75%, and the GitHub Search by more than 100%.

We published the study replication package both for the front-end9 (data visualisation, evaluation, ap-
proaches) and the back-end10 (hierarchy generator, statistics, approaches).

In the future, we will focus on introducing the hierarchy as a new recommendation layer for filtering
and reordering the recommendation results. Furthermore, we want to study the performance of a similar
repository recommender system using more search engines such as Bing or DuckDuckGo and explore the
implementation of the Google Knowledge Graph [21] in our Google approach (4.3.3).

9https://github.com/andrei5090/SimilarRepoRecommender/tree/main/webapp
10https://github.com/andrei5090/SimilarRepoBackend
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A Evaluation Scenarios

A.1 Scenario Task 1
A car competition organiser wants to promote their business. They want to build a website about their
available competitions. The website is just an informational one; the users will not be able to reserve/buy
any tickets for the competitions. The website will follow a parallax scrolling style (1-page website) with
information about the competitions, such as location and entry fee. The information on the website needs to
be updated just once every few years when the organisers adjust the prices with the inflation. Please provide
a query that may lead to an already built solution for this type of application or a stack of technologies that
may help solve this task. Please focus more on the tags than on the textual search. Please keep in mind that
the order of the tags is changing and provides you with recommendations when you input at least one tag.

A.2 Scenario Task 2
A small chair manufacturing business wants to minimise its "bookkeeping" costs. Every month, all the
bills regarding materials or energy are centralised in their bookkeeping system by the business owner. The
business owner thinks that he has more important things to do but doesn’t afford to hire another person
to centralise the bills. All the bills are received at the address: accounting@nicechairs.com. The business
owner wants to automate this bookkeeping process. Please provide a query that may lead to an already built
solution for this type of application or a stack of technologies that may help solve this task. Please focus
more on the tags than on the textual search. Please keep in mind that the order of the tags is changing and
provides you with recommendations when you input at least one tag.

A.3 Scenario Task 3
An NGO from Guatemala wants to promote their country worldwide. They plan to build a mobile application
that allows users to plan their journey in Guatemala. The application should allow the users to choose their
interest points and plan a trip, including transport, tickets, and accommodation. The app aims to plan the
trip so that it optimises the route to the touristic objectives and optimises the waiting time at the interest
points (e.g. a museum). Please provide a query that may lead to an already built solution for this type
of application or a stack of technologies that may help solve this task. Please focus more on the tags than
on the textual search. Please keep in mind that the order of the tags is changing and provides you with
recommendations when you input at least one tag.

A.4 Scenario Task 4
Jerry just won the lottery and decided to open a bar in his hometown. Last year, he went on a trip to the
USA and saw live augmented reality Pool tables that can track your actions and recommend the best shots
projecting a live animation on the table. Even though Jerry won the big jackpot, he doesn’t want to invest
much money in such a table; the starting price on the market is 15000 euros. He already bought the Pool
table but needs somebody to build this augmentation system. Please provide a query that may lead to an
already built solution for this type of application or a stack of technologies that may help solve this task.
Please focus more on the tags than on the textual search. Please keep in mind that the order of the tags is
changing and provides you with recommendations when you input at least one tag.

A.5 Scenario Task 5
The mighty food vlogger "ImiPlaceSaMananc" travels worldwide to find the best shawarma on the planet.
He keeps a digital journal about the characteristics of each shawarma he tasted, the ingredients, and the
restaurant’s location that prepared the food. At the end of each tasting, he writes down the "food grade"
(e.g. Above Average, Average...etc.). He wants to share his Shawarma tasting skills with the world. This is
why he wants to build a recommender system that recommends the best shawarma in the user’s area (based
on his journal). Please provide a query that may lead to an already built solution for this type of application
or a stack of technologies that may help solve this task. Please focus more on the tags than on the textual
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search. Please keep in mind that the order of the tags is changing and provides you with recommendations
when you input at least one tag.

A.6 Scenario Task 6
The Eindhoven airport wants to create an embedded system that is able to track the RIFD chip in your
passport at the self-check-in gate, so you don’t have to take it out on your passport and scan it. They
want each self-check-in gate to work independently. When you come close to the gate, it will automatically
recognise your passport and start scanning your biometrics (the system will provide a video stream of the
user’s face or fingerprints). The biometric validation is not a concern at the moment since another service
provider will handle this. Please provide a query that may lead to an already built solution for this type
of application or a stack of technologies that may help solve this task. Please focus more on the tags than
on the textual search. Please keep in mind that the order of the tags is changing and provides you with
recommendations when you input at least one tag.

A.7 Scenario Task 7
The TU Delft Discord server admin wants to automate the filtering system. He wants to filter all the
messages that contain swear words or graphic pictures that violate the TU Delft standards. This is why he
wants to create a filtering system that can emit "warnings" or server "bans" according to specific criteria.
The filter will act as a discord bot that scans all the messages and take action when required. Please provide
a query that may lead to an already built solution for this type of application or a stack of technologies that
may help solve this task. Please focus more on the tags than on the textual search. Please keep in mind that
the order of the tags is changing and provides you with recommendations when you input at least one tag.

A.8 Scenario Task 8
A big tech company wants to provide bikes to their visitors and employees. Each bike has a card scanner
attached to it. A visitor or employee card needs to be scanned to unlock a bike. The bikes can be unlocked
with a card, but the administrators have no information on how many bikes are used at certain timestamps
or the location of each bike. This is why they need a system to centralise the data of each bike and display
information such as free bike locations in a GUI. They have no preference for how the system is implemented.
Please provide a query that may lead to an already built solution for this type of application or a stack of
technologies that may help solve this task. Please focus more on the tags than on the textual search. Please
keep in mind that the order of the tags is changing and provides you with recommendations when you input
at least one tag.

A.9 Scenario Task 9
WorkAholic INC. wants to implement a task prioritisation system in their workflow. At the moment, the task
difficulty and time needed to finish the Team Managers establish it. The CTO observed that the managers
sometimes give shorter task times to please their superiors. This is why the WorkAholic INC. wants to
implement an automated task "assessor" that suggests the work time needed for a task to be solved and
the assignment’s difficulty. Please provide a query that may lead to an already built solution for this type
of application or a stack of technologies that may help solve this task. Please focus more on the tags than
on the textual search. Please keep in mind that the order of the tags is changing and provides you with
recommendations when you input at least one tag.

A.10 Scenario Task 10
A small company specialising in HR management wants to improve their API performance. They provide
an API to their clients that allow them to input their HR data and provide metrics and statistics about
employees’ performance. After an internal audit, they observed that some metrics and statistics take too
much time and resources to compute, but the results are relatively constant for most of their clients. They
want to solve this issue cost-effectively since this performance issue has already severely affected their income.
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Please provide a query that may lead to an already built solution for this type of application or a stack of
technologies that may help solve this task. Please focus more on the tags than on the textual search. Please
keep in mind that the order of the tags is changing and provides you with recommendations when you input
at least one tag.
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Figure 6: Hierarchy Visualiser WebApp

Figure 7: Evaluation Query Search
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Figure 8: Evaluation Query Search Results

Figure 9: Evaluation Repository Selection
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