

Delft University of Technology

Model-free and model-based time-optimal control of a badminton robot

Liu, M; Depraetere, B; Pinte, G; Grondman, I; Babuska, R

DOI
10.1109/ASCC.2013.6606242
Publication date
2013
Document Version
Final published version
Published in
Proceedings 2013 9th Asian Control Conference

Citation (APA)
Liu, M., Depraetere, B., Pinte, G., Grondman, I., & Babuska, R. (2013). Model-free and model-based time-
optimal control of a badminton robot. In O. Kaynak (Ed.), Proceedings 2013 9th Asian Control Conference
(pp. 1-6). IEEE. https://doi.org/10.1109/ASCC.2013.6606242

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ASCC.2013.6606242
https://doi.org/10.1109/ASCC.2013.6606242

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Model-free and model-based time-optimal control of
a badminton robot

M. Liu∗, B. Depraetere†‡, G. Pinte†, I. Grondman∗ and R. Babuška∗
∗Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

†Flanders’ Mechatronics Technology Centre (FMTC), Celestijnenlaan 300 D, 3001 Heverlee-Leuven, Belgium
‡ Email: bruno.depraetere@fmtc.be

Abstract—In this research, time optimal control is considered
for the hit motion of a badminton robot during a serve operation.
For this task the racket always starts at rest in a given position
and has to move to a target state, defined by a target position and
a non-zero target velocity. The goal is to complete this motion
in as little time as possible, yet without violating bounds on
the actuator. To find controllers satisfying these requirements, a
reinforcement learning approach is implemented, using a Natural
Actor-Critic (NAC) reinforcement learning algorithm. This ap-
proach is experimentally shown to yield the desired robot motions
after about 200 trials. Next to this model-free learning approach,
the control signals obtained with a model-based optimization
are also applied to the robot. The results achieved with both
approaches are compared, and a thorough analysis is presented,
highlighting the properties of each approach, as well as their
advantages and drawbacks.

I. INTRODUCTION

In this paper, time-optimal motion is considered for the
serve operation of a badminton robot. For this operation, the
racket has to move from an initial stance to a desired hit
position with a prescribed hit velocity, and this has to be
done as quickly as possible taking into account the actuator
limitations, so that the opponents preparation time is low.
In general, similar time-optimal motion control problems are
relevant for many mechatronic applications, since being able
to generate faster motions typically means more units can
be produced or more output can be generated in a given
time span. Research into time-optimal motion has therefore
already received attention [1], [2], [3], [4], [5], but mostly
only a model-based approach has been considered. An optimal
control problem is then typically solved numerically, explicitly
minimizing the motion time or using approximate costs yield-
ing simpler optimization problems. While these model-based
approaches yield good results, they do require an accurate
model of the system to be controlled. In many cases however,
such models are not available or are difficult to obtain, so that
model-free approaches would be preferred. These can operate
purely by interacting with the environment and by learning
from these interactions, so that they can be employed with
only very little prior information. In this research, the goal
is therefore to implement a model-free approach as well as
a classical approach from the field of model-based control,
and to compare their performance for the specific task of the
badminton robot’s serve operation.

This work has been carried out within the framework of projects IWT-SBO
80032 (LeCoPro) of the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen).

Learning approaches have already been developed for time-
optimal motion [4], [5], but they usually rely on explicit models
of the controlled system or implicitly identify a model for
the dynamic behaviour. In this research, the goal is to apply
a model-free reinforcement learning (RL) algorithm, which
directly learns a control policy for the considered task, without
the knowledge of a model of the system. Among the model-
free methods, RL is a framework in which an agent (the
controller) learns an optimal policy to control its environment
(the considered system) by using experience obtained from
interacting with it. The interaction is characterized by two
relevant aspects, being perception and action [6]; Each time
an action is taken (driving actuators), a state transition can
occur and a scalar reward is calculated using the observed
results (evaluation of the quality of the action). The agent then
adapts the actions it can take, aiming to maximize the reward
received in the future. It is thus essential to select a reward
function corresponding to the control objectives.

A popular class of RL algorithms are the actor-critic
methods [7], where the actor is equivalent to the control
policy and the critic is the value function evaluating it. Actor-
critic methods can deal with continuous state and action
spaces and, in general, have good convergence properties and
performance if a gradient-based policy improvement is used
[7]. The critic provides a low-variance value function estimate
based on which the policy gradient is computed, and the actor
updates the policy parameters in the direction of performance
improvement indicated by the gradient. For a better learning
performance, it has also been suggested to use the natural
policy gradient, which gives the steepest ascent direction with
respect to the Fisher information matrix, instead of the standard
gradient [8]. The Natural Actor-Critic (NAC) algorithm [9]
is therefore employed in this research, which is an algorithm
employing the natural policy gradient. It is widely used in
robotics and often yields a good learning performance [10],
[11], [12]. For this application however, some modifications
are made to the normal NAC algorithm to make it work off-
line.

The remainder of the paper is organized as follows. First,
the badminton robot is introduced in Section II, and the task to
be performed is defined. Next, the model-based and model-free
approaches are developed, in Sections III and IV, respectively.
The experimentally obtained results for both controllers are
then presented in Section V, including a detailed comparison
and discussion. Finally, conclusions are drawn in Section VI.

978-1-4673-5769-2/13/$31.00 ©2013 IEEE
Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2024 at 09:51:18 UTC from IEEE Xplore. Restrictions apply.

II. BADMINTON ROBOT

A. Overview of badminton robot

The setup used for the experimental validation is the
badminton robot developed by FMTC. The overall system,
illustrated in Figure 1, consists of a mobile platform on which
the racket is mounted, and a complex controller which detects
shuttles using a 3-dimensional camera system and moves the
robot to intercept and hit them. A more detailed description
of the badminton robot can be found in [13], and a movie of
the robot in action at http://www.fmtc.be.

Figure 1. Overview of the badminton robot system, consisting of a mobile
robot platform with a mounted racket, and a complex controller that collects
data from a 3-dimensional camera system and drives the robot’s actuators.

The mobile platform is essentially a serial robot with three
degrees of freedom, as shown in Figure 2. The first two are
driven by the linear and rotational motor (Rot. motor in the
figure), and they respectively allow the robot to move along
the linear guide and to rotate in a plane perpendicular to a
typical shuttle trajectory. Since no or only small motions of
these motors are needed to serve, their control is not considered
in this paper. For the serve, the important degree of freedom
allows the racket to rotate backward and forward along the
joint near its handle, making it possible to perform hit motions.
This motion is controlled by the hit motor indicated in the
figure, and will be studied in the remainder of the paper.

The setup is controlled using a triphase rapid prototyping
platform [14], onto which a SIMULINK model is compiled.
This model interacts with EtherCAT modules to collect sensor
data and control the motors, and sends data to and from a
MATLAB environment where all calculations are performed.

Figure 2. Close-up of the badminton robot and its three degrees of freedom,
of which only the hit motion is considered in this research.

Figure 3. Schematic overview of the serve operation, where a shuttle is
dropped from a mechanism above the robot, and the robot has to perform a
hit motion to intercept the shuttle at a predetermined position and time.

B. Serve operation of badminton robot

In this paper only the serve motion of the robot is con-
sidered, since this motion is always performed in a similar
manner. As a result, learning becomes possible, and it is
straightforward to compare the results obtained during different
hits and using different strategies. In order to perform a serve,
a shuttle is dropped from a mechanism placed at a fixed point
above the robot, and the instant t = tr it starts to fall is
detected using an optical sensor, as shown in Figure 3. Since
the drop mechanism always releases the shuttles in the same
manner, the point where the robot has to hit the shuttle is
always approximately the same, as is the period of time Tdrop
between the shuttle’s release tr and the hit th = tr + Tdrop. To
obtain a time-optimal motion, the goal is then to start moving
as late as possible, at t = th − T , minimizing the motion’s
duration T . For the ease of notation, however, it is assumed in
the remainder of the paper that the hit motion starts at t = 0
and is completed at t = T .

Summarizing the specifications for the serve motion, the
hit motor has to start at an angle q and angular velocity q̇{

q(0) , q̇(0)
}

=
{
− π/4 , 0

}
rad, (1)

and has to move to the desired hit point with{
q(T) , q̇(T)

}
=
{
0 , 3

}
rad/s, (2)

while minimizing T so that the motor reacts as late as possible,
and without violating bounds on the motor. In this case, the
controller sends a voltage signal to a motor drive operating in
torque mode. The allowable range for these controller voltages
and hence also the controller outputs is [−0.2, 0.2] V.

III. MODEL-BASED CONTROL

For the model-based approach, a parametric model is
needed to predict the behaviour of the racket. To obtain
this model, a frequency response function (FRF) between the
actuator current u and the racket’s angle q is first estimated, as
shown in Figure 4. The racket generally behaves like a double
integrator, as would be expected for an inertia driven by a
motor. Other dynamics are observable as well however, at low
frequencies due to friction in the bearing, and around 10Hz,
where the resonance frequency for the racket is found. In a next

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2024 at 09:51:18 UTC from IEEE Xplore. Restrictions apply.

Figure 4. FRF’s from input current to angular displacement of the hit axis,
for the measurements (dashed line) and for the estimated model (solid line).

step, a parametric model is then fitted onto this FRF, using a
typical least-squares model-fitting procedure [15]. In this case,
a linear state space model is found, of which the matrices A,
B, C and D will be used in the optimization procedure.

Using the estimated prediction model and the specifica-
tions, an optimal control problem can be formulated, searching
for the optimal motion profiles and the corresponding control
signals. The following problem is then obtained:

min
x, q, q̇, u, T

T, (3a)

s.t.
q(0) = − π/4, q̇(0) = 0, (3b)
q(T) = 0, q̇(T) = 3, (3c)

ẋ = Ax + Bu, (3d)(
q

q̇

)
= Cx + Du, (3e)

−0.2 ≤ u ≤ 0.2. (3f)

Constraints (3b) and (3c) are included to impose the initial and
final conditions specified by (1) and (2), constraints (3d) and
(3e) describe the linear system dynamics given by the state
space model indicated in Figure 4, and constraint (3f) finally
bounds the allowable motor current, ensuring that no currents
are demanded that the motor drive cannot supply.

In problem (3), the duration of the motion T is an opti-
mization variable, and is not known beforehand, making this a
non-convex problem that is difficult to solve. In this paper, we
will instead solve a series of simpler problems, in which the
duration Ti is always fixed, as described in [1]. The idea is to
check for which values of Ti a feasible solution can be found
satisfying the constraints, and for which values of Ti this is not
the case. To do so, Ti is fixed and the cost function omitted in
problem (3), after which it suffices to check the feasibility of
the resulting convex linear optimization problem, which takes
significantly less time than if a cost was included. Since the
problem is feasible for values Ti ≥ T ∗, and infeasible for
values Ti < T ∗, a bisection algorithm can be used to find
the minimal time T ∗ needed to perform the desired motion.

Before applying the control signals to the robot, they have to
be discretized, which means that an accuracy of T ∗ up to the
sampling time is sufficient1. As a result, the bisection algorithm
always converges in a limited number of steps, yielding a
solution to the original, non-convex, problem (3).

IV. REINFORCEMENT LEARNING

Finding time-optimal control signals using RL cannot be
tackled directly as for the model-based techniques, since the
environment is unknown to the agent. A common approach
[16], [17] is to use negative rewards. The agent is then urged
to learn a policy that minimizes the motion time in order
to avoid accumulating negative rewards over the period of
interaction. Based on this concept, a modified Natural Actor-
Critic algorithm and its implementation to the serve operation
are presented in this section.

A. Modified Natural Actor-Critic algorithm

In general, an RL problem can be represented by states
x ∈ X of the environment, actions u ∈ U of the agent, and
rewards r ∈ R. At each time step k, the agent draws an action
uk from a stochastic policy π(xk) = p(uk|xk), and applies
it to its environment to cause a transition from xk to xk+1.
A reward rk = R(xk, uk) is also calculated, evaluating the
quality of applying uk in xk, and the goal will be to use these
measurements to find the best policy π, which maximizes the
accumulated future rewards

J(π, x0) = E

{ ∞∑
k=0

γkrk

∣∣∣∣∣x0, π
}
. (4)

In this equation, x0 is a designated initial state and γ ∈ (0, 1)
the discounting factor. To run the learning algorithm, the state-
value function

V π(x) = E

{ ∞∑
k=0

γkrk

∣∣∣∣∣x0 = x, π

}
(5)

is also needed, as is the state-action value function [18]

Qπ(x, u) = E

{ ∞∑
k=0

γkrk

∣∣∣∣∣x0 = x, u0 = u, π

}
. (6)

These value functions are used to evaluate the current policy π
and to assist in improving the policy. Since there is no model,
they have to be estimated using the measured samples. Batches
of transitions (xk, uk, rk, xk+1) collected during an episode of
exploration can for example be used to estimate the state-action
value function Qπ(xk, uk). To do so, the recursive form

Qπ(xk, uk) = E {R(xk, uk) + γV π(x′k)|π} (7)

is used to yield a set of linear equations from which Qπ

is estimated by the least-squares temporal difference for Q-
functions (LSTD-Q).

1Due to the discretization with sampling time Ts, many solutions typically
exist for the lowest n satisfying nTs ≥ T ∗, since nTs can be up to Ts larger
than T ∗. Once nTs is found, the optimization is then calculated one last time
for T = nTs, and a cost function promoting a smooth solution is added again.
As long as this cost is convex, the resulting problem then remains convex, and
finding a solution remains straightforward.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2024 at 09:51:18 UTC from IEEE Xplore. Restrictions apply.

In this research, the NAC method [9] is used, which is an
actor-critic method that employs the natural policy gradient to
update the actor πϑ(x, u) = p(u|x, ϑ), parameterized by ϑ.
The natural policy gradient w is estimated by the critic, who
also estimates a linear approximation φ(x)T v for the state
value function V π , with basis function φ(x) and parameter
vector v. By exploiting the compatible approximation [19]
and (7), both w and v can be obtained by LSTD-Q(λ),
which is a modified version of LSTD-Q using eligibility trace
z(x, u) with a trace discount factor λ ∈ [0, 1]. Updates to the
actor’s parameters are performed once the gradient estimate is
accurate enough, which happens once the angle between two
consecutive estimates is below a threshold ε. Then parts of the
accumulated experience are forgotten using a forgetting factor
β ∈ [0, 1], and the entire procedure is repeated.

Since the robot only allows episodic interaction, an off-line
version of NAC is needed. Episodic NAC (eNAC) as proposed
in [9] was implemented, but no satisfactory learning perfor-
mance was obtained. Our modified NAC (mNAC) algorithm is
therefore implemented, combining aspects of NAC and eNAC
[20], and a summary of this algorithm is given in Algorithm 1.

Algorithm 1 Modified Natural Actor-Critic (mNAC)
Input: Parameterized policy πϑ with initial parameters ϑ0, policy derivative
∇ϑ log πϑ, basis function φ(x) for the parameterized V π , and learning
parameters α, γ, λ, β
Initialize: initial state x0, statistics A0 = δI , b0 = 0, and eligibility trace
z0 = 0
for Episode e = 1, 2, 3, . . . do

Collect samples
(xk, uk, rk, xk+1) for k = 1, 2, . . . , N
Critic Evaluation with LSTD-Q(λ):

for k = 0, 1, 2, 3, . . . , N − 1 do
Update basis functions
φ̂k = [∇ϑπϑ(xk, uk)T φ(xk)

T]T , φ̃k = [0T φ(xk+1)
T]T

Update eligibility
ze ← λze + φ̂k
Update statistics
Ae ← Ae + ze(φ̂k − γφ̃k)T , be ← be + zerk

end for
Update critic parameters
[wTe vTe]

T = A−1
e be

EndCritic
Actor Update: If ∠(we, we−1) ≤ ε

Update policy parameter
ϑe+1 = ϑe + αwe
Forget statistics
ze+1 = βze, Ae+1 = βAe + (1− β)A0, be+1 = βbe

EndActor
end for

B. mNAC applied to serve operation of badminton robot

To apply mNAC on the badminton robot, the states of the
system, the allowable actions, and the reward function for the
serve operation need to be defined.

The state vector is defined by x(k) = (q(k) q̇(k))T ,
where q ∈

[−π
2 ,

π
4

]
rad and is considered limited to q̇ ∈

[−5π, 5π] rad/s, based on the geometry of the robot. Please
note that the state x defined here is the state perceived by
the agent, not the state vector for the state space model in
(3d) and (3e). As described in Section II, the initial state is
x0 = (−π/4 0)T and the target state χ = x(T) = (qχ q̇χ)T =
(0 3)T . During the tests, the robot is always reset to its initial
position x0 once the target state is reached. For a practical and

safe implementation, this also happens if the robot enters either
of two buffering regions defined to restrict the state space and
prevent mechanical damage. The set of absorbing states Ω is
thus defined as

Ω =

{
x = χ or q ∈

[
−π
2
, −3π

8

]
or q ∈

[π
8
,
π

4

]}
. (8)

Due to the resetting, each episode then starts from x0 and
ends when either an absorbing state is reached or when the
maximum allowed time of 3 s has passed.

The goal for the agent is to learn a policy that moves the
robot from x0 to χ while minimizing T . To do so, it is allowed
to take actions u ∈ R. No bounds are thus imposed on the
current demanded by the motor, as these are considered part
of the environment and should be learned through interaction.

Now that the states and actions are defined, a reward
function has to be chosen that allows the agent to find the
motions with minimal T while reaching χ. We use a quadratic
function of the states and actions

rk = −(χ− xk)TQ(χ− xk)−Ru2k, (9)

where Q = diag([1 10]) and R = 0.2. Penalizing the
differences between the current state and the target, sufficient
information is given to the agent about the desired state
transitions to reach the target. At the same time, the negative
rewards implicitly specify the objective of minimizing T .

In this paper, a parameterized, stochastic policy in the form
of a normal Gaussian distribution π(u|x) = N (ψ(x)Tϑ, σ) is
used, with σ ∈ [0.02, 0.0667] selected by the updating rule
suggested in [9]. The basis functions of the policy ψ(x) and
the value function φ(x) are both radial basis functions (RBF).
The sampling time used for RL is h = 0.01 s, the learning
rate α = 0.002, the discount factor γ = 0.95, the updating
threshold ε = 0.15, the forgetting factor β = 0.65, and the
eligibility discount factor λ = 0.85.

V. EXPERIMENTAL VALIDATION

A. Model-based results

For the model-based controller, the signals found by solv-
ing optimization problem (3) can directly be applied to the hit
motor. The resulting motion is shown in Figure 5, where the
demanded current is shown, as well as the racket’s angle and
angular velocity. As can be seen from the figure, a bang-bang
like current is demanded, with the current first equal to the
maximum allowable value, with the racket accelerating rapidly
to a velocity higher than the desired hit velocity. Afterwards,
the current equals the minimum allowable value to rapidly
decelerate the racket, such that it arrives at the target with the
demanded velocity after a period of T =0.21 s.

B. Model-free results

For the reinforcement learning algorithm, the method de-
scribed in Section IV is used to learn while interacting with
the robot. The evolution of the reward per episode over the
course of this learning process is shown in Figure 6.

As seen, convergence is obtained after about 10min, which
is equivalent to 200 episodes, after which the performance does

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2024 at 09:51:18 UTC from IEEE Xplore. Restrictions apply.

0 0.05 0.1 0.15 0.2 0.25 0.3

−0.2

0

0.2

u
(∼

A
)

Results obtained using model−based control

q
(r
ad

)

0 0.05 0.1 0.15 0.2 0.25 0.3

−π/4

−π/8

0

0 0.05 0.1 0.15 0.2 0.25 0.3

0

2

4

6

q̇
(r
ad

/s
)

Time (s)

Figure 5. The hit motion obtained with the model-based controller.

0 5 10 15 20 25 30
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

4

Time (min)

T
o
ta

l
re

w
a
rd

 (
−

)

Figure 6. Evolution of the total reward per episode during learning process.

not alter significantly. The resulting hit motion obtained with
the final learnt policy is shown in Figure 7. As can be seen,
the velocity reaches the target velocity quickly, and then stays
more or less constant while the racket moves towards its target
position. As a result, the racket reaches the desired hit position
with the desired velocity, after a period of T =0.28 s.

C. Discussion

Comparing the results, it can be seen that the velocity
increases to values higher than the desired end velocity for

0 0.05 0.1 0.15 0.2 0.25 0.3

−0.2

0

0.2

u
(∼

A
)

Results obtained using reinforcement learning

q
(r
ad

)

0 0.05 0.1 0.15 0.2 0.25 0.3

−π/4

−π/8

0

0 0.05 0.1 0.15 0.2 0.25 0.3

0

2

4

6

q̇
(r
ad

/s
)

Time (s)

Figure 7. The hit motion obtained with the final policy of the RL algorithm.

0 0.05 0.1 0.15 0.2 0.25 0.3

−120

−100

−80

−60

−40

−20

0

Time (s)

In
s
ta

n
ta

n
e
o
u
s
 r

e
w

a
rd

 (
−

)

rreinf .learning

rmodel−based

Figure 8. The immediate rewards rk obtained with both controllers.

the model-based controller, but not for the policy learnt with
reinforcement learning. To analyse this, Figure 8 shows the
rewards (9) for both, and it can be seen that the reward
for the model-based results is significantly worse than for
those obtained using reinforcement learning, with summed
total rewards of −800 and −300 respectively. This is due to
the large weighting on the velocity differences, causing a large
negative reward from t =0.1 s to 0.2 s for the model-based
controller, due to the velocity being higher than the desired
hit velocity. From the point of view of maximizing the reward,
the reinforcement learning algorithm has thus achieved a good
result. Since the required motion time is longer than for the
model-based controller however, the maximum of the reward
function does not correspond to the true time-optimal motion.

Another difference is the level of actuation: bang-bang
like control signals are found with the model-based controller,
while less aggressive results are found using reinforcement
learning. This is also illustrated in Figures 9 and 10, where
the control policies are shown. Only values of +0.2 or −0.2
are selected by the model-based controller, and the overall map
is very simple, corresponding to a bang-bang profile with only
a single switch [2]. The reinforcement learning policy however
generates near maximal actuation only in the beginning of the
motions, while intermediate values occur afterwards. This is
partially due to the earlier observed phenomenon, where the
velocity does not increase beyond the target velocity. Another
reason for this however is the term in the reward function
penalizing values of u 6= 0. This term tries to reduce the overall
control effort, which is undesirable for time-optimality, but it
is observed from experiments that it is necessary in order to
achieve successful learning.

D. Next steps

To enforce time-optimality with reinforcement learning,
several approaches can be taken:

• A modified reward function can be used, specifying a
strict time optimality by equally penalizing all states
except χ, which is essentially the same as applying
an L0 norm instead of the current L2 norm. However,
slow learning might result, due to the less informative
rewards compared to the current setting.

• An alternative could be to look for heuristic terms
that can be added to the reward function, yielding
a performance similar to using the L0 norm, but
avoiding the issues with a slow convergence speed.

• A two-step learning strategy may be helpful if the
reward is altered, avoiding issues with slow learning
by starting from an initial policy as found in this paper.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2024 at 09:51:18 UTC from IEEE Xplore. Restrictions apply.

−π/4 −π/8 0

q (rad)

q̇
(r
ad

/s
)

Control policy obtained using model−based control

−1

1

3

5

7

 −0.2

 −0.1

 0

 0.1

 0.2

Figure 9. The equivalent policy of the model-based controller, shown for
simplicity for a friction- and resonance-free double integrator. Also indicated
as a solid line is the state trajectory shown in Figure 5.

−π/4 −π/8 0

q (rad)

q̇
(r
ad

/s
)

Control policy obtained using reinforcement learning

−1

0

1

2

3

4

 −0.2

 −0.1

 0

 0.1

 0.2

Figure 10. The final policy obtained with the RL algorithm. Also indicated
as a solid line is the state trajectory shown in Figure 7.

• A different exploration strategy can be considered.
Currently only the states near x0 and near the tra-
jectory in Figure 10 are explored. If states with larger
velocities can be explored more thoroughly, a policy
similar to the bang-bang-like control may be learned.

• Finally, since currently the control actions can assume
any value in (−0.2 0.2), the search space could
be reduced by enforcing saturated actions, or actively
promoting them. The difficulties observed without a
penalty on u would then need be investigated however.

VI. CONCLUSIONS AND OUTLOOK

In this paper, time-optimal motion control is considered,
and a model-free reinforcement learning technique is compared
to a classical model-based technique. The model-free approach
requires less information a priori, but does require a period
of interaction during which the controller is exploring and
learning the appropriate actions. When reliable models are
available, it is therefore generally better to use them and avoid
this learning period, but when this is not the case, model-free
methods can be used to automatically learn a good controller.

For the task of controlling the hit motion of a badminton
robot, a slightly longer motion time is obtained with the model-
free approach than with the model-based one. When the total
rewards are compared however, much better values are realized
by the model-free controller. It can thus be concluded that these
model-free controllers are converging to solutions different
from the time-optimal ones, and that the reward function
penalizing state differences, although a common choice in the
literature, does not fully correspond to time-optimal motions.

Future work will focus on adapting the model-free tech-
niques to more closely yield time-optimal motions. Several
topics will be investigated, such as alterations to the reward
function, different exploration strategies, promoting saturated
controls and multi-step learning techniques.

REFERENCES

[1] L. Zadeh and B. Whalen, “On optimal control and linear programming,”
Automatic Control, IRE Transactions on, vol. 7, no. 4, pp. 45 – 46, jul
1962.

[2] M. L. Workman and G. F. Franklin, “Implementation of adaptive
proximate time-optimal controllers,” in American Control Conference,
1988, june 1988, pp. 1629 –1635.

[3] P. Grieder and M. Morari, “Complexity reduction of receding horizon
control,” in Decision and Control, 2003. Proceedings. 42nd IEEE
Conference on, vol. 3, dec. 2003, pp. 3179 – 3190 Vol.3.

[4] P. Janssens, G. Pipeleers, and J. Swevers, “Model-free iterative learning
of time-optimal point-to-point motions for lti systems,” in 50th IEEE
Conference on Decision and Control and European Control Conference,
Orlando, Florida, December 2011.

[5] N. Sakagami and S. Kawamura, “Time optimal control for underwater
robot manipulators based on iterative learning control and time-scale
transformation,” in OCEANS 2003. Proceedings, vol. 3, sept. 2003, pp.
1180 – 1186 Vol.3.

[6] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[7] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” Siam Journal
on Control and Optimization, pp. 1008–1014, 2001.

[8] S. Amari and S. C. Douglas, “Why natural gradient?” in Acoustics,
Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE
International Conference on, vol. 2, 1998, pp. 1213–1216 vol.2.

[9] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71,
no. 7-9, pp. 1180–1190, 2008.

[10] A. El-Fakdi, M. Carreras, and E. Galceran, “Two steps natural actor
critic learning for underwater cable tracking,” in Robotics and Automa-
tion (ICRA), 2010 IEEE International Conference on, 2010, pp. 2267–
2272.

[11] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning for
humanoid robotics,” in Proceedings of the Third IEEE-RAS Interna-
tional Conference on Humanoid Robots, 2003.

[12] B. Kim, J. Park, S. Park, and S. Kang, “Impedance learning for robotic
contact tasks using natural actor-critic algorithm,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 40, no. 2,
pp. 433–443, 2010.

[13] J. Stoev, S. Gillijns, A. Bartic, and W. Symens, “Badminton playing
robot - a multidisciplinary test case in mechatronics,” in 5th IFAC
Symposium on Mechatronic Systems, Cambridge, Massachusetts, Sept.
2010.

[14] Triphase rapid-prototyping-platform: http://www.triphase.be/3pexpress/
rapid-prototyping-platform.

[15] R. Pintelon and J. Schoukens, System Identification: A Frequency
Domain Approach. John Wiley & Sons, 2012.

[16] I. Grondman, M. Vaandrager, L. Buşoniu, R. Babuška, and
E. Schuitema, “Efficient model learning methods for actor-critic con-
trol,” IEEE Transactions on Systems, Man, and Cybernetics—Part B:
Cybernetics, 2011.

[17] X. Xu, H.-g. He, and D. Hu, “Efficient reinforcement learning using
recursive least-squares methods,” 2002.

[18] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
MIT Press, 1998.

[19] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
NIPS’99, 1999, pp. 1057–1063.

[20] M.-H. Liu, “Service control of a badminton robot using actor-critic re-
inforcement learning,” Master’s thesis, Delft University of Technology,
2013.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 07,2024 at 09:51:18 UTC from IEEE Xplore. Restrictions apply.

