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Abstract

Turbulent shallow flows are characterized by the presence of horizontal large-scale vortices, caused
by local variations of the velocity field. Apart from these 2D large vortices, small scale 3D turbulence,
mainly produced by the interaction of the flowing water with the solid boundaries, is also present. The
energy spectrum of turbulent shallow flows shows the presence of a 2D energy cascade at low wave
numbers and a 3D energy cascade at high wave numbers, with a well-defined separation region between
them. Horizontal flow movements (e.g. 2D large-scale vortical structures) at low wave numbers mostly
determine the hydrodynamic behavior of these flows. Moreover, the generation of standing waves
often occurs closely associated to the interaction of 2D horizontal flows with lateral boundaries, this
is the case of seiches. To adequately reproduce these phenomena, a mathematical and numerical
model able to resolve 2D turbulence is required. We herein show that depth-averaged (DA) unsteady
Reynolds averaged Navier Stokes (URANS) models based on the Shallow Water Equations (SWE) are
a suitable choice for the resolution of turbulent shallow flows with sufficient accuracy in an affordable
computational time. The 3D small-scale vortices are modelled by means of diffusion terms, whereas the
2D large-scales are resolved. A high order numerical scheme is required for the resolution of 2D large
eddies. In this work, we design a DA-URANS model based on a high order augmented WENO-ADER
scheme. The mathematical model and numerical scheme are validated against observation of complex
experiments in an open channel with lateral cavities that involve the presence of resonant phenomena
(seiching). The numerical results evidence that the model accurately reproduces both longitudinal
and transversal resonant waves and provides an accurate description of the flow field. The high order
WENO-ADER scheme combined with a SWE model allows to obtain a powerful, reliable and efficient
URANS simulation tool.
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1. Introduction1

Shallow water flows are of great interest in civil and environmental engineering. They appear2

in a wide variety of scenarios ranging from open channels to coastal areas [1, 2]. The water depth3

in these environmental flows is characterized by being much smaller than the horizontal scale. The4

turbulence produced in such flows is characterized by two different and coexistent scales of turbulent5

structures: the 2D turbulence (with length scales much larger than the water depth) and the 3D6

turbulence (with length scales smaller than the water depth) [3]. Local variations of the velocity field7

promote the generation of horizontal 2D large-scale coherent vortices. These macro vortical structures8
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play a relevant role in several aspects of hydro-morphological and biological interest: the conveyance9

of fine sediments in suspension [4], the transport of pollutants [5] or the mass exchange of nutrients10

between the flow and the aquatic biota [6]. In addition to 2D macro horizontal vortices, small scale11

3D turbulent vortices, produced by the interaction of the flowing water with the solid boundaries and12

in 2D shear layers, co-exist in environmental shallow flows. They participate in the vertical mass and13

momentum transfer between the bottom and the flow surface.14

The co-existance of 2D and 3D turbulent scales is reflected in the energy spectrum of the shallow15

flow turbulence. The energy spectrum of such flows displays the presence of a 2D energy cascade at low16

wave numbers and a 3D energy cascade at high wave numbers, with a well-defined separation region17

between them [3, 7].18

Besides the turbulent nature of shallow flows, another important characteristic of these flows is the19

existence of a free surface. This free surface is the boundary between the water body and the air above20

it. It may deform in response to physical intrinsic mechanisms that govern the flow (e.g. it is influenced21

by the presence of turbulence, wind shear and bed topography). In free surface flows, surface gravity22

waves usually appear and may determine the hydrodynamic pattern within the flow [8]. This additional23

feature of shallow water turbulence involves additional energy dissipation mechanism. A particular type24

of gravity waves are standing resonant waves that appear in bounded flows, called seiches [9]. There25

is a wide range of spatial scales at which seiches may appear: ranging from centimeters (e.g. seiche26

in lateral cavities of river banks [9]) to kilometers (e.g. seiche in lakes, bays or harbours [10]). The27

understanding of seiches is relevant to determine the hydro-morphological interactions between the28

main stream flow and the lateral cavities of river banks and the consequences of these to mass and29

momentum transfer [11].30

Concerning the mathematical modelling and numerical simulation of free surface shallow flows,31

multiple approaches have been proposed by the scientific community in the past decades. The use of32

3D models with advanced turbulence modelling techniques, such as Reynolds averaged Navier Stokes33

(RANS) models, large eddy simulation (LES) or direct numerical simulation (DNS), has allowed com-34

plex turbulent flows to be simulated with accuracy [12]. However, the use of 3D models is computation-35

ally costly and handling the presence of the free surface is not a trivial numerical task. Most numerical36

techniques (specially for the LES approach) ignore free surface deformations and they use the so-called37

rigid lid approximation [13]. By using this approach, gravity waves are represented as vertical pressure38

fluctuations but the deformation of the free surface cannot be tracked, and is numerically simpler than39

other numerical approaches that aim at computing the physical and real free surface deformation (e.g.40

interface tracking methods and interface capturing methods [14]). A more recent hybrid approach41

considers a two-phase LES models that accurately resolve the interface between water and air [15].42

A rather different approach for the simulation of free surface shallow flows is the use of 2D depth-43

averaged models. Such models, involving a significantly lower computational cost, are able to reproduce44

the propagation of gravity waves and to account for turbulent fluctuations. They are useful for the45

simulation of large domains, which are virtually unaffordable by means of LES methods. The shallow46

water equations (SWE) are a hyperbolic system of conservation laws that describe the propagation of47

nonlinear gravity waves. They can also model additional physical processes by means of extra source48

and diffusion terms (e.g. friction, bottom topography, turbulence) [16, 17].49

The most common approach to handle turbulence for the SWE is the RANS methodology [18,50

19, 20, 21], which aims at the resolution of flow mean quantities by modelling the full turbulence51

spectrum, including the large scales. The fluctuating terms are not resolved, though their effect in the52

transport of mean quantities is included in the equations by means of a closure formulation that allows53

to model the Reynolds stress term in terms of the mean flow. This closure formulation is normally54

given by the so-called Boussinesq’s approximation, which states that the momentum transfer caused by55

turbulent eddies can be modelled using the concept of an eddy viscosity coefficient. Mathematically,56
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it is constructed using extra diffusion terms where the mixing intensity is controlled by such eddy57

viscosity. In the RANS approach, the eddy viscosity coefficient accounts for both 2D large scale58

turbulence and 3D turbulence and it is thus computed by models that consider the full structure59

of shallow flow turbulence. Such models range from simple zero-equation models (e.g. constant eddy60

viscosity model, parabolic eddy viscosity model or depth-averaged mixing length model), which assume61

that turbulence is dissipated where it is generated, to the more advanced eddy-viscosity models, which62

consider extra equations to account for the transport of turbulence (e.g. k− ǫ turbulence model) [18].63

When using the RANS methodology, mean velocities are accurately predicted, however, velocity64

fluctuations and phenomena such as gravity waves (e.g. seiches) cannot be represented. To circumvent65

this limitation, the unsteady RANS (URANS) [22, 8] approach will be used in this study. The idea66

of using the URANS approach is motivated by the particular character of shallow water turbulence67

(i.e. the presence of two well-defined turbulent cascades) [3]. 2D large-scale vortices are normally68

resolved by means of a high-order approximation of the numerical solution, whereas 3D small-scale69

turbulence can be modelled by a closure equation as described before. In the literature, it is possible70

to find a broad variety of turbulence closure models. Some of such turbulence models only account for71

small-scale 3D turbulence and others also include the effect of unresolved 2D eddies. The shallow water72

URANS approach can be variously called: horizontal LES (H-LES), depth averaged LES (DA-LES) or73

DA-URANS. Nevertheless, and as stated in [22], none of these methodologies can be considered a LES74

model in the usual sense, as they are depth averaged and 3D turbulence always has to be modelled.75

For this reason, in this work we will always refer to them as DA-URANS.76

Once the mathematical model is defined, an adequate numerical scheme must be selected. The tur-77

bulence modelling requires a high order approximation of the convective fluxes to avoid extra numerical78

diffusion and to reduce dispersion errors [23]. The non-physical diffusion at small wave numbers may79

damp the turbulent fluctuations to be resolved and the URANS approach may ultimately be turned80

into the traditional RANS approach. Apart from turbulence modelling, it has been widely reported in81

the literature that an accurate resolution of shallow water waves also requires a high order of accuracy82

[24, 25]. In this work, the design of a RANS/URANS simulation model for the SWE with bottom83

topography and friction, based on arbitrary order augmented WENO-ADER schemes [26], is explored.84

In particular, WENO-ADER schemes are applied to the computation of the convective fluxes and85

source terms. Alternatively, different approaches for the discretization of the diffusive terms modelling86

turbulent mixing are considered and assessed. Such approaches comprise a WENO-ADER reconstruc-87

tion, a high order polynomial-ADER reconstruction and a second order discretization. Due to the88

dominant character of the convective terms in the numerical solution, the second order discretization89

of the diffusive terms was chosen for the sake of simplicity and computational efficiency.90

The numerical scheme is explicit and integration in time is done in a single step thanks to the ADER91

approach. Such method successfully allows the construction of arbitrary order schemes for systems92

of hyperbolic conservation laws [27, 28, 29]. It is of particular interest for this work to consider the93

application of ADER schemes for the resolution of geophysical problems [30, 31, 25], specially for the94

resolution of the SWE [32, 25, 33, 34, 35, 36].95

The methods are tested here up to a 3-rd order of accuracy, but they can be extended up to96

the desired order of accuracy provided the approximation of time derivatives has been computed by97

means of the Cauchy-Kowalevski (CK) procedure. This circumvents Butcher’s barrier appearing for98

Runge-Kutta (RK) integrators [37]. Source terms are taken into account at both cell interfaces and99

inside cells [26, 38]. The augmented-solver approach, which ensures an exact equilibrium between100

fluxes and sources at cell interfaces, is adopted by using the ARoe LFS solver presented in [26]. The101

combination of this solver with a suitable integration of source terms inside cells makes the resulting102

scheme well-balanced, preserving the quiescent equilibrium. Such combination has already been used103

to construct high order numerical methods for the SWE with bed topography and Coriolis [38]. It must104
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be borne in mind that the bottom and friction source terms, present in the model herein proposed,105

have a different nature: the former is a geometric source term whereas the latter is non-geometric.106

Therefore, a different numerical treatment is required for each of them. In this work, the bottom107

source term is integrated using the augmented approach in [38], whereas the friction source term is108

only included inside cells using a traditional quadrature rule. This allows the construction of a well-109

balanced scheme that preserves the quiescent equilibrium with machine precision and converges with110

high order of accuracy to other solutions involving moving water.111

The WENO reconstruction is another key feature of the numerical method herein used. It preserves112

the high order of accuracy in smooth regions, with low diffusion and dispersion errors [39], and is able113

to capture sharp gradients avoiding spurious oscillations. Furthermore, thanks to the shock-capturing114

character of the solvers used, the celerity of gravity waves is accurately reproduced. Seiches should be115

thus accurately captured.116

The main advantages of using augmented WENO-ADER-type schemes are: a) the scheme can be117

extended up to the desired accuracy without upper bounds, allowing the computation of 2D turbulent118

scales [26, 40]; b) the scheme is explicit and fully discrete (i.e. it does not involve the computation of119

fluxes at different sub-steps like RK integrators and consequently, it is computationally more efficient120

[40]); c) the scheme allows the preservation of equilibrium states of relevance, in particular, the well-121

balanced equilibrium [38]; d) wave celerities are accurately computed, as a result of the combination of122

a shock-capturing solver with a high order scheme; and e) there is no need of a high mesh refinement123

making large computational domains affordable. Furthermore, the augmented WENO-ADER scheme124

considered in this work ensures convergence with mesh refinement at the prescribed rate even in125

presence of source terms, as shown in [26, 38].126

The proposed model is herein applied to the resolution of transient problems involving resonant127

phenomena. In particular, we focus on the coupling between the shedding of vortices and standing128

gravity waves (i.e. seiches) in open channels with lateral cavities. The methods are validated using129

experimental data measured in a) a channel with a single cavity [8] and b) channels with multiple130

lateral cavities [9, 41]. A longitudinal seiche appears for case a) while a transverse seiche appears131

for case b). The experimental data used as a benchmark include both velocities and water depths.132

Thanks to the URANS approach the temporal fluctuations of the 2D vortical structures are accurately133

reproduced: the experimental seiching frequency is reproduced with an error lower than a 6% in all134

cases. On the contrary, the RANS approach proved not to be suitable for modelling resonant flows: the135

large amount of dissipation provided by such technique smooths artificially the flow surface oscillations136

leading to nonphysical results.137

2. The mathematical model138

2.1. System definition139

The SWE are based on a 2D depth-averaged and hydrostatic model suitable for free-surface flows140

where the vertical dimension is much smaller than the longitudinal dimensions. The SWE are composed141

by the equation for the conservation of mass and momentum and are written in matrix form as follows:142

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
= S+D , (1)

where x and y stand for the Cartesian coordinates, t is the time, U = U(x, y, t) ∈ C ⊂ R
3 is the vector143

of conserved quantities that takes values on C:144

U =




h
hu
hv


 , (2)
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F = F(U) : C −→ R
3 and G = G(U) : C −→ R

3 are the physical fluxes on the coordinate directions x145

and y, respectively:146

F =




hu
hu2 + 1

2gh
2

huv


 , G =




hv
hvu

hv2 + 1
2gh

2


 (3)

and the vectors S and D stand for the source and diffusion terms, which will be detailed below. Note147

that g is the acceleration of gravity, h is the water depth, hu is the depth averaged unitary discharge148

in the x direction and hv the depth averaged unitary discharge in the y direction.149

The methods herein described are based on the assumption that the convective part of the system150

in Equation (1) is hyperbolic. The system in Equation (1) is said to be hyperbolic if the matrix151

J (U,n) ∈ R
3×3 defined as:152

J (U,n) =
∂F

∂U
nx +

∂G

∂U
ny , (4)

is diagonalizable with real eigenvalues for all n = (nx, ny) ∈ R
2 and for all U ∈ C with C ⊆ R

3 the153

subset of physically relevant values of U. If all the eigenvalues are distinct, then the system is said to154

be strictly hyperbolic [42].155

The longitudinal and transversal velocities, u and v are depth-averaged mean components in the156

term of the definition of the Reynolds decomposition. The water depth h also corresponds to a mean157

value. The Reynolds decomposition of the instantaneous values of depth averaged velocities and water158

depth, hereafter denoted as U , V , and H respectively, reads:159

U(x, y, t) = u(x, y, t) + u′(x, y, t) V (x, y, t) = v(x, y, t) + v′(x, y, t) (5)

H(x, y, t) = h(x, y, t) + h′(x, y, t) (6)

Mean values may be obtained by several types of averaging depending on the nature of the flow160

[43]. The symbol ( ′ ) denotes turbulent fluctuation of the depth averaged values around its mean.161

In general, the mean values are time dependent, only under steady conditions they do not depend162

on time. The methods herein proposed aim at the resolution of the evolution in time of the mean163

properties governed by (1)–(2). The fluctuating terms are not directly resolved, though their effect in164

the transport of mean quantities is incorporated in the equations by means of a turbulence model.165

The term S = Sz + Sf includes the source terms, which involve the stress exerted by the bottom166

topography, Sz, and by the bed roughness, Sf . Such sources are also called bed slope and friction167

source terms respectively and are written as:168

Sz =




0

−gh dz
dx

−ghdz
dy


 , Sf =




0
−cf |v|u
−cf |v| v


 , (7)

where |v| =
√
u2 + v2 is the velocity magnitude, z = z(x, y) represents the bottom topography, which169

is fixed in time, and cf is the friction coefficient, computed using Manning’s formulation as follows:170

cf =
gn2

h1/3
. (8)

On the other hand, the term D includes the molecular and the turbulent diffusion, being the latter171

a model of the mixing processes happening at the small turbulent scales according to the RANS and172
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URANS approach. The vector D is thus expressed as the sum of the molecular and the turbulent173

diffusion:174

D =




0
[

∂
∂x

(
νh∂u

∂x

)
+ ∂

∂y

(
νh∂u

∂y

)]
+
[
−∂hu′u′

∂x − ∂hu′v′

∂y

]

[
∂
∂x

(
νh ∂v

∂x

)
+ ∂

∂y

(
νh∂v

∂y

)]
+
[
−∂hv′u′

∂x − ∂hv′v′

∂y

]


 , (9)

where ν is the dynamic viscosity of the fluid and u′u′, u′v′, v′u′ and v′v′ are the depth-averaged175

Reynolds turbulent stresses, which can be approximated by means of Boussinesq’s assumption. Note176

that the overline denotes mean values of the fluctuations. This assumption states that the momentum177

transfer caused by turbulent eddies can be modelled using the concept of an eddy viscosity. The178

Reynolds stress tensor is thus proportional to the mean strain rate tensor. Following [8, 21], the179

following approximations are used:180

−u′u′ = 2νt
∂u

∂x
− 2

3
k (10)

−u′v′ = −v′u′ = νt

(
∂u

∂y
+

∂v

∂x

)
(11)

−v′v′ = 2νt
∂v

∂y
− 2

3
k (12)

where k is the mean and depth averaged turbulent kinetic energy, defined as k = 1
2(u

′2+v′
2
). Different181

formulations of the viscous and turbulent diffusion terms in (9) are found in the literature [19, 8, 20, 21].182

In this work, we consider the approach provided in [20, 21, 17], where the diffusion terms are expressed183

as D = Dx +Dy, where:184

Dx =
∂

∂x




0
hTxx

hTyx


 , Dy =

∂

∂y




0
hTxy

hTyy


 , (13)

with Txx, Txy, Tyx and Tyy the depth-averaged stresses, which read as in [21]:185

Txx = 2(ν + νt)
∂u

∂x
(14)

Txy = Tyx = (ν + νt)

(
∂u

∂y
+

∂v

∂x

)
(15)

Tyy = 2(ν + νt)
∂v

∂y
(16)

where ν is the fluid viscosity and νt the turbulent (eddy) viscosity. Note that k in (10)–(12) will be186

neglected as a zero-equation model for νt will be used [21].187
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2.2. Turbulence models for the eddy viscosity νt188

3D and 2D turbulent structures coexist in shallow water flows and it corresponds to a spectral189

distribution of energy as displayed in Figure 1. Both 3D and 2D vortical structures participate in the190

mass and momentum exchange within the flow. However, the nature of each vortical movement is191

different. 3D turbulence is mainly produced by the friction with the solid boundaries and comprises192

length scales smaller than the water depth. 2D turbulence is generated by gradients of horizontal shear193

stress due to gradients of the velocity field between flow regions. The length scales are typically larger194

than the water depth [22, 3].195

The most common techniques to solve shallow water flows using a 2D model are based on the196

URANS and RANS approaches. The range of scales resolved (i.e. computed with the set of equations197

listed in the mathematical model) or modelled (i.e. computed by means of a closure equation) when198

using such methods is depicted in Figure 1. The URANS approach usually resolves the large scale199

motions of the flow (2D horizontal eddies) that contribute most to the turbulent transport but requires200

a model for the unresolved small scale turbulent processes (3D turbulence) that involve vertical mixing.201

The depth-averaged parabolic eddy viscosity model is one of the most preferred models to represent202

the small scale turbulence produced by the friction with the bottom [3]. On the other hand, the RANS203

approach does not resolve any turbulent scale. The 2D large scale turbulent mixing and the 3D small204

scale turbulent dissipation are thus modelled. The depth-averaged mixing length model is often used205

as the closure equation. The depth-averaged mixing length model will be hereafter considered for both206

RANS and URANS simulation, as it allows to model the unresolved 2D small eddies (if necessary when207

the resolution is not enough) and the 3D unresolved turbulent motion.208

From the point of view of a URANS model applied to shallow water flows, the large scale 2D209

horizontal eddies are incorporated and considered as part of a time varying mean flow (i.e. u(x, y, t),210

v(x, y, t) and h(x, y, t)). From the point of view of a RANS model, all the time varying components211

are modelled, hence the mean fields corresponds to the time-averaged variables (i.e. u(x, y), v(x, y)212

and h(x, y)).213

Figure 1: Schematic representation of the two-range turbulence spectrum in shallow water flows. The wave number is
defined as the inverse turbulent length, which is related with the size of the eddies. The range of scales modelled/resolved
by the URANS and RANS approaches is provided. This figure is adapted from [22, 3].
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2.3. Depth-averaged mixing length model214

The depth-averaged mixing length model is used to account for both the horizontal (2D) and215

vertical production of turbulence (3D). This model reads as:216

νt =
√
(νvt )

2 + (νht )
2 (17)

where νvt and νht are the vertical and horizontal eddy viscosities. The vertical component is mainly217

produced due to the bed friction and it is calculated as:218

νvt = λU∗h , (18)

where λ is an empirical coefficient and U∗ =
√

cf (u2 + v2) is the bed shear velocity. Note that cf is219

the friction coefficient defined in Equation (8). The parameter λ can be theoretically estimated as κ/6,220

with κ the Von Karman’s constant, though it is normally retained as a calibration parameter [21]. The221

model in Equation (18) corresponds to the depth-averaged parabolic eddy viscosity model.222

On the other hand, the horizontal component of turbulence is mainly produced by horizontal223

velocity gradients and it is resolved as:224

νht = βl2s

√

2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+

∂v

∂x

)2

(19)

with ls=κ min(cmh, yw) [21, 19], where cm is an empirical coefficient (normally set to 0.267 [19]), yw225

is the distance to the nearest wall and β is a calibration constant.226

In this work, the depth-averaged mixing length model is used both for URANS and RANS simula-227

tions (see Figure 1). In the case of URANS approach, the horizontal eddies are mostly resolved. The228

strength of the horizontal turbulent mixing, β, is thus much lower than in the case of RANS simula-229

tions. This yields to an eddy viscosity coefficient that is mainly composed by the vertical diffusivity.230

Note that in the limit when β = 0, the depth-averaged parabolic eddy viscosity model is recovered (i.e.231

only the vertical diffusivity is modelled). On the other hand, when adopting the RANS methodology,232

the horizontal diffusivity may become dominant, specially in cases involving strong shearing flows. In233

such cases, the mixing processes are not represented as convective processes (as it is done with URANS234

simulation) but as purely diffusive processes, governed by νt.235

It is worth pointing out that the use of the eddy viscosity in (19) for URANS simulation, in236

combination with the approximation of the depth-averaged Reynolds stress tensor in (14)–(16), is237

equivalent to the well-known Smagorinsky (SGS) sub-grid model when the coefficient βl2s is of the238

order of magnitude of Cs∆x, where Cs is found in the interval 0.4 to 0.8 for shallow flows [44, 45]. This239

evidences the role of the horizontal component of the eddy viscosity in (19) as a sub-grid dissipation240

model for the unresolved scales.241

3. Numerical model: augmented WENO-ADER scheme in Cartesian grid242

Let us consider the system of conservation laws in (1)–(2) to compose the following Initial Boundary243

Value Problem (IBVP):244





PDEs:
∂U

∂t
+∇ · (F,G) = S+D

IC: U(x, 0) =
◦

U(x) ∀x ∈ Ω

BC: U(x, t) = U∂Ω(x, t) ∀x ∈ ∂Ω

(20)
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defined in the domain Ω× [0, T ], where Ω = [a, b]× [c, d] is the spatial domain. The initial condition is245

given by
◦

U(x) and the boundary condition by U∂Ω(x, t). The spatial domain is discretized in Nx×Ny246

volume cells, defined as Ωij ⊆ Ω, such that Ω =
⋃N

i,j=1Ωij , with cell edges at:247

a = x 1
2
< x 3

2
< ... < xNx−

1
2
< xNx+

1
2
= b , (21)

and248

c = y 1
2
< y 3

2
< ... < yNy−

1
2
< yNy+

1
2
= d , (22)

Cells and cell sizes are defined as:249

Ωij =
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
, i = 1, ..., Nx, j = 1, ..., Ny (23)

and250

ϑij = (xi+ 1
2
− xi− 1

2
) · (yj+ 1

2
− yj− 1

2
) , i = 1, ..., Nx, j = 1, ..., Ny , (24)

respectively. In the case of regular grid we have ϑij = ∆x2.251

Inside each cell, at time tn, the conserved quantities are defined as cell averages as:252

U
n
ij =

1

ϑij

∫

Ωij

U(x, tn)dA i = 1, ..., Nx, j = 1, ..., Ny . (25)

where dA = dxdy is the differential element of surface. Let us consider again the system in (20) and253

integrate it over the discrete domain Ωij × ∆t, where ∆t = tn+1 − tn. Application of the Gauss-254

Ostrogradsky theorem yields to:255

U
n+1
ij = U

n
ij −

1

ϑij

∫ ∆t

0

∫

∂Ωij

(F,G) · n̂dldt+ 1

ϑij

∫ ∆t

0

∫

Ωij

S dAdt+
1

ϑij

∫ ∆t

0

∫

Ωij

D dAdt , (26)

where dl is the differential length. If we consider a regular Cartesian grid with ∆x = ∆y, we obtain256

the following fully-discrete updating formula:257

U
n+1
ij = U

n
ij −

∆t

∆x2

(
F−
i+1/2,j − F+

i−1/2,j

)
− ∆t

∆x2

(
G−

i,j+1/2 −G+
i,j−1/2

)
+

∆t

∆x2
(
S̄ij + D̄ij

)
, (27)

where F±
i∓1/2,j and G±

i,j∓1/2 are the numerical fluxes at cell interfaces and258

S̄ij ≈
1

∆t

∫ ∆t

0

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

S dydx dτ , D̄ij ≈
1

∆t

∫ ∆t

0

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

D dydx dτ . (28)

are the approximation of the space-time integral of the source terms and diffusion terms inside the259

cell. Both approximations are explicit. The time step, ∆t, is computed dynamically according to the260

condition in [46] to preserve the stability of the numerical solution. Such condition states that the261

sum of the Courant-Friedrichs-Levy (CFL) and Peclet (Pe) number must be below 0.5 for Cartesian262

meshes.263

The numerical fluxes are computed as the space-time integral of the numerical fluxes over the cell264

edges. To construct a numerical scheme of order (2k−1)-th, it is sufficient to approximate such integrals265

using a (2k − 1)-th order Gaussian quadrature, thus requiring k quadrature points. For instance, the266

numerical flux F−
i+1/2,j is computed as follows:267
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F−
i+1/2,j =

∆x

2

k∑

q=1

wqF
−
i+1/2,j,q (29)

where wq are the Gaussian weights inside the interval [−1, 1] at the q = 1, ..., k quadrature points along268

the cell edge and F−
i+1/2,j,q the numerical fluxes at each of these points, computed by means of the269

resolution of the Cauchy problem.270

The numerical fluxes are computed solving an arbitrary order approximation of the Cauchy problem271

at the quadrature points along cell interfaces. This is given by the so-called DRP, which is defined in272

the x direction for the numerical fluxes on the east and west interfaces and in the y direction for those273

fluxes on the north and south interfaces. It is worth noting that the source term is included in the274

definition of the DRP, according to [26]. The DRPK defined in the x direction, at the interface i+1/2275

and quadrature point q, reads as [26]:276





∂U

∂t
+

∂F(U)

∂x
= S̄i+1/2

U(x, t = 0) =

{
Uij(x, yi+1/2,j,q) x < 0

Ui+1 j(x, yi+1/2,j,q) x > 0

(30)

where Uij(x, y) and Ui+1 j(x, y) are smooth spatial reconstructions, defined using the WENO method.277

Such functions are evaluated at the particular location where the DRP is defined, y = yi+1/2,j,q. On the278

other hand, S̄i+1/2 represents the integral of the source term at cell interfaces, which only is non-zero279

when considering geometric source terms (e.g. bed elevation source term). It is computed as:280

S̄i+1/2 ≈
1

∆t

∫ ∆t

0

∫ x+
i+1/2

x−

i+1/2

S dx dτ . (31)

The solution for the DRP in (30) is constructed using the flux expansion approach as:281

F−
i+1/2,j,q = F

−,(0)
i+1/2,j,q +

K∑

k=1

F
−,(k)
i+1/2,j,q

∆tk

(k + 1)!
,

F+
i+1/2,j,q = F

+,(0)
i+1/2,j,q +

K∑

k=1

F
+,(k)
i+1/2,j,q

∆tk

(k + 1)!
,

(32)

where F
−,(0)
i+1/2,j,q , F

−,(k)
i+1/2,j,q, F

+,(0)
i+1/2,j,q and F

+,(k)
i+1/2,j,q are computed by solving the DRPK . When using282

the LFS-ARoe solver [26], the coefficients of (32) read as:283

F
−,(k)
i+1/2 = F

(k)
iE

+
∑Nλ

m=1

(
λ̃−α(k) − β−,(k)

)m
i+1/2

ẽmi+1/2 , k = 0,K

F
+,(k)
i+1/2 = F

(k)
(i+1)W

+
∑Nλ

m=1

(
λ̃+α(k) − β+,(k)

)m
i+1/2

ẽmi+1/2 , k = 0,K
(33)

where F
(k)
iE

and F
(k)
(i+1)W

are the left and right-hand limits to the cell edge of the physical flux (k = 0) and284

their k-th time derivatives, α(k) are the wave strengths, β−,(k) the source strengths and λ̃± and ẽmi+1/2285

the approximate wave celerities and eigenvectors defined using Roe’s averages [47]. The computation286

of the aforementioned quantities is detailed in [38]. The fluxes G−
i,j+1/2,q and G+

i,j−1/2,q, are computed287

analogously.288
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3.1. Equilibrium properties289

When the velocity vanishes, the equation for the conservation of energy and momentum yield to:290

∇ (h+ z) = 0 (34)

which represents the hydrostatic equilibrium, also known in the literature as lake at rest condition. At291

the discrete level and considering a Cartesian grid, Equation (34) is decomposed into the Cartesian292

directions as:293

δ (h+ z)x2,x1
= 0 , δ (h+ z)y2,y1 = 0 (35)

where (x1, y1) and (x2, y2) are two different points. To construct a well-balanced scheme, the previous294

discrete conditions in (35) must be satisfied. This can only be achieved if the WENO reconstruction295

method is applied to η = h+z and z first, and h is computed from the difference of these reconstructions296

as h
(0)
(·) = η

(0)
(·) − z

(0)
(·) , where η

(0)
(·) and z

(0)
(·) are the reconstructed water surface elevation and bottom297

elevation and h
(0)
(·) the computed water depth. The discharges hu and hv are also reconstructed using298

the WENO method.299

3.2. Numerical approximation of source terms300

Apart from a suitable reconstruction procedure, source terms have to be properly integrated both301

at cell interfaces, using the discretization in (28), and inside cells, using (31), to construct a well302

balanced scheme. The numerical approximation of source terms in (28) and (31) can be expressed303

using a Taylor power series expansion as follows:304

S̄ij = S̄
(0)
ij +

K∑

k=1

S̄
(k)
ij

∆tk

(k + 1)!
, S̄i+1/2 = S̄

(0)
i+1/2 +

K∑

k=1

S̄
(k)
i+1/2

∆tk

(k + 1)!
, (36)

where305

S̄
(0)
ij =

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

Si(x, y, 0) dydx , S̄
(0)
i+1/2 =

∫ x+
i+1/2

x−

i+1/2

Si(x, y, 0) dx ,

S̄
(k)
ij =

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∂k
t S(x, y, 0) dydx , S̄

(k)
i+1/2 =

∫ x+
i+1/2

x−

i+1/2

∂k
t S(x, y, 0) dx ,

(37)

are the spatial integrals of the source term and its time derivatives at the initial time.306

It must be noted that the first component of the source term vector will always be zero, as no307

source is considered for the mass conservation equation. On the other hand, the source term may be308

non-zero for the x and y momentum equations. The 2-nd and 3-rd components of the numerical source309

term, S̄ij , corresponding to the x and y momentum equations, will be hereafter referred to as S̄x
ij and310

S̄y
ij , respectively. The same notation is used for S̄i+1/2.311

3.2.1. Bed slope312

Bed slope source term must be discretized in a particular way so that the scheme preserves the313

well-balanced property. Since this source has a geometric nature, it is discretized both at cell interfaces314

and inside cells. At cell interfaces, the leading term is computed as:315

S̄
x,(0)
i+1/2 =

(
−gh̄δz

)(0)
i+1/2

, S̄
y,(0)
i+1/2 = 0 , (38)
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which satisfy the steady state equilibrium condition
(
λ̃±α(0) − β±,(0)

)m
i+1/2

= 0 in Equation (33). Note316

that h̄
(0)
i+1/2 = 0.5(h

(0)
iE

+ h
(0)
(i+1)W

) and δz
(0)
i+1/2 = z

(0)
(i+1)W

− z
(0)
iE

.317

Higher order terms are computed as:318

S̄
x,(k)
i+1/2 =

(
−gh̄(k)δz(0)

)

i+1/2
. (39)

The cell-centered discretization of the bed slope source term needs to be derived to also retain the319

order of accuracy of the scheme. To this end, the approach proposed in [38], based on Romberg’s320

integration, is used for the zero-th order terms:321

S̄
x,(0)
ij =

∆x

2

k∑

β=1

wβ

{
S̄
x,(0)
ij,β

}n

m
, S̄

y,(0)
ij =

∆x

2

k∑

α=1

wα

{
S̄
y,(0)
ij,α

}n

m
(40)

where
{
S̄
x,(0)
ij,β

}n

m
and

{
S̄
y,(0)
ij,α

}n

m
are based on Richardson’s extrapolation of the differential formulation322

of the integral of the source term [38]. Such extrapolation provides an arbitrary order approximation323

of the integral of the bed slope source term along the straight line connecting two quadrature points324

at opposite walls (in Cartesian directions).325

Concerning the derivative terms, there is no need of a particular discretization to ensure the well-326

balanced property as time derivatives vanish under steady state. A 2D Gaussian integration is used327

[38]:328

S̄
x,(k)
ij =

∆x2

4

k∑

β=1

wβ

k∑

α=1

wα

(
−gh(k)∂xz

)

α,β
, S̄

y,(k)
ij =

∆x2

4

k∑

β=1

wβ

k∑

α=1

wα

(
−gh(k)∂yz

)

α,β
(41)

where h
(k)
α,β is the k-th time derivative of h at the quadrature point.329

3.2.2. Friction330

The friction term is discretized here as a centered source term, which means that it is not accounted331

for in the definition of the DRP. Such approach does not ensure an exact equilibrium between bed and332

friction slope but ensures convergence with arbitrary order to this equilibrium state. The following 2D333

Gaussian quadrature is proposed to approximate the integral of the leading term inside the cell:334

S̄
x,(0)
ij =

∆x2

4

k∑

α=1

wα

k∑

β=1

wβ

(
−cf

∣∣∣v(0)
∣∣∣u(0)

)

α,β
, S̄

y,(0)
ij =

∆x2

4

k∑

α=1

wα

k∑

β=1

wβ

(
−cf

∣∣∣v(0)
∣∣∣ v(0)

)

α,β
,

(42)
with cf = cf (U

(0), n) and n the Manning coefficient. To construct a Gaussian quadrature for the335

derivative terms of the source term, the CK procedure must be used first to provide an approximation336

of the time derivatives of the source at the quadrature points:337

S
x,(k)
α,β =

∂k

∂tk
(−cf |v|u)α,β , S

y,(k)
α,β =

∂k

∂tk
(−cf |v| v)α,β . (43)

Then, we can construct the 2D Gaussian quadrature as follows:338

S̄
x,(k)
ij =

∆x2

4

k∑

α=1

wα

k∑

β=1

wβS
x,(k)
α,β , S̄

y,(k)
ij =

∆x2

4

k∑

α=1

wα

k∑

β=1

wβS
x,(k)
α,β . (44)

12



3.3. Numerical approximation of the diffusion terms339

The diffusion terms in (13) are based on Boussinesq approximation and involve the numerical340

approximation of spatial gradients of the velocity. Here, two different approaches to compute such341

spatial gradients are tested:342

• Sub-cell derivative reconstruction procedure:343

This is an arbitrary order reconstruction technique originally proposed in [48]. It is based on344

constructing a high order polynomial inside each cell by using as interpolating data the high345

order reconstructed information (provided by the WENO reconstruction or any other recon-346

struction method [49]) at different points inside the cell. The derivatives of such polynomial will347

approximate the derivatives of the variables of interest.348

The WENO method for reconstructing the sub-cell data uses a stencil selection procedure to349

prevent spurious oscillations and guarantees monotonicity near strong gradients or discontinuities.350

Such features are normally observed in boundary layers, where the relation between the physical351

width of the boundary layer and the cell size is crucial for an accurate reconstruction of the352

boundary data. In cases where the width of the boundary layer is smaller than the cell size, the353

local velocity gradients are interpreted by the WENO reconstruction as a discontinuity between354

smooth flow domains (i.e. the limiting case would be given by two regions connected by a355

discontinuity as presented in Appendix A). The sub-cell derivative reconstruction thus yields356

to nil values of spatial derivatives in the boundary layer, which it is not consistent with the real357

physics and ultimately it leads to an underestimation of the diffusive terms in Equation 13 (i.e.358

the magnitude of the turbulent mixing modelled by the diffusive terms is underestimated).359

A different possibility for reconstructing the sub-cell data consists of using a linear reconstruction360

by means of a classical high order polynomial. With a classical polynomial, non-linear limiters,361

such as those present in the WENO method, are avoided. Such way, the aforementioned physical362

inconsistency is partially overcome as the jump in the flow velocity is spread along a length363

corresponding to the cell size. This avoids the limitation of large sub-cell gradients, leading to364

larger diffusion at these regions. The overall performance of the non-limited sub-cell derivative365

reconstruction procedure is better than the WENO sub-cell derivative reconstruction procedure,366

even though the diffusive terms are not accurately discretized either. In the framework of very367

high order schemes, it would be worth exploring more sophisticated reconstruction techniques368

that are more consistent with the physics of the flow.369

• Centered differences:370

Another possibility to compute the spatial gradients is to use centered differences, departing from371

cell-averaged data. This approach is second order accurate and is free from limiting techniques,372

hence it is adequate to approximate the diffusion terms in (13). Moreover, it has lower compu-373

tational cost than the sub-cell derivative reconstruction procedure. By using this discretization,374

Equation (13) yields to:375

D̄x,ij = ∆x δ




0

h̄T xx

h̄T yx




i+1/2,j

i−1/2,j

, D̄y,ij = ∆x δ




0

h̄T xy

h̄T yy




i,j+1/2

i,j−1/2

. (45)

where:376

h̄i+1/2,j =
hi+1,j + hi,j

2
, h̄i−1/2,j =

hi,j + hi−1,j

2
, (46)
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are the average water depths at x-cell interfaces, computed using cell averages. The average water377

depths at y-cell interfaces are computed analogously. More generally, (̄·)i+1/2,j =
(·)i+1,j+(·)i,j

2 and378

(̄·)i,j+1 =
(·)i,j+1+(·)i,j

2 . The approximate stresses, T xx, T xy, T yxand T yy, are approximated using379

central differences as follows:380

(
T xx

)
i+1/2,j

= 2
(
ν + ν̄ti+1/2,j

)(ui+1,j − ui,j
∆x

)
, (47)

(
T yx

)
i+1/2,j

=
(
ν + ν̄ti+1/2,j

)( 1

2∆x

(
ui+1,j+1 + ui,j+1

2
− ui+1,j−1 + ui,j−1

2

)
+

vi+1,j − vi,j
∆x

)
,

(48)

(
T xy

)
i,j+1/2

=
(
ν + ν̄ti,j+1/2

)(ui,j+1 − ui,j
∆x

+
1

2∆x

(
vi+1,j+1 + vi+1,j

2
− vi−1,j+1 + vi−1,j

2

))
,

(49)

(
T yy

)
i,j+1/2

= 2
(
ν + ν̄ti,j+1/2

)(vi,j+1 − vi,j
∆x

)
. (50)

The centered differences have a truncation error of order O(∆x2), which is lower than that of the381

convective part. However, due to the particular application of the scheme that involve small diffusion382

coefficients, the presence of the O(∆x2) term in the truncation error is far from limiting the higher383

order of accuracy of the scheme (i.e. the convective term dominates over the diffusive terms as the384

Peclet number [46] is several orders of magnitude lower than the CFL number).385

Among the two physically consistent approaches: (i) a non-WENO polynomial and (ii) the centered386

derivatives, the second order centered derivatives technique is eventually chosen, as stated in the387

Appendix A. Although the level of accuracy is lower with the centered derivatives than with a388

high order polynomial reconstruction, the computational effort saved with the centered derivatives389

compensated such selection.390

3.4. Boundary wall numerical treatment: the composite wall friction model391

The friction in a 1D model of a channel is computed by means of a composite Manning coefficient,392

which includes the friction of the lateral walls. The Horton-Einstein equation is thus used:393

n =

(
n
3/2
b b+ 2n

3/2
w h

b

)2/3

(51)

where nb is the roughness coefficient of the bed, nw the roughness coefficient of the walls, b is the width394

of the channel and h the water depth. In the numerical model proposed here, a composite Manning395

coefficient is considered in those cells containing solid walls (i.e. the boundaries that enclose the water396

body). The roughness coefficient in such cells, n, is computed by accounting for the contribution of397

the bed plus the contribution of the walls. In the case of having solid walls along the x direction, we398

compute the x-Manning composite coefficient as:399

nx =

(
n
3/2
b ∆y + n

3/2
w h

∆y

)2/3

(52)
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and analogously when having solid walls along the y direction:400

ny =

(
n
3/2
b ∆x+ n

3/2
w h

∆x

)2/3

(53)

The proposed model accounts for the shear stress on the walls by including an extra friction401

component on the boundary cells, introducing all the extra friction on the first row of cells by re-402

calculating the Manning coefficient using the Einstein-Horton formulation. The shear momentum403

introduced in the first cell by the effect of the wall roughness is eventually transferred to the inner404

cells (in the spanwise direction, towards the center of the channel) thanks to the diffusion terms and405

the numerical diffusion. The size of the boundary layer developed in the numerical solution will thus406

depend on the wall roughness, the diffusion coefficient and ultimately, in some extent, on the mesh407

resolution.408

In the present model there is still a broken link between the wall roughness and the mixing length:409

both play an important role on the vortical dynamics. As a future work, it will be useful to carry out410

a further investigation on more accurate wall friction models by including the relation between such411

quantities: the wall roughness and the mixing length. For instance, it will be valuable to implement a412

wall friction law which could dynamically span over a certain number of cells and ultimately, develop413

a velocity profile over the wall. The wall roughness could thus actively participate in the vortical414

production of the mixing layer.415

4. Numerical results416

4.1. Single lateral cavities417

4.1.1. Problem configuration418

The fundamental behavior of unsteady flow in an open channel with a lateral cavity was investi-419

gated, both experimentally and numerically, by Kimura and Hosoda in [8]. A schematic diagram of420

the flow domain is shown in Figure 2. A rectangular dead zone of variable longitudinal length (two421

cases are proposed with L = 15 and L = 22.5 cm) is attached to the side wall of an open channel. The422

length in the transverse direction, W , is 15.0 cm, and the channel width, B, is 10.0 cm. The hydraulic423

variables for the two laboratory tests proposed in [8], hereafter referred to as Case 1 and Case 2, are424

listed in Table 1. For the velocity measurements, an anemometer with a propeller with a diameter of425

3 mm was used for velocities over 6 cm/s, and a thermal type anemometer with a diameter of 3 mm426

was used for velocities below 6 cm/s. Temporal velocity variations were measured at half the depth427

along the interface along the T − T ′ section in 2. One of the fundamental properties of this type of428

flow is the generation of seiches due to the coupling between the shedding of vortices at the opening429

of the cavity with a traveling gravity wave inside the cavity. A selective amplification of vortices is430

induced by the presence of the seiche. Such vortices are eventually transported inside the cavity and431

dissipated. According to [8], the analytical estimation of the period of the seiche is given by:432

T =
2L

nc
, n = 1, 2, 3, ... (54)

yielding a period of T = 0.958 s and T = 1.011 s for cases 1 and 2 respectively, which are larger than433

the experimental measurements, in Table 1. Note that such values are estimated considering the first434

harmonic, that is n = 1.435

The experiments were simulated using the proposed WENO-ADER scheme. Note that the lengths436

Lup and Ldown in Figure 2 are required to define the computational domain. Such parameters are437

unspecified in the original work [8] and here we choose Lup = 15 cm and Ldown = 20 cm for Case438
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Figure 2: Sketch of the experimental setup used by [8] and detail of the main features of the flow.

Case L (cm) W (cm) B (cm) q (l/s) h0 (cm) Slope Fr Re T exp. (s)

1 15.0 15.0 10.0 0.255 1.00 1/500 0.81 2781 0.89
2 22.5 15 10.0 0.747 2.02 1/500 0.83 8150 0.87

Table 1: Experimental hydraulic parameters.

1 and Lup = 15 cm and Ldown = 25 cm for Case 2. For all simulations, a stability condition of439

CFL+ Pe = 0.4 is used.440

4.1.2. Case 1441

Numerical results for case 1 are presented in this section. Different sub-cases, defined by different442

calibration and simulation parameters, are presented. Details of the parameters for the simulations443

are summarized in Table 2. Runs 1 to 5 correspond to unsteady RANS (URANS) simulations whereas444

run 6 corresponds to a RANS simulation, which only resolves averaged quantities.445

Run Model qbc (l/s) hbc (cm) ν (m2/s) λ β nb nw ∆x (mm) Order

1.1 URANS 0.255 1.0 1E-6 0.3 0.3 0.010 0.03 1.25 3
1.2 URANS 0.255 1.0 1E-6 0.3 0.3 0.010 0.03 2.5 3
1.3 URANS 0.255 1.0 1E-6 0.3 0.3 0.010 0.03 5 3
1.4 URANS 0.255 1.0 1E-6 0.3 0.3 0.010 0.03 2.5 1
1.5 URANS 0.255 1.0 1E-6 0.15 0.05 0.010 0.025 1.25 3
1.6 RANS 0.255 1.0 1E-6 1.5 2.0 0.010 0.025 1.25 1

Table 2: Numerical parameters for the turbulent model and the simulations.

The Manning coefficient has to be properly calibrated to ensure uniform flow along the channel446

with a water depth of h = 1 cm. We have selected nb = 0.010 as the optimal Manning coefficient.447

In the original work by Kimura and Hosoda in [8], non-slip boundary conditions were imposed in448

combination with an adaptive mesh refinement near the walls. In this work, we consider the composite449

Horton-Einsten Manning formulation to account for the friction with the walls as described before. The450

numerical results evidence that the lower the wall roughness, the larger the velocity in the recirculation451
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inside the lateral cavity. According to the results, the optimal choice for the wall Manning coefficient452

should be between nw = 0.02 and nw = 0.03. A sensitivity analysis of the solution to the grid size was453

carried out in runs 1.1–1.3, where three different grids with ∆x = 1.25 (run 1.1), ∆x = 2.5 (run 1.2)454

and ∆x = 5 mm (run 1.3) were used.455

Numerical results for the time-averaged streamwise velocities along the section T −T ′ are presented456

in Figure 3 (a) and results for the mean water surface evolution in time at the upstream edge of the457

cavity are presented in Figure 3 (b). The amplitude of the seiche decreases as the grid size increases.458

In addition, its period is practically not modified, as reported in [8]. It is observed that the grid459

resolution of ∆x = 5 mm is not enough to properly capture the expected amplitude of the seiche and460

the measured magnitudes of velocity. On the other hand, grid sizes ∆x = 2.5 and ∆x = 1.25 mm461

provide similar results that mimic the experimental measurements and the results in [8], which means462

that ∆x = 2.5 m is sufficient to provide the neccesary accuracy.463
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Run 1.1 (∆x=1.25 mm)

Run 1.2 (∆x=2.50 mm)

Run 1.3 (∆x=5.00 mm)

Figure 3: (a) Computed and measured time-averaged streamwise velocity along T −T ′ for ∆x = 1.25 (run 1.1), ∆x = 2.5
(run 1.2) and ∆x = 5 mm (run 1.3). (b) Mean water depth at the upstream edge of the cavity computed using ∆x = 1.25
(run 1.1), ∆x = 2.5 (run 1.2) and ∆x = 5 mm (run 1.3). Time-averaged quantities are denoted by the overbar symbol
(̄·).

The role of the order of accuracy of the numerical scheme was also investigated. A comparison of464

the results provided by the 3-rd order WENO-ADER scheme (run 1.2) and a 1-st order scheme (run465

1.4), using a ∆x = 2.5 mm grid, is presented in Figure 4. The numerical results evidence that a first466

order of accuracy is too diffusive to reproduce the standing gravity wave, since the shear instability at467

the opening of the cavity cannot be captured. Additionally, it is observed that the velocities inside the468

cavity, along the section T −T ′, are underestimated by the 1-st order scheme. This scheme is thus not469

adequate to reproduce resonant flows. Only when using the RANS approach (i.e. when using adequate470

values for the turbulent viscosity), the 1-st order scheme is valid.471

In [8], the authors provided measurements of the time evolution of the streamwise velocity mag-472

nitude at different locations along the shear layer. In particular, they define the points a, b and c,473

whose coordinates are provided in [8]. Such data allow to assess the validity of the numerical model474

to reproduce the vortex generation/amplification process and its coupling with the seiche.475

Finally, and departing from the previous results, the best calibration of the URANS model was476

obtained and corresponds to run 1.5. The bottom and wall friction (nb and nw) and the turbulence477

parameters of the model (λ and β) were fine tuned to provide accurate results of the time-averaged478

velocities along the section T − T ′ (Figure 5), assuming a realistic description of the time evolution479

of the velocity at the shear layer, when compared to the measurement in [8] (Figure 6). This case480
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Figure 4: (a) Computed and measured time-averaged streamwise velocity along T − T ′ for a 1-st order scheme (run 1.4)
and 3-rd order scheme (run 1.2). (b) Mean water depth at the upstream edge of the cavity computed using a 1-st order
scheme (run 1.4) and 3-rd order scheme (run 1.2). Time-averaged quantities are denoted by the overbar symbol (̄·).

corresponds to a URANS simulation where the horizontal eddies are practically resolved while small-481

scale dissipative effects are modelled by choosing a suitable parametrization of the turbulent viscosity.482

The numerical results provided by the URANS simulation (run 1.5) are compared to the results483

provided by a pure RANS computation (run 1.6) in Figures 5 and 6. Note that the RANS approach484

provides a steady solution with no variation in time of the water level. The whole effect of the485

time fluctuating value of the water level is modelled and accounted for by the turbulence model. A486

comparison of the time-averaged longitudinal velocity along T −T ′ is depicted in Figure 5 (a), showing487

that the URANS approach (run 1.5) provides accurate results in the main channel and in the shear488

layer, though it overstimates the velocity in the recirculation zone. On the other hand, the RANS489

approach (run 1.6) appears to be diffusive (due to excessive numerical viscosity) and inaccurate in the490

main channel and shear layer though it provides acceptable results inside the cavity. A comparison of491

the time-averaged velocity field for the URANS and RANS approaches (run 1.5 and 1.6 respectively)492

with the solution in [8] is presented in Figure 5 (b, c and d). It is observed that the velocity field493

provided by the proposed scheme when using the URANS model contains the same features than the494

solution in [8]. Inside the cavity, both solutions show the presence of a main vortex, referred to as S1,495

and three secondary eddies, denoted by S2, S3 and S4. The RANS model only shows the main vortex,496

S1, but the secondary eddies cannot be captured.497

The lack of accuracy of the RANS model in the resolution of the shear layer is evidenced in Figure498

6: the velocity at points a (x = 0.175 m, y = 0.09 m), b (x = 0.200 m, y = 0.09 m) and c (x = 0.250499

m, y = 0.09 m), which is steady given the nature of RANS simulations, is lower than the time varying500

experimental data.501

4.1.3. Case 2502

In this section, numerical results for the case 2 (cavity length L = 22.5 m) in Table 1 are presented.503

The calibration chosen for Case 1 - run 1.5 is preserved to evidence the applicability of the numerical504

model to a different case. Details of the parameters for the simulation are summarized in Table 2. In505

run 2, a RANS simulation of the problem is carried out. To this end, a different configuration of the506

turbulence model is required in order to model all fluctuations in time. When considering the URANS507

approach (run 1), relatively small values of λ and β are used, so that the main coherent vortices are not508

damped and can be resolved by the model. For the RANS approach, such calibration constants must509
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(a)

(b) (c) (d)

Figure 5: Computed and measured time-averaged streamwise velocity along T − T ′ (a). Magnitude and streamlines of
the time-averaged velocity provided by the RANS approach (b) and URANS approach (c). Numerical solution provided
in [8] (d). The main vortical structure is denoted by S1 and the secondary eddies by S2, S3 and S4. Note that the
bottom-right plot has been obtained from [8]. Time-averaged quantities are denoted by the overbar symbol (̄·).

be increased in order to damp any fluctuation and to model their effect as a pure diffusive process.510

Run Model qbc (l/s) hbc (cm) ν (m2/s) λ β nb nw ∆x (mm) Order

2.1 URANS 0.747 2.02 1E-6 0.15 0.05 0.010 0.025 2.5 3
2.2 RANS 0.747 2.02 1E-6 1.5 2.0 0.010 0.025 2.5 1

Table 3: Numerical parameters for the turbulent model and the simulations.

In Figure 7 (a), the numerical solution for the time-averaged streamwise velocity component along511

T−T ′ is compared with the measured and numerical solution provided in [8]. A top-view representation512

of the time-averaged velocity field for the RANS and URANS simulations, compared with the results513

provided in [8], is presented in Figure 7 (b, c and d). It is observed that the numerical solution provided514

by the proposed model matches the reference solution. The results provided by the RANS approach515

(run 2) evidence that the velocity gradient across the shear layer is smeared and the prediction of the516

flow field in the main channel is less accurate.517

Figure 8 shows the evolution in time of the numerical and measured mean water surface elevation,518

h, and u velocity at point d. As mentioned before, only when using the URANS approach (run 2.1),519
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Figure 6: Measured (plots a, c and e) and numerical (plots b, d and f) evolution of the streamwise velocity in the
x-direction at points a (plots a and b), b (plots d and d) and c (plots e and f). Results provided by URANS (run 1.5,
green line) and RANS approaches (run 1.6, blue line).

temporal variations of the mean flow field are captured. As in [8], the oscillation of the predicted520

streamwise mean velocity, u, has a greater amplitude than in the experimental observations. This521

may be due to an excessive level of periodicity and coherence in the numerical solution, without extra522

oscillating modes, produced by an absence of vortex breakup mechanisms that would damp the periodic523

component associated to the seiche [50]. Figure 8 also shows that the RANS approach yields an steady524

solution which provides a better prediction of water depth and velocity, in terms of time-averaged525

values, than in Case 1.526

The numerical results prove that the proposed WENO-ADER scheme reproduces the observed527

seiche, providing an accurate estimation of the frequency and amplitude of the oscillation, as well as528

the instantaneous and time-averaged magnitude of the velocities within an acceptable level of accuracy.529

Taking into account the results for Case 1 and 2 discussed above, we can conclude that the proposed530

numerical scheme is sufficiently valid to reproduce complex flow patterns in enclosed water bodies,531

involving the coupling of shear instabilities and gravity waves.532
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(a)

(b) (c) (d)

Figure 7: Computed and measured time-averaged streamwise velocity along T −T ′ (a). Magnitude and streamlines of the
time-averaged velocity field obtained by URANS (b) and RANS (c), compared to the time-averaged numerical velocity
field provided in [8] (d). Time-averaged quantities are denoted by the overbar symbol (̄·).

4.2. Multiple lateral cavities533

4.2.1. Problem definition534

In this section, the proposed WENO-ADER scheme is applied to the resolution of the flow in535

channels with multiple lateral cavities. Such cavities are built in the banks of rivers to create harbors536

or to promote areas with hydraulic and morphological diversity that enhance habitat suitability. For537

instance, this is a very common measure to recover and revitalize riverine habitats that have degener-538

ated because of anthropogenic activities (e.g. river channelization for different purposes such as land539

expansion, flood protection or agriculture) [11, 51].540

The hydrodynamic response of lateral cavities is characterized by a main recirculation region that541

may trap the fine sediments travelling within the flow in the main channel as defined in [9, 41, 52]. In542

particular conditions, a seiche appears inside the cavities, which homogenizes the small-scale fluctua-543

tions in the flow and promotes vertical mixing, compromising the trapping efficiency of the cavities.544

Unlike in geometric configurations involving a single cavity, as those in the previous section, the in-545

teraction of multiple cavities has an additional effect in the propagation and formation of resonant546

waves.547

The complex flow structures produced by the geometric configurations herein described challenge548

the prediction capabilities of the numerical methods and are thus considered in this section to evaluate549

the performance of the proposed numerical methods. Systematic laboratory tests in an open channel550

equipped with bank lateral embayments were carried out by Juez et al. [9, 41] for different geometric551

configurations. The hydrodynamic response of the configurations tested was assessed by means of552

21



(a) (b)

0 2 4 6 8 10
0.015

0.02

0.025

0.03

t(s)

h
+

z
(m

)

0 2 4 6 8 10
0.015

0.02

0.025

0.03

t(s)

h
+

z
(m

)

(c) (d)

40 42 44 46 48
0.1

0.2

0.3

0.4

0.5

t(s)

u
(m

/s
)

40 42 44 46 48
0.1

0.2

0.3

0.4

0.5

t(s)
u

(m
/s

)

Figure 8: Experimental (a,c) and numerical (b,d) mean water surface elevation (a,b) and time evolution of mean streamise
velocity (c,d) at point d. URANS approach in green line and RANS approach in blue line.

velocity (surface PIV) and water surface elevation (ultrasounds probes) measurements. The experi-553

mental results obtained in these tests are considered here as a benchmark. In particular, the flow for554

the geometric configurations 2.1 and 3.1 [9, 41] will be reproduced.555

Comparison with experimental data will allow to explore the role of the turbulence model in the556

prediction of the frequency and amplitude of the seiche. The effect of the numerical diffusion in the557

solution, which is related to the grid size, is investigated.558

A schematic representation of a sector of a channel with lateral cavities is depicted in Figure 9.559

The relevant dimensions, also represented in Figure 9, are the total width of the channel (base channel560

and cavities), B, the width of the base channel, b, the lateral width of the cavities, W = (B − b)/2,561

the length of the cavities, l, and the distance between cavities, L. The geometric configurations 2.1562

and 3.1 [9, 41] depicted in Figure 10.563

4.2.2. Geometric configuration 3.1564

The geometric configuration 3.1 is characterized by a total channel width of B = 1 m, a base565

channel width of b = 0.5 m and a length of the cavities equal to their separation, that is l = L = 0.5566

m. The geometry of the channel and the location of three numerical probes, P1, P2 and P3, measuring567

the water depth, are depicted in Figure 10 (b). The cavity where surface PIV measurements were568

carried out is highlighted in blue and experimental measurement of water depth was only done at the569

location of P1 and P3. The slope of the channel is 0.1% and the flow was configured to be uniform,570

with h = 0.05 m and Q = 8.5 l/s.571

In this particular configuration, a seiche with a period of T = 2.84 s was observed [41]. The572

analytical estimation of the period of the seiche can be calculated with T = 2B/nc, setting B = 1 m573

and h = 0.05 m, and yields is T = 2.86 s. This result is in good agreement with the experimental574

measurement.575

All simulations will be computed using the 3-rd order WENO-ADER scheme if no other method576

is specified. The simulation time is t = 300 s, which is sufficient for the seiche to be stable and allows577
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Figure 9: Representation of a sector of the channel with lateral cavities including the relevant geometric dimensions and
flow features.

(a)

(b)

Figure 10: Representation of the channel configuration 2.1 (a) and 3.1 (b), including the location of the probes P1, P2
and P3. The cavity used in the experimental measurements is highlighted in blue.

to use an adequate time window for the time integration of the velocities. The computational domain578

is given by Ω = [0, 7.5] × [0, 1] and four different cell sizes will be used, ∆x = 0.0125 m, ∆x = 0.01579

m, ∆x = 0.00625 m and ∆x = 0.005 m. The stability condition is set to CFL + Pe = 0.45 for all580

simulations. The boundary conditions are given by a constant discharge of hu = Q/b = 0.017 m2/s581

upstream and a constant water depth h = 0.05 m downstream. Note that the boundary conditions are582

imposed by means of the characteristic variables at the inlet and outlet cell interfaces.583

The Manning coefficient on the channel bed is set to n = 0.01 sm−1/3 and on the channel walls584

to n = 0.03 sm−1/3 in the case of concrete (inner walls) or n = 0.01 sm−1/3 in the case of glass (side585

walls). See [9, 41] for a detailed description of the experimental setup. The depth-averaged mixing586

length turbulence model is used, if no other method is specified, considering the following calibration587

λ = 0.15 and β = 0.05.588

Remark that a initial perturbation in the transverse direction must be added in order to trigger the589
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presence of the seiche. Otherwise, the numerical solution is perfectly symmetrical and only longitudinal590

traveling waves are observed since the grid is also symmetric with respect to the channel longitudinal591

axis. Figure 11 shows the evolution in time of the difference hP1 − hP2 for a simulation without592

initial perturbation and with a initial perturbation of v = 0.008 m/s. Note that the visualization of593

the difference hP1 − hP2 allows to quantify the level of symmetry of the solution. Only when such594

difference is below machine precision, the solution is symmetric. Figure 11 (a) shows the solution for595

the whole simulation time. Figure 11 (b) shows a zoom of a small region of the unperturbed solution.596

The grid size is ∆x = 0.00625 m. It is observed that only when the initial condition is perturbed, the597

span-wise symmetry is broken up and a coherent oscillation is observed. This oscillation represents the598

seiche. On the other hand, the unperturbed solution also shows an oscillation, as shown in the zoomed599

plot. This oscillation has an amplitude of the magnitude of machine truncation errors. It can be thus600

considered numerical noise.601
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Figure 11: (a) Evolution in time of the mean water depth difference between points P1 and P2, hP1 − hP2. The red line
is the numerical solution when no initial perturbation is added whereas the blue line represents the numerical solution
when adding a initial perturbation of v = 0.008 m/s. (b) Zoomed region of the unperturbed solution that shows that
hP1 − hP2 is below machine precision.

The role of the turbulence model in the numerical prediction of the seiche is now investigated. In602

Figure 12, the evolution in time of the numerical mean water depth at P1, P2 and P3 is depicted603

for the three different meshes described above. In the upper row, results obtained when using the604

depth-averaged mixing length turbulence model (λ = 0.15 and β = 0.05) are presented, while in605

the bottom row, results without turbulence model are depicted. It is observed that the use of the606

turbulence model in combination with a high order of accuracy in the numerical integration is crucial607

for a suitable prediction of the water depth oscillation. Only with the help of a turbulent model, the608

numerical solution can become mesh independent, as observed in Figure 12. On the other hand, if the609

turbulence model is not considered, the periodicity of the oscillation is destroyed as the mesh is refined610

due to a lack of dissipation (the numerical diffusion is highly reduced and there is no other source of611

diffusion). This is also evidenced in Figure 13, where the power spectrum of the signals, computed by612

means of an FFT algorithm, is depicted. It is observed that the analytical estimation of the period of613

the seiche is well captured when using the turbulence model, with independence of the grid.614

A plot of the evolution of the peak-to-peak amplitude, hpp = 2
√
2σh (where σh is the standard615

deviation of h in time), with respect to the cell size is presented in Figure 14. The results are computed616

using the depth averaged mixing length turbulence model (λ = 0.15 and β = 0.05) and evidence that a617

resolution of ∆x = 0.00625 m is sufficient to avoid any dependence with the grid. This can be observed618

as the convergence of hpp at P1 to a virtually constant value. Note that the factor 2
√
2 is the ratio619

between the peak-to-peak amplitude and the standard deviation of a sinusoidal signal. In this case, the620
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seiche is close to a sinusoidal fluctuation, hence hpp will be an adequate estimation of the peak-to-peak621

amplitude.622
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Figure 12: Mean water depth evolution in time at P1 (blue), P2 (yellow) and P3 (orange), computed by the 3-rd order
WENO-ADER scheme in three different meshes with ∆x = 0.01 m (a,d), ∆x = 0.00625 m (b,e) and ∆x = 0.005 m
(c,f), using the depth-averaged mixing length turbulence model (λ = 0.15 and β = 0.05) (a,b,c) and without using any
turbulence model (λ = β = 0) (d,e,f).
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Figure 13: Power spectrum density distribution of the mean water depth fluctuation, measured at P1, for the case with
turbulence model (a) and without turbulence model (b). The analytical and experimental frequency of the seiche are
depicted with a black and green dashed line, respectively.

A comparison between the experimental water depth oscillation, measured at P1 and P3, and the623

numerical prediction is depicted in Figure 15. It is again observed that the numerical model correctly624

reproduces the frequency and amplitude of the seiche at both locations.625

The time-averaged velocity field inside the cavity highlighted in Figure 10 was experimentally626

assessed using a surface PIV technique. A comparison between the experimental measurements and the627

numerical estimation of the velocity inside the cavity is presented in Figure 16. The numerical results628
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Figure 14: Plot of the peak-to-peak water depth amplitude, hpp = 2
√

2σh, at P1 (blue) and P3 (orange), against the
cell size. The solution is computed using the 3-rd order WENO-ADER scheme and the depth-averaged mixing length
turbulence model.
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Figure 15: Numerical (a) and experimental (b) mean water depth evolution in time at P1 (blue) and P3 (orange).
The numerical solution is computed using the 3-rd order WENO-ADER scheme and the depth-averaged mixing length
turbulence model, using ∆x = 0.00625 m. The period of the seiche is obtained using an FFT algorithm.

are computed using ∆x = 0.0625 m. Figure 16 (a and b) shows a 2D comparison of the y component629

of the time-averaged velocity field. It evidences that the numerical model is able to reproduce the630

recirculating flow inside the cavity. A more quantitative comparison is presented in Figure 16 (c and631

d), where cross sectional representations of the measured and computed time averaged velocities are632

plotted. The time averaged streamwise velocity is plotted over the y direction at x = 0.125, 0.25, 0.375633

m, whereas the time averaged spanwise velocity is plotted over the x direction at y = 0.05, 0.125, 0.2634

m. It is observed that the numerical model slightly overpredicts the magnitude of the velocity in the635

recirculation region, if compared to the surface PIV measurements.636

4.2.3. Geometric configuration 2.1637

The geometric configuration 2.1 is characterized by a total width of the channel B = 1 m, a width638

of the base channel b = 0.6 m, a length of the cavities equal to l = 0.25 m and a separation between639

cavities of L = 0.5 m. The slope of the channel is 0.1% and the flow was configured with Q = 8.5 l/s640

and h = 0.048 m at the outlet. In this particular configuration, a periodic seiche was not reported [41].641

The numerical solution was computed again using the 3-rd order WENO-ADER scheme. The642

simulation time is t = 300 s and the computational domain is given by Ω = [0, 7.5] × [0, 1]. The643
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Figure 16: Measured (a) and computed (b) time-averaged spanwise velocity inside a cavity. Cross sectional representation
of the measured and computed streamwise time-averaged velocity, along the y direction (c) and spanwise time-averaged
velocity, along the x direction (d). Time-averaged quantities are denoted by the overbar symbol (̄·).

boundary conditions are given by a constant unit discharge of hu = Q/b = 0.01416̄ m2/s upstream644

and a constant water depth h = 0.048 m downstream.645

The Manning coefficient on the channel bed is set to n = 0.01 sm−1/3 and on the channel walls to646

n = 0.03 sm−1/3 in the case of concrete (inner walls) or n = 0.01 sm−1/3 in the case of glass (side walls).647

The depth-averaged mixing length turbulence model is used with the following calibration λ = 0.15648

and β = 0.05.649

As in the previous case, the time-averaged velocity field inside one of the cavities is experimentally650

assessed using surface PIV. A comparison between the experimental measurements and the numerical651

estimation of the velocity inside the cavity is presented in Figure 17. The numerical results are652

computed using ∆x = 0.005 m. Figure 17 (a and b) shows a 2D comparison of the y component of the653

time-averaged velocity. In Figure 17 (c and d), a cross sectional representation of the measured and654

computed time-averaged velocities are plotted. The streamwise component of the velocity is plotted655

over the y direction at x = 0.0625, 0.125, 0.1875 m. In addition, the spanwise component of the velocity656

is plotted over the x direction at y = 0.05, 0.1, 0.15 m. As in the geometric configuration 3.1, it is657

observed that the numerical results yield to a higher velocity magnitude in the recirculation region,658

specially near the downstream wall.659

The calibration found in this work for the horizontal eddy viscosity coefficient in URANS simulation660

(i.e. β = 0.05) is consistent with previous literature as the coefficient βl2s is of the order of magnitude661
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(a) (b)

(c) (d)

Figure 17: Measured (a) and computed (b) time-averaged spanwise velocity inside a cavity. Cross sectional representation
of the measured and computed time-averaged streamwise velocity, along the y direction (c) and time-averaged spanwise
velocity, along the x direction (d). Time-averaged quantities are denoted by the overbar symbol (̄·).

of Cs∆x. For instance, βl2s ∼ 10−6 for cases 2.1 and 3.1, which is in good agreement with Cs∆x for662

the selected grids (i.e. ∆x = 0.005 m and ∆x = 0.00625 m for cases 2.1 and 3.1, respectively) and for663

Cs inside the expected range, according to [45].664

5. Concluding remarks665

A depth averaged 2D URANS hydrodynamic solver based on an arbitrary order augmented WENO-666

ADER scheme for the SWE is designed for the resolution of turbulent shallow flows. A large extent of667

the large-scale 2D turbulence spectrum is thus resolved thanks to the high accuracy of the numerical668

scheme. Conversely, depth averaged calculations do not resolve 3D turbulence and the modelling of the669

unresolved subdepth-scale of 3D turbulence is required. Part of the dissipation produced by this effect670

is accounted for by means of friction losses, using a friction source term in the momentum equations.671

However, this was not sufficient hence an eddy viscosity model, related to the friction velocity and672

water depth, is used. The proposed model is also able to compute RANS simulations by means of673

including an extra contribution in the eddy viscosity due to local variations of the horizontal velocity.674

The depth-averaged mixing length model is used for the evaluation of the eddy viscosity both for675

the RANS and URANS approaches. When using the RANS approach, both 3D and 2D turbulence is676
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modelled. When using the URANS methdology, 3D turbulence is modelled as in the RANS approach677

and 2D turbulence is mostly resolved. Only the smallest horizontal scales (sub-grid scales) cannot be678

resolved and have to be modelled using a horizontal eddy viscosity coefficient. In URANS simulation,679

such approach can be regarded as a sub-grid model for the unresolved horizontal 2D scales.680

Concerning the numerical scheme, a WENO-ADER method is used. It can be regarded as an681

arbitrary order extension of the first order Godunov’s method. The WENO reconstruction is used682

to provide an arbitrary order of accuracy in space, avoiding Gibbs oscillations. The ADER approach683

allows to extend the updating scheme to arbitrary order in time without needing extra sub-steps.684

Thanks to the use of WENO-ADER schemes, the numerical diffusion and dispersion are reduced to685

the desired level so that the scheme is able to resolve small-scale features of the flow. This makes such686

schemes suitable for the resolution of 2D turbulence, as it is possible to control to which extent the687

energy spectrum is resolved or modelled. As a result, the numerical scheme shows convergence with688

mesh refinement even in cases with transient propagation of gravity waves and shedding of vortices.689

Different approaches for the numerical approximation of the turbulent diffusion terms are assessed.690

The use of a WENO-based reconstruction of the derivatives is not suitable due to the non-linear limiting691

of sharp gradients provided by the WENO method when the length scales of the velocity gradients are692

lower than the cell size, making the solution not consistent with physics. On the contrary, the linear693

version of such method circumvents this problem and provides a more accurate solution. For the sake694

of simplicity and efficiency, a second order discretization using centered differences is chosen.695

Bed variations are also considered in the SWE in order to account for a complex bathymetry. The696

thrust exerted by the bed slope is accounted for as a source term in the momentum equations. The697

ARoe solver, in combination with a particular integration of the source terms of arbitrary order, is698

used to satisfy the well-balanced property and preserve the lake-at-rest equilibrium state. The DRP699

is solved by means of the ARL solver, which is a high order extension of the ARoe solver.700

The performance of the proposed model is assessed by comparing with experimental data. Four701

benchmark cases, two of them involving a channel with a single lateral cavity, and other two involving702

a channel with multiple lateral cavities, are used. The numerical results evidence that the URANS703

model accurately reproduces both longitudinal and transversal seiche waves and provides an accurate704

description of the flow field. In certain cases, the magnitude of the time-averaged velocity in the705

recirculation zones is slightly overestimated. This is presumably due to the non-purely 2D nature706

of the flow, thus it has been more clearly noticed in cases where the ratio between the horizontal707

dimensions of the cavity and the flow depth is low. When considering the RANS approach, the scheme708

reproduces the measured time-averaged velocity field, but fluctuations in time and seiches cannot be709

reproduced.710

It is observed that the amplitude and shape of the seiche is, in general, sensitive to the parameters711

of the turbulence model. However, the frequency keeps a quasi-constant value regardless the changes in712

the calibration of the turbulence model. The numerical frequency is systematically in good agreement713

with the theoretical/experimental estimation. Furthermore, it is evidenced that there is no need to714

use very fine meshes thanks to the WENO reconstruction technique and the ADER time stepping. A715

number of 40 to 60 cells along the width of the cavity has been reported in all tests to be sufficient to716

reproduce the experimental data.717

The proposed model offers a suitable solution for the computation of turbulent shallow flows with718

high order of accuracy, allowing to resolve a large extent of the 2D turbulence spectrum, while modelling719

the 3D small scale turbulence. The model is explicit and fully discrete, and preserves the fundamental720

equilibrium states of interest (e.g. lake-at-rest) thanks to a robust integration of the source terms that721

ensure high order of accuracy without loosing stability. The framework for the construction of arbi-722

trary order schemes has been presented, allowing to find a good compromise between the accuracy and723

the computational cost of the scheme. The model is suitable for coarse computational meshes, thanks724
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to (a) the high order of accuracy and (b) to the accurate modelling of the sub-grid unresolved physics725

(i.e. wall and bottom friction and small scale turbulence), using high order sub-cell reconstructed726

data. This makes the proposed model a useful tool for realistic scenarios, comprising large spatial727

and temporal scales, with an eventual application to more complex phenomena (e.g. geomorphological728

applications). As a future work, the development of a more accurate wall friction model that relates729

the wall roughness and the mixing length will be considered. The design of a wall friction law that730

spans over the cells within the boundary layer will be investigated in the framework of the proposed731

model.732
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Appendix A. Details on the numerical approximation of the diffusion terms739

To show the numerical performance of the two different approaches for the reconstruction of the740

spatial gradients outlined in the text, a numerical experiment involving a shear flow is presented. Let741

us consider a pure shear flow with constant water depth depth in the streamwise direction, x, defined742

in the semi-infinite domain Ω = [−∞,∞]× [0, 1]. The transverse velocity, v, is nil and the streamwise743

velocity, u, is equal to -0.001 if 0 ≤ y ≤ 0.5 and 0.001 if 0.5 < y ≤ 1. Bed slope and bed friction are744

not considered. All variations in x are nil. This problem can be reduced to a 1D problem in the y745

direction and Equation (1)–(2) becomes:746

∂(hu)

∂t
+

∂(huv)

∂y
= νh

∂2u

∂y2
(A.1)

For the conditions of the problem, the solution of (A.1) is given by:747

hu(y, t) = 5 · 10−4erf

(
y − 0.5

2
√
νt

)
(A.2)

and it leads to v = 0. In discrete form, Equation (A.1) becomes:748

(hu)n+1
j = (hu)nj +

∆t

∆x

(
(huv)⋆j+1/2 − (huv)⋆j−1/2

)
+

1

∆x
D̄ (A.3)

where749

D̄ ≈
∫ tn+1

tn

∫ yi+1/2

yi−1/2

νh
∂2u

∂y2
dydt (A.4)

As in the analytical solution, when v = 0, the numerical flux for the shear momentum provided by750

the ARoe solver, (huv)∗j+1/2, is nil. This is straightforward to prove by analyzing the third component751

of the y-version of (33), which involves the numerical flux for the shear momentum:752

(huv)⋆j+1/2 = (huv)j+1− ṽ

(
ũδh

2
− ṽδh− δ(hv)

2c̃
ũ+ δ(hu)− ũδh

)
− c̃

(
ũδh

2
− ṽδh− δ(hv)

2c̃
ṽ

)
, (A.5)

If inserting ṽ = δh = δ(hv) = 0 in Equation (A.5), it yields to:753
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(huv)⋆j+1/2 = (huv)j+1 = 0 (A.6)

hence, no shear momentum will be transferred across the interface in the numerical solution due to754

convective transport. Therefore, Equation (A.3) becomes:755

(hu)n+1
j = (hu)nj +

1

∆x
D̄ (A.7)

The term D̄ must be numerically approximated by using one of the options described before. If756

choosing the first option, based on the sub-cell derivative reconstruction procedure in [48], D̄ yields to:757

D̄ = ∆tνh



(
∂yu+

K∑

k=1

∂k
t (∂yu)

∆tk

(k + 1)!

)

jN

−
(
∂yu+

K∑

k=1

∂k
t (∂yu)

∆tk

(k + 1)!

)

jS


 (A.8)

where the subscript N and S stand for north and south, with reference to the cell center. For instance,758

(∂yu)jN is the sub-cell spatial derivative reconstruction at y = yjN . Note that this numerical sub-cell759

derivative can be reconstructed departing from data provided either by a WENO reconstruction or by760

an optimal polynomial reconstruction.761

On the other hand, if choosing centered differences in Equations (45)–(50), D̄ yields to:762

D̄ = ∆tνh

(
uj+1 − uj

∆x
− uj − uj−1

∆x

)
(A.9)

Numerical results for the problem configuration detailed above, comparing the performance of the763

different approximations of the diffusion terms, are presented in Figure A.18. Four different tests, listed764

in Table A.4, are carried out. The first test does not consider any diffusion, hence the numerical scheme765

must preserve the discrete equilibrium, according to Equation (A.3). This is evidenced in Figure A.18766

(a), which shows that the exact initial equilibrium is maintained and that there is no mixing across767

the shear layer.768

On the other hand, tests 2, 3 and 4 do involve a nonzero viscosity. Test 2 is is based on the sub-cell769

WENO derivative reconstruction in (A.8) and, as expected, the solution in Figure A.18 (c) evidences770

that such method prevents the diffusive mixing across the discontinuity. The initial equilibrium is771

maintained since the reconstructed spatial gradients (and their higher order time derivatives) are nil772

in the whole domain, (∂yu)j(·) = 0, with independence of the order of accuracy. Therefore, the method773

is unable to reproduce the analytical solution.774

Test 3 is based on the same sub-cell derivative reconstruction approach, but using an optimal775

polynomial reconstruction rather than the WENO reconstruction. In this case, the derivatives at the776

discontinuities are properly approached, hence the method is more adequate to compute the diffusion777

terms. Numerical results for a 3-rd and 5-th order scheme are presented in Figure A.18 (d).778

In Test 4, the diffusion terms are computed by means of centered differences in (A.9). As in Test779

3, this method is able to accurately reproduce the analytical solution as depicted in Figure A.18 (b).780

The numerical results evidence that the centered differences approach provides a lower accuracy781

than the the sub-cell derivative reconstruction method. However, the differences in accuracy of such782

approaches for the particular application of this methods will be negligible when compared to the783

numerical error of the convective terms. Furthermore, carrying out a sub-cell derivative reconstruction784

based on the optimal polynomial reconstruction supposes an added computational expense. Therefore,785

the centered differences approach is chosen for the particular applications herein considered.786
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Test ν Approximation of diffusion terms ∆x Reconstruction order

1 0 None 0.02 -
2 0.001 Sub-cell derivative reconstruction (WENO limiting) 0.02 3-rd, 5-th
3 0.001 Sub-cell derivative reconstruction (optimal rec.) 0.05 3-rd, 5-th
4 0.001 Centered differences 0.05 2-nd

Table A.4: Numerical tests to assess the validity of the approximation of the diffusion term.
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Figure A.18: Cross sectional representation of the exact (solid line) and numerical hu in the y direction for test 1 (a),
test 2: sub-cell derivative reconstruction with WENO limiting (c), test 3: sub-cell derivative reconstruction with optimal
reconstruction (d) and test 4: centered differences (b). The numerical solution is presented at t = 0.1, 1, 3 s. Crosses and
circles stand for 3-rd and 5-th order solutions, respectively.
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