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Abstract

The focal field properties of radially/azimuthally polarized Zernike polynomials are studied.
A method to design the pupil field in order to shape the focal field of radially or azimuthally
polarized phase vortex is introduced. With this method, we are able to obtain a pupil field to
achieve a longitudinally polarized hollow spot with a depth of focus up to 12λ and 0.28λ lateral
resolution(FWHM) for a optical system with numerical aperture 0.99; A pupil field to generate 8
focal spots along the optical axis is also obtained with this method.

1. INTRODUCTION
Optical focal field shaping by engineering the polarization, amplitude and phase on the exit
pupil of an optical system[1–3], especially with the help of spatial light modulators [4–6], has
attracted lots of attentions in recent years. And this can find applications in many areas. For
instance, a beam with phase vortice or azimuthal polarization on the exit pupil can generate hollow
focus[7, 8], with null intensity in the center, which can be used to trap absorbing particles, cold
atoms[9] and also in high resolution STED microscopy[10] . The ability to control the local elec-
tric/magnetic field distribution in the focal region makes it possible to determine the orientation
of a single optical emitter[11] or excite certain resonances of a quantum emitter[12] which is not
possible otherwise. There are various methods to shape the focal field of a radially/azimuthally
polarized pupil, including designing binary phase masks[13] or reversing the electrical dipole
array radiation[14–16]. Tight focusing behavior of polarized phase vortex beams [17, 18] has
been investigated to achieve sharp resolution [19, 20], and to demonstrate spin-to-orbital angu-
lar momentum conversion[21], et al.. In a previous publication[22] , we have demonstrated a
method to generate elongated focal spot using Zernike polynomials. Zernike polynomials forms
a complete and orthogonal set of polynomials on a unit circle, which form an ideal set to study
the pupil engineering of normally circularly apertured optical imaging system. By precalculating
the focal fields of Zernike polynomials, we can optimise the focal field by only optimising the
Zernike coefficients. However, in paper[22], scalar diffraction integral is considered, thus neither
polarization nor phase vortices are investigated. In this paper, we first study the focal field proper-
ties of radially/azimuthally polarized Zernike polynomials. Based on this, we applied the pupil
engineering method using complex Zernike polynomials to shape the focal field of a phase vortex
with radial and azimuthal polarizations to generate an longitudinally polarized axially uniform
hollow focus, a transversally polarized elongated spot, and circularly polarized multiple focal spot.
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Figure 1: The Debye diffraction model. Light is focused from the exit pupil plane (xs, ys) to the focal
region. The focal coordinates is (xf, yf, zf) with the geometrical focal point as its origin.

2. FOCAL FIELD OF RADIAL AND AZIMUTHAL POLARIZED ZERNIKE
POLYNOMIALS

The complex Zernike polynomials Zm
n (ρ, φ) form a complete set of orthonormal polynomials

defined on a unit disc:
Zm

n (ρ, φ) = R|m|n (ρ)eimφ, (1)

Rm
n (ρ) =

p

∑
s=0

(−1)s(n− s)!
s!(q− s)!(p− s)!

ρn−2s, (2)

where p = 1
2 (n − |m|), q = 1

2 (n + |m|), n − |m| ≥ 0 and even, (ρ, φ) are the normalised polar
coordinates on the exit pupil plane. As we can see from its definition, Zm

n is a phase vortex with
the topological charge m.
The polarized field distribution on the exit pupil plane can be decomposed into series of radially
or azimuthally polarized Zernike polynomials:

~Es(ρ, φ) = ∑
n,m

ês(ρ, φ)βm
n Zm

n (ρ, φ), (3)

The electric fields are polarized within the exit pupil plane, i.e. they contain no z compo-
nent. Radial/azimuthal polarization is position-dependent, defined by unit vector ês(ρ, φ) at
position (ρ, φ). For radial polarization, the electric field is polarized along the radial direc-
tion of the unit circle ês(ρ, φ) = êρ(ρ, φ) = (cos φ, sin φ), while for azimuthal polarization
ês(ρ, φ) = êφ(ρ, φ) = (− sin φ, cos φ).
Zernike polynomials have been very useful to analyze the aberrations of an optical system and
have been used as a basic set in the Extended Nijboer Zernike theory, in which a semi-analytical
solution of the focal field of each Zernike polynomial on the exit pupil is derived[23, 24].

The focal field of a field distribution on the exit pupil of a hign NA optical system is treated
by the vectorial Debye diffraction integral[25–27]. In this paper we compute the through-focus
fields of the pupil field, as a composition of radially or azimuthally polarized Zernike polynomials
in Eq.3, by numerically computing the vectorial Debye diffraction integral with a Fast Fourier
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Transform method[28]:

~Ef(xf, yf, zf) = −
iR
2π

∫∫
Ω

êf(θ, φ) ∑
n,m

βm
n Zm

n (ρ, φ)
eikzz
√

cos θ

kz
exp[−i(kxxf + kyyf)]dkx dky (4)

= ∑
n,m

βm
n ×

{
− iR

2π

∫∫
Ω

êf(θ, φ)Zm
n (ρ, φ)

eikzz
√

cos θ

kz
exp[−i(kxxf + kyyf)]dkx dky

}

where R is the focal length, the geometrical cone Ω is defined by {(kx, ky) : k2
x + k2

y ≤ k2
0NA2},

kz =
√

k2
0n2 − k2

x − k2
y, k0 = 2π/λ, and(xf, yf, zf) is a point in the focal region, with geometrical

focal point as origin. êf(θ, φ), where sin θ = ρ sin θmax, represents unit vector of electric field
polarization of the focusing ray in the direction (θ, φ) from exit pupil to the geometrical focal
point. For radially polarized pupil field, êf = (cos φ cos θ, sin φ cos θ, sin θ), while for azimuthally
polarized pupil field, êf = (− sin φ, cos φ, 0).
The focal field of a single radially or azimuthally polarized Zernike polynomials is:

~Enm
f (xf, yf, zf) = −

iR
2π

∫∫
Ω

êf(θ, φ)Zm
n (ρ, φ)

eikzz
√

cos θ

kz
exp[−i(kxxf + kyyf)]dkx dky (5)

Since the vectorial Debye diffraction integral is a linear operator of pupil field ~Es, the focal fields
can be expressed by summation of the focal fields of each complex Zernike mode ~Enm

f with the
same set of Zernike coefficients βm

n which as occur in the expression of the pupil field:

~Ef(xf, yf, zf) = ∑
n,m

βm
n
~Enm

f (xf, yf, zf), (6)

Once a set of coefficients βm
n for ~Enm

f is found to give a desired focal distribution, the pupil field
that gives this focal distribution can be obtained from Eq.(3).
In order to gain more insight into the focal fields of radially and azimuthally polarized Zernike
polynomial, we rewrite Eq.(5) using polar coordinates:

~Enm
f (ρf, φf, zf) = −

iRs2
0

λ

∫ 1

0
(1− ρ2s2

0)
−1/4e−ik0zf

√
1−ρ2s2

0 (7)

× R|m|n (ρ)ρdρ
∫ 2π

0
êfeimφei2πρρf cos(φf−φ)dφ,

where, (ρf, φf, zf) are the cylindrical coordinates of a point in the focal region, and s0 is the numerical
aperture.
Integrals over azimuthal angle φ can be computes analytically. The cartesian components of the
focal electric field of the radially polarized pupil field are given by:

Enm
f,x (ρf, φf, zf) = −

iπRs2
0

λ
(−i)m+1eimφf

∫ 1

0
ρdρ (8)

× (1− ρ2s2
0)

1/4e−ik0zf

√
1−ρ2s2

0 R|m|n (ρ)

×
[
eiφf Jm+1(2πρρf)− e−iφf Jm−1(2πρρf)

]
,

Enm
f,y (ρf, φf, zf) = −

iπRs2
0

λ
(−i)m+2eimφf

∫ 1

0
ρdρ (9)

× (1− ρ2s2
0)

1/4e−ik0zf

√
1−ρ2s2

0 R|m|n (ρ)

×
[
eiφf Jm+1(2πρρf) + e−iφf Jm−1(2πρρf)

]
,
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Enm
f,z (ρf, φf, zf) = −

i2πRs2
0

λ
(−i)meimφf

∫ 1

0

s0ρ

(1− ρ2s2
0)

1/4
(10)

× e−ik0zf

√
1−ρ2s2

0 R|m|n (ρ)Jm(2πρρf)ρdρ.

Similarly, the Cartesian coordinates of the azimuthal components of the focal field of an azimuthal
polarized pupil field is:

Enm
f,x (ρf, φf, zf) = −

iπRs2
0

λ
(−i)meimφf

∫ 1

0
ρdρ (11)

× (1− ρ2s2
0)
−1/4e−ik0zf

√
1−ρ2s2

0 R|m|n (ρ)

×
[
eiφf Jm+1(2πρρf) + e−iφf Jm−1(2πρρf)

]
,

Enm
f,y (ρf, φf, zf) = −

iπRs2
0

λ
(−i)m+1eimφf

∫ 1

0
ρdρ (12)

× (1− ρ2s2
0)
−1/4e−ik0zf

√
1−ρ2s2

0 R|m|n (ρ)

×
[
eiφf Jm+1(2πρρf)− e−iφf Jm−1(2πρρf)

]
,

From these expressions, we can see that the focal field of a radially polarized phase vortex of
topological charge m has the following properties:

1. Its transverse focal field component is proportional to (1− ρ2s2
0)

1/4, while its longitudinal
component is proportional to s0ρ/(1− ρ2s2

0)
1/4. This means that for pupil fields with lower

NA of which lower spatial frequency part dominates, the transversally polarized component
is stronger; while for a pupil function with higher NA of which the higher spatial frequency
part dominates, the longitudinal component is stronger. This gives a way to modulate the
polarization in the focal region.

2. The transverse focal field component of radially polarized Z±1
n is non-zero on the optical

axis, due to the existence of J0 in the integral.

3. The radial polynomial R|m|n modifies the focal field distribution in such a way that for a fixed
m and n > |m|, two focal points appear symmetrically to the focal plane zf = 0, and as n
increases, the separation between these two foci also increases, as shown in Fig. 2a.

4. The width of the hollow spot of Iz = |Ez|2 generated by radially polarized Zm
n increases with

increasing |m| 6= 0, as shown in Fig. 2b.

While the focal field of an azimuthally polarized phase vortex of topological charge m has the
following properties:

1. The azimuthal polarization state is kept in the focal region for azimuthally polarized pupil
field Z0

n , which can be easily derived from Eq. 11 and Eq. 12;

2. The transverse focal field component of Z±1
n is non-zero on the optical axis, due to the

existence of J0 in the integral, this can be confirmed by previous work by L.E. Helseth[17].
And from Eq. 11 and Eq. 12, the focal fields on the optical axis, i.e. ρf = 0, is circularly
polarized. For azimuthally polarized pupil field Z±1

n , the double focus phenomena along
the optical axis also appears for n > 1 and as n increases, the separation between the foci
increases.
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Figure 2: (a). Normalized z-component of the focal intensity for various radially polarized Z1
n along

zf axis, lateral position is at its intensity maxima in the transversal plane, the numerical aperture is
0.99. (b). Normalized z-component of the focal intensity for various radially polarized pupil field Zm

m
along xf axis, z position is at its intensity maxima in the longitudinal plane, the numerical aperture is
0.99.

3. FOCAL FIELD SHAPING
In this paper, we only use Zm

n with the same phase vortex charge m for shaping the focus, because
this makes the intensity circularly symmetric around the optical axis. The basis of focal fields on
a given grid in the (xf, zf)-plane corresponding to the radially and azimuthally polarized pupil
fields ~Ef are pre-calculated using the FFT and stored in the database. The focal field of a general
polarized electric pupil field can be written as as a linear combination of these basic functions:

~Ef = ∑
p

βm
n
~Enm

f , (13)

where m is fixed and p = (n− |m|)/2.
The optimisation algorithm works as follows:

1. From the database that stores the focal fields ~Enm
f in the (xf, zf)-plane, we choose the first

term of vortex topological charge m on a lateral line at zf = 0: ~Enm
f (xf, 0). The lateral position

where the transverse field contribution of the intensity I|m|mt = |E|m|mf,x |2 + |E
|m|m
f,y |2 gets its
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maximum is different from the one of the longitudinal component I|m|mz = |E|m|mf,z |2. xz0 and

xt0 are determined correspondingly at the maximimum of the longitudinal component I|m|mz

and the transverse component I|m|mt ;

2. ~Enm
f (zf)|xf=xz0 and ~Enm

f (zf)|xf=xt0 , defined over two axial lines of interest zf ∈ [−zmax, zmax] at
xz0 and xt0 are taken from the database as the basic focal fields for optimisation;

3. A target intensity function Itarget is defined over zf ∈ [−zmax, zmax];

4. A set of Zernike coefficients βm
n are randomly generated. The total focal intensity generated

by the set of Zernike coefficients is I = |~Ef|2, its longitudinal component contribution is Iz =
|Ef,z|2 and the transverse component contribution is It = |Ef,x|2 + |Ef,y|2. For optimisation of
the longitudinal polarization, fields on line xf = xz0 is chosen and Iz(zf)|xf=xz0 is normalized
to Ĩz(zf) = Iz(zf)|xf=xz0 /Imax, where Imax is the maximum total intensity in the xz plane. For
optimisation of the transverse polarization, fields on line xf = xt0 is chosen and It(zf)|xf=xt0

is normalized to Ĩt(zf) = It(zf)|xf=xt0 /Imax.

5. Matlab builtin function lsqnonlin is used with a ’trust-region-reflective’ algorithm to min-
imize | Ĩz − Itarget| for longitudinal component optimisation or | Ĩt − Itarget| for transverse
component optimisation with the randomly generated set of Zernike coefficients in step 4,
and it will generate a set of Zernike coefficient as a result of the minimization. After this,
∑zf
| Ĩz − Itarget|2 or ∑zf

| Ĩt − Itarget|2 is evaluated;

6. Step 4 and 5 are repeated until ∑zf
| Ĩz − Itarget|2 or ∑zf

| Ĩt − Itarget|2 is below a certain value;

7. The Zernike coefficients obtained in step 6 are considered as a good starting point of the
optimisation. Then a Nelder-Mead simplex direct search method is used to optimize the coef-
ficients in order to get a minimum of | Ĩz − Itarget| for longitudinal component optimisation
or | Ĩt − Itarget| for transverse component optimisation.

A few examples are given in the following section:

A. Longitudinally polarized elongated subwavelength hollow channel
An elongated subwavelength hollow channel can be used to trap absorbing nano-particles[8]
and cold atoms[9]. It can also be used as an excitation beam for high resolution fluorescence
microscope like STED[10], to excite fluorescence emission over an extended depth of focus, while
keeping a high resolution.

The z-component Enm
f,z of the focused field due to a radially polarized Zm

n pupil field for given
fixed m 6= 0, vanishes on the optical axis, while the topological charge of the incident beam m is
kept in Enm

f,z . However its transverse components are non-zero on the optical axis. In the optimi-
sation process, we therefore try to maximize the z-component by minimizing |Iz/Imax − Itarget|,
where Iz = |∑p β1

nEn1
fz |2, Imax is the maximum intensity in the xz plane, and the target function

Itarget is a rectangle function along zf axis with value 1 between |zf| < zmax, where 2× zmax is the
desired depth of focus.

We use a combination of 14 radially polarized Zernike polynomials êρ[Z1
n]|n=1,3,5,...,27 on the

exit pupil of an optical system with NA=0.99. As shown in Fig.3, with a set of Zernike coefficients
[β1

n]|n=1,3,5,...,27= [-0.1437, -0.3, -0.398, -0.589, -0.568, -0.824, -0.674, -0.892, -0.785, -0.743, -0.754, -0.73,
-0.182, -0.829], we get a hollow spot with lateral resolution(FWHM) of 0.28λ, and its FWHM of
focal depth is about 16λ, with a good uniformity over a range of 12λ around the focal plane. For a
high NA system with NA=0.99, this is equivalent to 12.24 Rayleigh unit λ/NA2. This focal field is
longitudinally polarized along the optical axis. The corresponding optimized radially polarized
pupil field with m=1 to generate this elongated hollow spot is given by ~Es(ρ, φ) = ∑n êρβ1

nZ1
n(ρ, φ),
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as shown in Fig.4.
The ratio of the transverse and longitudinal components can be adjusted by pupil engineering of
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Figure 3: Elongated subwavelength hollow spot by an shaped radially polarized phase vortex with
m = 1 on the exit pupil, NA=0.99. (a).Nomalized focal field distribution in the xf − zf plane; (b)Focal
field in the transversal plane; (c). Focal intensity distribution along the zf axis;, while xf is at the
maxmimum intensity on the transversal plane (d). Focal intensity distribution along xf axis.

Figure 4: The pupil field of an shaped radially polarized phase vortex with m = 1 to generate
elongated subwavelength hollow spot in Fig. 3.

the low spatial frequency and high spatial frequency components. One commonly used method
is to use annular aperture. For instance, a radially polarized annular pupil with phase vortex
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m = 1: A(0.99 < ρ < 1) = êρ exp(iφ) and 0 elsewhere in the exit pupil can also generate an
elongated subwavelength hollow channel, as shown in Fig.5, but the uniformity of the spot along
z dimension is much worse than the results obtained with our method.
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Figure 5: Elongated subwavelength hollow spot by a radially polarized annular aperture with phase
vortex m = 1 on the exit pupil, NA=0.99. (a).Nomalized focal field distribution in the xf − zf plane;
(b). Focal intensity distribution along the zf axis;, while xf is at the maxmimum intensity on the
transversal plane

B. On-axis transversl polarized focal field with radially polarized pupil Z1
n

The ability of modulating the local polarization of the focal field can be used to determine the
orientation of a single optical emitter[11].This can be achieved by engineering the pupil field.

In the first example, we achieved an elongated hollow spot with radially polarized pupil
field Z1

n, for which at the focal points where the intensity is maximum, the focal electric field is
polarized primarily along the z-direction. With the same set of Zernike polynomials, we can also
maximize the tranverse compoents by optimizing the β1

n to minimize |It/Imax − Itarget|, where
It = |∑p β1

nEn1
fx |2 + |∑p β1

nEn1
fy |2, Imax is the maximum total intensity in the xz plane, the target

function Itarget is a rectangle function along zf axis with value 1 between |zf| < zmax, where 2× zmax
is the desired depth of focus..
We use a combination of 14 radially polarized Zernike polynomials êρ[Z1

n]|n=1,3,5,...,27 on the exit
pupil of an optical system with NA=0.9. As shown in Fig.6, with the set of Zernike coefficients
[β1

n]|n=1,3,5,...,27=[-0.2632, 0.7, -0.677, -0.09, 0.982, -1.273, 0.413, 0.553, -1.167, 0.208, -0.194, 0.135,
-2.244, 0.586], we get an elongated focal spot along the optical axis with strong polarization in the
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transverse direction, while its z-polarized component is much weaker.

The pupil field of an shaped radially polarized phase vortex with m = 1 to generate this
elongated tranversely polarized focal spot is then obtained from ~Es(ρ, φ) = êρ ∑n β1

nZ1
n(ρ, φ), as

shown in Fig.7.
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Figure 6: Elongated focal spot with stronger transversal polarisation component by an shaped
radially polarized phase vortex with m = 1 on the exit pupil, NA=0.9. (a).Nomalized focal intensity
distribution in the xf− zf plane; (b). Focal intensity distribution along the optical axis; (c). Transversal
and longintudinal components of the focal intensity distribution along xf axis.

Figure 7: The pupil field of an shaped radially polarized phase vortex with m = 1 to generate
elongated transversally polarized focal spot in Fig. 6.
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C. Multiple circularly polarized focal spots along the optical axis with azimuthally polarized Z1
n

Multiple subwavelength excitation focal spot along the optical axis can be very useful for fluores-
cence microscopy, as it can simultaneously excite fluorescence at multiple planes in the specimen.
P.P. Mondal proposed a method using interference of two counter-propagating long depth of
focus PSFs to generate multiple excitation spot PSF[29]. However, this approach utilizes a 4pi
configuration, which requires more complex optical setup than just shaping the pupil field. From
Section 2, we know that for Zernike polynomials with a fixed m and n > |m|, dual focus appear
symmetrically to the focal plane zf = 0, and as n increases, the separation between these two focus
increases. By assigning certain Zernike coefficients to Zernike polynomials Zm

n with different n,
we can generate multiple axial focal spots by shaping the exit pupil.

We use a combination of 14 azimuthally polarized Zernike polynomials êφ[Z1
n]|n=1,3,5,...,27 on

the exit pupil of an optical system with NA=0.99. As shown in Fig.8, with the set of Zernike
coefficients [β1

n]|n=1,3,5,...,27= [-0.222, 0.228, 0.4726, -0.106, 0.4315, 0.853, -0.169, -0.0438, 0.9424, 0.482,
-0.85, 0.824, 0.557, 0.115], we can get 8 axial focal spots, each with a lateral resolution of 0.216λ and
separated about 1.7λ between adjacent spots along the optical axis; The maximum intensity of
these focal spots of the azimuthally polarized phase vortex of m = 1 lies on the optical axis and
contains no longitudinal component.

The pupil field of an shaped azimuthally polarized phase vortex with m = 1 to generate this
multiple focal spots along optical axis is obtained from ~Es(ρ, φ) = ∑n êφβ1

nZ1
n(ρ, φ), as shown in

Fig.9.

4. DISCUSSIONS
There are also other complete set of orthogonal polynomials commonly used in describing vor-
tex beams, for instance, Laguerre-Gauss(LG) polynomials[30], which can be used for focal feld
optimisation. Different from Zernike polynomials, the LG polynomials are orthogonal on an
infinite plane. For optical imaging systems which often have circular apertureS, while using the
LG polynomial expansion, one has to take into account the apodization effect, determined by the
relative beam size and the actual aperture size. The influence of the apodization has been discussed
in[31]. This will largely increase complexity of the optimisation problem, as more variables need
to be considered. In this sense, the Zernike polynomials are simpler and more suitable for finding
the desired pupil field of the desired focal field distribution for an optical system with apertures,
as it forms a complete set on a unit disk.
There have been great progress in recent years on experimental realization of vector beam. One
possible way to generate pupil fields in previous examples is to use Spatial Light Modulators,
it has been proven by several works[4–6] that complete control of polarization, amplitude and
phase are possible. Vector vortex beams have also been demonstrated by q-plate[32]. With the
development of these techniques, the radially/azimuthally polarized pupil field with phase vortex
should be experimentally realizable.

5. CONCLUSION
In this paper,the focal field of radially/azimuthally polarized complex Zernike polynomials is
investigated. Based on the understanding of this, a method to shape the focal field of radi-
ally/azimuthally polarized phase vortices is proposed. With pre-calculation of the focal field of
each radially/azimuthally polarized Zernike polynomial, the optimization variables are reduced
to the number of Zernike coefficients being used. Three results from this method are given in this
paper, including a longitudinally polarized subwavelength hollow focal spot with a depth of focus
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Figure 8: Multiple focal spot along optical axis by an shaped azimuthally polarized phase vortex
with m = 1 on the exit pupil, NA=0.99. (a).Nomalized focal field distribution in the (xf, zf) plane; (b).
Focal intensity distribution along the optical axis; (c). Focal intensity distribution along the xf axis, zf
is at one of the locations where the spot has maximum on axis intensity.

Figure 9: The pupil field of an shaped azimuthally polarized phase vortex with m = 1 to generate
multiple focal spot along optical axis.

up to 12λ and a lateral resolution(FWHM) of 0.28λ for a sytem with NA=0.99. By engineering
the ratio of high and low spatial frequencies, a tranversally polarization dominated elongated
focal spot is obtained for radially polarized Zernike polynomials with topological charge of 1. We
also obtained multiple subwavelength focal spots along the optical axis. With these results, pupil
shaping of azimuthally/radially polarized optical vortices can achieve resolution improvement
of optical system and can shape the polarization and intensity sistribution, in the focal region,
which may result in interesting applications in the area of high resolution fluorescence microscopy,
optical trapping, etc.
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