
Embedding Statix in Agda

Version of August 21, 2024

Alex Haršáni

Embedding Statix in Agda

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Alex Haršáni
born in Trnava, Slovakia

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2024 Alex Haršáni.

Embedding Statix in Agda

Author: Alex Haršáni
Student id: 5064104

Abstract

Static type-checking allows us to detect ill-typed programs even before running them.
However, the higher complexity of type systems may cause type-checker implementa-
tion to differ from their specifications. This causes bugs and makes it hard to reason
about the type of systems. To close this gap between implementation and specification,
a meta-language Statix was introduced. Using Statix, we can write a specification using
constraints over scope graphs and terms. Successfully solving these constraints means
that the program is well-typed. However, while Statix ensures that the implementation
and specification correspond to each other, it does not offer a way for its users to formally
reason about the type systems’ specifications. To this end, we introduce a library called
STATIX-IN-AGDA. This library, written using the proof assistant Agda, includes the formal-
isation of scope graphs and embedding of Statix’s constraints. We show how we can use
our library to specify the type system of STLC-like language, prove that programs in this
language are well-typed, and give type-preservation proof for a type system of a simple
toy language with numbers and addition.

Thesis Committee:

Chair: Dr. J.G.H. Cockx, Faculty EEMCS, TU Delft
Committee Member: MSc. A.S. Zwaan, Faculty EEMCS, TU Delft
Committee Member: Dr. C.B. Poulsen, Faculty EEMCS, TU Delft
University Supervisor: Dr. S. Dumančić, Faculty EEMCS, TU Delft

Preface

This thesis marks the culmination of my time as a student at TU Delft. Studying at this
university has been a great privilege, and I will forever be grateful for all the knowledge and
experience I gained throughout this journey.

Firstly, I would like to thank my supervisors Jesper Cockx, Aron Zwaan and Casper
Poulsen. Thank you for all the help when I was stuck, for all your useful feedback that
made me improve, and for the inspiration that made me choose the field of programming
languages as the main focus of my studies.

Secondly, I would like to thank my friends, who made my time at TU Delft some of the
best years of my life.

Last but not least, I would like to thank my family for their support and for always believ-
ing in me.

Alex Haršáni
Delft, the Netherlands

August 21, 2024

iii

Contents

Preface iii

Contents v

1 Introduction 1

2 Scope Graph 3
2.1 Preliminaries . 3
2.2 Problem . 5
2.3 Implementation . 5

3 Constraints 7
3.1 Preliminaries . 7
3.2 Problem . 9
3.3 Implementation . 10

4 Constraint Support 15
4.1 Preliminaries . 15
4.2 Problem . 16
4.3 Implementation . 16

5 Examples 19
5.1 Implementing simple type system . 19
5.2 Proving type preservation . 21
5.3 Discussion . 23

6 Future work 25
6.1 Type preservation for a language extended with functions and variables . . . 25
6.2 User experience . 25
6.3 Translation . 26
6.4 New constraints . 26

7 Related Work 27
7.1 Scope Graph Formalization . 27
7.2 Meta-Theory . 27
7.3 Statix . 27
7.4 Tools for formal specification of programming languages 28

8 Conclusions 29

v

CONTENTS

Bibliography 31

vi

Chapter 1

Introduction

Static type-checking gives us a way to detect erroneous programs even before running them.
For example, the ill-typed program that attempts to add a number and a string (e.g., 1 +
"hello") will be rejected by the type-checker. This may save us a lot of time that we would
otherwise spend looking for type-related bugs.

The problem with type systems is that they may become much more complex than just
checkingwhetherwe add two numbers. Inmany programming languages, we often use vari-
ables and functions of which we cannot immediately say what type they have. When adding
a number and a variable(e.g., 1 + x), we need first to know whether the type of the variable
is a number. This means that type-checking depends on the name resolution. Furthermore,
things become even more complex in programs with non-lexical scoping, such as import-
ing modules or using class inheritance. This way, not only does type-checking depends on
the name resolution, but the name resolution also depends on type-checking. When type-
checking a variable from an imported module, we must first resolve its name. However, in
order to resolve its name, we need to type-check the imported module.

The growing complexity of the type systems creates a gap between their specification and
implementation, which may lead to bugs. Antwerpen et al. 2018 give an example from the
conversation under the pull request related to changes in Rust’s name resolution, in which
one of the contributors say:1 ”I’m finding it hard to reason about the precise model proposed
here, I admit. I wonder if there is away tomake thewrite up a bit more declarative.”. To close
this gap, Antwerpen et al. 2018 introduced a metalanguage called Statix. With Statix, we can
specify the type system using a set of constraints based on which the sound type-checker is
derived. Name resolution is done using scope graphs, in which scopes are represented by
nodes, with edges between them representing the scope inclusions. The names are resolved
by traversing the graph to the required declaration.

This union between implementation and specification could allow us to reason about
the type system, possibly creating a way to prove various useful properties of the language
itself. However, since the specification is written using Statix, we cannot reason about it
formally, in the same way as we could using proof assistants such as Agda, Idris, or Coq. To
make this possible, we introduce a library called STATIX-IN-AGDA, the embedding of declarative
semantics of Statix-core(in the rest of the thesis, we will refer to Statix-core as Statix), the
subset of Statix defined by Rouvoet et al. 2020. Using this library, we can express Statix
specifications in Agda and reason about them formally. Our vision for the future is to be able
to automatically translate Statix specifications to their STATIX-IN-AGDA counterparts. However,
for now, this is out of this project’s scope. The complete implementation can be found in the
GitHub repository2.

1https://github.com/rust-lang/rfcs/pull/1560
2https://github.com/AlexHarsani/statix-in-agda

1

https://github.com/rust-lang/rfcs/pull/1560
https://github.com/AlexHarsani/statix-in-agda

1. INTRODUCTION

Research Questions The main goal of this thesis is to create an embedding of declarative
semantics of Statix in Agda that users can use to reason about the correctness of their speci-
fications. For this, we define the following research questions:

1. How can we formalise scope graphs in Agda, such that they can be used with the con-
straints of Statix? How does the latest definition of scope graphs differ from previous
definitions?

2. What are the strengths and limitations of deep and shallow embedding styles of Statix
constraints? What are the trade-offs regarding usability, correctness, and complexity
of the embedding?

3. How does the design of the embedding influence the ability to specify type systems
and reason about their meta-theoretical properties?

Contributions To answer the research questions, this thesis makes the following contribu-
tions:

• We introduce STATIX-IN-AGDA, the embedding of Statix in Agda.

• We formalise scope graphs in Agda by extending previous implementations by Bach
Poulsen, Rouvoet, et al. 2017 and Casamento 2019. We analyse and identify necessary
changes and extensions to be made in order to make them usable in STATIX-IN-AGDA.
These changes include extending the implementation with labels representing scope
inclusions and changing the scopes to include only one data term(in order for every
declaration to have its own scope). We also extend the scope graph library with the
scope graph fragments that are used for constraint support (Chapter 2, Chapter 4).

• We compare the deep and shallow styles of embedding in the context of Statix and dis-
cuss their advantages and disadvantages with regard to usability, soundness, and com-
plexity of the implementation. We give deep embedding of Statix constraints (Chapter
3).

• We show how STATIX-IN-AGDA can be used to specify the type system of language with
variables and functions. We also show how STATIX-IN-AGDA can be used to prove type-
preservation property for a very simple languagewith numbers and addition (Chapter
5).

2

Chapter 2

Scope Graph

The first step in embedding Statix in Agda is formalizing scope graphs. Statix uses these
graphs to perform name resolution during type-checking. In this chapter, we will give pre-
liminary information on the scope graphs, examine problems in formalizing them in Agda,
and give our implementation.

2.1 Preliminaries
Scope graphs represent a language-independent way to formally represent name binding
and resolution. They were first introduced by Néron et al. 2015 and then Antwerpen et al.
2018 made them a fundamental part of the metalanguage Statix. Later, Rouvoet et al. 2020
extended them with the concept of critical edges in the graph, which gave a way to carefully
schedule name resolution during type-checking of programs with non-lexical scoping.

Now, let us define the scope graph and other important terms that are essential for the
rest of the paper:

• Scope graph: Consists of scope nodes connected by labeled edges.

• Scope: Is a region in the program where names are resolved uniformly, represented by
a node in the scope graph.

• Data term: Contained within the scope, represents the type of declaration.

• Edge: Connects two scopes/nodes, is labeled.

• Label: Assigned to edges based on the scope inclusion that the edge represents.

To demonstrate what the scope graph looks like, let us now go through its construction
based on a simple Scala program. We start with a single scope of the program called the root
scope in Figure 2.1.

sR

Figure 2.1: Scope graph with only root scope.

First, we declare an object called Ship. Every declaration introduces its own node in a
scope graph. This object was declared in the root scope, therefore it is a lexical child of the
the root scope. So, we add an edge labeled L(lexical parent), going from child scope to
parent scope. Also, we added an edge labeled D(declaration), going from parent scope to
child scope. We get a program and a scope graph as in Figure 2.2.

Then, we add some sails and engines to the ship. Let us define methods representing
the number of sails and engines on the ship. In Figure 2.3, we can see that these methods

3

2. SCOPE GRAPH

1 object Ship {
2
3 }

(a) Scala code

sR

sShip ÞÑ Ship

D L

(b) Scope graph

Figure 2.2: Scope graph after adding the object Ship.

introduced two more new scopes, with edges labeled D pointing to them from scope of the
Ship object.

1 object Ship {
2 def nEngines:Int = 1;
3 def nSails:Int = 2;
4 }

(a) Scala code

sR

sShip ÞÑ Ship

D L

snEngines ÞÑ nEngines : Int snSails ÞÑ nSails : Int

DD

(b) Scope graph

Figure 2.3: Scope graph after adding the methods for numbers of engines and number of
sails.

Finally, to demonstrate how names are resolved, we introduce a method representing the
total number of both engines and sails. For this method, we need to resolve the names of
the previous two methods. To do this, we need to define notions of reachability and visibility.
Reachability is defined with regard to a scope s, a word r, and a predicate on a scope data
term D. A scope s1 is reachable from scope s if predicate D holds for its data term(of scope
s1) through all the paths in the graph according to a word r. A word r is a regular expression
that defines the sequence of labels we allow in the path. This will enable us to restrict what
paths through the graph we can take. For example, we can allow the path to only take a
maximum of one edge with a I label to disallow transitive imports. Conversely, visibility
defines which paths are minimal according to a preorder relation R. The resolution paths
can be seen in Figure 2.4.

1 object Ship {
2 def nEngines:Int = 1;
3 def nSails:Int = 2;
4 def nAll:Int = num_of_engines +
5 num_of_sails;
6 }

(a) Scala code

sR

sShip ÞÑ Ship

D L

snEngines ÞÑ nEngines : Int snSails ÞÑ nSails : Int

DD

snAll ÞÑ nAll : Int

D

nEngines nSails

(b) Scope graph

Figure 2.4: Scope graph after adding the method for numbers of engines and sails, along
with the dashed resolution path for variables nSails and nEngines.

4

2.2. Problem

2.2 Problem
Scope graphs have already been implemented in Agda by Bach Poulsen, Rouvoet, et al. 2017.
They were defined as a function from scope to a pair of lists of declarations(data terms)
and neighboring scopes/nodes. The scope is represented by Fin k, a type of finite natural
numbers up to k. Casamento 2019 further generalises this implementation by replacing Fin
with Listable, which allows for improved generating of scope graphs, as we do not need
to know a number of scopes beforehand. The implementation based on the work of Bach
Poulsen, Rouvoet, et al. 2017 can be seen in Figure 2.5.

1 Scope = Fin k
2
3 Graph = Scope → (List Ty × List Scope)

Figure 2.5: Scope graph in Agda based on the work of Bach Poulsen, Rouvoet, et al. 2017.

The main problem we have to solve with regard to scope graphs is adapting their imple-
mentation according to Statix’s requirements. The first problem is to allow for easy querying
and traversal in the graph, as some of the constraints, as we will see in the next chapter, re-
quire. Luckily, the previous implementations of scope graphs work quite nicely thanks to
their functional representation. The second problem is that in the newer publications, such
as by Rouvoet et al. 2020, the way that scope graphs are modeled slightly changed. The first
difference is that the edges between scopes are labeled. This way, declarations become edges
labeled to represent declarations. These labels also give more options to model more com-
plex scope inclusions and restrict the resolution paths. Another difference is how the dec-
larations are modeled. In the old model, the declarations are represented by special types
of nodes with edges connecting them to the scope node. In the new model, declarations in-
stead introduce their own scope. The difference between the two versions of the scope graph
corresponding to the code in Figure 2.6 can be seen in Figure 2.7.

2.3 Implementation
Let us now address the problemsmentioned in the previous section. Themost crucial aspect
we require from our embedding of scope graphs is easy traversal. In other words, we quickly
want to be able to access the scope’s neighbors and data. As we have seen in the previous
section, the solution to this problem is to make the scope graph a function from scope to data
included in its scope. Another critical design choice is how to represent scopes. As shown by
Casamento 2019, Fin type is not a suitable option when generating scope graphs. However,
as we will see later in Chapter 5, the scope graphs are not generated but given beforehand
as input to the proof. Therefore, for the convenience of use, we chose Fin type to represent

Figure 2.6: Java program from the Figure 5 from Bach Poulsen, Rouvoet, et al. 2017, used
with the permission from the author.

5

2. SCOPE GRAPH

sR

sA ÞÑ A

sx ÞÑ x : int

sB ÞÑ B

sm ÞÑ m

si ÞÑ i : int sa ÞÑ a : A

D
L

D
L

L DD

D D

I B

Figure 2.7: Old(left) and new(right) scope graph representation of the program in Figure
2.6. The old representation is from the Figure 5 from Bach Poulsen, Rouvoet, et al. 2017, used
with the permission from the author.

scopes. We also need to facilitate the changes in the model of the scope graphs discussed in
the previous section. Namely, we need to add labels to the scope’s outgoing edges, as well as
allow the scope to include only one data term. This way, we get the representation in Figure
2.8. Using this representation, we can define a scope graph from Figure 2.4b in Agda, as can
be seen in Figure 2.9.

1 ScopeData : Nat → Set → Set
2 ScopeData numberOfScopes Term = (List (Label × (Fin numberOfScopes))) × Term
3
4 ScopeGraph : Nat → Set → Set
5 ScopeGraph numberOfScopes Term = (Fin numberOfScopes) → ScopeData numberOfScopes Term

Figure 2.8: Scope graph in Agda.

1 scope-graph-ship : ScopeGraph 5 Type
2 scope-graph-ship zero = (d , suc zero) ∷ [] , noType
3 scope-graph-ship (suc zero) =
4 (l , zero) ∷
5 (d , suc (suc zero)) ∷
6 (d , suc (suc (suc zero))) ∷
7 ((d , suc (suc (suc (suc zero))))) ∷ [] , Ship
8 scope-graph-ship (suc (suc zero)) = [] , num
9 scope-graph-ship (suc (suc (suc zero))) = [] , num

10 scope-graph-ship (suc (suc (suc (suc zero)))) = [] , num

Figure 2.9: Agda representation of scope graph from Figure 2.4b.

6

Chapter 3

Constraints

In this chapter, we extend our library with constraints, the building blocks of Statix for speci-
fying type systems. First, We will describe the types of constraints in Statix, how they can be
used to specify a type system, and how Statix type-checks the program by solving the con-
straints. Then, we will compare different styles of embedding for the constraints, discussing
their strengths and weaknesses. Finally, we will show our implementation of constraints.

3.1 Preliminaries
In Statix, we have three groups of constraints. There are basic constraints, scope graph con-
straints, and user-defined constraints. The first is a group of constraints, possibly indepen-
dent from the scope graph, that are defined over data terms based on a target language.
These are, for example, term equality constraints or separating conjunction constraints. The sec-
ond group is constraints over the scope graph, such as scope graph queries or node assertion
constraints. The last group, the user-defined constraints, is defined by users of Statix and is
defined in terms of the previous two groups of constraints. Now, let us explore the constraint
groups in more detail.

Basic Constraints

• Emp : Holds trivially.

• False : Does not hold.

• Conj C1 C2 : Holds, if and only if both C1 and C2 hold.

• Eq t1 t2 : Holds, if and only if t1 and t2 are equal.

• Exists t C : Holds, if there exists a term t, that makes C hold.

• Forall ts C : Holds, if and only if all terms in ts make C hold.

• Single t ts : Holds, if and only if terms ts are a singleton set of only t.

Scope Graph Constraints

• Node s t : Holds, if and only if scope s is in the scope graph and contains data term t.

• Edge e : Holds, if and only if edge e is in the scope graph.

• Data s t : Holds, if and only if scope s contains data term t. Similar to Node, but as we
will see in the next chapter, it is supported by empty fragment of scope graph, unlike
Node constraint.

7

3. CONSTRAINTS

• Query s r D C : Finds all paths according to regular word r from scope s to any scope
with data term according to predicateD, and holds if applying these paths to constraint
C holds.

• Min p p1 R : Holds, if and only if set of paths p1 only contains minimal paths from p,
according to definition in Equation 3.1 and some preorder relation R.

min(A,R) = tp P A|@q P A.Rqp ñ Rpqu (3.1)

User-defined Constraints

To show an example of a user-defined constraint, let us create a Statix specification. Wedefine
a simple language with grammar from Figure 3.1. We also define a set of typing rules from
Figure 3.2.

xnumy := N

xbooly := true | false

xexpry ::= num | bool
| xexpry + xexpry
| xexpry > xexpry
| ‘if’ xexpry ‘then’ xexpry ‘else’ xexpry

xtypey ::= number | boolean

Figure 3.1: Grammar of the simple languagewith numbers, booleans, addition, comparisons,
and conditional statements.

(T-Num)
Γ $ n : Int

(T-Bool-True)
Γ $ true : Bool

(T-Bool-False)
Γ $ false : Bool

Γ $ e1 : Int Γ $ e2 : Int (T-Add)
Γ $ e1 + e2 : Int

Γ $ e1 : Int Γ $ e2 : Int (T-Gt)
Γ $ e1 ą e2 : Bool

Γ $ e1 : Bool Γ $ e2 : τ Γ $ e3 : τ (T-If)
Γ $ if e1 then e2 else e3 : τ

Figure 3.2: Typing rules for a simple language with numbers, booleans, addition, compar-
isons, and conditional statements.

Now that we have defined our language, we can write a Statix specification of its type
system. We define a user-defined constraint typeOfExpression with cases for each type of the
expression. First, we start with trivial cases for numbers and booleans. The type of num is
number, and the type of bool is boolean. We define these cases of user-defined constraint in
terms of basic constraint term equality. Next, we add cases for our binary expressions. In both
of them, we expect the operands to be numbers. Additionally, we expect addition to be of
type number, and greater-than to be of type boolean. For these cases, we use a combination
of basic constraints of term equality and a separating conjunction. Finally, we create a similar
case for if-condition. The user-defined constraint typeOfExpression can be seen in Figure 3.3.

8

3.2. Problem

typeOfExpression(s, num, T) = T ≡ number
typeOfExpression(s, bool, T) = T ≡ boolean
typeOfExpression(s, e1 + e2, T) = typeOfExpression(s, e1, number) *

typeOfExpression(s, e2, number) *
T ≡ number

typeOfExpression(s, e1 > e2, T) = typeOfExpression(s, e1, number) *
typeOfExpression(s, e2, number) *
T ≡ boolean

typeOfExpression(s, if cond then e1 else e2, T) =
typeOfExpression(s, cond, boolean) *
typeOfExpression(s, e1, T) *
typeOfExpression(s, e2, T)

Figure 3.3: User-defined constraint for the type system of the programming language from
Figure 3.1. As we can see, there is a close resemblance to typing rules from Figure 3.2.

3.1.1 Type-checking with Statix
Based on the constraints we defined, Statix can perform the type-checking. To do this, it
creates a single constraint that corresponds to the conjunction of all of our constraints. This
constraint C, in addition to an empty scope graph ϵ, forms a starting state xϵ, Cy. From the
starting state, a constraint from C is picked non-deterministically and solved according to
operational semantics [Rouvoet et al. 2020; Antwerpen et al. 2018]. During constraint solving,
the scope graph is built until the state eventually reaches xG,Hy, whichmeans the constraints
were solved and the program successfully type-checks. If the state reaches xG, falsey, the
constraints are rejected, and the program does not type-check. If the state reaches a point
where it cannot be further reduced, it is stuck.

3.2 Problem
Embedding a domain-specific language, such as Statix, requires us to choose the depth of
the embedding. In the deep embedding, we represent the embedded language’s terms by their
syntax. The semantics of the embedded language are specified in some evaluation function
that traverses the abstract syntax tree. On the other hand, in the shallow embedding, the terms
are represented directly by their semantics, taking more significant advantage of the host’s
language [Gibbons and Wu 2014]. The choice of depth is not limited to only one of these
approaches, but they can also be combined for various parts of the language.

3.2.1 Shallow Embedding
In the first approach, we use the shallow embedding to represent constraints. In Figure 3.4,
we can see that a constraint is a function from the scope graph to Set. This means that the
constraint itself is defined by its satisfiability(Set). The definition of some of the individual
constraints works quite naturally in Agda, as they nicely resemble available definitions that
are part of the host language’s library. EmpC and FalseC to unit and empty type, respectively,
EqC to identity type, ExistsC to sigma type and *C to a pair type.

1 Constraint : Nat → Set → Set₁
2 Constraint numberOfScopes Term = ScopeGraph numberOfScopes Term → Set

Figure 3.4: Shallow embedding of Statix’s constraints.

9

3. CONSTRAINTS

While this approach works well in practice, it unfortunately allows for creating new con-
straints that could compromise the soundness of STATIX-IN-AGDA. Users could, for example,
create constraints that potentially break the support property(constraint support will be dis-
cussed in detail in the next chapter), resulting in successful type-checking of ill-typed pro-
grams. That is why we would only like the user to use the predefined set of constraints or
their composition.

3.2.2 Deep Embedding
To mitigate the issue of the previous approach, we can define the syntax of constraints sepa-
rately from their semantics. We do this by defining anAgda data type to represent the syntax
of the constraints, with constructors for each of the specific constraints. Satisfiability is de-
fined as a separate function. In Figure 3.5, we can see that the function sat closely resembles
the definition of constraints themselves in the previous approach.

This approach has the advantage in that it restricts users to only using the predefined
set of constraints or combining them to introduce their own. On the other hand, deep em-
bedding has the disadvantage that it introduces an additional layer of complexity on top of
Agda, which makes it harder to work with.

1 data Constraint {numberOfScopes : Nat} {Term : Set} (g : ScopeGraph numberOfScopes Term)
2 : Set₁ where
3 ...
4
5 sat : {numberOfScopes : Nat} {Term : Set} (g : ScopeGraph numberOfScopes Term) →
6 Constraint g → Set
7 sat = ...

Figure 3.5: Deep embedding of Statix’s constraints.

3.3 Implementation
In STATIX-IN-AGDA, we choose the deep embedding for the constraints. As we see in the pre-
vious section, the reason for not choosing a shallow embedding is that it allows users of
STATIX-IN-AGDA to freely create new constraints, which could compromise soundness. Instead,
we opt for defining constraints as constructors of a constraint data type. Additionally, we
need to define a function sat that defines the satisfiability for each of the constraints. For
user-defined constraints, we define them as a function that returns basic or scope graph con-
straints. This way, the user can only create new user-defined constraints that are a combina-
tion of pre-defined constraints. The outline of the deep embedding, as well as the example
of user-defined constraint, can be seen in Figure 3.6. Now, let us take a look at specific con-
straints.

3.3.1 Basic Constraints
For EmpC and FalseC, the satisfiability is defined using Unit(J) and Empty(K) type, respec-
tively. The EqC constraint is satisfied if we can prove that the supplied terms are equal. Sim-
ilarly, SingleC is satisfied if the supplied list of terms is a singleton list containing only the
other supplied term. The cases of the sat function for these constraints can be seen in Figure
3.7.

Next, we have the constraint *C, also called the separating conjunction. In order for this
constraint to hold, both of the conjugated constraints must hold, as can be seen in Figure 3.8.

10

3.3. Implementation

1 data Constraint {numberOfScopes : Nat} {Term : Set}
2 (g : ScopeGraph numberOfScopes Term) : Set₁ where
3 -- true
4 EmpC : Constraint g
5 -- separating conjunction
6 _*C_ : (c1 : Constraint g) → (c2 : Constraint g) → Constraint g
7 ...
8
9 UserDefinedC : {numberOfScopes : Nat} {Term : Set}

10 (g : ScopeGraph numberOfScopes Term) → Constraint g
11 UserDefinedC g = EmpC *C EmpC
12
13 sat : {numberOfScopes : Nat} {Term : Set}
14 (g : ScopeGraph numberOfScopes Term) →
15 Constraint g → Set
16 sat g c = ...

Figure 3.6: Deep embedding of Statix’s constraints allows a user to only create constraint
such as UserDefinedC, that are a combination of pre-defined constraints.

1 -- EmpC
2 sat g EmpC = J

3 -- FalseC
4 sat g FalseC = K

5 -- EqC
6 sat g (EqC t1 t2) = (t1 ≡ t2)
7 -- SingleC
8 sat g (SingleC t ts) = ((t ∷ []) ≡ ts)

Figure 3.7: Satisfiability of basic constraints.

1 -- *C
2 sat g (c1 *C c2) = (sat g c1) × (sat g c2)

Figure 3.8: Satisfiability of the constraint conjunction.

The last two basic constraints, ExistsC and ForallC, as their names suggest, resemble
logical quantifiers. For the former, we use the sigma type(or dependent pair) that is used in
Agda to represent the existential quantifier. For the proof of ExistsC cwith some constraint
c, this means that we have to give a term for which the constraint c is satisfied. On the other
hand, the ForallC works a bit differently. We do not quantify on all possible terms, but just
on the list of terms we pass as an argument. For example, in ForallC ts c, with ts being a
list of terms and c being a constraint, we assert that the constraint c must be satisfied with
each term in ts. One notable difference between our embedding and Statix is that we use a
list of terms instead of a set in ForallC and SingleC constraints for simplicity of use. This is
not a problem since the ordering of terms does not change how the constraints works. Cases
of sat function for ExistsC and ForallC can be seen in Figure 3.9.

3.3.2 Scope Graph Constraints
The next group of constraints are those that make assertions about the scope graph itself.
Firstly, we have in Figure 3.10 , themore trivial constraints, NodeC, EdgeC and DataC.NodeC s t,
asserts that the scope graph contains scope s, and that the term t is contained within the
node of scope s. EdgeC e, asserts the presence of edge e in the scope graph. The constraint
DataC s t asserts that a term t is in the scope s.

11

3. CONSTRAINTS

1 -- ExistsC
2 sat g (ExistsC {Term} cf) = Σ Term λ t → (sat g (cf t))
3 -- ForallC
4 sat g (ForallC [] cf) = sat g EmpC
5 sat g (ForallC (t ∷ ts) cf) = sat g (cf t) × sat g (ForallC ts cf)

Figure 3.9: Satisfiability of exists and forall constraints. In forall, we recursively use similar
technique to conjunction constraint from Figure 3.8.

1 -- NodeC
2 sat g (NodeC s t) = decl (g s) ≡ t
3 -- EdgeC
4 sat g (EdgeC e@(s₁ , l , s₂)) = (l , s₂) P edges (g s₁)
5 -- DataC
6 sat g (DataC s t) = decl (g s) ≡ t

Figure 3.10: Satisfiability of basic scope graph constraints. In NodeC and DataC, we use func-
tion decl, which projects the data term from scope s. In the EdgeC constraint, we check
whether the scope s2 is a neighbor of the scope s1 through some edge with a label l(this
is some arbitrary label, not to be confused with label L that stands for lexical parent).

The constraintMinC p p1 R asserts that the list of paths p1 contains only the shortest paths
from p, according to the decidable relation R. Figure 3.11 shows the satisfiability of MinC, as
well as the Agda implementation of the min property mentioned in equation 3.1.

1 -- MinC
2 sat g (MinC paths paths' R? isPreorder) = (min R? paths paths ≡ paths')
3
4 ...
5
6 min : {numberOfScopes : Nat} {Term : Set} {g : ScopeGraph numberOfScopes Term}
7 {R : (Rel (Path g) Agda.Primitive.lzero)} →
8 Decidable R → (A A' : List (Path g)) → List (Path g)
9 min R? [] A' = []

10 min R? (p ∷ A) A' =
11 if isMin R? A' p then p ∷ min R? A A' else min R? A A'
12
13 isMin : {numberOfScopes : Nat} {Term : Set} {g : ScopeGraph numberOfScopes Term}
14 {R : (Rel (Path g) Agda.Primitive.lzero)} →
15 Decidable R → (A : List (Path g)) → Path g → Bool
16 isMin R? [] p = true
17 isMin R? (q ∷ A) p = if does (R? q p)
18 then if does (R? p q) then isMin R? A p else false
19 else isMin R? A p

Figure 3.11: In function isMin, we iterate through the paths in the list to check, whether the
path p is smaller than or equal to all other paths, according to decidable relation R.

The very last constraint is the QueryC. There are two ways to implement this constraint
in Agda. We can either algorithmically calculate all paths in the graph to desired scopes, or
we could use a declarative way by already supplying a list of paths and proving that certain
properties that make the path valid hold for them. In this thesis, we chose the latter way for
two reasons. For one, it makes proving the satisfiability of the QueryC constraint easier. Here,
one might ask how we know which paths to supply. This brings us to the second reason. In
our vision for the future STATIX-IN-AGDA, users will be able to input paths computed by Statix

12

3.3. Implementation

automatically by using a translator to Agda. For now, though, paths have to be computed
externally and then manually added.

Let us now define the following properties that need to be true for each of the supplied
paths:

• Well-formed: the path should exist in the scope graph.

• Non-cyclic: the path should not consist of cycles.

• Valid start and end: the path should start in a specified scope and end in any scope that
contains a term for which the specified predicate holds.

• Allowed: the path should be allowed according to the predicate specified by the user.

Additionally, no other paths adhering to the previously mentioned properties should be
missing from the list of the supplied paths. Based on these properties, we define a record
called ValidQuery as in Figure 3.12.

1 record ValidQuery {numberOfScopes : Nat} {Term : Set}
2 (g : ScopeGraph numberOfScopes Term) (s : Fin numberOfScopes)
3 (r : (Path g) → Set) (D : Term → Set) : Set where
4 constructor query-proof
5 field
6 paths : List (Path g)
7 well-formed : ∀ {path} → path P paths → validPath g path
8 non-cyclic : ∀ {path} → path P paths → noCycle path
9 allowed : ∀ {path} → path P paths → r path

10 valid-start : ∀ {path} → path P paths → firstScope path ≡ s
11 valid-end : ∀ {path} → path P paths → validEnd g D path
12 no-path-missing : ∀ {path} →
13 noCycle path →
14 r path →
15 validPath g path →
16 firstScope path ≡ s →
17 validEnd g D path →
18 path P paths
19

Figure 3.12: Record containing properties that make the query valid. In well-formed, we
prove that all the paths in paths are in the graph. In non-cyclic, we prove that all the paths
in paths are non-cyclic. In allowed, we prove that all the paths in paths are allowed with
respect to user-supplied property r. In valid-start and valid-end, we prove that all the
paths in paths start in scope s and end in scopes for which the predicate D holds. Finally,
in no-path-missing, we prove that paths includes all possible paths for which the previous
properties hold.

Using the ValidQuery, we can define a sat case for QueryC. There is an additional argu-
ment to QueryC in the form of another constraint, to which we apply the list of paths from
ValidQuery. This can be seen in Figure 3.13.

1 -- QueryC
2 sat g (QueryC s r D cf) =
3 Σ (ValidQuery g s r D) (λ s → (sat g (cf (ValidQuery.paths s))))

Figure 3.13: Satisfiability of the query constraint.

13

3. CONSTRAINTS

3.3.3 User-defined Constraints
User-defined constraints give users a way to compose basic and scope graph constraints to
create their type system specifications. Essentially, every constraint of this type resembles a
typing rule. In Chapter 5, we will see an example of such a user-defined constraint that will
be used to specify type-system for a simple language with variables and functions.

14

Chapter 4

Constraint Support

In this chapter, we show the final piece in the STATIX-IN-AGDA library, the constraint support.
We will see what the support is and why it is essential for sound type-checking. Then, we
will discuss the challenges in embedding constraint support and show the implementation.

4.1 Preliminaries
Each of the constraints is supported by a pair ă n, e ą of possibly empty sets of nodes n and
edges e. In this thesis, we call this pair a graph fragment. The purpose of these fragments
is to ensure the soundness of type-checking. The fragment of the top-level user-defined con-
straints needs to contain all the nodes and edges of the scope graph. This property enforces
that we cannot just use any scope graph to force the program to type-check. In Figure 4.1, we
can see an ill-typed program and an unsupported scope graph. This scope graph includes
the ”junk” scope for variable nSails that is undefined in the program. With this scope graph,
we could successfully solve the constraints that type-check the program.

1 object Ship {
2 def nEngines:Int = nSails;
3 }

(a) Scala code

sR

sShip ÞÑ Ship

D L

snEngines ÞÑ nEngines : Int snSails ÞÑ nSails : Int

D D

(b) Scope graph

Figure 4.1: On the left side of the figure, we can see an ill-typed program. For an unsupported
scope graph, such as the one on the right of the figure, we could force the ill-typed program
type-check.

In Statix, the constraints are supported by the following graph fragments:

• Emp, False, Eq t1 t2, Single t ts, Data s t, Min p p1 R: Supported by an empty scope
graph fragment.

• Conj C1 C2: Supported by disjoint union of supports for C1 and C2

• Exists t C : Supported by the fragment supporting C.

• Forall ts C : Supported by the disjoint union of fragments supporting C for each of
the ts.

15

4. CONSTRAINT SUPPORT

• Node s t : Supported by a graph fragment containing scope s.

• Edge e : Supported by a graph fragment containing edge e.

• Query s r D C : Supported by the fragment supporting C.

4.2 Problem
In our implementation, we have to address a few problems related to constraint support.
The main problem is how to model the support in relation to satisfiability. As we can see in
Rouvoet et al. 2020, the satisfiability of constraint is defined with regard to the support.

Another challenge that comes with the fragments is their invariant of disjointedness.
When fragments aremerged(for example, in conjunction or for constraint), the scopeswithin
the merged fragments must only be in either of the fragments.

Finally, we need a way to prove that the scope graph fragment of the top-level fragment
is the same as the scope graph.

4.3 Implementation
While it seems like using the same functional representation for scope graph fragments, as
we did for scope graphs, is the obvious next step, we have to choose a differentmodel. Unlike
scope graphs, we do not need to traverse fragments. On the other hand, we would like them
to be easily created and merged together. For this, a list-like representation works much
better. Figure 4.2 shows a scope graph fragment represented as a record type.

1 record ScopeGraphFragment {numberOfScopes : Nat} {Term : Set}
2 (g : ScopeGraph numberOfScopes Term) : Set where
3 constructor <_,_>
4 field
5 fragmentNodes : List (Fin numberOfScopes)
6 fragmentEdges : List (Edge g)

Figure 4.2: Scope graph fragment in Agda.

During constraint solving, more precisely in conjunction and forall constraints, the frag-
ments supporting the sub-constraints are merged together. There is, however, a property
that needs to hold during merging, which is the disjointedness of scopes in two fragments.
In simpler terms, if scope ”a” is in fragment ”1”, it cannot be also in fragment ”2”. This does
not hold for edges, as they can be in both fragments1. The disjointedness property can be
seen in Figure 4.3.

Now that we have defined scope graph fragments and the disjointedness property, we
can incorporate it into the definition of satisfiability. Based on the definition in Rouvoet et al.
2020, a constraint is only satisfied with respect to the scope graph support. Therefore, we
change the sat function to return a dependent pair type of the satisfiability property and
the scope graph fragment that supports the constraint. In Figure 4.4, we can see the new
definition of the sat function, as well as the cases for EmpC and *C constraints.

Finally, in order for the whole scope graph to support the top-level constraint, we need a
way to check whether the top-level fragment matches the scope graph. As we have seen
before, scope graphs are functions from scope to scope data, while fragments are list of
scopes and edges. In order to be able to compare these, we define a helper function called

1While this is not true in Rouvoet et al. 2020, it holds for Java implementation of Statix: https://github.com/
metaborg/nabl/tree/master.

16

https://github.com/metaborg/nabl/tree/master
https://github.com/metaborg/nabl/tree/master

4.3. Implementation

1 data DisjointGraphFragments {numberOfScopes : Nat} {Term : Set}
2 {g : ScopeGraph numberOfScopes Term}
3 (gf1 : ScopeGraphFragment g) : ScopeGraphFragment g → Set where
4 disjointEmpty : ∀ {edges} → DisjointGraphFragments gf1 < [] , edges >
5 disjointNonEmpty : {nodes : List (Fin numberOfScopes)} {edges : List (Edge g)}
6 {scope : Fin numberOfScopes} →
7 (scope R (ScopeGraphFragment.fragmentNodes gf1)) →
8 DisjointGraphFragments gf1 < nodes , edges > →
9 DisjointGraphFragments gf1 < scope ∷ nodes , edges >

Figure 4.3: Disjointedness property of fragments.

1 sat : {numberOfScopes : Nat} {Term : Set}
2 (g : ScopeGraph numberOfScopes Term) →
3 Constraint g →
4 (Σ Set λ s → (s → ScopeGraphFragment g))
5 -- EmpC
6 sat g EmpC = J , λ _ → empGf
7 -- *C
8 sat g (c1 *C c2) = Σ (proj₁ c1-sat × proj₁ c2-sat)
9 (λ (c1-proof , c2-proof) →

10 DisjointGraphFragments (proj₂ c1-sat c1-proof)
11 (proj₂ c2-sat c2-proof)),
12 λ ((c1-proof , c2-proof) , disjoint) →
13 mergeFragments (proj₂ c1-sat c1-proof)
14 (proj₂ c2-sat c2-proof)
15 where
16 c1-sat = sat g c1
17 c2-sat = sat g c2
18
19 satisfies = proj₁
20 fragment = proj₂

Figure 4.4: Function sat with the scope graph support. We also create aliases for projection
functions to make projecting satisfiability and fragments more readable.

functionToFragment, which converts the functional representation of scope graphs to frag-
ment representation. This way, we check whether the scope graph is the same as the top-
level fragment. One of the downside of using list instead of set for graph fragments, is that
we have to use whether list permutations are the same, as the order does not matter. The
validTopLevelGraphFragment property is shown in Figure 4.5.

1 validTopLevelGraphFragment : {numberOfScopes : Nat} {Term : Set}
2 {g : ScopeGraph numberOfScopes Term} →
3 (c : Constraint g) → (c-proof : proj₁ (sat g c)) → Set
4 validTopLevelGraphFragment {g = g} c c-proof =
5 ((ScopeGraphFragment.fragmentNodes (proj₂ (sat g c) c-proof)) Ø

6 (ScopeGraphFragment.fragmentNodes (functionToFragment g))) ×
7 (ScopeGraphFragment.fragmentEdges (proj₂ (sat g c) c-proof) Ø

8 (ScopeGraphFragment.fragmentEdges (functionToFragment g)))

Figure 4.5: Property that top-level fragment matches the scope graph. As the order-
ing of scopes and edges in the fragment does not matter, we check whether they are
permutations(Ø) of each other.

17

Chapter 5

Examples

In the following chapter, we show two examples of STATIX-IN-AGDA’s use. In the example in
Section 5.1, we implement a type system for a simple language with variables and functions
and show how to type-check programs. In the second example in Section 5.2, we prove type
preservation for a simple toy type system without variables and functions.

5.1 Implementing simple type system
Let us extend the language from Figure 3.1 with functions, function applications, variables,
and let bindings(for conciseness, we also remove if-statements and greater-than operator).
Let us define the grammar of this language in Figure 5.1 and typing rules in Figure 5.2.
xnumy := N

xbooly := true | false

xexpry ::= num | bool
| xexpry + xexpry
| ‘fun (’ xidenty ‘ : ’ xtypey ‘) = ’ xexpry
| ‘var’ xidenty
| ‘app’ xexpry xexpry
| ‘let’ xidenty ‘=’ xexpry ‘in’ xexpry

xtypey ::= number | boolean | xtypey -> xtypey

Figure 5.1: Grammar of the language with numbers, booleans, addition, functions, variables,
function application, and let-binding.

(T-Num)
Γ $ n : number

(T-Bool-True)
Γ $ true : boolean

(T-Bool-False)
Γ $ false : boolean

Γ $ e1 : number Γ $ e2 : number (T-Add)
Γ $ e1 + e2 : number

Γ, x : τ1 $ e : τ2 (T-Fun)
Γ $ fun(x : τ1) = e : τ1 Ñ τ2

(T-Var)
Γ $ var x : Γ(x)

Γ $ e1 : τ1 Ñ τ2 Γ $ e2 : τ1 (T-App)
Γ $ app e1 e2 : τ2

Γ $ e1 : τ1 Γ, x : τ1 $ e2 : τ2 (T-Let)
Γ $ let x = e1 in e2 : τ2

Figure 5.2: Typing rules of the language with numbers, booleans, addition, functions, vari-
ables, function application, and let-binding.

19

5. EXAMPLES

5.1.1 Specification
Now that we have the necessary foundation, we can start building our STATIX-IN-AGDA speci-
fication. Let us create a user-defined constraint typeOfExpression.

Root. First, we use the NodeC constraint to define the root scope of our program. This is the
top-level scope that is a lexical parent for all of the scopes in the rest of our program.

1 typeOfExpression' : {numberOfScopes : Nat} → (g : ScopeGraph numberOfScopes NodeTerm) →
2 (Fin numberOfScopes) → Expr → Type → Constraint g
3 typeOfExpression' = {! !}
4
5 typeOfExpression : {numberOfScopes : Nat} → (g : ScopeGraph numberOfScopes NodeTerm) →
6 (Fin numberOfScopes) → Expr → Type → Constraint g
7 typeOfExpression g s e t = NodeC s empNode *C typeOfExpression' g s e t

Literals and addition. For the first three types of expressions, user constraints in STATIX-IN-
AGDA are rather simple. For literals, we just check if their types are as expected using the
EqC constraint. In addition, we check whether expressions on both sides of the operator are
numbers and finally check if the whole expression is a number.

1 typeOfExpression' g s (numLit x) t = EqC num t
2 typeOfExpression' g s (boolLit x) t = EqC bool t
3 typeOfExpression' g s (e1 +' e2) t = EqC num t *C
4 (typeOfExpression' g s e1 num *C typeOfExpression' g s e2 num)

Functions, their application and let binding. For the rest of the user constraints, it gets
slightly more complicated. The function constraint comes down to two main aspects. Build-
ing the necessary structure of graph fragments and verifying whether the function and its
body are of the correct type. The former means that we have to use NodeC constraints to build
function scope and argument scope and connect them with edges using EdgeC constraints.
For function applications, we just verify whether the first expression is of a function type and
whether the second expression has the correct type as per the function argument. Let binding
constraints work very similarly to functions, with only one exception. While in functions, we
only type-check the body, here we also have to type-check the expressions that are bound to
the variable.

1 typeOfExpression' g s (fun< x of t1 >body body) t = ExistsC λ t2 → ExistsC λ sf →
2 (NodeC sf empNode) *C
3 (EdgeC (s , d , sf) *C (EqC t (t1 to t2) *C
4 ((ExistsC λ sx → EdgeC (sf , d , sx) *C NodeC sx (var x |' t1)) *C
5 (EdgeC (sf , l , s) *C typeOfExpression' g sf body t2))))
6 typeOfExpression' g s (fun e1 app e2) t2 = ExistsC λ t1 →
7 typeOfExpression' g s e1 (t1 to t2) *C
8 typeOfExpression' g s e2 t1
9 typeOfExpression' g s (lett x be e1 inn e2) t2 = (ExistsC λ t1 → ExistsC λ sb →

10 (NodeC sb empNode) *C
11 (EdgeC (s , d , sb) *C (typeOfExpression' g s e1 t1 *C
12 (ExistsC (λ sx → EdgeC (sb , d , sx) *C NodeC sx (var x |' t1)) *C (EdgeC (sb , l , s) *C
13 typeOfExpression' g sb e2 t2)))))

Variables. For type-checking variables, our user constraint needs to use the QueryC con-
straint to retrieve the path to the queried variable. Since we only want one path, we also use
the SingleC constraint to assert that the query yields only one path.

1 typeOfExpression' g s (var x) t = QueryC s (λ _ → J) (λ d → d ≡ (var x | t)) λ paths →
2 ExistsC λ path → SingleC path paths

20

5.2. Proving type preservation

5.1.2 Type-checking of programs

The type-checking proof for a given program consists of two steps. In the first step, we show
that the user-defined constraints are satisfied. If the constraints are satisfied, we proceed to
the second step, where we show that the top-level graph fragment is valid with regard to the
scope graph. To encapsulate these two steps, wedefine aproperty topLevelConstraintTypeCheck,
as in Figure 5.3. If the user wants towrite a type-checking proof, they have to prove this prop-
erty. The examples of such proofs were left out of this paper for conciseness, as they grow
quite large, but they can be found in the project repository.

1 topLevelConstraintTypeCheck : {numberOfScopes : Nat} {Term : Set} →
2 (g : ScopeGraph numberOfScopes Term) → (Constraint g) → Set
3 topLevelConstraintTypeCheck g c =
4 Σ (satisfies (sat g c)) λ c-proof → validTopLevelGraphFragment c c-proof

Figure 5.3: Property that encapsulates properties of satisfiability and valid top-level frag-
ment.

5.2 Proving type preservation

Type preservation is a meta-theoretical property that states evaluating an expression does
not change its type. More formally, let e1 and e2 be expressions, τ a type, Γ a context, and Ñ

an evaluation relation. If Γ $ e1 : τ and e1 Ñ e2, then it holds that Γ $ e2 : τ .
Now, let us define a STATIX-IN-AGDA specification for a very simple language with only

number literals and addition as in Figure 5.4. Additionally, we need to define small-step
operational semantics. In Figure 5.5, we define a function eval. We can see that this function
uses a function called view on the expression. This is called a view pattern, and it is used
to change the structure of pattern matching. This pattern reshapes the data type by either
further splitting it into more constructors or, conversely, merging into fewer constructors.
Here, we split the addition into three cases based on which side of the expression needs
to be evaluated. This makes it easier to prove type preservation, as we can later on in this
chapter.

1 typeOfExpression' : {numberOfScopes : Nat} → (g : ScopeGraph numberOfScopes NodeTerm) →
2 (Fin numberOfScopes) → Expr → Type → Constraint g
3 typeOfExpression' g s (numLit x) t = EqC num t
4 typeOfExpression' g s (e1 +' e2) t = EqC num t *C
5 (typeOfExpression' g s e1 num *C typeOfExpression' g s e2 num)

Figure 5.4: Type system with only number literals and addition.

1 eval : Expr → Expr
2 eval e with view e
3 ... | numView {n} = e
4 ... | addLitView {n1} {n2} = (numLit (n1 + n2))
5 ... | addOneView {n1} {e2} = (numLit n1) +' eval e2
6 ... | addView {e1} {e2} = ((eval e1) +' e2)

Figure 5.5: Evaluation function.

21

5. EXAMPLES

Proof

After defining the type system, we give the type of our proof for type preservation as in
Figure 5.6. Something worth mentioning here is that evaluating the expression could also
change the scope graph. In this proof, however, the constraints for both the expression and its
evaluated counterpart are checked under the same scope graph in order to make the proof
easier. While this breaks the full-support property(4.5) of the scope graph, this is not an
issue for the validity of this proof, as there are no variables in this language, and therefore
the scope graph is always empty.

1 type-preservation-proof : (g : ScopeGraph numberOfScopes NodeTerm) →
2 (s : Fin numberOfScopes) →
3 (e : Expr) (t : Type) →
4 satisfies (sat g (typeOfExpression' g s e t)) →
5 satisfies (sat g (typeOfExpression' g s (eval e) t))

Figure 5.6: Type of the type preservation proof.

We proceed with this proof by splitting on the cases for each of the expressions. With the
literals and the addition of two literals, the proof is very trivial. Both of these expressions are
reduced to number literal; therefore, their type is obviously preserved.

For the cases in which either side of the addition is not yet reduced to literal, the proof
becomes more complex. Surprisingly, the main obstacle comes in the form of proving the
disjointedness of the graph fragments. Let us now explore the case of adding two non-literal
expressions.

As we can see in Figure 5.7, proving that the constraint holds is rather easy. On line 4, we
just use the type preservation proof for the left side of the addition(e1-type-preservation)
and use the hypothesis for the right side of the addition(e2-num).

1 type-preservation-proof g s (e1 +' e2) num ((+-num , (e1-num , e2-num) , d1) , d2)
2 with view (e1 +' e2)
3 <other cases excluded for conciseness>
4 ... | addView = (refl , (e1-type-preservation , e2-num) ,
5 {! !}) ,
6 disjointEmpty
7 where
8 e1-type-preservation = type-preservation-proof g s e1 num e1-num

Figure 5.7: Incomplete type preservation proof for addition of two expressions.

However, since the user-defined constraint for addition reduces to separating conjunction
constraint, we also have to prove that graph fragments of the constraints that type-checks
evaluated e1 and non-evaluated e2, respectively, are also disjoint. In Figure 5.7, proof for
this property is currently left out. We know from our hypothesis that graph fragments for
constraints type-checking of non-evaluated e1 and e2 are disjoint. How can we use this in
our proof?

In our very simple language, we can see that evaluating expressions does not introduce
any new variables. This means that the scope graph fragment supporting the constraint that
type-checks the evaluated expression will always be smaller or equal to the scope graph
fragment supporting the constraint that type-checks the non-evaluated expression. While
this is true for this language, it does not have to be true for any language. For example, a
language with first-order functions may introduce new variables during evaluation.

Another fact we can derive, this time for all possible graph fragments, is that if two frag-
ments gf1 and gf2 are disjoint, then for some fragment gf 1

1 that is a sub-fragment of gf1(nodes

22

5.3. Discussion

in the fragment gf 1
1 are a subset of nodes in fragment gf1), gf 1

1 and gf2 are also disjoint.
Using the two facts from previous paragraphs, we define lemmas no-nodes-added and

smaller-fragment-still-disjoint. However, since lemma no-nodes-addedmutually depends
on our type-preservation-proof, we have to define them in mutually recursive way, as we
can see on Figure 5.8.

1 mutual
2 type-preservation-proof : (g : ScopeGraph numberOfScopes NodeTerm) →
3 (s : Fin numberOfScopes) →
4 (e : Expr) (t : Type) →
5 satisfies (sat g (typeOfExpression' g s e t)) →
6 satisfies (sat g (typeOfExpression' g s (eval e) t))
7 type-preservation-proof g s (numLit x) num hypothesis = hypothesis
8 type-preservation-proof g s (e1 +' e2) num ((+-num , (e1-num , e2-num) , d1) , d2)
9 with view (e1 +' e2)

10 ... | addLitView = refl
11 ... | addOneView = (refl , (refl , e2-type-preservation) , disjointEmpty) ,
12 disjointEmpty
13 where
14 e2-type-preservation = type-preservation-proof g s e2 num e2-num
15 ... | addView = (refl , (e1-type-preservation , e2-num) ,
16 smaller-fragment-still-disjoint (no-nodes-added e1) d1) , disjointEmpty
17 where
18 e1-type-preservation = type-preservation-proof g s e1 num e1-num
19
20 no-nodes-added : {s : Fin numberOfScopes} → (e : Expr) →
21 {e-num : satisfies (sat g (typeOfExpression' g s e num))} →
22 SubFragment
23 (fragment (sat g (typeOfExpression' g s (eval e) num))
24 (type-preservation-proof g s e num e-num))
25 (fragment (sat g (typeOfExpression' g s e num))
26 e-num)
27 no-nodes-added (numLit x) = subFragmentEmp
28 no-nodes-added (e1 +' e2) with view (e1 +' e2)
29 ... | addLitView = subFragmentEmp
30 ... | addOneView = no-nodes-added e2
31 ... | addView = subfragment-merge-preservation (no-nodes-added e1)

Figure 5.8: Complete type preservation proof.

5.3 Discussion

In the previous two sections, we demonstrated how we can use STATIX-IN-AGDA to define type
systems and how to prove type preservation. To answer the last research question, we can
see that with our design of the embedding, typing rules translate well to STATIX-IN-AGDA spec-
ification, as evident when comparing code in Subsection 5.1.1 to typing rules on Figure 5.2.
The current downside to our approach is that the type-checking proofs have to be written
manually in Agda. As we will see later in the next chapter, the way to improve this could be
by introducing higher-level combinators that would make writing proofs easier or by proof
automation.

We have also shown how we can prove type preservation for a simple type system with
numbers and addition, specified using STATIX-IN-AGDA. While our example demonstrates the
foundation of how we can prove this meta-theoretical property, it does not demonstrate the

23

5. EXAMPLES

full power of scope graphs and Statix. For this reason, for future work, we would like to
extend the language with variables and functions. More on this in the next chapter.

24

Chapter 6

Future work

In this chapter, we outline possible improvements and future research directions that could
build upon the work of this thesis. We explore how the user experience can be improved,
discuss the translation from Statix specifications to their STATIX-IN-AGDA counterparts, and
suggest possible new features. We also discuss how the proof from the previous chapter can
be extended in the future to be applicable to more useful and complex languages.

6.1 Type preservation for a language extended with functions and
variables

The language from the proof in Section 5.2 is very simple and, unfortunately, useless for
practical applications. Additionally, proving type preservation for such a simple language
without variables does not demonstrate the full capabilities of Statix. Therefore, arguably,
one of the most important future directions is extending the language with variables and
functions and proving type preservation for this new extended language. This would give
us further evidence about the usefulness of STATIX-IN-AGDA in practical scenarios.

The first issuewith this, which has already beenmentioned in the previous chapter, is that
user-defined constraints on evaluated expressions must be satisfied with respect to different
scope graphs. While this has not been an issue in a language without variables, it would be
here. Evaluating a variable expression to a literal value expression eliminates the node from
the scope graph fragment, supporting the corresponding constraint. This means that using
the same scope graph would break the top-level graph fragment property 4.5.

The even bigger issue is that introducing variables to the language requires us to have
some value-binding model, such as environment or substitution. This binding model needs
to have some correspondence to the scope graph, such that variables in the model also need
to be in the scope graph. One hint on how this can be solved can be found in previous work
by Bach Poulsen, Néron, et al. 2016. The authors introduce the scopes-as-frames approach, in
which the run-time heap is organised into a graph corresponding to the scope graph.

6.2 User experience
During the experimentation stage of this thesis, we realised that some usability aspects of
STATIX-IN-AGDA can be improved. The first aspect is defining the sat function for the con-
straints. Currently, this function returns a dependent pair of satisfiability of the constraint
and its supporting graph fragment. However, this definition worsens the readability of sat-
isfiability proofs of constraint and makes the type preservation proof more difficult. One
solution could be to split the definition of the sat. This could, however, compromise the

25

6. FUTURE WORK

property of disjointedness of fragments, as the satisfiability of separating conjunction con-
straint depends on it. Therefore, this requires further investigation.

Another usability aspect that could be improved is the way that the type-check proofs
are written. Currently, even proof for a small program results in a relatively large, even
though very simple proof. Due to the simplicity of some of these proofs, future work could
focus on their automation in the form of tactics. This could make writing proofs less tedious,
faster, more readable, and maybe even more fun. We could also analyse the proofs to find
commonly used patterns to create high-level helper lemmas that users could reuse in their
proofs as an alternative to proof automation. This would make proofs more straightforward
to write and much more compact and readable.

6.3 Translation
Our vision for STATIX-IN-AGDA is that users can create and use their type system specification
using Statix, with its Agda counterpart being automatically generated based on this. Trans-
lation of Statix specifications is out of the scope of this project. Still, it is currently one of
the most critical future work directions, as it is the first step to being able to reason formally
about the existing Statix specifications.

One of the main challenges that were discussed during this project, related to translation,
was translating the result of the constraint solver in Statix to Agda. As we have seen earlier
in this thesis, we need this result because the scope graph of a program needs to be given as
input to the type-check proof. In the current Java implementation of Statix1, this result can
be obtained from ASolverResult.java. For future work, we need to translate this result to the
Agda representation of the scope graph.

6.4 New constraints
Finally, the STATIX-IN-AGDA can be extended with additional constraints beyond the simplified
Statix-core. These constraints include disequality(holds when two terms are not equal) or
arithmetic constraint(compares terms or performs arithmetic operations such as addition).
There is also the try constraint that checkswhether an inner constraint that is supplied to it as
an argument holds with regard to the outer context. If the inner constraint does not hold, a
message will be given. Due to the side-effect nature of messages, embedding this constraint
could prove challenging and requires further investigation. However, implementing these
new constraints is less important than the improvements mentioned in previous sections.

1https://github.com/metaborg/nabl/tree/master

26

https://github.com/metaborg/nabl/tree/master

Chapter 7

Related Work

In this chapter, we discuss related work and put it in the context of our approach. Our
discussion primarily centers on the formalization of scope graphs, the verification of meta-
theoretical properties of type systems, recent research advancements in Statix, and other
similar tools for formal specification of programming languages.

7.1 Scope Graph Formalization
Scope graphs have already been formalised previously in Bach Poulsen, Rouvoet, et al. 2017.
The authors of this paper created scope-and-frames Agda library that combines the scope
graphs with frames [Bach Poulsen, Néron, et al. 2016] to define an intrinsically typed def-
initional interpreter for STLC. The work of Casamento 2019 further builds upon the work
of Bach Poulsen, Rouvoet, et al. 2017. The author presents a pattern for constructing an
intrinsically-verified type-checker, with example Agda implementations for STLC and a toy
procedural language. They also give generalised implementation of scope graphs to allow for
scopes to be represented by any Listable type [Firsov and Uustalu 2015], instead of Agda’s
Fin type. Using the Fin requires the knowledge of how many scopes are in the scope graph,
which is inconvenient during generalization. This paper’s implementation of scope graphs
is based on the works of Bach Poulsen, Rouvoet, et al. 2017 and Casamento 2019.

7.2 Meta-Theory
As we have seen in Chapters 5 and 6, one of the most important directions for future re-
search is expanding the type preservation proof for languages with variables. The main
challenge lies in connecting the program’s runtime layout of memory and its correspond-
ing scope graph. The solution to this challenge may be in Bach Poulsen, Néron, et al. 2016,
where authors introduce scope-as-types paradigm. Using this approach, the memory layout
of a program is structured into a graph-like structure consisting of heaps, frames, and slots.
In this structure, the slots in the frame correspond to declarations in the scope, and the links
between frames correspond to edges in the scope graph. Using this correspondence between
frames and scopes, as well as the property that the value in each slot is of the correct type,
we can prove type preservation. As mentioned in the Chapter 6, utilizing this approach in
STATIX-IN-AGDA could be a way to prove type preservation for more complex languages.

7.3 Statix
Given the fundamental role of Statix in this thesis, it is essential to explore other recent re-
search directions related to it. In a recent review paper by Zwaan and Antwerpen 2023,

27

7. RELATED WORK

the authors present an overview of the past research about scope graphs and Statix. Here,
some of the more recent papers focus on improving the performance of type-checking with
Statix. The first attempt by Van Antwerpen and Visser 2021 focuses on concurrency in type-
checking. In this approach, the scope graph parts are assigned to hierarchically organised
compilation units. These units are then assigned to actors that execute the type-checking in
parallel. Later, in Zwaan, Antwerpen, and Visser 2022, the authors extended the framework
with incrementality. In incremental type-checking, only the parts of the code that have been
updated are type-checked.

7.4 Tools for formal specification of programming languages
Now, let us zoom out and explore other tools for the specification of programming languages.
One of the tools similar to Spoofax1(the language workbench that Statix is a part of) is K
Framework2. In this framework, a language specification consists of sentences that describe
the language’s syntax(language primitives), configuration(the state of the system), and fi-
nally, context and rules(behavior of the system). After the specification is compiled, it can
be executed and used for different language tools. One of these tools is kprove, which can be
used for proving claims about the language specification.

Another related tool is Ott3 by Sewell et al. 2010. This tool takes a specification of the
language’s syntax and semantics, as well as the binding specification. Based on the specifica-
tion, Ott can generate either informal LATEX representations or, by adding annotations with
additional information, representations in proof assistants such as Coq or HOL that can be
used to reason about the specification formally.

1https://spoofax.dev
2https://kframework.org
3https://github.com/ott-lang/ott

28

https://spoofax.dev
https://kframework.org
https://github.com/ott-lang/ott

Chapter 8

Conclusions

This thesis introduced a library called STATIX-IN-AGDA, the embedding of Statix within Agda,
that allows users to formally reason about the type systems. This library formalises a set
of predefined basic and scope graph constraints from the simplified subset of Statix called
Statix-core. Using these predefined constraints, users can construct the typing rules for their
language, also called user-defined constraints.

The first part of this library is scope graphs, which are used for name resolution during
type-checking. This thesis changes and extends the existing scope graph formalization in
two ways. First, it changes the way scope graphs are modeled to account for the changes
in scope graphs introduced by Rouvoet et al. 2020. In this new representation, the scopes
cannot have multiple declarations. Instead, each declaration has its own scope. Second, it
introduces the notion of scope graph fragments used for constraint support, ensuring sound
type-checking.

The second part of this library is constraints. One of the challenges we tackled in this
thesis was the choice of depth of the embedding for the Statix. For the basic and scope graph
constraints, we chose deep embedding. In this style of embedding, the syntax and the se-
mantics of the constraints are defined separately, giving us a way to restrict users from freely
creating new, possibly unsound, basic, and scope graph constraints. This way, user-defined
constraints can only be defined in terms of existing constraints.

We also showed two examples of the use of STATIX-IN-AGDA. In the first example, we spec-
ified a simple language with variables and functions and showed how we can prove that
programs in this language are well-typed. In the second, we give proof of type preservation
for a very simple language with numbers and addition.

For future research, we suggested a few improvements and research directions. One of
the most important ones is a translator from Statix to Agda, giving users a way to be able to
verify their existing type system specifications. Another research direction could be explor-
ing the possibilities of reasoning about language meta-theory. Finally, STATIX-IN-AGDA could
benefit from improved usability and additional constraints.

29

Bibliography

Antwerpen, Hendrik van et al. (2018). “Scopes as types”. In: Proceedings of the ACM on Pro-
gramming Languages 2.OOPSLA. DOI: 10.1145/3276484. URL: https://doi.org/10.1145/
3276484.

Bach Poulsen, Casper, Pierre Néron, et al. (2016). “Scopes describe frames: A uniformmodel
for memory layout in dynamic semantics”. In: 30th European Conference on Object-Oriented
Programming (ECOOP 2016). Schloss-Dagstuhl-Leibniz Zentrum für Informatik.

Bach Poulsen, Casper, Arjen Rouvoet, et al. (2017). “Intrinsically-typed definitional inter-
preters for imperative languages”. In: Proceedings of the ACM on Programming Languages
2.POPL, pp. 1–34.

Casamento, Katherine Imhoff (2019). “Correct-by-Construction Typechecking with Scope
Graphs”. PhD thesis. Portland State University.

Firsov, Denis and TarmoUustalu (2015). “Dependently typed programmingwith finite sets”.
In: Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming, pp. 33–44.

Gibbons, Jeremy andNicolasWu (2014). “Folding domain-specific languages: deep and shal-
low embeddings (functional Pearl)”. In: Proceedings of the 19th ACM SIGPLAN interna-
tional conference on Functional programming, Gothenburg, Sweden, September 1-3, 2014. Ed. by
Johan Jeuring and Manuel M. T. Chakravarty. ACM, pp. 339–347. ISBN: 978-1-4503-2873-9.
DOI: 10.1145/2628136.2628138. URL: http://doi.acm.org/10.1145/2628136.2628138.

Néron, Pierre et al. (2015). “A Theory of Name Resolution”. In: Programming Languages and
Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings. Ed. by JanVitek. Vol. 9032. LectureNotes inComputer Science. Springer,
pp. 205–231. ISBN: 978-3-662-46668-1. DOI: 10.1007/978- 3- 662- 46669- 8_9. URL: http:
//dx.doi.org/10.1007/978-3-662-46669-8_9.

Rouvoet, Arjen et al. (2020). “Knowing when to ask: sound scheduling of name resolution
in type checkers derived from declarative specifications”. In: Proceedings of the ACM on
Programming Languages 4.OOPSLA. DOI: 10.1145/3428248. URL: https://doi.org/10.1145/
3428248.

Sewell, Peter et al. (2010). “Ott: Effective tool support for theworking semanticist”. In: Journal
of functional programming 20.1, pp. 71–122.

Van Antwerpen, Hendrik and Eelco Visser (2021). “Scope states: Guarding safety of name
resolution in parallel type checkers”. In: 35th European Conference on Object-Oriented Pro-
gramming (ECOOP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Zwaan, Aron and Hendrik van Antwerpen (2023). “Scope Graphs: The Story so Far”. In:
Eelco Visser Commemorative Symposium, EVCS 2023, April 5, 2023, Delft, The Netherlands.
Ed. by Ralf Lämmel, Peter D. Mosses, and Friedrich Steimann. Vol. 109. OASIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik. ISBN: 978-3-95977-267-9. DOI: 10.4230/OASIcs.
EVCS.2023.32. URL: https://doi.org/10.4230/OASIcs.EVCS.2023.32.

31

https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://doi.org/10.1145/2628136.2628138
http://doi.acm.org/10.1145/2628136.2628138
https://doi.org/10.1007/978-3-662-46669-8_9
http://dx.doi.org/10.1007/978-3-662-46669-8_9
http://dx.doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/3428248
https://doi.org/10.1145/3428248
https://doi.org/10.1145/3428248
https://doi.org/10.4230/OASIcs.EVCS.2023.32
https://doi.org/10.4230/OASIcs.EVCS.2023.32
https://doi.org/10.4230/OASIcs.EVCS.2023.32

BIBLIOGRAPHY

Zwaan, Aron, Hendrik vanAntwerpen, and Eelco Visser (2022). “Incremental type-checking
for free: Using scope graphs to derive incremental type-checkers”. In: Proceedings of the
ACM on Programming Languages 6.OOPSLA2, pp. 424–448.

32

	Preface
	Contents
	Introduction
	Scope Graph
	Preliminaries
	Problem
	Implementation

	Constraints
	Preliminaries
	Problem
	Implementation

	Constraint Support
	Preliminaries
	Problem
	Implementation

	Examples
	Implementing simple type system
	Proving type preservation
	Discussion

	Future work
	Type preservation for a language extended with functions and variables
	User experience
	Translation
	New constraints

	Related Work
	Scope Graph Formalization
	Meta-Theory
	Statix
	Tools for formal specification of programming languages

	Conclusions
	Bibliography

