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Summary

Surface wave inversion is a powerful tool for subsurface imaging at various scales, span-
ning from near-surface characterization to crustal imaging. This study focuses on the
transdimensional Markov chain Monte Carlo (McMC) algorithm and its effectiveness for
surface wave inversion. We explore its application at different dimensions (1D, 2D, 3D)
and scales, encompassing both near-surface and crustal subsurface characterization.

We first demonstrate the fundamentals of surface wave inversion using a least-squares
algorithm, a conventional McMC method, and the transdimensional McMC algorithm
applied to the (non-linear) 1D inversion problem. We compare these algorithms by ap-
plying them to both synthetic and field data. In contrast to the least-squares method,
the transdimensional algorithm successfully recovers rapid variations in velocity, partic-
ularly at a depth of around 3 km. This observation emphasizes the automatic and lo-
calized smoothing applied in the transdimensional McMC algorithm. Furthermore, the
transdimensional McMC algorithm yields, inherently, the posterior probability density
of the shear wave velocity as a function of depth, offering valuable insights.

In Chapter 3, we extend the study to two dimensions using surface waves retrieved
by means of Distributed Acoustic Sensing (DAS), validating the transdimensional algo-
rithm’s potential for near-surface applications. We first determine the dispersive behav-
ior of the Rayleigh wave considering lateral variation in the subsurface. This leads to
a local dispersion curve at the location of each receiver. To recover a 2D shear wave
velocity section of the subsurface, we develop a 2D transdimensional approach to in-
vert all the dispersion curves simultaneously. This approach retains lateral correlations
of the recovered shear wave velocities. This two-dimensional application demonstrates
the ability of the transdimensional McMC algorithm to reconstruct the two-dimensional
shear wave velocity structure of the near-surface.

Finally, we extend the study to three dimensions by recovering the crustal shear wave
velocity structure of the Reykjanes Peninsula. As input, we use travel times extracted
from Rayleigh waves that were retrieved through the application of seismic interferom-
etry to recordings of ambient seismic noise. We then modify and use the one-step 3D
transdimensional surface wave tomography algorithm. This implies that we depart from
conventional two-step approaches. Synthetic tests showcase adaptability to ray density,
yielding higher resolution in densely sampled areas. Reduced computational costs by
modifying the algorithm enhance the applicability for 3D crustal imaging. Our applica-
tion of the one-step 3D transdimensional algorithm to ambient-noise data provides the
first comprehensive shear wave velocity model of the Reykjanes Peninsula. The detailed
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shear wave velocity model offers valuable geological and geothermal insights into the
subsurface structure, confirming the algorithm’s potential as a routine tool for surface
wave tomography.

Collectively, these findings advocate the use of one-step transdimensional inversion
algorithms for seismic tomography. Their adaptability, efficiency gains, and interpretabil-
ity contribute to advancing our understanding of subsurface velocity structures. As seis-
mic data volumes grow, embracing innovative inversion approaches becomes impera-
tive, and the transdimensional algorithms showcased in this thesis emerge as a promis-
ing tool for pushing the boundaries of seismic tomography.



Samenvatting

Oppervlaktegolfinversie is een krachtig hulpmiddel voor verschillende schalen, varië-
rend van karakterisering van de ondiepe ondergrond tot beeldvorming van de aardkorst.
De focus van deze studie is de transdimensionale Markov-keten Monte Carlo (McMC) en
de effectiviteit hiervan voor oppervlaktegolfinversie. We onderzoeken de toepassing er-
van in verschillende dimensies (1D, 2D, 3D) en schalen, en doen zowel karakterisatie van
de ondiepe ondergrond alsmede van de aardkorst.

We demonstreren eerst de basisprincipes van oppervlaktegolfinversie met behulp
van een kleinste kwadratenalgoritme, een conventionele McMC-methode, en het trans-
dimensionale McMC-algoritme aan de hand van een één-dimensionaal probleem. We
vergelijken deze algoritmen door ze toe te passen op de synthetische en velddata. In
tegenstelling tot de kleinste-kwadratenmethode heeft het transdimensionale algoritme
met succes scherpe variaties in snelheid kunnen achterhalen, vooral op een diepte van
ongeveer 3 km. Deze bevinding onderstreept de automatische en gelokaliseerde afvlak-
king die wordt toegepast in het transdimensionale McMC-algoritme. Bovendien levert
het transdimensionale McMC-algoritme een posterieure waarschijnlijkheidsdichtheid,
wat waardevolle inzichten oplevert.

Vervolgens breiden we het onderzoek uit naar 2D-oppervlaktegolfinversie met be-
hulp van Distributed Acoustic Sensing (DAS), waarmee we het potentieel van het trans-
dimensionale algoritme voor toepassingen dicht bij het oppervlak valideren. We bepalen
eerst het dispersiegedrag van de Rayleigh-golf, rekening houdend met de laterale vari-
atie in de ondergrond. Dit leidt tot een lokale spreidingscurve op de locatie van elke
ontvanger. Om een 2D-schuifgolfsnelheidssectie van de ondergrond te verkrijgen, ont-
wikkelen we een 2D-transdimensionale benadering om alle dispersiecurven tegelijker-
tijd te inverteren. Dit behoudt de laterale correlatie van de schuifgolf snelheden. Deze
2D toepassing van het transdimensionale algoritme onderstreept het vermogen van dit
algoritme om laterale correlaties zo goed mogelijk te behouden en zodoende de schuif-
golfsnelheden in de ondiepe ondergrond te reconstrueren.

Ten slotte breiden we de studie uit met een 3D-studie om de aardkorststructuur van
het Reykjanes-schiereiland te achterhalen. We gebruiken hiervoor aankomsttijden van
oppervlakte golven die zijn verkregen door middel van crosscorrelaties van seismische
ruis. We modificeren hiervoor een éénstaps 3D transdimensionaal oppervlaktegolfto-
mografie algoritme, waarbij we dus afwijken van conventionele tweestapsbenaderin-
gen. Synthetische tests tonen het aanpassingsvermogen aan de straaldichtheid aan,
wat een hogere resolutie oplevert in dicht bemonsterde gebieden. Door het algoritme
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aan te passen, vergroten we de computationele efficiëntie voor 3D-beeldvorming van de
korst. De toepassing van het éénstaps 3D-transdimensionaal algoritme op van ruis afge-
leide oppervlakte golven levert het eerste uitgebreide schuifgolf snelheids model van het
Reykjanes-schiereiland op. Dit gedetailleerde model biedt waardevolle inzichten in de
ondergrondse structuur en bevestigt het potentieel van het algoritme als routinematig
hulpmiddel voor oppervlaktegolftomografie.

Gezamenlijk pleiten onze bevindingen voor het routinematig gebruik van transdi-
mensionale inversie-algoritmen in seismische tomografie. Hun aanpassingsvermogen,
efficiëntiewinst en interpreteerbaarheid dragen bij aan het bevorderen van ons begrip
van ondergrondse structuren. Naarmate de mogelijkheden van seismische inversie gro-
ter worden, wordt het omarmen van innovatieve benaderingen absoluut noodzakelijk.
De transdimensionale algoritmen die in dit onderzoek worden gepresenteerd, komen
naar voren als een veelbelovend hulpmiddel om de grenzen van seismische tomografie
te verleggen.



1

Introduction

Seismic tomography, a powerful tool for imaging subsurface structures, has seen
remarkable advancements in recent years. With the revolutionary advancements in
computational resources, innovative methods employing global search algorithms
have captured substantial attention. This thesis explores an innovative Bayesian
seismic inversion approach, which exploits a reversible jump Markov chain Monte
Carlo algorithm (Green, 1995) to unravel the complexities of subsurface geological
structures.

Traditional seismic inversion methods often grapple with user-defined parameters
and computational inefficiencies. They often require careful parametrization of the
model and proper regularization of the solution to prevent over/under-fitting or to
impose some form of structure or constraint on the solution. And those approaches
may then still be susceptible to getting stuck in local minima. Global search
methods like a standard McMC usually solve the problem of local minima. However,
they are computationally inefficient while exploring large model spaces (Sambridge
& Mosegaard, 2002; Tarantola, 2005). The partition modeling McMC algorithm
presented by Bodin et al. (2009) significantly improved the efficiency and adaptability
of the McMC algorithm in a seismic tomography scenario. By self-parametrizing
the model space, it eliminates the need for explicit regularization, offering a more
dynamic and adaptable approach. Expanding this scheme in a transdimensional
framework (Bodin & Sambridge, 2009; Bodin et al., 2012) introduces novel elements
such as an unknown number of partitioning cells and dynamically estimated data
uncertainty. This not only enhances computational efficiency but also yields a more
accurate representation of the subsurface.

In this thesis, we explore the transdimensional method using different applications
of seismic inversion. The structure of the thesis is organized as follows:

Chapter 2 provides an in-depth exploration of the partition modeling algorithm
and its transdimensional extension compared with a regularized least-squares
approach. We investigate these approaches using a 1D surface wave dispersion curve
inversion problem. It lays the foundation for understanding the self-parametrizing

1
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and adaptive nature of the transdimensional algorithm, emphasizing its significance
in seismic tomography.

Chapter 3 delves into the application of the transdimensional algorithm in the
case of a 2D data setup. We employ distributed acoustic sensing (DAS) for surface
wave analysis, specifically focusing on active-source surveys. Multi-offset phase
analysis (MOPA) is introduced as a tool for extracting laterally varying dispersion
curves. The transdimensional inversion algorithm is then employed to produce
a 2D shear wave velocity image, with validation against borehole data. In this
chapter, we discuss the transdimensional approach in more detail and propose a few
modifications to enhance the algorithm’s efficiency.

Chapter 4 shifts the focus to a real-world geothermal setting, specifically the
Reykjanes Peninsula in southwest Iceland. It explores the feasibility of a recently
developed transdimensional algorithm for performing 3D surface wave inversion in
one step (Zhang et al., 2018, 2020). We study the potential of the algorithm to
interferometric surface waves retrieved from ambient noise recorded on and around
the Reykjanes Peninsula. To that end, we perform several synthetic tests with the
station configuration of the Reykjanes seismic network. We also propose some
modifications to the original algorithm to increase the algorithm’s efficiency.

Chapter 5 extends the application of the aforementioned 3D transdimensional
inversion method to address the challenges and opportunities in imaging the
subsurface of the Reykjanes Peninsula. It emphasizes the significance of probabilistic
tomography and explores the potential of shear wave velocity models derived from
ambient noise seismic data. We first retrieve surface wave dispersion curves from
the recorded noise by the Reykjanes seismic network. Subsequently, we employ
the modified one-step transdimensional approach to reconstruct a 3D shear wave
velocity model of the study area. Finally, we provide a comprehensive interpretation
of the recovered velocity model, concluding with a comparative analysis against
images obtained by means of other geophysical methods employed in the study area.

Chapter 6 presents the main conclusions drawn from this thesis.



2

1D surface wave dispersion curve inver-
sion

Abstract: Transdimensional inversion, a Bayesian algorithm employing
reversible jump Markov chain Monte Carlo (McMC), estimates posterior distributions.
In this chapter, we explore the transdimensional algorithm’s efficacy in a
1D surface wave dispersion curve inversion, including a comparison with a
nonlinear least-squares algorithm and a conventional McMC method with fixed
parametrization. The nonlinear least-squares method has its limitations in scenarios
with numerous parameters and potential local minima. Conventional McMC with
fixed parametrization is identified as inefficient, especially in exploring large model
spaces. Partition modeling McMC offers self-parametrization but faces challenges
in choosing the optimal number of cells. Transdimensional McMC, introducing
adaptability by treating the number of cells as an unknown, yields promising results.
A field data application from the Reykjanes Peninsula highlights its superiority in
recovering reliable and interpretable subsurface velocity profiles. The interpretability
is attributed to the uncertainty that the algorithm inherently provides.

2.1 Introduction
In tomographic imaging, a set of surface measurements is used to infer some
internal physical properties (e.g. velocity, density, composition, temperature). The
conventional algorithms (either least-squares or McMC with fixed parametrization)
for seismic inversion require proper parametrization, regularization, and a good
estimate of data uncertainty (Tarantola, 2005; Aster et al., 2018), which must be
defined a priori by the user. Moreover, in a conventional McMC algorithm with fixed
parametrization, if too many parameters (are needed to) define a model, the number

ChatGPT is employed to enhance the quality of specific sentences and paragraphs while drafting the
initial version of this chapter, acknowledging its valuable assistance in refining the content: OpenAI.
(2023). ChatGPT [Large language model]. https://chat.openai.com
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of samples needed to explore the whole model space may become prohibitively large
(Tarantola, 2005).

The partition modeling applied to McMC, which is introduced to seismic
tomography by Bodin et al. (2009), is a self-parametrizing algorithm with naturally
smooth results that do not need any regularization. The model space is partitioned
by a given number of non-overlapping regions. In this method, the position of
each cell defining the geometry of the velocity field and the velocity field itself are
unknown in the inversion process. The inversion is carried out with a fully nonlinear
parameter search method formulated in a Bayesian framework. However, the number
of cells is yet a parameter to be chosen properly. In the transdimensional scheme
(Bodin & Sambridge, 2009), in addition to the velocity field and cell positions, the
number of partitioning cells is itself one of the unknowns to be determined. The
data uncertainty can also be treated as an unknown and can be estimated and
inferred during the inversion process (Bodin et al., 2012).

2.2 The inverse problem
In a seismic inverse problem, the aim is to recover the seismic velocity structure of
the Earth’s subsurface using the observed data. Based on the physical theory of wave
propagation, we can relate an observed seismic dataset, dobs , to a subsurface model
m using the expression:

dobs = g (m), (2.1)

where g is a forward function that relates m to dobs . It should be noted that
often even g is an approximation itself (the forward function does not necessarily
capture all the physics). In a surface wave inversion problem, the seismic dataset
(dobs ) consists of the retrieved surface wave dispersion curves (DCs1). The forward
function g here is a function that computes the theoretical dispersion curves for a
subsurface model m. In this chapter, we use the MATLAB package developed by Wu
et al. (2019) using the method proposed in Buchen & Ben-Hador (1996) to compute
the theoretical dispersion curve (i.e., phase velocity versus frequency) in a 1D earth
model. Figure 2.1 shows a 1D shear wave velocity model (m) and its corresponding
theoretical DC. It must be noted that the Rayleigh wave phase velocity is a function
of the thickness, the shear wave velocity (vs ), the compressional wave velocity (vp ),
and the density (ρ) of each layer. Furthermore, in this chapter the compressional
wave velocity is assumed to be a linear function of vs according to vp = 1.78vs (Allen
et al., 2002) and that the mass density ρ is assumed to be related to the latter
according to ρ = 2.35+0.036(vp −3)2, where vp and vs are in km/s and ρ in g/cm3

(Kurita, 1973; Zhang et al., 2020).
Solving the inverse problem entails searching for a certain velocity model m

such that the predicted data g (m) fits the observed DC (dobs ) as closely as possible.
The agreement between observed and predicted data may be quantified by a misfit
function such as a weighted least-squares misfit:

1For a detailed explanation of retrieving surface wave DCs, see section 3.2.2 for active seismic data
and appendix A.2 for passive seismic data.
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Figure 2.1. (a) A 1D synthetic velocity model. (b) The theoretical fundamental mode dispersion
curve (black). Higher modes are ignored in this experiment. The red curve is the theoretical
fundamental mode dispersion curve with additive Gaussian noise with a standard deviation
of 20 m/s to be used in the inversion algorithms.

φ(m) =
∥∥∥∥ g (m)−dobs

σd

∥∥∥∥2

= (
g (m)−dobs

)⊺ C−1
d

(
g (m)−dobs

)
, (2.2)

where σd is the uncertainty vector or noise associated with the observed data, ⊺
denotes transposition, and Cd is the covariance matrix of data noise, representing
the uncertainty in the data and the correlation between data errors. In an inverse
problem, uncertainty controls the level of fit. It determines the extent to which the
modeled or predicted data should be close to the observed data. High uncertainty
means that the noise level in the data is high and the inversion algorithm is not
required to be sensitive to high-frequency changes in the data and velocity model.
Hence, an increase in data uncertainty will lead to smoother models.

2.3 Nonlinear least-squares inversion
A least-squares inversion algorithm minimizes the misfit function (Equation 2.2).
The minimum of the objective function φ(m) may be found by equating the first

derivative of the objective function to zero

(
Çφ(m)

Çm
= 0

)
. This results in:

Çφ(m)

Çm
= 2J⊺C−1

d

(
g (m)−dobs

)= 0, (2.3)

where J = Çg (m)

Çm
is the Jacobian matrix. Since g (m) is a nonlinear function, Equation

2.3 becomes a non-linear equation to be solved. To solve this equation, let us
assume that the nonlinear function g (m) can be linearized around the initial guess
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mi as (Tarantola, 2005, p. 68):

g (m) ≈ g (mi )+ J (m−mi ) . (2.4)

Substituting relation 2.4 in Equation 2.3 and solving for m yields:

m = mi −
(
J⊺C−1

d J
)−1

J⊺C−1
d

(
g (mi )−dobs

)
. (2.5)

By iteratively solving this equation and setting mi = m at each iteration, one can find
the optimal solution when the model norm ||m−mi || becomes sufficiently small.
This algorithm is called Gauss–Newton (GN) method (see Aster et al., 2018, chapter
9, p. 240). However, Equation 2.5 often becomes unstable due to the solution’s
nonuniqueness. Therefore, it is necessary to use proper regularization to choose
a solution out of all possible solutions (Bodin & Sambridge, 2009). The objective
function used in the inversion scheme is then a linear combination of the misfit
function, the distance to a reference model, or the norm of the first or second spatial
derivative of the model (Bodin & Sambridge, 2009). This objective function reads:

φ(m) = (
g (m)−dobs

)⊺ C−1
d

(
g (m)−dobs

)+λ(m−mi )⊺(m−mi )+η(Dm)⊺(Dm), (2.6)

where D is a finite difference spatial derivative operator, and λ is usually referred to
as the damping parameter that prevents the solution from staying too far from the
reference model mi , which ensures the stability of the inversion at each iteration
(Xia et al., 1999; Bodin & Sambridge, 2009). It is important to note that the
incorporation of this damping term does not imply that the ultimate solution must
closely resemble the initial guess, since the reference model mi undergoes updates
at each iteration. Finally, η is called the smoothing parameter, which ensures the
smoothness of the solution model (Bodin & Sambridge, 2009).

The optimal model can be obtained by setting the first derivative of the
regularized objective function (Equation 2.6) to zero, expressed as:

Çφ(m)

Çm
= 2J⊺C−1

d

(
g (m)−dobs

)+2λ(m−mi )+2ηD⊺Dm = 0. (2.7)

Similar to Equations 2.5 one can first substitute relation 2.4 into Equation 2.7 and
derive the iterative formula for the regularized GN algorithm as:

m = mi −
(
J⊺C−1

d J+λI+ηD⊺D
)−1 (

J⊺C−1
d

(
g (mi )−dobs

)+ηD⊺Dmi
)

. (2.8)

Assuming η= 0, Equation 2.8 underlies the well-known Levenberg–Marquardt method
(Levenberg, 1944; Marquardt, 1963). The stability of this Equation relies on tuning
the damping parameter λ. In practice, determining a suitable damping factor
involves testing multiple values of λ. Small values of λ (i.e., close to zero) may result
in an unstable inversion (i.e., the algorithm diverges). Conversely, higher values of λ
force the inversion to set m too close to the reference model mi , causing a slower
convergence of the algorithm. Consequently, the lowest λ that ensures stability
in solving Equation 2.8 is desirable. After finding a proper damping parameter λ,
one can find the optimum smoothing parameter η using different methods such as
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L-curve, cross-validation, or the application of the discrepancy principle (see Aster
et al., 2018, chapter 10).

We apply this method to invert the synthetic dispersion curves illustrated in
Figure 2.1b. We presente the results in Figures 2.2-2.3 for both noise-free and
noisy dispersion curves, respectively. We first defined the initial model (mi ) with
51 points and assigned to each point a velocity of 4.3 km/s, which is the true
velocity of the lower half-space in the synthetic model. This selection is motivated
by the half-space being least sensitive to shear wave velocity perturbations in the
lower half-space, making it particularly influenced by the initial model during the
inversion. Subsequently, assuming η= 0, we identified the minimum damping factor
λ for which Equation 2.8 remained stable and converged to a velocity model. In
both cases, this optimal λ value was found to be λ= 5.

The optimal smoothing parameter η was then determined using an L-curve
analysis, as depicted in Figure 2.2a and Figure 2.3a. Notably, the optimal η in Figure
2.3a was higher than that in the noise-free experiment, reflecting the impact of
additive noise. In the noise-free scenario, the final estimated model demonstrated a
smoothly regularized approximation of the true model. In contrast, in the experiment
with additive noise, the final velocity model deviated from the true velocity model.

Finding the optimum regularization parameter is a challenge. The number of
grid points for the model parametrization should also be defined by the user,
which affects the resolution of the final inverted model (Bodin & Sambridge, 2009).
Moreover, the smoothing technique utilizes a uniform smoothing parameter for the
entire model, overlooking potential variations in smoothing needs at the local level.
Additionally, any approaches like the GN method explained here may suffer from
local minima (Aster et al., 2018). They are sensitive to the initial guess and can
get trapped in local minima, thus missing the global minimum. These methods are
commonly employed in seismic inversion when the objective function is relatively
smooth and the solution space can be well approximated by local information (Aster
et al., 2018). Global optimization techniques like Monte Carlo methods can be used
for seismic inversion to explore the wide range of possible subsurface models. They
are particularly useful when dealing with complex, multimodal objective functions
(Sambridge & Mosegaard, 2002). However, such methods can be computationally
very expensive and may not converge to a solution as quickly as the local search
methods. In the following sections, we explain three different algorithms of the
Markov chain Monte Carlo approaches, which are in a Bayesian framework.

2.4 Bayesian inference
2.4.1 Bayesian framework
A Bayesian inversion approach aims to recover the probability density of the model
parameters given the observed data, p(m|dobs ). The posterior probability density
function is derived by applying Bayes’ rule (Bayes, 1958), which combines prior
information on the model parameters with observed data as:

p(m|dobs ) = p(dobs |m)p(m)

p(dobs )
, (2.9)
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Figure 2.2. The regularized GN method for the inversion of the noise-free synthetic dispersion
curve. (a) The L-curve to find the optimum smoothing parameter η. (b) The input DC (red)
and the modeled DCs (dotted blue) at different iterations of the inversion algorithm. (c) The
true shear wave velocity model (dashed black) and the inverted shear wave velocity model
(dotted blue) at different iterations of the inversion and the final inverted model (black solid).

Figure 2.3. As Figure 2.2, but for a noisy synthetic dispersion curve.

where dobs is a vector defined by the set of observed data and m is the vector of the
model parameters. p(dobs |m) is the likelihood, p(m) is the prior probability density
and p(dobs ) is often referred to as the evidence. The evidence, p(dobs ), can be
considered as constant because it is not a function of any particular model m (e.g.,
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Sambridge et al., 2006). Hence:

p(m|dobs ) ∝ p(dobs |m)p(m). (2.10)

The likelihood function p(dobs |m) quantifies the misfit between observed and
predicted data. For a simple least-squares misfit (Equation 2.2), the likelihood
function is Gaussian:

p(dobs |m) ∝ exp

(
−φ(m)

2

)
. (2.11)

Given that all inferences drawn from the posterior are inherently tied to the
prior distribution, the significance of priors in Bayesian inversion schemes cannot
be overstated. The selection of an inappropriate prior adversely affects the result.
To avoid the potential introduction of biases stemming from the prior, we opted for
uniform prior distributions with wide ranges for all model parameters. The model
is initially parameterized with n non-overlapping one-dimensional Voronoi cells,
each defined by a cell nucleus (ci ) and an assigned velocity (vi ). Since the model
parameters (i.e., number of cells, location of nuclei of each cell, and the velocity
assigned to each cell) are independent, the prior can be written as:

p(m) = p(n)p(c|n)p(v|n), (2.12)

where n is the number of model parameters or cells, p(n) is the prior on the number
of cells, p(c|n) is the prior on cell nuclei location given the number of cells, and
p(v|n) is the prior on cell velocity given the number of cells (see Bodin & Sambridge,
2009; Bodin et al., 2012, for more details).

2.4.2 Markov chain Monte Carlo method
The Markov chain Monte Carlo (McMC) method is an iterative stochastic technique
designed to generate samples from the posterior probability density. The initial
model is chosen randomly, and the determination of the subsequent model in
the ’chain’ relies on a proposal probability distribution (q), solely contingent on
the present state of the model. In essence, the proposal involves selecting the
new model, m′, as a random deviate from the conditional probability distribution
q(m′|m), with dependence solely on the current model m. The acceptance or
rejection of the proposed samples is determined by:

α(m′|m) = min
[
1,prior-ratio× likelihood-ratio×proposal-ratio×|J|] ,

= min

[
1,

p(m′)
p(m)

p(dobs |m′)
p(dobs |m)

q(m′|m)

q(m|m′)
×|J|

]
,

(2.13)

where the matrix J is the Jacobian of the transformation from m to m′ and is crucial
for accounting for the scale changes inherent in transformations involving jumps
between dimensions (Green, 1995). The proposal probability distribution, denoted
as q , serves as the basis for suggesting a new model and can take the form of
any desired function, such as a Gaussian distribution. After drawing a model (m′)
from the proposal distribution q(m′|m), it undergoes a selection process based on
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the acceptance probability α(m′|m). This involves generating a uniform random
number, r , between 0 and 1. If r ≤α, the proposed model is accepted, replacing the
current model m with the proposed model m′, and the chain advances to the next
step. However, if r >α, the proposed model is rejected, and the current model (m)
is preserved for the subsequent chain step, repeating the process. The acceptance
probability, α(m′|m), plays a critical role in ensuring that the samples conform to
the target density p(m|dobs ) (Bodin & Sambridge, 2009).

2.4.3 Conventional McMC with fixed parametrization
The conventional McMC algorithm for inverse problems considers the velocity field
as the only unknown parameter (Menke, 2018). To use McMC sampling, we need to
compute the acceptance ratio of Equation 2.13. In this case number of cells, position
of cells, and uncertainty parameters (σd) are fixed. Hence, the prior (Equation 2.12)
becomes:

p(m) = p(v|n). (2.14)

By assuming a minimal prior knowledge of velocity, using a uniform prior
distribution, and assuming that the velocity is independent in each cell, the prior
can be calculated by (Bodin et al., 2009):

p(m) =
(

1

∆v

)n

, (2.15)

where n represents the number of cells, ∆v is the difference between the maximum
(vmax ) and minimum (vmi n) priors on shear wave velocity. Because of a fixed
number of cells, n, the prior probability remains constant in each iteration. Hence
the prior ratio in Equation 2.13 will be constant and equal to 1. The likelihood ratio
in Equation 2.13 can be computed by using Equation 2.11 for each iteration of the
chain. By considering the proposal distribution to be Gaussian, it will be symmetric
(i.e. q(m′|m) = q(m|m′)). The proposal ratio will therefore be constant and equal to
1. Finally, due to the fixed number of cells, there is no change in model parameter
dimensions, so |J| = 1. The acceptance ratio, therefore, becomes:

α(m′|m) = mi n

[
1,

p(dobs |m′)
p(dobs |m)

]

= mi n

1,
exp(−φ(m′)

2
)

exp(−φ(m)

2
)


= mi n

[
1,exp(

φ(m)−φ(m′)
2

)

]
.

(2.16)

The flowchart for this McMC algorithm is depicted in Figure 2.4. The chain starts
with an initial (random) velocity model, in which the number of cells and their
positions are fixed. The next step is to perturb the velocity model by randomly
selecting a cell and proposing a new velocity for that cell using a Gaussian
probability distribution centered at the current velocity model. The proposed model
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(sample) is then accepted or rejected based on the acceptance probability ratio of
Equation 2.16. When sufficient samples are drawn from the posterior distribution, it
becomes feasible to calculate key statistical measures such as the mean and standard
deviation. It is common practice to discard samples from the initial phase of the
chain, known as the burn-in period. This phase allows the algorithm to mitigate the
influence of the initial model and attain a satisfactory mixing of posterior samples
(Bodin & Sambridge, 2009).

Start

Input: Load observed data

Solve forward problem,
and compute likelihood

Initialize the model:
1. Divide the model in
n non-overlapping cells

2. Define n random velocities

k = 1

Randomly select one cell

Perturb velocity of
the selected cell

Solve the forward function

Compute the likelihood

Compute the acceptance
ratio and accept or re-

ject the proposed model

k == M?k = k + 1

Process the samples
such as computing
the posterior mean

End

yes

no

Figure 2.4. Flowchart to draw M samples using a conventional McMC algorithm, wherein the
number of cells and the position of cells are known and fixed.

Figure 2.5 shows the results of the conventional McMC inversion for the noisy
synthetic data of Figure 2.1, assuming that number of cells (or layers) and position
of cells (or thickness of layers) are known. We examined a scenario involving five
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cells (layers) with known positions, mirroring the true configuration. The velocity
of each cell (layer) is unknown and is to be estimated using the Markov chain
Monte Carlo (McMC) algorithm. To adequately sample the posterior distribution, we
employed 20 independent McMC chains, each generating 5000 samples, in which
the first 2000 samples were discarded as the burn-in steps. Figure 2.5a illustrates the
samples generated by a specific chain, offering insight into the velocity variations
during the McMC sampling process. In Figure 2.5b, the true model, post-burn-in
posterior mean, least-squares estimation, and the posterior probability density of the
velocity model are presented. Notably, the posterior mean aligns reasonably well
with the true model. The posterior probability density, representing the histogram
of post-burn-in samples, accurately captures the true model structure and highlights
the sensitivity of observed data to shear wave velocity. The width of the posterior
probability density increases with depth.

Figure 2.5. The results of McMC sampling assuming five cells (layers) with known true
cell positions. (a) Sampled models of a particular chain. (b) True model (dashed black
line), posterior mean (red), least-squares solution (black) as in Figure 2.3c, and the posterior
probability density (white-blue colored histogram). The least-squares solution is obtained
under the assumption that the number of layers and layer interfaces are known.

The scenario discussed above, with the number of cells and position of cells
as in the true model, represents a simplified case. In reality, both the number of
cells (or layers) and their positions are typically unknown. In practice, a refined
grid of cells is employed, featuring equispaced distances like the one used in the
least-squares algorithm in Figures 2.2-2.3. We exemplified such a case in Figure 2.6
using 30 cells with equispaced cell positions. Not surprisingly, we needed to generate
more samples to represent the posterior due to the increased number of unknown
model parameters. As you can see, the recovered posterior density resembles the
true model fairly well despite the limited resolution. For a higher resolution, it is
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necessary to consider more cells. However, the resolution is also limited by the
sensitivity of the input data to the velocity model. Therefore, it is difficult for a
user to choose a proper number of cells. Additionally, an increasing number of cells
requires more samples to be collected and hence demands a high computational
cost even for this simple 1D problem. In the next section, we explain a more
efficient McMC algorithm in which the number of cells is fixed but the position of
cells and the velocity assigned to each cell are variable. This algorithm is called
partition modeling McMC (see Bodin et al., 2009).

Figure 2.6. As Figure 2.5, but with 30 refined cells (layers) with known equispaced cell
positions. The least-squares solution is also obtained under the assumption of 30 layers with
equal thicknesses.

2.4.4 Partition modeling McMC
Partition modeling is a method of statistical analysis that is used for non-linear
regression and classification, and it is particularly useful for dealing with parameters
that vary spatially. Bodin et al. (2009) extended the partition modeling method to the
seismic tomography problem. The procedure involves a dynamic parametrization for
the model which can adapt to an uneven spatial distribution of the information on
the model parameters contained in the observed data. In this method, instead of
a dense regular grid of cells, as in Figure 2.6, a small number of irregular cells is
considered. The velocity and position of cells are considered as unknowns. However,
the number of cells is fixed. Hence, the prior (Equation 2.12) becomes:

p(m) = p(c|n)p(v|n). (2.17)

Because of the fixed number of cells, n, this prior probability remains constant
during the McMC sampling. The acceptance ratio, therefore, is similar to the
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conventional McMC and can be simply computed by Equation 2.16 (see Bodin
et al., 2009, for details).

Start

Input: Load observed data

Solve the forward problem
then compute the likelihood

Initialize the model:
1. Divide the model

to n non-overlapping
cells randomly

2. Define n random velocities

k = 1

Randomly select one cell
Randomly choose between 1
and 2 with equal probability

Perturb selected cell position Perturb selected cell velocity

Solve the forward model

Compute the likelihood

Compute the acceptance
ratio, then decide to accept

or reject the proposed model

k == M? k = k + 1

Process the samples
such as averaging

End

Case 1: move Case 2: update

yes

no

Figure 2.7. Flowchart to draw M samples using the partition modeling McMC algorithm,
wherein the number of cells is known and fixed. However, the position of cells and the velocity
assigned to each cell are unknown and variable.

The flowchart for this partition modeling McMC algorithm is depicted in Figure
2.7. A chain starts with an initial (random) model, in which the number of cells
is known but the position of each cell and the velocity assigned to each cell is
generated randomly. The next step is to perturb the model by randomly selecting a
cell and proposing a new velocity (update step) or a new position (move step) with
equal probability. The proposed model (sample) is then accepted or rejected based
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on the acceptance probability ratio of Equation 2.16.
To assess the performance of the partition modeling Markov chain Monte Carlo

(McMC) approach, we explored model parametrization using five and ten irregular
partitioning cells. The outcomes of inverting the noisy dispersion curve from
Figure 2.1b are presented in Figures 2.8 and 2.9. For an effective sampling of the
posterior distribution, we employed 20 independent McMC chains, each generating
10,000 samples, with the initial 4,000 samples discarded as burn-in steps in both
cases.

The results reveal that the partition modeling McMC inversion produces a
naturally smooth outcome, exhibiting good agreement with the true velocity model.
Notably, at the model’s top, where the input data is more velocity-sensitive, the
recovered model approximates the layer discontinuities. However, as depth increases
and sensitivity diminishes (leading to increased uncertainty), the recovered pointwise
averaged model exhibits enhanced smoothing. This indicates that the algorithm
adapts to the input data resolution, employing local smoothing—a notable contrast
to regularized least-squares algorithms (section 2.3), which uniformly smooths the
entire resulting model.

Consequently, the partition modeling McMC approach yields a solution that is
stable, self-regularized, and self-smoothed. However, users must exercise careful
consideration when selecting the number of cells. A comparison between Figures 2.8
and 2.9 underscores that the selection of the number of cells influences the recovered
posterior probability, even in this seemingly straightforward 1D inversion problem.
Given that the true velocity model comprises 5 layers, our anticipation was to better
recover the model using 5 variable cells. Surprisingly, the models sampled with 10
variable cells appear to provide a better representation of the posterior compared
to the models sampled with 5 variable cells. In more complex scenarios, with a
broader model space to explore, determining the optimal number of cells becomes a
challenging aspect of the approach.

2.4.5 Transdimensional McMC
The number of cells/unknowns in the partition modeling McMC framework is
a user-dependent parameter. Alternatively, the application of a reversible jump
algorithm introduces variability to this parameter. The reversible jump algorithm,
as introduced by Green (1995), is a statistical approach for Bayesian inference that
accommodates a variable number of unknowns. This method was employed by
Bodin & Sambridge (2009) in addressing seismic tomography challenges. Within
this algorithm, all aspects of model parametrization, including the number of cells,
cell position, and geometry, are integrated into the inversion process. This is
achieved through the use of a variable number of mobile Voronoi cells exhibiting
varying geometry and numbers. The size, position, shape, and number of the cells
defining the velocity model, as well as the velocity assigned to each cell are directly
determined by the available input data. Consequently, the prior distribution (as
expressed in Equation 2.12) can be formulated as:

p(m) = p(n)p(c|n)p(v|n). (2.18)
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Figure 2.8. Results of the partition modeling McMC using 5 cells with variable positions and
velocities. (a) The average of the accumulated samples is computed at each iteration, wherein
the sampled models from 20 chains are superimposed and averaged to collectively represent
all samples. (b) True model (dashed black line), posterior mean (red), least-squares solution
(black) as in Figure 2.3c, and the posterior probability density (white-blue colored histogram).

Figure 2.9. As Figure 2.8, but using 10 variable cells.

By assuming a minimal prior knowledge of velocity, cell nucleus position, and the
number of cells, using a uniform prior distribution, and knowing that the velocity
and cell nucleus position are independent in each cell, the prior for a 1D problem
can be calculated by (Bodin & Sambridge, 2009):

p(m) = 1

∆n

n!(N −n)!

N !

(
1

∆v

)n

, (2.19)
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where ∆n = nmax −nmi n , nmax is the maximum allowed number of cells and nmi n is
the minimum allowed number of cells. Here, number of cells, n, is variable. Hence,
the acceptance ratio (Equation 2.13) deviates from Equation 2.16.

The reversible jump algorithm employs four distinct perturbation types of model
parameters: update for velocity, move for cell nuclei, death for cell removal, and
birth for cell addition. In the update step, the velocity of a randomly selected cell
is perturbed, the move step alters the nucleus position of a randomly selected cell,
the death step eliminates a randomly selected cell nucleus, and the birth step adds
a cell to the current model.

For perturbation types that do not induce a change in dimension (specifically,
update for velocity and move for cell), the number of cells remains fixed.
Consequently, like the partition modeling scenario, the prior ratio, proposal ratio,
and Jacobian term evaluate to one. Therefore, the acceptance ratio aligns with the
partition modeling McMC and can be straightforwardly computed using Equation
2.16.

However, for the death step (involving a jump from dimension n in the current
model m to n −1 in the proposed model m′), the acceptance ratio is derived as (see
Bodin & Sambridge, 2009):

α(m′|m) = mi n

[
1,

∆v

σbd
p

2π
exp

(
φ(m)−φ(m′)

2
−

(v ′
j − vi )2

2σ2
bd

)]
, (2.20)

where σbd is a user-defined variance for the Gaussian proposal distribution, vi is the
velocity of the deleted cell i , and v ′

j is the velocity at the location of the deleted cell

in the new proposed model.
For the birth step (jump dimension from n in current model m to n +1 in

proposed model m′), the acceptance ratio is similarly derived as (see Bodin &
Sambridge, 2009):

α(m′|m) = mi n

[
1,
σbd

p
2π

∆v
exp

(
φ(m)−φ(m′)

2
+ (v ′

n+1 − vi )2

2σ2
bd

)]
, (2.21)

where vi is the velocity at the location of the added cell in the current model, and
v ′

n+1 is the proposed velocity for the added cell in the new proposed model.
The flowchart for the transdimensional McMC inversion algorithm is depicted

in Figure 2.10. Analogous to the partition modeling McMC, a transdimensional
McMC chain starts with an initial (random) model, where the number of cells, the
position of each cell, and the velocity assigned to each cell are generated randomly.
Subsequently, the model undergoes perturbation by randomly selecting one of four
perturbation types: update, move, birth, or death.

Figure 2.11 represents the results of the transdimensional McMC inversion for
the synthetic data of Figure 2.1b considering an irregular grid of cells, which were
allowed to vary between nmi n = 3 and nmax = 50 cells. We ran 20 independent McMC
chains, each generating 15,000 samples, with the initial 5,000 samples discarded as
burn-in steps. Figure 2.11a shows the sampled models at different iterations for
all chains. At each iteration, the samples from all 20 chains are aggregated and
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Figure 2.10. Flowchart illustrating the Transdimensional McMC method for generating M
samples, where the number of cells, their positions, and the assigned velocities are all unknown
and variable.

averaged to represent the collective set of samples. In Figure 2.11b, the true model,
post-burn-in posterior mean, least-squares estimation, and the posterior probability
density of the velocity model are presented. Notably, the pointwise posterior mean
aligns reasonably well with the true model despite the overestimation of the velocity
in the second layer. Looking at the samples depicted in Figure 2.11a implies that
collecting more samples could effectively address the overestimated velocity in the
second layer, as the velocity in the second layer decreases by iteration.

To evaluate the convergence of the transdimensional algorithm, we examined
the variation in both misfit and the number of cells per iteration, as illustrated in
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Figure 2.12a-b. It is evident that both parameters decrease until the 4000th iteration,
indicative of the burn-in phase, after which they stabilize. To ensure a conservative
approach, we excluded the initial 5000 steps as the burn-in phase. In Figure
2.12c, the histogram of the number of cells in post-burn-in samples is presented,
representing the posterior probability density of the cell numbers. Notably, samples
with a number of cells between 8-10 exhibit the highest probability. This observation
sheds light on why the partition modeling McMC algorithm performed more
effectively with 10 cells in Figure 2.9 compared to the scenario with 5 cells in Figure
2.8.

Figure 2.11. Results of the transdimensional McMC. (a) The average of the accumulated
samples is computed at each iteration, wherein the sampled models from 20 chains are
superimposed and averaged to collectively represent all samples. (b) True model (dashed black
line), posterior mean (red), least-squares solution (black) as in Figure 2.3c, and the posterior
probability density (white-blue colored histogram).

2.5 Field data example
To illustrate the functionality of the nonlinear least-squares and the transdimensional
McMC algorithms with field data, we applied them to an average DC computed from
ambient noise data recorded both on- and off-shore of the Reykjanes Peninsula.
Details about the data retrieval process can be found in Weemstra et al. (2021), or in
sections 5.3 and 5.4 of this thesis. Figure 2.13 displays the average DC along with
its corresponding uncertainty, which is computed using all available DCs at each
frequency. In the inversion algorithms, we used the average DC as the input data
(dobs in Equation 2.11), and the standard deviation served as the data uncertainty
(σd in Equation 2.11).

Figure 2.14 illustrates the application of the least-squares inversion algorithm
(i.e., the GN method) to the average dispersion curve of the Reykjanes Peninsula.
Initially, by assuming η = 0, we determined the minimum damping factor λ for
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Figure 2.12. The transdimensional McMC chains statistics. (a) Misfit variation. (b) Number
of cells variation. (c) Number of cells posterior probability density. Different colors in (a-b)
represents different chains.

Figure 2.13. An average dispersion curve (µ; black curve), which is computed by all available
dispersion curves retrieved from cross-correlated noise recorded at various stations on the
Reykjanes peninsula. The green curves show µ±σ, where σ is the standard deviation. All the
available dispersion curves are presented in Figure 5.3a.
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Equation 2.8 to remain stable and converge; the optimal λ was found to be
λ = 1. Subsequently, employing the L-curve method (Figure 2.14a), we identified
the optimum smoothing parameter η as η = 0.67. The modeled dispersion curve
at each iteration is depicted in Figure 2.14b, highlighting a close fit of the final
dispersion curve to the input average dispersion curve. Figure 2.14c showcases
the inverted model at various iterations, revealing the algorithm’s convergence to a
smooth velocity model consistent with the known geological setting of the study
area. Further details on the geological setting are provided in section 5.2, and for an
interpretation of the inverted model, refer to section 5.5.3.

Figure 2.14. The regularized GN method for the inversion of the Reykjanes Peninsula average
dispersion curve. (a) The L-curve to find the optimum smoothing parameter η. (b) The input
DC (red) and the modeled DCs (dotted blue) at different iterations of the inversion algorithm.
(c) The true shear wave velocity model (dashed black) and the inverted shear wave velocity
model (dotted blue) at different iterations of the inversion and the final inverted model (black
solid).

Figure 2.15 illustrates the application of the transdimensional Markov chain
Monte Carlo (McMC) algorithm to the average Dispersion Curve (DC) of the
Reykjanes Peninsula. Similar to the synthetic data case, we used 20 independent
chains with a variable number of cells ranging from nmi n = 3 and nmax = 50. Each
chain generated 15,000 samples, and the initial 5,000 samples were discarded as the
burn-in phase. In Figure 2.15a, the sampled models at different iterations for all
chains are displayed. At each iteration, samples from all 20 chains are aggregated
and averaged to represent the collective set of samples.
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Figure 2.15b presents the post-burn-in pointwise-averaged posterior mean,
least-squares estimate, and the posterior probability density of the velocity model.
The pointwise-averaged posterior mean is smooth due to the inherent high
uncertainty resulting from averaging DCs over a large study area. This smoothing
effect is also evident in the least-squares inverted model. In contrast to the
least-squares method, the transdimensional algorithm successfully recovered sharp
variations in velocity, particularly at a depth of around 3 km. This observation
emphasizes the automatic and localized smoothing applied in the transdimensional
McMC algorithm. Furthermore, the transdimensional McMC algorithm provides an
informative posterior probability density, offering valuable insights.

Finally, Figure 2.16 presents two statistical measures of the sampling chains.
Figures 2.16a-b show the variation in misfit and number of cells, respectively.
Both parameters stabilize after around 2000 iterations indicating the burn-in phase.
However, we discarded the first 4000 iterations as the burn-in to be on the safe
side. Figure 2.16c shows the histogram of the number of cells in the post-burn-in
samples. Notably, lower number of cells have higher probabilities. This is due to the
high noise level introduced as the input data.

Finally, in Figure 2.16, two key statistical measures of the sampling chains are
presented. Figures 2.16a-b depict the variation in misfit and the number of cells,
respectively. Both parameters stabilize after approximately 2000 iterations, indicating
the end of the burn-in phase. However, to stay on the safe side, we chose to discard
the first 4000 iterations as the burn-in period. Figure 2.16c displays the histogram of
the number of cells in the post-burn-in samples. Notably, a lower number of cells
have higher probabilities, which can be attributed to the high noise level introduced
in the input data.

2.6 Conclusion
In this chapter, we delved into a comprehensive exploration of transdimensional
inversion, a Bayesian algorithm. We discussed the efficiency, stability, and
self-regularization capabilities of the transdimensional algorithm, and compared it
with conventional techniques such as a nonlinear least-squares inversion and a
conventional McMC algorithm with fixed parametrization.

The challenges associated with a nonlinear least-squares inversion algorithm were
discussed, shedding light on issues such as the need for precise parametrization,
and regularization. The discussion acknowledged the sensitivity of this algorithm to
the initial guess (model) and the risk of getting stuck in local minima.

The conventional McMC method with fixed parametrization, was identified as
relatively inefficient, particularly in scenarios with numerous model parameters.
In contrast, partition modeling McMC emerged as a viable alternative, with its
self-parametrizing nature and natural smoothing characteristics. However, challenges
related to the user’s decision on the optimal number of cells were acknowledged.
Transdimensional McMC was introduced as an evolution, allowing the number of
unknowns to be a variable. Its ability to simultaneously determine the number of
cells, their positions, and the velocity field showcased a higher level of adaptability.

Finally, we discussed the application of the nonlinear least-squares algorithm
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Figure 2.15. Results of the transdimensional McMC applied to the average DC of the Reykjanes
Peninsula. (a) The average of the accumulated samples is computed at each iteration, wherein
the sampled models from 20 chains are superimposed and averaged to collectively represent
all samples. (b) Posterior mean (red), least-squares solution (black) as in Figure 2.14c, and the
posterior probability density (white-blue colored histogram).

Figure 2.16. The transdimensional McMC chains statistics. (a) Misfit variation. (b) Number
of cells variation. (c) Number of cells posterior probability density. Different colors in (a-b)
represent different chains.

and the transdimensional McMC method to field data from the Reykjanes Peninsula.
We assessed the results of both methods in reconstructing the subsurface velocity
structure. Notably, transdimensional McMC stood out, displaying automatic and
localized smoothing, showcasing superior adaptability compared to the uniform
smoothing inherent in regularized least-squares inversions.

In conclusion, the exploration of transdimensional inversion and its comparison
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with traditional methods with fixed parametrization underscores the need for more
flexible and adaptive Bayesian inversion algorithms in seismic tomography. The
potential efficiency gains, self-regularization capabilities, and adaptability to complex
model spaces position transdimensional McMC as a promising tool for advancing
our understanding of subsurface structures. As we navigate the challenges posed
by conventional methods, embracing innovative approaches becomes imperative for
pushing the boundaries of seismic inversion research.
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2D surface wave inversion: near-surface
applicationusingdistributedacousticsens-
ing

Abstract: Distributed Acoustic Sensing (DAS) is a novel technology which
allows the seismic wavefield to be sampled densely over a broad frequency band.
This makes it an ideal tool for surface wave studies, which are predominantly
sensitive to the shear wave velocity structure of the subsurface. In this study,
we evaluate the potential of DAS to image the near-surface using active-source
surface waves recorded with straight fibers on a field in the province of Groningen,
the Netherlands. Importantly, DAS is used here in conjunction with a Bayesian
transdimensional inversion approach, making this the first application of such an
algorithm to DAS-derived wavefields. First, we recover laterally varying surface
wave phase velocities (i.e., “local” dispersion curves) from the fundamental mode
surface waves. We utilize the multi-offset phase analysis (MOPA) for this purpose.
MOPA allows us to take into account the lateral variability of the subsurface shear
wave velocity. Then, instead of inverting each local dispersion curve separately,
we use a novel 2D transdimensional algorithm to estimate the subsurface’s shear
wave velocity structure. The transdimensional approach involves parameterization
of the model space using 2D Voronoi cells. As such, all dispersion curves are
included simultaneously, preserving the lateral correlation of the shear wave velocity
structure. In addition, this approach does not suffer from non-uniqueness, which is
a well-known problem of tomographic inversions. We first validate our approach by
successfully recovering the shear wave velocity in a synthetic experiment. Application

An initial draft of this chapter has been published as:
Rahimi Dalkhani, A., Hasani, M. A. A., Drijkoningen, G., & Weemstra, C. (2023).
Transdimensional surface wave tomography of the near-surface: Application to DAS data,
https://doi.org/10.48550/arXiv.2304.10678.
The current version is submitted to "Geophysics" for consideration and potential publication.
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to the field data then confirms the reliability of the proposed algorithm. The
recovered 2D shear wave velocity section is compared to shear wave velocity logs
obtained along two boreholes positioned at two separate locations along the fiber,
and shows reasonable agreement with these two 1D profiles.

3.1 Introduction
After initial Distributed Acoustic Sensing (DAS) field trials (Paulsson et al., 1997;
Bostick III, 2000; Molenaar et al., 2012; Johannessen et al., 2012), the technique was
investigated and applied in the context of a variety of geophysical problems (e.g.,
Daley et al., 2013; Lindsey et al., 2017; Barone et al., 2021; Mata Flores et al., 2023).
Due to the dense sampling of the wavefield and its broadband character, DAS has
also become popular to sample surface waves; both in active (e.g., Qu et al., 2023;
Yust et al., 2023) and passive (e.g., Ajo-Franklin et al., 2019; Nayak et al., 2021)
surveys. Surface waves are useful because of their wave speed’s sensitivity to the
subsurface’s shear wave velocity.

A material’s shear wave velocity is to a large extent determined by its shear
strength (or stiffness). Consequently, the shear wave velocity of the near-surface is a
valuable parameter in many subsurface engineering applications. And because the
velocity of surface waves strongly depends on that shear wave velocity, near-surface
shear wave velocity models are frequently derived from surface wave measurements
(Socco et al., 2010). Typically, two types of surface waves are recorded: Rayleigh
and Love waves (Aki & Richards, 2002). Surface waves are dispersive when the
shear wave velocity varies as a function of depth, meaning that different frequencies
propagate with different velocities. A surface wave’s propagation velocity at an
individual frequency is referred to as that frequency’s “phase velocity”. The first step
in surface wave imaging is therefore usually the retrieval of the frequency-dependent
phase velocities. An inversion subsequently results in a model of the shear wave
velocity as a function of depth (Schaefer et al., 2011; Zhang et al., 2020).

Conventionally, in an active-source surface wave analysis, a dispersion curve is
retrieved from each common shot record using Multichannel Analysis of Surface
Waves (MASW; Park et al., 1999) assuming that the subsurface is a stack of horizontal
layers. Then, an inversion algorithm is used to recover a 1D shear wave velocity
profile (e.g., Vantassel et al., 2022; Qu et al., 2023). Due to the dense spatial
sampling and the high-frequency content of active-source DAS surveys, however,
the lateral resolution could in principle be increased significantly (Barone et al.,
2021). Consequently, to account for the lateral variation of the subsurface’s velocity
structure, many authors suggested recovering local dispersion curves (DCs) (e.g.,
Neducza, 2007; Luo et al., 2008; Vignoli et al., 2011; Barone et al., 2021). These local
DCs can then be used in an inversion algorithm to recover a 2D profile (or 3D cube)
of the subsurface shear wave velocity (Vignoli et al., 2016; Barone et al., 2021).

Several approaches have been proposed to recover lateral variations of the
subsurface’s shear wave velocity, most of them based on laterally varying dispersion
curves. The most common approach involves the application of a moving window to
the recorded shot gathers in the time-space domain (e.g., Bohlen et al., 2004; Luo
et al., 2008; Socco et al., 2009; Boiero & Socco, 2010). The windowed part of the data
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is then transformed into a spectral domain to estimate the “local” dispersion curve
at the location of the center of that window. Alternatively, multi-offset phase analysis
(MOPA; Vignoli et al., 2016) can be used to recover lateral variations (Barone et al.,
2021). Vignoli et al. (2016) and Barone et al. (2021) successfully retrieved laterally
varying fundamental mode dispersion curves using MOPA. Then, they inverted these
local dispersion curves at each location independently to recover a 2D shear wave
velocity pseudo-section of the subsurface. It is worth noting that both studies
(Vignoli et al., 2016; Barone et al., 2021) applied the MOPA algorithm to geophone
recordings.

In this study, we apply the MOPA algorithm to surface waves extracted from a
2D, active-source DAS survey. As such, we recover the laterally varying fundamental
mode local phase velocities. Importantly, we then “invert” all the dispersion curves
simultaneously using a non-linear 2D transdimensional tomographic algorithm
(Bodin & Sambridge, 2009). This transdimensional inversion algorithm was originally
developed for surface wave travel time tomography. Later, it has been applied to
many geophysical problems (e.g., Dettmer et al., 2012; Ghalenoei et al., 2022; Yao
et al., 2023). Here, we adapt the algorithm to invert (MOPA-derived) dispersion
curves extracted from active-source surface waves recorded with DAS. This allows us
to generate a 2D shear wave velocity image (vertical cross-section) of the subsurface
with improved lateral correlation. We validate the obtained 2D shear wave velocity
section using shear wave velocity logs obtained from two boreholes located at two
specific points on the acquisition line.

3.2 Theory & methodology
In this section, we detail the various methods used in this study. First, we describe
how the surface waves are extracted from the fiber optic recordings. Subsequently,
we explain how we locally estimate the surface waves’ phase velocity as a function
of frequency. Finally, we provide the details of the McMC implementation.

3.2.1 Distributed acoustic sensing (DAS)
In this part, we describe the physical quantity measured by DAS and how it relates
to geophone measurements. Unlike geophones, which are point sensors that record
the particle velocity at a specific location, DAS effectively yields strain rate along the
fiber optic cable, i.e. ε̇xx = Çt (Çx ux ), averaged over a specific distance called the
gauge length (Lg ). Alternatively, DAS recordings can be represented by the spatial
derivative of the particle velocity vector, i.e. Çx (Çt ux ) = ÇxVx (Daley et al., 2016).

In Figure 3.1 we depict a schematic illustrating a scenario mimicking our field
experiment. A vertical force source Fz will excite different types of waves of which
the Rayleigh waves will be the most energetic at the Earth’s surface. As DAS relies
on the elongation and contraction of the fiber as a function of time, its maximum
sensitivity is in the axial direction. It is therefore safe to say that the majority of the
energy that is being recorded is associated with the horizontal component of the
Rayleigh waves. To compare geophone recordings to DAS recordings, we consider
horizontal component (x) geophones separated by a distance d x. As a function of
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time, these geophones sample the horizontal particle velocity Vx at x −d x/2 and
x +d x/2, respectively. The equivalent DAS response between the two geophones can
be estimated as the spatial derivative of the particle velocity using the following
expression (adapted from Zulic et al., 2022):

ε̇xx

(
x − d x

2
, x + d x

2

)
≈

Vx

(
x + d x

2

)
−Vx

(
x − d x

2

)
d x

, (3.1)

where ε̇xx is estimated to be the average strain rate obtained by DAS and d x is
equivalent to the gauge length Lg of the DAS measurement.

Figure 3.1. An illustration to compare DAS and geophone measurements.

3.2.2 Phase velocity retrieval
A variety of methods exist to retrieve a surface wave mode’s dispersion curve. The
dispersion curve describes the mode’s phase velocity as a function of frequency.
Often, dispersion curves are estimated by transforming the data into a different
(spectral) domain. For example, the recorded data can be transformed from the
time-space domain to the phase velocity-frequency (cp − f ; McMechan & Yedlin,
1981) domain, to the frequency-wavenumber ( f −k; Foti et al., 2000) domain,
or to the phase-offset (φ− x; Strobbia & Foti, 2006) domain. These methods
have in common that they rely on the assumption that the subsurface is a stack
of horizontal layers. In other words, the subsurface is assumed to be laterally
invariant. Consequently, in the case of laterally rapidly varying structure, the
retrieved dispersion relation is effectively a (non-exact) average (Boiero & Socco,
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2010). In practice, these methods are still very useful when the subsurface is laterally
smooth.

In case the subsurface is laterally invariant, the relation between the phase (φ)
and offset (x) will be linear at each discrete frequency ( fi ), with the slope coinciding
with the wavenumber (k). This can be formulated as (Strobbia & Foti, 2006):

φ( fi , x) = k( fi )x +φ0( fi ), (3.2)

where φ0 is the phase at the location of the source. Equation (3.2) allows the
estimation of a wavenumber by means of a least-squares fit of the phase-offset data
at each discrete frequency fi , i.e., using a linear regression (for detailed formulation
see Strobbia & Foti, 2006). The estimated wavenumber (k( fi )) can be translated to
the frequency-dependent phase velocity (cp( fi )) using:

cp( fi ) = 2π fi

k( fi )
, (3.3)

where i = 1,2, ..., N f , and N f denotes the number of discrete frequencies. This
approach is referred to as the “multi-offset phase analysis” (MOPA; Strobbia & Foti,
2006; Vignoli & Cassiani, 2010).

In the presence of (smooth) lateral variations, Equation (3.2) can be formulated
such that the wavenumber k varies as a function of both offset and frequency. That
is, k = k( fi , x(c)), where x(c) denotes the center position of a set of adjacent (Fourier
transformed) wavefield recordings running from x(c) −W /2 to x(c) +W /2 (here, W is
the spatial window along which k( fi , x(c)) is assumed to be constant). Vignoli et al.
(2011) “move” this spatial window along the recording line with small steps (i.e.,
significantly smaller than W ). This is done separately for each discrete frequency,
allowing W to be frequency dependent (Vignoli et al., 2016). The wavenumbers
are subsequently derived using linear regression according to Equation (3.2). These
laterally varying wavenumbers are then converted to laterally varying phase velocities
cp( fi , x(c)) using Equation 3.3. Since the lateral resolution of the surface waves is
directly related to the wavelength (Barone et al., 2021), Vignoli et al. (2016) proposed
to have the spatial window length W be a function of the wavelength of the surface
waves.

In this study, we use the MOPA algorithm of Vignoli et al. (2016) to estimate
local dispersion curves. Chiefly, this is because of the algorithm’s robustness and
simplicity. A drawback of the MOPA algorithm, however, is that it can only be applied
to a single surface wave mode. Therefore, only one mode will be considered, and
other (potential) surface wave modes will be muted. Finally, it should be understood
that the recovered wavenumbers are associated with the wavefield. That is, they will
deviate from the medium’s true wavenumber distribution (sometimes referred to as
“structural wavenumbers”; Wielandt, 1993), with the discrepancy between the two
being larger for more heterogeneous subsurfaces.

3.2.3 Transdimensional surface wave tomography
A single dispersion curve, i.e., cp( fi , x(c)) for a specific location x(c) (with
i = 1,2, ..., N f ), can be “inverted” to recover a (1D) shear wave velocity profile.



3

30 3. 2D SURFACE WAVE INVERSION

Numerous inversion algorithms are described in the literature. Roughly speaking,
one can distinguish between linearized algorithms (e.g., Xia et al., 1999) and
nonlinear global search methods. The latter includes genetic algorithms (Yamanaka
& Ishida, 1996), simulated annealing (Beaty et al., 2002), the neighborhood algorithm
(Wathelet, 2008), Monte Carlo methods (Socco & Boiero, 2008), particle swarm
optimization (Wilken & Rabbel, 2012), and a 1D transdimensional algorithm (Bodin
et al., 2012).

In the presence of lateral variations, the dispersion relation varies as a function
of location. In that case, the different dispersion curves are often inverted
independently using one of the mentioned 1D inversion algorithms (e.g., Bohlen
et al., 2004; Socco et al., 2009; Vignoli et al., 2016; Barone et al., 2021), after which the
independently inverted 1D profiles are pieced together to obtain a 2D (or 3D) shear
wave velocity pseudo-section (or pseudo-cube). However, by independently inverting
the adjacent dispersion curves, lateral correlations in the subsurface structure are
ignored (Zhang et al., 2020). Socco et al. (2009) propose to invert all dispersion
curves simultaneously to mitigate the solution’s non-uniqueness, and retain lateral
smoothness. They use a laterally constrained least-squares algorithm in which each
1D model is linked to its neighbors. Zhang et al. (2020) invert all dispersion curves
simultaneously using a (Bayesian) 3D transdimensional algorithm. In this study, we
invert all cp( fi , x(c)) simultaneously using a 2D transdimensional algorithm (Bodin &
Sambridge, 2009). As such, we retain lateral correlations of the shear wave velocity
and circumvent (rather arbitrary) smoothing and damping procedures (e.g., Xia
et al., 1999).

The 2D transdimensional tomographic algorithm by Bodin & Sambridge (2009)
is developed for surface wave travel time tomography (for individual discrete
frequencies). Here, we modify the algorithm to invert all DAS-derived dispersion
curves simultaneously. Our transdimensional algorithm uses a 2D Voronoi tessellation
to parameterize the subsurface, in combination with a reversible jump Markov chain
Monte Carlo (rjMcMC) approach. A single unique model is defined by the number of
Voronoi cells, their nuclei, and the shear wave velocity assigned to them. Note that
the location of an individual Voronoi cell is defined by the location of its nucleus, and
that its geometry is controlled by its neighboring cells. As such, it allows a variable
parameterization of the subsurface, meaning that the number of Voronoi cells, their
locations, and the assigned velocities are all unknowns. Because the number of
variables is a variable itself, this algorithm is referred to as “transdimensional” (Bodin
& Sambridge, 2009). The transdimensional parameterization allows the algorithm to
sample the posterior, without the need to introduce any kind of regularization (Bodin
& Sambridge, 2009). Effectively, the regularization is inherent in the algorithm.

The transdimensional algorithm is a Bayesian inference method that aims to
sample the posterior probability density (henceforth simply “posterior”) of the model
parameters given the observed data, p(m|d). The posterior is proportional to the
product of the likelihood p(d|m) and the prior p(m) (Bodin & Sambridge, 2009;
Tarantola, 2005):

p(m|d) ∝ p(d|m)p(m). (3.4)

The prior probability distribution, p(m), incorporates all (a priori) known
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independent information about the model space. Similar to Bodin & Sambridge
(2009), we consider an (uninformative) uniform prior for all model parameters (i.e.,
number of cells, Voronoi nuclei location, and velocity assigned to each cell).

The likelihood function p(d|m) plays a fundamental role in the inference of
the model space as it quantifies the probability of the observed laterally varying
dispersion curves given a specific velocity model. Assuming the likelihood to be
Gaussian, it is formulated as:

p(d|m) = A exp
(
− φ(m)

2

)
, (3.5)

where A is a normalization factor and φ(m) a simple least-squares misfit

(φ(m) = || g(m)−d
σ ||2). In our case, Equation 3.5 reads

p(d|m) =
N f∏
i=1

Nx∏
j=1

(
1p

2πσi j
exp

(
−

(
gi j (m)−di j

)2

2σ2
i j

))
, (3.6)

where Nx is the number of locations x(c)
j for which a dispersion curve is estimated

(i.e., j = 1,2, ..., Nx ). Data point di j is the phase velocity at discrete frequency fi

and location x(c)
j (Figure 3.3e). The vector m contains the parameters describing

the proposed model. Due to the variable number of Voronoi cells, its length (or
its “dimension”) changes while the posterior is being sampled. Furthermore, gi j is
the modeled laterally varying phase velocity and σi j is the data uncertainty for the

phase velocity at discrete frequency fi and location x(c)
j .

It is worth noting that the input data in our case (i.e., laterally varying,
frequency-dependent phase velocities along a 2D line) is different from the travel
times used in Bodin & Sambridge (2009). Consequently, a different forward function
(g in Equation 3.6) is necessary to compute the modeled data. For this purpose,
we use a MATLAB package developed by Wu et al. (2019) using the reduced delta
matrix method proposed in Buchen & Ben-Hador (1996). This algorithm computes
the dispersion curve (i.e., phase velocity versus frequency) in a 1D earth model.
Therefore, to model the laterally varying dispersion curves, we take the 1D velocity
profile at each location and compute the dispersion curves independently. It
should be understood, however, that these dispersion curves are not uncorrelated:
the correlation between “adjacent” dispersion curves results from the Voronoi
partitioning.

Reversible jump Markov chain Monte Carlo algorithm
The reversible jump Markov chain Monte Carlo (rjMcMC) algorithm draws samples
from the posterior distribution employing a Metropolis-Hasting (MH) algorithm
which includes changing the dimension of the model space. The process starts
with some random initial model m. Then, the algorithm draws the next sample of
the chain by proposing a new model, m′, based on a known proposal probability
function, q(m′|m), which only depends on the previous state of the model m. The
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proposed model m′ will be accepted with probability (Bodin & Sambridge, 2009):

α(m′|m) = min

[
1,

p(m′)
p(m)

p(d|m′)
p(d|m)

q(m|m′)
q(m′|m)

×|J|
]

, (3.7)

where,
p(m′)
p(m)

is the prior ratio,
p(d|m′)
p(d|m)

the likelihood ratio,
q(m|m′)
q(m′|m)

the proposal

ratio, and J the Jacobian associated with the transformation from m to m′. The latter
is needed to account for scale changes involved when the perturbation involves a
jump between dimensions (Green, 1995).

The acceptance probability, α(m′|m), is the key to ensuring that the samples will
be generated according to the target posterior distribution, p(m|d). Similar to Bodin
& Sambridge (2009), we use four perturbation types to propose a new model (m′)
based on the current model (m). These are nuclei move, velocity update, birth, and
death steps. We parameterize the subsurface using the aforementioned (2D) Voronoi
tesselation. An example of a Voronoi partitioned model is depicted in Figure 3.4b. As
derived in Bodin & Sambridge (2009), the acceptance probability in case of a move
or update step (i.e., no change in model dimension) reads,

α(m′|m) = min

[
1,exp

(φ(m)−φ(m′)
2

)]
. (3.8)

Note that this acceptance probability only depends on the likelihood ratio, since (i)
the priors for m and m′ coincide for models of the same dimension and (ii) the
proposal distribution is symmetrical if the dimension of the model space stays the
same (i.e., q(m′|m) = q(m|m′); Bodin & Sambridge, 2009).

In case of birth and death steps, the dimension of the proposed model differs
from the dimension of the current model. Consequently, in contrast with the update
and move steps, both the prior ratio and the proposal ratio do not evaluate to unity.
Explicit expressions therefore need to be derived for the prior ratio and the proposal
ratio.

For a birth step, we again follow Bodin & Sambridge (2009) and randomly select
a point from an underlying finite (and dense) two-dimensional grid of N grid points.
The proposal distribution governing the selection of this grid point is uniform
within the two-dimensional spatial domain (approximately the distance of the DAS
cable times the maximum depth at which the longest surface waves have sufficient
sensitivity). A cell nucleus is subsequently placed in that grid point and a new shear
wave velocity is assigned. Bodin & Sambridge (2009) draw this new shear wave
velocity from a Gaussian proposal distribution centered at the current velocity of the
randomly selected grid point. As such, they derive that the acceptance ratio for the
birth step becomes,

α(m′|m) = min

[
1,
σv

p
2π

∆v
exp

( (v ′− vi )2

2σ2
v

+ φ(m)−φ(m′)
2

)]
, (3.9)

where σv is the “width” of the Gaussian distribution used to propose the new
velocity, ∆v the prior range on velocity (i.e., the maximum shear wave velocity
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considered minus the minimum shear wave velocity considered), v ′ the proposed
shear wave velocity for the new cell, and vi the velocity at the nucleus’ location
prior to birth.

A death step is the reverse of a birth step. It hence involves the random (uniform
probability) selection of a grid point and subsequent elimination of the cell that
contains it. For the death step, the acceptance ratio can be found to read (Bodin &
Sambridge, 2009),

α(m′|m) = min

[
1,

∆v

σv
p

2π
exp

(−(vi − v ′)2

2σ2
v

+ φ(m)−φ(m′)
2

)]
, (3.10)

where v ′ is the velocity after death at the selected location and vi the velocity of the
cell that was killed.

A problem reported in the literature for the above birth/death proposals is the
very low acceptance ratio (e.g., Dosso et al., 2014). This adversely affects the mixing
of the transdimensional Markov Chain and the efficiency with which the model space
is being sampled. For example, consider two adjacent Voronoi cells in an area barely
sampled by the data. The poor sampling implies that the likelihood would barely
change (because φ(m)−φ(m′) ≈ 0). Considering that the simplest model should be
preferred in such cases (Occam’s razor), one of these cells is desirably killed. If their
velocities differ significantly (|v ′− vi | > 3σv ), however, the chance that this happens
is slim because of the very low value of the exponential term in Equation 3.10 (i.e.,
exp(−4.5) < 0.01). The “inability” of a death step to kill such a cell (with anomalous
velocity) delays the convergence of the algorithm.

To improve the acceptance probability of a birth/death step, several studies
suggested proposing the velocity in a birth step using a uniform distribution over
the prior range (e.g., Dosso et al., 2014; Xiang et al., 2018). This way the prior
and proposal ratios cancel and the acceptance probability for both the birth and the
death step will be equal to the likelihood ratio, that is (Dosso et al., 2014; Xiang
et al., 2018):

α(m′|m) = min

[
1,exp

(φ(m)−φ(m′)
2

)]
. (3.11)

This formulation is shown to have a higher acceptance ratio (e.g., Dosso et al., 2014;
Xiang et al., 2018). This can be understood by considering a region in the subsurface
with low sensitivity to the input data. Any perturbation in that region results in
a likelihood ratio close to unity and hence is likely to be accepted. Consequently,
when the sampled data is not equally sensitive to all regions in the subsurface,
most of the accepted births/deaths occur in areas of the subsurface with rather
low sensitivity to the data. Contrary to the original birth/death proposal scheme,
however, this formulation does not result in a preference over simpler models,
whereas this is desirable. In the following section, we therefore introduce a modified
birth/death step that enhances the acceptance ratio while at the same time having a
clear preference over simpler models (i.e., a preference over larger cells in case the
likelihood ratio coincides for two Voronoi configurations).



3

34 3. 2D SURFACE WAVE INVERSION

An improved birth/death scheme
For the birth step, we randomly (uniform probability) select a point in the subsurface
and make that the nucleus of a new cell. This new cell modifies the shape of
the neighboring cells and constitutes parts of these cells. We compute the spatial
average velocity over the area of the proposed cell (before birth) using the dense
underlying two-dimensional grid of N grid points. Specifically,

v i =
∑Nc

j=1 v j

Nc
, (3.12)

where, v i is the average velocity, Nc is the number of grid points captured by the
proposed Voronoi cell, and v j the velocity at the location of grid point j prior to
birth. We, then propose a new velocity v ′ for the new cell using a Gaussian proposal
distribution centered at v i and with a width of σv . The proposal probability
distribution associated with such a birth step reads

q(m′|m) = 1

N −n

1

σv
p

2π
exp

(
− (v ′− v i )2

2σv
2

)
, (3.13)

where n is the number of grid points already acting as a cell’s nucleus (prior to
birth).

A death step is the reverse of birth step. We therefore consider the probability
of randomly selecting a point that is contained in the birth cell. This probability
is the size of the birth cell divided by the size of the spatial extent of the model.
Approximating the cell size by the number of grid points inside it (i.e., Nc ), and the
size of the spatial domain by the total number of grid points in the model (i.e., N ),
the probability of such a proposal is,

q(m|m′) = cell size

domain size
≈ Nc

N
. (3.14)

Using these two expressions, the proposal ratio for a birth step becomes[
q(m|m′)
q(m′|m)

]
birth

= Nc

N
(N −n)σv

p
2πexp

( (v ′− v i )2

2σv
2

)
. (3.15)

And just as in Bodin & Sambridge (2009), the Jacobian coincides with unity for a
birth/death step.

Substituting the prior ratio for a birth step (as derived by Bodin & Sambridge,
2009), [

p(m′)
p(m)

]
birth

= n +1

N −n

1

∆v
. (3.16)

Equation (3.15), and the likelihood ratio (computed using Equation (3.6)) in Equation
(3.7), gives for the acceptance probability of a birth step:

α(m′|m) = min

[
1,

n +1

∆v

Nc

N
σv

p
2πexp

(
(v ′− v i )2

2σ2
v

+ φ(m)−φ(m′)
2

)]
, (3.17)
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where v ′ is the velocity of the new cell, and v i is the spatially averaged velocity in
the area constituting the new cell before its birth. A death step is the reverse of the
birth step, following a similar procedure as above, we find the acceptance probability
of a death step:

α(m′|m) = min

[
1,
∆v

n

N

Nc

1

σv
p

2π
exp

(
− (v ′− v i )2

2σ2
v

+ φ(m)−φ(m′)
2

)]
, (3.18)

where v ′ is the velocity of the cell that was killed and v i is the spatial average
of the (new) velocities at the grid points that were located in that cell. One can
see that the new formulation depends not only on the velocity of the birth/death
cell but also on the size of the cell. It prefers giving birth to cells larger than the

average size of all cells (i.e.,
Nc

N
) and killing cells smaller than the average cell size.

While creating a new cell or killing an available cell, the algorithm doesn’t rely on
the velocity of a single point (i.e., the cell nuclei) but considers the velocity of all
points located inside the death/birth cell. This suppresses the effect of cells with
anomalous velocities close to each other discussed in the previous section.

Noise parametrization and inference
The data uncertainty (σi j in Equation 3.6) plays a crucial role in the convergence of
a Bayesian algorithm (Bodin et al., 2012). Ideally, this data uncertainty accounts for
the uncertainty resulting from seismic noise as well as for the fact that the model
used is a simplification of the true physics describing surface wave propagation. As
we will explain in Section 3.4, the application of the MOPA algorithm to multiple
shots provides us with an estimate of the data uncertainty (Figure 3.3d). This
estimate, however, does not take into account the second source of data uncertainty
(i.e., inaccuracy inherent in the forward function). For this reason, similar to Bodin
et al. (2012), we consider this data uncertainty to be an unknown, and parameterize
it as a linear relation:

σi j = aσ′
i j , (3.19)

where σ′
i j is the uncertainty derived from the MOPA algorithm (Figure 3.3d) at

location x(c)
j and discrete frequency fi . Here, a is a hyperparameter to take into

account data, processing, and modeling-related errors. Bodin et al. (2012) used an
additional MH step to infer this hyperparameter from the data automatically.

Here, following Andrieu et al. (1999), we propose a Gibbs sampling step (Gilks
et al., 1995; Yildirim, 2012) to infer the noise hyperparameter (a) efficiently. Gibbs
sampling is a Markov chain that samples the posterior probability density of a
parameter. It uses the conditional posterior distribution of the parameter with the
remaining variables fixed to their current values (Yildirim, 2012). Accordingly, to
sample the hyperparameter a, we need to derive its posterior distribution (p(a|d))
under the condition of the model m. Applying Bayes’ theorem, the posterior
distribution (p(a|d,m)) is proportional to the product of the likelihood and the prior
(Gelman et al., 2014):

p(a|d) ∝ p(d|a)p(a), (3.20)
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where p(d|a) is the likelihood function introduced in Equation 3.6, and p(a) is the
prior on a. By substituting Equations 3.6 and 3.19 into Equation 3.20 and performing
some algebraic manipulation (see appendix A.1 for the detailed derivation):

p(a|d) ∝ Lτα−1 exp(−βτ), (3.21)

where,

L = p(a)
N f∏
i=1

Nx∏
j=1

1p
2πσ′

i j

,

τ= 1

a2 ,

α= Nx N f

2
+1,

β=
N f∑
i=1

Nx∑
j=1

(
gi j (m)−di j

)2

2σ′
i j

2 .

Assuming a (non-informative) uniform prior to the noise hyperparameter, p(a) is a
constant. Therefore, L in Equation 3.21 is also independent of a. By having the exact
formulation for the conditional posterior distribution of the noise hyperparameter,
a =p

1/τ, we can simply sample the parameter posterior using a Gibbs sampler.
The Gibbs sampler is a special case of the MH algorithm: instead of

accepting/rejecting a sample that is drawn from a proposal probability distribution,
the Gibbs sampler draws a sample from the conditional posterior distribution of
the desired parameter, Equation 3.21 in our case. Because of this, the proposed
sample is always accepted (Geman & Geman, 1984). This makes the Gibbs sampler
an efficient sampling algorithm for the introduced noise hyperparameter. We draw
samples of the noise hyperparameter a using a Gibbs step after each iteration of
the rjMcMC sampler. Equation 3.21 has the form of a Gamma distribution. The
Gibbs sampler, then, becomes the generation of random samples from a Gamma
distribution with the parameters given in Equation 3.21.

Compared to the MH step, the proposed Gibbs sampler is fast (no rejection) and
unbiased. It doesn’t need user-defined parameters except for a wide prior range
for the hyperparameter a. The downside of the proposed algorithm compared to
the MH step proposed by Bodin et al. (2012) is that the way we can parameterize
the noise is limited. In other words, we can only assume that the noise level is a
constant or it is a factor of a constant value like what we discussed (i.e., σ= aσ′,
where σ′ is known). If we want to parametrize the noise like σ= aσ′+b, then our
proposed method is not working and the Metropolis-Hasting step proposed by Bodin
et al. (2012) is applicable.

Constraining the inversion using (borehole) shear wave logs
It is possible to measure physical properties directly using borehole logging tools. In
our case, two dedicated boreholes were drilled down to approximately 80 m depth.
Using a P-S suspension logging tool, S wave velocities were measured using ∼400



3.2. THEORY & METHODOLOGY

3

37

Hz shear waves. These shear wave velocity profiles can be incorporated into the
transdimensional algorithm in two ways. First, the shear wave velocity profile can
be used to constrain the prior probability and make it depth-dependent. This can
be achieved by assuming a Gaussian distribution centered at the measured shear
wave velocity profile (see for example Sen & Biswas, 2017). This approach, however,
needs the rjMcMC algorithm to be modified. Additionally, it is difficult to define the
prior mean in a Voronoi partitioned, variable parameterization of the model. An
alternative approach is to use the shear wave velocity profiles to constrain the misfit
function (see Wang, 2016, pp. 5) by the available data as:

φ(m) =
∥∥∥∥g(m)−d

σ

∥∥∥∥2

+
∥∥∥∥Vm −Vref

σbh

∥∥∥∥2

, (3.22)

where Vm is the shear wave velocity of the proposed model on a computational
fine grid during McMC sampling and Vref a reference shear wave velocity model
defined on the same computational fine grid, but based on the available borehole
data. σ is the data uncertainty, and σbh is the reference model uncertainty. A lower
σbh imposes a stronger constraint on the exploration of the model space, whereas a
larger σbh reduces this constraint. One can use a single (depth-independent) σbh to
constrain the misfit function close to the borehole for the whole model or make it
location-dependent. It depends on the level of information we have from the study
area. In this study, we used a scalar single value for the whole model.

Parallel tempering
Parallel tempering is a technique used in McMC sampling to improve the exploration
of a probability distribution. In McMC sampling, the Markov chain tends to get stuck
in local modes of distribution, making it difficult to explore the entire distribution
efficiently. To overcome this, one can resort to “simulated annealing”. In simulated
annealing, the likelihood function is smoothed employing a temperature parameter
T (Sambridge, 1999):

p(d|m) = A exp
(
− φ(m)

2

) 1

T = A exp
(
− φ(m)

2T

)
. (3.23)

The temperature T determines the roughness of the distribution that is being
explored. Higher temperatures result in flatter distributions, allowing the Markov
chain to move more easily between modes. At lower temperatures, chains tend to
focus on specific modes. See Figures 3.4c-d for the effect of a low temperature and a
high temperature on the McMC sampling.

Parallel tempering subsequently involves running multiple chains, each at a
different temperature. The key idea of parallel tempering is to occasionally exchange
samples (or temperatures) between chains. These exchanges allow for information to
be shared between chains and help chains explore different parts of the distribution.
Exchanging samples between chains at different temperatures effectively moves
samples from flatter (higher temperature) chains to sharper (lower temperature)
chains and vice versa. This helps the chains, collectively, to explore the entire
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distribution more efficiently and improves the rate of convergence to the target
distribution. This is particularly beneficial when the distribution is multimodal. For
details and additional information about the implementation, we refer the readers
to Sambridge (2014).

3.3 Application to synthetic data
To test the proposed 2D transdimensional approach, we consider a simple 2D
synthetic model with lateral variation (Figure 3.2a). The wavefield is modeled using
a two-dimensional finite-difference elastic wave equation solver (SOFI2D; Bohlen
et al., 2016) assuming a free surface at the top of the model and vertical (z) point
forces. The source time function is a 10 Hz Ricker wavelet. The source is positioned
at the model’s surface, spanning the range from x = 10 to x = 150 and x = 600 to
x = 740 with a source interval of 10 meters.

Since the straight fibers record the radial component of the surface waves, we use
the horizontal component of the wavefield recorded at the surface of the synthetic
model (Figure 3.2b). In this experiment, the recorded surface wave on the horizontal
component of the wavefield is the Rayleigh wave. We indicated the fundamental
mode surface wave (R0), higher-modes surface waves (R+), and the direct body
wave (DW) on the seismic record in Figure 3.2b. The f −k spectrum is shown in
Figure 3.2c. The fundamental mode Rayleigh wave is dominant in Figure 3.2b-d.

3.3.1 Multi-offset phase analysis
To obtain a reliable phase-versus-offset spectrum that is associated with the
fundamental mode only, we isolate the fundamental mode (Figure 3.2d) by retaining
the energy associated with fundamental mode surface-wave velocities (indicated by
blue lines in Figure 3.2c) and muting the rest of the spectrum ( f −k filtering). The
filtered data, after computation of the inverse transform, is presented in Figure 3.2d.
For each discrete frequency fi , the phases of the individual traces of the “cleaned”
shot records are unwrapped (e.g., Weemstra et al., 2021), resulting in the φ− x
spectrum. For the ( f −k filtered) shot record in Figure 3.2, the (unwrapped) phase is
shown as a function of offset for six different frequencies in Figure 3.3a.

The retrieved laterally varying dispersion relation using the MOPA is depicted
in Figure 3.3b for the single shot record of Figure 3.2d. Here, we used a spatial
window length W ( fi ) equal to two wavelengths, where the latter is computed using a
reference phase velocity based on the (averaged) phase velocity retrieved through the
application of MOPA to the whole shot record. This frequency dependency implies
that W decreases with increasing frequency. Linear regression using Equation (3.2)
subsequently results in frequency-dependent “local” wavenumbers for each fi and
x(c)

j separately. These wavenumbers are then transformed into phase velocities using

Equation (3.3), yielding the set of laterally varying dispersion relations depicted in
Figure 3.3b.

To improve the quality of the recovered dispersion curves, MOPA is conventionally
applied to multiple shots, each located at a different (in-line) position. In this
synthetic experiment, we generate 30 shot records with sources located between
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Figure 3.2. Surface wave spectral analysis of a synthetic active seismic record. (a) The
prescribed synthetic model. (b) The horizontal component of the wavefield recorded at the
surface for a source located at x = 20 m. (c) f −k spectrum. fundamental mode surface waves
(R0), higher-modes surface waves (R+), and direct body waves (DW) are indicated in (b-c). (d)
An isolated fundamental mode is retained after an f −k filter has been applied. The blue lines
in (c) represent the corner frequencies of the applied (velocity) filter.

10-150 m and 600-740 m, and with a source spacing of 10 m. Additionally, an
f −k filter is applied to each (Fourier-transformed) shot record to facilitate a reliable
phase analysis by isolating the fundamental mode. Subsequently, laterally varying
dispersion curves are estimated by applying MOPA to each shot record separately.
At each position x(c)

j , this results in 30 independently estimated dispersion curves.

The average of these 30 sections is presented in Figure 3.3c. The associated standard
deviation is given in Figure 3.3d, which can be considered as a measure of the
uncertainty of the recovered cp( fi , x(c)

j ).

Figure 3.3e shows the (true) theoretical location-dependent phase velocities as a
reference. These are computed by taking the true 1D shear wave velocity profile
at each location and then computing the theoretical dispersion curve using the
aforementioned reduced delta matrix method (Buchen & Ben-Hador, 1996; Wu et al.,
2019). Figure 3.3f displays the actual phase velocity error computed based on the
theoretical dispersion curve (i.e., Figure 3.3e) and the MOPA-derived phase velocities
(i.e., Figure 3.3c). Figures 3.3c,e-f show that lower frequencies (less than 3 Hz)
are associated with higher uncertainties and deviate from the theoretical dispersion
relation. This is due to the low amplitude of the source time function (i.e., a 10
Hz Ricker wavelet) at those frequencies. Additionally, the MOPA algorithm does not
cover the regions close to the ends of the line due to the spatial windowing: since
this window length W is larger at lower frequencies, lower frequencies are sampled
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Figure 3.3. Phase velocity retrieval using MOPA: application to synthetic recordings. (a)
Phase-versus-offset for six discrete frequencies of the filtered shot record presented in Figure 3.2d.
(b) Phase velocities cp( fi , x(c)

j ) retrieved from one single shot record. (c) Mean local phase

velocities retrieved from shots with sources at 30 different locations. (d) Standard deviation
corresponding to (c). (e) Theoretical (true) laterally varying phase velocities. (f) The phase
velocity error is computed based on the MOPA-derived phase velocity (c) and the theoretical
phase velocities (e).

over a shorter spatial interval in Figure 3.3b,c.

3.3.2 Transdimensional 2D inversion
To assess the performance of the proposed algorithm, the theoretical phase velocities
(Figure 3.3e) and the recovered phase velocities (Figure 3.3c) are used as input to the
proposed 2D transdimensional algorithm. In the next two Sections, we present the
results of these tests separately for the two sets of phase velocities.

Inverting theoretical phase velocities
We first add random zero-mean Gaussian noise with a standard deviation of 10 m/s
to the theoretical phase velocities Figure 3.3e. The resulting noisy phase velocities
(depicted in Figure 3.4a) are then used as the input to the proposed inversion
algorithm. We sample the posterior probability distribution with 20 parallel chains,
each sampling 500k samples. Ten chains have a temperature of one and the other
ten chains have a temperature logarithmically spaced between 2 and 100. The
tempering (exchanging temperature values between chains) starts at iteration 75k.
The initial samples are generated randomly from the prior range with a velocity
increasing monotonically with depth. A sample initial model is depicted in 3.4b.
The true velocity profile at x = 150 m is extended horizontally and is considered as
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the reference model while constraining the misfit function. The model uncertainty
(σbh in Equation 3.22) is assumed to be 100 m/s. The shear wave velocity prior is
a uniform prior between 150 and 600 m/s. For the data uncertainty (noise level),
we assume an unknown noise hyperparameter (a in Equation 3.19) to be estimated
by the proposed Gibbs step during the McMC sampling. By prescribing σ′

i j = 1 (see

Equations 3.19, 3.21) and given that σi j = 10, a can be expected to approach 10
(asymptotically). The first 200k samples are discarded as the burn-in phase. Then,
we retain a sample every 100 iterations. The posterior mean and standard deviation
are then computed based on the retained samples with a temperature of one (i.e.,
T = 1). Figures 3.4c-d show two samples at iteration 50k (burn-in phase) in two
chains with temperatures of T = 1 and T = 100, respectively. This clearly shows the
effect of the temperature on the sampling.

Figure 3.4. (a) The theoretical phase velocity after the addition of Gaussian noise with the
standard deviation set to 10 m/s. (b) An initial sample (i.e., model) is generated randomly
with an increasing shear wave velocity by depth. Two samples collected after 50k iterations are
depicted in (c) for a “cold” chain with T = 1, and (d) for a hot chain with T = 100, showing
that higher temperatures result in coarser models (and hence also fewer Voronoi cells).

Figure 3.5 exhibits the results of the transdimensional inversion. Figure 3.5a
shows how the number of cells varies as a function of iteration and temperature.
The initial temperature of each chain is indicated by the color of each curve. The
number of cells stabilizes after a few thousand iterations with the higher temperature
chains (red ones) having fewer cells. After the start of parallel tempering (i.e., the
exchange of temperature values after iteration 75k), the number of cells associated
with the chains initially at lower temperatures reduces and the number of cells
associated with the chains initially at higher temperatures increases, both effectively
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converging to the same range of number of cells. This demonstrates the convergence
of the chains and also highlights the effect of temperature on the exploration of the
model space.

Figure 3.5b shows the inferred noise level at different iterations. Not surprisingly,
a converges to the standard deviation of the additive random noise (i.e., 10 m/s) for
chains without tempering (i.e., T = 1). For the tempered chains, the inferred noise
level is increasing for higher temperature values. Increasing temperature leads to a
more global search of the model space and leads to a higher acceptance rate. This
means that models with higher uncertainties are allowed in the collected samples.
This explains why the algorithm infers a higher noise level in chains with higher
temperatures.

Figure 3.5c shows that the mean of the post-burn-in retained samples associated
with a temperature of one nicely correlates with the true shear wave velocity
(Figure 3.2a). The layer interfaces and the velocity structure is recovered correctly,
even though it is a bit smoother than the true velocity model. The smoothing is
mainly due to the additive random noise. Figure 3.5d depicts the posterior standard
deviation computed from the retained post-burn-in samples with a temperature of
one. As expected, the layer interfaces appear with higher uncertainties. It should be
understood that, by using the true local dispersion curves, these results overestimate
the performance of the proposed Bayesian approach. That is, in application to field
date we do not have the local (1D) phase velocities at our disposal. Instead, we
rely on the MOPA-derived dispersion curves, which approximate the true dispersion
phase velocity dispersion in the sense that wavefield amplitudes are ignored
(Wielandt, 1993). In the next section, we therefore apply our algorithm to dispersion
curves estimated through MOPA applied to (finite-difference) modeled wavefields.

Inverting MOPA-derived phase velocities
After the successful recovery of the true shear wave velocity from the theoretical
phase velocities, the MOPA-derived local phase velocities are now used in the
proposed 2D transdimensional inversion algorithm. Again, we use 20 independent
chains to sample the posterior, each sampling 500k models. The initial model of
each chain is generated randomly with a randomly selected number of cells and
based on a randomly chosen location. We only assume an increasing velocity with
depth for the initial model (Figure 3.6a). Again, we discard the first 200k samples
as the burn-in period. Then samples are retained at every 100 iterations to avoid
collecting correlated samples. The retained samples with a temperature of one are
then used for the calculation of the posterior mean (Figure 3.6c) and the posterior
standard deviation (Figure 3.6d).

Figure 3.6c shows that the proposed algorithm recovers a smooth version of the
true shear wave velocity model in Figure 3.2a. The “smoothing” is predominantly due
to the approximation inherent in the MOPA algorithm. The uncertainty presented in
Figure 3.6d is also meaningful by having higher values at the layer interfaces.
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Figure 3.5. Transdimensional inversion results by using the noisy theoretical phase velocities
(Figure 3.4a) as the input data. (a) Number of cell variations by iteration at 20 different
chains. The color of each line indicates the initial temperature of the corresponding chain
with red for the highest temperature (i.e., T = 100) and blue for the coldest chain (i.e., T = 1).
(b) The variation of inferred noise level (standard deviation) by iteration at 20 different chains.
The y-axis is plotted in a log scale for better visibility of variations. The color of each line
is similar to (a) indicating the initial temperature of each chain. (c) The posterior mean of
the collected samples with a temperature of one from 20 parallel chains. (d) The posterior
standard deviation of the retained samples with a temperature of one.

3.4 Application to DAS data recorded near Zuidbroek, Groningen
In this section, we discuss the application of the proposed Bayesian algorithm to
data recorded using a straight fiber DAS system. We first introduce the data. We
subsequently recover the local phase velocities, which we then exploit to recover a
2D shear wave velocity model of the subsurface. In the last section, we compare
the recovered shear wave velocity sections to shear wave velocity profiles measured
along two boreholes positioned on the acquisition line.

3.4.1 DAS data characteristics
The proposed methodology has been applied to DAS data obtained in the province
of Groningen in the north of the Netherlands. The top 800 m of the subsurface
mainly consists of unconsolidated sediments in this region, with the uppermost
layers being of Pleistocene age (down to 25 m, but varying from one place to the
other; Kruiver et al., 2017). The data were obtained with fibers as part of a
Distributed Acoustic Sensing (DAS) system. Figure 3.7 shows the acquisition setup
of the DAS recording system. Different types of fibers were used, namely straight
and helically wound fibers (for more details see Al Hasani & Drijkoningen, 2023).
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Figure 3.6. As Figure 3.5, but using the MOPA-derived phase velocities (Figure 3.3c) as input.

However, we opted for the straight fiber data as it showed the highest sensitivity to
the surface waves. The source used is an electrically driven vertical seismic vibrator
(Noorlandt et al., 2015) generating two shots per position from x = 0 to x = 750 every
2 m. The straight fiber was buried at a depth of 2 m with a length of 450 m from
x = 150 to 600 m. More information on the acquisition can be found in Al Hasani &
Drijkoningen (2023). The (receiver) spacing of the recordings is 1 m with a gauge
length of 2 m.

All shots positioned on the recording line (i.e., source location between x = 150
and 450 m) are split into two off-end shot records to be used in the MOPA algorithm.
However, to take into account the near-offset effect (see Park et al., 1999), any trace
having an offset smaller than 80 m (i.e., half of the expected maximum wavelength)
is discarded. In addition, after removal of the near offsets, any shot record that has
a length of less than 50 m is discarded. This is to make sure that there is enough
data for the f −k filtering and then the calculation of phase versus offset.

Figure 3.8 shows a sample shot gather of the DAS data. The f −k and cp − f
spectra are also provided for a better understanding of the data. The straight
fiber records the radial component of the wave field. Since the vertical source
is in line with the fiber (i.e., receivers), the recorded surface wave in the radial
direction can be interpreted as the Rayleigh wave (assuming low amplitude oblique
incident Rayleigh and Love waves, i.e., little surface wave scattering, and low
amplitude oblique incident body waves in the f-k domain of interest). Indeed,
the shot record appears to be dominated by the fundamental mode Rayleigh wave
indicated by R0. The fundamental mode is easily detectable in the frequency range
of 4-20 Hz in both f −k and cp − f spectra. The higher-modes are also clearly
visible in both shot records and their corresponding spectra. We have indicated
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Figure 3.7. The acquisition setup of the DAS experiment near Zuidbroek, Groningen. The solid
red line represents the source line, which has a length of 750 m. The green line represents the
DAS straight fiber buried at 2 m depth, and with a length of 450 m. The position of the first
source line is defined as x = 0 with the end of the source line then being x = 750 m. The DAS
fiber is buried between x = 150 to 600 m. Two boreholes were drilled to a depth of 80 m at
x = 225 m and x = 350 m to measure the shear wave velocity directly.

higher-modes by R+ since more than one higher-mode is visible in the f −k and
cp − f spectra and because it is difficult to separate them. The colored lines in the
f −k spectra represent phase velocities used to design a velocity filter for isolating
the fundamental mode. The velocity lines are also depicted on the cp − f spectra
for the reader’s reference. The red line separating the fundamental mode from
higher-modes is velocity dependent. The f −k spectrum between the blue and the
red line is preserved and the rest of the spectrum is filtered out ( f −k filtering).
The filtered record is presented in Figure 3.8d and is dominated by the fundamental
mode Rayleigh wave. We have applied this velocity filter to all shot records.

3.4.2 Borehole data
In this study, two open boreholes were drilled down to a depth of 80 m at x = 225
m and x = 350 m. The (vertical) shear wave velocity and the compressional wave
velocity were measured directly using a PS suspension logging tool (Geovista Digital
P&S Sonde). In addition to these seismic velocities, the bulk electrical conductivity
and the gamma radiation were also measured. The measured logs are presented in
Figure 3.9. From 2-10 m below ground level, the subsurface is predominantly sandy.
The relatively low electrical conductivity values down to 10 m depth indicate fresh
water, and the relatively low gamma ray values in the same depth range suggest
low clay content. The main feature observable from the logs is a clear reduction of
shear wave velocity between 10 and 20 m together with an increase in gamma-ray
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Figure 3.8. A common shot record (a), its corresponding f −k amplitude spectrum (b), and its
corresponding dispersion image (c). The source is located at x = 10 m. The fundamental mode
and higher-modes are indicated by R0 and R+, respectively. The blue line represents a phase
velocity of 100 m/s and the red line a frequency-dependent phase velocity between 220-600 m/s.
Higher-mode surface waves are effectively removed by retaining the f −k spectrum between the
blue and red lines ( f −k filter). The resulting (time-domain) fundamental mode surface wave
shot records are shown in (d).

and conductivity, especially in Figure 3.9a. The reduction in shear wave velocity
is due to the higher clay content, apparent from the conductivity and gamma-ray
readings (solid red and black lines, respectively) being higher than above and below
that depth range. From 20 m to about 55-60 m a gradual fining-up trend is present
in both boreholes, intersected by some more clayey units, for example in Figure 3.9a
around 35 m. From 55-60 m a heterogeneous clayey unit can be recognized in
both boreholes. Below, until the bottom of the borehole, a second gradual fining-up
sequence is present.

The shear wave logs are used to constrain the misfit function as explained in
section 3.2.3. To that end, we use moving averages of the shear wave velocity
obtained at the two boreholes as 1D reference velocity profiles. We extend these
1D shear wave velocity profiles horizontally to build a 2D reference model for
constraining the misfit function. For the uncertainty of this reference model, we
opted for a constant value of σbh = 150 m/s.

To compute the surface wave dispersion curves theoretically, we need the shear
wave velocity (vs ), the compressional wave velocity (vp ), and density (ρ). The shear
wave velocity, however, is predominantly controlling surface wave phase velocities,
and therefore the effect of vp and ρ are usually ignored (e.g., Wathelet, 2008). Here,
we use the velocity logs to get an estimate of the vp /vs ratio to be used in the
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Figure 3.9. The measured logs of (a-b) first borehole at x = 220 m and (c-d) second borehole
at x = 350 m. (a,c) Conductivity (COND; red dashed curve, bottom axis) from Induction-Log
readings and Gamma Ray (GR; black curve; top axis). (b,d) Shear wave velocity profile (vs;
black curve; top axis) and compressional wave velocity profile (vp; red dashed curve, bottom
axis).

theoretical calculation of the dispersion curves. To that end, we compute moving
averages of both the shear wave velocity profile and the compressional wave velocity
profile. A depth-dependent vp /vs ratio is subsequently computed based on these
smoothed curves. We then take the average of this curve as the vp /vs ratio that
dictates the vp in our Bayesian algorithm. This average vp /vs turned out to be close
to 5.

3.4.3 Multi-offset phase analysis
After isolating the fundamental mode (Figure 3.8d), we apply the MOPA algorithm to
all shot records extracted from the DAS data. Figure 3.10 shows the results of the
MOPA method applied to the field DAS data to retrieve the dispersion curves. The
unwrapped phase versus offset is depicted for 7 frequency components of a single
shot record (Figure 3.8b) in Figure 3.10a. The retrieved laterally varying dispersion
curves are presented in Figure 3.10b. The shot record is somewhat noisy, which
manifests itself in relatively rapidly varying gradients of the phase-versus-offset
curves. A smoother and more reliable dispersion curve is derived by repeating the
process for multiple shot records. Figure 3.10c presents the average laterally varying
dispersion curves derived from all shot records. The uncertainty (quantified by
means of a standard deviation) is depicted in Figure 3.10d.
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Figure 3.10. MOPA applied to the DAS-derived shot records to estimate lateral shear wave
velocity variations in the subsurface. (a) Unwrapped phase-versus-offset at seven different
frequencies (different colors) for the filtered seismic record depicted in Figure 3.8d. (b)
laterally varying phase velocity retrieved from the single shot record of Figure 3.8d. (c) Mean
of the laterally varying dispersion curves retrieved from all shots. (d) Standard deviation
corresponding to (c).

3.4.4 Transdimensional 2D inversion
The retrieved laterally varying phase velocities (Figure 3.10c) serve as input to the 2D
transdimensional algorithm. We run 20 independent McMC chains in parallel, each
sampling 750k models. 10 chains had a temperature of one and 10 chains had their
temperatures logarithmically spaced between 2-100. Tempering starts at iteration
75k. The initial model at each chain is selected randomly, but with velocity increasing
monotonically with depth. Figure 3.11 shows the variation of the dimension of the
model space (a) and also the progression of the inferred noise level (b). Similar
to the synthetic data, chains with a higher initial temperature converge to a lower
number of cells. By interchanging temperatures between chains, the number of
cells converges to a lower range in (initially) cold chains, effectively preventing them
from being “stuck in local modes. For the inference of the noise level, we used the
MOPA-derived phase velocity uncertainties (Figure 3.10d) as σ′

i j in Equation 3.19.

We subsequently infer a using the proposed Gibbs step. The first 250k samples
of each chain are discarded as the burn-in phase. To avoid correlated samples,
every 100th sample is retained. We then use the retained samples associated with
chains with a temperature of one to approximate the posterior distribution. From
the posterior distribution, we compute the pointwise averaged phase velocities and
pointwise standard deviations, which we refer to as the posterior mean and standard
deviation.
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Figure 3.12 presents the recovered shear wave velocity section and its
corresponding uncertainty using the proposed 2D transdimensional method. A clear
“layer-cake structure” can be observed (Figure 3.12a). The shear wave velocity
profiles from the well logs are also compared with the posterior mean (Figure 3.12c
and d): compared to the shear wave velocity logs, the inverted shear wave velocity is
relatively smooth. A clear interface is located at a depth of approximately 20 m, and
results in a high uncertainty at that depth (Figure 3.12b). This is in agreement with
the well log data presented in Figure 3.9. However, the algorithm fails to recover the
velocity variation within the top 20 meters. This is due to the high uncertainty of
the MOPA-derived phase velocities and also the high inferred noise hyper-parameter
a. In particular, we attribute this to phase velocities at higher frequencies not
being recovered very well due to the interference of higher modes. Moreover, the
MOPA algorithm uses a spatial window while retrieving distance dependent phase
velocities, which leads to a smooth phase velocity map, see for example Figure 3.3c.
In addition, the MOPA-derived phase velocities (Figure 3.10c) at the sides of the
model have fewer frequency components and are therefore associated with higher
uncertainties. Finally, we note that at the lower end of the frequency spectrum,
the MOPA-derived phase velocities exhibit relatively large uncertainties due to the
limited excitation of lower frequencies by the vibroseis (see Figure 3.10d).

Figure 3.11. Chain statistics of the 2D transdimensional algorithm with (field-data-derived)
phase velocities serving as input data (see Figure 3.10c). (a) Number of cells as a function of
sample number for all 20 chains. The color of each solid line indicates the initial temperature
of the corresponding chain with red corresponding to the highest temperature (i.e., T = 100)
and blue to the coldest chain (i.e., T = 1). (b) The variation of inferred noise level (standard
deviation) as a function of sample number for all chains. The vertical axis is plotted using
a log scale to visualize the variations more clearly. Similar to (a), the color of each line
corresponds to the initial temperature of that chain.

3.5 Discussion
A number of points need to be discussed. First, the transdimensional derived
shear wave velocity profiles at the location of the two boreholes are a very smooth
version of the shear wave velocity logs. At the location of the first borehole, few
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Figure 3.12. Result of the application of the 2D transdimensional algorithm to the DAS-derived
phase velocities. (a) Recovered 2D shear wave velocity section (i.e., posterior mean), (b)
recovered model uncertainty (i.e., posterior standard deviation; std), and comparison with the
shear wave velocity profile along the first (c) and second (d) borehole.

(local) phase velocities have been estimated; none in fact at lower frequencies (see
Figure 3.10). This leads to higher uncertainties and may well explain the fact the
pointwise mean shear wave velocity deviates from the more reliable and locally
measured shear wave velocity log along the first borehole. The limited sampling
toward the end of the line is inherent to the MOPA algorithm we use in this
study. The quality of the dispersion curves at these locations might be improved
by the tomography-derived phase velocity retrieval algorithm (Barone et al., 2021).
Additionally, the MOPA-derived phase velocity estimates are affected by higher
modes, especially at higher frequencies. The windowing also laterally smooths the
retrieved phase velocities, prohibiting the recovery of a lateral high-resolution shear
wave velocity structure. This might be improved by using the common midpoint
cross-correlation algorithm (CMPCC; Hayashi & Suzuki, 2004) for the recovery of
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the distance-dependent phase velocities, but is beyond the scope of this study.
Second, data uncertainty (σ in Equation 3.6) plays a crucial role in the

convergence of our Bayesian algorithm (Bodin et al., 2012). As we explained above,
the MOPA algorithm provides us with an estimate of the data uncertainty (Figure
3.3f). In this study, we used this MOPA-derived uncertainty in combination with
a hyper-parameter during the McMC sampling of the posterior. We assumed one
hyperparameter for all frequencies. In case the true uncertainty varies with frequency,
a (smooth) frequency-dependent hyper-parameter may improve the inversion result
by allowing the uncertainty to vary with frequency.

Third, in terms of computation time, the proposed 2D transdimensional algorithm
is comparable to independent 1D inversion of the dispersion curves. This is because
in the proposed 2D transdimensional algorithm, at each step of the McMC, we
perturb a small portion of the model space. Then, we compute the forward
function (i.e., the primary source of the computational demand) only at the updated
part of the model space. This reduces the computational time significantly. The
added values of the proposed 2D transdimensional scheme are the enhanced lateral
correlation and the reduced solution non-uniqueness.

3.6 Conclusion
We investigated the potential of (straight fiber) DAS-derived Rayleigh waves, in
combination with a 2D transdimensional inversion algorithm, to recover a 2D shear
wave velocity section down to a depth of approximately 60 meters. To that end, We
first recover the laterally varying phase velocities using multi-offset phase analysis.
Then, we adopt the 2D transdimensional algorithm to invert all available laterally
varying dispersion curves simultaneously. Inherent to our approach, we find the
recovered shear wave velocity to vary smoothly as a function of lateral position along
the acquisition line. The (posterior) mean shear wave velocity section shows a clear
layer interface at around 20 meters (abrupt change in shear wave velocity), whose
presence is supported by a high uncertainty at that depth. This is consistent with
(borehole) log-derived rapidly increasing shear wave velocities at the same depth.
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One-step 3D transdimensional surface
wave tomography: synthetic data

Abstract: Seismic travel time tomography using surface waves is an effective
tool for three-dimensional crustal imaging. Historically, these surface waves are
the result of active seismic sources or earthquakes. More recently, however,
surface waves retrieved through the application of seismic interferometry have
also been exploited. Conventionally, two-step inversion algorithms are employed
to solve the tomographic inverse problem. That is, a first inversion results in
frequency-dependent, two-dimensional maps of phase velocity, which then serve as
input for a series of independent, one-dimensional frequency-to-depth inversions.
As such, a set of localized depth-dependent velocity profiles are obtained at the
surface points. Stitching these separate profiles together subsequently yields a
three-dimensional velocity model. Relatively recently, a one-step three-dimensional
non-linear tomographic algorithm has been proposed. The algorithm is rooted in a
Bayesian framework using Markov chains with reversible jumps, and is referred to
as transdimensional tomography. Specifically, the three-dimensional velocity field
is parameterized by means of a polyhedral Voronoi tessellation. In this study,
we investigate the potential of this algorithm for the purpose of recovering the
three-dimensional surface-wave-velocity structure from ambient noise recorded on
and around the Reykjanes Peninsula, southwest Iceland. To that end, we design a
number of synthetic tests that take into account the station configuration of the
Reykjanes seismic network. We find that the algorithm is able to recover the 3D
velocity structure at various scales in areas where station density is high. In addition,
we find that the standard deviation of the recovered velocities is low in those

This chapter is published as:
Rahimi Dalkhani, A., Zhang, X., & Weemstra, C. (2021). On the potential of 3D transdimensional
surface wave tomography for geothermal prospecting of the Reykjanes Peninsula. Remote Sensing,
13(23), 4929, https://doi.org/10.3390/rs13234929.
Minor modifications have been applied to keep consistency within this thesis.
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regions. At the same time, the velocity structure is less well recovered in parts of the
peninsula sampled by fewer stations. This implies that the algorithm successfully
adapts model resolution to the density of rays. It also adapts model resolution to
the amount of noise in the travel times. Because the algorithm is computationally
demanding, we modify the algorithm such that computational costs are reduced
while sufficiently preserving non-linearity. We conclude that the algorithm can now
be applied adequately to travel times extracted from station–station cross correlations
by the Reykjanes seismic network.

4.1 Introduction
The Reykjanes high temperature geothermal system is located at the tip of the
Reykjanes peninsula, southwest Iceland. The Reykjanes peninsula can be considered
a landward extension of the Reykjanes Ridge, making it an active volcanic zone.
The heat from the Reykjanes geothermal system is currently harvested by two
50 MWe steam turbines, which draw from numerous wells. Most of these wells
produce from depths of 2 to 2.5 km, where temperatures are estimated to be around
280◦ (Friðleifsson et al., 2011). Relatively recently, the 4.5 km deep exploratory
IDDP-2 well was drilled to examine the economic potential of the production of
super critical fluids (Friðleifsson et al., 2020).

Although the subsurface below the Reykjanes peninsula has been the subject
of various geophysical surveys (e.g., Martins et al., 2020; Darnet et al., 2020),
resolution remains an issue. In addition, the uncertainty of the recovered (best)
models is often not estimated. In this study, we therefore investigate the potential
of three-dimensional probabilistic surface wave inversion for the purpose of imaging
the Reykjanes peninsula in general, and the Reykjanes geothermal system in
particular. It should be understood that this is a feasibility study: we limit ourselves
to probabilistic inversions of synthetic travel times. In chapter 5 we will draw from
the experience obtained in this chapter. Chapter 5 will hence involve probabilistic
inversion of travel times extracted from field-data-derived surface wave responses.

Surface wave responses can be retrieved from recordings of ambient seismic
noise (e.g., Weemstra et al., 2013). This process is often referred to as
seismic interferometry, and hence the retrieved responses are usually referred to
as ’interferometric responses’ (Wapenaar & Fokkema, 2006). Specifically, seismic
interferometry dictates that, by averaging cross correlations of ambient seismic noise
over a sufficient amount of time, receivers can be turned into so-called virtual
sources. This is a pairwise process: the Earth’s response to one of the two receivers
(the virtual source) is recorded by the other receiver. By applying this procedure,
pairwise, to all stations constituting an array of seismic surface stations, surface
wave responses between all seismic stations will be retrieved. In practice, not all
station couples yield interferometric surface wave responses of sufficient quality (for
details regarding interferometric surface wave retrieval from recordings of ambient
seismic noise see, for example, Kästle et al., 2016).

Interferometric techniques may well play an important role in the future of
geothermal exploration (e.g., Sánchez-Pastor et al., 2019). In particular, this applies
to tomographic travel time inversions: contrary to travel time tomography exploiting
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earthquake signals, the spatial sampling by the interferometric ray paths does not
suffer from either a limited number of earthquakes or an irregular distribution of
these earthquakes (Martins et al., 2020). In addition, Rayleigh (and Love) waves
have a depth-dependent sensitivity to subsurface velocity. This sensitivity varies as
a function of frequency, with lower frequencies being more sensitive to the deeper
subsurface and higher frequencies more sensitive to the shallower structure (Zhou
et al., 2004; Herrmann, 2013). It is this frequency-dependent depth dependence that
enables the three-dimensional approach proposed in this study.

The interferometric travel times between the different stations of a seismic array
can serve as input to a tomographic inverse problem (e.g., Bodin & Sambridge,
2009; Korostelev et al., 2015). Surface wave tomography is a well-known and
popular method to obtain the Earth’s seismic velocity distribution. Many of the
existing tomographic algorithms and inversion methods rely on first-arrival travel
times (Rawlinson et al., 2003; Nolet, 2008; Rawlinson et al., 2010). Martins et al.
(2020) use a two-step linearized tomographic inversion method to recover the 3D
surface wave velocity of the Reykjanes Peninsula. The first step involves recovering
frequency-dependent 2D maps of phase velocities using a linearized tomographic
inversion method assuming straight rays. In the second step, they run separate
frequency-to-depth inversions (Zhou et al., 2004; Herrmann, 2013).

Conventional linearized or gradient-based iterative tomographic inversion
schemes (e.g., Bensen et al., 2009; Martins et al., 2019, 2020) usually do not
include a detailed assessment of the uncertainty (Young et al., 2013). In addition,
such schemes require an (a-priori) prescribed cell size, which does not account for
spatial variations in sampling (i.e., a non-uniform ray coverage). Moreover, these
methods require a proper regularization to account for the ill-conditioned nature of
the inverse problem (Tikhonov, 1963; Martins et al., 2019). The transdimensional
hierarchical Bayesian method introduced by Bodin et al. (2012) overcomes these
two limitations. The transdimensional method is a Bayesian inference method
that relies on reversible jump Markov chains (rjMcMC; Green & Hastie, 2009),
in combination with a Voronoi partitioning. The number of Voronoi cells is
allowed to vary between steps of the Markov chain, and is in fact one of the
parameters that is estimated. It is this specific feature of the algorithm that causes
the solution to be “transdimensional”. The ensemble of velocity models visited
by the transdimensional Markov chain asymptotically approaches the posterior
probability density function (henceforth simply ’posterior’). The method is purely
data-driven and requires minimal assumptions regarding the model. Compared
to the aforementioned linearized and iterative inversion schemes (which keep
the spatial model parameterization fixed), the method is particularly flexible: it
dynamically adapts to a non-uniform data coverage without requiring the use of any
arbitrary regularization (e.g., damping or smoothing).

The transdimensional method was used successfully by Bodin & Sambridge
(2009) to obtain 2D Rayleigh-wave velocity maps of Australia. Galetti et al. (2015)
further generalized the method by making it fully non-linear; that is, ray paths are
updated at each step of the Markov chain in their case. The method has recently
been applied successfully to the British Isles (Galetti et al., 2017). Similar to the
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aforementioned study by Martins et al. (2020), Young et al. (2013) and Galetti et al.
(2017) use a two-step scheme to recover the 3D surface wave velocity structure. In
the latter studies, however, the frequency-dependent 2D maps of phase velocity are
obtained using a 2D transdimensional approach. Additionally, the obtained (laterally
varying) dispersion curves are inverted using a 1D transdimensional approach. Still,
however, the two-step procedure results in a collection of spatially varying 1D
velocity models. These velocity models are subsequently interpolated to build a 3D
velocity structure of the subsurface.

More recently, Zhang et al. (2018) showed that the two-step transdimensional
inversion scheme is not optimal in the sense that information is lost. Consequently,
they proposed a one-step 3D transdimensional approach that uses a 3D discretization
of the subsurface using a Voronoi polyhedral parameterization. The approach has
a computational cost comparable to the two-step transdimensional approach, but
preserves valuable information and results in a more accurate velocity structure and
a better interpretive uncertainty estimation (Zhang et al., 2018).

In this study, we investigate the potential of the one-step 3D probabilistic
inversion method (Zhang et al., 2018, 2020) to recover the 3D velocity structure
beneath the Reykjanes peninsula, southwest Iceland. Specifically, we focus on the
ability to use interferometric surface wave responses retrieved from ambient noise
recorded by an array of stations on and around this Peninsula (the array is hereafter
referred to as the RARR; Weemstra et al., 2021). The RARR was a dense seismic
deployment consisting of 83 continuously recording stations (Figure 4.1). As can
be seen in Figure 4.1, the station distribution of the RARR is non-uniform, that
is, the station coverage is dense in one area while it is sparse in other areas. A
non-uniform distribution of stations implies that the achievable velocity resolution
can be expected to vary significantly across the region covered by the seismic
array, that is, higher in the regions that are more densely covered by stations and
lower where station density is low. The transdimensional method uses a model
parameterization using Voronoi cells in conjunction with a reversible-jump Markov
chain Monte Carlo algorithm to account for the variable station coverage. As such,
the method dynamically adapts itself to both data density and underlying velocity
structure (Bodin & Sambridge, 2009).

Surface wave dispersion curves (i.e., phase velocities or frequency-dependent
travel times) have been extracted from surface wave responses retrieved using
seismic interferometry by cross-correlation (e.g., Weemstra et al., 2016, 2021).
Although our final objective is to apply the 3D probabilistic inversion scheme to
these dispersion curves, this study is limited to the synthetic dispersion curves. That
is, we specifically aim to understand and showcase the potential of the proposed
inversion scheme for the RARR’s station configuration in combination with the
frequencies for which surface wave responses could be retrieved (0.1–0.5 Hz). The
dispersion curves extracted from the field data will be inverted in chapter 5, and we
will benefit from the findings presented in this chapter.

As shown in Figure 4.1, the station’s elevation varies between approximately −0.2
km and 0.2 km. Based on a previous study by Martins et al. (2020), we can assume
a minimum velocity of 2 km/s. For the range of frequencies considered (0.1–0.5
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Hz), the minimum wavelength would then be 4 km. This implies that the minimum
wavelength is more than ten times larger than the elevation variation. We therefore
ignore the station’s elevation in the rest of this study.

To investigate the potential of this one-step 3D transdimensional method, we
generate synthetic frequency-dependent travel times between the station locations
of the RARR. Specifically, we prescribe various 3D block model velocity distributions.
The frequency-dependent travel times, derived from phase velocity data, are then
used as input for the one-step 3D transdimensional algorithm. We find that the
algorithm recovers the velocity structure reasonably well for the RARR configuration
within the desired frequency range. However, the method is computationally
demanding. Therefore, we modify the algorithm by updating ray paths occasionally,
instead of doing this at each step of the Markov chain. A simple test is designed to
decide on the update level efficiently. The effect of (the computational) grid size on
forward modeling errors and how to choose an appropriate size are also discussed.

Figure 4.1. Geographical locations of 83 seismic stations of the RARR. The left and bottom axes
indicate spherical coordinates, whereas the right and the top axes display UTM coordinates.
Stations locations are depicted as colored triangles. Colors indicate the elevation of the
corresponding station. Elevation information was lacking for five stations that are depicted
with white triangles.

4.2 Transdimensional surface wave tomography
Transdimensional tomography is a Bayesian inference method that uses Voronoi
cells in conjunction with a rjMcMC algorithm to allow a variable parameterization
of the model space. The objective of Bayesian inversion is to recover the posterior
probability density of the model parameters given the observed data, p(m|d). Based
on Bayes’ rule (Bayes, 1958):



4

58 4. ONE-STEP 3D SURFACE WAVE TOMOGRAPHY

p(m|d) = p(d|m)p(m)

p(d)
, (4.1)

where the vector d contains the frequency-dependent travel times. The vector m
contains the model parameters and depends on the parameterization of the region
of interest; we discuss this vector in more detail later. The likelihood function
p(d|m) plays a fundamental role in the inference of the model space as it provides
the probability of the observed travel times given a specific velocity model. The
prior probability distribution, p(m), depends on the (a priori) known information
about the model space. Finally, p(d) is the so-called evidence, which here can
be considered a constant because it is not a function of any particular model m.
Consequently, we have:

p(m|d) ∝ p(d|m)p(m). (4.2)

4.2.1 Model parameterization
In conventional linearized or gradient-based seismic tomography methods, the
region of interest is usually parameterized using fixed cells or a grid of points with
predefined shapes and sizes (usually regular rectangular grids). Determining the
shape and size of the grid is always a challenge and, ideally, is a function of the data
uncertainty (i.e., level of noise available in data) and data resolution (i.e., the ability
of the data to resolve different scales or features in the model). Data uncertainty
is usually not known and should therefore be estimated before the inversion.
In addition to unknown data uncertainty, differences in data resolution due to
nonuniform spatial sampling render a uniform grid size undesirable. Consequently,
irregular grids or meshes have been proposed by some authors (Sambridge et al.,
2005; Bodin & Sambridge, 2009; Bodin et al., 2009; Belhadj et al., 2018; Hawkins
et al., 2019).

Because of the challenge in defining cell geometries, Bodin et al. (2009) and Bodin
& Sambridge (2009) proposed to invert for cell geometries and seismic properties
(e.g., velocities) simultaneously. This means that the data directly determine the
parameterization. To allow the size and shape of cells to be variable and unknown
in the tomographic algorithm, different kinds of methods have been proposed,
including Voronoi cells in 2D (Bodin et al., 2009; Bodin & Sambridge, 2009; Bodin
et al., 2012; Galetti et al., 2017), Voronoi polyhedra (or simply also cells) in 3D (Zhang
et al., 2018, 2020), Delaunay triangulation in 2D (Ryberg & Haberland, 2017; Hawkins
et al., 2019), Johnson–Mehl tessellation in 2D (Belhadj et al., 2018), and Gaussian
kernels for a 2D model (Belhadj et al., 2018). Despite the abilities of Voronoi cells
to accommodate sharp changes and discontinuities, some authors questioned their
ability in the case of smooth velocity models or models with a gradient in velocity
changes (e.g., Zhang et al., 2020; Hawkins et al., 2019; Ryberg & Haberland, 2017).

In this study, we parameterize the 3D velocity field using polyhedral Voronoi cells
to recover the 3D shear wave velocity structure of the subsurface (Zhang et al., 2020).
By assigning a constant shear wave velocity (vs ) to each Voronoi cell, the Voronoi
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tessellation turns into a shear wave velocity model. Figure 4.2 shows the region of
interest with a coarse parameterization using 33 cells and a finer one with 704 cells;
both generated randomly. The number of Voronoi cells, their position, and the shear
wave velocity in each cell are treated as unknowns in the tomographic inversion.
Importantly, compressional wave velocity (vp ) is considered to be a linear function
of vs , using the relation vp = 1.73vs (Zhang et al., 2018). Density (ρ) is considered to
be a function of compressional wave velocity as ρ = 2.35+0.036(vp −3)2, where vp

and vs are in km/s and ρ is in g/cm3 (Zhang et al., 2018; Kurita, 1973). It is useful to
note that the parameterization and relations in this section imply that the medium
is assumed to be isotropic.

Figure 4.2. Two random Voronoi parameterizations. The first uses 33 Voronoi cells (a), and the
second uses 704 Voronoi cells (b). Both cell locations and the assigned velocities are generated
randomly.

4.2.2 The likelihood
The dependence of the posterior on the input data is encoded in the likelihood
function p(d|m). The likelihood function can be considered as a measure of misfit
between observed and predicted data. The normalized Gaussian likelihood function
reads:

p(d|m) =
( n f∏

l=1

nr∏
k=1

1p
2πσkl

)
exp

(
−

n f∑
j=1

nr∑
i=1

(
gi j (m)−di j

)2

2σ2
i j

)
, (4.3)

where n f and nr are the number of discrete frequencies and ray paths, respectively.
di j is the travel time along ray path i at discrete frequency j . The vector m contains
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the parameters describing the proposed subsurface model. gi j is the computed
travel time along ray path i at discrete frequency j in that subsurface model. σi j

is the data uncertainty or noise level for the travel time associated with discrete
frequency j and ray path i (and hence σkl is associated with discrete frequency
l and ray path k) . This data uncertainty includes both observational errors and
modeling errors (Bodin et al., 2012). The data uncertainty controls the level of fit
and directly affects the complexity of the models in the posterior distribution. That
is, the number of Voronoi cells needed to explain the data is highly dependent
on the estimated data noise (Bodin et al., 2012). Consequently, σi j plays an
important role in the transdimensional algorithm. Here, we consider it to be a linear,
frequency-dependent function:

σi j = a j ti j +b j , (4.4)

where ti j is the computed travel time along ray path i at discrete frequency j . a j

and b j are noise hyper-parameters for the discrete frequency j . It is worth noting
that this linear relation for the noise parameters is a common assumption and is
demonstrated in several previous studies (e.g., Bodin et al., 2012; Galetti et al., 2017;
Zhang et al., 2020). Moreover, it is straightforward to implement it in the context of
the transdimensional algorithm.

4.2.3 Forward modeling
To evaluate the likelihood of a proposed model given the observed data and to
compare this likelihood with the likelihood of the current model in the chain,
we need to compute the frequency-dependent travel times in the proposed model
(gi j (m) in Equation 4.3). This is achieved by employing a two-step approach
detailed in Zhang et al. (2018). First, at each point on the Earth’s surface, the local
frequency-dependent dispersion curves are computed using a modal approximation
method (Herrmann, 2013) in the 1D vertical depth profile of surface wave velocity
beneath each of the surface points. As such, we obtain frequency-dependent 2D
maps of surface wave phase velocity. Figure 4.3 depicts this first step. Figure 4.3a
depicts a randomly generated 3D surface wave velocity model using Voronoi
polyhedra. Figure 4.3b depicts the corresponding surface wave phase velocity as
a function of frequency (vertical axis). We refer to this first step as the depth to
frequency step.

In the second step, we use the frequency-dependent phase velocities to compute
frequency-dependent travel times by solving the Eikonal equation in two dimensions:

|∇T (x,ω)| = 1

c(x,ω)
, (4.5)

where T (x,ω) is the frequency-dependent travel time of the wave-front at surface
location x and angular frequency ω, and c(x,ω) is the phase velocity of the model at
that surface location and frequency. By solving this equation for each source at each
frequency, the travel time field corresponding to first arrivals is obtained at all points
of the (2D) model, including the receiver locations. A variety of methods has been
proposed for the solution of this equation, including finite-difference (Vidale, 1990;
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Qin et al., 1992) and the fast marching method (FMM) (Sethian, 1996; Rawlinson &
Sambridge, 2004). The fast-marching method is unconditionally stable, meaning that
we can use relatively coarse grids to solve Equation 4.5. A coarser grid, however,
does introduce additional travel time errors, which we refer to as modeling errors.

We use the FMM to solve Equation 4.5 to obtain frequency-dependent travel
times at the location of each receiver. As one can see, the relation between the
model parameters, c(x,ω), and travel time, T (x,ω), in Equation 4.5 is nonlinear,
implying the solution of the forward function involves relatively high computational
costs (compared to other computational steps in the rjMcMC algorithm). In
order to reduce overall computational costs, it is common practice to linearize
the problem using a fixed ray path geometry (e.g., straight ray; Martins et al.,
2020) or update the ray geometry only occasionally to account for the non-linearity
of the problem (Gorbatov et al., 2001; Bodin & Sambridge, 2009). Ray paths are
perpendicular to the travel time field. Hence, after computing the travel time field
with the fast-marching method, the ray path geometry can be calculated by starting
at each receiver location in the travel time field and following the travel time gradient
(∇T ) back to the source location (Rawlinson & Sambridge, 2004). Once the ray paths
are determined, integration of the slowness along each ray path is straightforward
and travel times can be computed at relatively little computational expense.

Figure 4.3. Depth to frequency conversion of surface wave velocities using the modal
approximation method. (a) Surface wave velocity model generated randomly using Voronoi
cells. (b) Computed phase velocities corresponding to each depth profile using the modal
approximation method.

4.2.4 The prior
Since all inferences on the posterior are relative to the prior distribution, priors
have great importance in Bayesian inversion schemes. The final result may suffer
heavily from an incorrect prior. In order to prevent the introduction of prior-related
biases into the solution, we choose uniform prior distributions with wide bounds for
all model parameters. Assuming independent model parameters, the prior can be
written as:
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p(m) = p(n)p(c|n)p(v|n)p(h), (4.6)

where n is the number of Voronoi cells, p(n) is the prior on the number of cells,
p(c|n) is the prior on cell nuclei location, p(v|n) is the prior on cell velocity, and
p(h) is the prior on noise hyper-parameters or data uncertainty (see Bodin &
Sambridge, 2009; Bodin et al., 2012, for details). The modal approximation method
for computing phase velocities fails to compute the right surface wave mode when
the model contains a layer whose velocity is lower than the velocity of the top
layer (Galetti et al., 2017; Zhang et al., 2020). Hence, this issue has to be taken into
account in the prior by discarding models for which the top layer does not have the
lowest velocity value.

4.2.5 Reversible jump McMC
The reversible jump Markov chain draws samples from the posterior distribution
employing an iterative stochastic process (such as the Metropolis–Hasting algorithm).
The reverse jumps allow for a variable number of Voronoi cells, hence a variable
number of parameters. Jumping between different model dimensions allows
the rjMcMC algorithm to perform a global search (Andrieu et al., 1999). The
algorithm proposes different types of model perturbations. Specifically, we use four
different perturbation types to sample the posterior distribution efficiently (Bodin &
Sambridge, 2009): a velocity update, Voronoi cell move, cell death and cell birth. In
addition, we perturb the amplitude of the noise to infer the posterior probability of
the errors on the measured surface wave travel times (this is introduced by Bodin
et al., 2012). These perturbation types allow the model to dynamically adapt itself to
data density, underlying velocity structure, and travel time noise.

The flowchart for the algorithm of the transdimensional McMC inversion is
depicted in Figure 4.4. The process starts with a random initial model m. Then,
the algorithm draws the next sample of the chain by proposing a new model, m′,
based on a known proposal probability function, q(m′|m), which only depends on
the previous state of the model m. To propose a new model in a velocity update
step and a Voronoi cell move, a Voronoi cell is selected randomly, then the velocity
or the location of that cell is perturbed using a Gaussian proposal distribution. In a
noise perturbation step, one of the two noise parameters at one frequency (i.e., a j or
b j ) is chosen randomly, then it is perturbed using a Gaussian proposal distribution.
The proposed sample, then, will be accepted or rejected based on an acceptance
probability for the proposed model, m′ (Bodin et al., 2009). A new sample is drawn
at each step of the Markov chain by perturbing the 3D velocity structure or the
noise hyper-parameters (using one of the five perturbation types). The surface wave
dispersion data (i.e., the frequency-dependent travel times) are then calculated to
evaluate the following acceptance probability (Bodin & Sambridge, 2009):

α(m′|m) = mi n

[
1,

p(m′)
p(m)

p(d|m′)
p(d|m)

q(m|m′)
q(m′|m)

×|J|
]

, (4.7)

where α(m′|m) is the probability of accepting the proposed model m′ given the
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current model m,
p(m′)
p(m)

the prior probability ratio of two models, d the observed

data (here these are the frequency-dependent travel times),
p(d|m′)
p(d|m)

the likelihood

ratio of the two models,
q(m|m′)
q(m′|m)

the proposal ratio, and J is the Jacobian matrix,

which accounts for (potential) differences in dimensionality between m and m′
(resulting from a different number of Voronoi cells in m and m′ ). For the birth and
death steps used here, the determinant of the Jacobian matrix is unity (Bodin &
Sambridge, 2009; Zhang et al., 2018).

When sufficient samples are drawn from the posterior, we can compute the mean,
standard deviation, and other statistical measures of the posterior. The samples
from a certain initial period of the chain are discarded. This initial sampling period
is usually referred to as the burn-in period, which is the period that the algorithm
needs to remove the effects of the initial model and reach sufficient mixing of the
posterior samples. Since each sample is drawn based on a small perturbation of the
previous model, adjacent samples are correlated or similar. To ensure that drawn
samples are uncorrelated, we retain a sample every so many iterations; for example,
every 200th model is retained. This process is usually referred to as ‘thinning’ of the
chain.

4.3 Experiment setup and computational performance tests
To investigate the potential of the transdimensional algorithm for the interferometric
surface wave responses of the RARR, we design three distinct 3D (block model)
tests. With these tests, we evaluate the ability of the algorithm to recover subsurface
models with different resolutions. In this section we introduce the three block
models, but additionally conduct a number of experiments to determine acceptable
values for the different numerical parameters (e.g., grid size). The results obtained
by applying the transdimensional algorithm to travel times in the three block models
are presented in the next section.

4.3.1 Ray path update and computational cost
The described transdimensional Markov chain naturally adapts model resolution to
data resolution, implying it is self-regularized and self-smooth and hence does not
require the regularization and/or smoothing needed in deterministic inversions (e.g.,
Martins et al., 2020). In addition, model uncertainty is naturally captured in the
posterior. Despite these benefits, the high computational cost is still a drawback
of the method. To sample the posterior sufficiently well, we need to run multiple
chains for at least a million iterations.

As we mentioned earlier, computing frequency-dependent travel times using the
fast-marching method contributes most to the computational cost. To make the
algorithm computationally less demanding, Bodin et al. (2012) used fixed ray paths
to compute travel times and updated the ray paths only occasionally (three times for
three million samples). In this way, they linearized the algorithm partially. Galetti
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Figure 4.4. Flowchart of the transdimensional Markov chain Monte Carlo algorithm used in
this work. Here, a total of M samples is drawn from the posterior.
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et al. (2017) argued that this might introduce artifacts and bias into the solution.
Therefore, Galetti et al. (2017) and Zhang et al. (2020) updated the ray paths at each
step of the Markov chain.

At the same time, we know that each new sample involves only a small
perturbation of the model. Consequently, ray paths do not change too much in one
thinning “period” (in our case, every 200 iterations). Hence, we update ray paths
every 200 iterations based on the average velocity of the previous 200 samples. In
this way, we reduce the computational cost significantly while still retaining most
of the non-linearity. Figure 4.5 shows the speed-up associated with different ray
path update steps (with respect to updating ray paths at every chain step). The
dimension of our assumed model is 120 km by 70 km. We used a constant grid
spacing of 0.5 km in the depth direction (used for the modal approximation method;
Herrmann, 2013). Then, we compared the time needed to take three million Markov
chain steps using grid spacing of 0.5 km, 1 km, and 2 km in the two horizontal
directions. Figure 4.5 demonstrates that updating ray paths every 200 iterations
significantly decreases computational costs. Updating the ray paths less frequently
(i.e., using higher update step), however, does not reduce computational cost much
more. Hence, we consider updating ray paths every 200 iterations optimal in terms
of both computational cost and honoring the non-linearity of the problem.

Figure 4.5. Computation time speed-up as a function of the frequency at which ray paths are
updated. The speed up is depicted for three different FMM resolutions.

4.3.2 Block models
The three considered synthetic models are depicted in Figure 4.6. Figure 4.6a depicts
a block model with blocks of size 20 km × 20 km × 10 km in the northing, easting,
and depth directions, respectively. We will henceforth refer to this subsurface model
as the coarse block model. Figure 4.6b depicts a block model with blocks of size 10
km × 10 km × 5 km in the northing, easting, and depth directions, respectively.
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We will henceforth refer to this subsurface model as the intermediate block model.
Figure 4.6c depicts a block model with blocks of size 5 km × 5 km × 2.5 km in the
northing, easting, and depth directions, respectively. We will henceforth refer to this
subsurface model as the fine block model. In addition to these resolution tests, we
study the impact of additive noise on the ability of the algorithm to adapt the model
to (and to estimate) the noise level.

Figure 4.6. Three different synthetic block models to test the 3D transdimensional algorithm.
(a) Coarse block model, (b) Intermediate block model, (c) Fine block model. Inverted yellow
triangles indicate the locations of the stations of the RARR (See also Figure 4.1).

4.3.3 Sensitivity kernels
Each of the three block models in Figure 4.6 has only two distinct velocity profiles,
of which one is shown in the left panel of Figure 4.7a,d,g. The other velocity profiles
(not shown) have coinciding step sizes and depths, but their velocities are simply
500 m/s higher for each layer. The middle panel of this figure (b, e, h) depicts
the associated sensitivity kernels of the Rayleigh waves computed using the modal
approximation method (Herrmann, 2013). For different frequencies, these kernels
give the Rayleigh waves’ sensitivity to the shear wave velocity as a function of depth.

Figure 4.7b shows that Rayleigh waves in the frequency range of 0.1–0.5 Hz
are predominantly sensitive to the shear wave velocities of the shallowest 10 km.
Hence, we do not expect the algorithm to recover the shear wave velocity below
that depth very well in the coarse block model. Figure 4.7e,h show that Rayleigh
waves in the frequency range 0.1–0.5 Hz are sensitive to the shear wave velocities of
all blocks of the intermediate and fine block models down to 10 km, and should,
in principle, be able to recover these blocks. We, therefore, expect to recover the
velocity structure in areas traversed by sufficient ray paths. A decrease in resolution
with increasing depth is expected. The right panel of Figure 4.7 is the phase velocity
for the corresponding depth profile of shear wave velocity at ten different discrete
frequencies in the frequency range of 0.1–0.5 Hz using the modal approximation
method (Herrmann, 2013).
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Figure 4.7. Surface wave sensitivity analysis of one of the depth profiles of each block model.
The left column displays shear wave velocity as a function of depth for (a) the coarse block
model, (d) the intermediate block model, and (g) the fine block model. The middle column
(b,e,h) displays the corresponding sensitivity of the Rayleigh waves for different periods (1/f) as
a function of depth. On the right (c,f,i), the corresponding phase velocity dispersion is shown
as a function of frequency.

4.3.4 Additive noise and modeling errors
As we mentioned before, noise parameters are assumed to be unknown and are
estimated by the transdimensional algorithm. To evaluate the ability of the algorithm
to recover the noise level, we designed a noise-free experiment and an experiment
with additive Gaussian random noise. A noise-free experiment means that we
did not add any additive noise to the modeled synthetic data. Modeling errors
(effectively resulting in noise) are, however, still present. These are relatively small,
and we therefore nevertheless refer to this experiment as a noise-free experiment. In
the second experiment, after computing frequency-dependent travel times through
the true synthetic block models of Figure 4.6, we have added random Gaussian noise
with a variance based on Equation 4.4 with a j = 0.04 and b j = 0.1.

To determine the number of computational grid points while solving the forward
function of the transdimensional algorithm and a reasonable level of additive noise,
we designed two tests. First, we considered the fine block model of Figure 4.6c.
Then, we computed the travel times between the RARR stations at a frequency of 0.1
Hz, which implies, on average, a wavelength of 20 km. Travel times were computed
for four different grid sizes (61 × 36 × 21, 121 × 71 × 41, 241 × 141 × 81, and 481 ×
281 × 161). The corresponding grid separations are 2 km × 2 km × 0.5 km, 1 km ×
1 km × 0.25 km, 0.5 km × 0.5 km × 0.125 km, and 0.25 km × 0.25 km × 0.0625 km,
respectively. Assuming the obtained travel times with the finer grid points (481 ×
281 × 161) as a reference, we calculated the other three grids’ relative errors. Errors
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are then sorted based on interstation distances and are presented in Figure 4.8a.
As such, we get an impression of the modeling errors associated with different grid
sizes. In the second test, we used the randomly generated model of Figure 4.3a
and followed the same procedure as the first test. Relative errors are presented in
Figure 4.8b. The relative error due to a random Gaussian noise based on Equation
4.4 with a j = 0.04 and b j = 0.1 is also presented in this figure by the green solid line.
The relative error is around 5% at longer distances and reaches more than 30% at
shorter distances. We believe this represents the available noise in a real case study.
Additionally, it seems that the modeling error is compatible with the assumed linear
relation for the noise variance, Equation 4.4.

Figure 4.8. Two tests to analyze modeling errors. (a) Relative modeling errors while computing
travel times through the fine block model of Figure 4.6c using three different grid resolutions.
(b) Modeling errors for computing travel times through the randomly generated model of
Figure 4.3a using three different grid resolutions. Relative error due to the additive random
Gaussian noise based on Equation 4.4 with a j = 0.04 and b j = 0.1 is also included in green
line on both (a,b).

We deduce from Figure 4.8 that the modeling errors at short distances are much
higher than at long distances. In particular, we consider the modeling errors using
a grid of 61×36×21 unacceptably high at short distances. We consider modeling
errors using a grid of 121×71×41 and 241×141×81 points acceptable. They are low
enough to be used in our modeling and inversion. That is why we select the grid
of 241×141×81 points to compute the synthetic travel times (i.e., observed travel
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times). Solving the forward problem using a grid of 241×141×81 points, however,
renders the transdimensional Markov chain computationally very expensive (given
the size of our computational cluster). Consequently, we use a grid of 121×71×41
points while running the Markov chain.

It is useful to note that, in application to field data, we will discard travel times
associated with interstation distances shorter than 1.5 wavelength. In practice, given
(i) a maximum frequency of 0.5 Hz for which reliable interferometric surface wave
responses can be retrieved and (ii) an average phase velocity of about 2 km/s at
that frequency, no travel times associated with interstation distances shorter than
approximately 6 km will serve as input.

4.3.5 Modeling and inversion parameters
The modeling and inversion parameters used in the synthetic experiments are
presented in Table 4.1. We used the same inversion parameters for the
noise-free experiments and the experiments with additive noise. We started the
transdimensional sampling of the posterior with a random initial model in all
experiments, implying that the number of Voronoi cells, their position and their
velocities were chosen randomly. However, to take into account the necessity of
having the lowest velocity at the surface, the initial model was generated, increasing
in depth, yet randomly. As can be seen in Table 4.1, we generated synthetic
frequency-dependent travel times (“observed” data) on a relatively fine grid for all
three block models. While computing the frequency-dependent travel times (forward
modeling) during McMC sampling, however, we used a coarse grid. Finally, we
used a finer grid for calculating the post-burn-in pointwise average and standard
deviation of the sampled models.

For drawing new velocity values as well as new nuclei locations, we used
Gaussian proposal probability distributions. The width of the proposal distributions
controls the chance of a proposed model being accepted and, consequently, the
transdimensional algorithm’s convergence rate. On the one hand, narrow proposal
distributions lead to higher acceptance ratios, more correlated samples, and a
lower convergence rate. On the other hand, wide proposal distributions lead to
lower acceptance ratios and consequently lower convergence rates. Previous studies
suggest that an efficient proposal distribution width results in an acceptance ratio of
25%–50% (Bodin et al., 2009; Gelman et al., 1996). These values were determined,
a priori, from the data. We determined the efficient proposal distribution width
through a pilot run of the algorithm and looked at samples’ acceptance ratios of
different perturbation types. This means that one does (of course) not need to
know the true velocity model to define the proposal widths. The obtained proposal
widths for the velocity update, moving a cell and noise perturbation are presented
in Table 4.1. The valid range of parameters presented in the table defines the
bounds of the uniform prior on each parameter. To reduce computational cost while
still preserving the non-linearity of the problem, we updated ray paths at every 200
iterations as we discussed earlier. Thinning was also achieved by retaining every
200th model.
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Table 4.1. Modeling and inversion parameters. Parameters are the same for the noise-free
experiment and the experiment with synthetic additive noise.

Modeling and Inversion
Parameters

Coarse Block
Model

Intermediate
Block Model

Fine Block
Model

Model dimension (km) 120 × 70 × 20 120 × 70 × 10 120 × 70 × 10
Number of grid points in
generating synthetic data

241 × 141 × 81 241 × 141 × 81 241 × 141 × 81

Number of grid points in
McMC sampling

121 × 71 × 41 121 × 71 × 41 121 × 71 × 41

Number of grid points for
calculating post-burn-in

pointwise average
241 × 141 × 41 241 × 141 × 41 241 × 141 × 41

Valid range of shear wave
velocity (km/s)

1.5–6 1.5–6 1.5–6

Valid range of noise hyper
parameter a

10−5–1 10−5–1 10−5–1

Valid range of noise hyper
parameter b

0-2 0–2 0–2

Proposal width for a move
step. Md is the model

dimension.
0.07Md 0.06Md 0.05Md

Velocity proposal width
(km/s)

0.4 0.4 0.3

Proposal width for a 10−3 10−3 10−3

Proposal width for b 10−2 10−2 10−2

Thinning level 200 200 200
Ray path update step 200 200 200

4.4 Results and discussion
In this section, we present the results obtained by applying the transdimensional
Markov sampler to the synthetic travel times through the block models introduced
in Figure 4.6. That is, the travel times between the RARR stations (computed using a
grid of 241×141×81 points) serve as input, that is, as the observed data.

4.4.1 Coarse block model
Figure 4.9 shows the results of the one-step 3D transdimensional method for the
coarse block model of Figure 4.6a in the noise-free experiment. A horizontal slice at
the surface of the model and two vertical cross-sections of the true velocity model
are depicted in Figure 4.9a–c. Figures 4.9d–f depict the (pointwise) average of all
post-burn-in models (after thinning). The bottom row of this figure (Figure 4.9g–i)
provides an estimate of the model uncertainty, that is, the post-burn-in (pointwise)
standard deviation. Retained models are obtained by thinning ten separate
transdimensional Markov chains, each with 1×106 iterations of which 4×105 are
considered burn-in steps. Since thinning involves retaining one in every 200
iterations in our case, 30,000 samples are used for the computation of the pointwise
average and standard deviation.

Figure 4.9 shows that the algorithm recovered the velocity distribution at the
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Figure 4.9. Transdimensional tomographic models estimated from noise-free synthetic travel
times through the coarse block model in Figure 4.6a. The true block model: (a) horizontal slice
at the surface of the model including station locations, (b) vertical cross-section at easting of
410 km, and (c) vertical cross-section at northing of 7090 km. The vertical cross-sections are
indicated with black dashed lines in (a). (d–f) Pointwise averaged velocities calculated from
post-burn-in retained samples. (g–i) Standard deviation (model uncertainty) calculated from
post-burn-in retained samples.

surface very well. In line with the low sensitivity of the sensitivity kernels to greater
depth (Figure 4.7b), the velocity structure below 10 km is not recovered very well,
and reveals a higher uncertainty than at shallower depth. Figure 4.10 is similar to
Figure 4.9, but presents the results in the experiment with additive noise. Comparing
Figure 4.9d–f and Figure 4.10d–f shows that the additive Gaussian noise results in
a smoother (pointwise averaged) model. The block interfaces are clearly visible
in the uncertainty maps of Figure 4.10g–i. Though the velocity models are not
recovered very well in deeper parts of Figure 4.10d–f, the deeper subsurface structure
is reflected in the uncertainty maps of Figure 4.10g–i. This exemplifies why the
uncertainties aid the interpretation of the results.

Comparing the average maps and the uncertainty maps of Figures 4.9 and 4.10,
we can conclude that the rjMcMC converges faster in case of higher noise levels.
The results presented in Figure 4.9 suggest that more iterations are needed to
sample the posterior sufficiently well (this will be discussed in more detail in Section
4.4.4). We explain this by the fact that stronger noise (σ in Equation 4.3, which
we also estimate by means of the hyper-parameters) results in a flatter likelihood.
This makes it easier to explore the posterior compared to a narrower likelihood
associated with less noise (i.e., a smaller σ). Mathematically speaking, a higher σ

simply increases the acceptance ratio of the Markov chain and hence results in more
unique samples. Consequently, the pointwise average of all sampled models (after
burn-in) is likely to be smoother and closer to the true posterior. In the case of
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Figure 4.10. As Figure 4.9 but estimated from synthetic travel times containing Gaussian
random noise.

a noise-free experiment, we could use a fixed (higher) noise estimate to achieve a
smoother result. However, we would lose resolution unnecessarily by imposing such
a higher value. Of course, were one to have ample computational power, one could
simply run the Markov chains for the noise-free experiment for a longer time to
better approach the posterior.

4.4.2 Intermediate block model
Figure 4.11 shows the results of the one-step 3D transdimensional method for the
intermediate block model of Figure 4.6b in the noise-free experiment. Figure 4.11a–c
depicts the horizontal slice at the surface of the model and two vertical cross-sections
of the true velocity model. Figure 4.11d–f depicts the post-burn-in pointwise average
of the retained velocity models. Figure 4.11g–i depicts the uncertainty, which is the
post-burn-in standard deviation of the retained samples.

Figure 4.11 reveals that the algorithm recovered the true velocity model well in
both horizontal and vertical directions in densely sampled regions. Regions that
are not sampled that well by the data (i.e., regions traversed by few ray paths) are
recovered less well; for example, the eastern part of the velocity model. These
regions also exhibit larger uncertainties estimated from the pointwise averages. The
fact that the algorithm results in smoother pointwise averages in regions sampled by
fewer rays, is the reason that the transdimensional algorithm is often referred to as a
self-smooth, self-regularized algorithm.

Figure 4.12 is similar to Figure 4.11 but presents the results in the case of additive
noise. Similar to our findings for the coarse block model, the additive Gaussian
noise results in a smoother (pointwise averaged) model. Block interfaces and areas
traversed by no (or few) ray paths show higher uncertainties, as one would expect.
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Figure 4.11. As Figure 4.9 but for the noise-free synthetic travel times through the intermediate
block model in Figure 4.6b.

Figure 4.12. As Figure 4.9 but for the synthetic travel times containing Gaussian random noise
for the intermediate block model in Figure 4.6b.

4.4.3 Fine block model
Figure 4.13 shows the results of the one-step 3D transdimensional method for the
fine block model of Figure 4.6c with no additive noise on the travel times. Because
of the greater complexity of the fine block model, we used 20 chains (instead of
10) to sample the posterior. Each chain generated 2×106 samples, of which 1×106

samples are considered part of the burn-in period. Figure 4.13a–c depicts the true
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velocity model by means of a horizontal slice at the surface of the model and two
vertical cross-sections. Figure 4.13d–f represent the recovered velocity models, which
are the post-burn-in pointwise averages of the retained samples. Retaining again
every 200 iterations, the pointwise averages and standard deviation are computed
from a total of 100,000 samples. As one can see, the algorithm recovered the blocks
fairly well in the densely sampled area of the model. Figure 4.13g–i estimates the
model uncertainty through the computation of the post-burn-in standard deviation
of the retained samples.

Figure 4.13. As Figure 4.9 but for the noise-free synthetic travel times for the fine block model
in Figure 4.6c.

Figure 4.14 is the same as Figure 4.13 but presents the results in the case of noisy
travel times. Similar to our observations for the other two block models, the additive
Gaussian noise results in a smoother (pointwise averaged) model. Both the noise free
and the noisy travel times result in pointwise averaged velocity models exhibiting
large uncertainty compared to the velocity models recovered for the intermediate
and coarse block models.

4.4.4 Chain statistics and convergence
To evaluate the ability of the algorithm to infer the noise level and complexity of the
model space, we show here the chain statistics for the intermediate block model.
Results are approximately the same for the other two block models (i.e., the coarse
block model and the fine block model). Figure 4.15 shows how misfit, number
of cells (model dimension), and noise hyper-parameters change during McMC
sampling. Figures 4.15a–d are for the noise-free experiment, and Figures 4.15e–h
are for the experiment with additive noise. Different colors represent different
chains. Noise hyper-parameters are presented for a single frequency as they vary
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Figure 4.14. As Figure 4.9 but for the synthetic travel times containing Gaussian random noise
for the fine block model in Figure 4.6c.

by frequency. Looking at this figure, the number of cells converged to a small
number of cells (around 300) in the experiment with additive noise. In the noise-free
experiment, however, the number of cells approaches higher values and also the
variation between different chains is larger. For the inferred noise level, in the
experiment with additive Gaussian random noise, the recovered hyper-parameter a
is fairly close to the true value. However, the recovered hyper-parameter b slightly
underestimates the true value.

The results presented in Figure 4.15 can also be used as a means to determine
chain convergence and the length of the burn-in period. As one can see, for
the experiment with additive Gaussian noise, all parameters at all chains stabilize
around the same value. This stationarity and convergence can be interpreted as a
fully mixed Markov chain. For the noise-free experiment, however, it seems as if the
separate chains still need more time to stabilize entirely; the misfit and the noise
hyper-parameter are still decreasing, and the number of cells is still increasing. It
means that if we continue sampling from the posterior for the noise-free experiment,
the quality of results will improve and the Markov chain will reach a steady state.
In other words, the experiment with additive Gaussian noise converged faster and
hence better explores the posterior distribution for the same number of samples.

4.5 Conclusions
In this chapter, we investigated the ability of 3D transdimensional Markov chain
Monte Carlo algorithm to recover the 3D surface wave velocity structure of the
Reykjanes peninsula. Anticipating the future application of this algorithm to
interferometric travel times extracted from ambient seismic noise, we specifically
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Figure 4.15. Variation of the misfit, the number of cells (dimensionality of model space), and
the noise hyper-parameters during ten chains of McMC sampling for the intermediate block
model in the noise-free experiment (a–d) and the experiment with additive Gaussian noise
(e–h). Each color represents a sampling chain. Noise hyper-parameters are plotted for a single
frequency. The black lines in (g–h) represent the actual values. Histograms of the posterior
distribution for the retained models for each parameter are shown as insets of each panel.

considered travel times between stations of the Reykjanes seismic array. We find that
updating ray paths every 200 iterations does not significantly affect the performance
of the algorithm (i.e., it honors the non-linearity of the problem sufficiently), while
at the same time significantly reducing computational costs. Our results show that
the algorithm successfully adapts model resolution to ray density and hence yields a
higher resolution and lower uncertainty in more densely sampled areas. Similarly,
the uncertainty is larger in regions where the station density is lower. In addition,
the algorithm successfully adapts to the noise level of the observed travel times;
smoother models are obtained for higher levels of additive random noise. The
algorithm converges (i.e., stabilizes) faster with a higher noise level because noise
flattens the posterior and, consequently, the posterior is easier to explore. The
uncertainty maps aid the interpretation of the results. The block interfaces are
visible in uncertainty maps with higher uncertainties.
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3D ambient-noise surface wave tomog-
raphy of the Reykjanes Peninsula, SW
Iceland

Abstract: Ambient noise seismic tomography has proven to be an effective
tool for subsurface imaging, particularly in volcanic regions such as the Reykjanes
Peninsula (RP), SW Iceland, where ambient seismic noise is ideal with isotropic
illumination. The primary purpose of this study is to obtain a reliable shear wave
velocity model of the RP, to get a better understanding of the subsurface structure of
the RP and how it relates to other geoscientific results. This is the first tomographic
model of the RP which is based on both on- and off-shore seismic stations. We
use the ambient seismic noise data and apply a novel algorithm called one-step
3D transdimensional tomography. The main geological structures in the study area
(i.e., covered by seismic stations) are the four NE-SW trending volcanic systems,
oriented highly oblique to the plate spreading on the RP. These are from west to
east; Reykjanes, Eldvörp-Svartsengi, Fagradalsfjall, and Krýsuvík, of which all except
Fagradalsfjall host a known high-temperature geothermal field. Using surface waves
retrieved from ambient noise recordings, we recovered a 3D model of shear wave
velocity. We observe low-velocity anomalies below these known high-temperature
fields. The observed low-velocity anomalies below Reykjanes and Eldvörp-Svartsengi
are significant but relatively small. The low-velocity anomaly observed below
Krýsuvík is both larger and stronger, oriented near-perpendicular to the volcanic

This chapter is published as:
Dalkhani, A. R., Ágústsdóttir, T., Gudnason, E. Á., Gylfi, P. H., Zhang, X., & Weemstra, C. (2023).
Transdimensional ambient-noise surface wave tomography of the Reykjanes Peninsula, SW Iceland.
Geophysical Journal International, https://doi.org/10.1093/gji/ggad435.
Minor modifications have been applied to keep consistency within this thesis.
The data underlying this chapter are also published as open access and are available at
https://doi.org/10.4121/3c97b1c8-1736-495d-a2f9-bd26dc958575.
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system, and coinciding well with a previously found low-resistivity anomaly. A
low-velocity anomaly in the depth range of 5 to 8 km extends horizontally along the
whole RP, but below the high-temperature fields, the onset of the velocity decrease is
shallower, at around 3 km depth. This is in good agreement with the brittle-ductile
transition zone on the RP. In considerably greater detail, our results confirm previous
tomographic models obtained in the area. This study demonstrates the potential of
the entirely data-driven, one-step 3D transdimensional ambient noise tomography as
a routine tomography tool and a complementary seismological tool for geothermal
exploration, providing an enhanced understanding of the upper crustal structure of
the RP.

5.1 Introduction
The Reykjanes Peninsula (RP), southwest Iceland, is the onshore continuation of
the Mid-Atlantic Ridge. As such, it is part of the divergent plate boundary of
the North American and Eurasian plates. On the RP, this plate boundary strikes
N70°E (Sigmundsson et al., 2020), and the divergence of the plates is expressed in
six en-echelon rift segments, which accommodate the rifting (Sæmundsson et al.,
2020). These rift segments, or volcanic systems, are areas with the highest density
of eruptive fissures and tectonic faults and fractures. Currently, there are two
geothermal power plants in production on the RP, i.e., in Reykjanes (100 MWe) and
Svartsengi (76 MWe and 150 MWt), mainly producing from depths of 1 to 2.5 km
(Figure 5.1) (Friðleifsson et al., 2020).

Further exploration of deep geothermal resources is currently underway. In
2016-2017, a deep exploratory well (IDDP-2) was drilled down to a depth of 4.6 km
in Reykjanes to examine the economic potential of the production of supercritical
fluids from greater depths than conventional production wells. The IDDP-2 well
reached both supercritical conditions, evidenced by a temperature estimated to be
around 600°C at the bottom of the well (Bali et al., 2020), and permeability at
depths greater than 3 km, evidenced by a total loss of circulation below 3 km during
drilling. In addition, seismicity was induced below 3 km, in a zone that was generally
aseismic prior to drilling (Gudnason et al., 2020; Friðleifsson et al., 2020). For further
geothermal utilization, more investigation is needed to better understand the crustal
structure beneath the RP as a whole.

The RP has been the subject of several different geological (Clifton & Kattenhorn,
2006; Sæmundsson & Sigurgeirsson, 2013; Sæmundsson et al., 2020) and geophysical
studies. See Jousset et al. (2020b) for an exhaustive list of recent geophysical studies.
In particular, the recent volcano-tectonic unrest period at Fagradalsfjall and the
subsequent eruptions in 2021, 2022, and 2023 (the first eruptions on the RP in
roughly 780 years) have drawn Fagradalsfjall and the RP as a whole into the spotlight
(Einarsson et al., 2023; Flóvenz et al., 2022; Halldórsson et al., 2022; Pedersen et al.,
2022; Sigmundsson et al., 2022). Relatively high-resolution shear wave images have
the potential to reveal more details of the RP’s subsurface in general and the volcanic
systems in particular. Ambient noise surface wave tomography (ANSWT) has great
potential in this context (e.g., Lehujeur et al., 2016; Zhang et al., 2020). This is due to
(i) the 3D shear wave images it can provide in the absence of active seismic sources,
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(ii) its relatively low costs, supplementary to a local seismic network, and (iii) the
considerable investigation depth it can reach, compared to many other geophysical
methods (Cruz-Hernández et al., 2022).

Jousset et al. (2016) used recordings by 26 seismic stations on the RP to retrieve
both surface and body waves. The seismic stations used by Jousset et al. (2016)
constitute a subset of the IMAGE seismic network (for details regarding the IMAGE
project we refer to Hersir et al., 2020b; Blanck et al., 2020). Martins et al. (2020)
used the noise recorded by (almost) the same subset as Jousset et al. (2016) to
image part of the RP by means of deterministic ANSWT. Even though their findings
enhanced details compared to previous models, the resolution and lateral extent of
the obtained images are limited. Both studies used a subset of the IMAGE stations
because the recordings by the Ocean Bottom Seismometers (OBSs) (also deployed in
the context of IMAGE) were subject to clock drift. In addition, the IMAGE seismic
network was extended with stations from other existing seismic networks on the RP.
We henceforth refer to the combined set of stations as the ’extended IMAGE seismic
network’ (i.e., the IMAGE stations complimented with additional stations from the
existing seismic networks; see Section 5.3 for further details). The recordings by
some of the additional stations of the existing networks also turned out to be subject
to timing errors in the frequency band of interest. Weemstra et al. (2021) quantified
both the average clock drift by most of the OBSs and the timing errors of most of
the stations of the existing seismic networks. Removal of the recovered timing errors
allows those recordings to be used for ANSWT. This significantly increases lateral
extent and resolution compared to Jousset et al. (2016) and Martins et al. (2020). We
finally highlight that what is referred to as the extended IMAGE seismic network in
this study, is referred to as the Reykjanes array (RARR) in Weemstra et al. (2021) and
chapter 4.

In this chapter, we use a recently developed probabilistic tomographic algorithm
(Zhang et al., 2018, 2020, see chapter 4) to perform ANSWT of the RP. The shear wave
velocities obtained in this chapter result from a 3D, one-step Bayesian tomographic
inversion (Zhang et al., 2018), which has its roots in the transdimensional inversion
algorithm introduced by Bodin & Sambridge (2009). In chapter 4, we modified
the algorithm in the sense that they update the ray paths less frequently (i.e., not
at every perturbation step), while at the same time still honoring the non-linear
aspect of the tomographic problem. They tested the modified algorithm on synthetic
station-station travel times generated for the configuration of the extended IMAGE
seismic network and the surface wave frequencies of interest (i.e., 0.1-0.5 Hz). In
this chapter, we apply the modified algorithm to the extended IMAGE data set. First,
we retrieve station-station surface wave phase travel times from the time-corrected
ambient noise recordings (Weemstra et al., 2021). Then, we use these surface waves’
dispersion curves to generate 3D images of the RP subsurface’ shear wave velocity.
Finally, we interpret the recovered shear wave velocities, discuss how they compare
to other recent geophysical studies, and list the most important conclusions.
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5.2 Geological setting
The tectonic structure of the RP is characterized by six volcanic systems, arranged
en-echelon along the divergent plate boundary of the North American and Eurasian
plates. On the RP, this plate boundary is approximately 60 km long, from the SW
tip of the Peninsula, until it joins the Western Volcanic Zone and the South Iceland
Seismic Zone at the Hengill triple junction in the east. The RP oblique rift is
expressed by a 5-10 km wide seismic and volcanic zone along the Peninsula, and is
highly oblique with the spreading direction of N120°E in this region (Sigmundsson
et al., 2020; Sæmundsson et al., 2020). Four of the six identified volcanic systems of
the RP are within our area of study (all six are shown in Figure 5.1 as shaded light
brown polygons).

The volcanic systems on the RP are grouped by the presence of eruptive fissures
and the density of tectonic faults and fractures. Their outlines or boundaries are
rough estimates, drawn according to Sæmundsson & Sigurgeirsson (2013). During
the last RP rifting episode, ca. 1200 - 780 years before present, all the RP’s volcanic
systems were volcanically active in intervals, except Fagradalsfjall and Hengill
(Sæmundsson & Sigurgeirsson, 2013). The extensional component of the rifting is
accommodated by the intrusion of magma in NE-SW oriented dykes, oblique to the
plate boundary. The remaining strike-slip component of the rifting is accommodated
by N-S oriented strike-slip faults, which are known to be capable of producing
earthquakes of moment magnitude as high as 6 (Einarsson, 1991; Björnsson et al.,
2020). The volcanic systems (Figure 5.1) are from west to east: 1) Reykjanes, 2)
Eldvörp-Svartsengi, 3) Fagradalsfjall, 4) Krýsuvík, 5) Brennisteinsfjöll and 6) Hengill.
All, except Fagradalsfjall, comprise a known high-temperature (HT) geothermal field
(black dashed polygons in Figure 5.1). The HT polygons show the extent of the
geothermal fields, according to resistivity values at 1 km depth (Flóvenz et al., 2022,
and references therein). Both the Eldvörp-Svartsengi and Reykjanes HT fields host
an operating geothermal power plant. It is worth noting that Eldvörp is a subfield of
Svartsengi, and as such, Eldvörp is included in the resistivity outline of Svartsengi.

The upper crustal structure of the RP is built of extrusive basaltic rocks with
a downward-increasing alteration and a greater proportion of intrusive rocks. The
upper crust is roughly 4.5 km thick on the RP (Pálmason, 1971; Flóvenz et al.,
1980; Weir et al., 2001). It is believed that intrusive rocks build the lower crust
down to Moho, which is located at a depth of around 15 km (Weir et al., 2001).
The brittle-ductile transition (BDT) zone, with an estimated temperature of around
600 °C in basaltic rocks (Ágústsson & Flóvenz, 2005; Violay et al., 2012), is typically
located at 6-7 km depth beneath the RP and rises up to 3-5 km depth below the
HT fields (Blanck et al., 2020; Gudnason et al., 2020; Flóvenz et al., 2022). Crustal
thickening along the RP from west to east is observed both by wide-angle reflection
seismic (Weir et al., 2001) and local earthquake tomography (Tryggvason et al., 2002).

5.3 Acquisition & data
As a part of IMAGE (Integrated Methods for Advanced Geothermal Exploration;
Hersir et al., 2020b), a dense seismic network was installed on and around the RP in
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Figure 5.1. The seismic network and the geological setting of the study area. Green triangles
are IMAGE seismic stations (both on- and off-shore). Blue inverted triangles are additional
seismic stations from other existing seismic networks in the area. Red and black fault lines
denote postglacial volcanic eruptive and opening fissures, respectively; the volcanic systems
are shaded light brown and marked with a bold letter, R: Reykjanes, E-S: Eldvörp-Svartsengi,
F: Fagradalsfjall, K: Krýsuvík, B: Brennisteinsfjöll, H: Hengill (Sæmundsson & Sigurgeirsson,
2013); black dashed polygons show the extent of the high-temperature geothermal fields on
the Peninsula according to resistivity measurements (summarized in Flóvenz et al., 2022)
and the geothermal power plants of Svartsengi and Reykjanes are shown with red stars. The
approximate location of the 2021 and 2022 Fagradalsfjall eruptions (Pedersen et al., 2022), as
well as the 2023 eruption, is shown with a yellow star. The black-dashed rectangle shows the
map extent of Figure 5.8. Main roads are in black, and main landmarks referenced in the text
are shown on the map. The inset shows volcanic zones of Iceland (orange) with blue arrows
indicating the plate spreading rate in Iceland (Sigmundsson et al., 2020). The red rectangle on
the inset shows the location of the zoomed-in area.

2014 (Jousset et al., 2020a; Blanck et al., 2020). It consisted of 30 on-land stations
and 24 Ocean Bottom Seismometers (OBSs). In addition to this temporary IMAGE
network, data from other existing seismic networks in the area were made available
to the project. These were (i) a local monitoring network run by HS Orka/ÍSOR,
(ii) REYKJANET (Horálek, 2013) run by the Czech Academy of Science (CAS) in
co-operation with ÍSOR on the central and eastern part of the Peninsula, and
(iii) permanent stations run by the Icelandic Meteorological Office (IMO) (Icelandic
Meteorological Office, 1992; Jakobsdóttir, 2008). Results based on the seismic data
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from the 30 onshore stations of the IMAGE network have been published by e.g.,
Jousset et al. (2016); Verdel et al. (2016); Weemstra et al. (2016); Martins et al.
(2020). In this chapter, we use the recordings by all four seismic networks (i.e., blue
and green triangles in Figure 5.1), whose combination we refer to as the ‘extended
IMAGE seismic network’.

The extended IMAGE seismic network sampled the seismic noise field between
April 2014 and August 2015 using a total of 83 seismic stations. Weemstra et al.
(2016) computed the surface wave responses (i.e., time-averaged cross-correlation
functions) from the recorded ambient noise data. However, many of the stations
turned out to be subject to timing errors. Consequently, Martins et al. (2020) used a
subset of the stations (the ones without the timing errors: 30 onshore seismometers
of the IMAGE seismic network) in a two-step linearized ANSWT algorithm. Then,
Weemstra et al. (2021) recovered the timing errors for most of the additional stations,
subsequently allowing them to also correct the computed cross-correlation functions.
Time-averaged cross-correlations associated with four of the 83 stations had to be
discarded after all. This was due to an unrecoverable timing error (one station;
O20; see Weemstra et al., 2021), and insufficient noise recordings (three stations;
VSV, O12, and O05; see Figure 1 of the supplementary materials of Weemstra
et al., 2021). The active stations are depicted in Figure 5.1 by green triangles. See
Weemstra et al. (2021) for more details regarding seismic instruments and network
characteristics. We only used vertical component recordings, because these are best
suited for recovering Rayleigh waves; in particular in such a heterogeneous area (e.g.,
Haney et al., 2012).

Figure 5.2 shows the interferometric responses of the extended IMAGE seismic
network for the vertical components of the seismometers. The term interferometric
is derived from ‘seismic interferometry’, which refers to the process of retrieving
Green’s function estimates from recordings of ambient seismic noise (Wapenaar
& Fokkema, 2006). The interferometric responses are the result of time-averaged
cross-correlations of the recorded noise between the station couples. For the
processing steps applied to the raw (noise) data to retrieve the interferometric
responses, we refer to Weemstra et al. (2021). Similar to Weemstra et al. (2021) and
Martins et al. (2020), we focus on surface waves in the 0.1-0.5 Hz frequency range,
which give the most reliable results.

We retrieve the frequency-dependent phase velocities from the interferometric
responses computed and corrected by Weemstra et al. (2021) for each station couple,
by calculating and picking the most sensible zero-crossings (e.g., Ekström et al.,
2009; Kästle et al., 2016; Lindner et al., 2018). Details are provided in Appendix A.2.
The picked phase velocities are then converted to the frequency-dependent phase
travel times, which are inverted for shear wave velocities using the one-step
transdimensional algorithm (Zhang et al., 2018).

5.4 Interferometric travel times
We extract phase velocity dispersion curves from the interferometric responses
(station-station time-averaged cross-correlations; see Figure 5.2). The procedure,
algorithm, and criteria are explained and exemplified in Appendix A.2. Figure 5.3a
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Figure 5.2. Time-averaged cross-correlations of recordings of ambient seismic noise filtered
between 0.1 - 0.5 Hz. Cross-correlations are sorted by station-station distance and individually
amplitude normalized. Showing all 79 stations used in the analysis.

shows all the picked dispersion curves as blue dotted lines. The mean phase velocity,
and curves representing two, and three standard deviations (calculated separately at
each frequency) are depicted as black, green, and red lines, respectively. After a
careful analysis of these dispersion curves, we decided to discard dispersion curves
whose velocity deviates more than three standard deviations from the mean. This
analysis involved evaluating the spatial distribution of the station couples associated
with dispersion curves whose velocity exceeded two standard deviations (following
Schippkus et al., 2018). By simply displaying the corresponding rays (with the phase
velocity color-coded; Figure 5.4), we find that the discarded station couples are
concentrated in a specific area, which coincides with an area traversed by rays that
exhibit (anomalously) low shear wave velocities (resulting from an inversion with
the retained dispersion curves; i.e., within two standard deviations of the mean). In
other words, there is no random pattern in the spatial distribution of the outliers.
Also, Figure 5.4 reveals that it is not a single station that is a source of error.
This suggests that the discarded dispersion curves are merely representative of the
velocity structure in the area. It is therefore that we retain all dispersion curves
that are within three standard deviations of the mean. We hence discard a limited
number of station-station cross-correlations.
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Figure 5.3. Analysis of picked dispersion curves. (a) All picked dispersion curves (blue) and
their mean (µ; black curve). The green curves show µ±2σ and the red curves show µ±3σ,
where σ is the standard deviation. Data outside of the two red curves are discarded as outliers.
(b) The number of active rays per period used in the inversion (blue bars), and the most
sensitive depth related to each period (red stem plot). Active rays at periods of (c) 3.5 s and
(d) 7 s are depicted as straight rays with the color of each ray indicating the corresponding
phase velocity.

The number of retained phase velocity measurements per frequency is depicted
in Figure 5.3b. Note the variation between different frequencies is predominantly
to (i) the decreasing SNR with increasing frequency (and hence the picking being
terminated by the picking algorithm) and (ii) the increasing number of station
couples exceeding the aforementioned condition that the station-station distance
needs to exceed one and a half wavelength. The most sensitive depth is also
depicted for each period by means of a red stem plot in Figure 5.3b. As a rule
of thumb, fundamental-mode Rayleigh waves are most sensitive to the shear wave

speed at depths around one-third (
1

3
) of their corresponding wavelength (Fang et al.,

2015), where the corresponding wavelength at each period is computed based on
the mean dispersion curve (black curve in Figure 5.3a).

Figure 5.3b shows that the retrieved surface waves are most sensitive to structures
with a depth of 2-8 km. This implies that (small-scale) structures near the surface
(shallower than 2 km) are not expected to be resolved very well. To reveal more
details of the near-surface, higher frequencies would need to be included in the
inversion. Potential residual timing errors (Weemstra et al., 2021), lower SNRS, and
interference of higher modes did not allow us to extract reliable fundamental-mode
phase velocities at frequencies beyond 0.5 Hz (let alone potential cross-modal terms
obscuring the time-averaged cross-correlations; Halliday & Curtis (2008)).

Figure 5.3c-d shows the eligible station couples as straight rays at two different
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Figure 5.4. Comparing ray path coverage of the data excluding outliers (a, b) and the ray path
coverage of the outliers (c, d) at periods of 3.5 s (a, c) and 6.5 s (b, d). Rays outside of two
standard deviations are considered outliers here.

frequencies. The color of the rays indicates the picked phase velocity for that
station couple at that frequency. Note that some structures (in terms of shear wave
velocity) can already be inferred from Figure 5.3c-d. For the purpose of the 3D
(McMC) tomographic inversion, frequency-dependent phase velocities are converted
to frequency-dependent travel times by dividing station-station distances by the
phase velocities.

5.5 Surface wave tomography
5.5.1 Two-step modeling and inversion
Once the frequency-dependent travel times are retrieved from all eligible
interferometric responses and for all eligible discrete frequencies fi , the data vector
can be built. This data vector contains the frequency-dependent station-station
travel times and serves as input to our probabilistic tomographic algorithm in order
to recover the shear wave velocity structure of the subsurface. The core of every
probabilistic algorithm is the forward function. In our context, this is a function
that maps a known shear wave velocity distribution vs (x, y, z) to the data vector d.
Effectively, the forward process can be considered a two-step function:

vs (x, y, z)
F1

[
vs (x,y,z), fi

]
−−−−−−−−−−−→ cr (x, y, fi )

F2

[
cr (x,y, fi ),xk ,xl

]
−−−−−−−−−−−−−→ d

(
xk ,xl , fi

)
, (5.1)

where vs (x, y, z) is a known 3D shear wave velocity model as a function of
geographical location (x and y) and depth (z), cr (x, y, fi ) the frequency-dependent
phase velocity as a function of x and y , and d

(
xk ,xl , fi

)
the data vector containing
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the station-station travel times for all station couples and eligible discrete frequencies
fi . Here, xk and xl are source and receiver locations (k = l = 1,2, ..., N , where N is
the number of seismic stations). Similar to cr (x, y, fi ), these locations depend on x
and y only as we ignore topography. The latter is justified by the fact that elevation
differences in the area of interest do not exceed a few hundred meters, whereas
the shortest wavelengths are in the order of four kilometers (chapter 4). The data
vector d(xk ,xl , fi ) contains the frequency-dependent phase travel times depicted in
Figure 5.3. It is useful to note that vs (x, y, z) is often also referred to as a model
vector m (Bodin & Sambridge, 2009). Here, we should add that the compressional
wave velocity vp (x, y, z) is assumed to be a linear function of vs (x, y, z) according to
vp = 1.78vs (Allen et al., 2002) and that the mass density ρ(x, y, z) is assumed to be
related to the latter according to ρ = 2.35+0.036(vp −3)2, where vp and vs are in
km/s and ρ in g/cm3 (Kurita, 1973; Zhang et al., 2020).

The function F1 is the dispersion curve modeling algorithm (e.g., the modal
approximation method of Herrmann, 2013), whereas F2 uses the fast marching
method to solve the 2D Eikonal equation (e.g., Rawlinson & Sambridge, 2004).
This two-step forward function is the standard way to compute surface waves’
frequency-dependent phase or group travel times. Similarly, a two-step process is
commonly used to recover shear wave velocity structure from frequency-dependent
travel times:

d(xk ,xl , fi )
F−1

2

[
d(xk ,xl , fi )

]
−−−−−−−−−−−→ cr (x, y, fi )

F−1
1

[
cr (x,y, fi )

]
−−−−−−−−−−→ vs (x, y, z). (5.2)

First, a 2D phase velocity map is recovered from the inversion of travel times at
each frequency, F−1

2 , (for different inversion methods see Rawlinson et al., 2003; Yao
et al., 2006; Saygin & Kennett, 2012; Bodin et al., 2012; Cabrera-Pérez et al., 2021).
Then, the phase velocity maps are used together in a second inversion step, F−1

1 , to
recover the shear wave velocity structure (e.g., Yao et al., 2008; Haney & Tsai, 2015;
Lehujeur et al., 2021). The two-step surface wave forward and inverse modeling are
illustrated in Figure 5.5(a-e) using a synthetic block model.

5.5.2 One-step transdimensional approach
The two-step inversion approach suffers from two issues. First, the initial 2D
inversion introduces (unknown) errors in the subsequent 1D inversions. This is
because usually only the mean and the standard deviation serve as input to the
second step of the inversion. That is, implicitly, a Gaussian distribution is assumed.
Most likely, however, the posterior distribution associated with this first step is
non-Gaussian, as such introducing the (unknown) errors. Second, as the subsequent
step involves many independent 1D inversions, it fails to honor the lateral correlation
of the shear wave velocity in the subsurface. To improve the lateral correlation in
the second step, Lehujeur et al. (2021) suggested inverting all the local dispersion
curves simultaneously using a linearized 3D inversion algorithm. In a similar vein,
Fang et al. (2015) combined the two inversion problems into one. They proposed
a one-step linearized 3D inversion algorithm to recover the 3D shear wave velocity
directly from the frequency-dependent phase or group travel times. Recently, Zhang
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Figure 5.5. Surface wave modeling and inversion applied to a synthetic 3D block model
considering a rather non-uniform spatial sampling of seismic noise field, namely that of the
Reykjanes seismic array. (a) A 3D synthetic shear wave velocity block model (vs (x, y, z)).
(b) Frequency-dependent Rayleigh wave phase velocity (cr (x, y, f )) computed using the modal
approximation method (F1

[
vs (x, y, z), f

]
). Station locations (the xk ) are depicted as yellow

triangles. (c) Frequency-dependent phase travel times (d(xk ,xl , fi )) computed using the fast
marching method (F2

[
cr (x, y, f ),xk ,xl

]
) at three different discrete frequencies. (e) 2D phase

velocity maps at three discrete frequencies recovered from (c) using a 2D least-squares inversion
algorithm (the first step of the inversion, F−1

2 ). (d) 3D shear wave velocity model recovered
from (e) using a 1D dispersion curve inversion algorithm (the second step of the inversion,
F−1

1 ). (f) Recovered shear wave velocity using the 3D one-step transdimensional inversion

algorithm (F−1[
d(xk ,xl , fi )+noise

]
). (g) The uncertainty corresponding to the recovered shear

wave velocity in (f).

et al. (2018) proposed another one-step 3D surface wave tomography method using
a reversible jump Markov chain Monte Carlo (rjMcMC) algorithm, which we refer
to as the one-step transdimensional method. It recovers the shear wave velocity
directly from the frequency-dependent travel times.

d(xk ,xl , fi )
F−1

[
d(xk ,xl , fi )

]
−−−−−−−−−−−→ vs

(
x, y, z

)
, (5.3)

where F−1 represents the one-step transdimensional probabilistic algorithm (i.e., the
rjMcMC approach). Importantly, this one-step transdimensional algorithm results in
an estimate of the posterior probability density. This implies that it allows us to
quantify the uncertainty. In this case, we use the pointwise standard deviation of the
ensemble of models for this purpose. This is the standard deviation with respect to
the pointwise average of the same ensemble (i.e., at each position (x, y, z), standard
deviation and average of the shear wave velocities are computed using all retained
models). The pointwise average has been shown to closely resemble the true velocity
structure (Bodin & Sambridge, 2009; Zhang et al., 2018). This one-step algorithm is
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illustrated in Figure 5.5.
One-step transdimensional tomography involves the use of the reversible jump

Markov chain Monte Carlo method which deploys a variable model geometry, a
variable number of cells partitioning the model space, and an unknown noise
level in the input data. As such, the algorithm avoids the selection of fixed
parameterizations and any regularization in the inversion process. This makes the
algorithm less dependent on (often) subjective choices. Like many McMC algorithms,
the one-step transdimensional algorithm starts with a random initial model, which
is parameterized by Voronoi polyhedra with a randomly chosen number of Voronoi
cells. The shear wave velocity is also assigned to each Voronoi cell randomly. The
shape or geometry of each Voronoi cell is then defined by the surrounding cells.
We refer to Zhang et al. (2018) and chapter 4 for a detailed description of the 3D
Voronoi partitioning.

The next step of the algorithm (which yields the second sample of the Markov
chain) is to perturb the initial velocity model using one of the five possible
perturbation steps, including a move step, a velocity update step, a birth step, a
death step, and a noise update step. After the perturbation, we compute the shear
wave velocity on a fine rectangular grid so that the velocity can be used in the
forward function to calculate the frequency-dependent travel times. For a detailed
description of the workflow, we refer to chapter 4. These travel times are then
compared with the measured surface wave phase travel times. The new velocity
model is accepted or rejected based on the acceptance probability (see Bodin et al.,
2009; Zhang et al., 2018, for more details). Continuously sampling the model space
(i.e., proposing new vs (x, y, z)), we asymptotically approach the posterior probability
distribution of the model parameters. The pointwise average and standard deviation
of these samples are subsequently computed, yielding the most probable velocity
model and associated uncertainty, respectively. In order to remove the effects of
the initial velocity model on the posterior distribution, an initial set of samples is
discarded (usually referred to as the ’burn-in period’). In addition, to ensure the
collected samples are uncorrelated, samples are retained at only a certain level (e.g.,
every 200 iterations); this process is usually referred to as ’thinning’.

5.5.3 Application to the extended IMAGE data
Prior to our probabilistic inversion, we recovered an average 1D shear wave velocity
profile of the study area using a 1D least-squares inversion algorithm (Xia et al.,
1999, see also chapter 2 of this thesis). We used the mean phase velocities (the black
curve in Figure 5.3a) in this 1D least-squares iterative algorithm. See section 2.3 for
more information about the nonlinear least-squares inversion applied to the average
dispersion curve. We used a 1D velocity profile based on Tryggvason et al. (2002)
as the initial model for this inversion. The recovered shear wave velocity profile is
depicted in Figure 5.6a. The sensitivity kernels at different periods are also depicted
in 5.6b-c. It shows that the sensitivity decreases significantly below 15 km depth.
The recovered velocity is constant below 15 km depth, which is the most likely depth
of the Moho discontinuity (e.g., Weir et al., 2001; Jacoby et al., 2007). To include this
discontinuity, we sampled the subsurface down to 20 km depth (i.e., we populated it
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with Voronoi cells down to this depth). The half space below 20 km depth is assigned
the velocity of the bottom layer (i.e., the velocity of the deepest Voronoi at each grid
point), meaning that it is also laterally variable. Based on several studies focusing on
the study area (e.g., Weir et al., 2001; Du et al., 2002; Foulger et al., 2003), the upper
crustal shear wave velocity can reach 3.7 km/s and the lower crustal shear wave
velocity can reach 4.2 km/s. Consequently, we considered a uniform prior ranging
from 1.5 to 4.5 km/s for the shear wave velocity. The upper bound of 4.5 km/s was
chosen based on the fact that the shear wave velocity in the mantle has been shown
to not exceed 4.5 km/s below the RP (e.g., Du et al., 2002; Foulger et al., 2003).

Figure 5.6. Shear wave velocity profile obtained from a 1D least-squares inversion of the mean
phase velocities (the black curve in Figure 5.3a). The initial velocity profile is chosen based on
Tryggvason et al. (2002). (b-c) The sensitivity kernels at different periods are computed based
on the velocity model in (a) using the package developed by Wu et al. (2019).

Table 5.1 lists the modeling and inversion parameters used in the application of
the one-step transdimensional inversion to the surface wave data retrieved from the
RP ambient noise data. An arbitrary first model (the ‘initial model’) was chosen,
meaning that the number of Voronoi cells, their positions, and their velocities were
chosen randomly. We used a coarser grid to compute the frequency-dependent
travel times (forward modeling) while sampling the model space, and a finer grid
for calculating the post-burn-in pointwise average and standard deviation of the
sampled models.

Gaussian proposal (probability) distributions are used for drawing new velocity
values and new nuclei. The proposal width of these Gaussian distributions affects the
chance of a proposed model being accepted and consequently the transdimensional
algorithm’s convergence rate. Too narrow or too wide proposal distributions both
result in slower convergence rates. A narrow proposal distribution increases the
acceptance ratio but explores the parameter space more locally. By contrast, a wide
proposal distribution explores the space more widely but leads to lower acceptance
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Table 5.1. Modeling and sampling parameters used in the probabilistic one-step inversion of
the interferometric travel times.

Modeling and sampling Parameters Value

Model dimension (km)
120 (east-west)× 70
(north-south) × 20

Number of grid points in McMC sampling 121 × 71 × 41
Number of grid points for calculating post-burn-in

pointwise average
241 × 141 × 81

Valid range of shear wave velocity (km/s) 1.5–4.5
Valid range of noise hyper parameter a 10−5–1
Valid range of noise hyperparameter b 0–2

Proposal width for a move step. Md is the model
dimension.

0.07∗Md

Velocity proposal width (km/s) 0.3
Proposal width for a 10−3

Proposal width for b 10−2

Thinning level 200
Ray path update step 250

Number of sampling chains 20
Number of samples per chain 3×106

Number of burn-in samples per chain 1×106

ratios and as such also to a slower convergence rate (see chapter 4 of this thesis).
According to previous research, an effective proposal width results in a 25%–50%
acceptance rate (Bodin et al., 2009; Gelman et al., 1996). The width of the proposal
distributions listed in Table 5.1 are determined in a previous, purely synthetic study,
but using the same station configuration (chapter 4 of this thesis). This also applies
to the proposal widths of the noise hyperparameters (detailed in the paragraph
below).

We assumed a (non-informative) uniform prior probability distribution for the
model parameters. What we refer to as the ‘valid range’ in Table 5.1 defines,
for each parameter, the range for which the prior probability is non-zero. To
reduce computational costs, while still preserving the nonlinearity of the problem
we updated ray paths every 250 iterations. Thinning was achieved by retaining every
200th model. The noise was assumed to be uncorrelated and normally distributed,
with the variance being a frequency-dependent, linear function of travel time, i.e.,
with di representing the i th element of the data vector d (and hence travel time),
σi = adi +b. This linear relationship between travel time and travel time error is
usually assumed (e.g., Bodin et al., 2012; Galetti et al., 2017; Zhang et al., 2020). The
a and b are assumed to be unknown and therefore also estimated by the Markov
chain process (see, e.g., Bodin et al., 2012).

To sufficiently sample the posterior distribution, we used 20 independent McMC
chains, each sampling 3×106 samples from the posterior probability density of model
parameters given the frequency-dependent travel times. Figure 5.7 shows some
statistical measures of these 20 McMC chains. Different colors represent different
sampling chains. Noise hyper-parameters are presented for a single frequency as
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Figure 5.7. Chain statistics of the 20 McMC chains. Each color represents a different chain. (a)
Misfit, (b) number of cells, (c) the noise hyper-parameter a, and (d) the noise hyper-parameter
b. Histograms of the posterior distribution for the retained models for each parameter are
shown as insets on the left side of each panel in (b-d). These graphs are used to assess the
convergence of the sampler.

they vary by frequency. We observe that the misfit, the number of cells, and the
noise hyper-parameters stabilize after generating approximately 0.5×106 samples.
This suggests that the Markov chain has mixed sufficiently well and that the posterior
probability density is properly sampled. To be on the safe side, however, we
discarded the first million samples (usually referred to as the burn-in phase). The
rest of the samples are retained at every 200th iteration. Consequently, combined
the 20 chains lead to a total of 200,000 posterior samples to be retained. These are
subsequently used to compute pointwise mean and variance.

5.6 Tomographic results
We present the pointwise average of the retained post-burn-in samples as our final
tomographic solution and the pointwise standard deviation of retained samples as
the uncertainty related to the solution model. Several horizontal and vertical slices
of the posterior mean are presented in Figures 5.8-5.12. Only the most densely
sampled region of the study area is presented, which has lower uncertainties; an
area of approximately 38 km by 45 km (see the dashed black box in Figure 5.1 or
Figure A.2). The model uncertainties are presented in Appendix A.3. The uncertainty
for the whole area covered by the seismic stations (120 km by 70 km) is presented in
Figure A.2. Figures A.3-A.6 are the posterior standard deviations (i.e., uncertainties)
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associated with the posterior mean presented in Figures 5.9-5.12, respectively. As
expected, the areas with more seismic stations show lower uncertainty due to the
higher number of station-station paths in these areas. We have selected the most
reliable area based on these uncertainties.

Figure 5.8 shows the pointwise mean of the shear wave velocity beneath the
RP at six different depths (0.5, 3, 4, 6, 8, and 10 km). The coastline and the
three known HT fields of Reykjanes, Eldvörp-Svartsengi, and Krýsuvík (black dashed
polygons in Figure 5.1) are included in these figures for reference. It should be
noted that the HT polygons show the extent of the geothermal fields, according to
the resistivity values (the resistive core) at 1 km depth (as summarized in Flóvenz
et al., 2022). Significant velocity anomalies are observable in Figure 5.8. At shallow
depths (0.5 km; Figure 5.8a) the Eldvörp-Svartsengi and Krýsuvík HT geothermal
fields show high-velocity anomalies, the same applies to the Fagradalsfjall volcanic
system. The anomalies invert at depths of around 2 km. At a depth of 3-6 km (Figure
5.8b-d) the known HT fields appear as low-velocity anomalies, most pronounced at
Eldvörp-Svartsengi, Krýsuvík and in the vicinity of the Fagradalsfjall’s recent eruption
site (yellow star in Figure 5.8). The low-velocity at Reykjanes is most pronounced
from 6 to 8 km depth (Figure 5.8d-e). A striking NW-SE trending low-velocity
anomaly, almost perpendicular to the Krýsuvík volcanic system, is apparent in Figure
5.8c-f. At the depth of 4 km (Figure 5.8c) the low-velocity anomalies are small and
mainly limited to the HT fields of Eldvörp-Svartsengi and Krýsuvík. At 8 km depth
(Figure 5.8e), however, the area is dominated by low shear wave velocities, where the
NW-SE Krýsuvík anomaly is the strongest. A weak trend along the plate boundary
(N70°E) is observable in both the high-velocity of Figure 5.8a and low-velocity of
Figure 5.8b.

Differences are observed in the shape and size of the low-velocity patches with
respect to the known HT fields constrained by resistivity data at 1 km depth (black
dashed lines in Figure 5.8; Flóvenz et al., 2022). At depths of 6-8 km below the
Reykjanes HT field (Figure 5.8d-e), the low-velocity anomaly is smaller than the HT
field and placed slightly north of it. Within the Eldvörp-Svartsengi HT field, the
low-velocity anomaly is located right below the corresponding HT field at a depth
of 4 km (Figure 5.8c) with a comparable size. However, the size of the low-velocity
anomaly is greater than the corresponding HT field at the depth of 6 km and
stretching to the north. The Krýsuvík low-velocity anomaly is the most prominent,
i.e., both the largest and the strongest anomaly we observe on the RP, while it is
slightly smaller in size than the corresponding HT field. At 4-10 km depth it stretches
from the center of the HT field towards the southeast, almost perpendicular to the
volcanic system (Figure 5.8c-e).

In the vicinity of the Fagradalsfjall 2021-2023 eruption sites (yellow star in Figure
5.8), we observe low-velocity anomalies at 4-6 km depth at the boundaries of the
Eldvörp-Svartsengi and Fagradalsfjall volcanic systems. The Fagradalsfjall anomalies,
however, are all fairly weak. Finally, two significant low-velocity anomalies are
observed at 10 km depth (Figure 5.8f) indicated by black rectangles. Due to the
low density of ray paths at these two locations (see Figure 5.3c-d) we refrain from
interpreting these anomalies. Furthermore, the uncertainties of both anomalies are
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(a) (b)

(c) (d)

(e)
(f)

Figure 5.8. Pointwise averaged shear wave velocities (from the retained post-burn-in samples)
at six different depths: (a) 0.5 km, (b) 3 km, (c) 4 km, (d) 6 km, (e) 8 km, and (f) 10 km,
of the area with the highest resolution and the lowest uncertainties (38 km by 45 km). The
green polygons show the outlines of the volcanic systems. The dashed black polygons are the
known high-temperature geothermal fields. The black circle in (c) indicates the low-velocity
observed at the boundaries of the Eldvörp-Svartsengi and Fagradalsfjall volcanic systems. The
yellow star inside the Fagradalsfjall volcanic system is the approximate location of the 2021,
2022, and 2023 eruptions. Note that the color scale is not the same on all slices. Uncertainties
(posterior standard deviation associated with the posterior mean presented) are displayed in
Figure A.2.
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very high in Figure A.2e-f and Figure A.4d.
To better visualize the velocity structure of the RP focusing on the HT geothermal

fields, we present the recovered 3D velocity structure in three differently oriented
vertical cross-sections centering at the Reykjanes, Eldvörp-Svartsengi and Krýsuvík
HT fields, and the Fagradalsfjall eruption site, respectively, Figures 5.9-5.11. In each
figure, the first vertical cross-section is oriented along an east-west profile (B-B’), the
second along a profile striking N70°E (C-C’), approximately along the plate boundary,
and the third cross-section is along a profile striking N20°W (D-D’), approximately
perpendicular to the plate boundary. We observe, in general, across the whole
survey area, that the shear wave velocity increases with depth from about 2 km/s at
the surface to approximately 3.8 km/s at a depth of 5 km. A decrease in shear wave
velocity with depth (due to a large number of low-velocity anomalies) is generally
observed across the RP between depths of 4 and 8 km, but notably shallowest under
the HT fields.

Figure 5.9. Vertical cross-sections, centered at the location of the Reykjanes HT geothermal
field, of the pointwise averaged shear wave velocities of the retained post-burn-in samples.
(a) Map of the area showing the location of the three reference points, and the extent of
the known high-temperature geothermal fields of Reykjanes, Svartsengi, and Krýsuvík (dashed
black polygons), blue lines show the locations of the vertical cross-sections of the shear wave
velocities along an east-west profile (b), N70°E oriented profile (c), and N20°W oriented profile
(d). The yellow star is the approximate location of the 2021, 2022, and 2023 eruptions.
Uncertainties (posterior standard deviation associated with the posterior mean presented) are
displayed in Figure A.3.

Figures 5.9b-d present the vertical cross-sections centered at the location of
the Reykjanes power plant and hence centered at the Reykjanes HT geothermal
field (labeled ‘1’ in map view and on the cross-sections), The B-B’ cross-section
(Figure 5.9b) lies across the Reykjanes HT field and along the coast to the east. A
low-velocity patch is observed directly below the Reykjanes HT field. Between 6
and 8 km depths, it extends laterally towards the east, passing the area below the
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Eldvörp-Svartsengi HT field, the Fagradalsfjall volcanic system, and all the way east
of the Krýsuvík HT field. The C-C’ cross-section in Figure 5.9c transects all four
volcanic systems of Reykjanes, Eldvörp-Svartsengi, Fagradalsfjall, and Krýsuvík along
the plate boundary. It shows a similar low-velocity image as Figure 5.9b, but here
the Reykjanes anomaly is clearer, and also the connection to Eldvörp-Svartsengi to
the NE. A large low-velocity zone is visible below the Krýsuvík HT field (labeled
‘3’). Slightly lower velocities are also observed at 7-10 km depth at a longitude
of -22.3°W, located between ‘2’ and ‘3’, where the Fagradalsfjall volcanic system
lies. This anomaly seems weakly connected to the Krýsuvík low-velocity anomaly
(Figure 5.9c). The low-velocities seem to highlight a more or less continuous zone
along the plate boundary at ca. 6-10 km depth. The low-velocity patch below the
Reykjanes HT field is also observable in Figure 5.9d, cross-section D-D’, down to 8
km depth. Another significant low-velocity anomaly at 6-10 km depth can be seen
to the north-northwest of the Reykjanes HT field in Figure 5.9b.

Figure 5.10. As Figure 5.9, but centered at the location of the Eldvörp-Svartsengi HT geothermal
field. Uncertainties are displayed in Figure A.4.

Figure 5.10 presents the vertical cross-sections centered at the location of the
Svartsengi power plant, labeled ‘2’. A low-velocity anomaly is observable below the
Eldvörp-Svartsengi HT field on cross-section B-B’. This low-velocity zone appears at
around 3 km depth and extends to approximately 7 km depth, dipping from E to W
with an approximate lateral extent of 8 to 10 km (Figure 5.10b). This low-velocity
patch is visible in Figure 5.10c as well. A horizontal low-velocity anomaly at
around 6 km depth in Figure 5.10c is observed possibly linking the Reykjanes and
Eldvörp-Svartsengi HT fields at depth. Below the Krýsuvík HT field, the pronounced
low-velocity column (see Figure 5.9c) is again visible in Figures 5.10b-c. Below the
Fagradalsfjall volcanic system, the low-velocity patch observed at around 8 km depth
in Figure 5.9c is also visible in Figures 5.10b-c.
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Figure 5.11. As Figure 5.9, but centered at the location of the Krýsuvík HT geothermal field.
Uncertainties are displayed in Figure A.5.

Figure 5.11 presents the vertical cross-sections centered at the Krýsuvík HT field
(labeled ‘3’). A large and prominent low-velocity column is clearly observable below
the Krýsuvík HT field at roughly 5-12 km depth in all three vertical cross-sections.
Figure 5.11d also shows clearly that the pronounced low-velocity anomaly is
extending to the southeast and it is the shallowest of all three, reaching up to about
3 km depth, just southeast of ‘3’. Due to the 2021-2023 volcano-tectonic unrest on
the RP, we also present the vertical cross-sections centered at the location of the
recent eruption site in Figure 5.12. It should however be noted that the data used in
this study are from 2014-2015.
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Figure 5.12. As Figure 5.9, but centered at the location of the 2021-2023 eruptions site, within
the Fagradalsfjall volcanic system. The yellow star is the approximate location of the 2021,
2022, and 2023 eruptions. The black circles in (b-c) indicate the low-velocity observed below
the Fagradalsfjall volcanic system. Uncertainties are displayed in Figure A.6.

To summarise the most important observations, which will be discussed in the
next section:

• In general, from the top (Earth’s surface) to the bottom (20 km) of the model,
the pointwise average of the sampled shear wave velocity increases, but a
decrease in velocity is observed within the depth range of 5 to 8 km.

• Close to the surface within and around the known HT geothermal fields, and
somewhat NE-SW along the fissure swarms of the RP, relatively high-velocity
patches are observed (Figure 5.8a). At depths greater than 3 km, these higher
velocities invert (decrease) to relatively low-velocities (in comparison to shear
wave velocities in the same horizontal plane).

• Low-velocities are dominant at depths of 6-8 km, but beneath the HT fields,
the low-velocities rise up to 3-4 km depth.

• The size and location of these low-velocity bodies coincide overall fairly well
with the extent of the HT geothermal fields derived from electrical resistivity
studies, despite deviating somewhat.

• A large and strong low-velocity anomaly is observed below the Krýsuvík HT
geothermal field, and extends down to around 15 km depth. This pronounced
anomaly stretches from the center of the HT field towards the southeast from
a depth of 3 km.

• A low-velocity zone is observed at the northwest border of the Fagradalsfjall
volcanic system, at a depth of approximately 4-5 km (Figure 5.8c-d). This
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low-velocity slopes down to below the recent eruption site at a depth of 7-9
km (Figure 5.12b-d).

• The shear wave velocity below 15 km depth is almost constant with velocities
above 4.2 km/s.

5.7 Discussion
In this section, we provide an interpretation of the pointwise averaged shear wave
velocities, qualitatively comparing our final model to other geophysical models, and
relating it to the existing geological and geophysical literature and interpretation of
the RP. Prior to interpreting the observed shear wave velocities, we consider our
models’ resolution. Resolution tests using synthetic surface wave responses for the
RP and the extended IMAGE seismic network station configuration are presented in
chapter 4. In that study, we concluded that for the area of interest (black box in
Figure 5.1), the transdimensional algorithm is able to recover quite well a 3D velocity
model with blocks of 5 by 5 by 2.5 km (in the north, east, and depth directions,
respectively). This suggests that structures of that size (or larger) are well resolved.

5.7.1 High-velocity anomalies
The first observation is the relatively high shear wave velocities close to the
surface around the location of the known HT geothermal fields (compared to the
surrounding areas; Figure 5.8a). This is in particular valid for Eldvörp-Svartsengi and
Krýsuvík, where the anomalies also show a weak trend along the fissure swarms;
whereas the anomaly in Reykjanes is very small. It is worth noting that the
Reykjanes HT field is much smaller in areal extent than the Eldvörp-Svartsengi and
Krýsuvík HT fields based on the resistivity studies. Our findings are consistent
with a high-velocity zone found by Adelinet et al. (2011) around the Krýsuvík HT
field at a depth of 2 km. Similarly, Jousset et al. (2016) observed high shear wave
velocities for the Reykjanes and Eldvörp-Svartsengi HT fields at a depth of 200 m. An
explanation for the relatively high-velocity zones near the surface at the location of
the HT geothermal fields could be the intense mineral alteration (caused by higher
temperatures) in the uppermost 1-2 km, filling up pores and fractures which in turn
increases the seismic velocities in those areas near the surface.

5.7.2 Brittle-ductile transition
The second notable observation is the horizontally extended velocity decrease
between 5 and 8 km depth dominating the whole area (Figures 5.9-5.12b-c), in
comparison to higher velocities at greater depth. This low-velocity anomaly domes
up to a depth of 3 km below all the known HT fields. This kind of low shear wave
velocity anomaly is commonly observed within volcanic systems (Takei, 2017), and
commonly attributed to partial melt (e.g., Lees, 2007). However, some geochemical
observations (e.g., McKenzie, 2000) suggest that the melt fraction is too small in an
area with partial melt (~0.1%) to have the shear wave velocity drop significantly
(Priestley & McKenzie, 2006; Takei, 2017). Additionally, the temperature at the
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location of low-velocity anomalies within the volcanic systems is sometimes lower
than the solidus temperature of the rocks. For example, the solidus temperature of
basalt (i.e., the main composition of rocks in RP’s crust) exceeds 1000 °C (Chen et al.,
2017), whereas the temperature is estimated to be around 600°C at a depth of 6-7
km on the RP (Violay et al., 2012; Bali et al., 2020), representing the brittle-ductile
transition (BDT) zone, evidenced by the IDDP-2 drilling.

Recent studies suggest that these low shear wave velocity anomalies are more
likely due to the combination of high temperature and an-elasticity (Priestley &
McKenzie, 2006, 2013; Karato, 2014; Takei, 2017). An-elasticity makes the effect
of increasing temperature significant by decreasing the shear wave velocity rather
abruptly (Takei, 2017). In our case, the an-elasticity is likely associated with the
known BDT zone, between the upper crust and the lower crust, which is estimated
to be at around 6-7 km depth on the RP, doming up to 3-5 km depth below the
HT geothermal fields (Blanck et al., 2020; Gudnason et al., 2020; Flóvenz et al.,
2022). The BDT depth range coincides well with our observation of a general
velocity decrease within the depth range of 5 to 8 km, suggesting that an-elasticity
and elevated temperatures also play a significant role in the shallow onset of the
velocity-decrease at around 3 km depth below the HT fields.

5.7.3 Magma accumulation
Recently, Caracciolo et al. (2023) presented an interesting conceptual model for the
magma plumbing architecture on the RP, based on petrochemical analysis of the lava
flows of the 800-1240 AD Fires on the Peninsula. This was the last volcano-tectonic
episode prior to the 2021-2023 Fagradalsfjall episode, with eruptions within all the
volcanic systems of the RP, except Fagradalsfjall. Caracciolo et al. (2023) find that
during the 800-1240 AD Fires, magma accumulation occurred at around 7-10 km
depth below the Reykjanes, Eldvörp-Svartsengi, and Krýsuvík systems, a controlling
factor for volcanic eruptions within these systems. However, deeper plumbing
structure applies to the Fagradalsfjall system, where petrochemical analysis of the
2021 magma shows that it was tapped directly from near-Moho reservoirs at 15-20
km depth, with little or no stalling in the uppermost crust prior to eruptions
(Halldórsson et al., 2022).

The depth extent of where the low-velocity anomalies are intensified in our
model, at a depth of 7-10 km between the Reykjanes and Eldvörp-Svartsengi HT
fields and at a depth of 5-12 km depth below the Krýsuvík HT field (vertical cross
sections along the plate boundary in Figures 5.9-5.11c), is in good agreement with
the magma plumping architecture suggested by Caracciolo et al. (2023).

5.7.4 HT geothermal fields
Krýsuvík volcanic system

The largest and most significant seismic feature we observe is related to the Krýsuvík
volcanic system. Krýsuvík hosts an unharvested HT geothermal system, which heat
source is considered to be dyke intrusions (Arnórsson et al., 1976; Arnórsson, 1987;
Hersir et al., 2020a), perhaps also indicated by an indicative gravity high in the
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area (Guðmundsson et al., 2004). The relatively wide vertical low-velocity column
we observe seems to be centered 4 km west of Lake Kleifarvatn (Figure 5.1). This
coincides well with the results of a recent electrical resistivity study in the area,
which indicated a large conductive body at approximately 2 km depth in the same
area (Hersir et al., 2020a). The center of this conductive body is labeled ’3’ in
Figures 5.9 - 5.11, where it is also evident that the Krýsuvík HT field is the largest out
of the three known HT fields, as determined by both resistivity studies and ANSWT.

The conductive body of Hersir et al. (2020a) is located near the central part of
the Krýsuvík geothermal area, where its body concurs horizontally with the source
of inflation and deflation observed in Krýsuvík since 2009 with both GPS and InSAR
measurements, modeled at 4-5 km depth (Michalczewska et al., 2012; Flóvenz et al.,
2022). Adelinet et al. (2011) suggest the presence of a gaseous or supercritical fluid
at around 6 km depth, based on the analysis of P- and S-wave tomographic results.
Hobé et al. (2021) also predict a large supercritical reservoir below 5 km depth.

The pronounced low-velocity anomaly extends from the Krýsuvík HT area to
the southeast almost perpendicular to the Krýsuvík fissure swarm. Anomalies
perpendicular to the main geological structures are not uncommon within HT fields
in Iceland. This is observed in Reykjanes (e.g., Khodayar et al., 2018), Krafla
(e.g., Árnason, 2020) and in Hengill (e.g., Hersir et al., 1990; Árnason et al., 2010;
Obermann et al., 2022). In Hengill, a resistivity low, a zone of intense geothermal
surface manifestations, and a magnetic low, all transect the Hengill volcanic system.
In Krýsuvík, our observed low-velocity anomaly coincides fairly well with a vague
zone of geothermal surface manifestations as well as trends of low resistivity
structure caused by hydrothermal alteration (Hersir et al., 2020a).

Fagradalsfjall volcanic system
The Fagradalsfjall volcanic system is of enhanced interest due to the 2021-2023
volcano-tectonic rifting event (e.g., Fischer et al., 2022; Halldórsson et al., 2022;
Pedersen et al., 2022; Sigmundsson et al., 2022). The Fagradalsfjall volcanic system
differs in both size and in terms of eruption frequency compared to other volcanic
systems on the RP (Sæmundsson et al., 2020). Most of the volcanic systems have
experienced volcanism and rifting events every 800–1000 years for the last 4000 years,
while Fagradalsfjall has not experienced volcanism for over 6000 years (Sæmundsson
et al., 2020). According to the literature (e.g., Flóvenz et al., 2022), there is no
known HT geothermal field within the Fagradalsfjall volcanic system (Figure 5.1),
but notably, no resistivity survey has been carried out nor have exploratory wells
been drilled in the area. At this point in time, there is not much published on the
geophysics of the Fagradalsfjall volcanic system.

We observe a low-velocity anomaly at the depth of 4 km at the boundaries of the
Eldvörp-Svartsengi and Fagradalsfjall volcanic systems, indicated by a black circle in
Figure 5.8c. The anomaly extends to greater depths and towards the northwest in
Figure 5.8d with a perpendicular direction to the plate boundary. At the depth of
4 km (Figure 5.8c), this low-velocity anomaly is located around 1 km northwest of
the 2021, 2022, and 2023 Fagradalsfjall eruption sites indicated by the yellow star
(Pedersen et al., 2022). Consequently, it is plausible that this low-velocity anomaly
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might be related to the recent eruptions in the area, perhaps aided by the suggested
crustal weakening under tension at this location (Fischer et al., 2022). It should,
however, be noted that the seismic data used in our ANSWT are from 2014-2015.

The vertical cross sections at the location of the recent eruptions sites
(Figure 5.12), display a rather high-velocity patch between 3 and 6 km depth, while
the velocity decreases between 7 and 11 km depth. The seismicity within the
brittle part of the RP crust between 2017 and 2022, is mostly confined to 2-6 km
depth (Fischer et al., 2022; Ágústsdóttir et al., 2023) and, therefore, lies within the
same depth range as the high shear wave velocity patch below Fagradalsfjall. The
deep long-period earthquakes below Fagradalsfjall at 8-12 km depth observed by
Greenfield et al. (2022) lie within the ductile part of the crust and are likely due to
higher strain rates (fluid or gas movements). These deep earthquakes coincide with
the low shear wave anomaly we observe between longitudes -22.3°W to -22.2°W at a
depth of 7-11 km indicated by the black circles in Figure 5.12b-c.

Are there links between the HT fields on the RP?
In a number of our figures, there are hints of potential links between the HT fields
on the RP (Figures 5.8-5.11). However, these could also reflect variations of the BDT
zone, and the way cross-sections are plotted. In some cases, we are likely imaging
the BDT zone and how it coincides in a location with the low shear wave anomalies
below the HT fields, as in Figure 5.9b, but in other cases, we are likely imaging
potential links, e.g., between Krýsuvík and Fagradalsfjall in Figures 5.10c and 5.11c.
At the depth of 8 km (Figure 5.8e), the low-velocity (< 3.6 km/s) can be observed to
connect all the volcanic systems, and, therefore, the HT fields too.

It is not unreasonable that all or many of the volcanic systems on the RP may be
interconnected, as they have all erupted during the same rifting episodes over the
last 4000 years, except Fagradalsfjall (Sæmundsson et al., 2020). The Sæmundsson
et al. (2020) dating of Holocene lava flows has shown that during rifting episodes
over the last 4000 years, the volcanic activity has affected each system individually,
with the activity jumping successively from east to west. Furthermore, Flóvenz
et al. (2022) suggest that geothermal fluids can move along the BDT zone between
HT fields, and elevated seismicity in one RP volcanic system also affects the other
systems (Sigmundsson et al., 2022).

5.7.5 The Moho discontinuity
The Moho is the boundary between the crust and the mantle of the Earth. It is
estimated to be at a depth of around 8-20 km below the RP, most likely at 15 km
depth (e.g., Weir et al., 2001; Jacoby et al., 2007). Below the Moho depth, the shear
wave velocity is almost constant and estimated to be around 4.3-4.5 km/s. Looking
at the vertical cross sections of Figures 5.9-5.12, we see an almost constant velocity
below 15 km depth. Assuming a velocity of 4.3 km/s around the depth of the Moho,
the Moho depth appears to vary a bit in the study area but can approximately be
considered to be at a depth of 15 km.



5

102 5. 3D FIELD DATA APPLICATION

5.7.6 Qualitative comparison of shear wave and electrical resistivity images
Finally, we compare our shear wave images below the Krýsuvík and the Reykjanes
HT geothermal fields with electrical resistivity images obtained in two recent studies
(Hersir et al., 2020a; Karlsdóttir et al., 2020). A clear (qualitative) correlation between
low shear wave velocities and low resistivities in the uppermost 2-3 km can be
observed (Figures 5.13a-d, Figures 5.14a-b). Interestingly, a similar structure can be
inferred from both the resistivity and seismic images, i.e., some sort of up-doming
from 4-6 km depth to 1-2 km depth (Figures 5.13a,c, Figures 5.14a-b). Both methods
likely reflect a heat up-flow, although they map different physical parameters.

(a) (b)

(c) (d)

Figure 5.13. Vertical cross-sections transecting the Krýsuvík volcanic system; comparing the
electrical resistivity (a, b) and the recovered shear wave velocity (c, d). The two electrical
resistivity profiles (a, b) show hydrothermal alteration and measured temperature in wells close
to the cross-sections (taken from Hersir et al., 2020a).

Our seismic results are smoother and provide less detail, particularly in the top
2 km. This is inherent to the adopted probabilistic method, the chosen ray-based
travel time approach, and the frequencies of the surface waves we used in this
study, which are limited to 0.1-0.5 Hz. Still, the shear wave velocities are low and
show a weak up-doming in agreement with the up-doming shallow low resistivity.
As we discussed in Figure 5.3, our data are mostly sensitive to shear wave velocities
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at depths between 3 and 8 km. For a higher resolution and hence more details
of the top 2 km of the subsurface, higher frequency surface waves would need to
be included in our probabilistic inversion. At higher frequencies, residual timing
errors and interference from higher modes prevented us from identifying reliable
phase velocities for the fundamental mode. Nevertheless, the electrical resistivity
cross-sections and the corresponding shear wave velocity cross-sections appear to
be roughly consistent with each other, showing similar broad features.

Figure 5.13a shows well the up-doming of the low resistivity at 6-9 km along the
cross-section well with the up-doming of low-velocities on Figure 5.13c, as well as
the high resistivity captured by higher shear wave speeds. Figure 5.13b is simpler,
here it is more clear that the central up-doming of low resistivity (at 5-7 km distance
along the cross-section) can be associated with up-doming of lower-velocities in
Figure 5.13d at the same location. It should be noted that the 3D resistivity
models are somewhat non-unique. It is, however, encouraging that the two different
geophysical approaches give comparable results. Sánchez-Pastor et al. (2021) also
observed a correlation between resistivity and shear wave velocity within the Hengill
HT geothermal field. The added benefit of this study is that it covers a large area,
the entire RP, and has a larger depth of investigation. It can, therefore, give good
first indications on where to find geothermal heat up-flow.

(a) (b)

Figure 5.14. Cross-section transecting the Reykjanes volcanic system; comparing the electrical
resistivity (a) and the recovered shear wave velocity (b). The electrical resistivity profile (a)
shows hydrothermal alteration in wells close to the cross-section, the inset figure shows the
location of the cross-section (taken from Karlsdóttir et al., 2020).

Figure 5.14a shows a resistivity profile transecting the Reykjanes volcanic system,
taken from Karlsdóttir et al. (2020). The corresponding shear wave velocity profile
is shown in Figure 5.14b. A good (qualitative) correlation between the low-velocities
and the resistivity structure is observed. Similar to Figure 5.13, the shear wave
velocity profiles are smoother than the resistivity profiles but still capture the
up-doming of the low shear wave velocity, with higher resistivity and higher shear
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wave velocities on either side.

5.8 Conclusion
We used ambient noise cross-correlations between 79 seismic stations from the
extended IMAGE seismic network on- and off-shore the Reykjanes Peninsula (RP) to
obtain a (relatively) high-resolution shear wave velocity model of the RP. Actually,
this is the first tomographic model of the whole RP which is based on both
on- and off-shore seismic stations. We first extracted fundamental mode phase
velocity dispersion curves using (frequency-dependent) phase travel times in the
frequency range of 0.1 to 0.5 Hz, resulting in the best-resolved depths at 2-8 km
depth. Subsequently, we used a recently developed one-step transdimensional McMC
algorithm to recover the posterior probability distribution of the possible 3D shear
wave velocity models. In general, we observe that the velocity increases from the
Earth’s surface down to 20 km depth of the pointwise averaged shear wave velocity
model. At 5 to 8 km depth, a decrease in velocity is observed, consistent with the
brittle-ductile transition (BDT) on the RP. Moreover, at 7 km depth, all the volcanic
systems are on some level connected by a relatively low-velocity anomaly.

Interestingly, the velocity reduction domes up to 3 km depth below all known
HT geothermal fields on the RP, i.e., Reykjanes, Svartsengi, and Krýsuvík (Figure
5.1). This correlates well with previously recorded up-doming of the BDT below the
same HT fields. We suggest that the observed low-velocity anomalies are due to
the an-elasticity of the BDT zone, combined with the high temperatures of the HT
fields, although some amount of partial melt can not be excluded. The observed
low-velocity anomalies below Reykjanes and Eldvörp-Svartsengi are relatively small
but still significant, while the low-velocity anomaly below Krýsuvík is much larger.
The Krýsuvík low-velocity anomaly extends almost perpendicular to the volcanic
system towards the southeast, coinciding with geothermal surface manifestations
and the resistivity structure. More interestingly, a low-velocity anomaly is observed
at 3-6 km depth about 1 km northwest of the recent Fagradalsfjall eruption site.

The (qualitative) correlation of our recovered shear wave velocities with resistivity
studies conducted on the RP, suggests that the one-step transdimensional algorithm
has successfully recovered the shear wave velocity structure below the RP. Our
shear wave velocity model is smoother and contains fewer details than the recent
resistivity studies, especially near the surface (< 2 km depth), due to the limited
frequency range of the fundamental mode surface waves used, but it captures well
the same broad features of the heat up-flow. Considering that this algorithm needs
less user-defined (and hence somewhat subjective) parameters, it has great potential
to become a routine tool for surface wave seismic tomography.
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Conclusions

In this thesis, we investigate surface wave inversion utilizing a Bayesian inference
algorithm usually referred to as Transdimensional Markov chain Monte Carlo
(McMC). Progressing from 1D to 3D applications, our findings underscore the
adaptability, efficiency gains, and interpretability inherent in the transdimensional
McMC surface wave inversion approach.

In Chapter 2, we look into the application of the transdimensional McMC in a
nonlinear 1D problem setup, specifically focusing on dispersion curve inversion. We
provide a comprehensive comparison with both the conventional McMC approach
(utilizing fixed parametrization) and a nonlinear iterative least-squares approach. The
conventional McMC method reveals inefficiencies, sensitivities to parameters, and
limitations in exploring expansive model spaces. The least-squares method requires
meticulous parametrization of the model space, appropriate and sometimes slightly
arbitrary regularization to address non-uniqueness, and a sufficiently accurate initial
guess to avoid local minima. In contrast, the transdimensional McMC algorithm
demonstrates self-parametrization, adaptability in terms of cell density, and inherent
estimation of uncertainty. Application to local, noise-derived interferometric surface
wave dispersion curves on the Reykjanes Peninsula shows automatic and localized
smoothing, demonstrating superior adaptability compared to the uniform smoothing
inherent in regularized least-squares inversions.

In chapter 3, we explore the potential of straight fiber Distributed Acoustic
Sensing (DAS) data in conjunction with a 2D transdimensional McMC algorithm
to recover a reliable 2D shear wave velocity section. Successful implementation
involves obtaining laterally varying, local phase velocities through multi-offset phase
analysis and applying the transdimensional algorithm to simultaneously invert all
available dispersion curves. Notably, an interface at approximately 20 meters depth
exhibits high uncertainty, consistent with observed abrupt changes in borehole-log
derived shear wave velocities at that depth. The resulting shear wave velocity section
displays smooth lateral variations, influenced by the smoothing behavior inherent in
the employed multi-offset phase analysis. To enhance the resolution in the shallow
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near-surface, we recommend retrieving higher surface wave modes for inversion and
employing advanced techniques like common midpoint cross-correlation (CMPCC)
to improve the quality of phase velocity versus offset and extend it to higher
frequencies.

Chapters 4 and 5 focus on the application of the one-step transdimensional
algorithm to noise-derived interferometric Rayleigh waves to recover the 3D shear
wave velocity of the Reykjanes Peninsula (RP). We modify an existing one-step
tomographic approach to directly recover shear wave velocity from dispersion curves
and successfully apply the algorithm to synthetic and field data from the RP
(Chapters 4 and 5, respectively). The resulting high-resolution shear wave velocity
model is the first tomographic model covering the entire RP, and is based on
ambient noise recordings of both on- and off-shore seismic stations. While our
model is smoother than electrical resistivity models and contains fewer details than
recent resistivity studies, especially near the surface (< 2 km depth), due to the
limited frequency range of the fundamental mode surface waves used, it captures
the same features in terms of geology and thermal structure. The added benefit of
our 3D shear wave velocity model is its extensive coverage of the entire RP, providing
valuable initial indications for locating geothermal heat flow near the surface.

The transdimensional algorithm presented in this study is promising for
advancing surface wave inversion applications. Nevertheless, there is always room for
improvement. Firstly, despite the flexibility and adaptability of the transdimensional
McMC, there is room for improvement in terms of computational cost. The
integration of the transdimensional McMC with the Hamiltonian Monte Carlo has the
potential to significantly reduce computational time. Further progress is also possible
through the use of variational inference. Secondly, defining the proposal width
of a move can pose challenges, requiring a deep understanding of the algorithm.
The incorporation of adaptive McMC could alleviate this difficulty, enhancing the
algorithm’s user-friendliness. Moreover, the performance of the McMC may improve
through the use of variational inference. Lastly, the current, rather qualitative
assessment of algorithm convergence can benefit from a quantitative approach.
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Appendices

A.1 Noise hyperparameter conditional posterior probability
We need to derive the noise hyperparameter conditional posterior distribution.
Applying Bayes’ theorem, the posterior distribution (p(a|d,m)) is proportional to the
product of the likelihood (p(d|a,m)) and the prior (Gelman et al., 2014):

p(a|d,m) ∝ p(d|a,m)p(a), (A.1)

where the prior on a, p(a), is assumed to be uniform (within bounds). Here,
p(d|a,m) can be replaced by the likelihood function 3.6 for a specific a and the
known model m. It is worth mentioning that, m is treated as a known constant in
Equation A.1, not a parameter that varies. The likelihood and the prior depend on
a, and the hyperparameter posterior distribution is updated based on the observed
data d and the known model m.

Inserting the likelihood function (conditional on m in Equation A.1 gives:

p(a|d,m) ∝
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By substituting σi j = aσ′
i j from Equation 3.19 and some algebraic manipulation,

Equation A.2 can be rewritten as:
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This equation can be rewritten as:

p(a|d,m) = Lτα−1 exp(−βτ), (A.4)

107



A

108 A. APPENDICES

where,
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A.2 Rayleigh wave phase velocity retrieval
Rayleigh waves are interface waves that travel along the free surface of a solid
medium. They become dispersive if the medium’s shear wave velocity varies (usually
increases) with depth. This dispersive behavior means that at different frequencies,
Rayleigh waves propagate along the Earth’s surface at different velocities. In
other words, their wave speed is frequency-dependent in a vertically heterogeneous
medium. Consequently, each phase reaches the receiver at a different time.
Extracting frequency-dependent travel times from a set of interferometric surface
waves traversing a region, therefore allows one to estimate the shear wave velocity
structure of that region.

The theory underlying seismic interferometry predicts that time-averaged cross-
correlations of long recordings of ambient seismic noise may coincide with the
surface wave part of the medium’s Green’s function (Wapenaar & Fokkema, 2006).
This implies that these cross-correlation functions can be used to extract frequency-
dependent phase or group travel times. These travel times may subsequently be
used to solve a tomographic inverse problem, resulting in 3D shear wave velocity
images of the subsurface. This has been demonstrated at various scales and in
different contexts (Shapiro & Campillo, 2004; Weemstra et al., 2013). At the same
time, the limitations have also been pointed out by various authors (e.g., Weaver
et al., 2009; Tsai, 2009). For a detailed derivation of the relation between the surface
wave Green’s function and the time-averaged cross-correlation, including underlying
assumptions and limitations, we, therefore, refer to Halliday & Curtis (2008).

Assuming a lossless, laterally invariant subsurface, and ignoring higher order
modes (i.e., only considering the fundamental mode), the real part of the surface
wave Green’s function (frequency-domain representation) coincides with a zeroth
order Bessel function of the first kind (J0(α); e.g. Boschi et al., 2013). Here,

α= 2π f r

cp( f )
, (A.5)

where f is frequency, r the station-station distance, and cp( f ) the (Rayleigh wave)
phase velocity at frequency f . The latter function is the sought-for phase velocity
dispersion curve. The above implies that the dispersive character of the medium
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between two specific stations, which are separated by a distance r , can be estimated
by equating the zeros of the real part of the time-averaged cross-correlation to the
zeros of J0(α). Because the amplitudes of interferometric surface wave responses
may suffer from both processing artifacts and violated conditions, equating the zeros
is preferred over equating the real part in its entirety (Ekström et al., 2009; Weemstra
et al., 2014, 2015).

For a specific station couple separated by distance r , the (average) phase velocity
along the ray connecting the two stations is estimated as follows. At each frequency
f for which the real part of the cross-spectrum coincides with zero, a set of candidate
phase velocities cp j ( f ) ( j = 1,2, ...) exists. These cp j are obtained by equating the
zeros of J0(2π f r /cp( f )), for all cp( f ), to the cross-spectrum’s zeros. This is done for
each zero separately. Figure A.1 illustrates this process for three different station
couples. The top row depicts the computed time-averaged cross-correlations. The
middle row presents the real part of the cross-spectrum, which is interpolated using
cubic splines, where the zeros are represented as solid red dots. For each zero,
the different candidate phase velocities cp j are shown as open blue circles in the
bottom row.

Figure A.1. Examples of picked phase velocities for three station couples with station-station
distances of (a) 25.1 km, (b) 50 km, and (c) 99 km. The top row shows the time-averaged
cross-correlation of the corresponding station couple filtered between 0.1 and 0.5 Hz. The middle
row shows the real part of the cross-spectrum, interpolated using cubic splines. The bottom
row shows candidate phase velocities cp j for each zero (open blue dots). The picked, and
subsequently interpolated dispersion curve, is depicted as a red line. The red plus signs depict
phase velocities at an a-priori defined set of frequencies. The corresponding data and codes are
accessible on https: // doi. org/ 10. 4121/ 3c97b1c8-1736-495d-a2f9-bd26dc958575 .

https://doi.org/10.4121/3c97b1c8-1736-495d-a2f9-bd26dc958575
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After calculating the candidate phase velocities for each station couple and zero,
the next step is to determine the set of phase velocities (i.e., the non-interpolated
dispersion curve) that best represents the true phase velocities. To that end, surface
wave dispersion associated with a reference model is often used (for example the
preliminary reference Earth model PREM; Dziewonski & Anderson, 1981). This curve
(yellow line in Figure A.1) is used to identify the start of the dispersion curve at
the lower end of the spectrum, such as 0.05 to 0.2 Hz. At higher frequencies, the
reference curve flattens out because the PREM does not account for (small-scale)
near-surface structure. By imposing a constraint that our picked curve should
be continuous, we stop the picking process at the frequency where there is a
jump or discontinuity in phase velocity between adjacent frequencies. (For details
regarding the picking algorithm we refer to Kästle et al., 2016). The rationale behind
this is the following: the signal-to-noise ratio (SNR) of the interferometric surface
waves decreases with increasing frequency, which may result in such jumps. This
decrease in SNR with increasing frequency can be due to (i) stronger attenuation at
higher frequencies, (ii) stronger scattering at higher frequencies (and hence a less
pronounced ballistic surface wave), (iii) cross-modal terms (Halliday & Curtis, 2008),
or (iv) a combination of these.

The solid blue circles in the bottom row of Figure A.1 are the picked phase
velocities. By means of a cubic spline algorithm, we interpolate those points to
obtain phase velocities at an a-priori defined set of discrete frequencies fi (i = 1,2, ...).
The latter is the same for each station couple and hence facilitates a tomographic
inversion. The interpolation result is the red line; red plus signs indicate the selected
phase velocities at the a-priori defined frequencies. Importantly, however, not all of
these selected phase velocities are deemed reliable. They need to fulfill the criteria
that the associated station-station distances exceed one and half a wavelength (at the
a-priori defined frequency). This wavelength is computed using the reference phase
velocity curve. For closely separated stations, in particular, this implies that several
selected phase velocities at the lower end of the frequency spectrum are discarded.
The reason to discard phase velocities associated with closely separated stations (in
terms of wavelengths) is that these phase velocities are highly sensitive to deviations
from a uniform noise illumination pattern (Weaver et al., 2009; Froment et al., 2010).
Green circles in Figure A.1 show the phase velocities that are deemed reliable and
used in the inversion.

A.3 Model uncertainties corresponding to the Reykjanes Peninsula
shear wave velocity model

As we discussed in the text, quantifying solution uncertainties is an advantage of
probabilistic inversion algorithms. Here, we present the posterior standard deviation
(i.e., a measure of uncertainty) with respect to the posterior means (pointwise
average of the retained post-burn-in samples ) provided in chapter 5. Figures A.2-A.6
present the posterior standard deviation with respect to the posterior means
presented in Figures 5.8-5.12. Figure A.2 shows horizontal slices of the posterior
standard deviation at the same depths as Figure 5.8, but for the (greater) area that
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was covered by all stations. Clearly, the uncertainties are lower in the areas that have
a high station density (indicated by the black dashed box in Figure A.2). It is the
(pointwise) average of the ensemble of shear wave velocities inside this black box
that is discussed and (geologically) interpreted in Section 5.7.

(a) (b)

(c) (d)

(e) (f)

Figure A.2. Pointwise standard deviation (from the retained post-burn-in samples) at six
different depths: (a) 0.5 km, (b) 3 km, (c) 4 km, (d) 6 km, (e) 8 km, and (f) 10 km. The area
with the highest resolution and the lowest uncertainties (40 km by 45 km) is indicated by the
dashed black box.
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Figure A.3. Vertical cross-sections, centered at the location of the Reykjanes HT geothermal
field, of the pointwise standard deviation of the retained post-burn-in samples, corresponding
to Figure 5.9. (a) Map of the area showing the location of three reference points, known
high-temperature geothermal fields of Reykjanes, Svartsengi, and Krýsuvík (dashed black
polygons), blue lines show the locations of the vertical cross-sections of the shear wave velocities
along an east-west profile (b), N70°E oriented profile (c), and N20°W oriented profile (d).



A.3. RP MODEL UNCERTAINTIES

A

113

Figure A.4. As Figure A.3, but centered at the location of the Eldvörp-Svartsengi HT geothermal
field, corresponding to Figure 5.10.

Figure A.5. As Figure A.3, but centered at the location of the Krýsuvík HT geothermal field,
corresponding to Figure 5.11.
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Figure A.6. As Figure A.3, but centered at the location of the 2021-2023 eruptions site, on the
Fagradalsfjall volcanic system, corresponding to Figure 5.12.
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