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Adaptive Optimization for Active Queue Management supporting TCP
Flows

Simone Baldi, Elias B. Kosmatopoulos, Andreas Pitsillides, Marios Lestas, Petros A. Ioannou, and Yiming Wan

Abstract— An adaptive decentralized strategy for active
queue management of TCP flows over communication networks
is presented. The proposed strategy solves locally, at each link,
an optimal control problem, minimizing a cost composed of
residual capacity and buffer queue size. The solution of the
optimal control problem exploits an adaptive optimization algo-
rithm aiming at adaptively minimizing a suitable approximation
of the Hamilton-Jacobi-Bellman equation associated with the
optimal control problem. Simulations results, obtained by using
a fluid flow based model of the communication network and
a common network topology, show improvement with respect
to the Random Early Detection strategy. Besides, it is shown
that the performance of the proposed decentralized solution is
comparable with the performance obtained with a centralized
strategy, which solves the optimal control problem via a central
unit that maintains the flow states of the entire network.

I. I NTRODUCTION

The Transmission Control Protocol (TCP), used in many
communication networks and over the Internet, controls the
rate at which packets are sent from sources across the
network, using end-to-end implicit feedback, mainly through
inferred packet loss. Due to the ever increasing use of the
Internet, existing TCP congestion controls based on Jacobson
[1] and its variants (e.g. Tahoe, Reno, New Reno, etc...)
are increasingly becoming ineffective. Newer variants of
the TCP protocol advocate the Active Queue Management
(AQM) protocol responsible for marking/dropping packets
at the router level (e.g. RED-Random Early Detection [2])
in order to signpost the state of congestion of the network
early, or even provide explicit control feedback (Explicit
Congestion Notification), based on the router state. The
AQM schemes implemented in the routers of communication
networks supporting TCP flows can be modeled as a feed-
back control system, and the problem of finding an efficient
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marking strategy that minimizes network congestion is recast
as a control design problem.

The design and control of modern communication net-
works raises several issues, the main one being the need for
decentralized algorithms [3]: the challenge is to understand
how such algorithms can be designed so that the network as
a whole reacts intelligently to congestion.

Several mathematical models of AQM schemes supporting
TCP flows in communication networks have been proposed
in literature, e.g. [4], [5], [6]. These models are based on
delay differential equations that can describe with different
levels of complexity the behavior of the network system,
according to the assumptions made (time-invariant/time-
varying round trip time, etc). In contrast with discrete event
simulators [7], fluid flow based models can be generalized to
networks of arbitrary complexity and topology, and do not
suffer from problems of scalability. Furthermore, fluid flow
model offer a better insight for analysis and design of the
control system. The stability analysis of fluid flow models for
describing high-speed network behavior represents a subject
of recurring interest in the last years [8], [9], [10], [11], [12].

The Random Early Detection [2] is one of the most popu-
lar AQM marking strategies: in RED algorithm, the price
(packet marking/dropping mechanism) is probabilistically
adjusted according to a nonlinear drop function depending
on the average queue length at the router. The RED strategy
relies on a few parameters and it is currently implemented
in many communication networks thanks to its simplicity.
However, it is well known that TCP/RED can oscillate wildly
and it is extremely hard to reduce the oscillation by tuning
RED parameters. Oscillatory behavior is mitigated but not
avoided using heuristic modifications of the RED strategy,
e.g. ARED [13] and FRED [14]. Many models have shown
that oscillation is an inevitable outcome of the protocol itself
[15], [4]. TCP/RED becomes unstable when delay increases,
or more strikingly, when link capacity increases. The anal-
ysis illustrates the difficulty of setting RED parameters to
stabilize TCP: they can be tuned to improve stability, but
only at the cost of large queues [16]. In particular, it was
shown that for increasing time delays and capacities, the
TCP/RED fixed-point equilibrium becomes unstable, and the
trajectories oscillate around a stable limit cycle. This suggests
that the current RED protocol is not well-suited for future
networks where capacity will be large. This is the reason
why, over the years, many different protocols have been
studied as an alternative to the RED strategy [17], [18], [19],
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[20], [21], [22].
This paper proposes an adaptive optimization method for

active queue management of TCP flows. The contribution
of the proposed research lies in the paradigm of adaptive
(approximately) optimal congestion control, where the objec-
tive is to approximately solve the Hamilton-Jacobi-Bellman
equation associated to the optimal control problem. In this
work, in order to take into account the decentralized structure
of the network, the optimization problem is solved separately
at each link, using only local information. The decentralized
solution is compared with the (not implementable) central-
ized one, and it is demonstrated via simulations that the
achieved performances are comparable.

The paper is organized as follows: Section II introduces
the congestion control problem over communication net-
works supporting TCP flows. The optimal congestion control
is formulated in Section III and the proposed adaptive
optimization optimization algorithm is presented in Section
IV. Simulative results are given in Section V.

II. CONGESTIONCONTROL FRAMEWORK

Fig. 1: Feedback representation of the congestion control
problem

We consider an AQM-based communication network set-
ting, with Explicit Congestion Notification (ECN). The net-
work is modeled as a set ofL links with finite capacities
c j , j = 1, . . . ,L. The links are shared by a set ofN sources
indexed byi = 1, . . . ,N. According to the network topology,
not all sources use all the links. In general, each sourcei uses
a subsetLi of the links, i.e., Li ⊆ L. The network topology
is defined by theL×N routing matrixA. Each elementA ji

of the matrix is defined as

A ji =

{

1 if j ∈ Li

0 otherwise
. (1)

Associated with each linkj is its marking probabilityp j(t)
at time t, and associated with each sourcei is its window
wi(t) at timet (or, equivalently, its sending ratesi(t) at time
t). The overall network can be described by the diagram of
Fig. 1. Propagation delays must be taken into account. Define
the round trip time of sourcei asτi(t): then the sending rate

of sourcei is

si(t) =
wi(t)
τi(t)

. (2)

What is available a each linkj is the aggregate flow rate,
which is

y j(t) =
N

∑
i=1

A ji si(t − τ f
ji (t)), (3)

whereτ f
ji is the forward delay from sourcei to link j. There

are two commonly adopted ways to define the end-to-end
marking probability observed at sourcei. The first one is

qi(t) =
L

∑
j=1

A ji p j(t − τb
ji (t)), i = 1, . . . ,N, (4)

whereτb
ji is the backward delay from linkj to sourcei. Eq.

(4) leads to an allocation of the sending rates characterized
by the proportional fairness criterion. The second alternative,
which will be the one considered in this paper is

qi(t) = min
j∈Li

{

A ji p j(t − τb
ji (t))

}

, i = 1, . . . ,N, (5)

leading to an allocation of the sending rates characterizedby
the max-min fairness criterion. The forward and backward
delays are related to the round trip time through

τi(t) = τ f
ji (t)+ τb

ji (t). (6)

Next, we model the source and the link behavior. The
TCP Reno is chosen as the protocol describing the source
behavior. The TCP model is obtained by ignoring the TCP
slow start and time out mechanisms. It is well known that
the congestion window size is increased by one every round
trip time if no congestion is detected, and is halved upon
a congestion detection. This additive-increase multiplicative-
decrease behavior of TCP has been modeled in [4] by the
following difference equation

ẇi(t) =
si(t − τi(t))(1−qi(t))

wi(t)
−

si(t − τi(t))qi(t)wi(t)
2

. (7)

The first term of (7) describes the window’s additive increase
phase, and the second term the multiplicative decreasing
phase, according to the packet marking probability.

The link behavior is composed of the AQM dynamics,
which describes the way the marking probability is adjusted,
and of the queuing dynamics. The following queuing model
is assumed

ḃ j(t) =

{

y j −c j if b j > 0 or y j −c j ≥ 0
0 if b j ≤ 0 andy j −c j ≤ 0

, (8)

where c j is the link capacity. For the moment the AQM
dynamics are given by the RED strategy, which updates the
marking probability according to the average queue length.
The average queue lengthr j(t) is updated according to

ṙ j(t) =−K jc j(r j(t)−b j(t)), (9)



whereb j(t) is the instantaneous queue length and 0< K j < 1.
The RED marking probability is given by

p j(t)=







0 if 0 ≤ r j(t)< min th

(r j(t)−min th)ρ if min th≤ r j(t)< max th

1 if r j(t)≥ max th
(10)

where ρ = p max/(max th−min th), and 0< p max < 1.
The parameters(min th,max th,p max,K) are the config-
urable parameters of the RED strategy. A graphical repre-
sentation of the RED drop function is given in Fig. 2.

Fig. 2: RED drop function

III. O PTIMAL CONGESTIONCONTROL

Define s= [s1, s2, . . . ,sN]
′ andC = [c1, c2, . . . ,cL]

′. It is
well known that the congestion problem can be seen as a
maximization problem of a source utility function

max
s≥0

N

∑
i=1

Ui(si) (11)

s.t. As≤C,

where for the described TCP Reno protocol the utility
functionUi(si) takes the form

Ui(si) =

√
2

τi
tan−1

(

τisi√
2

)

. (12)

We recast the problem as a minimization problem by defining

Ūi(si) =
τi√
2

tan−1

(√
2

τisi

)

. (13)

Furthermore, assuming small delay, we use the Pade approx-
imation

s(t − τi)≈
1+ τi/2
1− τi/2

s(t) (14)

to approximate the delay in (7). Finally, we introduce the
low-pass filter

ṗi(t) =−λ pi(t)+λui(t), (15)

with λ > 0. Taking be integral over time of (13), we end up
with the minimization problem

min
∫ ∞

0

[

N

∑
i=1

Ūi(si(t))

]

dt (16)

s.t. As≤C,s≥ 0

0≤ p≤ 1,

which present two main problems. The first problem is the
fact that the sending rate for each source is not measurable,
so that the utility function for each source cannot be evalu-
ated. To this purpose we replace (13) with

min
∫ ∞

0

L

∑
j=1

[

e2
j (t)+b2

j (t)+ρ
(

p2
j (t)+u2

j (t)
)]

dt, (17)

where ej = y j − c j is the residual capacity at linkj, and
ρ > 0 controls the control effort: (17) expresses the desire of
matching the data flow to the link capacity while maintaining
small queue sizes and small control efforts. The second
problem is that minimizing (16) require maintenance of per
flow states within the network, resulting in an infeasible
centralized approach due to the distributed nature of the
Internet. For this reason we consider at every linkj the local
cost

min
∫ ∞

0

[

e2
j (t)+b2

j (t)+ρ
(

p2
j (t)+u2

j (t)
)]

dt (18)

which we aim at minimizing locally at the link level.
The local dynamics, i.e. the dynamics at each linkj, can

be described by the following system:








ṡ(t)
ḋ j(t)
ḃ j(t)
q̇ j(t)









=









fTCP(d(t), p(t))
fPADE(s(t),d(t))

fQUEUE(s(t))
−λ p(t)









+





0
0
λ



u j(t)(19)





y j(t)
b j(t)
p j(t)



 =





A( j, :) 0 0 0
0 0 1 0
0 0 0 1













s(t)
d j(t)
b j(t)
p j(t)









= H









s(t)
d j(t)
b j(t)
p j(t)









, (20)

where fTCP(s(t),d(t), p(t)), fPADE(s(t)) and fQUEUE(s(t))
and defined by the TCP-Reno dynamics (7), by the Pade
approximation (14) and by the queuing dynamics (8), respec-
tively. Note thatA( j, :) indicates thej-th row of the routing
matrix A. Define the statex(t) = [s′(t) d′

j(t) b′j(t) p′j(t)]
′: so,

y j might be considered as an output variable rather then a
state variable. The consequence for this is that the optimal
control formulation must be in an output-feedback form,
rather than in a state-feedback one.

IV. A DAPTIVE OPTIMIZATION ALGORITHM

In this section, the RED strategy is substituted by a
novel AQM strategy, based on the adaptive (approximate)
solution of an optimal control problem (AO for brevity). By



introducing the constraints in (16) as penalty functions, we
can rewrite the minimization problem (the local subscriptj
is omitted for simplicity) as:

J =

∞
∫

0

[

Π(x(t))+u′(t)Ru(t)
]

dt, (21)

whereR= diag(ρ), subject to the dynamics (19).
According to the Hamilton-Jacobi-Bellman (HJB) equa-

tion, the controller that optimizes the system performance
(21) can be obtained as the solution of the following partial
differential equation:

V̇∗ (x(t)) =

(

∂V∗

∂x

)

( f (x)+Bu∗) =−
(

Π(x)+u′Ru
)

, (22)

where B = [0 0 0 λ ]′ and f (x) come from (19).V∗(x)
denotes the so-calledoptimal cost-to-go functionand u∗

denotes the optimal controller, which can be seen to satisfy

u∗ =−
1
2

R−1B′
(

∂V∗

∂x

)′
. (23)

The exact solution of (22) is computationally very expensive.
For this reason, an approximated parametrized solution is
taken to as follows

V(x) = z′(x)Pz(x), u=−R−1B′Ξz(x)Pz(x), (24)

whereΞz(x) is the Jacobian matrix ofz(x) with respect tox
and

z(x) =

[
√

β1(x)x
√

β2(x)x

]

, (25)

P=

[

P1 0
0 P2

]

, (26)

wherePi are positive definite matrices. The functionsβi(x)
are the so-calledmixing signalsβi(x) [23] designed as

β1(ej ,q) =
1

1+e−hej b j
(27)

β2(ej ,q) = 1−β1(ej ,b j), (28)

where h > 0 is a parameter which regulates the sharpness
of the sigmoid. The functions in (27) are motivated by the
switching behavior introduced by the queuing dynamics (8).
The functions in (27) are smooth and give rise to a piecewise
quadratic value function and a piecewise linear control law:
the two functions are shown in Fig. 3.

By using the approximations (24) and integrating(22)
in the interval [t, t + δ t), where δ t > 0 is a discretization
step, one can see that in case the optimal controlleru∗ were
applied then,

∆V (x(t))≈−
∫ t+δ t

t

[

Π(x(r))+u∗ ′(r)Ru∗(r)
]

dr, (29)

where∆V (x(t)) =V (x(t +δ t))−V (x(t)). Having the above
equation in mind and the provided approximations, let us
assume that the following controller is applied to the actual
system:

û= û(x(t); P̂) =−R−1B′Ξz(x)P̂z(x), (30)

−5

0
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Fig. 3: Activation functions:β1 (lower), β2 (upper)

whereP̂ denotes an estimate of the unknown matrixP. Let
us also define the following “error” term

ε
(

x(t), P̂
)

= ∆V̂(t)+
∫ t+δ t

t

[

Π(x(r))+ û′(r)Rû(r)
]

dr, (31)

where V̂ = V̂(x(t); P̂) = z′(x)P̂z(x) and ∆V̂(t) = V̂(x(t +
δ t))− V̂(x(t)). By using equation (29) it can be seen that
the ‘error” termε

(

x(t), P̂
)

provides us with a “measure” of
how far the estimatêP is from its optimal valueP. Thus the
following update law is proposed, based on the stochastic
approximation algorithm [24]

P̂t+∆t = Pr
[

P̂t −α(t)∇P̂ε2(x(t), P̂
)

+e(t)+α(t)ξ (t)
]

(32)

where the symbol Pr[·] denotes the operation of projecting
(·) into the set of positive definite matrices,e(t) is a term
that exponentially decays to zero andξ (t) is a zero-mean
random term. The term∇P̂ε2

(

x(t), P̂
)

is calculated from
the knowledge of the system dynamics (19) (details are
straightforward and omitted for lack of space). The update
law (32) guarantees that̂Pt converges almost surely to the
following set

E =
{

P̂ : P̂≻ 0 and∇P̂ε2(x(t), P̂
)

= 0
}

. (33)

Remark 1: The control law should be in an output-
feedback form, rather than in a state-feedback one. The
optimal static output-feedback control formulation proceeds
along very similar steps as the optimal state-feedback control
formulation, as can be seen for example in [25, Sect. 6.5],
with the additional condition that the optimal cost-to-go
function must satisfy a structural constraint. Such a con-
straint, using the proposed approximations, can be expressed
in the following form:

V(x) =
M

∑
i=1

βi
(

x′Pix
)

=
M

∑
i=1

βi

(

x′H ′Pζ
i Hx

)

(34)

with H as in (20). A problem associated with the structural
constraint (34) is that it requires the knowledge of A( j, :),
i.e., of the topology of the network. Such a knowledge, which
can be easily assumed in a centralized architecture, is not
available at a link level. For this reason the decentralized



solution has been obtained by assuming A( j, :) = [1, . . . ,1],
i.e., by assuming that every link is a bottleneck link. Such an
approximation has been verified via simulations to lead to
satisfactory results. Note that under such an approximation
the problem can be even more simplified, since yj = Nsi ,
so that yj can be considered as a state variable instead of
s, and the optimal state-feedback formulation is completely
recovered.

V. SIMULATION RESULTS

All the simulations are conducted using the fluid flow
based model of Sect. II. Persistent FTP sources are con-
sidered, with the packet size equal to 1000 bytes. The
decentralized solution, denoted for brevity decentralized AO,
will be compared with the corresponding centralized one
(implementable only in simulations), denoted for brevity
centralized AO. The numerical results are obtained by using
a typical network topology.

A single bottleneck link with capacity 9 pkts/ms is shared
by 50 persistent FTP sources. The round trip propagation
delay is 40 ms. The RED parameters has been tuned as in
[16], i.e., max p= 0.1, min th= 50 pkts,max th = 550 pkts,
and weight for queue averagingK= 10−4.

Fig. 4: Single Bottleneck topology

Fig. 5 show the behavior of the centralized and of the
decentralized AO (after convergence) as compared with the
RED strategy. It can be seen that while the settling time of the
three strategies is comparable, the AO controllers completely
remove the oscillatory behavior of the RED strategy. Notice
that all the three strategies start with a half-full buffer,but
while the RED controller has oscillatory queuing behavior,
the AO controllers empty the buffer and keeps its size at
value which is almost zero. The difference between the RED
and the AO strategies is also underlined by looking at the
sending rate trajectory: while, in the transient phase, theRED
controller increases the sending rate with respect to its initial
value, the AO controllers decreases it. Table II summarizes
the improvement in terms of the cost function (17): the
performances of the centralized and of the decentralized AO
solutions, with improvements over RED ranging from 67 to
80%. Moreover, also in the presence of larger capacity and
round trip-time the proposed AO strategies sensibly reduce
the oscillations and achieve smaller residual capacity and
queue length,i.e. better utilization of the network.

VI. CONCLUSIONS ANDFUTURE WORK

An adaptive decentralized strategy for active queue man-
agement of TCP flows over communication networks was
proposed. The AQM strategy solves locally, at each link,
an optimal control problem, minimizing residual capacity
and buffer queue size. The solution of the optimal control
problem is achieved via an adaptive optimization algorithm
which at every times step updates the control actions in
order to minimize the Hamilton-Jacobi-Bellman equation
associated with the optimal control problem. Simulations
results, obtained by using a fluid flow based model of the
communication network, showed improvement with respect
to the Random Early Detection strategy. Besides, it was
shown that the performance of the proposed decentralized
solution is comparable with the performance obtained with
a centralized strategy, i.e. supposing the presence of a
central unit that can access the state of the entire network,
which highlights the feasibility of the proposed distributed
approach.

Object of future work is the application of the proposed
technique to a more complex discrete event description of
the network, as well as to more complex network topologies.
Computational complexity of implementation with respect to
RED will also be investigated.
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