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Abstract: A thorough review has been performed on interpolation methods to fill gaps in time-series,
efficiency criteria, and uncertainty quantifications. On one hand, there are numerous available
methods: interpolation, regression, autoregressive, machine learning methods, etc. On the other
hand, there are many methods and criteria to estimate efficiencies of these methods, but uncertainties
on the interpolated values are rarely calculated. Furthermore, while they are estimated according to
standard methods, the prediction uncertainty is not taken into account: a discussion is thus presented
on the uncertainty estimation of interpolated/extrapolated data. Finally, some suggestions for further
research and a new method are proposed.

Keywords: comparison; criteria; interpolation; methods; uncertainty; review

1. Introduction

For numerous purposes, different time series are recorded and analyzed to understand
phenomena or/and behaviors of variables, to try to predict future values, etc. Unfortunately, and for
several reasons, there are gaps in data, irregular time steps of recordings, or removed data points that
often need to be filled for data analysis, calibration of models, or for data with a regular time step.
Generally in practice, incomplete series are the rule [1]. In order to fill gaps in time series, numerous
methods are available, and the choice of the method(s) to apply is not easy for non-mathematicians
among data users. This paper presents a general overview, as a general and non-detailed introduction
to such methods, especially written for readers without an introduction on interpolation methods.

First to all, a distinction should be clearly stated: the difference between interpolation and
extrapolation. A first approach can be defined as the following. To fill gaps and, respectively, to
predict future values, often require similar methods [2], named as interpolation and extrapolation
methods respectively. A second approach distinguishes between both cases, while comparing the
range of existing and missing data. If there is a model to fill the gaps in a time series, if predictions
are similar in content, and there is variability to observations, model errors should be equivalent for
the existing and the missing data set (interpolation). Otherwise an extrapolation (i.e., predictions are
outside of the observation range) has been performed, and expected errors would be greater for the
predictions. An algorithm based on the data depth theory has been coded to make the distinction
between interpolation and extrapolation [3]. Differences between existing and missing data in those
methods could cause significant errors [4]. This paper deals with the interpolation method, in the sense
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of a first approach without consideration of the potential differences between the ranges of existing
and missing data.

Secondly, there are many different kinds of data. Economical, financial, chemical, physical and
environmental variables do not have the same characteristics: they can range from random to polycyclic
processes. This wide range of characteristics requires a wide range of methods to fill gaps, and poses
problems to researchers and practitioners when they choose one of the available methods. One thing is
clear: a straightforward calculation of prediction uncertainty does not yield satisfactory results.

Finally, an increasing proportion of data contains values and their uncertainties (standard
uncertainties, 95% confidence intervals, etc.), and requires specific methods to properly assess the
uncertainties of the interpolated data. Two normalized methods are recommended and presented in
a fourth section to assess uncertainties: the law of propagation of uncertainties [5] and Monte-Carlo
simulations [6]. The estimation of prediction uncertainties can be easily performed with combined
procedures. Assessment of the uncertainties of interpolated data is reported only seldomly: a brief
review of the literature is presented in Section 4. Two articles are already mentioned here, due to
the relevance of their data and ideas: [7], where the application of a Markovian arrival process to
interpolate daily rainfall amount applied on a wide range of existing distributions is presented, and [8],
where an overview of methods and questions/consequences related to the evaluation of uncertainties
in missing data is presented.

According to [1], a useful interpolation technique should meet four criteria: (i) not a lot of data
is required to fill missing values; (ii) estimation of parameters of the model and missing values
are permitted at the same time; (iii) computation of large series must be efficient and fast, and
(iv) the technique should be applicable to stationary and non-stationary time series. The selected
method should also be accurate and robust. Prior to the application of interpolation methods, [9]
mentioned two preliminary steps to apply prior to the determination of a model: (i) to separate the
signal (trends of interest, i.e., relevant and dependent on subsequent use of the data) from the noise
(variability without interest) as in [10], or (ii) to understand the past or existing data to better forecast
the future, or to fill gaps in missing data. Despite the fact that smoothing algorithms, which may
be used to distinguish signals while removing their noise, and interpolation methods are sometimes
similar, this article does not deal with smoothing methods.

The following example aims at presenting pending scientific questions on this topic. Suppose
rainfall intensity is measured at an hourly basis. The value at 1 p.m. is equal to 10 mm/h with a
standard uncertainty of ±1 mm/h at 1 p.m. The instrument produced an error signal at 2 p.m. Finally,
at 3 p.m., the instrument again logged 10 ± 1 mm/h. Under the assumption of randomness of the
series (covariances and correlation coefficients are equal to 0, direct calculation by law of propagation
of uncertainties (an average between 1 p.m. and 3 p.m. values) of the missing value at 2 p.m. yields
10 ± 0.7 mm/h. The standard uncertainty is marked off by calculations that are applied with the
minimal (equal to −1) and the maximal (equal to +1) correlation coefficient values. These calculations
lead to a standard uncertainty range between ± 0.0 and ± 1 mm/h, which is always smaller or equal
to the measurement uncertainties. The smaller uncertainty value, due to the averaging process, reflects
the uncertainty of a 2 h averaging period, whereas we are interested in a 1 h averaging period around
2 p.m., similar to the measurement points at 1 p.m. and 3 p.m. It is concluded that the prediction
uncertainty cannot be estimated from the law of propagation of uncertainties [5].

This review paper is structured as follows. Numerous methods (see Section 2) have been published
about filling gaps in data. This paper gives an accessible overview of those methods in Section 2.
In spite of the recommended comparisons [11] between existing methods, only a few studies have
compared methods (e.g., [11–13]); these are detailed in the second section. In the third section of this
article, criteria applied and published in past studies for comparison of methods are given. Due to
the numerous methods and criteria available, a comparison between different studies with numerical
values is often impossible. To improve the readability of the present article, a common notation has
been applied to present methods: xi are observed data, Xi are the interpolated value(s) of missing data,
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i is an index, and ε are the residuals. Each of them apply only for univariate time-series. This paper
does not deal with multivariate time series.

2. Interpolation Methods

Existing methods are detailed in the following Sections: Section 2.1 for deterministic methods,
and Section 2.2 for stochastic methods. This distinction, based on the existence or non-existence of
residuals (differences between predictions at known locations and observations) in the interpolation
function, also deals with uncertainty.

2.1. Deterministic Methods

This first group includes methods that perform basic interpolation between the last known point
before the gap (xB), and the first one known after the gap (xA).

2.1.1. Nearest-Neighbor Interpolation

The nearest neighbor or proximal interpolation, introduced by [14], is the easiest method [13,15]:
the value of the closest known (existing) neighbor is assigned to the missing value (such as Equation (1)).
Interpolated data by this method are discontinuous [16]. This method often yields the worst
results [13,16], and should not be confused with the k-nearest-neighbors methods.

Xi =

{
xB if i < a+b

2
xA if i ≥ a+b

2
, (1)

where a and b are the indexes of xA and xB.

2.1.2. Polynomial Interpolation

Another basic method is linear interpolation [16]. This method searches for a straight line that
passes through the end points xA and xB. Various equivalent equations exist for this method, such as
(2a) given in [16], and (2b) given in [17].

Xi =
xA − xB

a− b
(i− b) + xB, (2a)

Xi = (1− α)xB + αxA (2b)

where α is the interpolation factor and varies from 0 to 1. This method has been considered to be
useful and easy to use [18]. By construction and according to [9], interpolated data are bound between
xA and xB, and true values are, in average, underestimated: this affirmation is strongly dependent
on the distribution of data (on which side the distribution is tailed—left or right) and should be
verified for each data set. [16] demonstrated that this method is efficient, and most of the time it is
better than non-linear interpolations for predicting missing values in environmental phenomena with
constant rates.

The linear interpolation could be extended to higher degrees (Equation (3)). Polynomial, piecewise
polynomials, Lagrange form polynomials [9], cubic interpolations such as Cubic Hermite [16] or spline
interpolations are different terms for the same technique. Data are exactly fitted with a local polynomial
function. These methods differ with the degrees of the polynomial and the continuity of derivatives
function. For polynomial or piecewise polynomial interpolation, known and interpolated data are
continuous. For the cubic Hermite interpolation, the first derivative function is continuous [16].
For spline techniques, the second derivative function is also continuous [16].

Xi = ∑NMAX
j=0 ∑K

i=0 cijx
j
i , (3)
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where NMAX is the maximum degree of the polynomial function, cij are coefficients and xi are existing
data. As an interpolation method, the amount of data used to estimate the coefficients is equal to K, in
order to force the model to match the original records [9]: this is too strong a constraint for when data
are uncertain. Sometimes these methods interpolate outside of the observed range of data, contrary to
nearest-neighbor and linear interpolations [9], or with spurious oscillations due to too high a degree of
polynomials. Bates et al. [19] proposed to penalize the second derivative function of the polynomial
to avoid oscillations. Many types of splines are very popular for interpolation. B-splines and their
derivative functions could be summed and weighted in MOMS (Maximal Order and Minimal Support)
functions [10].

2.1.3. Methods Based on Distance Weighting

These methods are quite similar to the autoregressive methods, and use nearest values weighted
by a p power of the distance di to the interpolated point (see Equation (4)).

Xi =
∑n

j=1
xj

dp
j

∑n
j=1

1
dp

j

, (4)

where n is the number of points used for the interpolation.
These methods can be named inverse distance weighting (if p = 1) of inverse squared distance

weighting (if p = 2). Equation (4) shows that the methods are not very different from a moving average.
In the review by [20], Taylor’s adjustments of these methods for specific applications (e.g., in [21]) have
been proposed for detrended inverse distance weighting, [22] for angular distance weighting, etc.).

2.1.4. Methods Based on Fourier’s Theory: Use of Signal Analysis Methods

In some studies, interpolation methods based on the Fourier’s Transform (FT) are presented.
Basically, a Fourier’s transform converts a signal from time or spatial domain to frequency domain:
the signal becomes a sum of complex magnitudes. Fourier was the first researcher who used function
superpositions to describe physical phenomena: this method assumes that a signal is a sum of different
periodic signals (with different periods and magnitudes). If the signal contains aperiodic variations, the
FT needs a lot of frequencies. There are many kinds of partial transforms for phase alone, magnitude
alone, or signed magnitude [23]. Authors have pointed out the advantages of FT. Chen et al. [24]
considered that FT is a good technique, especially for autocorrelation and power spectrum simulations.
Musial et al. [9] qualified this method as suitable and efficient for predicting future values, especially if
the behavior of the missing values was similar to the existing values. However, some disadvantages
have been listed: FT requires Gaussian distribution as autoregressive methods [24], and a similar
behavior between observations and predictions [9]. FT is only suitable for stationary data, and without
aperiodic extreme behaviors [25].

To avoid a high number of frequencies for aperiodic signals, [9] have used different basic functions
as Legendre or Tchebicheff polynomials, and Empirical Orthogonal Functions (EOFs), such as an
extension of Principal Component Analysis (PCA) for time-series, also called Spectral PCA (SPCA)
by [26]. In this last study, methods have been presented: data pre-processing and filtering of spectra.
According to [26], SPCA is more efficient than a basic PCA, due to the fact that the power spectrum
is invariant to delays and phase shifts, and that SPCA is less sensitive to the range of missing data
(by comparison the range of existing ones) than PCA. Plazas-Nossa and Torres [27] have compared
two methods: one based on Discrete FT (DFT), and one mixed with PCA (PCA/DFT). According to
the NRMSD criteria (Table 1), efficiencies of these methods are strongly dependent on data and the
time of extrapolation. No generalizable conclusions have been found.

Musial et al. [9] have compared two methods based on FT. The first one is called the Long-Scargle
method and retrieves the periodogram of time-series with non-constant time steps. This method could



Water 2017, 9, 796 5 of 20

be used with two moving windows: the Hamming or the Kaiser-Bessel [11]. The second window
appears to be less sensitive to periodic gaps, and offers better estimations close to the start or the end
of the series than the first one. The second one is Singular Spectrum Analysis (SSA) presented by [28]
based on EOFs, and where functions are chosen by the data itself [9]. The time series is a sum of trends,
oscillations, and noise functions. This method possesses a good theoretical background, and is suitable
for a large variety of series (with non-linear trend and non-harmonic oscillations). However, SSA
requires a lot of computational effort, and shows a poor performance for long and continuous gaps.

Bienkiewicz et al. [25] have reminded that the Short-Time FT (STFT)—a FT with a fixed size and
moving window—is suitable for non-stationary data, but strongly limited by fixed size window and
frequency resolution.

The Wavelet Transforms (WTs) are a generalization of the STFT: the size of the window varies with
the frequency [25]. Two types of WT exist: the Continuous (CWT, Equation (5)) and the Discrete (DWT).

Wx(CT , CD) =
1√
a

∫ ∞

−∞
x(t)ϕ

(
t− CT

CD

)
dt , (5)

where ϕ is a localized and oscillatory function called a wavelet [29], and CD and CT are the wavelet
coefficients of dilatation and translation [30]. These coefficients can be used to understand phenomena.
A lot of wavelet functions are available. WT seems to be useful for data with sudden changes [25].

Each of these transforms based on Fourier’s theory (FT, DFT, CFT, STFT, DWT, CWT) can be
reversed to assess X(t) and fill in gaps: see e.g., [29] for CWT or [27] for DFT.

A final method has been found in the literature, called Fractal Interpolation [31].

2.1.5. Other Deterministic Interpolation Method

Polynomial interpolations could be extended to any other kind of function if there is a model
with a theoretical (e.g., chemical, physical) process description: to predict a discharge with a water
level, or to predict a tension with a current, etc. All of those models need to be defined by a user with
expertise in the concerned topic. Logistic regressions can be used to predict the missing values of a
binary variable [13].

2.2. Stochastic Methods

2.2.1. Regression Methods

Regression methods differ from real interpolation methods in several aspects. The number of
data used to calibrate parameters of the regression function is higher than the number of parameters
(risk of overfitting). Splines become smoothing splines and the function does not fit each observation
as exponential functions (Equation (6)—[16]).

Xi = x0e−ki + E(i) , (6)

where x0 is the initial value, k is the rate of change, and E(i) represents the stochastic part.
Gnauck [16] designated a part of these methods (and Auto-Regressive methods—Section 2.2.2)

as approximation methods: residuals occur and may be a source of uncertainties in interpolated or
predicted values. Apart from the nearest-neighbor method and a reformulation of linear interpolations
(Equation (2) to Equation (3) with NMAX = 1), both methods presented in Section 2.1 are specific cases
of regression methods.

An important advantage of these methods is that no assumptions need to be formulated
about the nature of the phenomena [9]. Several authors have pointed out two disadvantages:
(i) polynomial interpolations, polynomial or logistic regressions, and splines are tedious [24], inefficient
and inapplicable methods [32], and (ii) management of oscillations. Chen et al. [24] pointed out that
these methods could miss some variations if a phenomenon is shorter than the size of the gap. NMAX
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can be chosen according to variables and gaps: [16] preferred non-linear interpolations if gaps lasted
more than 28 days for water quality time series. The trade-off between significant and noise variability
requires the expertise of the physical processes that underline the data regarding the missing data to
be interpolated, and probably to check a posteriori the predictions (interpolated values).

2.2.2. AutoRegressive Methods

These methods are statistical parametric models [13,33] based on a Markovian process.
Schlegel et al. [16] explained the basic idea of those methods: a stochastic signal X(t) can be extracted
from white noise (ε(t), with an average equal to 0) through smoothing processes.

Autoregressive models (AR(p), see Equation (7)), have been mostly used for extrapolation [16].

Xi = ε(t) +
p

∑
j=1

ϕjxi−j, (7)

where p is the order of the autoregressive part, and ϕj are coefficients. AR(1) is the Markov process.
According to [20], the method combining a state-space approach and the Kalman filter [33] is similar
to AR(1).

Moving Average models (MA(q), see Equation (8)) have been considered to be as efficient as linear
interpolation for filling gaps [16].

Xi = ε(t) +
q

∑
k=0

θkεi−k, (8)

where q is the order of the moving average part and θk are coefficients. q could be extended to infinity:
MA(∞), as presented in [34].

ARMA(p,q) models are combinations [35] of the two last models (Equation (9)), sometimes called
general or mixed ARMA processes [36]. This model can be used only for stationary series [35], and is
efficient if the series has Gaussian fluctuations [24].

Xi = ε(t) +
p

∑
j=1

ϕjxi−j +
q

∑
k=0

θkεi−k , (9)

Other equivalent equations are available to describe ARMA(p,q) models: e.g., in [37]. Ref. [33,35]
presents a good introduction to these techniques. Box and Jenkins [33] gave two recommendations:
if q < p, the observational errors increase with p, and if q < p − 1, modeling observational errors directly
may yield a more parsimonious representation [35]. The introduction of [12] was a good update until
the late 1990s.

For interpolation through ARMA(p,q) methods, [12] advised the following four steps:
(i) application of the Kalman filter [38]; (ii) skipping the missing values; (iii) estimation of parameters
(ϕj and θk), and (iv) application of a smoothing algorithm (as Fixed Point Smoothing) to fill gaps [39].
Three methods are available for estimating parameters at the third step. The most popular is the
Maximum Likelihood Estimator (MLE), and this has been used by [35]. A second option is the use of
the linear least squares interpolator to estimate parameters, as in [2]. Despite the fact that estimation of
parameters is equivalent through both methods [36], Ref. [40] considered that this method (linear least
square interpolator) to be conceptually and statistically superior to the MLE. Ref. [1,37] extended the
use of the Least Absolute Deviation (LAD) to estimate parameters as a third option. A fourth method
developed by [41], called Minimum Mean Absolute Error Linear Interpolator (MMAELI) seemed to be
less sensitive to outliers or non-usual values, according to [20].

ARMA models have been used on residuals (after a linear regression) for interpolation by [42]:
this model, called the Additive Mixed Model is, according to [20], similar to the structural time-series
model presented in [43]. Ref. [16] has mentioned ARMAX(p,q) by adding a measurable input signal
(called X, external and used as control signal) to ARMA(p,q) model.
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There is a last method, based on ARMA(p,q) which is available for non-stationary series:
ARIMA(p,d,q) models (Auto-Regressive Integrated Moving Average, Equation (10)). Algorithms
are similar than for ARMA(p,q) models. According to [12], the attention of users should be focused on
starting conditions of the Kalman filter [38] and a proper definition of the likelihood.

Xi = ε(t) +

(
d

∑
k=1

d!
k!(d− k)!

)(
p

∑
j=1

ϕj × xi−j

)
+

q

∑
k=0

θkεi−k −
d

∑
k=1

d!
k!(d− k)!

(−Xt−k)
k , (10)

where d is the order of the integrated part. The ARIMA (0,1,1) is also called the simple smoothing
exponential [4], or the Exponentially Weighted Moving Average (EWMA, in [44]), and is presented in
Equations (11a) and (11b). {

s0 = x0

st = αxt−1 + (1− α)st−1
, (11a)

Xi = st (11b)

where α is the smoothing factor and varies from 0 to 1. Gomez et al. [12] proposed three approaches
and compared with the RMSE criteria (see Table 1) to estimate missing values: one based on the
SKipping approach (SK), one based on the Additive Outlier approach without determinant correction
(AON), and a last approach with determinant correction (AOC). Comparisons have been done for
pure AR, pure MA, and mixed models. The approaches yielded the same results if there was less than
5% missing data. When more data were missing (20%), the SK approach was clearly faster than the
others, but the AOC sometimes gave very precise estimations compared to values given by SK or
AON approaches. Differences are explained by convergence properties of reverse filters, and are not
negligible for mixed models. Alonso and Sipols [39] demonstrated that a sieve bootstrap procedure is
better than methods proposed by [12] for estimating missing values according to the coverage criteria
(see Table 1).

Other methods [45] are based on this recursive principle: (i) Holt-Winter exponential or double
seasonal exponential (see Equations (12) and (13)), (ii) triple exponential (Equations (14)), and the
SARIMA (Seasonal ARIMA) presented in [20].

s1 = x1

b1 = x1 − x0

st = αxt + (1− α)(st−1 + bt−1)

bt = β(st − st−1) + (1− β)bt−1

, (12a)

Xi+m = st + mbt, (12b)

s′0 = x0

s′′ 0 = x0

s′t = αxt + (1− α)s′t−1

s′′ t = αst + (1− α)s′′ t−1

at = 2s′t − s′′ t
bt =

α
1−α (s

′
t − s′′ t)

, (13a)

Xi+m = at + mbt , (13b)
s0 = x0

st = α xt
ct−L

+ (1− α)(st−1 + bt−1)

bt = β(st − st−1) + (1− β)bt−1

ct = γ xt
st
+ (1− γ)ct−L

, (14a)

Xi+m = (st + mbt)ct−L+m(modulo m) , (14b)
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where α is the smoothing factor, β is the trend smoothing factor, and γ is the seasonal change-smoothing
factor. Each of them vary from 0 to 1.

2.2.3. Machine Learning Methods

Artificial Neural Networks (ANN)

ANN have been applied since late 1990s for interpolation purposes as a promising method [24] to
model and predict missing data. This method is able to approximate universal functions [46]. Neurons
are disposed in many layers: an input layer where input variables are added (here existing records),
an output layer (here the estimation of the missing values), and between them, one or a few hidden
layers. Neurons, also called nodes or ‘perceptrons’, are connected with weighted links and contain
basic functions from vectors (input of the neuron) to scalar (output). This is a data-driven method, and
a number of hypotheses have to be set a priori for the number of hidden layers and underlying models.

ANNs have precious advantages. They are able to learn underlying behaviors under widely
varying circumstances [24] such as non-linear or complex relationships, and to work with noisy
data [47]. Of course there are some disadvantages as well. ANN can suffer from over-fitting and
under-fitting, mainly due to the number of hidden layers [4]. To avoid over-fitting, two solutions can
be applied: (i) application of a smoothing method to reduce the noise of predictions, or (ii) application
of an Adaptative Neural Network, as presented by [4]. There is no theoretical background to choose
the optimal shape of the model, special skills are needed, and this requires a lot of computation
time [24]. Training is necessary to calibrate the networks with observations [4]: parameters of the
pattern (connection weights and nodes biases) can iteratively change to decrease prediction errors [48].
Data for the learning process should be similar to the missing data, in order to provide accuracy and
robust predictions. Some studies have been published to improve the efficiency of training in ANN [3].
Chen et al. [24] used ANN for churn predictions.

The structure or shape of the network is strongly correlated to data characteristics [4]. Zhang
and Qi [49] suggested that a single hidden layer, where neurons are connected with acyclic links, is
the most used shape of network for modeling and forecasting in time series. Many hidden layers are
required to catch non-linear relationships between variables [4].

Wong et al. [4] gave an explicit relationship (Equation (15)) to predict a missing value (Xi+1).

Xi+1 = α0 + ∑r
j=1 αj g

(
β0j + ∑il

i=1 βij xt−i

)
+ ε, (15)

where αj and βij are parameters of the model, il is the number of neurons of the input layer, r is the
number of hidden neurons, and g is the hidden-layer transfer function from hidden layer. The logistic
function is often used.

To avoid over-fitting problems, [4] developed the ADNN method, based on ANN with adaptive
metrics input (a solution to take local trends and amplitude in considerations and based on the
Adaptive K-nearest neighbors method—AKN) and an admixture mechanism for output data. They
demonstrated that this method gives better results than usual techniques (ANN, AKN, AR, especially
for chaotic and real time series).

Kernel Methods

Kernel methods have been used since the 1990s: Support Vector Machines (SVMs), kernel Fisher
discriminant, and kernel principal component analysis [32]. SVMs generally offer better performances
than ANN methods, are adapted to high dimensional data, and have been used for interpolation
purposes despite the required computation time. SVM builds a hyperplane (Equation (16)) in a high
dimensional data set.

f (X) = Wφ(X) + ε, (16)
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where f is the hyperplane, φ is a non-linear function from a high to a higher dimensional area,
and W is the weighted vector. A kernel function is needed to estimate coefficients in the model.
Kernel functions perform pairwise comparison: linear and algebraic functions, polynomials, and
trigonometric polynomials functions can be used [32], but Gaussian (also called Radial Basis) functions
are the most popular [18]. The accuracy of prediction with SVM is strongly dependent on the choice
of the kernel function and its parameters. Tripathi and Govindajaru [32] underlined that there is no
general consensus to calibrate parameters of the kernel function. More details about basics of SVM are
presented in [50,51].

Multiple Kernel SVMs (MK-SVMs) use a combination of kernel functions [52] to find an optimal
kernel [18]. Two kinds of algorithms can solve this formulation: (i) in one step that contains classic
reformulations, and (ii) in two steps designed to decrease computational times [18].

Based on those techniques, [18] have implemented a Hierarchical-MK-SVM (H-MK-SVM) divided
in three steps to learn coefficients for static or longitudinal behavioral data. According to the result of
this study, H-MK-SVM is more efficient than most existing methods for churn prediction.

Relevance Vectors Machines (RVMs) are based on SVM and Bayesian theory [53]. RVMs have
the same advantages and disadvantages as SVM and are able to predict uncertainty. Tripathi and
Govindajaru [32] provided a four-step method based on RVMs to estimate the parameters of a kernel
according to prediction risk (based on Leave-one-out cross validation). This method showed promising
results for hydrologic data sets.

Tree Approaches

Decision trees have been used for decades to solve classification problems in the various sciences.
Only a few studies have reported [18] or used [54] decision trees to fill gap(s): for churn prediction or
for air quality data. Decision trees are used for too short a time to have a step back. Amato et al. [54]
have demonstrated that the advantage of this method (by comparison to mean value and polynomial
interpolation method) without detailing how many variables or the number of used acquired samples
have been used for prediction. Many trees could be used through the random forest method.

Meta-Algorithms of Machine Learning Methods

Several meta-algorithms can also be used to fill gaps in data: boosting, adaboosting, bagging,
etc. [18]. These meta-algorithms are used depending on the problem (classification, regression, etc.),
to improve the performance (accuracy and robustness) of methods presented in this section.

2.2.4. Methods Based on Data Dynamics

In this section, methods based on the behavior of observations are briefly presented.

k-Nearest Neighbors (kNN)

The kNN method [55] is probably the simplest to understand of these methods, is well adapted to
pseudo-periodic signals, and should not be confused with the nearest neighbor approach. This method
is based on the understanding of the evolution of the k-nearest neighbors. In observations, N windows
of size T are compared to the windows of interest (where data are missing) with different metrics. Local
and global methods should be distinguished [55]: the global one takes the whole data into account:
the global one is less sensitive to new behaviors. According to [55], the value of T is often chosen by
sight (according to the period of the signal), and many metrics (cityblock, Euclidean, Chebychev, etc.)
are available to choose the k-nearest neighbors. Kulesh et al. [55] presented an adaptation of the
nearest neighbors based on flexible metrics that reduce problems of amplitude changing and trend
determination. Missing values are estimated, with a function in which selected nearest-neighbors are
the variables. The function could be a weighted average of the k nearest neighbors for any integer
k > 1. In that case, this method is very similar to MA methods, especially EWMA.
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Box-Jenkins Models

Brubacher and Tunnicliffe Wilson [2] have reported works on Box-Jenkins models. These models
are mainly based on autoregressive methods (see Section 2.2.2) while including some seasonality.
That is why they are considered to be useful for polycyclic data (with various frequencies i.e., in
predicting data related to human behavior—like electricity or tap water demand—or natural data
presenting some strong seasonal patterns—like water level in river or in water table).

Method of Moment Fitting

Carrizosa et al. [13] have proposed a method based on the preservation of moments and
autocorrelation between observations and predictions: this method requires a smooth non-convex
optimization problem to be solved. Authors have compared this method to other existing ones.
According to absolute percent error, absolute and quadratic differences, the method outperformed
linear, nearest neighbor, cubic interpolation, and spline methods for a single gap of 30% of the
time series.

Other Methods Based on Data Dynamic

Chen and Andrew [56] listed a serial of other available methods, based on data behavior and
applied to economical interpolations: Denton additive, Denton proportional, Growth rate preservation,
and first and second difference smoothing. More details are presented in [57]. Another method,
considered as a refinement of inverse distance weighting method by [20], is the natural neighbor
interpolation [58]: this method requires additional data (such as topology and by extension, other
univariate series) to interpolate the missing value(s).

2.2.5. Methods Based on Kriging

Despite the fact that kriging methods are mostly used for multi-dimensional (i.e., spatial) data
interpolation, they can be used for time series. Kriging groups a wide range of geostatistical methods,
often used for spatial interpolation and for multivariate [59] or sometimes univariate series [60].
A detailed review of these methods would require another review paper, but a brief introduction
and list of the most relevant studies is given hereafter. As a common factor for all these methods,
the interpolated value is estimated by a linear weighted combination of near values where weights and
number of used values are dependent on the correlation between existing values [61]. Combinations of
kriging methods with Sequential Gaussian Simulation (SGS, [62]) or Sequential Indicator Simulation
(SIS, [63]) allows estimation of uncertainty, and the distribution of the predictions.

The most common version of kriging is Simple Kriging (SK, Equations (17), e.g., in [64]).

xi = m + R(i) (17a)

Xj = ∑n
i=1 λi(j)xi + (1−∑n

i=1 λi(j))m, (17b)

where i is the location of existing values (single or multiple), m is the known stationary average,
R(i) is the stochastic portion at i location(s) with a zero mean, constant variance, and a non-constant
covariance (that varies with a distance between the i location(s) and the location of observations used
for the calculation), n is the number of existing values used for the calculation, j is the location of the
interpolated value, and λi(j) are the weights of the existing value(s) (at location i) to estimate the
missing value(s) at the location j.

Other versions of kriging have been developed and published: Ordinary Kriging (OK) where
the sum of the weights is equal to 1, and m is constant and unknown, Kriging with a Trend (KT)
model [61], also called kriging in a presence of trend or drift [58] where m (Equation (17a)) is not
constant, block kriging, which can be used to estimate a value for a defined block (in term of distance,
duration, e.g., an average daily water table). Some other kriging methods allow the estimation of the
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conditional cumulative distribution function of Xi, such as indicator kriging, disjunctive kriging [65],
and Multi-Gaussian kriging.

Knotters et al. [20] have listed numerous other kriging methods that are used for spatial
(multivariate) and time (univariate) interpolation: log-normal kriging [65], trans-Gaussian kriging [66],
factorial kriging, [67] and variability decomposition in combination with kriging with a relative
variogram and non-stationary residual variance [68]—similar methods such as [20], class kriging [69],
Poisson krigring [70], Bayesian kriging [70], robust kriging [71], de-trending combined with
kriging [72], neural network residual kriging [73], modified residual kriging [74] and compositional
kriging [75].

2.2.6. Other Stochastic Methods

A collection of other methods has been cited and listed in [18,76]: methods based on classification
(rule based classifier), statistical methods (logistic regression, Bayesian Networks, hazard proportional
model also Cox’s regression) or a combination (Naïve Bayes). Two methods based on stochastic
processes have been used for interpolation purposes: Spartan random processes [77] and Markovian
arrival processes [7]. Transfer function-noise (TFN) modeling is another interpolation method initially
developed by [33], e.g., with application in [78]. A continuous-time transfer function noise model
(PIRFICT) is described and has been used by [79] to characterize the dynamics of slow processes.

3. Criteria Used to Compare Interpolation

A brief overview of applied criteria is given in Table 1. Most of them use variance between
observed n values (xi) and predicted n values (Xi). Their averages (x or X), and standard deviation
σ(xi) of observed values have been also been used. Equations in Table 1 have been extracted from
articles and, sometimes, from personal conversations with authors. More than 30 criteria have been
used in previous studies. Sometimes the same equation has different names in the studies. In [1],
the applied criterion (MSE) has not been explicitly given.

Table 1. Criteria used to evaluate performance of interpolation methods found in literature.

Equations Names References{
[∑n

i=1(Xi−X)(xi−x)]√
∑n

i=1(Xi−X)
2

∑n
i=1(xi−x)2

}
Coefficient of correlation (r) [80]

{
[∑n

i=1(Xi−X)(xi−x)]√
∑n

i=1(Xi−X)
2

∑n
i=1(xi−x)2

}2

Squared coefficient of correlation (r2) [16]

[
∑n−l

i=1 (ei−MBE)(ei+l−MBE)
∑n

i=1(ei−MBE)2

]
Mean of autocorrelation function r(l) [9] 1

∑n
i=1 Xi−xi

n
Mean Bias Error (MBE) [9]

Bias [80]

∑n
i=1 xi−Xi

n Mean Error (ME) [12]
n
∑

i=1
|Xi − xi| Absolute differences [13]

∑n
i=1|Xi−xi |

n Mean Absolute Error (MAE) [9,77,80]

∑n
i=1 xi−Xi

xi
Mean Relative Error (MRE) [77,80]

1
n

n
∑

i=1

∣∣∣ xi−Xi
xi

∣∣∣ Mean Absolute Relative Error (MARE) [77,80]

100
n

n
∑

i=1

∣∣∣ xi−Xi
xi

∣∣∣ Mean Absolute Percentage Error (MAPE) [4,54]
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Table 1. Cont.

Equations Names References
n
∑

i=1
(Xi − xi)

2 Sum of Squared Errors (SSE) [45]

Quadratic differences [13]

∑n
i=1(xi−Xi)

2

n

Standard errors [16]

Prediction risk—leave one out MSE (RLOO) [32]

Mean Square Error (MSE)
[32,39]

nc [1,81]

√
1
n

n
∑

i=1

(
Xi−xi

xi

)2

[82]

Root Mean Squares (RMS)
[24]

Root Mean Square Errors of Prediction (RMSEP) [54]

∑n
i=1(xi−Xi)

2

∑n
i=1(xi−x)2 Mean Squares Error (NMSE) [4]

1− ∑n
i=1(xi−Xi)

2

∑n
i=1(xi−x)2

Reduction of Error (RE) [81]

Nash-Sutcliffe coefficient (NS) [3]

∑
n+p−h
i=n (xi+h−Xi+h)

2

n−h+1
Mean Squared Forecast Error (MFSE(h)) [45] 2

√
∑n

i=1(Xi−xi)
2

n

Root Mean Squares Deviations (RMSD) [9]

Root Mean Squares Errors (RMSE) [12,77,80,83]

100×

√
∑n

i=1(Xi−xi)
2

n
Max(xi)−Min(xi)

Normalized Root Mean Square Deviation [27]√
1
n

n
∑

i=1

(
Xi−xi
σ(xi)

)2
Root Mean Square Standardized error (RMSS) [80]

100× |MT−MR |
MR

Absolute Percent Error (APE) [13] 3

c
∑

i=1

( fo− fe)
2

fe
Chi-Square (X2) [9] 4

{
= 1 if LL < xi < UL

= 0 Otherwise Coverage [39]{
= 1 if xi < LL
= 0 Otherwise Left Mis-coverage [39]{
= 1 if xi > UL
= 0 Otherwise Right Mis-coverage [39]

Various equations 95% confidence interval [39]

TN+TP
TN+FP+FN+TP

Percentage of Correctly Classified observations
(PCC) [18]

TP
TP+FN

Percentage of correctly classified observations in
the positive class (Sensitivity) [18]

FP
FP+TN

Percentage of correctly classified observations in
the negative class (Specificity) [18]

TP
FP+TP
FN+TP

TN+FP+FN+TP
Top 10% lift (Lift) [18]

2
TP

TP+FP
TP

TP+FN
TP

TP+FP +
TP

TP+FN
H-measure (H) [18]

No equation Time of computation [10,12,18,84]

Notes: 1 Where l is the lag (gap) size, ei is the residual between observations and interpolated values (i.e., xi − Xi).
2 Where p is the last 20% of the data rounded to the nearest multiple of n2 and h is the number of periods. 3 Where
MT is the moment or autocorrelation of the interpolated series, and MR is the moment or autocorrelation in the
existing data. 4 Where c is the number of classes, fO is the observed frequency, and fE is the expected frequency.
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Gnauck [16] then considered that r2 criteria cannot be used, due to non-normally distributed data
and non-linear effects in some phenomena, such as water quality processes. Some criteria could be
used only for a specific method, such as AUC or MP, as proposed by [76], or APE [13]. Chen et al. [18]
used criteria based on the confusion matrix for binary classification [76] where TP are the True Positive,
FP the False Positive, FN the False Negative, and TN the True Negative values. Those criteria/methods
can only be applied if variables have been divided in classes. Alonso and Sipols [39] introduced
criteria about coverage interval of interpolated values: LL for Lower Limit, and UL for Upper Limit
of the 95% confidence interval. These values can be calculated with various equations (by the law of
propagation of uncertainties) or with numerical methods. This is why no equation has been given
for those values. The time of computation has been used in some studies. This is a useful measure
for future users, but the characteristics of the computer are not always given: relative comparisons
between different studies becomes more complicated with regard to this criterion. Any trade-off
between quality and the cost of methods needs to be performed by each user [10].

4. Evaluation of Uncertainties

Among all the existing methods, there are normalized methods to assess uncertainties that are
most likely used by practitioners and end-users. These standards are briefly presented in this section.

4.1. Law of Propagation of Uncertainties

The law of propagation of uncertainties [5] is an analytical method: standard uncertainty (u(y))
of the output y of a model f calculated is with N variables; here, the observed data, (xi) is calculated
through Equation (18).

u(y) =

√√√√∑N
i=1 u(xi)

2
(

∂ f
∂xi

)2
+ 2 ∑N

i=1 ∑N−1
j=1 cov

(
xi, xj

)( ∂ f
∂xi

)(
∂ f
∂xj

)
+ ε2, (18)

Confidence intervals can be estimated with enlargement factors. This method requires that
distributions of uncertain parameters and variables are known and symmetrical, and that an explicit
and differentiable model f exists. This method always leads to underestimation of the prediction
uncertainty due to the averaging effect, as illustrated in the example in the introduction.

4.2. Monte-Carlo Simulation

Monte-Carlo simulations can be used for uncertainty estimation [6]: the probability distributions
of parameters and variables (generated with the respect of covariance between them) are propagated
through NMC simulations (NMC is the number of Mont-Carlo simulations), to ascertain the probability
distribution of the output y. This technique requires long computation times, but it can be used
without an explicit model (as f in Section 4.1) and for every kind of distribution (symmetrical,
asymmetrical, etc.). Any statistical property of y can be computed from the Monte Carlo realization of y.
For example, the 95% confidence interval of y is calculated in four steps: (i) calculation of NMC values
of y; (ii) ranking of values; (iii) calculation of the width of multiple 95% confidence intervals from
the cumulative distribution function [F−1

y (0); F−1
y (0.95)] to [F−1

y (0.05); F−1
y (1)], and finally (iv) the

smallest interval is retained as the final 95% confidence interval [6].

5. Discussion: From Literature Outcomes to a New Method

As this literature review has pointed out, there are numerous available methods to interpolate
time series (Tables 5.1, 5.2 and 5.3 presented in [20] and other references in this study), and numerous
criteria to assess the efficiencies of those methods. A second conclusion from the review is that
uncertainties of the interpolated variables are generally not integrated in the interpolation methods,
despite the fact that most of the methods can assess the uncertainty. End users of basic interpolation
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methods (real interpolation, regression methods, (k-) nearest neighbors, etc.) need some guidance for
selecting the most appropriate method for their own purposes and data sets. Unfortunately, no study
has presented quite an exhaustive comparison between a broad selection of methods, for a number of
reasons, which are discussed in the paragraphs hereafter.

The first reason relates to the choice and the nomenclature of performance criteria of interpolation
methods. As demonstrated in Table 1, there are quite a few non-conformities between formulas, names,
and authors. In most of the published articles and communications, details of criteria are not given:
this makes comparisons between studies more difficult, due to the lack of a common reference.

A second reason, already discussed by [12,16], is the typology of gaps that have to be filled.
The ranking of desirable methods (obtained through a trade-off of criteria) could be strongly dependent
on the size of the gaps, and the nature of recorded phenomena and data. The typologies of gaps should
be specified and tested in future studies, to allow a critical review from partial comparisons (only few
methods tested).

A third and a last reason is the evaluation of prediction uncertainties, which is the starting
point and main question of this present study. During the review process presented, no satisfactory
estimation (according to our standards and expected values of uncertainties) has been found to fit the
following reflection.

In a given time series x and its standard uncertainty u(x) associated with the vector x, a few values
of x (called hereafter xREMOVED) and their standard uncertainties u(xREMOVED) have been intentionally
removed to simulate artificial gaps. Interpolation methods have then been applied to estimate the
missing values xCALCULATED. Standard uncertainties (u(xCALCULATED)) associated to those estimated
values should be equal or higher than u(xREMOVED), to take into account the added uncertainties due
to the interpolation itself. Listed methods in this paper are at least numerical and often deterministic
(i.e., derivatives could be calculated, under differentiability assumptions). Consequently, the law of
propagation of uncertainties or Monte Carlo simulations could be applied to assess uncertainties of the
interpolation method itself. As shown in the introduction for the law of propagation of uncertainties,
those methods are not enough to properly assess prediction uncertainties.

Uncertainty has been estimated in a few studies only. Paulson [31] calculated uncertainties of
predictions with linear interpolation: uncertainties of observations, correlation between them and
residuals of the interpolation model have been taken into account in that study. Alonso and Sipols [39]
developed a bootstrap procedure to calculate the lower and upper limit of the confidence interval of
the predictions with ARMA models. Athawale and Entezari [15] presented a method for assessing the
probability density function to cross a value between two existing points. Ref. [7] published a relevant
study and review of experimental distribution of daily rain amounts.

To enhance the research on this topic, we propose to explicitly account for the process variance
and autocorrelation in the evaluation of the process uncertainty. The following method is proposed
here (based on [84]). Suppose the process state x represented in a equidistant time series (e.g., water
level, discharge, flow velocity) (ti,xi), with i = 1, . . . , N and ti = i*dt at t = τ (with (i − 1)*dt < τ < i*dt) is
obtained from a simple linear interpolation (Equation (19)):

Xτ = αxi−1 + βxi, (19)

where Xτ is the interpolated value, xi−1 and xi are existing (measured) values, α and β are weighing
factors in the interpolation. The process has a known process variance σP, a mean value of µp, and
an autocorrelation function ρ(τ). The mean squared error (MSE, see Table 1) of the interpolation is
calculated (Equation (20)).

MSE = σ2
p

[
1 + α2 + β2 − 2αρ(ti−1, τ)− 2βρ(τ, ti) + 2αβρ(ti−1, τ)

]
+ µ2

p[α + β− 1]2 (20)
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The last term in the Equation (20) is the bias term, which vanishes when α + β = 1. Minimizing
the MSE for α and β results in optimal values for the latter parameters. Assuming that α + β = 1 and
imposing the following condition (Equation (21)):

∂MSE
∂α

=
∂MSE

∂β
= 0, (21)

Then, α and β can be derived (Equation (22)): α = 1
2 +

ρ(ti−1,tτ)−ρ(ti ,tτ)
2(1−ρ(ti−1,ti))

β = 1
2 −

ρ(ti−1,tτ)−ρ(ti ,tτ)
2(1−ρ(ti−1,ti))

, (22)

Which leads to (Equation (23)):

MSE =
1
2

σ2
p

[
3 + |ρ(ti−1, ti)| − 2|ρ(ti−1, tτ)| − 2|ρ(ti, tτ)| −

(ρ(ti−1, tτ)− ρ(ti, tτ))
2

1− ρ(ti−1, ti)

]
, (23)

A simple case is obtained when the interpolation is done exactly halfway between the two adjacent
samples, in this case, ρ (ti−1, τ) = ρ (ti, τ), resulting in (Equation (24)):

MSE =
1
2

σ2
p [3 + |ρ(ti−1, ti)|−4|ρ(ti−1, tτ)|] , (24)

Assuming that the measuring error σm is independent from the process monitored (i.e., the sensor
has a measuring error that is not depending on the measuring scale), the total uncertainty at the
interpolated point is (Equation (25)):

σTOT =
√

MSE + σ2
m, (25)

It can be seen that in a process with an autocorrelation function, |ρ(t)| = 1, the error in the
interpolation is equal to the measurement error. For every process with an autocorrelation−1 < ρ(t) < 1
the prediction uncertainty is larger than the measuring error.

The reasoning outlined (incorporating the process variability as well as the measuring uncertainty
when interpolating) here can also be applied to more complicated interpolation techniques, as described
in the literature review section of this article.

Future research will focus on the differences between several interpolations techniques in terms
of prediction uncertainty, taking into account the characteristics of the (physical) process involved.

Figure 1 shows the uncertainties of interpolated values asset by: (i) the law of propagation of
uncertainties (top left); (ii) the Monte-Carlo method (top right); (iii) the method proposed in [17]
(bottom left), and (iv) the method proposed above (bottom right). The rain time series recorded in
Rotterdam (The Netherlands) has been used for this comparison. On the top left, the law of propagation
of uncertainties gave uncertainties lower than, and respectively equal to standard observation
uncertainties (0.01 mm/h) under the hypothesis that data are fully negatively (ρ(t) = −1) and positively
(ρ(t) = 1) correlated, respectively. Any additional calculation to estimate partial correlation in the
time series will lead to estimations between these two dashed dot lines. The application of this first
normalized method always leads to an underestimation of uncertainties, despite calculations of partial
autocorrelation in the time series. On the top right, Monte Carlo method results have been plotted with
a correlation coefficient of 0.051 (corresponding to the partial correlation of the time series, with a lag of
29 time steps—the lag between the last and the next values known around the gap): the resulting curve
is in the area delimited by the law of propagation of uncertainties. The method proposed by [17] gave
standard uncertainties (bottom left) mostly higher than the observation standard uncertainties except
at the boundaries: standard uncertainties are lower here. The proposed method (bottom right) seems
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to give more logical estimations of standard uncertainties, with continuity at the gap boundaries, and
the highest value in the middle of the interpolated values (the farthest position from the known data).
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6. Conclusions

There are numerous methods and criteria for assessing the quality of interpolation methods.
In the literature, many redundancies, discrepancies, or subtleties have been found: different names for
the same method or criteria, different equations for the same criteria, etc. Future research should be
very explicit and detailed, in order to avoid potential misunderstanding due to lexical discrepancies.
No comprehensive comparative studies have been published so far: this lack of exhaustive feedback
might be problematic for researchers, engineers, and practitioners who need to decide upon choosing
interpolation methods for their purposes and data. To the authors’ knowledge, no comparative
study published so far has dealt with methods to quantify prediction uncertainties. This can
explain why prediction uncertainties are, in practice, only rarely calculated. The combination of the
easiest interpolation methods and uncertainty calculation standards leads to mistakes in uncertainty
assessments (as demonstrated in the discussion part), and methods that perform both interpolation
and uncertainty calculation have not been exhaustively compared.

According to these conclusions, future work should focus on those topics to fill in the gaps in
literature, and to give the tools for researchers to decide between the many available methods. In this
respect, two kinds of studies could be useful: (i) exhaustive and comparative studies with a special
attention for lexical issues, to standardize names of methods and criteria (used as a new reference),
and (ii) development of new methods to assess prediction uncertainties.
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