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A B S T R A C T   

This study addresses the challenging task of analysing multifunctional landscapes through an innovative inte-
grated modelling approach. Acknowledging the limitations of disciplinary models in assessing diverse landscape 
functions, we present a conceptual framework for their integration. Demonstrating the feasibility and effec-
tiveness of this approach in a Netherlands case study, we assess alternative land use changes for drought and 
carbon sequestration. Results underscore the framework’s efficacy in elucidating the intricate relationship be-
tween carbon and water across multiple model runs and iterations. Notably, the alternative land use scenario 
reveals an average increase in soil moisture during dry periods and an increase in soil organic carbon content 
across four model runs. This softly coupled approach offers valuable insights into environmental modelling, 
facilitating navigation of complex integration challenges for researchers and practitioners. Furthermore, it en-
hances modelling transparency by elucidating variable representation and processes, providing a foundation for 
informed decisions in sustainable landscape management.   

1. Introduction 

There is increasing attention for the concept of multi-functionality 
within landscapes (Bolliger et al., 2011; Hersperger et al., 2021; Wang 
et al., 2022). The concept of landscape multi-functionality, moves away 
from the traditional management of a single function landscape (e.g., for 
agricultural production), to a landscape offering multiple environ-
mental, social and economic benefits (O’Farrell et al., 2010). Addi-
tionally, multi-functionality of landscapes, underscores the diversified 
use of natural resources by humans and primarily characterizes the 
service capacity of landscape functions in areas such as carbon cycling, 
habitat provision, water supply and soil conservation (Griffiths, 2018; 
Hart et al., 2016) and their interactions (Li et al., 2020). 

Societies grapple with the multi-functionality of landscapes and shift 
towards landscape-focused approaches (Hersperger et al., 2021). To 
address complex environmental issues and deal with multiple landscape 
functions, new integrated solutions are proposed. A good example is the 
increased attention for nature-based solutions (Chausson et al., 2020; 
Seddon et al., 2020, 2021). Evidence suggests that well-designed 
nature-based solutions can support the provision of landscape 

functions and their synergy (Chausson et al., 2020; Keesstra et al., 2018; 
Seddon et al., 2020). For instance, protecting and restoring habitats in 
upper catchments or along shorelines can enhance climate change 
adaptation and mitigation by safeguarding communities and infra-
structure from flooding and erosion, while also boosting carbon 
sequestration and preserving biodiversity (Smith et al., 2017). 

Environmental models are central to the effective planning and 
implementation of interventions and policies aimed at harnessing the 
benefits of landscapes through their landscape functions (Hamilton 
et al., 2015; Moriasi et al., 2012; Tan et al., 2018; Teng et al., 2017). 
These models serve as invaluable tools for conducting ex ante evalua-
tions, offering insights into the potential outcomes of diverse in-
terventions and policies before they are put into practice (Basco-Carrera 
et al., 2017; Voinov et al., 2016). Over the past decades many disci-
plinary environmental models have been developed. Within the various 
disciplines, these models are extensively calibrated, validated and have 
shown great model performance. Good examples include hydrological 
models (Kumar et al., 2021; Teng et al., 2017), soil carbon models 
(Doetterl et al., 2016; Liu et al., 2021; Nabiollahi et al., 2019) and soil 
erosion models (Deeks et al., 2012; Morgan et al., 1998). These 
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disciplinary models often look at one or a few related functions, how-
ever, as soon as we are interested in multiple functions and integrated 
solution pathways, the disciplinary models are not suitable as one 
landscape function (e.g. water provision), could have a fundamental 
effect on another landscape function (e.g. carbon storage) (Huang, 
2017). 

Integrated modelling is a promising approach to bringing together 
diverse types of information, theories and data, allowing for the land-
scape to be seen as a whole with its diverse landscape functions. A lot of 
integrated models already exist. One such model is the general 
ecosystem model (GEM) designed to simulate a variety of ecosystem 
types ranging from wetlands to upland forests providing at least two 
useful functions in synthesizing our broader understanding of ecosystem 
properties (Fitz et al., 1996). However, integrated modelling presents 
growing challenges beyond the requirement for increased computa-
tional power, additional resources, and a specific level of proficiency in 
the modelled landscape processes - with regards to the concept of digital 
twins, (Blair, 2021), but also the software used (Castelletti et al., 2012; 
Voinov and Fishwick, 2018) and the transparency of the calculations. 
They often require extensive amounts of input data and deal with pro-
cesses that we might not be interested in and one can wonder whether 
the full complexity of these models is always required, especially in 
cases where we deal with very specific (or exploratory) questions on 
landscape functions (e.g. in urban planning or environmental outlook 
studies). 

The goal of this research is to explore an approach to address this 
challenge. This approach seeks to bridge the gap between existing 
disciplinary models and the imperative for integrated modelling show-
casing the multifunctionality of landscapes. To illustrate the feasibility 
and effectiveness of this approach, we present a case study centred on a 
catchment in the Netherlands—a landscape that encapsulates a diverse 
array of landscape functions and challenges. 

We first provide a conceptual framework for model integration when 
at least one disciplinary model is available. Subsequently we explore the 
practical use of the framework where we look at the application of in-
tegrated modelling for the ex-ante evaluation of nature based solutions 
to deal with drought and carbon sequestration through land use change. 

2. Integrated environmental modelling 

For almost all landscape functions a multitude of models are avail-
able that describe the system. However, these models differ considerably 
in terms of the spatial and temporal scales at which they operate. In 
additions, they may vary in the processes that they model and in the 
level of detail of the model. 

In this research we define integrated environmental modelling as a 
model study in which multiple landscape functions from different dis-
ciplines are analysed. 

If a particular study deals with multiple landscape functions that do 
not interact with each other, one can argue that the models describing 
the landscape functions can be run independently from each other. 
However, for the purpose of consistency in an application it may be 
necessary that the data used in both models (including the definition of 
scenarios) are consistent. For example, if two models make use of a 
digital elevation model one would like to use the same digital elevation 
model. Similarly, it may be useful if both models operate on the same 
temporal and spatial scale. However, in environmental modelling, this 
may be an exception rather than a rule. In most cases, there will be some 
interaction between the landscape functions. 

For the theoretical discussion, we will look at a simplified case, that 
we will analyse in 5 steps. Imagine two landscape functions LFA and LFB. 
As mentioned in the introduction, multiple models for both landscape 
functions may be available. 

Step 1 of the conceptual framework is model selection for both 
landscape functions that match in terms of their temporal and spatial 

scales. When linking existing disciplinary models, it is crucial to 
examine their variables, scales and resolutions (Voinov and Cerco, 
2010). In practice, one of the models may already be available 
(calibrated and/or validated) after which a second model needs to be 
selected. For example, a model A is already available for LFA and a 
model B is selected for LFB based on the spatial and temporal scales of 
model A and the specific requirements of the study (e.g., in terms of 
the level of detail). Additionally, in this step it is also vital to define 
the variables of both models. A and B make use of a specific set of 
exogenous and endogenous variables. The exogenous variables (vex) are 
those variables that are kept fixed, they do not change within the 
model whereas the endogenous variables (vend) are those that are being 
modelled, whose values are determined within the model (Minot, 
2009). 

Given the above definitions, we can assume for the purposes of this 
paper that one can always resort to the general formulation: 

LFA = f
(
vA,ex, vA,end

)
(1.A)  

LFB = g
(
vB,ex, vB,end

)
(1.B) 

For example, a hydrological model may simulate groundwater tables 
which is mostly used as an endogenous variable in the model. However, 
soil properties like soil organic matter are often exogenous to the hy-
drological model although they may change as a consequence of changes 
in hydrology. 

Step 2 includes an analysis of the variables. If there is no overlap 
between the variables in both models, then integration is not 
necessary and the models can run independent from each other. 
However, if there are variables that are endogenous to both models 
and/or exogenous variables of one model are endogenous in the 
other model, there should be some level of model integration. 
However, it may well be that variables are used in a model, but that 
the model results are not very sensitive (Step 3, Fig. 1) to changes in 
the exogenous variable(s). For example, a hydrological model may 
include the groundwater table as a variable, but in the study area, 
groundwater tables may be so deep, that changes do not influence 
the model results. Therefore, it may not be necessary to go through 
the burden of model integration. 

In Step 3 model sensitivity is tested, specifically the case when there 
are overlapping populations between the model A and B variables. In 
this step it is relevant to test whether the endogenous variables from one 
model are sensitive or not to the endogenous variables of the other 
model. If they are not, then model integration is not necessary. If they 
are, the next step (Step 4: Integration of model A and B) is to decide on 
which modeling strategy to use for A and B. Full model integration 
means that both models A and B have some endogenous variables that 
overlap, for example, simulating water quantity, A is one dimensional 
and simulates the water movement in the main channels, and B is two or 
even three dimensional and simulates the water movement in the 
floodplains and the soil, and they are sensitive to each other because the 
water quantity in the main channels has an impact on the water quantity 
both in the floodplains and the soil, then we need to fully integrate these 
two models into a new model C. Full integration increases complexity 
and makes it harder to isolate or modify individual variables without 
affecting the entire system and it is used only when the two models need 
to work seamlessly together. 

If the endogenous variables from A and B are not overlapping (Step 
4), however we see that the endogenous variable(s) from one model are 
the exogenous variable(s) from the other model, and they are also sen-
sitive to each other, we need to choose between a tight and loose 
coupling strategy. The choice between these two strategies comes down 
to few factors. The choice of coupling should consider how well the 
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components need to interact and share information. Tight coupling is 
suitable when two models need to closely collaborate, sharing signifi-
cant amount of variables, and must operate as a single unit. This can 
make the system more challenging to maintain and less flexible to 
changes. Loose coupling is often the choice when we do not want a 
formal software mechanism involved for coupling as the endogenous 
variable from one model is sent to the other model as an exogenous 
variable and vice versa. 

The last and final step (Step 5) includes the model runs. This will 
demonstrate the effect of the coupling strategy and usually a specific 
application is added so that the effects can be analysed from using this 
integrated environmental modeling approach. 

3. Materials and methods 

We chose a case study in the Netherlands to illustrate the practical 
application of our conceptual framework for integrated environmental 
modelling. Specifically, we selected the Aa of Weerijs catchment due to 
the interest in analysing multiple landscape functions, particularly water 
provision and carbon sequestration. 

In this case, there is an existing, calibrated, and validated disci-
plinary (hydrological) model that serves as a starting point for our 
framework application. The Aa of Weerijs catchment is interesting 
because there is a need to connect disciplinary models, given ongoing 
discussions on how nature-based solutions in the landscape can enhance 

Fig. 1. Conceptual framework for integrated environmental modelling. Step 1: Model selection; Step 2: Analysis of variables and their overlapping populations; Step 
3: Sensitivity Analysis; Step 4: Integration of model A and B and Step 5: Model Runs. 
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resilience against droughts and contribute to carbon storage. 
The integration of models in this catchment would not only 

contribute to catchment-specific discussions but also align with the 
general call for climate action, emphasizing the need for adaptation and 
mitigation interventions (IPCC et al., 2023). The ultimate goal is to use 
this framework and integration approach to engage in valuable discus-
sions with stakeholders. 

To achieve this, we plan to test the coupled models through our 
stepwise framework for integrated modelling, with scenarios involving 
alternative land use changes (Fig. 2, d), comparing them to existing land 
use changes (Fig. 2, c). Alternative land use change in this case includes 
changing the dominating agricultural land use category to mixed forest. 

This comparative analysis aims to illustrate the possibility of modelling 
nature-based solutions in the future such as reforestation. 

3.1. Case study description 

The catchment Aa of Weerijs spans across Belgium and The 
Netherlands and it is a transboundary area. The river flows from its 
source in Belgium Flanders and eventually joins the canals in the 
Netherlands near the city of Breda. Originally, the rolling landscape was 
a vast wetland with drier uplifted heights of cover sand. The wetlands 
were later reclaimed in the fourteenth century and further expanded for 
agriculture in the nineteenth century. Many waterways were 

Fig. 2. The Aa of Weerijs catchment: a) digital elevation model (DEM) with the river network (CLMS, n.d.); b) the soil map (Ballabio et al., 2016); c) current land use 
change (CLMS, 2018) and d) alternative land use change. 
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constructed during this time, leading to the present stream valley 
landscape in the catchment (Fig. 2, a). The predominant soil type in the 
area is sandy loam, characterized by soil organic carbon contents (SOC) 
within the range of 1–6%. Additionally, loamy soils are present, 
featuring SOC levels ranging from 1 to 5% (Fig. 2, b). Over time, several 
streams were straightened to facilitate faster drainage of excess rain-
water. Agriculture is the primary land use, with grassland being the most 
common, followed by arable farming and tree cultivation (Fig. 2, c). The 
stream valley width is around 3 km, and the catchment area is about 
346 km2. Main tributaries are the Kleine Beek, Bijloop and Tufvaart 
(Beers et al., 2018). 

The Aa of Weerijs catchment is facing a severe threat of drought, 
mainly due to agricultural practices. Climate change impacts, including 
rising temperatures and more frequent and intense rainfall, are further 
exacerbating the water quality and quantity issues in the catchment. As 
a result, the river discharge is expected to decrease during summer 
months (Beers et al., 2018). 

As mentioned before, nature-based solutions (NbS) are discussed in 
the context of Aa of Weerijs catchment for improving the landscape 
multifunctionality and tackle environmental challenges namely 
drought. Additionally, due to ongoing catchment discussions on drought 
mitigation and the need for more carbon sequestration (IPCC et al., 
2023), it is important that within the landscape, the landscape function 
of carbon sequestration is also improved, specifically due to vast his-
torical land use changes contributing to carbon emissions (Ruyssenaars 
et al., 2021; Timmer, 2022). Moreover, it is important make the 
carbon-water model linkage due to the fundamental influence of soil 
organic carbon (SOC) to various soil-centred water processes such as 
water infiltration, evaporation, soil moisture and root uptake (G. Sun 
and Mu, 2022; P. Sun et al., 2019; Zhao et al., 2020). 

3.2. Step 1: model selection 

3.2.1. Model A – MIKE hydrological model 
Hydrological models play a pivotal role in understanding complex 

hydrological phenomena (Zhang et al., 2021). Various distributed 
models, such as the Topography-Based Hydrological Model (TOP-
MODEL) (Beven and Kirkby, 1979), Variable Infiltration Capacity 
(Lohmann et al., 1998), the Soil and Water Assessment Tool (SWAT) 
(Arnold et al., 1998), and the MIKE System Hydrological European 
(MIKE-SHE) model (Abbott et al., 1986) and MIKE Hydrologic Model-
ling System (MIKE-HMS) (Ruelland et al., 2008), have been widely 
employed in addressing practical scientific issues. 

MIKE SHE, a physically-based model, stands out due to its extensive 
reliance on various physical parameters encompassing precipitation, 
evaporation, interception, river flow, saturated and unsaturated 
groundwater flow, and other hydrological cycle processes (Abbott et al., 
1986). Its versatility is evident in its applicability to both small and large 
catchments, enabling simulations related to land-use changes, water 
resource management, and groundwater interactions (Abbott et al., 
1986; Aredo et al., 2021; Im et al., 2009; Paudel and Benjankar, 2022; 
Sahoo et al., 2006). Additionally, MIKE SHE incorporates MIKE 11 to 
simulate channel flow, offering comprehensive capabilities for model-
ling intricate channel networks, lakes, reservoirs, and river structures, 
including gates, sluices, and weirs (Butts and Graham, 2005a). MIKE 
SHE’s grid-based, spatially distributed nature allows for the incorpora-
tion of spatial variability in physical and meteorological parameters, 
distinguishing it from lumped models such as SWAT (Arnold et al., 
2010) and HEC-HMS (Ruelland et al., 2008). 

In this study, we illustrate the potential for integrating the water and 
carbon dynamics using a recently developed MIKE SHE model for the Aa 
of Weerijs catchment. This model, previously established, calibrated, 
and validated (Ali et al., 2023; Sardar, 2023), serves as our illustrative 
example and we will use it as model A. 

The model has a spatial distribution in the form of a grid with the size 
of 500m × 500m, utilizing readily available data on topography, 

precipitation, potential evapotranspiration, land use, surface water, soil 
texture, and groundwater. We classify this data as endogenous and 
exogenous variables (Table 2, MIKE-SHE) along the criteria on the 
conceptual framework (Fig. 1). The temporal scale is a time period of 10 
years, from September 15, 2009 until December 31, 2019 with an initial 
basic time step of 1h. The model delivers gridded results such as: water 
content in the unsaturated zone, depth of overland flow, infiltration to 
unsaturated zone, average water content in the rootzone and many 
others using a daily time step. On each location in the grid, it is also 
possible to calculate time series results. 

The MIKE-SHE model incorporates the Mualem van Genuchten soil 
hydraulic parameters defining soil retention curves and hydraulic con-
ductivity (Dourado Neto et al., 2011). What sets this model apart is that 
these variables are exogenous. It is not uncommon that alternative ap-
proaches, like the Rosetta model (Van Genuchten et al., 2001), can be 
used to determine these soil hydraulic parameters, sometimes dis-
regarding the influence of SOC. However, one can argue that when 
implementing interventions such as nature-based solutions, SOC does 
not remain the same; and it has an impact on the soil hydraulic pa-
rameters. Consequently, this affects the soil’s retention curves and hy-
draulic conductivity, which, in turn, influence the overall hydrology of 
the landscape. 

3.2.2. Model B – soil organic carbon model 
Following the conceptual framework (Fig. 1), when we already have 

an existing disciplinary model A, the next step is to analyse whether 
there is an existing model B, used for the analysis of the landscape 
function – carbon sequestration. 

The significant quantity of existing disciplinary SOC models, as 
highlighted in Campbell and Paustian’s 2015 review, underscores their 
significance and the intricate nature of SOC modelling. Various models 
are well-suited to distinct scenarios, encompassing diverse factors such 
as land use, management practices, climate conditions, soil character-
istics, and both temporal and spatial scales. These models exhibit 
varying limitations or prerequisites, including data availability and 
simulation objectives, and may be structured using different process 
types, each involving a specific set of parameters and input data re-
quirements, as noted in studies by Campbell and Paustian (2015) and 
Garsia et al. (2023). Nonetheless, the challenge remains on selecting an 
appropriate soil organic carbon simulation model (Garsia et al., 2023). 
To avoid the complication of reviewing all these models (more than 64 
models validated for multiple ecosystems)(Garsia et al., 2023), we 
studied few SOC models, specifically their conceptual frameworks, 
variables and scales. 

The CENTURY Model is a biogeochemical model used to study car-
bon and nutrient cycling in ecosystems over the long term. It assesses the 
impact of land management practices on carbon sequestration and 
nutrient dynamics (Parton et al., 1993). The RothC Model is a 
process-based carbon model focused on estimating carbon dynamics in 
agricultural soils. It helps analyse the effects of agricultural practices on 
soil carbon storage (Jenkinson, 1990). Both CENTURY and RothC 
models, have soil texture, specifically the percentage clay (C) as an 
exogenous variable used to directly calculate the soil moisture (Table 2). 
The clay content (%) is an exogenous variable that in temperate regions, 
does not change due to interventions such as nature-based solutions nor 
can be modelled seen as a endogenous variable. 

A third potential model is The Daisy Model. Daisy is a dynamic 
simulation model that examines interactions between plants, soil, and 
the atmosphere. It aids in understanding carbon sequestration potential 
and the effects of climate change on ecosystem carbon cycling (Abra-
hamsen and Hansen, 2000). Compared to CENTURY and RothC, Daisy 
uses the soil moisture as an exogenous variable for calculating the 
mineralization rate of carbon turnover. Additionally, Daisy is specif-
ically designed to facilitate interaction with other models, either by 
replacing individual Daisy processes (e.g. soil carbon turnover) or by 
using Daisy as a part of a larger system (Abrahamsen and Hansen, 2000). 
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Daisy has been previously integrated with MIKE SHE, by taking over the 
unsaturated zone and vegetation/ET processes within the modelling 
framework (Butts and Graham, 2005a), usually for simulating the ni-
trogen dynamics within the system for assessing groundwater quality 
(Styczen and Storm, 1993; Thirup, 2013), macropore flow and transport 
processes modelling (Skovdal Christiansen et al., 2004) and integration 
of remote sensing in agro-hydrologic modelling (Boegh et al., 2004). 
This first coupling, where DAISY was fully coupled with MIKE SHE, 
turned out to be too difficult to maintain and was abandoned (Thirup 
et al., 2014). However, until now, an integration between MIKE-SHE 
and Daisy has not been reported in the context of coupling the hydro-
logical and carbon processes neither for assessing climate adaptation 
and mitigation strategies. 

After reviewing few SOC models, their conceptual frameworks, 
scales and variables, we opted for developing a new meta-model called 
CARBI that would fit the scales and variables of MIKE. This decision was 
based on the following observations.  

1. Most SOC models use the same conceptual framework assuming an 
equilibrium state approach: 

IOC • DR = SOC • MR (2)  

where Ioc = input of organic carbon [kg/ha] DR = decomposition rate 
[%] and MR = mineralization rate [%], SOC = soil organic carbon [kg/ 
ha].  

2. Their main difference is the level of detail namely on the number of 
pools/compartments they use and how they are modelled;  

3. The mineralization rate does not change directly due to changes in 
hydrology. 

The CARBI model is a static meta model using the conceptual 
framework from a plethora of SOC models and makes the following 
assumptions and estimations. 

Firstly, the developed model CARBI only focuses on one soil organic 
carbon pool. This is because otherwise it would be difficult to calibrate 
the model due to the lack of measurements of different SOC pools in the 
Netherlands and Belgium. The calculation of the mineralization rate, 
was taken from the bigger SOC model Daisy, because of the direct link 
with hydrology, in contrast to other reviewed models (Table 1). Three 
factors are used for predicting the mineralization rate (MR) (Eq. (3)). The 
equation includes the clay factor (CF), temperature factor (TF) and 
pressure potential factor (PPF) factors which are multiplied by the base 
mineralization rate (bMR) (Hansen, 2002). The equation takes the sim-
ple product form: 

MR = bMR • CF • TF • PPF (3.A)  

CF = f(C); TF = f(ST) ; PPF = f(θ) (3.B)  

where bMR = base mineralization rate [%]; CF = clay factor; TF =

temperature factor; PPF = content soil water pressure potential factor; C 
= clay [%] and ST = soil temperature [◦C] (Hansen, 2002). 

Secondly, the mineralization rate (MR) is estimated to be 2% based 
on an MIT – model parameters at standard conditions (optimum soil 
moisture, no clay content and soil temperature of 10 ◦C) and there is no 
need to use any equations (Hansen, 2002). However, for values different 
than the optimum ones, we need to calculate the clay (CF), temperature 
(TF) and pressure potential (PPF) factors using abiotic functions for 
adjustment of the mineralization rates, and then we multiply these 
values with the base mineralization rate bMR (2%) to get the actual 
mineralization rate for that soil profile (Eq (3)). 

Thirdly, we took into account the scales of model A for developing 
static model with the same grid size of 500 × 500 m. Furthermore, from 
MIKE-SHE, we use the topsoil variables which correlates to the soil 
profile for the unsaturated zone up to 30 cm depth, hence we estimate 
that we have one carbon stock block of 30 cm. This is where most of the 
changes in terms of carbon turnover happen, if we implement specific 
interventions such as nature-based solutions. From a temporal point of 
view, we can state that carbon turnover is a relatively slow process in 
contrast to the rapid hydrological fluctuations that are quite relevant to 
analyse in short term. That is why the hydrological model is dynamic, 
with a temporal scale of 10 years, and this is not necessary with the 
carbon model, so we assume that the system is in equilibrium (Eq. (2)) 
and develop a static model. 

The first exogenous variable, to this carbon stock is the organic 
carbon input which is the organic carbon that enters the system with 
estimated 50% decomposition rate (DR). The value of organic carbon 
input is dependent on crop and grass residues including roots, animal 
manure and compost (Conijn and Lesschen, 2015) and it is calculated as 
an average per vegetation type (land use type) using the soil clay content 
(%) and organic carbon measurements (kg/ha) from the soil surveys (n 
= 3768) in Belgium and the Netherlands dating from the 1980s. 

3.3. Step 2: analyzing the variables and their overlapping populations 

This step will select relevant variables and illustrate their over-
lapping populations. Based on this, and whether there is a need for a 
sensitivity analysis or not (Fig. 1, Step 3), a coupling strategy will be 
determined. 

3.4. Step 3: sensitivity analysis 

3.4.1. Model A – MIKE-SHE hydrodynamic model 
Previous studies have identified key variables that significantly 

impact the performance of MIKE-SHE in groundwater and surface water 
hydrology, including hydraulic conductivity, specific yield, initial po-
tential head of aquifer, soil bypass coefficient, Manning’s roughness, 
evapotranspiration parameters, leakage coefficient, and detention stor-
age (Butts and Graham, 2005b; Moriasi et al., 2012; Paudel and Ben-
jankar, 2022). 

However, to assess the landscape functions, specifically carbon 
sequestration, in addition to enhancing drought resilience, we aim to 
investigate MIKE-SHE’s response to changes in carbon content, specif-
ically within the top 30 cm of the unsaturated zone. Soil organic carbon 
technically not a variable in this model (Table 2), however the Mualem 
van Genuchten soil hydraulic parameters and the bulk density (BD) are. 
In theory, by changing SOC, the soil hydraulic parameters and the bulk 
density will also change. That is why, because MIKE-SHE has not be 
analysed for this specific variable sensitivity, we need to conduct our 
own sensitivity analysis where we will change the SOC content and keep 
the other parameters fixed. For recalculation of the Mualem-van Gen-
uchten soil hydraulic parameters and the bulk density, we will use the 
pedo-transfer functions, as these might affect the model’s performance. 
To achieve this, we have conducted tests using the already calibrated 
and validated base model, representing the existing catchment condi-
tions. We manually increased carbon content by 2% and 4% following 
the rationale for the ‘4 per 1000’ initiative (Soussana et al., 2019). This 
resulted in new Mualem van Genuchten and bulk density (BD) variables 

Table 1 
SOC models selected variable comparison.  

Data Roth 
C 

CENTURY Daisy 

Weather Precipitation Ex Ex – 
Potential Evapotranspiration Ex – – 
Air temperature Ex Ex – 
Soil temperature – – Ex 

Soil Soil texture (Clay) Ex Ex Ex 
Input of organic carbon – Ex Ex 
Soil Organic Carbon Content En En En 

Water 
Movement 

Soil Moisture in Unsaturated 
Zone 

– – Ex  
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using the pedo-transfer functions (Eqs (4)–(9)). Subsequently, we 
updated the soil maps with these variables and executed two new sim-
ulations in MIKE-SHE covering the period from September 15, 2009 to 
December 31, 2019. 

3.4.2. Model B – soil organic carbon model 
To assess the CARBI model’s sensitivity, we need to compare the base 

model with variations that involve changes in the exogenous variables 
and see the effect on the endogenous parameter, the soil organic carbon 
turnover. Specifically, we are interested in analysing how the changes in 
hydrology, will influence changes in the soil organic carbon turnover. 
Thus increasing the overlapping variable, which is the pressure poten-
tial, expressed through the soil moisture. We will analyse the increase of 
10% and 20% in soil moisture based on an analysis of the retention curve 
used for calculating the moisture content in model A and the soil 
moisture deficit trends for the Netherlands and Belgium (EEA, 2019). 

3.5. Step 4: integration of model A and B 

Following the steps of the conceptual framework for integrated 
environmental modelling, we need to couple the carbon model CARBI 
(Model B), with the hydrological model MIKE-SHE (Model A). By 
defining the endogenous and exogenous variables of both the hydro-
logical model (Table 2, MIKE) and the possible carbon models (Table 1), 
we recognised that there is an intersection between them. This is evident 
namely because the hydrological model simulates the soil moisture, 
specifically in the unsaturated zone and this is seen as its endogenous 
variable. We are interested in carbon sequestration which is identified as 
our second landscape function (LFB), so we need to see whether soil 
organic carbon content is a variable in MIKE-SHE. On first look, this does 
not appear to be the case (Table 2). However, by having a deeper look 
and understanding of the soil hydraulic parameters, which are an 
exogenous variable in MIKE-SHE, and are calculated using the pedo- 
transfer functions, we can conclude that SOC is necessary for calcu-
lating the exogenous variables in MIKE-SHE, specifically the soil hy-
draulic Mualem van Genuchten (vG) and bulk density (BD) variables 
(Eqs. (4)–(9)). Based on this, the two variables which create overlapping 
populations between model A and model B are the soil moisture (θ) and 
the soil organic carbon content (SOC) through the Mualem van Gen-
uchten parameters (vG) and the pedo-transfer functions (PTF) (Fig. 3). 
Next steps would include choosing a model coupling strategy. This de-
pends on the results of the sensitivity analysis of both models, and their 
spatial and temporal scales and requirements. 

3.6. Step 5: model runs 

After choosing the coupling strategy based on the outcomes of the 
previous steps, it is important to conduct multiple model runs and look 
at the difference in results between them, to understand the influence of 
the model coupling. Because our interest are the landscape functions, 
water provision for analysing droughts and carbon sequestration for 
analysing the soil organic carbon changes, we will specifically compare 
the impact of the model runs on: i) drought – dry period and ii) soil 
organic carbon – average over the model run of 10 years. We will 
conduct these model runs for both the existing land use change scenario 
(Fig. 2, c) and for the alternative land use change scenario (Fig. 2, d). 

4. Results 

4.1. Step 1: model selection 

The hydrological model is an existing calibrated and validated 
model. Its variables and spatial scales were already pre-defined and are 
explained chapter 3.2.1. 

The soil organic carbon model was developed based on the meth-
odology presented in chapter 3.2.1. Furthermore, we calibrated the 
CARBI model, with regards to the input of organic carbon (IOC) and the 
base mineralization rate. The input of soil organic (IOC) carbon depends 
on the crop and grass residues, animal manure and compost. For the 
calibration of the carbon model, we used 3768 soil survey points. Each 
soil observation point is assigned with the land use value, based on its 
location. Because the soil survey was conducted in 1980, for the con-
sistency, we used the earliest available Corine Land Cover Map from 
1990. For each of the point, the IOC is calculated using the assumption 
that the system is in equilibrium (Eqs. 1). Consequently, for each land 
use type, we chose one average value and we calibrated it using the 
SOLVER function. 

Additionally, we calibrated the CARBI model with regards to the 
base mineralization rate (bMR). The bMR is directly dependant on the 
texture class, SOC is more stable in clay soils and the content of SOC is 

Table 2 
Selection of relevant variables to illustrate the overlapping populations between models A (MIKE-SHE) and B (CARBI); (− ) variable not available in the model.  

Data type Variable Data Source MIKE - 
SHE 

CARBI 

Weather Rainfall Ginneken, Zundert and Loenhout stations Ex – 
Potential evapotranspiration Gilze-Rijen station Ex – 
Soil Temperature Average value from Beerse station – Ex 

Topography Digital Elevation Model EU DEM (CLMS, n.d.) Ex – 
River Network  Ex – 

Vegetation Land Cover Corine Land Cover 2018; CLMS, 2018) Ex Ex 
Leaf area index and root depth Crop parameters of guide crops in the Netherlands as defined by NHI (NHI, 2008) Ex – 

Soil Input of organic carbon Dutch and Belgian soil survey data (Oorts et al., 2019; WUR, 1983) – Ex 
Soil texture USDA soil texture based on LUCAS topsoil database (Ballabio et al., 2016) Ex Ex 
Soil hydraulic parameters (Mualem van 
Genuchten parameters) 

Calculated pedo-transfer functions (Wösten et al., 1999) based on soil texture ( 
Ballabio et al., 2016) (Eqs. (5)–(9)) 

Ex Ex 

Bulk Density Calculated pedo-transfer functions (Wösten et al., 1999) based on soil texture ( 
Ballabio et al., 2016) (Eq. (4)) 

Ex Ex 

Soil Organic Carbon Content – – En 
Water 

Movement 
Soil Moisture in Unsaturated Zone – En Ex 
Overland Flow – En – 
Actual evapotranspiration – En – 
Ground water head elevation – En –  

Fig. 3. Variables and equations for A and B model linkage.  

B. Bogatinoska et al.                                                                                                                                                                                                                           



Environmental Modelling and Software 179 (2024) 106116

8

also higher in clay soils rather than sandy soils. Consequently we 
developed a look up table for the bMR on the base of the texture class. 
There is a total of 17 texture classes for clay contents from 0% to 85% 
and bMR ranging from maximum 2.5 up to 1. The look up table is also 
developed using the clay contents from the 3768 soil measurement data 
and it is calibrated using the SOLVER function. 

4.2. Step 2: analysing the variables and their overlapping population 

The exogenous and endogenous variables of both models, the exist-
ing MIKE hydrological model and newly developed meta soil organic 
carbon model CARBI are presented in Table 2. 

The soil data exogenous variables in MIKE are in the form of indexed 
raster maps with associated look-up tables that link the soil indexes (soil 
texture + SOC%) to the soil properties specifically the soil hydraulic 
properties used for calculating the retention curve and hydraulic con-
ductivity. These indexes represent homogeneous soil units having 
univocal set of soil parameters. At the study area, soil maps and tables 
were built based on the texture and soil organic carbon classifications 
from the LUCAS topsoil database (Ballabio et al., 2016). 

As pointed out previously, the soil organic carbon is not a direct 
exogenous variable in MIKE. However, for the purpose of analysing both 
the hydrological response and soil organic carbon sequestration, we 
opted for using the Mualem-van Genuchten parameters, because these 
parameters are calculated on the base of the pedo-transfer functions that 
require the carbon contents (%). By doing this, the carbon content can be 
viewed in the model A as an indirect exogenous variable. Aside from the 
Mualem-van Genuchten parameters, the retention curve in MIKE can be 
calculated using tabulated values and the Campbell equations, and the 
hydraulic conductivity using the: tabulated values, Averjanov, Camp-
bell/Burdine equations. 

The empirical pedo-transfer functions allowed calculating the 
Mualem-van Genuchten parameters, used for modelling the unsaturated 
zone of the model domain. They were applied to each soil index and are 
based on the soil texture (C - clay and S - silt) and soil organic carbon 
(OC). Specifically for the bulk density (BD) the empirical Eq. (4) for 
sandy soils from Wösten (1997) and the Mualem-van Genuchten pa-
rameters for calculating the retention curve and hydraulic conductivity 
the empirical Eqs. (5)–(9) from Wösten et al. (1999), calibrated for 
European soils were applied: 

1
/

BD = − 1.984 + 0.03174 • OC + 0.032 • topsoil + 0.00003576 • C2

+ 67.5 • M50− 1 + 0.424 • ln(M50)
(4)  

θS =0.719 + 0.001691 • C − 0.29691BD − 0.000001491 • S2

+ 0.000244 • OC2 + 0.02427 • C− 1 + 0.01113 • S− 1 + 0.01472 • ln(S)

− 0.000126 • OC • C − 0.000619 • BD • C − 0.00204 • BD • OC

− 0.0001664 • topsoil • S
(5)  

α∗ = − 14.96 + 0.03135 • C + 0.0351 • S + 1.114 • OC + 15.29 • BD

− 0.192 • topsoil − 4.671 • BD2 − 0.000781 • C2 − 0.0204 • OC2

+ 0.026 • OC− 1 − 0.0663 • ln(S) − 0.0807 • ln(OC) − 0.04546 • BD

• S − 0.8365 • BD • OC + 0.00673 • topsoil • C
(6)  

n∗ = − 25.23 − 0.02195 • C + 0.0074 • S − 0.3344 • OC + 45.5 • BD

− 7.24 • BD2 + 0.0003658 • C2 + 0.008575 • OC2 − 12.81 • BD− 1

− 0.1524 • S− 1 − 0.01136 • OC− 1 − 0.2876 • ln(S) − 0.0386 • ln(OC)

− 44.6 • ln(BD) − 0.02264 • D • C + 0.1545 • BD • OC + 0.00718

• topsoil • C
(7)  

l∗ =0.0202 + 0.0006193 • C2 − 0.003376 • OC2 − 0.1261 • ln(OC)

− 0.03544 • BD • C + 0.00283 • BD • S + 0.0841 • BD • OC (8)  

K∗
S =7.755 + 0.0352 • S + 0.93 + topsoil − 0.967 • D2 − 0.000484 • C2

− 0.000322 • S2 + 0.001 • S− 1 − 0.0434 • OC− 1 − 0.643 • ln(S)

− 0.01398 • BD • C − 0.2884 • BD • OC + 0.02986 • topsoil • C

− 0.03305 • topsoil • S
(9)  

where θS is a model parameter, a*, n*, l* and K* are transformed model 
parameters in the Mualem-van Genuchten equations; C = clay [%], S =
silt [%]; OC = organic carbon [%]; topsoil and subsoil are qualitative 
variables having the value 1 and 0; and ln = natural logarithm. 

4.3. Step 3: sensitivity analysis 

For both models we conducted a sensitivity analysis where we test 
how is the endogenous variable – soil moisture (θ) sensitive in MIKE to 
changes in the exogenous variable, which is an endogenous variable of 
CARBI – soil organic carbon (SOC) (Fig. 3)and vice versa. The results 
from the sensitivity analysis both in MIKE and CARBI are presented in 
Table 3. 

From Table 3, we can conclude that with increase of 2% and 4% of 
soil organic carbon in MIKE resulted in an increase of the mean value of 
the soil moisture in a dry period, seen as an average for the whole 
catchment with around 22–37%. The increase of 10% and 20% of soil 
moisture in CARBI resulted in an increase of the mean value of SOC with 
around 3.8%–7.3%. 

4.4. Step 4: integration of model A and B 

We have an existing calibrated model A – MIKE for a landscape 
function LFA – water provision/hydrology, and a developed meta model 
B - CARBI for the landscape function LFB – carbon sequestration. With 
the sensitivity analysis we established that the models A and B are 
sensitive to each other, by testing them for the variables that would 
exchange between the models. The next vital step is establish a linkage 
between the hydrological model A, specifically in the unsaturated zone, 
and model B, representing the topsoil layer of a catchment up to a depth 
of 30 cm. To achieve this, we have developed a simplified static carbon 
meta model named CARBI fitted to the spatial and temporal scales of 
model A. CARBI utilizes the endogenous variables from the hydrological 
model as exogenous variables and provides new exogenous variables to 
the hydrological model in a gridded (spatially distributed) form. Based 
on our conceptual framework for integrated modelling (Fig. 1), in a case 
when the endogenous variables of model A, become exogenous in model 
B and vice versa, the best is to employ a loose (soft) coupling strategy. 

Table 3 
Model A and B Sensitivity (standard deviation between brackets).  

θ SOC [%] 

Base 
Model 

Model +2% 
SOC 

Model +4% 
SOC 

Base 
Model 

Model 
+10% θ 

Model 
+20% θ 

0.27 
(0.05) 

0.33 (0.04) 0.37 (0.04) 3.40 
(1.13) 

3.53 (1.23) 3.65 (1.37)  
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We chose a loose over a tight coupling strategy because we wanted to 
develop an easy and straightforward approach without the added 
complexity of requiring a software that would create the exchange be-
tween the models and their variables. 

The main endogenous variable from model B is the SOC (%) which is 
in the form of indexed soil raster maps, keeping the same form as the 
indexed soil raster maps in model A. This goes back to model A as a new 
exogenous variable and through the lookup tables containing the 
different combinations of soil types in model A, provides this model with 
new soil hydraulic parameters – the Mualem van Genuchten parameters 
which influence the overall hydrology of the model. 

4.5. Step 5: model runs 

In total, four model runs were conducted in MIKE as the initial 
model, followed by three runs in CARBI (see Fig. 4). The first MIKE run 
utilized a soil map (SOC 1.0) based on the USDA soil texture from the 
LUCAS topsoil database (Ballabio et al., 2016), where soil hydraulic 
variables and bulk density were calculated using pedo-transfer functions 
(Eqs. (4)–(9)). 

Firstly, we will examine the results arising from the model coupling 
by comparing mean and standard deviation values over the entire 
catchment for both the current and alternative land use scenarios. From 
Fig. 4 and Table 4, it becomes evident that the most substantial increase 
in SOC occurred for both the current (68%) and alternative land use 
(73%) scenarios between step 1, where soil organic carbon is not 
modelled but utilized from an existing European database, and step 2, 

where we model soil organic carbon using the CARBI model and 
incorporate the initial model output, soil moisture (θ1.0), from MIKE. 
The differences between subsequent steps are smaller, approximately 
3.6% between the second and third steps, with no change between the 
third and fourth steps, indicating carbon stabilization in the current land 
use scenario. For the alternative land use scenario, these model runs 
resulted in a difference of 1.44% between the second and third steps and 
10.8% between the third and fourth steps. 

The results for soil moisture in the current land use scenario 
demonstrate an increasing trend between steps one and two (6.4%) and 
steps two and three (3%). In the alternative land use scenario, this in-
crease is more pronounced at 13.8% between steps two and three and 
15.15% between steps three and four. 

Subsequently, we will inspect the results relating to the current and 
alternative land use scenarios. Specifically, we aim to compare how the 
models respond to distinct land use changes. Furthermore, this analysis 
seeks to illustrate the potential application of the model integration 

Fig. 4. Schematic representation of the loose coupling strategy between model A and B and their model runs for the current land use scenario.  

Table 4 
Spatial mean and standard deviation values for the modelling steps for the 
current and the alternative land use.   

Current land use Alternative land use  

SOC [%] Soil Moisture θ [(.)] SOC [%] Soil Moisture θ [(.)] 
Run 1 2.00 (0.86) 0.31 (0.05) 2.00 (0.86) 0.29 (0.05) 
Run 2 3.36 (1.13) 0.33 (0.05) 3.46 (1.10) 0.33 (0.05) 
Run 3 3.48 (1.40) 0.34 (0.06) 3.51 (1.40) 0.38 (0.03) 
Run 4 3.48 (1.50)  3.89 (1.40)   
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framework, particularly the water-carbon coupling strategy, in demon-
strating the implementation of nature-based solutions through land use 
change. 

Fig. 5 presents the spatial variation in the effects of land use change. 
Land use changes resulted in considerable changes in SOC contents that 
varied throughout the catchment (Fig. 5a and b). The predominant 
impact of land use change is upstream in the Belgian part, contrasting 
with the middle and downstream Dutch sections of the catchment. 
Comparing the change between the third and fourth model runs for 
alternative land use with the last model run for current land use (Fig. 5a 
and b), locations showing SOC loss largely remain consistent, while 
some with minor SOC increases continue to intensify with the additional 
model run. 

Soil moisture results from land use change indicate an increasing 
trend across the majority of the catchment, particularly in the last (third) 
model run (Fig. 5d), contrasting with the second run (Fig. 5c). 

In terms of model integration, the coupling of models reveals a direct 
dependency between soil organic carbon and soil moisture. The increase 
in soil organic carbon corresponds to elevated soil moisture, and vice 
versa. Additionally, the θ-SOC grid by grid relationship is non-linear and 
the resulting slopes become less steep due to the difference in their re-
lationships arising from the increase in SOC (%) and the vicinity to the 
soil moisture saturation (Supplementary Material 1, Fig. 1). The impact 
of alternative land use change has a more pronounced effect on 
increasing soil moisture in the catchment, particularly in the last run. 

Regarding carbon sequestration, the effects of alternative land use are 
location-dependent. Changing agriculture to forest may exhibit ten-
dencies for carbon sequestration in some locations, while others may 
experience potential carbon losses. The θ-SOC relationship for alterna-
tive land use is similar to the current land use (Supplementary Material 
1, Fig. 2). 

5. Discussion 

Using multiple, disciplinary models is not always straightforward. 
This paper provides a framework to determine the level of integration 
that is required if we want to use multiple models in a single study. 
Through the integration of diverse models, it becomes possible to 
interpret results in a manner that is more effective for addressing 
intricate inquiries (between processes and their variables) compared to 
relying solely on a single pre-existing model. Loose or soft coupling is 
often a necessary approach for linking disciplinary models for analysing 
the multi-functionality of landscapes, particularly when rapid (ex-ante) 
decisions are needed. 

A known standard for model linkage in the water domain is The Open 
Modelling Interface and Environment (OpenMI), developed by a con-
sortium of universities and private companies (Harpham et al., 2019). 
Their standard defines an interface that allows already existing or new 
fully developed time-dependent models to exchange data at runtime. 
However, when rapid decisions are needed, this might contribute to the 

Fig. 5. Effects of land use change on drought and soil organic carbon sequestration. Difference between the alternative and current land use between a) run 4 and run 
3; b) run 4 and run 4; c) run 3 and run 2; d) run 3 and run 3 consequently. 
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rationale behind increased complexity, which is in contrast to our sug-
gested stepwise framework. In the agricultural domain, a similar effort 
for linking the climate, crop, and economic modelling communities with 
information technology for producing improved crop, economic and 
climate projection models, is the Agricultural Model Intercomparison 
and Improvement Project (AgMIP) (Rosenzweig et al., 2013; Ruane 
et al., 2017). Such modelling frameworks can often require the collec-
tion of extensive data that might make the integration process slower. 

The proposed framework adopts a somewhat modular approach, 
wherein disciplinary models are carefully chosen (or designed) to 
interact in a manner that preserves the integrity of the original model 
(MIKE) or employs an even more streamlined version (CARBI model) 
which was designed to be linked. This concept resembles the ’plug and 
play’ paradigm prevalent in contemporary software development, 
where model components engage seamlessly through standard 
communication protocols (Papajorgji, 2005). 

This integrated modelling approach could be used for modelling the 
impact of potential nature-based solutions, including but not limited to 
meandering, ditch blocking, peatland and forest restoration, as well as 
the implementation of cover crops for even more fruitful discussions 
with stakeholders. However, the application of this modelling approach 
in this paper is intended to primarily take an exploratory approach. 

Another noteworthy finding from this research underscores the ne-
cessity for increased transparency in models. It is not always readily 
apparent which data is utilized and what limitations are associated with 
them. This observation stems from the soil data requirements in MIKE, 
where Soil Organic Carbon (SOC) is not inherently treated as an exog-
enous factor, and MIKE can run without considering it. If one opts for the 
Mualem van Genuchten method to calculate soil hydraulic parameters, 
which significantly impacts the hydrology, especially in the unsaturated 
zone, carbon may be entirely overlooked. This oversight occurs despite 
the fact that pedo-transfer functions cannot compute the Mualem van 
Genuchten parameters without incorporating carbon, as evident in 
equations (4)–(9). 

6. Conclusion 

In this study, we introduce a stepwise conceptual framework to 
determine the level of integration that is necessary for integrated envi-
ronmental modelling, using the Aa of Weerijs catchment as a case study. 
The study emphasizes the significance of coupling hydrological and 
carbon models and to demonstrate the potential utility of this approach 
for examining the effects of land use change in future discussions with 
stakeholders. The model coupling was achieved through a stepwise 
framework, involving an initial analysis of variables and scales, an 
exploration of their overlapping populations leading to a necessary 
sensitivity analysis, and adopting a loose coupling approach. 

Environmental models play a central role in the effective planning 
and implementation of interventions and policies aimed at harnessing 
the benefits of landscapes. While disciplinary models have historically 
focused on specific functions, the need for integrated solutions has 
become apparent. Our research contributes to addressing this challenge 
by proposing a conceptual framework that bridges the gap between 
using existing disciplinary models and the imperative for integrated 
modelling, particularly showcasing the multifunctionality of landscapes. 

The application of the case study and subsequent model runs reveals 
substantial differences between runs for both current and alternative 
land use scenarios when considered separately. Notably, the most sig-
nificant difference arises between the initial carbon map used in the first 
MIKE run, derived from an existing database, and the subsequently 
modelled carbon map, entirely based on the CARBI model designed to fit 
the spatial scale of MIKE. While an overall increasing trend is observed 
between other runs, the final runs indicate carbon stabilization, with soil 
moisture continuing to show considerable increments. This highlights 
the interconnectedness of carbon and hydrology, underscoring the 
importance of comprehending the dynamics of these processes, which is 

challenging with separate disciplinary models. A relatively loose model 
integration was established in which the models were run iteratively. 

Concerning alternative land use, distinct from current land use, the 
results suggest increased water storage in the unsaturated zone, partic-
ularly during dry periods, contributing to our understanding of the 
model’s effectiveness in assessing drought conditions. In terms of carbon 
sequestration, the results are location-dependent, with some areas 
experiencing an increase leading to sequestration, while others exhibit a 
decrease resulting in emissions. These findings contribute valuable in-
sights into the intricate interactions within the system and underscore 
the potential of the proposed modelling framework for informing dis-
cussions on environmental management and land use planning. 

Software and data availability  

1. Name of software for Hydrological model: MIKE SHE and MIKE 11 
Flow Model 

Developer: Danish Hydraulic Institute (DHI) 
Contact information: https://www.mikepoweredbydhi.com. 
Hardware and software requirements: e at least a 2 GHz CPU, 8–16 

GB of RAM and 100–500 GB of free disk space. 
Availability: https://www.mikepoweredbydhi.com/download/mike 

-2023. 
Cost: license necessary. 
The use data can be found in Table 2and the following sources: 

weather data (https://www.knmi.nl/), topography data - EU DEM at 
(CLMS, n.d.), vegetation data – Land Cover (CLMS, 2018) and crop pa-
rameters (NHI, 2008), soil data (https://esdac.jrc.ec.europa.eu/resour 
ce-type/datasets) based on (Ballabio et al., 2016).  

2 Name of software for Carbon Model: CARBI (Linking module) 

Developer: Borjana Bogatinoska Contact information: borjana.bo 
gatinoska@ou.nl. 

Year first available: 2023. 
Program language: Excel. 
Cost: free under Microsoft Office license. 

Software availability 

1 model run is showcased in the Supplementary Material 2. 
The use data can be found in Table 2 and the following sources: 

weather data (https://www.weerstationkempen.be/template/indexDe 
sktop.php), soil survey data for the Netherlands (https://bodemdata. 
nl/) and for Belgium (https://www.dov.vlaanderen.be/) and soil 
texture data from (https://esdac.jrc.ec.europa.eu/resource-type/datase 
ts) based on (Ballabio et al., 2016) and vegetation data – Land Cover 
(CLMS, 2018). 
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