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Abstract 
 
This study explores the impact of phosphorus on the functional diversity (FD) of freshwater 
fish globally. The FD metrics functional richness (FRic), functional evenness (FEve) and 
functional divergence (FDiv) are calculated using a compiled dataset of 36,868 total 
phosphorus (TP) stations and 4,478,635 fish occurrences, leading to a FD analysis for 2498 
buffers. 
Using linear mixed models and various potential covariates, the effects of TP and freshwater 
realm on FD was assessed. The best-performing model for FRic, selected based on ANOVA, 
marginal R2 and conditional R2, included ecoregions as a random factor and temperature as 
a covariate. This model explained 57.5% of the variance in FRic, but TP's effect was not 
significant. The models for FEve and FDiv are singular, therefore no response to TP has been 
found. Contrary to prior research suggesting a significant effect of phosphorus on aquatic 
ecosystems, these findings reveal no significant relationship between TP and the FD metrics. 
This result challenges the expectation of decreasing FRic based on findings of decrease in 
species richness, highlighting that species richness does not necessarily correlate with 
functional diversity. 
These findings suggest that phosphorus alone may not be a reliable indicator of 
eutrophication's impact on functional diversity. The results underscore the importance of 
considering additional factors, such as the nitrogen-to-phosphorus (N/P) ratio, in assessing 
the ecological effects of eutrophication. Consequently, phosphorus should be reconsidered 
as the sole metric for evaluating freshwater eutrophication in life cycle assessments, 
especially when using FD as impact category. 
 
Keywords: eutrophication, functional diversity, riverine ecosystems, total phosphorus 
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Introduction 
 
One-third of vertebrate species live in freshwater ecosystems, even though freshwater 
bodies cover less than 1% of the world’s surface. However, this ecosystem is also showing 
the greatest global decline in species populations. The major driving forces of this have been 
changes in land and sea use, climate change and pollution (WWF, 2022). Freshwater 
ecosystems also improve human well-being, as it is used for food production, energy 
production and recreation. Over 50% of the human population lives within 3 km of a 
freshwater body (WWF, 2022).  
 
Since the Industrial Revolution, humans have been polluting freshwater ecosystems by using 
increasing amounts of nitrogen (N) and phosphorus (P). Especially the use of fertilizer in 
modern agriculture has been a leading cause of this (Rockström et al., 2009). Currently, N 
and P use cross the planetary boundary both regionally and globally (Richardson et al., 
2023). The increasing amount of N and P leaking into the aquatic environment over the last 
years has put pressure on these ecosystems. In this process, called eutrophication, the 
additional nutrients can lead to harmful algae blooms or excessive growth of aquatic plants 
(Smith, 2003). These algae blooms deplete the water of oxygen which is detrimental for 
aquatic organisms or may be directly toxic to fish and shellfish (Glibert & Burford, 2017). 
Eutrophication is found to be one of the main causes of the decline of freshwater 
biodiversity (Cook et al., 2018). 

Changes in the freshwater ecosystem can be measured by the functional diversity of fish. 
Fish are a good indicator of ecosystem health because of the services they provide like 
control of trophic networks and regulation of nutrient cycles (Villéger et al., 2017). FD can be 
used as a bridge between ecosystem functioning and species loss (De Souza et al., 2013). 
Diversity described by FD gives a better indication of habitat degradation than species 
diversity metrics (Mouchet et al., 2010; Villéger et al., 2010), as the use of traits for the FD 
metrics creates a stronger link to ecosystem functioning than the number of species would 
(Ahmed et al., 2019). For functional diversity the metrics functional richness, functional 
evenness and functional divergence presented in Villéger et al. (2008) are used. Functional 
richness represents the amount of functional space filled by the community. Functional 
evenness describes the evenness or regularity of abundance distribution in the functional 
trait space. Functional divergence relates to how abundance is distributed towards the 
extremities of the trait space. These metrics are calculated using four continuous traits: 
relative head length, relative body depth, trophic level and relative growth rate. These traits 
were selected by Scherer et al. (2023) when analysing the effect of climate change on FD.  

Eutrophication is an impact category in many life cycle assessment (LCA) methodologies, but 
this method currently assesses the effect on species richness and has one global effect 
factor. Methodologies like RECIPE 2016, CML2001, TRACI, IMPACT world+ typically use 
either a single eutrophication indicator for both freshwater and marine ecosystems or 
operate under the assumption that phosphorus is limiting in freshwater and nitrogen in 
marine environments (Morelli et al., 2018). Loss of biodiversity is one of the crucial concerns 
in LCA studies (Muralikrishna & Manickam, 2017). However, the impacts on biodiversity 
have mainly been focused on species richness, instead of FD (de Visser et al., 2023; Dong et 
al., 2023; Zhou et al., 2023). Although there have been efforts to incorporate FD metrics as 
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impact categories within LCA studies (Ahmed et al., 2019), biodiversity responses to external 
pressures vary regionally. Zhou et al. (2023) found different effects on species richness from 
nitrogen emission between freshwater ecoregions developed by Abell et al. (2008). Scherer 
et al. (2023) found varying impacts from climate change on the FD of freshwater fish 
between freshwater realms.  
 
Therefore, this study aims to assess the effect of eutrophication on the functional diversity 
of freshwater fish across the world, with a focus on the riverine ecosystem. The effects 
found in the study could aid in developing effect factors which in turn could be integrated 
into LCA studies. This topic is part of Work Package 2 “Quantify impacts on ecosystem 
functions” of the BAMBOO project (BAMBOO-Horizon, 2023). The residence time of N and P 
is different for lakes and rivers, the longer residence time in lakes increases the 
eutrophication potential (Islam & Mostafa, 2024). Thus within the scope of this research, a 
selection was necessary. As Barbarossa et al., Scherer et al., Zhou et al. (2021; 2023; 2024) 
looked at rivers, this study will do the same. The freshwater realms will be used to compare 
varying effects globally (Abell et al., 2008). 
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Methods  
Eutrophication 
The analysis will utilise a space-for-time substitution approach, assuming that spatial 
variability reflects temporal variability. Space-for-time substitution is increasingly being used 
to model climate-driven changes in species distribution and richness. Blois et al. (2013) 
found that space-for-time substitution was ~72% as accurate as time-for-time predictions. 
To increase the sample size of this study it was decided to use a space-for-time substitution 
to test the effect of eutrophication on FD.    
 
Indicator 
Eutrophication indicators can be nutrient, oxygen or algae-related (Deksne, 2022). Nutrient-
related indicators are based on the principle of nutrient limitation, where an increase in the 
limiting nutrient within an ecosystem triggers harmful algae blooms. The subsequent decay 
of these algae causes oxygen depletion, posing threats to aquatic biodiversity (Smith, 2003). 
Oxygen-related indicator measure the oxygen depletion. Algae-related indicators quantify 
harmful algae blooms by assessing chlorophyll a concentration, a green pigment found in 
algae (European Environment Agency, 2004). LCA studies generally work under the 
assumption that phosphorus is the limiting nutrient in freshwater and nitrogen is limiting in 
marine ecosystems (Morelli et al., 2018).  
Total phosphorus was selected as the eutrophication indicator for this study, as phosphorus 
is both well-represented in the water quality databases and the most commonly used 
indicator for freshwater eutrophication in LCA studies. 
 
Databases 
Multiple global databases that include TP are available. GemStat (GEMStat Database of the 
Global Environment Monitoring System for Freshwater, 2020), the GLObal River Chemistry 
database (GLORICH) (Hartmann et al., 2019), the Surface Water Chemistry SWatCH database 
(Rotteveel et al., 2022) and the Global River Water Quality Archive (GRQA) (Virro et al., 
2021) are all relevant options. GemStat and GLORICH encompass data on 11,926 and 17,000 
stations worldwide. Within GemStat the two indicators most measured are dissolved oxygen 
(8284) and TP (7019), within the GLORICH database TP (10.540) has the best coverage. 
SWatCH and GRQA include data from GemStat and GLORICH combined with other 
databases. This results in 10,363 river stations in SWatCH and 42,658 stations in GRQA.  
Other databases, like GLEON and NSF BCO-DMO, were unsuitable due to their limited 
geographic scope or focus solely on lakes (Water Quality Database Inventory – AquaWatch, 
2017).  
 
The GRQA includes most TP measuring stations, especially in Nearctic, Palearctic and 
Australasia compared to other databases. However, in Indo-Malay, some GemStat stations 
were not included within the GRQA, even though GemStat is included in the GRQA. No 
reason could be found why this was the case, therefore the GRQA and GemStat were 
combined into one dataset for this research.  
 
To account for the yearly variability in TP measurements, the mean concentration over the 
most recent three years available was calculated. There is a high variability between the 
number and consistency of measurements over time between stations. Some have 
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measurements every month while others have measurements every day for some months 
and no measurements for other months. Therefore, taking the average over all 
measurements available for the last three years would potentially create a bias towards 
certain periods. Since seasons impact the fate of phosphorus (De Andrade et al., 2021) this 
could skew the TP measurements. Therefore, the three-year mean was first calculated for 
the dry and wet seasons separately, the dry season lasts from May to October and the wet 
season from November to April (De Andrade et al., 2021). After this, the mean of these two 
values was taken as the TP mean for the station. This way no season is overrepresented 
within the mean.   
In these databases measurements between 1900 and 2023 are included, the first year with 
more than 10 measurements is 1968. Excluding data between 1900 and 1967 only excludes 
8 stations, all from the Nearctic realm. Because this realm has the most stations and 
excluding these years reduces the overall time variability only measurements between 1968 
and 2023 are included in the analysis.  
 
Combining GRQA and GemStat led to some stations being less than 1 km apart. This 
boundary was set within the GRQA boundary for potential duplicate stations (Virro et al., 
2021). Therefore, all station pairs within this boundary were detected using the R-package 
dbscan (Hahsler et al., 2024). The station with the lowest number of measurements in the 
most recent three years was removed. If both stations had the same number of 
measurements the first alphabetical station ID was kept. The number of stations for each 
realm taken from GRQA, GemStat and the total number of stations can be found in Table 1, 
a map of all stations and corresponding TP can be found in Appendix 1.  
 
Table 1 Number TP stations from each database included in the TP dataset, the stations listed under GemStat are limited to 
those not included in the GRQA. 

Realm GRQA Additional from GemStat Total 
Afrotropic 470 81 551 

Australasia 930 0 930 
Indo-Malay 191 412 603 

Nearctic 25791 22 25813 
Neotropic 2570 1106 3676 

Oceania 51 0 51 
Palearctic 4397 847 5244 

 
Fish occurrences 
The method for compiling the fish occurrence data is based on the approach of Barbarossa 
et al. (2020), to which some data-cleaning steps were added. 
 
A comprehensive database of fish occurrences was created by combining occurrences of six 
databases. The database as compiled by Barbarossa et al. (2020) from FishNet2, Global 
Biodiversity Information Facility (GBIF), Portal da Biodiversidade, SpeciesLink and the Atlas of 
Living Australia (ALA) was utilised, with the addition of the Amazonfish database (Jézéquel et 
al., 2020). 
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Only occurrences between 1968 and 2023 were used to minimise temporal differences 
between fish occurrences and the TP measurements. Because the Amazonfish database did 
not include year data, occurrences with literature listed as the data source were excluded, as 
these are expected to be outside of the scope of 1968-2023. 
 
In addition to the data cleaning by Barbarossa et al. (2020) only observations of species in 
the wild were included, consequently preserved specimens, fish living in aquaria and fossil 
specimen were excluded. As such, FishNet2, GBIF, ALA and SpeciesLink data were filtered to 
have HumanObservation or MachineObservation as the basis of record. For Portal da 
Biodiversidade the basis of record ‘Solto/mantido na natureza’ was included, thereby only 
including observations of wild specimens. The Amazonfish database lacks basis of records, 
therefore other filters were applied to retain only probable live, wild sightings and exclude 
fossils and aquarium fish. First, occurrences originating from the other five databases were 
removed, as there is a basis of record available in the original database and therefore the 
original database was preferred. Second, occurrences associated with museums, identified 
by including ‘muse’ in the institution name, were excluded as these were presumed to be 
preserved specimens. 
 
The occurrences were selected to be freshwater fish included in the dataset of species and 
imputed traits created by Scherer et al. (2023). This allows for using these imputed traits in 
the functional diversity (FD) calculations. The dataset is expected to contain all freshwater 
fish species of the class Actinopterygii, which represents over 99% of all extant fish species. 
The species names database was expanded using the species name synonyms from Fishbase 
(Norén, 2023) and Tedesco et al. (2017). This resulted in 4,385,728 occurrences based on the 
dataset and an additional 135,138 occurrences because of name synonyms. These additional 
occurrences were added to the database using the names included in Scherer et al. (2023). 
 
Duplicate occurrences were removed, resulting in a final dataset comprising of 4,478,635 
occurrences and 5,966 species. All species have available trait data. Table 2 presents the 
number of records and species for each database, a map of all occurrences can be found in 
Appendix 2.  
 
Table 2 Number of fish occurrences and species from each database included in the occurrence records 

 Number of records Number of species 
ALA 423,774 1,010 

Fishnet2 57,676 1,529 
GBIF 3,962,308 4,551 

Portal da Biodiversidade 8,386 1,274 
SpeciesLink 230 97 
Amazonfish 76,243 1,638 

Merged records without synonyms 4,385,728 5,954 
Additional records using synonyms 135,138 219 

Total occurrence records 4,478,635 5,966 
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River buffer regions 
To calculate FD a species presence-absence matrix was needed. To accomplish this, buffer 
regions around the measuring stations were created. The method was based on Deksne 
(2022). Each buffer region needs to have: a minimum of 3 species, this is essential to 
calculate FD (Villéger et al., 2008); a similar length of river; no overlap with other buffers and 
not too much length of river covered.  
A uniform river length within the buffer region ensures a similar potential of occurrences 
within the buffer. Including a long length of river allows for larger deviations of the TP within 
the buffer compared to the measurement. Data on river length and location was taken from 
the hydroRIVERS database (Lehner & Grill, 2013). 
 
To reduce the computational power required and shorten the run time, stations, rivers and 
occurrences were derived separately for each realm. 
To include only stations where eutrophication is occurring a minimum TP of 0.01 mg/L was 
set. Extremely low stressor values can also negatively impact species presence (Niblick, 
2019), however, this is not the effect of eutrophication but rather the absence of nutrients. 
A minimum TP of 0.01 mg/L was used as this was found to be the optimum phosphorus 
concentration for fish species richness in streams in both cold and temperate climates 
(Azevedo et al., 2013). Trends found below this optimum were expected to be due to 
nutrient absence, and anything above this trend was expected to be due to nutrient excess, 
therefore representing eutrophication. No optimum concentration for (sub)tropical regions 
was found, however, in lakes the optimum TP concentration was the same for both 
temperate and (sub)tropical regions. Therefore the same concentration is used for 
(sub)tropical and temperate regions (Azevedo et al., 2013). All stations with a TP 
concentration below 0.01 mg/L were removed.  
 
To create the buffers the following steps were performed: 
1) A buffer area was created around each station, starting with a 10 km radius, and 
increasing with 5 km steps until the buffer area included at least three species occurrences. 
The maximum buffer size was set at a radius of 30 km. Because of the small number of 
buffers found within Indo-Malay and Oceania the maximum radius was set to 50 km to 
increase the possibility of a station being included in the analysis. The buffer enlargements 
of 5 km are slightly different from Deksne (Deksne, 2022), who used 10 km increments. This 
reduced the runtime needed for step 3.  
2) The river length in each buffer was calculated. The target river length within a buffer was 
set as the median of the river lengths within the buffers in the realm. 
3) The buffer radii were increased or decreased with 50 m increments to match the target 
river length. After every increment, the river length covered was calculated to see whether it 
fell within 1% above or below the target river length. When the buffer area was decreased 
to get the target river length it was verified whether there were still 3 species occurrences 
within the buffer, and buffers without 3 species were removed. The buffer reductions are an 
addition to the methods of Deksne (Deksne, 2022), who only increased buffers to match the 
target river length. 
4) Overlapping buffers had to be removed, to achieve this, overlapping buffers were 
clustered together. Within each cluster, the total overlap of a buffer was calculated and the 
buffer with the largest total overlap was removed. This was repeated until there were no 
overlapping buffers left. Some buffers were too close together to calculate the overlapping 
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area. In these clusters, the buffers were first decreased by 80%, then by 50% and lastly the 
original buffers were used. In each step, buffers were removed until there was no overlap 
anymore before going to the next step. Between every step it was checked whether the 
original buffers were still overlapping. The decrease steps of 80% and 50% still gave 
complications within the Nearctic realm, so the steps 90%, 80%, 70%, 60%, 50%, 40%, 30%, 
20% and 10% were used.  
 
Around none of the stations in Oceania a buffer could be created that included at least three 
species, therefore this realm is excluded from the following analysis. The number of buffers 
that remain in the other realms after each step can be found in Table 3. For Indo-Malay, 
there are many stations for which not enough fish occurrences were found. However, no 
additional database with fish occurrences within this region was available to supplement the 
occurrence dataset.  
 
Table 3 Number of buffers per step of creating the buffer regions 

 Afrotropic Australasia Indo-Malay Nearctic Neotropic Palearctic 
Total measurement 

stations 
551 930 603 25813 3676 5244 

No. stations with TP 
above 0.01 mg/L 

538 850 550 24489 3632 5064 

No. buffers with 
minimum 3 species 

occurrences 

179 837 41 14086 1500 3614 

No. buffers with 
target river length 

96 747 24 8445 964 3140 

No. non-overlapping 
buffers 

36 251 11 1074 315 835 

 
The target river length and mean buffer can be found in Table 4. Indo-Malay has a target 
river length that is 10x bigger than some of the other lengths, this is due to Indo-Malay 
having a larger maximum buffer in step 2 of buffer creation. The mean buffer in Indo-Malay 
is also the largest, being nearly twice the size of the follow-up Afrotropic. Australasia, 
Nearctic, Neotropic and Palearctic all have a similar buffer size.  
 
Table 4 Target river length and mean buffer size in the realms 

Realm Target river length (m) Mean buffer (m) 
Afrotropic 250773.0 20709.72 

Australasia 142391.6 15079.32 
Indo-Malay 1423021.7 39322.73 

Nearctic 184824.5 17375.21 
Neotropic 254900.9 17371.17 
Palearctic 136670.7 16523.13 

 



 11 

Functional diversity 
The functional diversity metrics developed by Villéger et al. (2008) were calculated using the 
R-package FD (Laliberté et al., 2023). During the calculation, the option to standardise 
functional richness was activated, thereby scaling the functional richness to the global 
functional richness. This creates global functional richness values between 0 and 1. Because 
the scaling is done globally, the absolute functional richness values can better be compared 
between realms. Functional evenness and functional divergence are inherently between 0 
and 1 and therefore do not need to be standardised.  

These functional diversity metrics are calculated using the four continuous traits: relative 
head length, relative body depth, trophic level and relative growth rate. These traits were 
selected and imputed by Scherer et al. (2023) to have broad coverage of ecological functions 
and a weak correlation among them. The traits cover five ecological functions: food 
acquisition, locomotion, nutrient processing, reproduction and predator-prey interaction. 
The use of the imputed traits showed significant differences in the results as opposed to 
dropping species with missing trait values. Dropping the species with missing traits led to an 
overestimation of functional diversity loss (Scherer et al., 2023). Therefore, the imputed 
traits were used, thereby optimizing the number of species and spatial coverage included in 
the analysis.  

To calculate the FD metrics a presence-absence matrix was used due to the lack of species 
abundance data. This presence-absence matrix was created using the buffers generated 
around the TP measurement stations. On average there are 16 species per buffer, with the 
median at 10 species per buffer.  

Outliers 
Outliers were identified using the Minimum Covariant Determinant (MCD) approach with a 
breakdown point of 0.25, as recommended by Leys et al. (2019). The variables used in the 
outlier detection were FRic, FEve, FDiv, and logTP. The outlier analysis was done using the R-
package Routliers (Delacre & Klein, 2019), this led to the detection of 217 outliers. A 
visualisation of these outliers can be found in Appendix 2.  
 
Linear Mixed Model 
The total phosphorus values were log-transformed and the square root of functional 
richness was taken to normalise the distribution. The normal and log-transformed 
distribution of TP were visually analysed using the R package fitdistrplus (Delignette-Muller 
et al., 2024). The total phosphorus values were multiplied by 1000 to avoid negative log 
values, thereby transforming the total phosphorus from mg/L to g/L. The normal and square 
root distributions of FRic were visually analysed using the same R-package.  
 
Various linear mixed models (LMMs) were analysed using an ANOVA test. All LMMs used the 
optimizer bobyqa, since this optimizer allowed for all the models to converge. The 
freshwater ecoregions from Abell et al. (2008) were included to account for the spatial 
variability. Different versions of the model were run: 1) with only realm as random intercept; 
2) realm as a correlated random intercept; 3) realm as uncorrelated random intercept and 
slope; 4) ecoregion as correlated random intercept and slope; 5) realm and ecoregion as 
correlated random intercept and slope; 6) correlated random intercept and slope for realm 



 12 

with ecoregion nested; and 7) realm as correlated random intercept and slope and 
ecoregion as random intercept. These models were conducted using the lme4 R package 
(Bates et al., 2017). These 7 models were compared using an ANOVA test, and model 7 was 
selected as the best model. This model had the lowest AIC/BIC scores and was significantly 
better than the simpler model 4, both with and without outliers. The output of the ANOVA 
test can be found in Table 6, the R2 values in Appendix 6, the ANOVA output without outliers 
in Appendix 7, and the R2 values without outliers in Appendix 8. Model 7 still had relatively 
low marginal R2 and conditional R2, namely 0.010 and 0.403 respectively. Therefore, it was 
tested whether the addition of more variables would improve the model further.  
 
Time difference 
Time difference between the TP measurements and the species occurrences could give a 
skewed representation of the FD. Therefore, the time difference was included as a possible 
fixed effect. The time difference between the occurrences and the TP measurements was 
calculated for each buffer. The differences between the most recent occurrence per species 
and the average year of the TP measurements were used to calculate the overall mean time 
difference for the buffer. There are 121 stations without year data for the occurrences, 
therefore no time difference could be calculated. These stations are lost when using the 
time difference as a fixed effect.  
 
Number of species 
With more than two traits, the number of species included in the FD calculations should be 
ideally 2(number of traits) in order to potentially fill the whole functional space (Villéger et al., 
2008). This is not the case for 1708 stations, to mediate this the number of species within 
each buffer was included as a possible weighting factor within the LMMs.  
 
Covariates 
To minimise the effect of other environmental factors on FD, potential covariates were also 
included in the LMMs. The three covariates chosen are the water temperature, total 
dissolved solids (TDS) to represent salinity pollution, and fecal coliform (FC) as an indicator 
of pathogen pollution. This data was taken from the DynQual model database (Jones et al., 
2023). This model has data for every month between 1980 and 2019. For each station, the 
mean year in which the TP measurements were taken was used as the year to extract the 
data from. If the average year was after 2019, covariate data from 2019 was used, when the 
year was before 1980 the covariate data from 1980 was used. For the indicator year the 
average temperature, TDS and FC were calculated and used as the covariate data.  
 
Weights were calculated using the WeightIt package (Greifer, 2024). Propensity scores were 
computed for the environmental factors, and the balance of these factors was assessed 
using the Spearman correlation with a threshold of 0.1. This analysis indicated that 
temperature was balanced whereas TDS and FC were not. Because temperature was the 
only balanced covariate the weights were also calculated based only on temperature. 
Therefore, there are two potential weights, one based on only temperature and one based 
on a combination of temperature, TDS and FC. There were 23 stations without temperature 
data and 283 stations without data for temperature, TDS or FC.  
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The data distribution of temperature, TDS and FC was analysed. Temperature maintained a 
normal distribution, while TDS and FC showed a better distribution when transformed using 
the square root. A log transformation was not feasible since some values were zero. As 
separate model variations, these covariates were included in the model as potential fixed 
effects, considering both the inclusion of only temperature and the combination of 
temperature, sqrtTDS, and sqrtFC. 
 
Model comparison  
Different combinations of these potential fixed effects and weights were added to model 7, 
which led to 15 additional potential models. The inclusion of the different factors is 
summarised in Table 5. To perform an ANOVA test all models had to be run using the same 
dataset (Bates et al., 2003). Therefore, a dataset was created with only the stations that had 
values for all variables. This dataset included 2121 stations. Potential outliers identified using 
the complete dataset were also considered outliers within the ANOVA dataset. Based on the 
ANOVA test model 7.11 scored best on AIC, closely followed by 7.9 and 7.10. Model 7.10 
scored best on BIC, closely followed by 7.11 and 7.8. The same was found for the analysis 
without outliers. Model 7.10 has the highest marginal R2 value, followed by model 7.8. 
Model 7.8 has the highest conditional R2 value, closely followed by 7.10. This led to model 
7.10 (sqrtFRic ~ log_TP  + (log_TP|realm) + (1|ecoregion_id) + temperature) being selected 
as the best model. This model was selected using sqrtFRic, the same model was used to 
analyse FEve and FDiv.  
 
Table 5 Different options of improving the base model (sqrtFRic ~ log_TP + (log_TP|realm) + (1|ecoregion_id)). Time is the 
mean time difference between the last occurrence of species within a buffer and the mean year of TP measurements. TDS: 
Total Dissolved Solids, FC: fecal coliform, nbsp: number of species 

  fixed effects weights 
model time difference temperature sqrtTDS sqrtFC nbsp temp, TDS, FC temperature 
model7.1 x         
model7.2       x    
model7.3 x     x    
model7.4        x   
model7.5 x      x   
model7.6         x 
model7.7 x       x 
model7.8   x x x     
model7.9 x x x x     
model7.10   x        
model7.11 x x        
model7.12   x x x x    
model7.13 x x x x x    
model7.14   x    x    
model7.15 x x     x     
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Results 
 
Global distribution 
There are 2498 buffers included in the final analysis, covering 6 realms and 71 ecoregions. In 
Figure 1 the buffers can be seen with the corresponding sqrtFRic. The maps of FDiv and FEve 
can be found in Appendix 4 and 5. There is a high density of stations in Southeast USA, 
Mexico, western Europe, New Zealand and the south-eastern coast of Australia, while in 
Eastern Europe, Asia and parts of Africa there are barely any stations. Most regions have a 
combination of high and low sqrtFRic, except for Brazil where most buffers have a higher 
sqrtFRic.  

 
Figure 1 Global coverage of buffers and the square root of the functional richness 

Model performance 
Base model 
The output of the ANOVA test on the 7 potential base models can be found in Table 6. 
Model 7 has the lowest AIC and BIC value, therefore the balance between complexity and 
explanatory power is optimised. The Pr(>Chisq) indicates that model 7 is significantly better 
than the simpler model 4. Model 5 and 6 are close in regards to the AIC and BIC values, but 
model 5 is not shown to be significantly better than model 7. The same remains true when 
the ANOVA test is run without outliers, these results can be found in Appendix 7. The 
marginal R2 and conditional R2 of the 7 base models with and without outliers can be found 
in Appendix 6 and Appendix 8 respectively. 
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Table 6 Results of ANOVA test of the 7 potential base models. The order is determined by the ANOVA function, the simplest 
models first and the most complex model last. The abbreviations are as follows: npar: number of parameters, AIC: Akaike 
Information Criterion, BIC: Bayesian Information Criterion, logLik: log-likelihood, Chisq: Chi-Squared statistic, DF: Degrees of 
Freedom, Pr(>Chisq): P-value of the Chi-squared test. 

 
npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

model1 4 -2777.573 -2754.934 1392.786 -2785.573 NA NA NA 
model3 5 -2794.724 -2766.426 1402.362 -2804.724 19.1516 1 1.21E-05 
model2 6 -2802.938 -2768.980 1407.469 -2814.938 10.2135 1 1.39E-03 
model4 6 -3046.332 -3012.374 1529.166 -3058.332 243.3939 0 NA 
model7 7 -3076.537 -3036.919 1545.268 -3090.537 32.2049 1 1.39E-08 
model5 9 -3074.938 -3024.002 1546.469 -3092.938 2.4017 2 3.01E-01 
model6 9 -3074.938 -3024.002 1546.469 -3092.938 0 0 NA 

 

Complete model 
Model 7.10 was chosen based on the ANOVA results shown in Table 7 and the R2 values 
shown in Table 8. There is not one model that has the best AIC and BIC scores, rather the top 
3 models are different between the two scores. Regarding the AIC score the top three 
models are 7.11, 7.9 and 7.10, regarding the BIC score the top three models are 7.10, 7.11 
and 7.8. Because models 7.10 and 7.11 score best for one of the scores and are in the top 
three of both scores, the R2 values of these two models have been compared. Model 7.10 
has the highest marginal R2 and conditional R2, therefore this is considered the best model. 
The marginal R2 is 0.277, indicating that logTP and temperature combined explain 27.7% of 
the variance. The conditional R2 is 0.575, showing that including the random factors realm 
and ecoregion considerably increases the explained variance to 57.5%. 
The same model was found to be the best when the models were compared without 
potential outliers, these results can be found in Appendix 9 and Appendix 10.  
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Table 7 Results of ANOVA test of the 16 potential models. The order is determined by the ANOVA function, the simplest 
models first and the most complex model last. The abbreviations are as follows: npar: number of parameters, AIC: Akaike 
Information Criterion, BIC: Bayesian Information Criterion, logLik: log-likelihood, Chisq: Chi-Squared statistic, DF: Degrees of 
Freedom, Pr(>Chisq): P-value of the Chi-squared test. 

 
npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

model7 7 -3076.537 -3036.919 1545.268 -3090.537 NA NA NA 
model7.2 7 -2672.818 -2633.201 1343.409 -2686.818 0 0 NA 
model7.4 7 -3044.843 -3005.225 1529.421 -3058.843 372.024 0 NA 
model7.6 7 -3049.531 -3009.913 1531.765 -3063.531 4.688 0 NA 
model7.1 8 -3088.577 -3043.300 1552.289 -3104.577 41.047 1 1.49E-10 
model7.3 8 -2723.765 -2678.488 1369.883 -2739.765 0 0 NA 
model7.5 8 -3057.702 -3012.425 1536.851 -3073.702 333.937 0 NA 
model7.7 8 -3062.889 -3017.612 1539.445 -3078.889 5.187 0 NA 

model7.10 8 -3270.747 -3225.470 1643.374 -3286.747 207.858 0 NA 
model7.14 8 -2984.915 -2939.638 1500.458 -3000.915 0 0 NA 
model7.11 9 -3275.182 -3224.246 1646.591 -3293.182 292.267 1 1.59E-65 
model7.15 9 -3012.521 -2961.584 1515.260 -3030.521 0 0 NA 

model7.8 10 -3269.974 -3213.378 1644.987 -3289.974 259.454 1 2.26E-58 
model7.12 10 -2989.669 -2933.073 1504.835 -3009.669 0 0 NA 

model7.9 11 -3274.341 -3212.085 1648.170 -3296.341 286.671 1 2.64E-64 
model7.13 11 -3017.739 -2955.483 1519.870 -3039.739 0 0 NA 

 
Table 8 The Marginal R2 and Conditional R2 of the complete model and P-value of the logTP parameter in the 16 potential 
models 

model Marginal R2 Conditional R2 P-value logTP 
model7 0.002 0.385 0.442 

model7.1 0.007 0.401 0.522 
model7.2 0.001 0.079 0.001 
model7.3 0.004 0.108 0.009 
model7.4 0 0.401 0.898 
model7.5 0.005 0.439 0.968 
model7.6 0.001 0.381 0.632 
model7.7 0.006 0.417 0.823 
model7.8 0.275 0.578 0.936 
model7.9 0.235 0.56 0.918 

model7.10 0.277 0.575 0.821 
model7.11 0.24 0.554 0.883 
model7.12 0.083 0.154 0.45 
model7.13 0.075 0.159 0.587 
model7.14 0.084 0.157 0.297 
model7.15 0.077 0.16 0.419 
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Functional Diversity 
Model 7.10 was applied to the complete dataset to predict the FD. The performance metrics 
of these models are detailed in Table 9. The models for FEve, FDiv, and all models without 
outliers are singular, therefore, limited conclusions can be drawn from them. Additionally, 
the p-values for sqrtFRic are not significant.  
 
Table 9 Model performance metrics using model 7.10 for all three FD metrics with all data points and without potential 
outliers. The models for FEve, FDiv and all three models without outliers are singular. 

 
sqrtFRic FEve FDiv sqrtFRic 

without outliers 
FEve without 
outliers 

FDiv without 
outliers 

P-value logTP 
intercept 

0.658 <0.001 <0.001 0.173 <0.001 <0.001 

P-value overall 
logTP slope 

0.821 0.747 0.433 0.005 0.004 0.111 

Marginal R2 0.277 0.001 0.002 0.252 0.135 0.012 
Conditional R2 0.575 - - - - - 

 
The scatter plots in Figure 2 show the distribution of the FD metrics against logTP. No clear 
variation between realms can be discerned. The sqrtFRic values fall mainly between 0 and 
0.5, the FEve between 0.75 and 0.9 and the FDiv between 0.7 and 0.8. Since the model did 
not show a significant effect of logTP on FD and the models are singular for FEve and FDiv no 
regression lines are shown. The slopes of the models with all measurements and without 
outliers can be found in Appendix 10 – Appendix 15.  

 
Figure 2 Scatterplot of FD metrics and logTP (g/L)  
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Discussion 
 
The results show no effect of phosphorus on the functional diversity of freshwater fish 
globally. The effect from phosphorus was insignificant for functional richness, and the model 
is singular for functional evenness and functional divergence. Therefore, this model cannot 
give a representation of the effect of eutrophication. As the datasets are relatively large, 
starting with 36,868 TP stations and 4,478,635 fish occurrences worldwide and running the 
LMMs with 2498 stations these findings are deemed reliable. So even though an effect was 
expected based on the findings by Deksne (2022), most likely there is no generic effect of TP 
on FD. Potential reasons are listed below. 
 
The N/P ratio could have more influence on eutrophication than phosphorus alone. 
Currently, it is assumed that phosphorus is the limiting nutrient in freshwater (Morelli et al., 
2018), and therefore increasing phosphorus would increase eutrophication, which is why TP 
was chosen as the eutrophication indicator. However, the N/P ratio is also an important 
factor regarding eutrophication, and including this could express which nutrient is limiting, 
for example using the Redfield ratio (Yang et al., 2008). Studies in varying settings have 
already found the importance of the N/P ratio on eutrophication. Diatta et al. (2020) found 
that nitrogen was a more powerful eutrophication-regulating factor than phosphorus, 
especially at higher P levels. They put various N and P concentrations in distilled water, tap 
water and lacustrine water and monitored algal blooms to measure the eutrophication. In 
Rawapaning lake, Indonesia the development of algal biomass is also determined by the N/P 
ratio (Piranti et al., 2018). In this lake, the algal biomass development had no relationship 
with total nitrogen and a weak relationship with TP, but there was a significant relationship 
to N/P ratio. Even though in marine water nitrogen is assumed to be limiting (Morelli et al., 
2018), the N/P ratio also plays a role in the growth of chlorophyll-a (Maslukah et al., 2023). 
These three studies show the importance of N/P ratio on eutrophication, besides the TP 
level.  
 
Another reason could be that although species richness is affected by phosphorus (Azevedo 
et al., 2013; Deksne, 2022; Zhou et al., 2024), this cannot be directly generalised to 
functional richness and functional diversity as a whole. Using species richness could 
overestimate the effect of P on the ecosystem. This is supported by the findings of Deksne 
(2022), who found a greater effect of TP on species richness than on FRic, and FD as a whole. 
The inability to generalise this finding is also evident in Rodrigues-Filho et al. (2017), who 
found that the functional richness of fish in headwater streams is mainly influenced by 
environmental conditions, compared to taxonomic diversity. Around 30% of the variance in 
FRic could be explained by environmental factors, while 0% was explained by taxonomic 
diversity. Consequently, effects in species richness don’t have to be reflected in effects in 
FRic.  
 
There are some limitations to the methods which could be improved. First, the model 
selection was based solely on FRic, without integrating FEve and FDiv, which resulted in 
singular models for FEve and FDiv. This raises concern that the model is overfitted, and 
simplifying the model could avoid the singularity (Bates et al., 2003). Since most of the 
models 7-7.15 are singular for both FEve and FDiv, the problem likely originates in the base 
model 7, and this would be a good place to start simplifying. Second, the optimum TP 
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concentration of 0.01 mg/L was found for species richness (Azevedo et al., 2013), however 
this is not necessarily the same optimum for TP. Third, it could be checked whether 
increasing the minimum number of species per buffer or reducing the number of traits 
changes the result. Optimally, the number of species included in the FD calculation should 
be  2(number of traits) (Villéger et al., 2008). To follow this, either the minimum number of species 
should be increased to 16, or the number of traits needs to be decreased. However, both 
options result in information loss. Lastly, the current covariate analysis is opportunistic, only 
considering three covariates and one database. Including a more thorough analysis of 
potential covariates and databases, as well as a correlation test between the covariates 
enhances the quality of the covariate analysis. 
 
Based on the results it should be reconsidered whether using phosphorus as the main 
indicator for freshwater eutrophication is justified, especially in LCA studies using FD metrics 
as impact categories. While it is recommended to use FD in the biodiversity metrics of LCA 
(Ahmed et al., 2019), no effect of TP on FD has been found. Therefore, creating effect factors 
based solely on TP does not reflect any impact on river ecosystem functions imposed by 
eutrophication. Further research could expand on the developed methods, by incorporating 
other eutrophication indicators and adapting the methods to be used for lake and marine 
ecosystems. Extending the analysis to these ecosystems would give a more holistic view of 
the effect of eutrophication.  

Conclusion 
This analysis finds no effect of phosphorus on functional diversity of fish in freshwater rivers. 
The model that best described the effect of TP on FRic per realm also included ecoregion as 
a random factor and temperature as a covariate. This model describes 57.5% of the variance 
in FRic but TP has no significant effect. The models for FEve and FDiv are singular. Because of 
the scale of the datasets, these results are deemed trustworthy. Therefore, to see the effect 
of eutrophication on the functional diversity of fish in freshwater rivers, other indicators, like 
the N/P ratio, need to be examined. In addition, it should be reconsidered whether using P 
as a eutrophication indicator in freshwater in LCA studies is justified.  
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Appendix 
TP stations 

 
Appendix 1 All TP stations part of the dataset created by combining the GRQA and GemStat. The log of total phosphorus is 
g/L is shown. 

Fish occurrences 

 
Appendix 2 All fish occurrences part of the dataset created by combining Fishnet2, GBIF, Portal da Biodiversidade, 
SpeciesLink and Amazonfish. 
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Outliers 

 
Appendix 3 Visualisation of the potential outliers found using the MCD approach with breakdown point 0.25 
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Global distribution FEve and FDiv 

 
Appendix 4 Global distribution of buffers and the functional evenness 

 
Appendix 5 Global distribution of buffers and the functional divergence 
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Model performance 
Base model 
 

Appendix 6 The Marginal R2 and Conditional R2 of the complete model and P-value of the logTP parameter in the base 
models. 

model Marginal R2 Conditional R2 P-value logTP 
model1 0.006 0.154 <0.001 
model2 0.001 0.159 0.679 
model3 0.001 0.485 0.636 
model4 0.002 0.406 0.041 
model5 0.002 0.388 0.452 
model6 0.002 0.388 0.452 
model7 0.002 0.385 0.442 

 
 
Appendix 7 Results of ANOVA test of the 7 potential base models without outliers. The order is determined by the ANOVA 
function, the simplest models first and the most complex model last. The abbreviations are as follows: npar: number of 
parameters, AIC: Akaike Information Criterion, BIC: Bayesian Information Criterion, logLik: log-likelihood, Chisq: Chi-Squared 
statistic, DF: Degrees of Freedom, Pr(>Chisq): P-value of the Chi-squared test. Model 5NO and model 6NO are singular 

 
npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

model1NO 4 -2733.419 -2711.172 1370.709 -2741.419 NA NA NA 
model3NO 5 -2745.464 -2717.655 1377.732 -2755.464 14.045 1 1.79E-04 
model2NO 6 -2753.892 -2720.522 1382.946 -2765.892 10.428 1 1.24E-03 
model4NO 6 -2964.155 -2930.785 1488.078 -2976.155 210.263 0 NA 
model7NO 7 -2990.987 -2952.055 1502.493 -3004.987 28.832 1 7.89E-08 
model5NO 9 -2988.805 -2938.750 1503.402 -3006.805 1.818 2 4.03E-01 
model6NO 9 -2988.805 -2938.750 1503.402 -3006.805 0 0 NA 

 
 
Appendix 8 The Marginal R2 and Conditional R2 of the complete model and P-value of the logTP parameter in the base 
models without outliers. Model 5NO and model 6NO are singular.  

model Marginal R2 Conditional R2 P-value logTP 
model1NO 0.011 0.173 <0.001 
model2NO 0.002 0.198 0.617 
model3NO 0.001 0.479 0.531 
model4NO 0.006 0.412 0.001 
model5NO 0.005 

 
0.294 

model6NO 0.005 
 

0.294 
model7NO 0.003 0.4 0.273 
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Complete model 
Appendix 9 Results of ANOVA test of the 16 potential models without outliers. The order is determined by the ANOVA 
function, the simplest models first and the most complex model last. The abbreviations are as follows: npar: number of 
parameters, AIC: Akaike Information Criterion, BIC: Bayesian Information Criterion, logLik: log-likelihood, Chisq: Chi-Squared 
statistic, DF: Degrees of Freedom, Pr(>Chisq): P-value of the Chi-squared test.  

 
npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

model7NO 7 -2990.987 -2952.055 1502.493 -3004.987 NA NA NA 
model7.2NO 7 -2820.687 -2781.755 1417.343 -2834.687 0 0 NA 
model7.4NO 7 -2951.796 -2912.864 1482.898 -2965.796 131.109 0 NA 
model7.6NO 7 -2954.495 -2915.563 1484.247 -2968.495 2.699 0 NA 
model7.1NO 8 -3001.717 -2957.224 1508.859 -3017.717 49.223 1 2.29E-12 
model7.3NO 8 -2854.745 -2810.252 1435.373 -2870.745 0 0 NA 
model7.5NO 8 -2962.476 -2917.983 1489.238 -2978.476 107.731 0 NA 
model7.7NO 8 -2965.718 -2921.225 1490.859 -2981.718 3.242 0 NA 

model7.10NO 8 -3187.840 -3143.346 1601.920 -3203.840 222.121 0 NA 
model7.14NO 8 -3115.403 -3070.910 1565.702 -3131.403 0 0 NA 
model7.11NO 9 -3191.551 -3141.497 1604.776 -3209.551 78.148 1 9.56E-19 
model7.15NO 9 -3131.131 -3081.076 1574.565 -3149.131 0 0 NA 

model7.8NO 10 -3185.671 -3130.054 1602.835 -3205.671 56.540 1 5.51E-14 
model7.12NO 10 -3120.100 -3064.484 1570.050 -3140.100 0 0 NA 

model7.9NO 11 -3189.331 -3128.153 1605.665 -3211.331 71.230 1 3.18E-17 
model7.13NO 11 -3135.985 -3074.807 1578.992 -3157.985 0 0 NA 

 
Appendix 10 The Marginal R2 and Conditional R2 of the complete model and P-value of the logTP parameter in the 16 
potential models without outliers. 

model Marginal R2 Conditional R2 P-value 
logTP 

model7NO 0.003 0.4 0.273 
model7.1NO 0.008 0.409 0.467 
model7.2NO 0 0.073 0.011 
model7.3NO 0.003 0.093 0.359 
model7.4NO 0 0.416 0.626 
model7.5NO 0.005 0.447 0.975 
model7.6NO 0.002 0.401 0.289 
model7.7NO 0.007 0.429 0.609 
model7.8NO 0.298 0.6 0.935 
model7.9NO 0.251 0.576 0.905 

model7.10NO 0.299 0.601 0.608 
model7.11NO 0.256 0.575 0.785 
model7.12NO 0.078 0.144 0.268 
model7.13NO 0.073 0.153 0.931 
model7.14NO 0.078 0.145 0.15 
model7.15NO 0.074 0.151 0.754 
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Slopes 
Functional richness 
 
Appendix 11 Slopes of the effect of logTP (g/L) on FRic 

 
Afrotropic Australasia IndoMalay Nearctic Neotropic Palearctic Average 

model7 0.0376 -0.0014 -0.0023 0.0112 -0.0229 0.0508 0.0122 
model7.1 0.0336 -0.0021 -0.0057 0.0106 -0.026 0.0512 0.0103 
model7.2 0.0221 0.0255 0.0271 0.0123 0.0302 0.0286 0.0243 
model7.3 0.0206 0.0206 0.0179 0.0118 0.0183 0.0316 0.0201 
model7.4 0.0275 -0.0065 -0.0157 4.00E-04 -0.0317 0.0387 0.0021 
model7.5 0.0267 -0.0081 -0.023 1.00E-04 -0.0398 0.0397 -0.0007 
model7.6 0.0328 -0.0025 -0.0093 0.003 -0.0244 0.0458 0.0076 
model7.7 0.0292 -0.0038 -0.0173 0.0028 -0.0349 0.0468 0.0038 
model7.8 0.0181 -0.0254 1.00E-04 -0.0087 -0.0127 0.0222 -0.0011 
model7.9 0.0184 -0.0264 -3.00E-04 -0.0086 -0.0149 0.0233 -0.0014 

model7.10 0.028 -0.0266 0.0037 -0.0049 -0.0105 0.0292 0.0032 
model7.11 0.0254 -0.0265 0.0022 -0.0047 -0.0142 0.0302 0.0021 
model7.12 0.0244 -0.0172 0.0141 -0.0055 0.0306 0.0089 0.0092 
model7.13 0.0141 -0.0125 0.0067 -0.0045 0.0172 0.01 0.0052 
model7.14 0.0221 -0.0095 0.0151 -0.0031 0.0248 0.0143 0.0106 
model7.15 0.0111 -0.0051 0.007 -0.0017 0.0122 0.0157 0.0065 

 
Appendix 12 Slopes of the effect of logTP (g/L) on FRic without outliers 

 
Afrotropic Australasia IndoMalay Nearctic Neotropic Palearctic Average 

model7NO 0.0339 -4.00E-04 -0.0012 0.0221 -0.0086 0.0486 0.0157 
model7.1NO 0.0303 -0.0036 -0.0112 0.021 -0.0173 0.0494 0.0114 
model7.2NO 0.0216 0.0186 0.0145 0.0182 0.0113 0.0289 0.0189 
model7.3NO 0.0176 0.0127 -0.0076 0.0168 -0.0115 0.0326 0.0101 
model7.4NO 0.021 -0.0071 -0.0147 0.018 -0.0121 0.035 0.0067 
model7.5NO 0.0189 -0.0131 -0.0314 0.0168 -0.0248 0.0365 0.0005 
model7.6NO 0.0321 2.00E-04 -0.0022 0.0167 -0.0047 0.0432 0.0142 
model7.7NO 0.0293 -0.0045 -0.0171 0.0156 -0.02 0.0446 0.0080 
model7.8NO 0.0142 -0.0361 0.0039 0.0039 -4.00E-04 0.0215 0.0012 
model7.9NO 0.0101 -0.0379 -8.00E-04 0.0036 -0.0088 0.023 -0.0018 

model7.10NO 0.0259 -0.0271 0.0085 0.0044 0.0028 0.0278 0.0071 
model7.11NO 0.0208 -0.028 0.0034 0.0041 -0.0065 0.0293 0.0039 
model7.12NO 0.0125 -0.0018 0.0091 0.0061 0.0124 0.0063 0.0074 
model7.13NO -0.002 -0.0031 2.00E-04 0.0018 -0.0026 0.0095 0.0006 
model7.14NO 0.007 0.0079 0.0075 0.0065 0.0082 0.012 0.0082 
model7.15NO -0.0048 0.0049 -8.00E-04 0.0028 -0.0041 0.0157 0.0023 
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Functional evenness 
 
Appendix 13 Slopes of the effect of logTP (g/L) on FEve 
 

Afrotropic Australasia IndoMalay Nearctic Neotropic Palearctic Average Singular 
model7 0.0051 -0.0156 -0.0032 0.0058 0.0135 0.0099 0.0026 Yes 

model7.1 0.005 -0.0173 -0.0038 0.0061 0.017 0.0112 0.0030 Yes 
model7.2 0.0048 -0.0147 -0.0027 0.0031 -0.0037 0.0113 -0.0003 No 
model7.3 0.0059 -0.0154 -0.0032 0.0031 0.001 0.0114 0.0005 No 
model7.4 0.0038 0.0041 0.0041 0.0034 0.003 0.0048 0.0039 Yes 
model7.5 0.0048 0.0042 0.0047 0.0036 0.0051 0.0058 0.0047 Yes 
model7.6 4.00E-04 -0.0121 -0.0023 0.0021 0.0055 0.0092 0.0005 Yes 
model7.7 8.00E-04 -0.0134 -0.002 0.0024 0.0103 0.0105 0.0014 Yes 
model7.8 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 Yes 
model7.9 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 Yes 

model7.10 0.0049 -0.0153 -0.0029 0.0066 0.0116 0.0109 0.0026 Yes 
model7.11 0.0049 -0.0177 -0.0039 0.0064 0.0167 0.0116 0.0030 Yes 
model7.12 0.0043 0.0016 0.0036 0.0029 -0.0039 0.0078 0.0027 Yes 
model7.13 0.0045 0.0023 0.004 0.0034 -6.00E-04 0.0076 0.0035 Yes 
model7.14 0.0034 5.00E-04 0.0038 0.0038 -0.0029 0.0077 0.0027 Yes 
model7.15 0.0063 -0.0154 -0.003 0.0035 0.0012 0.0117 0.0007 No 

 
 
Appendix 14 Slopes of the effect of logTP (g/L) on FEve without outlliers 

 
Afrotropic Australasia IndoMalay Nearctic Neotropic Palearctic Average Singular 

model7NO 0.0032 -0.0031 0.0022 0.0017 0.0032 0.0076 0.0025 No 
model7.1NO 0.0039 -0.0014 0.0033 0.0016 0.005 0.0077 0.0034 Yes 
model7.2NO 0.0021 -0.0095 3.00E-04 4.00E-04 0.0026 0.0112 0.0012 No 
model7.3NO 0.0045 -0.0085 0.0019 0 0.016 0.0113 0.0042 Yes 
model7.4NO 0.0047 0.0047 0.0046 0.0047 0.0046 0.0047 0.0047 Yes 
model7.5NO 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051 Yes 
model7.6NO 0.0026 -0.0028 0.0012 0.0016 9.00E-04 0.0073 0.0018 No 
model7.7NO 0.0037 -7.00E-04 0.0032 0.0016 0.0048 0.0077 0.0034 Yes 
model7.8NO 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051 Yes 
model7.9NO 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051 Yes 

model7.10NO 0.0041 0 0.0039 0.0026 0.0046 0.0087 0.0040 Yes 
model7.11NO 0.0043 -0.0012 0.0035 0.0029 0.0044 0.0085 0.0037 Yes 
model7.12NO 0.0051 4.00E-04 0.0036 0.0027 0.0037 0.0094 0.0042 Yes 
model7.13NO 0.0075 -8.00E-04 0.0045 0.0028 0.0106 0.0104 0.0058 Yes 
model7.14NO 0.003 -0.0076 0.0012 0.0015 0.003 0.012 0.0022 No 
model7.15NO 0.0046 -0.0087 0.0018 0.0013 0.0128 0.0123 0.0040 Yes 
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Functional divergence 
 
Appendix 15 Slopes of the effect of logTP (g/L) on FDiv 

 
Afrotropic Australasia IndoMalay Nearctic Neotropic Palearctic Average Singular 

model7 0.0047 0.005 0.0018 0.004 0.0022 -0.0057 0.0020 Yes 
model7.1 0.0046 0.0051 0.0019 0.0038 0.0032 -0.0054 0.0022 Yes 
model7.2 -0.0052 0.0072 -0.0014 0.0012 -0.0055 -0.0087 -0.0021 Yes 
model7.3 -0.0031 0.0073 -2.00E-04 0.001 4.00E-04 -0.0083 -0.0005 Yes 
model7.4 0.0062 0.0079 0.002 0.0052 0.0011 -0.0087 0.0023 Yes 
model7.5 0.0062 0.0086 0.0023 0.005 0.0028 -0.0084 0.0028 Yes 
model7.6 0.006 0.004 0.0018 0.0039 0.0023 -0.0047 0.0022 Yes 
model7.7 0.0065 0.0064 0.0024 0.0044 0.0039 -0.0062 0.0029 Yes 
model7.8 0.0073 0.006 0.0047 0.005 0.0046 -0.0062 0.0036 Yes 
model7.9 0.0071 0.0068 0.0047 0.0049 0.0053 -0.0061 0.0038 Yes 

model7.10 0.0057 0.0043 0.0027 0.004 0.0035 -0.0043 0.0027 Yes 
model7.11 0.0054 0.0054 0.0027 0.0042 0.004 -0.0049 0.0028 Yes 
model7.12 -0.0045 0.013 0.0028 0.0028 -0.0062 -0.0093 -0.0002 No 
model7.13 0 0.0029 0.0015 0.0013 0.0021 -0.0068 0.0002 Yes 
model7.14 -0.0081 0.01 -7.00E-04 0.0022 -0.0067 -0.0077 -0.0018 No 
model7.15 -0.0016 0.0065 5.00E-04 0.0014 0.002 -0.0081 0.0001 Yes 

 
 
Appendix 16 Slopes of the effect of logTP (g/L) on FDiv without outliers 

 
Afrotropic Australasia IndoMalay Nearctic Neotropic Palearctic Average Singular 

model7NO 0.0111 0.0097 -0.002 0.0071 0.0041 -0.0067 0.0039 Yes 
model7.1NO 0.0119 0.0106 -0.0012 0.0074 0.0069 -0.0062 0.0049 Yes 
model7.2NO -0.0022 0.0075 -0.0033 0.0018 -0.0051 -0.0098 -0.0019 Yes 
model7.3NO 9.00E-04 0.009 -0.0012 0.0021 0.0046 -0.0092 0.0010 Yes 
model7.4NO 0.01 0.0099 -0.0015 0.0067 2.00E-04 -0.0093 0.0027 Yes 
model7.5NO 0.0112 0.0109 -3.00E-04 0.0071 0.005 -0.0086 0.0042 Yes 
model7.6NO 0.0109 0.0093 -0.0019 0.0066 0.0022 -0.0075 0.0033 Yes 
model7.7NO 0.0119 0.0104 -6.00E-04 0.0072 0.0058 -0.0067 0.0047 Yes 
model7.8NO 0.0121 0.009 6.00E-04 0.0065 0.0061 -0.007 0.0046 Yes 
model7.9NO 0.0118 0.0077 0.0021 0.0063 0.0083 -0.0039 0.0054 Yes 

model7.10NO 0.0117 0.0096 -0.0014 0.0072 0.0047 -0.0062 0.0043 Yes 
model7.11NO 0.0127 0.0108 -3.00E-04 0.0077 0.0076 -0.0057 0.0055 Yes 
model7.12NO -0.001 0.0112 -7.00E-04 0.002 -0.0061 -0.011 -0.0009 No 
model7.13NO 0.0022 0.0117 0.0017 0.0025 0.0055 -0.0104 0.0022 Yes 
model7.14NO -0.0029 0.0084 -0.0029 0.002 -0.0059 -0.0093 -0.0018 No 
model7.15NO 0.0016 0.0085 -0.001 0.0024 0.0052 -0.0091 0.0013 Yes 

 


