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Abstract
Addressing the challenge of reasoning about pro-
grams across different evaluation strategies has
long been a concern in functional program-
ming. Levy’s introduction of the call-by-push-
value (CBPV) calculus represents a significant step
forward in tackling this. His paradigm provided a
more powerful approach that can encapsulate both
call-by-value and call-by-name that was even later
extended to include call-by-need. In this paper we
present the development of an interface that inte-
grates the theory of CBPV with algebraic effects
and handlers. We demonstrate how this technique
enables the definition and execution of programs,
highlighting its capability to defer computations
across different evaluation strategies and define op-
erations in a modular fashion. We then define and
prove a set of laws that can be used with our inter-
face to reason about programs under varying evalu-
ation regimes. This approach not only enhances the
flexibility and modularity of language and library
implementation but also allows for direct reason-
ing about these implementations, beyond the meta-
level abstraction.

1 Introduction
As programming advances and software systems grow in
complexity, the costs associated with maintaining and creat-
ing new systems also rise. Consequently, there is a growing
demand for innovative programming methodologies to sup-
port developers throughout the development process.

Among the methods developed to address this challenge,
the use of algebraic effects and handlers [11] in functional
programming presents a promising approach for constructing
and reasoning about sophisticated software abstractions. By
using these tools, developers can implement interfaces that fa-
cilitate software development and define and validate specific
laws that govern the behavior of these interfaces. This allows
users to focus on functionality without concerning themselves
with implementation details.

Wouter Swierstra’s “Data Types à la Carte” [13] shows
how to implement a modular system for defining and com-
bining algebraic effects. This methodology allowed for the
customization and extension of effects in a manner that had
not been previously possible, setting the stage for subse-
quent innovations. It provided a solid foundation for modular
functional programming and offered strategies for managing
complex type systems and operations in Haskell. Following
this, additional research was published to popularize the use
of handlers in interpreting the effects of algebraic computa-
tions [2, 3].

Another popular topic in functional programming re-
search is call-by-push-value (CBPV), proposed by Paul Blain
Levy [4, 7]. CBPV aims to unify two predominant eval-
uation strategies, call-by-name (CBN) and call-by-value
(CBV). Levy’s work detailed the operational semantics of a
CBPV language, illustrating how it serves as a foundational
paradigm subsuming both CBV and CBN.

This paper aims to combine these two concepts, explor-
ing how algebraic effects and handlers can be used to
construct an interface capable of achieving call-by-push-
value in Haskell.

Despite theoretical advancements, the practical adoption of
CBPV in mainstream programming languages remains elu-
sive. As of this writing, no well-known languages support
this model, highlighting a gap between theoretical innovation
and practical application. This paper aims to provide an inter-
face for translating languages between evaluation strategies
using the theory described in Levy’s paper.

To achieve this, we will explore the following research
questions:

RQ1 What are the benefits of call-by-push-value?
RQ2 How can we create an interface that can be used to trans-

late programs to different evaluation strategies?
RQ3 How can we define the behavior of the implementation

using mathematical laws?
RQ4 How can the implementation be proven correct with re-

spect to its laws?
RQ5 How closely does the implementation and its laws align

with existing theory found in the literature?
This implementation will be defined as an interface that

other programs can use to change their evaluation strategies.
As stated in research questions 3 and 4, we aim to describe
this interface in terms of mathematical laws that it can be
proved against. This not only validates the correctness of
the interface but also empowers reasoning about programs
written in different evaluation strategies.

Contributions We make the following contributions:
• We define an interface for postponing computations

written in terms of algebraic effects (Section 3.1).
• We present a method for translating a lambda-calculus

source language into either call-by-name or call-by-need
evaluation (Section 3.2).

• We demonstrate how to use the implementation for run-
ning programs, handling effectful operations, and under-
standing how different translations impact the side ef-
fects of these operations (Section 3.3).

• We show how to modularly extend our implementation
with new effects and operations, ensuring they are ap-
propriately postponed when necessary (Section 3.4).

• We prove a set of laws describing the implementation
for both call-by-name and call-by-need to reinforce rea-
soning about programs written against it (Section 4).

2 Methodology and Background
As mentioned in Section 1 call-by-push-value (CBPV) was
introduced by Paul Blain Levy, who provided a formal frame-
work that unifies and generalizes the operational semantics
of both call-by-value and call-by-name. Levy’s work [4, 6]
demonstrated how CBPV could model various effects in pro-
gramming languages, such as state, exceptions, and continu-
ations, in a more granular and structured way. His paradigm
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aims to bridge the gap between call-by-name and call-by-
value by treating values and computations as distinct entities,
thereby simplifying the semantic understanding of different
programming effects and enhancing language interoperabil-
ity.

Building on Levy’s foundational work, Downen et al. [8]
extend the CBPV paradigm to include lazy evaluation. They
also integrate an effect system to utilize known potential ef-
fects of expressions to improve reasoning about how pro-
grams behave under different evaluation orders.

In order to build on top of their work we will use similar
techniques as covered in [12, 13] focusing around the use of
the free monad. The free monad is a concept from category
theory that allows us to represent algebraic effects as abstract
syntax trees with nodes for operations (Op) and values (Pure):

data Free f a
= Pure a
| Op (f (Free f a))

Using the free monad, we can represent each operation of
the language in a more modular way. Moreover, it provides
a clearer way to handle effects and reason about them, which
is crucial as the implementation of the interface needs to sup-
port both effectful and pure operations. For instance, consider
the State functor which consists of the following two stateful
operations:

data State s k
= Put s k
| Get (s -> k)
deriving Functor

We can consider this signature functor as an interface that
specifies Put and Get operations. With this interface, Free
(State s) s represents the type for sequences of Put and Get
operations that ultimately produce an s value. An example of
such a program is one that doubles an integer state and returns
the old value:

double :: Free (State Int) Int
double = Op (Get (\s -> Op (Put (s * 2) (Pure s))))

There are numerous techniques to improve the readabil-
ity and writability of our code, including combining differ-
ent interfaces, using smart constructors and using signature
subtyping to name some. However, as large part of this pa-
per is mainly focused on the denotation of syntax rather the
implementation of effect interfaces we skip this part and fo-
cus on how to run our programs. If you want to learn more
however, the following papers explore these techniques in
depth: [2, 3, 12]

In order to use these interfaces we need to implement a
structure for handling their effects. The main benefit of this
approach is that we can define specific handlers completely
independently from each other. Then by applying these in a
nested fashion we run programs with different sets of inter-
faces. Essentially, a handler comprises two functions: one
responsible for defining how effects are managed and another
for returning the computed value. For example, consider the

handler for our State operations described above:

hState :: Functor g => Handler_ (State s) a s g
(a, s)

hState = Handler_
{ ret_ = \x s -> pure (x, s)
, hdlr_ = \x s -> case x of
Put s’ k -> k s’
Get k -> k s s }

In our return function, we return a pair with the current
state and a value. For the handle case, we have two alterna-
tives based on the Put and Get operations. In case of a Get,
we pass the current state to the continuation while in case of
a Put we pass a new value to the continuations [12].

3 Implementation
The core of our call-by-push-value (CBPV) interface imple-
mentation revolves around four primary functions: thunk,
force, lam, and apply. In this section, we first explore how
thunk and force are implemented to defer the evaluation of op-
erations. Following this, we examine the lam and apply func-
tions, detailing how they facilitate the translation of programs
between different evaluation strategies. Finally, we show how
we can use this interface to run programs and extend it with
new effects.

3.1 Thunk
In call-by-push-value, terms can either be computations or
values. This is based around the notion that “a value is, a
computation does”. However, in evaluation strategies such as
call-by-name and call-by-need we often need to freeze com-
putations and bind them to values. In order to achieve this
while maintaining the idea that a value is, we use thunks. A
thunk allows us to capture a computation as a value and de-
lay its execution until it is needed. Consider the following
example program, that uses a basic implementation of thunk:

print "Hello1";
let x be thunk (

print "Hello2";
return True;
);

print "Hello3";
print x;
apply x to
lambda y. (
print "Hello4";
y;

);

We provide a step-by-step explanation of the execution.
The program executes the commands in sequence. First, it
prints “Hello1”. Then, it binds x to a thunk. If the term thunk
were omitted, the expression would be evaluated immediately
and the resulting value would be bound to x.

Next, “Hello3” is printed, followed by a print call to x. This
call triggers the execution of the thunked computation, where
“Hello2” is printed and True is returned. As a result, “True”
is also printed.
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Finally, we end with an application of x to a lambda ex-
pression that takes y as a parameter. This will first bind the
thunked computation to y, then it will print “Hello4” and re-
turn y. When returning y, the computation will run again,
printing “Hello2” once more and then returning True.

In summary the program outputs as follows:

Hello1
Hello3
Hello2
True
Hello4
Hello2

and finally returns the value True.
In our implementation, we use two functions, thunk and

force. The thunk function encapsulates computations in a
data structure until they are needed, and the force function
triggers immediate computation. The first challenge is that
forcing a computation in a call-by-name manner (above ex-
ample) is different from call-by-need, as the latter requires
preventing reevaluation of the computation. To address this,
we implement three versions of these functions, one for each
evaluation strategy.

For a call-by-value strategy, a thunk operation is typically
unnecessary. However, since all subsequent functions will
use thunks and we want to enable straightforward transitions
between evaluation strategies, we create a thunk structure for
call-by-value. This structure simply runs the computations
and captures the resulting value in a thunk. The force func-
tion then unwraps the thunked value and wraps it in the pure
constructor:

newtype CBVal a = CBVal { unCBVal :: a }

thunkCBVal :: Functor f =>
Free f a -> Free f (CBVal a)

thunkCBVal m = fmap CBVal m

forceCBVal :: CBVal a -> Free f a
forceCBVal (CBVal a) = Pure a

The call-by-name case is also straightforward due to our
use of the free monad. The free monad represents our pro-
gram and its continuations. By wrapping this in a new thunk
data structure with the Pure constructor, the operations will
not be executed until force is called. When force is called, it
simply unwraps the computation to be executed:

newtype CBName f a = CBName (Free f a)

thunkCBName :: Free f a -> Free f (CBName f a)
thunkCBName m = Pure (CBName m)

forceCBName :: CBName f a -> Free f a
forceCBName (CBName m) = m

Finally for call-by-need we make use of the State functor
we introduced in Section 2. Combining this with its handler,
we can incorporate memoization into our interface, thus pre-
venting the reevaluation of any thunked computation. Each

call-by-need thunk holds an integer value that points to a store
and the corresponding computation. The store is essentially a
list consisting of a data structure called a pack, which either
contains the computed value of the expression or Nothing.
We maintain a list of packs within the state functor, updating
it whenever a new computation is thunked or forced.

In the thunk function we begin by getting the current store
and update it with a new entry that includes an additional pack
for the newly created thunk. As the computation has not been
run yet, the cell will hold Nothing. Then in forcing a com-
putation we again retrieve the store and pattern match on the
cell corresponding to the thunk. If the result is Nothing we
run the computation, update the store and return the calcu-
lated value. If the result corresponds to a value, we can just
return the value without any further actions.

newtype CBNeed f a = CBNeed (Int, Free f a)

data Pack = forall v. Pack (Maybe v)

thunkCBNeed :: (Functor f, (State [Pack]) < f) =>
Free f a -> Free f (CBNeed f a)

thunkCBNeed m = do
s <- get -- Smart constructor for injecting Get

operations in our program
put (s ++ [Pack Nothing])
return (CBNeed (length s, m))

forceCBNeed :: (Functor f, State [Pack] < f) =>
CBNeed f a -> Free f a

forceCBNeed (CBNeed (n, m)) = do
s <- get
case s !! n of
Pack (Just v) -> return (unsafeCoerce v)
Pack Nothing -> do
v <- m -- Run computation
-- Update store
put (updateList n (Pack (Just v)) s)
return v

In the above code snippet we use a get and a put function.
These are called smart constructors for the State operations,
which inject get and put operations respectively into our pro-
gram.

3.2 Translation of types and terms
Using the implementation of thunks detailed in Section 3.1,
we are now one step closer to being able to translate between
evaluation strategies. At this stage we need a structure to rep-
resent functions. We create a new data structure “Fun” which
takes a value of type t1 and produces the continuation of our
program with resulting type t2. To interact with these types
we use two additional functions, lam and apply:

newtype Fun f t1 t2 = Fun {app :: t1 -> Free f t2}

lam :: (a -> Free f b) -> Free f (Fun f a b)
lam f = Pure (Fun f)

apply :: Fun f a b -> a -> Free f b
apply = app
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With these steps completed we can now translate the types
and terms of one evaluation strategy to another. To showcase
this capability and implement the translation mechanisms we
create an example language with some operations. This in-
cludes boolean values, variables, strings, let expressions, if
expressions, lambdas, applications, injections, pattern match-
ing and an effectful operation, print:

data Lang
= Var String
| Let String Lang Lang
| Truel
| Falsel
| Stringl String
| If Lang Lang Lang
| Print Lang Lang
| Lambda String Lang
| App Lang Lang
| Inl Lang
| Inr Lang
| Pm Lang Lang Lang

We define a denote function that maps this syntax onto ef-
fectful (monadic [9]) operations. Through this we can later
use algebraic effects and handlers to handle all our operations
in isolation [14]. First we will show the translation for call-
by-name of each expression. We create a new data structure
to represent values and one for operations:

data Value f
= VTrue
| VFalse
| VString String
| VFun (Free f (Fun f (CBName f (Value f))

(Value f)))
| VInl (CBName f (Value f))
| VInr (CBName f (Value f))

data Operation k = forall s. PrintOp s k

Then we use an environment to emulate memory for stor-
ing variables:

data Env f s = Env
{cells :: [(String, CBNeed f s)]}

lookupEnv ::
String -> Env f s -> Maybe (CBNeed f s)

lookupEnv x (Env env) = lookup x env

extendEnv ::
String -> CBNeed f s -> Env f s -> Env f s

extendEnv x val (Env env) = Env ((x, val) : env)

Using these, the denote function takes an expression writ-
ten in terms of the Lang data structure and produces a Free
monad. This monad contains operations that will result in a
value once they have been handled.

-- Type signature of denote
denote :: (Functor f, Operation < f) =>
Env f (Value f) -> Lang -> Free f (Value f)

First for booleans and strings we directly produce their cor-
responding Values.

denote _ Truel = Pure VTrue
denote _ Falsel = Pure VFalse
denote _ (Stringl s) = Pure (VString s)

Accessing a variable is the same as forcing its computation.

denote env (Var x) = case (lookupEnv x env) of
Just v -> forceCBName v
Nothing -> undefined -- Variable name not found

Let expressions create new variables by thunking their
computations and adding them to the environment. After the
computations are thunked we denote the rest of the program
with the updated environment.

denote env (Let x e1 e2) = do
v <- thunkCBName (denote env e1)
denote (extendEnv x v env) e2

Lambda expressions produce a function value that can be
used in function application. When applying a value to func-
tion we first thunk the value to be applied and bind it to the
variable name. After adding the variable to the environment
we denote the body of the function.

denote env (Lambda x body) =
Pure $ VFun (lam (\v ->
denote (extendEnv x v env) body))

denote env (App e1 e2) = do
v1 <- thunkCBName (denote env e1)
v2 <- denoteC env e2
case v2 of
(VFun (Pure f)) -> apply f v1
_ -> undefined

We use injections to enable pattern matching in our lan-
guage. A standalone injection will thunk a computation and
produce an injection value. When used with a pattern match
expression that includes left and right injections of lambda
expressions, it will pass the thunked computation into the cor-
responding lambda expression.

denote env (Inl e) = do
v <- thunkCBName (denote env e)
return (VInl v)
denote env (Inr e) = do
v <- thunkCBName (denote env e)
return (VInr v)
denote env (Pm e (Inl (Lambda x body1)) (Inr

(Lambda y body2))) = do
v <- denote env e
case v of
VInl val -> denote (extendEnv x val env) body1
VInr val -> denote (extendEnv y val env) body2
_ -> undefined

Finally, effectful operations like print can be represented
directly using the free monad. We can use the Print operation
that will later need a Print handler to execute the expression:
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denote env (Print e1 e2) = do
v1 <- denote env e1
printf v1 -- Smart constructor for Print
denote env e2

With each case handled, we have effectively translated any
language using the above operations into a call-by-name eval-
uation. This approach allows us to extend our language with
any necessary operations. Additionally, by utilizing the Free
monad, users of the interface can execute their programs in
a completely modular fashion. They can select any set of
individual handlers for their desired effects and operations.
This not only provides a powerful way to execute and reason
about programs, but it also allows for flexibility in evaluation
strategies. By simply replacing the thunk and force functions
described in Section 3.1, we can adopt any of the three evalua-
tion strategies (call-by-name, call-by-value, or call-by-need).

3.3 Executing programs
Using this syntax with the denote function, we can create and
execute programs. In the language described in Section 3.2,
the only operation included is Print. Let’s refer back to the
example showcased in Section 3.1 that uses the print opera-
tion and will yield different results depending on the evalua-
tion strategy. To achieve this, we first need to create a handler
for our Print operation. As mentioned in Section 2 a handler
comprises two functions: one responsible for defining how
effects are managed and another for returning the computed
value. In our scenario, we define hPrint, which concatenates
the value to be printed within a string composed of all pre-
viously printed values and returns the value when no further
operations remain.

hPrint :: Functor g =>
Handler_ Operation a String g (a, String)

hPrint = Handler_
{ ret_ = \x s -> pure (x, s)
, hdlr_ = \x s1 -> case x of
PrintOp s2 k -> k (s1 ++ " " ++ (show s2))}

We describe the example program in terms of our Lang
Expressions:

Print (Stringl "Hello1") (
Let "x" (
Print (Stringl "Hello2") Truel

) (
Print (Stringl "Hello3") (
Print (Var "x") (
App (Var "x") (
Lambda "y" (
Print (Stringl "Hello4") (
Var "y"

)
)

)
)

)
)

)

Running this with our print handler will yield different results
for each evaluation strategy. For call-by-name, the results will
match those explained in Section 3.1.

For call-by-value, the computation will be executed di-
rectly, assigning True to x. As a result, it prints the “Hello”
messages in order.

Finally, for call-by-need, the results will be the same as
call-by-name until we reach the function application. By that
point, the variable x has already been evaluated once. There-
fore, when binding the value of x to y, only True will be
bound, resulting in “Hello2” being printed only once.

Table 1: Print results for each evaluation strategy

Call-by-Value Call-by-Name Call-by-Need
Hello1 Hello1 Hello1
Hello2 Hello3 Hello3
Hello3 Hello2 Hello2
True True True

Hello4 Hello4 Hello4
Hello2

3.4 Language extension
This interface provides a powerful method for reasoning
about languages with different evaluation strategies. But what
if we need to reason about other effects not included in the
current implementation? The strength of our approach lies
in its ability to extend the set of operations included, with-
out interfering with existing effects. We showcase this ability
through an example: Suppose we want to add a new error ef-
fect representing the abrupt termination of our programs. To
accomplish this, we start by adding a new constructor in Lang
and we define a new signature functor for it:

data Lang
= Var String
| ...
| Error String -- New Lang constructor

data Error k = ErrorOp String
deriving Functor

Then we add a new case in our denote function for the Error
constructor:

-- We add Error to the signature of denote
denote :: (Functor f, Operation < f, Error < f) =>
Env f (Value f) -> Lang -> Free f (Value f)

denote _ Truel = Pure VTrue
...
denote _ (Error e) = errf e -- We use errf to

inject an Error operation into our program

These are the only updates needed for our existing imple-
mentation; the rest is completely independent. We can now
implement our handler to behave as desired and nest it with
our other handlers when running our program. Simple as that,
we have successfully incorporated errors into our language,
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which properly work with different evaluation strategies, al-
lowing us to write programs such as:

exampleError :: Lang
exampleError = Let "x" (Error "Error!") Truel)

Running this will terminate early using our call-by-value
thunk, as it would evaluate the error immediately. Conversely,
it would run until the end using our call-by-name or call-by-
need thunk, as x is never evaluated, meaning the error is never
thrown.

4 Laws
To describe the behavior of our implementation, we use math-
ematical laws from existing research in the field [5, 8]. Prov-
ing these laws is crucial for numerous reasons, one of which is
ensuring the correctness of our interface. Verification through
these laws confirms that our implementation behaves as ex-
pected under all defined conditions, accurately translating
theoretical foundations into practical applications.

Moreover, these help with facilitating reproducibility.
Clear proofs of the underlying laws allow others to repro-
duce our work more accurately. This transparency helps other
researchers understand, replicate, and build upon our imple-
mentation, contributing to the overall advancement of the
field (Section 5).

Finally, having these proofs allows us to reason about pro-
grams written against our implementation with greater con-
fidence and clarity. By relying on established mathematical
laws, we can predict how these programs will behave in var-
ious scenarios, identify potential issues, and ensure that they
adhere to the intended design principles. Consequently, other
developers can interact with it without the need to get into the
specifics of the implementation.

We begin with the most fundamental law of the interface:

thunk m≫= force ≡ m

The law states that binding the result of any of the three
thunk functions in our implementation to its corresponding
force function should yield the original computation repre-
sented by the monadic value m. This demonstrates that the
combined effect of wrapping and immediately unwrapping a
computation does not alter the original value. The proofs for
call-by-name and call-by-need are displayed bellow:

Call by name:

thunkCBName m≫= forceCBName
=

Pure (CBName m)≫= forceCBName
=

fold forceCBName Op (Pure (CBName m))
=

forceCBName (CBName m)
=

m

Call by need:

thunkCBNeed m≫= forceCBNeed
=

(do
s← get
put (s ++ [Pack Nothing])
return (CBNeed (length s,m)))≫= forceCBNeed

=

(do
put (s0 ++ [Pack Nothing])
return (CBNeed (length s0,m)))≫= forceCBNeed

=

Pure (CBNeed (length s0, m))≫= forceCBNeed
=

forceCBNeed (CBNeed (length s0, m))
=

do
s← get
case s !! (length s0) of

Pack (Just v) → return (unsafeCoerce v)
Pack Nothing→ do

v ← m

put (updateList n (Pack (Just v)) s)
return v

=

case (s0 ++ [Pack Nothing]) !! (length s0) of
Pack (Just v) → return (unsafeCoerce v)
Pack Nothing→ do

v ← m

put (updateList n (Pack (Just v)) s)
return v

=

v ← m

put (updateList n (Pack (Just v)) s)
return v

In the call-by-need scenario, the final step involves execut-
ing the computation m, updating the store to avoid reevalu-
ation, and returning the result of the computation m. Even
though this is not exactly equivalent to just executing the
computation it will behave identically if we only evaluate the
same expression once. We can then presume that upon fu-
ture evaluations, the value will be directly returned. Using
this sequential reasoning technique showcased in the above
example we prove the following laws:

thunk m ≫= force ≡ m (1)

Let x v m ≡ App v (Lam x m) (2)

m ≡ Let x m (Var x) (3)

Pm (Inl v) (Inl (Lam x m1)) (Inr (Lam x m2)) ≡ App v (Lam x m1) (4)

Pm (Inr v) (Inl (Lam x m1)) (Inr (Lam x m2)) ≡ App v (Lam x m2) (5)
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1. The first law describes that forcing a thunked computa-
tion m is equivalent to directly running the computation
m.

2. The second law describes that binding a variable x to a
value v and then running a computation m is equivalent
to replacing all instances of x with v within m and run-
ning the computation m.

3. The third law describes that running a computation m is
equivalent to binding the computation to a variable and
calling the variable.

4. The fourth law describes that pattern matching a left in-
jection holding a value v onto left and right injections
each holding a lambda function, is equivalent to apply-
ing the v to the left injections’ lambda.

5. The fifth law describes that pattern matching a right in-
jection holding a value v onto left and right injections
each holding a lambda function, is equivalent to apply-
ing the v to the right injections’ lambda.

In addition to these, we have proven two sequencing laws
that enable us to reason about the order of operations in our
computations. The first law states:

Let y (Let x m n) p ≡ Let x m (Let y n p)

This law ensures that the nested sequencing of computations
maintains consistent behavior, allowing us to reframe the or-
der of “let” expressions without changing the program’s se-
mantics. The second law further enhances our understanding
of computation sequencing over functions. It states:

Let x m (Lambda y n) ≡ Lambda y (Let x m n)

This law emphasizes the interchangeability of “let” expres-
sions and lambda abstractions. It asserts that the order of
binding and abstraction can be freely interchanged without
altering the program’s behavior. Evaluating these two expres-
sions results in merely a different order of storing in our en-
vironment. However, this alteration does not affect the evalu-
ation of expressions since the environment is accessed by the
names of the variables bound to the expressions. This means
that as long as x ̸= y the law holds.

It should be noted that this is not a completely exhaustive
set of laws, but it covers most of the behaviours the imple-
mentation should adhere to. A complete set of these proofs
for both the call-by-name and the call-by-need cases can be
found in our Github repository1.

5 Responsible Research
In this section, we outline the measures taken to ensure
the reproducibility and transparency of this research. All
code related to the implementation of the Call-By-Push-Value
(CBPV) interface is available on GitHub1. This repository in-
cludes the version of the Free monad used for the implemen-
tation, the State functor and its handlers, as well as the thunk,
force, lam, and apply functions described in Section 3.

1Github repository: https://github.com/AlexDimakos/
CBPV_using_algebraic_effects_and_handlers

Moreover, Section 2 and Section 3 provide a clear, step-by-
step description of the procedures used, ensuring that others
can replicate the experiments. Additionally, we use the most
popular Haskell compiler (GHC) that offers the most features.
For all code in this research we used version 9.4.82.

To validate the theoretical aspects of the CBPV interface
and ensure its correctness, mathematical proofs were con-
structed. Due to space constraints, not all proofs could be
included in Section 4, but all of them are mentioned. For this
reason, all proofs are included in our GitHub1 repository, en-
suring they are readily accessible for verification by others.

By following responsible research practices such as trans-
parency, reproducibility, and avoiding divisive methods, this
study aims to contribute to the collective progress of the field.
These principles not only uphold the integrity of the research
but also inspire additional exploration and refinement of our
proposed approach.

6 Related Work
Algebraic Effects and Handlers Algebraic effects [10] have
become a crucial area of research in programming languages.
Moggi’s introduction of monads [9] provided a foundation
for structuring computational effects. Algebraic effects built
on top of their work to introduce a more structured and com-
posable [1] approach. Recent advancements of effect han-
dlers [11], offer a flexible way to define and control effects,
enabling practical language and library implementations.

Call-by-Push-Value Levy’s call-by-push-value [4, 6] cal-
culus introduced a new framework for expressing both call-
by-name and call-by-value. This has been the inspiration for
the interface defined in this paper. We have demonstrated
how to use the theory that Levy proposed in order to trans-
late the types and terms of our language. However, it would
be inaccurate to describe our interface as a replica of CBPV,
as we do not adhere to the exact same distinctions between
computations and values that CBPV employs.

Instead, we have focused on using algebraic effects and
handlers to modularly isolate our operations. We also used
the concept of thunking to achieve the postponement of ef-
fects that is found in CBPV. This approach has shown similar
benefits to those of the CBPV language. Similarly, to CBPV
our interface not only allows us to optimize our programs but
to also reason about more properties of them and their side
effects. In our model we can choose how we want to han-
dle each effect and operation individually which can then be
combined by nesting their handlers.

Extended Call-by-Push-Value In this research, we have
also touched upon extended CBPV [8]. This notion intro-
duces lazy evaluation to CBPV by adding a new construct, M
need x.N, which evaluates x only the first time it is used and
directly uses the produced value for subsequent uses. In our
implementation, we used the thunkCBNeed and forceCBNeed
functions to achieve similar results. Our denote function ap-
plies this directly without the option to evaluate different parts
of the same program differently, something that is possible in

2GHC version: https://www.haskell.org/ghc/download_
ghc_9_4_8.html
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extended CBPV. However, it is also possible in our imple-
mentation by working with these functions directly.

7 Discussion
This paper introduces an interface for translating lambda-
calculus source languages into various evaluation strategies
based on call-by-push-value (CBPV) theory. Our implemen-
tation (Section 3) demonstrates how to delay the execution of
certain computations and effects, enabling the translation of
entire expressions into different evaluation strategies.

Moreover, we can now compare programs written using
different evaluation strategies. Traditionally, this compari-
son would require translating the programs into the same lan-
guage to ensure a uniform evaluation strategy. Even then,
tracing the execution of call-by-need or call-by-name strate-
gies can be challenging and often leads to unexpected behav-
ior. Our interface, however, offers a straightforward solution
that is easier to reason about, further supported through the
laws we have proven (Section 4).

In essence, this interface offers a powerful framework for
composing programs from isolated components with inter-
changeable evaluation strategies. However, our approach
comes with certain limitations. One is that it is not always
feasible to create modular components for operations de-
scribed in terms of algebraic effects. While the approach
holds promise in terms of scalability—allowing for the seam-
less integration of new operations without disrupting existing
ones—the actual implementation of these modular compo-
nents can present challenges and complexities. Specifically,
algebraic effects can interact in complex ways that are dif-
ficult to modularize, requiring global knowledge about their
composition which undermines modularity. Additionally, ef-
fect handlers need to be correctly scoped to manage where
and how effects are handled, and ensuring proper scoping in
a modular system can be tricky, potentially leading to unin-
tended behavior or performance issues.

Furthermore, we highlighted that by utilizing our thunk and
force functions directly, comparable outcomes to those out-
lined in existing literature [6, 8] can be attained. However,
this approach necessitates programmers to have a deeper un-
derstanding of the implementation, thereby decreasing their
capacity to reason about programs developed with it.

8 Conclusions and Future Work
This paper aims to develop an interface that integrates alge-
braic effects and handlers [11] with call-by-push-value [4, 6]
(CBPV). Implemented in Haskell, the interface was con-
structed by first developing a thunking mechanism to delay
computations. This was afterwards used to translate types
and terms of a lambda calculus-based language into differ-
ent evaluation strategies. Then we demonstrated how this in-
terface can be used to write and run programs. Finally, we
defined and proved a set of laws that our implementation ad-
heres to in order to help with reasoning about programs.

With these steps completed, we have successfully ad-
dressed all of our research questions. We demonstrated the
benefits of call-by-push-value, created an interface capable

of translating programs to different evaluation strategies, de-
fined the behavior of the implementation through mathemat-
ical laws, proved the correctness of the implementation with
respect to these laws, and aligned our work with existing the-
oretical frameworks.

The groundwork laid by this study opens up numerous av-
enues for future research. Our primary focus was to estab-
lish a foundational framework for understanding how differ-
ent evaluation orders impact program behavior and side ef-
fects. Consequently, many opportunities remain for further
exploration.

One intriguing area for future research is the application
of extended CBPV, as demonstrated in [8]. This includes the
proof of equivalence of call-by-name and call-by-need evalu-
ation strategies when the only effect in the source language is
nontermination. Although this example showcases the proof
capabilities of their language, it would be worthwhile to in-
vestigate whether this equivalence holds within our interface
as well. Additionally, if this equivalence is confirmed, further
research could explore what other equivalences can be proven
within this framework.

Another promising area for exploration is the optimiza-
tion of performance within the CBPV framework. While lazy
evaluation often performs best for many programs, it comes
with higher overhead and memory usage due to the need to
store computed values. By using an interface that simplifies
the translation of programs into different evaluation strate-
gies, we can analyze which programs perform best under
which evaluation strategies trivially. It could be valuable to
investigate whether there is a way to easily identify the opti-
mal evaluation strategy for a given program.

Such investigations could enhance our understanding of
evaluation strategies and their interactions with different
computational effects, potentially leading to new theoretical
insights and practical applications.
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A AI Usage During the Research
In this paper, we utilized AI tools such as ChatGPT and Gem-
ini to enhance the clarity and coherence of our writing. By
providing prompts such as “Make this well written: ...”, we
received suggestions from these tools, which we then adapted
to maintain our own voice and style. Additionally, Claude
AI assisted in understanding complex concepts relevant to
our research, thereby enabling deeper analysis of theoretical
frameworks and methodologies. It’s important to note that
while AI played a significant role in refining our writing and
enhancing conceptual understanding, the coding aspect of our
research was conducted without AI intervention, following
traditional programming practices.

9


	Introduction
	Methodology and Background
	Implementation
	Thunk
	Translation of types and terms
	Executing programs
	Language extension

	Laws
	Responsible Research
	Related Work
	Discussion
	Conclusions and Future Work
	AI Usage During the Research

