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Abstract

The demand for renewable energies is rising due to climate goals and high oil prices. Not only the estab-
lished renewable sources like wind and solar are interesting to exploit. There is a vast amount of energy
stored in the world’s oceans. To harvest this energy, one needs a Wave Energy Converter (WEC). There
are already some prototype WECs tested around the world but there is no leading design that proves to
be a cost-effective way to convert this energy to electricity.

A company from the Netherlands, Dutch Wave Power, also tries to build a cost-effective device to har-
vest the ocean’s energy. Their design consists of a floating tube or cylinder that converts the heave and
sway motion into a pitch motion. This pitch motion drives a generator which generates electrical power.
The generator is connected to the outer wall of the float and rotates as the float pitches. Inside the gener-
ator is a shaft that is kept in place by an inside pendulum. Dutch Wave Power validated their concept with
experimental tests in a wave flume. The next step in the development is a numerical model. This model
gives insight into the effects that influence the dynamics and power production of the WEC. Secondly, a
numerical model eliminates the need for new experimental tests each time a design parameter is changed.

The numerical model estimates the dynamics of the WEC. The BEM software NEMOH is used to estimate
the diffraction and radiation forces coefficients. A state-space approximation of the Cummins equation is
used to capture the memory effect of the radiation forces. The Froude-Krylov forces are fully non-linear
and are evaluated for each time step. Lastly, some friction and drag forces are included. The PTO system
is described as a linear damper. The numerical model is validated with experimental tests executed by
Dutch Wave Power.

Next, the numerical model is adapted to also estimate the hydrodynamics in irregular waves. The irregu-
lar waves used in this thesis are based on a JONSWAP spectrum. Using the parameters of the JONSWAP
spectrum, a sea-state with the desired significant wave height and peak period can be generated. The
Froude-Krylov and the diffraction forces are estimated based on the principle of superposition. With this
irregular wave model, a power matrix is constructed for a WEC with twice the size that was used in the
experimental tests. This power matrix gives an indication of the ideal operational wave conditions, where
the efficiency of the WEC is the highest, and it makes it enables the possibility to compare the performance
of the WEC at different sea-states.
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Chapter 1

Introduction

1.1 Wave Energy
Intending to become a carbon-neutral society, the interest in renewable energies only grows. To achieve
this, we need more sources than only wind and solar. One mostly neglected source with huge potential is
the world’s oceans. The oceans hold a vast amount of energy that could add a significant portion to our
energy demand. The amount of potential power stored in the open oceans is estimated to be (∼ 1013W )
[1] [2]. A device that harvests the energy in ocean waves is called a Wave Energy Converter (WEC).

There are already many concepts of WECs based on different conversion types. There is a lot of progress
in theoretical studies, experiments and model testing of WEC prototypes. Some small scale prototypes
are deployed and tested [3] [4] [5]. However, to become economically viable, significant cost reductions
are necessary, especially when compared to much more developed alternatives of solar and wind [6]. The
challenges identified for wave energy converters range from techno-economic problems to issues affecting
their operation and maintenance. One of the major challenges militating against the use of WECs is that
the technologies are still in an early stage of development in comparison to wind and solar [7] [8] [7]
[9].

1.2 The Wave Energy Converter developed by Dutch Wave Power
One of the companies looking to build a cost-effectiveWEC is the Dutch-based company DutchWave Power,
founded in 2020. They have developed a new concept with the promise to be cost-effective, efficient and
robust. Their concept consists of a floating tube with all the components stored inside the tube/cylinder.
The tube, also called "float", can move freely in surge and heave. But due to a cable wind around the float,
the pitch motions are coupled to surge and heave, see figure 1.1.
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Figure 1.1: Concept of Dutch Wave Power

To better understand the working principle of the WEC, figure 1.2 shows its main components, as in-
dicated by numbers. The WEC consists of the float (1), the mooring line (2), the ballast weight (3) and
the ballast line (4). The WEC of Dutch Wave Power captures the wave energy in the following way. The
float provides enough buoyancy force for the device to float. The WEC gets pushed up and sideways due
to the incoming waves. The mooring line is wound around the ends of the float. This means that the
WEC starts rotating, pitching, if it moves in heave or sway, just like an upside-down JoJo-toy. Due to the
pitching motion, the ballast weight is lifted. Because the ballast line is wound around the float in the other
direction, it ensures that the floater returns to its original position after a wave has passed.

The WEC moves due to the wave excitation forces. A part of the mechanical energy gets converted into
electricity with a rotational generator that is connected to the hull of the float. Normally a shaft is rotated
inside the generator, but in this concept the generator is connected to the float. This means that the gener-
ator rotates while this shaft is kept as steady as possible. The energy is generated by the rotational speed
difference in the shaft and the float.

Seeing that the shaft is also located inside the float, the challenge is to decouple the shaft’s movement
from the float’s movement. To keep the shaft steady, a pendulum is connected to the shaft inside the float.
The inside pendulum ensures that the shaft is kept steady and that electricity gets generated. If a wave
initiates a rotational movement of the float, the generator enforces a moment on the shaft. This turns the
pendulum out of its neutral position, which creates a moment in counter direction of the one created by the
generator. This moment is what keeps the shaft from rotating. If the float changes pitching direction and
starts rotating in the oposite direction, the pendulum swings to the other side and generates a moment
using the same principle. Figure 1.3 shows the working principle of the inside pendulum.
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Figure 1.2: Dutch Wave Power concept - Components

Figure 1.3: Working principle of the inside pendulum

Dutch Wave Power tested this concept first in their own build wave flume. To validate their concept,
they got the chance to build a 1:3 scale model and tested this model in the wave flume at Deltares. This
validated their idea but also increased the need for more research on the working principle of their WEC.
One of the ways to research this is the development of a numerical model. With a numerical model, the
influence of different forces and effects can be studied. A numerical model can be either built in the
frequency domain or in the time-domain. For this thesis, it is chosen to build the numerical model in
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the time domain. Time-domain models are usually better in estimating non-linear forces. For this WEC
some non-linear forces are expected to influence the performance of the WEC. For example, during the
experimental tests, a large change in draft was observed. To capture this change in draft, an analytical
method is used to calculate the Froude-Krylov force acting on the WEC. This thesis includes all the work
done while developing a numerical time-domain model of the WEC developed by Dutch Wave Power.

1.3 Objective & Scope

1.3.1 Objective
The objective of this master thesis is to gain a better understanding of the forces and effects that influence
the hydrodynamic behaviour of the WEC developed by Dutch Wave Power. To achieve this a numerical
model will be constructed. This numerical model will be validated with experimental test results executed
by Dutch Wave Power. After validation with the experimental data, recommendations will be given to
improve the energy production of the WEC based on the results of numerical model.

1.3.2 Research questions
Now that the objective is defined, the following research questions can be formulated. These will help
guide the thesis in the right direction.

• What is the hydrodynamic response, of the WEC of Dutch Wave Power, in a 2D the time-domain
model?

• How are the non-linearity’s, associated with the large change in draft, captured in a numerical
model?

• How is the performance of the WEC influenced by changes in the parameters of the novel PTO
system?

• What is the estimated response in irregular waves?
• Can the numerical model estimate the produced power?

1.3.3 Scope
To simplify, the model will be in 2D with only unidirectional waves. This approximation holds when the
WEC is small with respect to wave lengths. First, the equations of motions will be derived. Next for each
force component, an estimation is made based on the estimations available in the literature. The goal is
to find an analytical expression for the non-linear Froude-Krylov and hydrostatic forces. Secondly, a BEM
solver, NEMOH, will be used to obtain the radiation and diffraction terms. A simplified model of the PTO
system will be used in the form of a linear damper. The mooring lines will be considered as an analytical
expressed force based on the dynamics. This means that there is no slack possible in the lines. Lastly, the
ballast weight is estimated by a downward pulling force. While in the concept, the ballast weight is free to
move. The simplifications of the lines are made because there is no data available on the forces or angles
of the lines. The same holds for the PTO-system. There is not enough data available on the generator to
make a more detailed PTO-system. With estimations for all the different force components, an ordinary
differential equation solver will estimate the dynamic response of the system.

The results of the numerical model will be validated with the test results of Dutch Wave Power. To do
this, the results need to be analyzed and post-processed. From all the test data there is video material
available. This will be reviewed to spot any noticeable effects. Secondly, there is data available from the
experimental tests. During the tests, there is time-series data from the pitch angle, the angle of the inside
pendulum and the produced electrical power. This data will be compared with results from the numerical
model.

The experimental tests executed by Dutch Wave Power, are done with regular waves. This is why the
numerical model will first only include regular waves. After the numerical results are validated with the
experimental tests. The model is adapted to also estimate the response in irregular waves.
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1.4 Structure of this thesis
The first part of this thesis, chapter 2, describes the numerical model. The equations of motion are derived
and described. Next, an approximation is given for all the different force components. The chapter is
concluded with a discussion and the limitations of the model.
Chapter 3 describes the experimental tests executed by Dutch Wave Power prior to this thesis. The test
setup and results are described. In the second part of this chapter, the data is reviewed and it is described
how this data is processed to be able to compare and validate the numerical model.

The comparison between the numerical model and the experimental tests is done in chapter 4. This
chapter explains the shortcomings of the numerical model and how the numerical model can be tuned to
best reproduce the experimental tests on the computer. This chapter also gives an idea of the ideal PTO
settings and shows the potential of the WEC if it is tuned to the wave conditions.

In the last part of this thesis, chapter 5, the numerical model is adapted for irregular waves. With this
model not only the performance of this WEC can be estimated, but it can also be scaled. This is done for a
scale factor of 2. The performance of this scaled WEC is shown in a power matrix. This power matrix can
be used to estimate the performance of the WEC if the wave climate at a site is known.

The thesis will be concluded with a final discussion and conclusion. Here the overall findings of this
thesis are summarized.
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Chapter 2

Theoretical model

In this chapter, the time-domain model of the WEC of Dutch Wave Power is described. In chapter 3 is the
working principle of the WEC described. In chapter 3 are also the experimental tests described that are
used to validate the theoretical model. In the first part of the thesis, a 2D simplification of the WEC is
made. The equations of motion, the constraints and some conventions are described. In the second part
of this chapter, an approximation for all the different force components is given. Next, the integration
method to solve the differential equations is described. The chapter is concluded with an example of the
output of the model and discusses its limitations.

2.1 System description
For this numerical model, it is assumed that the WEC is a ridged body and the equations of motion can
be described according to the numerical models that have been used frequently in the offshore and ship
industry, see equation 2.1 [4] [10] [11] [12] [13] [14] [15]. For the 2D case, this corresponds with the
free-body diagrams in figures 2.1 and 2.2. M̄ is a 3x3 mass matrix for surge, heave and pitch. ¯̈X is a
3x1 acceleration matrix containing the accelerations in surge, heave and pitch. FRad are the radiation
forces. FDiff are the diffraction forces. FHS are the hydrostatic forces. FFK are the Froude-Krylov forces.
Fdrag are the drag forces. FPTO are the PTO forces and FMooring are the mooring forces. The mass of
the WEC, the mass of the pendulum and the mass of the ballast weight are respectively m1, m2 and m3.
The diameter of the WEC is rout and inertia moment J around the y-axis. The part where the lines are
connected has a diameter of rin and the length of the pendulum is Lpen. The draft is described with T
and the water depth with d. The WEC can move in surge (x(t)) and in heave (z(t)) and pitch (σ(t)). The
angle of the pendulum is described by θ(t). These motions change length of the mooring line (l(t)) and
the angle of the mooring line at the seafloor α(t). In the model, the waves are propagating from left to
right.

M̄ ¯̈x = F̄Rad + F̄Diff + F̄HS + F̄FK + F̄Drag + F̄PTO + F̄Mooring (2.1)
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2.2 Model derivation

2.2.1 Equations of motion
In the model, there are only three degrees of freedom. These are the x position of the WEC, the z position
of the WEC and the angle of the pendulum θ. All the other variables are constrained by these 3 degrees
of freedom. Equations 2.2, 2.3 and 2.4 are the equations of motions for surge, heave and pitch. But due
to the mooring line, the pitch angle is constrained by the surge and heave displacements. The pitch angle
can be described as the change in length of the mooring line multiplied by rin. The length of the mooring
line is defined by the original length at the still water level (l0) and the displacements in surge and heave.
This means that the pitch acceleration can be described as the acceleration of the length of the mooring
line multiplied by rin. This is given in equation 2.6 and 2.7. Furthermore, the pendulum inside the WEC
has its own equation of motion described in equation 2.8. The derivation of the equation of motion of
the pendulum is based on a pendulum on a moving support. The derivation is solved using Lagrangian
mechanics and can be found in appendix B.

m1ẍ = FExcitation + FRadiation + FExternal + FDrag (2.2)
m1z̈ = FHydrostatic + FExcitation + FRadiation + FExternal + FDrag (2.3)

Jσ̈ = MExternal +MPTO (2.4)

tan(α) =
x(t)

l0 + z(t)
(2.5)

σ̈ = −l̈rin (2.6)
l(t) =

√
x(t)2 + (l0 + z(t))2 (2.7)
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θ̈ =
ẍ cos(θ)

Lpen
+

(g − z̈) sin(θ)

Lpen
− MPTO

m2Lpen
(2.8)

2.2.2 Hydrostatic force
The hydrostatic force is the result of the buoyancy force and the gravity force summed. The gravity force
is the mass of the float (m1) and the pendulum (m2) multiplied by the gravitational acceleration (g). The
buoyancy force is the static water pressure (Pstatic) integrated over the wet hull surface (S). A non-linear
method is used to obtain the buoyancy force. This means that the buoyancy force is computed at each
time step and corrected for the change in draft. The method is described in section 2.3.2 [16] [17] [18]
[19].

FHydrostatic = Fg + FBuoyancy (2.9)
Fg = −(m1 +m2)g (2.10)

FBuoyancy = −
∫∫

S

PstaticndS (2.11)

2.2.3 Excitation force
The excitation force has two components the Froude-Krylov force and the diffraction force. The Froude-
Krylov force is the pressure field in the incoming wave integrated over the wet surface of the WEC. The
diffraction is the pressure field of the diffracted wave integrated over the wet surface.

Fex = FFK + Fdiff (2.12)

Froude-Krylov

The Froude-Krylov force is the force associated with the pressure field of the incident wave (Pdynamic)
integrated over the hull surface (S) multiplied by a normal vector n. See equation 2.13. The Froude-
Krylov force is mostly estimated with the use of BEM software like NEMOH [9] [13]. But one of the
limitations of this software is that it assumes small changes in draft. In the videos from the experimental
testing, it is clear that there is a large change in draft. This means that it is expected that there is a need
for a non-linear Froude-Krylov force. A non-linear Froude Krylov force is the most important non-linear
force acting on the WEC [20] . To do this at each time-step integration the draft and wet surface need to
be computed [18] [19]. The method used to solve the Froude-Krylov forces is described in section 2.3.2.

FFK = −
∫∫

S

PdynamicndS (2.13)

Diffraction force

The diffraction forces are the forces due to the diffracted waves of the hull surface of the WEC. The
diffraction force is assumed linear and is computed by the BEM software NEMOH. The output of NEMOH
are the hydrodynamic coefficients that describe the diffraction forces (Cdiff ) and a phase shift wrt the
incomming wave (ϵdiff ) as a function of the wave frequency (ω) and the wave amplitude (ζa). The force
can be calculated by multiplying the diffraction coefficient by the wave amplitude and the cosine of the
wave number (k), the surge displacement (x), the wave frequency (ω) and the current time (t), using
equation 2.14.

Fdiff = ζaCdiff cos(kx− ωt+ ϵdiff ) (2.14)
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2.2.4 Radiation force
The radiation force Frad is the force associated with the radiating waves due to the movement of the WEC.
The radiation force is described by the Cummins equation [21]. This equation includes a convolution
integral to describe the memory effect of the fluid. See equation 2.15 where A∞ is the added mass at
infinite frequency and kr is the impulse response for the radiation force.

Frad = A∞ẍ(t) +

∫ t

0

kr(t− τ)ẋ(t)dt (2.15)

The convolution term in equation 2.15 takes a lot of computation time to calculate at each time step.
That is why a linear state-space model is used to approximate this convolution term [22] [23] [24] [25].
How this state-space approximation is constructed is described in section 2.3.4

2.2.5 Drag force
The drag force is the viscous force between the float and the water. The viscous drag force is expected to
have a small influence on a heaving point absorber and can be approximated by using the semi-empirical
Morison equation [17] [26]. This force is described by equation 2.16 [16] [27]. At each time-step the
characteristic surface area (A) is calculated.

Fdrag = −1

2
ρACdẋ|ẋ| (2.16)

From this expression choosing the right value for the drag coefficient Cd is challenging. From the
literature, there are suggestions given for a circular shaped floating object. The suggested values are given
in table 2.1 [28].

Cd

Surge 0.5
Heave 0.5

Table 2.1: Suggested drag coefficients

2.2.6 Ballast force
The ballast force is the force on the WEC due to the ballast weight m3. This weight ensures that the WEC
winds itself up. The buoyancy force is a constant on the ballast weight. m3 is the weight of the ballast
corrected for the buoyancy. See equation 2.17.

Fballast = m3g (2.17)
This simplification does not hold when the movements of the ballast weight are big. This could be

the case if the wave period is near the natural frequency of the ballast weight connected to the WEC. The
length of the line with which the ballast weight is connected to the WEC varies. This means that there is
not one natural frequency but a range. The length of the line connected to the ballast is dependent on the
starting length and the overall movement of the WEC. Secondly, there are lift and drag forces acting on the
ballast weight. These forces are also neglected. And lastly, it is assumed that there is no slack in the ballast
line connecting the ballast weight to the WEC. It is expected that these effects only significantly influence
the WEC at higher speeds, outside of the operational conditions. The acceleration of the WEC can be used
to check if slack occurs in the ballast line. The acceleration of the WEC in heave must be bigger than the
ballast force divided by the mass of the ballast weight. See equation 2.18.

z̈ >
Fballast

m3
(2.18)
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2.2.7 Tension force
The tension force is the force in the line that is wound around the WEC and connects the WEC to the
seafloor. The length of this line is variable because the length changes as the WEC pitches. In the theo-
retical model, it is assumed that the line is always under tension. This means that there is no slack in the
line. This simplification assumes that the tension in the line can be calculated using basic dynamics. A
1D example for the line tension is given in equations 2.19, 2.20, 2.21, 2.22 and 2.23. This is an example
where the WEC is only heaving. A detailed derivation for the tension force in a 2D configuration where
the surge is included can be found in appendix C. Consider the 1D example of the WEC in figure 2.3. This
figure gives insight into the method used to solve the line tension in both surge and heave.

The WEC in figure 2.3 can only move in heave z(t) and pitch σ(t). The forces acting in the heave direction
and the moments acting in pitch can be summed to gain ∑

Fz and ∑
Mσ respectively. The mooring line

is attached to the inner part of the WEC with radius rin. The WEC itself has a mass of m1 and a moment
of inertia J .

z

 (t)

F
Tension

m
z
, J, r

in
, r

out

Figure 2.3: Simplified free body diagram to solve the line tension

The equation of motion for the heave motion is given in equation 2.19.

m1z̈ =
∑

Fz − FTension (2.19)

The equation of motion for the pitch motion is given in equation 2.20.

Jσ̈ =
∑

Mσ − FTensionrin (2.20)

The pitch motion is constrained by the heave motion due to the line wind around the WEC. This means
that if the WEC moves 1m up it also has to rotate by a rate of − 1m

rin
rad. This gives the following kinetic

constraint for the pitch motion, see equation 2.21:

σ̈ = − z̈

rin
(2.21)

Filling in the equations of motion into the constraint gives the expression given in equation 2.22.∑
Mσ − FTensionrin

J
= − (

∑
Fz − FTension)

m1rin
(2.22)

Isolate FT from equation 2.22 to get an expression for the tension in the line, see equation 2.23.

FT =

∑
Mσ

rin + J
rin

+

∑
FzJ

(m1rin)(rin + J
rin

)
(2.23)
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2.2.8 PTO moment & electrical power generation
The PTO moment is the moment associated with the torque inside the generator. The PTO moment is
estimated by an ideal rotational damper see equation 2.24 [4] [10] [13]. Also, the mechanical power
production is estimated with the use of this ideal damper 2.25. The damping coefficient (BPTO) of this
damper is uncertain and a point of discussion. If the value is too low, this means that the torque will
be underestimated and there is no electricity production. And if the damping coefficient is too high the
shaft will follow the pitch movement of the float. This means that there is no relative velocity so also no
electricity production. The value of the ideal damping coefficient gets discussed in chapter 4.

MPTO = BPTO(σ̇ − θ̇) (2.24)
Pmechanical = MPTO|(σ̇ − θ̇)| (2.25)

To estimate the produced electrical power (Pelectrical) the efficiency of the generator (ηgenerator) is
subtracted from the mechanical power (Pmechanical). See equation 2.26. The efficiency of the generator is
dependent on the relative velocity inside the generator. The efficiency of the generator is given at 8 points.
The efficiency gets approximated with a polynomial to gain a continuous curve. The original efficiency
curve can be found in figure 3.2 in chapter 3. Figure 2.4 shows the original points and a 3rd, 4th and 5th
order approximation of the efficiency curve. The norm of the residuals for the approximations are 0.148,
0.105 and 0.104 respectively. There is a less than 1% increase in accuracy between the 4th and 5th order
approximations. That is why a 4th order approximation seems sufficient. The efficiency of the generator
is estimated by the polynomial in equation 2.27 with the coefficients from table 2.2.

Pelectrical = Pmechanicalηgenerator (2.26)

ηgenerator = C1v
4
rel + C2v

3
rel + C3v

2
rel + C4vrel + C5 (2.27)

C1 -3.2997e-4
C2 0.0075
C3 -0.0646
C4 0.2499
C5 0.6198

Table 2.2: Coefficients of the generator efficiency polynomial
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Figure 2.4: Theoretical generator efficiency

2.3 Calculation method

2.3.1 ODE45 solver
The theoretical results are obtained by using the Matlab function ODE45. This function is a solver for
ordinary differential equations (ODEs). This specific ODE solver uses the Runge-Kutta method with a
variable time step. The function is designed to handle the problem shown in equation 2.28 [29]. In
equation 2.28 q̄ is the state of the system. At each time step the derivative of the state vector dq̄

dt gets
calculated. This derivative is a function of the state vector q and the current time t.

dq̄

dt
= f(t, q̄), q̄(t0) = q̄0 (2.28)

The state vector q̄ and its derivative dq̄
dt are shown in 2.29. To calculate the acceleration components

in dq̄
dt equations 2.2, 2.3, 2.4 and 2.8 are used.

q̄ =



x
ẋ
z
ż
σ
σ̇
θ

θ̇


,

dq̄

dt
=



ẋ
ẍ
ż
z̈
σ̇
σ̈

θ̇

θ̈


(2.29)
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2.3.2 Non-linear buoyancy and Froude-Krylov force
To obtain the non-linear buoyancy and Froude-Krylov force the expression given by [18] and [19] is im-
proved to suit the geometry of the WEC of Dutch wave power.

The pressure in waves is divided into two parts. The static part and the dynamic part. The static part
integrated over the hull surface is the buoyancy force and the dynamic part is the Froude-Krylov force.
See equation 2.11, 2.13 and 2.30.

P = Pstatic + Pdynamic = ρgh+ ρgζae
kh cos (kx− ωt) (2.30)

This pressure needs to be integrated over the hull surface. The outline of the hull surface is described
in the cylindrical coordinate σ. The water depth h in equation 2.31 is dependent on the angle σ, the still
water draft T , the radius of the WEC rout and the heave displacement of the WEC z(t).

h = rout sin(σ) + z(t) + rout − T (2.31)
The normal vector n is easy to calculate because the hull has a cylindrical shape. This means that n

can be written as in equation 2.32.
n =

[
nx

nz

]
=

[
cos(σ)
sin(σ)

]
(2.32)

In [18] the pressure gets integrated around the z-axis. This method works for an axis symmetrical
WEC. But, because the hull of is vertical at the sides there is no need to integrate around the z-axis.
Instead, the FK force per meter gets calculated. To account for both the waveward and leeward sides of
the WEC the formula has to be multiplied by a factor of 2. This simplification also means that the resulting
force in the surge direction on the waveward and leeward of the float cancels each other out. This means
that the resulting hydrostatic and Froude-Krylov forces only have a component in the heave direction. To
calculate this the resulting integral is shown in equation 2.33. With the integration boundaries σ1 and σ2.
This implies that there is no FK force in the surge direction. This simplification is discussed in section 2.5

FFK = −
∫∫

S

PdynamicndS ≈ 2

∫ σ2

σ1

(ρgrout sin(σ)+z(t)+rout−T+ρgζae
krout sin(σ)+z(t)+rout−T ) sin(σ)dσ

(2.33)
σ1 and σ2 are the boundaries of the integral. σ1 is the bottom of the WEC and σ2 is the wave height

wrt the centre of the WEC. this results in the following expressions for σ1 and σ2. As shown in equation
2.34 and figure 2.5.

σ1 = −π

2
, σ2 = − arcsin(

z(t) + rout − T − η

rout
) (2.34)
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2.3.3 NEMOH
The diffraction forces and radiation forces are derived based on the hydrodynamic coefficients obtained
from the BEM software NEMOH. This software calculates the first-order wave loads on offshore structures
(added mass, radiation damping and diffraction forces). To obtain these coefficients a 3D model at still
water draft is built in SALOME. The length of the model is 3m, the radius is 0.4m and the still water draft
is 0.491m. A mesh is made from the wet hull surface. For the meshing the NETGEN 2D hypothesis and the
NETGEN 1D-2D algorithm were used [30] [31]. This mesh is used as input for NEMOH. These algorithms
discretise the hull by a specified maximum and miminum size for the mesh cells. Secondly, the shape of
the cells are specified. See figures 2.6 and 2.7.
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Figure 2.6: 3D model of the WEC at still water draft in SALOME

Figure 2.7: Mesh of the SALOME model

NEMOH calculates the hydrodynamic coefficients for all 6 degrees of freedom, but for this thesis only
surge, heave and pitch are coincided. The hydrodynamic coefficients are calculated for 81 different wave
frequencies from 0.1 rad

s to 4.0 rad
s . Which corresponds to a wave period of 62.83sec to 1.57sec. The only

wave direction that is considered are waves propagating along the positive x-axis (0 deg).

Diffraction forces

The results of the BEM software NEMOH are the diffraction forces coefficients and phase shifts for surge,
heave and pitch at different frequencies in the form shown in equation 2.35. ζa is the wave amplitude,
Cdiff,1,2,3 are the diffraction force coefficients for surge, heave and pitch respectively and ϵ1,2,3 are the
phase shifts for surge, heave and pitch respectively. The diffraction force can be calculated using equation
2.35. diffraction force coefficients and phase shifts can be obtained by interpolating the values from figure
2.8
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Fdiff,123 = ζaCdiff,1,2,3 cos(kx(t)− ωt+ ϵ1,2,3) (2.35)
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Figure 2.8: Diffraction force coefficients and phase shifts

2.3.4 State-space approximation of the radiation force
As discussed in section 2.2.4, the radiation forces are calculated by solving the Cummins equation (equa-
tion 2.36) at each time step [21]. It takes a lot of computation time to solve this equation [23]. That
is why an alternative method is used to estimate the radiation forces in the time domain. This method
substitutes the convolution integral in equation 2.37 by a state vector x̄r to estimate the radiation force
Fr. The state-space vector gets updated each time step by its using ˙̄xr(t) in equation 2.38. See equations
2.37 and 2.38.

(M +A)ẍ(t) +

∫ t

−∞
B(t− τ)ẋ(τ)dτ + Cx(t) = X(t) (2.36)

Frad(t) =

∫ t

0

kt(t− τ)ẋ(t) ≈ C̄rx̄r(t) (2.37)

˙̄xr(t) = Ārx̄r(t) + B̄rẋ(t) (2.38)
In this approximation are Ār,1,2, B̄r,1,2 and C̄r,1,2 are m×m, m× 1 and 1×m state matrices, respec-

tively. x̄r(t) is a m× 1 state of the radiation subsystem. To obtain the coefficients used in the state space
approximation. The Matlab toolbox Marine Systems Simulator (MSS) is used. The hydrodynamic coef-
ficients of NEMOH are loaded into the MSS Matlab toolbox. The toolbox uses the radiation coefficients
(added mass and damping) and the impulse response function (IRF) to obtain a parametric approximation
of the Cummins equation. The method and toolbox used are described in [32] and [33].
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The resulting 4th order state-space approximation is shown in 2.39, 2.40, 2.41, 2.42, 2.43 and 2.44.
The subscripts 1 and 2 represent the state-space approximations in surge and heave respectively.

Ar,1 =


−4.66 −23.96 −31.61 −20.46

1 0 0 0
0 1 0 0
0 0 1 0

 (2.39)

Br,1 =
[
1 0 0 0

]′ (2.40)

Cr,1 = −104
[
0.14 0.56 0.10 0

] (2.41)

Ar,2 =


−7.71 −42.43 −100.00 −78.93

1 0 0 0
0 1 0 0
0 0 1 0

 (2.42)

Br,2 =
[
1 0 0 0

]′ (2.43)

Cr,2 = −104
[
0.28 2.50 2.14 0

] (2.44)

2.4 Model verification
To test the theoretical model some basic tests were done with the numerical model. For example: free
decay tests in surge and heave. Next, the response of the WEC under linear wave excitation is reviewed.
From each response an animation can be made. This helped visualise the results and understand the mo-
tions.

The theoretical model has different outputs. All the necessary data can be reviewed. For each time step,
the following states of the system are saved. See table 2.3.

Property Unit
Surge displacement m
Surge velocity m/s
Heave displacement m
Heave velocity m/s
Pitch angle rad
Pitch angular velocity rad/s
Angle of the pendulum rad
Angular velocity of the pendulum rad/s
All the forces N/m
All the moments Nm/m
Produced power W/m

Table 2.3: Theoretical model outputs

The dimensions used in the model are based on the dimensions used in the experimental tests executed
by Dutch Wave Power. Some of the values are per meter because the model is only in 2D. The used
parameters are shown in table 2.4. The basic model at still water level is shown in figure 2.9.
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Property Value Unit
Radius float 0.4 m
Radius reel 0.15 m
length inside pendulum 0.35 m
Mass float 172 kg/m
Mass pendulum 32 kg/m
Mass ballast weight 80 kg/m
Still water draft 0.5 m
Water depth 6 m

Table 2.4: Parameters used in the theoretical model
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Figure 2.9: Theoretical model at SWL

2.4.1 Free decay tests
The first check that was done to test the model is a free decay test. This is done to see if the model reacts
properly. The WEC is given an initial heave displacement equal to the draft and then released. Figure 2.10
shows the heave displacement over time and figure 2.11 show the resulting forces in heave. In this free
decay test, the PTO damper is set to zero to ensure that no energy gets dissipated through the PTO system.

Using figure2.10, the natural frequency of the system in heave can be estimated. The test starts with
a positive displacement of 0.49m which is equal to the draft. This means that the bottom of the float just
touches to water. The WEC is released at T=0 and moves down. What follows is an oscillating motion
around the mean position z=0. Z=0 is chosen to be the still water level. After 9.2 seconds the amplitude
of the displacement is smaller than 0.002m. Using the zero-crossing method it there be established that
the WEC oscillates 4 times over the course of 9.2 seconds. This corresponds to a natural period of 2.3
seconds. This result can be compared with a theoretical value. The undamped natural frequency can be
estimated using equation 2.45. This equation is corrected for the coupled pitch motion. Where c33 is the
stiffness coefficient in heave, a33 is the added mass in heave, J is the mass moment of inertia and Rin is
the inner radius of the WEC. c33 can be estimated using the water plane surface of the WEC A, the water
density ρ and the gravitational acceleration g. See equation 2.46. The added mass can be estimated using
equation 2.47 [27].
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ωnat ≈
√

c33

m+ a33 +
J

R2
in

(2.45)

c33 ≈ ρgA (2.46)

a33 ≈ πρR2 (2.47)
The resulting undamped natural period is 2.9 seconds. This value is higher than the the value observed

in the model. This result is expected because this theoretical value does not take damping into account.
Adding a damper value will lower the natural period.

From the dynamic results, it is clear that the model handles the free decay tests properly. From the force
results, it is clear that at around 1 second the WEC gets completely submerged. The model handles this
fine by calculating only the maximum buoyancy force possible. This is a region where the accuracy of
the model decreases, with this complete submersion multiple non-linear forces are associated that are not
captured in the model. One has to watch out that with the input parameters given to the model. This
behaviour is not occurring. Nevertheless, the model will give a resulting force. This is done because in
irregular waves this complete submersion can occur. It is desirable that even with a short period of submer-
sion the model can continue its calculations. But one has to keep in mind that if this happens the results
around this event are less accurate. For the validation with regular waves, this behaviour is avoided. More
on the results in irregular waves can be found in chapter 5.
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Figure 2.10: Free decay test: Heave displacement
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Figure 2.11: Free decay test: Resulting forces on the WEC

2.4.2 Free decay test - surge
The second test that was used to test if all the forces are modelled properly is a free decay test in surge
direction. Without waves, the model is given an initial surge displacement. The WEC must return to its
original still water position due to the ballast weight. The WEC is given an initial surge displacement of
3m. The results are shown in figure 2.12 and 2.13.

Using figure 2.12 it can be observed that the WEC makes 4 oscillations around the neutral position af-
ter 42 seconds. This corresponds with a surge natural period of 10.5 seconds. The second thing that is
noticeable, is that the surge motions don’t damp out. The amplitude of the surge motion is still 1m after
50 seconds. This is because the radiation force in surge direction is small. In real life, it is expected that
the model will find its equilibrium much quicker. Probably, because there are also forces acting on the
ballast weight. If the ballast weight moves through the water, drag forces are acting on it. These forces
will dissipate energy from the system. These forces are neglected in the theoretical model.
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Figure 2.12: Free decay test in surge: surge motion
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Figure 2.13: Free decay test in surge: Resulting forces on the WEC

2.4.3 Response of regular waves
The next step is to review the response of the theoretical model under regular wave loading. To describe
regular waves the airy wave theory is used [27]. In the results shown here, the waves have a wave height
of 1m (0.5m amplitude) and a period T of 6.5sec. By trying random values for the PTO damper value it is
found that the desired dynamics occur with a value between 20 and 50 Nm

rad/sm . The desired dynamics is
when there is no slack in the ballast line and the pendulum does not make a full rotation. The value used
in this test is 30 Nm

rad/sm . The total simulation time is 100 seconds. The resulting dynamics are shown in
figure 2.14. Figure 2.15 gives the resulting forces.
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Figure 2.14: Dynamic response of a test with H=1m and T=6.5s
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Figure 2.15: Resulting forces of a test with H=1m and T=6.5s

From the results in figure 2.14 and 2.15 it is clear that the model needs two ramp-up waves before it
reaches a steady-state response. What is also noticeable is that the surge motions never completely reach a
steady state at each cycle there are small differences. The heave displacement, pitch angle and pendulum
angle do reach a steady state. This means that these motions are not much influenced by the surge motion.

The forces acting on the WEC are shown in figure 2.15. From this figure it is clear that the buoyancy
and Froude-Krylov force in heave are the highest and thus the most important. These are also the forces
that are approximated non-linear. The forces in surge are of a smaller order. Here can be concluded that
the power is mainly generated by the heaving motion. It is noted that the FK force in surge is neglected.
This is discussed in section 2.5.

2.5 Discussion & limitations
The theoretical model is a simplification of the phenomenon in reality. This means that all the forces de-
scribed in this chapter are approximations of reality. These simplifications come with some limitations.

The model only describes the response in 2D. In the literature, this is often done for point-absorbers.
This is because a point absorber is often axis symmetric and thus this means that the directional spreading
in a wave pattern is of less influence. That is why a 2D representation is . The second reason why it is
convenient to describe the system in 2D is that the experimental scale tests were executed with unidirec-
tional waves. But the WEC of Dutch Wave Power is influenced by the directional spreading of the waves
because the width of the WEC is bigger than the length. Nevertheless, the 2D approximation is sufficient
because this thesis is focused on the effects and working principles of this WEC.

The WEC has a large change in draft. This is described in chapter 3. But this large change in draft leads to
some uncertainties in the force estimation. The hydrostatic and Froude-Krylov forces do account for this
change in draft. But the radiation and diffraction forces are based on a BEM analysis which assumes a con-
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stant draft. As shown in figure 2.15, the radiation and diffraction forces have a small influence compared
with the buoyancy and Froude-Krylov force. That is why this linearization is a sufficient approximation.

The FK force is estimated by using the pressure at the center of the WEC. Due to this method the result-
ing FK force is surge is zero, because there is no pressure difference between the waveward and leeward
sides of the WEC. The WEC is small wrt the wave length. This means that the pressure difference is small
between the waveward and leeward side of the WEC. This means that the FK force is also expected to be
small. This can be checked by using a linear FK force. The linear FK forces can be obtained from NEMOH
the same why the diffraction forces are obtained. To check if the FK force in surge has an influence on the
The resulting forces with the linear FK force in surge direction are showed in figure 2.16.
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Figure 2.16: Resulting forces, with linear FK force in surge H=1m and T=6.5s

In the top plot of figure 2.16 the resulting force components in surge direction are plotted. As shown
the FK force in surge are of the same order as the radiation and diffraction forces. The resulting forces in
heave are showed in the middle plot. The magnitude of the forces are of a whole different order. This is
why there can be concluded that the main constitution for the power production come from the heaving
motion. Nevertheless, the FK forces in surge could effect the dynamics of the WEC and inside pendulum.

The approximation of the radiation term can be improved if the 4th order of the state-space represen-
tation is increased. But this increase in order comes with a higher computation time. This is why the 4th
order state-space approximation of the radiation force is sufficient.

The force in the mooring line and the ballast weight are also up for debate. For example, the ballast
line is now modelled as a constant force pulling down, but it is a weight hanging on a line. This weight is
not only moving up and down. It also swings. This motion also induces forces which are not captured in
this model. But these motions and effects are expected to be non-linear and are expected to only have a
small influence on the dynamics of the WEC. With the motions of the WEC known the forces on the ballast
weight can be checked. The results described in figures 2.14 are used to check the forces on the ballast
weight. The ballast weight has a length of 3m and a width of 0.19m. This results in a area of 0.61m2. The
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drag coefficient on the ballast weight is estimated to be 0.5 [28]. The heaving velocity of the ballast weight
is equal to two times the heaving velocity of the WEC. From figure 2.17 the maximum heaving velocity
of the WEC is 0.45m/s. This results in a heaving velocity of the ballast weight of 0.9m/s. Using equation
2.16, the maximum drag force on the ballast weight is estimated to be 42.2 N/m. This is only at short
moments at maximum velocity. In comparison, the resulting hydrostatic force due to the buoyancy and
gravity force are 784N/m. This thesis is more focused on the working principle and the overall dynamics.
That is why the drag forces on the ballast weight are neglected. Also the wave forces acting on the ballast
weight are neglected. They are dependent of the water depth. This means that the forces are dependent
of the depth of the ballast weight. In this stage of the model it is more important to gain an understanding
of the working principle of the WEC, so it is chosen to neglect the wave forces on the ballast weight.
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Figure 2.17: Heave displacement and velocity of the WEC H=1, T=6.5s
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Chapter 3

Experimental scale tests

In this chapter are the experimental scale tests described. Section 3.1 will describe the test setup. First,
the scale model and its most important parameters will be described. Secondly, a description of the wave
flume and the test setup is given. It is explained how the tests are executed and what kind of data is
obtained from the tests. And thirdly section 3.1 will show which kind of wave characteristics are used in
the experimental tests. Section 3.2 will cover the part of the data processing. This includes the selection
of useful data and the post-processing of this data. The chapter will end with section 3.3 which includes
all the observations from the experimental tests.

3.1 Test setup

3.1.1 Scale model
The model tested by Dutch Wave Power is a 1:3 scale model. The model laying in the wave flume is shown
in figure 3.1. The model has a width of 3m and a diameter of 0.8m. The diameter of the part where the
ballast weight and the mooring line are connected is 0.3m. The total weight of the float is 515kg and the
weight of the pendulum that is connected to the shaft inside the float is 95kg. The weight of the ballast
weight corrected for the buoyancy is 240kg. Next, the generator is connected to the float. This means that
if the float pitches the generator pitches as well. The pendulum inside the float makes sure that there is a
relative velocity between the shaft and the generator. But before the shaft enters the generator, the speed
gets increased by a gearbox. This gearbox has a ratio of 11.3. The generator inside the float has a given
efficiency curve. This efficiency is shown in figure 3.2.

During the tests, multiple sensors are placed on the WEC these measure the movement of the float and the
produced power of the generator. The movement is measured by two variables this is the pitching angle
of the float and secondly the angle of the inside pendulum. During the tests, there were no wave elevation
sensors present. That is why there is no record of the actual wave height. The tests were executed prior
to this thesis, so the wave height/wavemaker settings must be taken for granted.

Lastly, the load on the generator could be varied. This load resembles a resistance in the electrical system.
Higher resistance means less coupling in the generator and a lower resistance means more coupling in the
generator. The electrical system had 3 different load options that were chosen on an educated guess. The
load options for the experimental tests are 8 and 12.
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Figure 3.1: Test setup in the wave flume

Figure 3.2: Generator efficiency curve
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3.1.2 Wave flume
The experimental tests were done in the Delta flume wave flume at Deltares in Delft. The flume has a wave
generator connected at the beginning and a wave absorber at the end of the flume. The total length of the
flume is 300m and 5m wide. The maximum water depth is 9.5m but the depth used in the experiments
is 6m. The wave generator is capable of creating both regular and irregular waves. For the experimental
tests done by Dutch Wave Power, the scale model is placed in the middle of the wave flume. See figure 3.3
for a schematic view of the experimental setup. More information on the Delta flume can be found on the
website of Deltares:
https://www.deltares.nl/en/facilities/delta-flume/

dWave direction

SWLA

Side view

Wave direction

B

Top view

Figure 3.3: Schematic side- and top view of the experimental setup

With:
• A = Wave amplitude = Wave height/2
• d = Water depth = 6m
• B = With of the flume = 5m

3.1.3 Test parameters & wave characteristics
In the wave flume, different combinations of wave conditions and generator load were tested. Not all of
the experiments turned out to be useful for this thesis. The reasons are discussed in section 3.3. In table
3.1 an overview is given of the combinations that produced clean and reliable results.

At each test, 3 outputs were measured. The pitching angle of the WEC, the angle of the pendulum and
the power output of the generator. After each test, there was a waiting period to absorb all the waves left
in the wave flume.
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Wave height [m] Wave period [s] Load on the generator [Ω]
Test 1 1 6 8
Test 2 1 6 12
Test 3 1 7 8
Test 4 1 7 12
Test 5 1 8 8
Test 6 1 8 12
Test 7 1 9 8

Table 3.1: List of experiments and parameters

3.2 Data processing

3.2.1 Correction of the raw data
The time-series data delivered by DutchWave Power is not complete. There is already some post-processing
done by Dutch Wave Power. Unfortunately, the complete time series data is not available. It is found that
there are two types of changes made to the time series results. The first one is that the data of the startup
waves is deleted. And the second change that is made to the raw data is that the pitch angle of the float
is sometimes corrected for a full rotation of 2π rad. The changes that were found in each individual test
can be found in table 3.2 and the raw data can be found in appendix D.

Time-step Changes made
Test 1 3.7 - 11.3 sec The data points between these two time-steps are missing
Test 1 24.7 sec The data points of the ramp-up waves are missing.

And at 24.7 sec the pitch angle is manually put to 0 rad
Test 2 67.2 sec From this time step on, the pitch angle is manually put to 0 rad
Test 3 49.5 sec From this time step on, the pitch angle is manually put to 0 rad
Test 4 38.9 - 47.0 sec The data points between these two time-steps are missing
Test 4 75.3 sec From this time step on, the pitch angle is manually put to 0 rad
Test 5 7.1 - 10.2 sec The data points are wrong edited and corrected
Test 5 16.6 sec From this time step on, the pitch angle is manually put to 0 rad
Test 6 4.4 - 11.4 sec The data points between these two time-steps are missing
Test 6 20.6 sec From this time step on, the pitch angle is manually put to 0 rad
Test 7 18.3 - 26.6 sec The data points between these two time-steps are missing
Test 7 47.3 sec From this time step on, the pitch angle is manually put to 0 rad

Table 3.2: Changes made in the raw data

3.2.2 Clean wave selection
As explained in the section 3.1 there are three outputs in each test. These are the pitch angle of the
float, the angle of the pendulum and the electrical power output. To gain reliable test results that can be
compared with the theoretical model, undisturbed test results are needed. The first few waves are bigger
due to the ramp-up waves of the wavemaker. It is observed that the wavemaker needs two waves before
it produces a steady wave height. The second reason for the limited time window is the reflected waves
from the end of the wave flume. There is a wave absorber to absorb the waves. This absorber does not
absorb all the waves. This means that the reflected waves are observed in the test results. In between the
start-up wave and the reflected waves the test produces clean waves that can be analyzed. To select these
waves the maximum pitch angle of the float is used. It is observed that after the ramp-up waves the wave
flume produces 5 clean waves. These 5 waves are then used to validate the theoretical model. See figure
3.4 for the whole time series results of one test. The 5 waves selected as clean waves are indicated with the
black lines in the figure. The figure shows the results of test 4. See table 3.1. The top diagram shows the
angle of the float, the middle diagram shows the angle of the pendulum and the bottom diagram shows
the produced power. In the following sections, the method for how to post-process the experimental data
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is shown on the basis of test 4. The other tests are processed the same way. The unprocessed results of
the other tests can be found in appendix D.
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Figure 3.4: Test 4: Time series results and selected waves

After the 5 waves are selected they are corrected for the mean. This is because the ramp-up wave gives
the WEC an initial displacement in the positive x-direction. This is also visible in the test results. In figure
3.4 it is clear that the float does not oscillate around 0 but somewhere around 3 rad. The reason for this is
that the float makes an initial sway motion and due to the pitch angle is therefore corrected for the mean.
It also makes it easier to compare the experimental results with the theoretical model in chapter 4. The
results of the 5 selected clean waves corrected for the mean are shown in figure 3.5.
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Figure 3.5: Test 4: 5 Clean waves corrected for the mean

3.2.3 Angular velocities
In the experimental tests, only the angles are measured. But it is also interesting to look at the angular
velocities. This is because the electrical power is produced by the relative velocity of the generator and the
shaft. These velocities are not directly measured, but they can be obtained from the measured positions.
To obtain the velocities the Matlab function gradient is used. This function returns a numerical gradient of
a vector. This vector must be equally spaced. This is not the case with the test results from the experimental
tests. In other words. The time steps of the measurements are not all equal. The maximum time step used
in the experiments is 0.096 sec, the minimum time step is 0.021 sec and a mean of 0.040 sec. To solve
this the output signals of the pitch angle, the pendulum angle and the power output are re-sampled. This
function in Matlab generates a new output signal that describes the same signal but with a different time
vector. The new time vector that is used is the mean of the original time vector: 0.040 sec. In figure 3.6
the original signal and the re-sampled signal are compared with each other.
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Figure 3.6: Test 4: Compare the original signal with the re-sampled signal

Now that the signals have a uniform spaced time vector the function gradient can be used. This func-
tion calculates the gradient between two points with respect to a time vector. The output corresponds
to δF

δt . Where F is the re-sampled signal and dt is 0.04 seconds. The result is shown in figure 3.7. Now
there is clearly some noise in the signal. To clean the signal and gain a smoother line for the velocities the
signal is filtered. The Savizky-Golay filtering with a smoothness of 11 is used. The corresponding Matlab
function is sgolayfilt. The filtered function is shown in figure 3.8.
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Figure 3.7: Test 4: Velocities computed with the function gradient
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Figure 3.8: Test 4: Filtered velocities

The method that is used to obtain the velocities is numerical differentiation. This is an unreliable
method if the time-steps are too small. To validate this method the filtered velocities are integrated to
regain the positions. This signal is compared with the original signal in figure 3.9. As shown the signals
are all most overlapping with a maximum MSE of 0.0035 for all the tests.
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Figure 3.9: Integrated velocity signal compared with the original positions

3.3 Observations during the tests
During the experimental scale tests, it became clear that some of the tested wave conditions produced
unwanted behaviour in the model. In some of the tests, this unwanted behaviour resulted in unusable
results. There are three mean reasons why the test results are unusable. In most tests, these effects
occurred simultaneously.
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3.3.1 Overtopping
The first reason is overtopping. If the change in water level is faster than the speed in heave direction or if
the motion of the WEC is out of phase with the waves, then there was a chance of overtopping. This could
cause moments of complete submersion of the WEC. See figures 3.10 and 3.11. This complete submersion
causes high changes in the forces and thus the accelerations. These effects are not well captured in the
theoretical model and that makes the tests unusable.

Figure 3.10: Unwanted behaviour during the experimental scale tests: Complete submersion 1

Figure 3.11: Unwanted behaviour during the experimental scale tests: Complete submersion 2
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3.3.2 Slack in the ballast line
The second reason why some of the test results are unusable is because of slack in the ballast line. This
slack in the ballast line is caused by the drag acting on the ballast weight. If the heave velocity of the WEC
became too high the drag on the ballast weight also became high and this cause a lower downward speed
of the ballast weight than that of the WEC. This caused slack in the ballast line. And secondly, if the line
come under tension again, the WEC showed some shocking motions. These extreme changes in the forces
are not well captured by the theoretical model and that makes these test results unusable.

3.3.3 Full rotation of the pendulum
The third unwanted behaviour of the WEC is a full rotation of the pendulum inside the WEC. This is
actually a safety measure to prevent high loads on the generator. But the moments when they happen
are not well estimated by the theoretical model. This is because the behaviour and forces acting on the
generator are unknown and thus not well approximated. An explanation for this is given in chapter 2.
Here has to be stated that although the motions of the pendulum and the produced power are not well
estimated for these experiments, a good approximation can be made for the pitch motion. This is because
the dynamics of the pendulum do not influence the overall behaviour of the WEC by much. This is better
discussed in chapter 4.

3.3.4 Wave reflection
The last unwanted behaviour in the test results is wave reflection from the end of the wave flume. As
discussed earlier in this chapter. The wave absorber at the end of the wave flume does not absorb all the
waves. The reflected waves influence the dynamics of the WEC after a certain period of time. This is solved
to look only at the period where the WEC is not influenced by the reflected waves. The method on how to
select these clean waves is also described earlier in this chapter.

3.4 Discussion
As discussed in this chapter there are some changes made in the time series data supplied by Dutch Wave
Power. There are some irregularities due to the deletion of the ramp-up data. And secondly, in all the tests
the data of the pitch angle is changed to 0 rad. Because the missing data is in the ramp-up phase the tests
can still be used for this thesis. For each test, there is still enough unedited data to select a section of clean
waves. Secondly, because of the initial sway displacement, the pitch angle is corrected for the mean. This
is why the motions can still be compared to the estimations of the theoretical model.

There is also some uncertainty in the post-processing of the data. Mainly because numerically dif-
ferentiation is not always reliable. Nevertheless, it is shown that in this case it can be used because the
differentiated and filtered signal still shows the same results when integrated again.

Lastly, a lot of test results are not useful for this thesis. This is because of some of the unwanted
behaviour like overtopping and slack in the lines. Despite the fact that these tests are not used in this thesis
these tests can be used to find the limitations of the theoretical model discussed in 2. The limitations of
the theoretical model are discussed in chapter 4.
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Chapter 4

Validation of the model

4.1 Comparison of the numerical model and the experimental tests
The comparison between the numerical model and the experimental tests is made based on the dynam-
ics. This will validate the dynamic response of the numerical model. In the first part of this chapter the
numerical model will be tuned to match the experimental tests. This will give certain settings for the PTO
system. Secondly, in section 4.5 the settings are tuned to find the maximum power output. In the numer-
ical model, the PTO system is based on a linear damper. In section 4.4 the choice for this linear damper is
compared with the behaviour of the generator used in the experiments.

4.1.1 Input parameters for the numerical model
The results from the numerical model are compared with the results from the experiment. The only un-
defined force component in the numerical model is the PTO-force. This is because the right value of
the PTO-damper is unknown. Figure 5.9 shows the different responses of the WEC for a wave of 1m
wave height and a period of 7sec. The blue line is the response of the WEC with a PTO-damper value of
20 Nm

(rad/s)m , the red line with a value of 50 Nm
(rad/s)m and the yellow line 80 Nm

(rad/s)m . At 20 Nm
(rad/s)m there is

only a small motion in the pendulum this is desired but as explained in chapter 2 the produced power is
a function of the linear damper value. This means that a higher value is desired. The value of 80 Nm

(rad/s)m

is too high because the inside pendulum will make a full rotation. This is unwanted behaviour and nega-
tively influences the power production. This means that the damper value can’t be too high because the
pendulum will move together with the pitch motion and there is no relative velocity and thus no power
production.

As shown in figure 5.9, the PTO damper value has a significant influence on the dynamics of the pen-
dulum. In the dynamics of the WEC itself (surge, heave and pitch) there is only a significant influence in
surge motion. But the surge motions are overestimated by the numerical model as will be explained in
section 4.2.3. This means that the surge motions are not a reliable output to compare the dynamics.
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Figure 4.1: Compare the dynamic response for different PTO-damper values

4.1.2 Find the PTO-damper value to match the experiments
To match the dynamics of the numerical model and the experiments there are only two outputs that
can be compared. The pitching angle and the pendulum angle. These are the only dynamic outputs of
the experiments. The value that needs to be tuned to match the dynamics is the PTO-damper value.
Because the pitching angle is not much influenced by the PTO-damper value, the desired PTO-damper
value is found by comparing the dynamics of the pendulum. To find the optimal PTO-damper value a
searching algorithm is used to find the PTO-damper value that has the lowest difference in the pendulum
angle amplitude. The resulting comparison is shown in figure 4.2. This same method is used for all the
experiments. The results can be found in appendix E. The numerical model does estimate the dynamics
of the experiments well. The error in the pitching angle is up to 14% and the error in the pendulum angle
is up to 1.4% wrt the experiments. The comparison, the used damping values and errors for each test can
be found in table 4.1.
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Figure 4.2: Comparison between the numerical model and the experiments

ζa [m] T [s] Gen load [Ohm] BPTO [ Nm
(rad/s)m] Pitch amp error [%] Pen angle amp error [%]

Test 1 0.5 6 8 42 14.0 0.4
Test 2 0.5 6 12 25 12.9 0.1
Test 3 0.5 7 8 28 10.3 1.4
Test 4 0.5 7 12 26 12.0 1.3
Test 5 0.5 8 8 34 6.8 0.6
Test 6 0.5 8 12 22 6.5 0.6
Test 7 0.5 9 8 39 8.4 0.4

Table 4.1: Errors in the dynamics with the tuned damper

4.2 Compare dynamics

4.2.1 Pitch angle
The pitch angle of the WEC is well approximated for all the different experiments. As shown in appendix
E in the top left plot one can see that for all the figures the results of the pitch angle match the results
within 14% accuracy. There has to be noted that in all the tests the minimum angles are underestimated.
This is the moment where the float gets lifted out of the water at the top of a wave crest. This difference
is properly because of the simplification in the ballast force. The difference is also visible if the velocities
are compared, see figure 4.3. Here one can see that the minimum angular velocities of the experiments
are lower than those of the numerical model. In the experiment, the ballast weight has some momentum.
Because of this momentum, it is expected that the force in the ballast line at the wave crest is lower than
estimated by the model. This could explain why the float angle gets underestimated. There has to be
noted that there is no data to verify this.
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Figure 4.3: Comparison between numerical model and experiments H=1m, P=7s

4.2.2 Pendulum angle
The angle of the pendulum is influenced by the motions of the WEC. The amount of coupling between
the WEC and the pendulum is determined by the load on the generator. A lower load in the generator
means that there is a higher torque inside the generator, this means more coupling between the pitch
motion and the pendulum angle. While a higher load on the generator means that there is less torque
acting on the pendulum and also less coupling. This effect is simulated in the numerical model by using a
linear damper. A higher value for this damper results in more coupling between the pitch motion and the
pendulum angle, and a lower value results in a lower coupling.

4.2.3 Surge motion
The surge motion is the horizontal motion of the WEC parallel to the wave direction. Although the surge
motion is not measured in the experimental tests there are videos made of the experimental tests that give
an indication of the surge motion. And for the numerical model, the surge motions can be easily obtained.

In the experiments, it is clear that WEC gains a translation into the positive x-axis and oscillates around
this point. This can also be concluded from the raw data of the experimental tests. In appendix D it
is shown that for all the tests the pitch motion does not oscillate around zero rad, but around an angle
smaller than 0. This indicates that the WEC got a translation into the positive x-axes. This translation is
not found in the numerical model. This is futher discussed in section 4.7.

Secondly, from the videos, the amplitude of the surge motions can be roughly estimated. These are not
scientific but, they can give an indication. In figures 4.4, 4.5, 4.6 and 4.7 it is indicated how the surge mo-
tions of the experimental tests are obtained. The videos are watched and the locations in the wave flume
can be compared due to the indications on the wall. It is known that the diameter of the WEC is 0.8m.
This means that the amplitude of the motions can be estimated. The amplitudes of the surge motions
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obtained from the videos are between the 0.5m and the 1.0m, see table 4.2. The amplitudes estimated by
the numerical model can be easily obtained. The amplitude of the surge motions obtained from the nu-
merical model lay between the 1.1m and 2.0m. Although there is some uncertainty in the values from the
experiments because they are obtained from watching videos, it is clear that force balance in horizontal
direction is off.

One of the reasons for the underestimation of the surge motion amplitude could be the ballast weight.
A force is needed to pull the ballast weight through the water. The numerical model does not account for
the forces on the ballast weight as it is approximated by a constant downwards pull. Despite the overesti-
mation, it is clear that the pitch and pendulum dynamics are not so much influenced by the surge motions.
As explained they are well estimated by the numerical model. And the pitch and pendulum dynamics are
the ones that generate the power.

Figure 4.4: Test 1: Minimum surge Figure 4.5: Test 7: Minimum surge

Figure 4.6: Test 1: Maximum surge Figure 4.7: Test 7: Maximum surge

surge amplitude experiments [m] surge amplitude numerical model [m]
Test 1 ∼ 0.5 1.1
Test 2 ∼ 0.5 1.1
Test 3 ∼ 0.6 1.3
Test 4 ∼ 0.6 1.3
Test 5 ∼ 0.8 1.6
Test 6 ∼ 0.8 1.6
Test 7 ∼ 1.0 2.0

Table 4.2: Observed surge motions
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4.3 Compare Produced Power

4.4 Validation of the ideal damper as a PTO-system
The numerical model does not only estimate the dynamics, it also estimates the produced power. In the
bottom left plot of figure 4.2 is the produced power over time displayed and in the bottom right plot is the
relative velocity over time. See appendix E for the other tests. Even though the dynamics are matched the
experiments show a higher mean power output than the numerical model. What is interesting to see is
that the experiments have clear peaks in the produced power. It is even noticeable that every other peak
is bigger than the other. This means that the WEC reaches a higher speed and produces more power with
the downward motion. This behaviour is also visible in the numerical results and becomes more visible in
the tests with a lower wave period.

In wave energy, it is common to compare the produced power on the basis of the mean produced power
per wave cycle. The mean produced powers per wave cycle of the experiments and the numerical model
are shown in table 4.3. The numerical model underestimates the produced power up to 47%.

Mean power output experiments [W] Mean power output numerical model [W] Difference [%]
Test 1 229 120 47.6
Test 2 215 142 34.0
Test 3 183 123 32.8
Test 4 154 108 29.9
Test 5 141 107 24.1
Test 6 112 85 24.1
Test 7 125 90 28.0

Table 4.3: Comparison between the mean power and maximum power of the numerical model

It is assumed that the torque and the produced power of the generator are a function of the relative
angular velocity between the float and the pendulum. With an ideal damper, these relations are shown in
equations 2.24 and 2.25. The exact relation in the generator is unknown, but it can be expected that both
the torque and the generated power are related to this relative velocity. This relation of power and torque
with the relative angular velocities is plotted in figure 4.8 and 4.9. In blue the results of the experiments
and in orange the results of the numerical model. In figure 4.9 one can clearly see the behaviour of the
linear damper. Also it is clear that the behaviour of the generator is not linear. The points that show the
torque inside the generator for the experiments are not measured, but they are obtained by dividing the
power by the relative velocity. This gives some strange behaviour around a relative velocity of 0. The
result of a small power divided by something close to 0 m/s will give something large. This explains the
strange behaviour of the experiments around a relative velocity of 0 m/s.

In figure 4.8 it is clear why there is an underestimation of the mean power. The numerical model un-
derestimates the produced power for each relative velocity. The same is found in figure 4.9, the torque
inside the generator is also underestimated. If a higher torque is implemented than the numerical model
losses accuracy in the dynamics. This means that the area between the experiments and the numerical
model in figure 4.9 are torque losses, also see equation 4.1 where Msystem is the torque that lifts the
pendulum, Mlosses are the torque losses and Mgenerator, is the torque inside the generator acting on the
shaft. These torque losses are not captured by the numerical model. The numerical model gives the same
dynamic output, but with a lower torque on the shaft. This explains the lower produced power output of
the numerical model. This means that the linear damper for the PTO can be used to estimate the dynamics.
But an estimation for the torque losses needs to be included in the produced power is estimated. Never-
theless, the model can still be used to estimate the dynamics of the WEC and if changes in parameters
have a positive or negative influence on the produced power. The absolute values can underestimate the
produced power up to 47%.
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Figure 4.8: Relative velocity plotted against mechanical power H=1m T=7sec
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Figure 4.9: Relative velocity plotted against torque inside the generator H=1m T=7sec

Msystem +Mlosses = Mgenerator (4.1)

4.5 Compare generator settings with the numerical maximum
It is interesting to look at the settings of the numerical model that match the experiments, but the settings
of the experiments were based on an educated guess and were executed prior to this thesis. This means
that the settings used in the experiments are not the settings where the highest power is produced. As
explained, the absolute values of the produced power are not so accurate, but maximizing the produced
power of the numerical model gives insight into the desired dynamics at which optimal power production
occurs. Furthermore, it gives an indication of how far the chosen settings of Dutch Wave Power in their
experiments are from the ideal settings.

Figure 4.10 shows the mean electrical power produced for each cycle for different PTO-damper values.
Each line represents a different sea-state. In this figure the regions tested by Dutch Wave Power are indi-
cated. These are the 8 and 12 Ohm generator settings. There is not one specific damper value found that
represents the different generator loads. But it is found that for each sea-state . Furthermore, it becomes
clear that each regular sea-state has its own ideal PTO-damper value. The ideal PTO-damper values are
given in table 4.4. Secondly, figure 4.11 shows the efficiency of the WEC. The efficiencies correspond to
the points in figure 4.10. The efficiency is calculated by dividing the produced electrical power by the
amount of power stored in the waves. The equation for power in waves is given in equations 4.2, 4.3 and
4.4. Deep water is assumed. The efficiency η is calculated by dividing the mean produced power by the
power in the waves, see equation 4.5.

Pwave = Ewavecg (4.2)

Ewave =
1

2
ρgζ2a (4.3)
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cg =
1

2

√
g

k
(4.4)

η =
Pmean

Pwave
(4.5)

The generator setting of 8 Ohm is near the optimal setting for the sea-state with a wave height of 1m
and a period between 6 and 7 seconds. For higher periods a lower generator setting is desired. While
for a higher period the load on the generator can be higher. From figure 4.10 it is clear that the choice
of the PTO-damper value is specific for each sea-state. But, close to the optimum, the choice is not that
sensitive. The second thing that is noticeable is that after a certain period there is a viable drop in the
mean power production. This is because from that point on there is so much coupling between the float
and the pendulum that the pendulum makes a full rotation. This indicates that this should be prevented.
Because it significantly lowers the power production.
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Figure 4.10: Mean power compared to different PTO-damper values

45



15 20 25 30 35 40 45 50 55 60

PTO damper value [Nm/(rad/s)/m]

0.005

0.01

0.015

0.02

0.025

0.03
E

ffi
ci

en
cy

 
 [-

]
H=1 T=6sec
H=1 T=7sec
H=1 T=8sec
H=1 T=9sec

Figure 4.11: Efficiency compared to different PTO-damper values

Optimal theoretical PTO-damper value [ Nm
radsm]

H=1m, T=6sec 35
H=1m, T=7sec 40
H=1m, T=8sec 45
H=1m, T=9sec 42

Table 4.4: The optimal PTO-damper values

4.6 Improving the WEC performance

4.6.1 Pendulum Weight
One of the limitations in the power production of the WEC is the amount of torque that is acting on the
shaft before the pendulummakes a full rotation. This negatively influences power production, as explained
earlier. The amount of torque needed let the pendulum make a full rotation can be increased by making
the weight of the pendulum heavier.

To investigate the influence of a move heavy pendulum. Mass is shifted from the WEC to the pendulum.
This is done to keep the same overall mass and draft. This also means that the hydrodynamic coefficients
are the same. Figure 4.12 shows the mean produced power of a sea-state with 1mwave height and a period
of 7 sec at different PTO damper values. The different lines show the amount of mass that is shifted from
the WEC to the pendulum mass. The original mass of the pendulum is 31.7 kg/m. This mass is increased
up to 46.7 kg/m. For a higher mass, a higher PTO damper value gives the optimal power production. The
mean produced power is increased regardless of the PTO damper value.

Figure 4.13 shows the difference in dynamics and produced power for the original WEC and the WEC
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with a shifted weight of 15 kg in a sea-state of 1m wave height and 7sec period. There are no significant
changes in the WEC dynamics, but there is an increase in mean produced power of more than 35%. In-
creasing the weight allows for a higher torque inside the generator. Which generates a higher power under
the same dynamics. Here can be concluded that a heavier pendulum will increase the mean power output
and positively influence the performance of the WEC.
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Figure 4.12: Mean produced power for different pendulum weights with a sea-state of 1m and 7sec
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Figure 4.13: Dynamic response for different pendulum weights

4.6.2 Winding diameter
It is known that the power is generated due to the relative velocity between the pendulum and the WEC.
To increase the power production it is also interesting what the effect of the diameter where the mooring
and ballast lines are connected. The variation in the diameter gives higher or lower rotational speeds.
The mean produced power for different diameters at different PTO damper values is shown in figure 4.14.
These are the results for a sea-state of 1m wave height and a period of 7sec. This is expected, because with
a smaller rin the WEC needs to rotate faster for the same heaving motions. This is because these motions
are coupled. For the sea-state shown in figure 4.14 up to 23% if the inner radius is decreased by 2cm. But
the tuning of the PTO system becomes more important. The point where there is too much coupling and
the pendulum makes a full rotation is more sensitive with a smaller diameter.
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Figure 4.14: Mean produced powers for different rin against different PTO damper values

In figure 4.15 the comparison in dynamics is made for two different rin, one being 0.13m and the
original radius of 0.15m. There are no significant differences in the heave motion and the pendulum
angles. The pitching angles are increased by 16% and the mean produced power is increased by 23% for
this sea-state. At the beginning of the simulations gives some unwanted behaviour. The pendulum makes
a full rotation because of the start-up phase. From these results can be concluded that a decrease in rin
has a positive influence on the mean produced power.
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Figure 4.15: Dynamics of the WEC for different PTO damper values

4.7 Discussion and conclusion
There are some small differences in the heaving motion of the experiments and the numerical model. But
there is a factor 2 difference in surge motion. If the PTO-damper is tuned the pitch dynamics of the WEC
are estimated within 15% and the dynamics of the inside pendulum within 1.5%. One of the shortcomings
of the numerical model is that the FK forces in surge are neglected. And secondly, the simplification of bal-
last weight as a constant force. The ballast weight moves through the water and influences the dynamics
of the WEC itself. The forces acting on the ballast weight are neglected in the numerical model. This is
why resulting surgemotions will have approximately half the amplitude estimated by the numerical model.

In the experiments an initial surge transition was observed. This so called drift is not captured by the
numerical model. To implement this one would need to compute the second order wave drift forces.
There is chosen to not include the drift forces as this is not the focus of the thesis.

Next, the estimation of the PTO system as a linear damper also brings some uncertainties. Especially
the dynamics of the pendulum and the produced power. Due to torque losses is the torque in the genera-
tor higher than in the numerical model. This higher torque also means higher power. If this same torque is
modelled in the numerical model then this will mean that there is a too large coupling between the float
and the pendulum. A too-large coupling between the float and the pendulum results in the pendulum
making a full rotation. This is unwanted behaviour and will negatively influence the produced power. The
numerical model already predicts a full rotation by torques registered in the experiments. This indicates
the presence of torque losses. The ideal PTO-settings show the ideal torque on the shaft. This means that
the torque in the generator will be higher than the model predicts. And with this higher torque also a
higher produced power. This results in large uncertainties in the absolute values of the produced power of
the numerical model. Nevertheless, the model can still be used to investigate the ideal and desired dynam-
ics and to check if changes in parameters have a positive or negative influence on themean produced power.
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For example, one of the limitations in power production is the maximum torque on the shaft before the
pendulum makes a full rotation. If the weight of the pendulum is increased, the mean produced power is
also increased. Secondly, a decrease in rin also gives a higher produced power. This gives an increase in
pitching speed. There has to be noted that with this decrease in rin the tuning of the PTO system becomes
more sensitive.
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Chapter 5

Irregular wave model prediction

An irregular sea-state is described as a superposition of regular wave components. This assumption gives
the possibility to research the hydrodynamic response of the WEC in irregular waves. Secondly, the Froude
scaling laws give the possibility to test a WEC with different scaled dimensions. This is done by scaling
the waves down. This has as advantage that the hydrodynamic properties of the WEC in the numerical
model don’t have to be changed. The response of a WEC that is twice the size of the WEC tested in the
wave flume can be derived due to the Froude scaling laws. This is done for a full range of wave height and
period combinations to construct a power matrix.

5.1 Irregular waves

5.1.1 Wave spectrum
In nature, a regular sea-state does not occur. The waves present in the real world are presented by an irreg-
ular sea-state. Also referred to as a random sea. An irregular sea-state can be composed as a summation
of sinusoidal regular waves, see equation 5.1 and figure 5.1 [34]. The number of wave components (n),
also called partial waves, that need to coincide depends on the total simulation time. This is to prevent the
sea-state from repeating itself. The number of partial waves can be calculated using equation 5.2. Each
partial wave has its own wave frequency. Equation 5.2 is used to calculate the maximum step size for the
wave frequency.

Figure 5.1: Irregular waves from the sum of regular waves

η(x, t) =

n∑
i=1

ζicos(kix− ωit+ ϵi) (5.1)

Tsimulation =
2π

∆ω
and ∆f =

∆ω

2π
(5.2)
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The parameters for the partial waves can be obtained from a wave spectrum Sζ(ωn). This wave spec-
trum shows how the energy in the waves is divided. From this wave spectrum, the wave amplitudes of the
partial waves can be obtained see equation 5.3 and figure 5.2 [27].

Sζ(ωn)∆ω =

ωn+∆ω∑
ωn

1/2ζ2an
(ω) (5.3)

Figure 5.2: Wave spectrum

5.1.2 JONSWAP spectrum
The irregular sea-states used in this thesis are based on the JONSWAP spectrum. This is short for the Joint
North Sea Wave Program. A JONSWAP spectrum is used to describe a sea-state that is not fully developed.
A JONSWAP spectrum can be constructed using equation 5.4 [27] [34] [35]. An example of a JONSWAP
spectrum with a significant wave height of 1m and a peak period of 5 sec is given in figure 5.3.

S(ω) =
αg2

ω5
exp(−5

4
(
ωp

ω
)4)γ

exp(− (ω−omegap)2

2σ2ω2
p

) (5.4)

α = 0.076(
U2

10

Fg
)0.22

ωp = 22( g2

U10F
)1/3

γ = 3.3

σ =

{
0.07ω ≤ ωp

0.09ω > ωp
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Figure 5.3: Example of a JONSWAP spectrum

5.2 Adaptation of the model for irregular waves
If the theoretical model wants to estimate the response of irregular waves. Some improvements need to
make. There are 3 parts of the model that need to be improved to adapt the model for irregular waves.
This is the wave input, the Froude-Krylov forces and the diffraction forces.

5.2.1 Wave input and ramp-up time
As described in the previous section, an irregular sea-state can be described as a summation of multiple
regular waves. Each component has its own amplitude ζi, wave frequency ωi and phase shift ηi. The wave
parameters are estimated based on a JONSWAP spectrum with as inputs the significant wave height Hs

and the peak period Tp. The amount of wave parameters N is dependent on the total simulation time.
The resulting wave elevation is now described is equation 5.1.

Because the wave height of an irregular sea is shifted by a random phase shift, it is not possible to know
the wave elevation at t = 0. To ensure a smooth start-up phase of the model a ramp function is used. This
ramp function gradually increases the wave elevation and forces. The ramp-up time is 20 seconds.

5.2.2 Froude-Krylov force
The Froude-Krylov force is adapted for the theoretical model using the same superposition principle as
for the wave components. The pressure contribution of each wave component gets integrated over the
wet surface of the WEC. The Froude-Krylov force is the summation of all the different wave components.
See equation 5.5 and 5.6. The integral for each wave component is simplified and solved as described in
section 2.3.2.
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FFK =

N∑
i=1

∫∫
S

Pdyn,indS (5.5)

Pdyn,i = ρgζi cos(kix(t)− ωit+ ηi)e
kiz (5.6)

5.2.3 Diffraction force
The diffraction forces can also be adapted by using the superposition principle. Each wave component
has its own period. From this period a force coefficient can be obtained from figure 2.8. For each wave
component the diffraction force is calculated using the method used in section 2.2.3 The total diffraction
force is now the summation of the diffraction force components. See equation 5.7.

FDiff =

N∑
i=1

ζiCdiff,123,i cos(kix(t)− ωit+ ηi + ϵ123,i) (5.7)

5.2.4 Results
The resulting outputs of the model to irregular wave loading are shown in figure 5.4 and 5.5. In this spe-
cific test the significant wave height Hs is 1m and the peak period Tp is 6.5 seconds. The total simulation
time is 100 seconds and that corresponds to 63 wave components N .

From figure 5.4 it is clear that after the changes are made the model also handles irregular waves. Here
has to be noted that sometimes complete submersion occurs. This happens only at big wave components
like the one around 19 seconds and 40 seconds. This means that around these moments the output is
less accurate and non-linear forces are expected. Nevertheless, even in higher waves, the model gives an
estimation of the dynamics. See 5.6 and 5.7
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Figure 5.4: Irregular waves: Heave motion and Wave elevation Hs = 1m Tp = 6.5sec
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Figure 5.5: Irregular waves: model output Hs = 1m Tp = 6.5sec
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Figure 5.6: Irregular waves: Heave motion and Wave elevation Hs = 2m Tp = 8.5sec
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Figure 5.7: Irregular waves: model output Hs = 2m Tp = 8.5sec

5.3 Optimizing the PTO damper for irregular waves
In regular waves, the model reaches a steady-state. For this steady-state, the PTO-damper can be opti-
mized. In irregular waves it is harder to find the ideal PTO-damper value. Irregular waves are random,
and if the simulation time is too short the produced power can be biased. To find the ideal PTO-damper
value for a wave-height/period combination. Multiple simulations of 10 times the peak period were simu-
lated. Each run is based on the same spectrum, but the phase shifts of the wave components are random
each time. This is done for 5 different PTO damper values. Figure 5.8 shows the mean produced power of
irregular waves based on the PTO setting and compares them with the ideal PTO-damper value for regular
waves. This is done for 3 different sea-states. The blue lines are the resulting mean powers for regular
waves and the box plots show the results of 10 simulations of each 10 times the peak period. For each new
simulations new phase shifts are used.

There are a few things that are noticeable from these figures. The first thing is that the mean power
of the irregular waves is lower than that of the regular sea-states. That is logical because the power stored
in an irregular sea is spread out in a range of frequencies. While the power in a regular sea-state is stored
in one frequency. This means that the PTO-damper can be easily tuned to capture that power. This is not
the case with irregular waves. The second thing that is noticeable is that the curve of the regular waves
starts smooth and dips after a certain point. This is the point where the moment on the pendulum be-
comes too large and the pendulum starts making full rotations. This makes the behaviour of the pendulum
hard to estimate and negatively influences the produced power. Lastly, the optimal PTO-damper value for
irregular waves has a different, lower, value than that for the regular wave.
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Figure 5.8: Mean power for different PTO-damper values for regular and irregular waves

To better understand the effect of a high or low PTO-value on the WEC, one wave pattern is created
based on a sea-state of Hs = 1m and Tp = 6.5sec. The model is run to generates the response of the WEC
for 2 different PTO-damper values, 5 and 15 Nm

(rad/s)m . From the first it is known that it is under the optimal
setting, and from the second it is known that it is close to the optimal. The results are given in figure 5.9.
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Figure 5.9: Compare two PTO settings

In the top plot of figure 5.9 is the wave elevation η shown together with the heave for both damper
values. As expected, there is not much difference in heave motion. Just as with regular waves. The heave
motion is not much affected by the damper value. In the middle plot is the angle of the pendulum plotted.
And in the bottom plot, the produced power. If the angle of the pendulum becomes larger or smaller than
2pi, it means that the pendulum made a full rotation. If we compare the power output and the angle of
the pendulum it becomes clear that it is not a problem if the pendulum makes a full rotation with a high
wave. There is also a spike in the produced power.

5.4 1:2 Scale model predictions

5.4.1 Froude scaling
Now that the hydrodynamic model is ready, it can be used to estimate the performance of a WEC with an-
other scale. To obtain the results, the Froude scaling laws are used, see table 5.1 for the scaling laws. [27].

In the model, all the dimensions are scaled with the factors below. For example if one is interested in
the heave motions of the WEC with a scale factor of λ = 2 and λ = 3. The wave height and length are
scaled with a factor λ. The other parameters are kept equal. Then the response of the theoretical model
also has to be scaled. For example, the heave output has to be scaled up with the factor λ, but also the
power output has to be scaled but with a factor of λ3.5.
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Quantity Scaling
Wave height and length λ
Wave period λ.5

Wave frequency λ−.5

Linear displacement λ
Angular displacement 1
Linear velocity λ.5

Angular velocity λ−.5

Linear acceleration 1
Angular acceleration λ−1

Mass λ3

Force λ3

Torque λ4

Power λ3.5

Linear damping λ2.5

Angular damping λ4.5

Table 5.1: Froude Scaling Laws

5.4.2 Power matrix
To gain an idea of the performance of the WEC a power matrix is constructed. A power matrix shows the
expected generated mean power per meter width of the device in kW/m for an irregular sea-state with
a significant wave height Hs and a peak period Tp. The absolute values in the power matrix have some
uncertainties because of the uncertainties in the theoretical model. But as explained the theoretical model
can give an indication if changes to the parameters of theWEC are an improvement for the produced power
or not. Secondly finding the ideal PTO-damper value for each sea-state takes a lot of computation time.
That is why the PTO-damper value is optimized for an irregular sea-state with Hs = 1m and Tp = 6.5sec.
This is the most frequent sea-state found at the L9 platform, as shown in figure 5.10. Next the waves are
made smaller to review the responce of a bigger WEC. This is done for 3 different scale factors λ = 1,
λ = 2 and λ = 3.

Figure 5.10: Wave scatter data for the L9 platform in the North Sea

Next to the power matrix is a matrix given that shows the energy capture ratios. This matrix indicates
how much of the energy stored in waves is generated into electrical power. The amount of energy stored
in an irregular sea per meter wave crest Pwave is expressed in equation 5.8, Hs is the significant wave
height and Tp is the peak period or energy period. Deep water is assumed [27]. The energy capture ratio
is the ratio between the power generated into electricity divided by the available power in the waves,
see equation 5.9. This gives an indication of the efficiency of the WEC at different sea-states. Again the
absolute values don’t hold much value, but this does indicate what the optimal conditions are for the WEC
to operate.
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As shown in the figure 5.11, the highest produced powers are, as expected, obtained in the highest
wave. These waves hold the most energy. But the highest energy capture ratios are found for the lowest
waves with a low period. This indicates that the WEC is not optimized. Ideal would be if the highest
energy capture ratios are found at the sea-states most frequent present in the wave scatter diagram shown
in figure 5.10.

Pwave =
ρg2

64π
H2

sTp (5.8)

η =
Pmean

Pwave
(5.9)

Figure 5.11: Mean produced power and the energy capture ratios for an irregular sea-state and different
scale factors

5.4.3 Discussion
By using the theoretical model and the Froude scaling laws the power matrix of the Dutch Wave Power
WEC is derived. It has to be noted that some of the wave-height/peak period combinations from this matrix
will almost never occur in the real world. Secondly, the theoretical model has no real physical limitations.
The lines are infinitely long and the WEC can make infinite full rotations. In real life, this is limited by the
device put offshore.

Then there are some uncertainties in the average produced powers given in the power matrix. First, there
is the uncertainty of the PTO system. The PTO system is estimated using a linear damper. As discussed
in 4, this estimation gives some uncertainties. Also, the PTO values are estimated using regular waves.
These values are close to the optimal value of irregular waves, but they can be optimized. This is not
done because finding the optimal PTO value for irregular waves is a time-intensive process. Secondly, the
average powers are estimated in simulations with 10 simulations, each 100 seconds. This only adds up to
1000 seconds of simulation for each significant wave height/peak period combination. This only adds up
to 16min40sec. Due to the randomness of the irregular waves, this can still give some fluctuations in the
average power. This can be solved by running longer simulations, but due to time restrictions, this was not
possible. Thirdly, the powers given in the power matrix are in W per meter. The powers will probably go
down if the WEC becomes longer. This is because the waves are not unidirectional. The longer the WEC
becomes, the more this will negatively influence the performance of the WEC.

The power matrix indicates how much power is obtained from the waves according to the theoretical
model. The energy capture ratios say something about the efficiency of the WEC at each specific sea-state.
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The WEC with scale factor λ = 3 is already better tuned to capture the energy in a real sea-state than the
original. This indicates that a bigger floater can gives an increase in produced power. But more research
is needed to find the optimal sizing for the WEC. Optimization is not the objective of this thesis.
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Chapter 6

Conclusions & Recommendation

6.1 Conclusions
Wave energy converters are a source of renewable energy with a lot of potential, but they are underde-
veloped with respect to more mature renewable energy technologies like solar and wind. Dutch Wave
Power is one companies that tries to bridge this knowledge gap and is developing a new type of WEC. The
objective of this thesis was to understand the working principle and the effects influencing the dynamics
and power production of their concept. This is done by constructing a numerical time domain model.

The numerical model is constructed with a analytical non-linear Froude-Krylov force approximation to
capture the large change in draft of the model. The results of the numerical model have an error of 14%
in pitching amplitude with respect to the experimental tests for a wave periods of 6 seconds and the accu-
racy goes up for waves with a higher wave period. The dynamics of the inside pendulum can be estimated
with an error of less then 2% for the angle of the pendulum. This is done with use of a linear damper
that represents the PTO-system. The value of the linear damper is first tuned to match the experiments.
Secondly, the linear damper is tuned to find the maximum power extraction.

After analyzing the results it if found that the main driver for the pitching motions and thus the power
production come from the heaving motions. The surge motions have little influence on the power produc-
tion. The surge motions are also overestimated with an error of more than 50%. It is expected that the
reason for this is that the ballast weight is estimated as a downward pulling force and the forces acting
on the ballast weight itself are neglected. Secondly, one of the driving forces in the surge direction is
neglected. The FK forces in surge are neglected due to the analytical estimation. The resulting pressure at
the waveward and leeward sides of the WEC are equal to each other. Nevertheless, it is expected that this
will only influence the dynamics, because it is shown that the forces in surge are of a different, smaller,
order than the driving forces in heave.

The numerical model lends itself to research whether changing design parameters of the WEC improves or
worsen power production, although the mean produced power is not well estimated. The linear damper
used as estimation for the generator is capable of estimating the dynamics, but not in estimating the pro-
duced power. This is due to the torque losses in the shaft.

The two parameters that were studied are the weight of the pendulum and the inner radius of the float.
Firstly, increasing the weight of the pendulum also increases the maximum torque inside the generator
before the pendulum makes a full rotation. This higher torque gives a higher power output in return. The
model predicts an increase in mean produced power of 35% if the pendulum is made 15kg/m heavier
and if the PTO damper is tuned correctly. Secondly, decreasing the inner radius of the float, increases the
rotational pitching velocity. This higher velocity results in a higher power output. It has to be noted that
the system becomes more sensitive to high torques and a full rotation occurs faster. This means that the
tuning of the PTO system becomes even more important. If the PTO damper is tuned, the model predicts
up to 23% higher mean produced power according to the model and for the sea states tested.

Lastly, the numerical model is adapted to capture the response in irregular waves. For irregular waves,
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three sizes of the WEC are tested. The dimensions and parameters are scaled according to the Froude
scaling laws. The scaling factors used are λ = 1, λ = 2 and λ = 3. Optimizing the PTO-system for an
irregular sea-state is a time-consuming task. That is why for each scale factor the PTO system is tuned
for only one sea-state. Increasing the size of the WEC with a scale factor of λ = 3 increases the produced
power with a factor between 3 and 14.

6.2 Recommendations
To conclude this thesis, some recommendations are made. The recommendations can be split into 2 parts.
One are recommendations to improve the numerical model. The other are recommendations for further
research.

6.2.1 Recommendations - numerical model
The biggest improvement for the numerical model can be gained by improving the PTO-system. The linear
damper works if only the dynamics are estimated, but evenly important is the produced power. It would
already be an improvement to implement some torque losses, but it would be even better to find a model
that could capture the non-linear behaviour of the generator.

The second improvement in the numerical model can be made by estimating the forces balance in surge.
There is a 50% error in the amplitude of the surge motion and one of the main driving forces, the FK force,
in surge direction is neglected. Furthermore, the ballast weight moving through the water is expected to
influence the surge motion.

6.2.2 Recommendations - Further research
It would be interesting to see the effects of wave spreading to the WEC. How is the response influenced
by incoming waves under an angle? And how is this effect influenced by the length of the float?

Secondly, further research is needed to find the optimal dimensions of the WEC, including the desired
weights of the float and pendulum. This optimizing must go hand in hand with designing the PTO-system
and is dependent of the location where the WEC will be installed.

64



Bibliography

[1] J. Falnes, “A review of wave-energy extraction,” 10 2007.
[2] G. Mørk, S. Barstow, A. Kabuth, and M. T. Pontes, “Assessing the global wave energy potential,”

in Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE,
vol. 3, pp. 447–454, 2010.

[3] M. A. U. Amir, R. M. Sharip, M. A. Muzanni, and H. A. Anuar, “Wave energy convertors (WEC): A
review of the technology and power generation,” in AIP Conference Proceedings, vol. 1775, American
Institute of Physics Inc., 10 2016.

[4] Y. Li and Y. H. Yu, “A synthesis of numerical methods for modeling wave energy converter-point
absorbers,” 8 2012.

[5] L. Rodrigues, “Wave power conversion systems for electrical energy production,” Renewable Energy
and Power Quality Journal, vol. 1, pp. 601–607, 3 2008.

[6] A. De Andres, E. Medina-Lopez, D. Crooks, O. Roberts, and H. Jeffrey, “On the reversed LCOE cal-
culation: Design constraints for wave energy commercialization,” International Journal of Marine
Energy, vol. 18, pp. 88–108, 6 2017.

[7] E. Rusu and F. Onea, “A review of the technologies for wave energy extraction,” 6 2018.
[8] T. Aderinto and H. Li, “Ocean Wave energy converters: Status and challenges,” 2018.
[9] J. Aubry, H. Ben Ahmed, B. Multon, A. Babarit, and A. Clément, “Wave energy converters. Bernard

Multon. Marine renewable energy handbook,” 2011.
[10] P. Ricci, “Time-Domain Models,” in Numerical Modelling of Wave Energy Converters, pp. 31–66, Else-

vier, 2016.
[11] A. S. Zurkinden and . M. M. Kramer, “Numerical time integration methods for a point absorber wave

energy converter,” tech. rep.
[12] A. Babarit, J. Hals, M. J. Muliawan, A. Kurniawan, T. Moan, and J. Krokstad, “Numerical benchmark-

ing study of a selection of wave energy converters,” Renewable Energy, vol. 41, pp. 44–63, 2012.
[13] B. Bosma, T. K. Brekken, H. T. Özkan-Haller, and S. C. Yim, “Wave energy converter modeling in the

time domain: A design guide,” in 2013 1st IEEE Conference on Technologies for Sustainability, SusTech
2013, pp. 103–108, 2013.

[14] R. G. Coe and V. S. Neary, “REVIEW OF METHODS FOR MODELING WAVE ENERGY CONVERTER
SURVIVAL IN EXTREME SEA STATES,” tech. rep., 2014.

[15] M. Alves, “Frequency-Domain Models,” in Numerical Modelling of Wave Energy Converters, pp. 11–30,
Elsevier, 2016.

[16] M. P. Retes, G. Giorgi, and J. V. Ringwood, “A Review of Non-Linear Approaches for Wave Energy
Converter Modelling,” tech. rep., 2015.

[17] A. S. Zurkinden, F. Ferri, S. Beatty, J. P. Kofoed, and M. M. Kramer, “Non-linear numerical modeling
and experimental testing of a point absorber wave energy converter,” Ocean Engineering, vol. 78,
pp. 11–21, 3 2014.

65



[18] G. Giorgi and J. V. Ringwood, “Analytical formulation of nonlinear froude-krylov forces for surging-
heaving-pitching point absorbers,” in Proceedings of the International Conference on Offshore Mechan-
ics and Arctic Engineering - OMAE, vol. 10, American Society of Mechanical Engineers (ASME), 2018.

[19] G. Giorgi and J. V. Ringwood, “Computationally efficient nonlinear Froude–Krylov force calculations
for heaving axisymmetric wave energy point absorbers,” Journal of Ocean Engineering and Marine
Energy, vol. 3, pp. 21–33, 2 2017.

[20] D. Josh and C. Ronan, “Efficient nonlinear hydrodynamic models for wave energy converter design-A
scoping study,” 1 2020.

[21] Cummins WE, “The impulse responce function and ship motions,” Hydromechanics labroatory re-
search and development report, 1962.

[22] Z. Yu and J. Falnes, “State-space modelling of a vertical cylinder in heave,” tech. rep., 1995.
[23] C. Liu, Q. Yang, and G. Bao, “State-space approximation of convolution term in time domain analysis

of a raft-type wave energy converter,” Energies, vol. 11, 1 2018.
[24] R. Taghipour, T. Perez, and T. Moan, “Hybrid frequency-time domain models for dynamic response

analysis of marine structures,” Ocean Engineering, vol. 35, pp. 685–705, 5 2008.
[25] J. A. Armesto, R. Guanche, F. Jesus, A. Iturrioz, and I. J. Losada, “Comparative analysis of themethods

to compute the radiation term in Cummins’ equation,” Journal of Ocean Engineering and Marine
Energy, vol. 1, pp. 377–393, 11 2015.

[26] M. A. Bhinder, A. Babarit, L. Gentaz, and P. Ferrant, “Assessment of viscous damping via 3D-CFD
modelling of a Floating Wave Energy Device Assessment of the Viscous Damping via 3D-CFD Mod-
elling of a Floating Wave Energy Device,” tech. rep., 2011.

[27] J. M. J. Journée, W. W. Massie, and R. H. M. Huijsmans, “OFFSHORE HYDROMECHANICS Third
Edition,” tech. rep., 2015.

[28] A. H. Tanis, The Ocean Cleanup Barrier: A hydro-elastic model for fatigue lifetime assessment of The
Ocean Cleanup barrier. PhD thesis, 2016.

[29] Senan NAF, “A brief introduction to using ode45 in MATLAB,”
[30] “SALOME-platform,” 2022.
[31] F. Kalofotias, “Manual for the open source potential solver: NEMOH Derivation of potentials and

drift forces for a semi-submersed heaving sphere,” tech. rep., 2017.
[32] T. Duarte, A. Sarmento, M. Alves, J. Jonkman, and A. Sarmento, “State-Space Realization of the

Wave-Radiation Force within FAST: Preprint,” tech. rep., 2013.
[33] T. Perez and T. I. Fossen, “A Matlab toolbox for parametric identification of radiation-force models of

ships and offshore structures,” Modeling, Identification and Control, vol. 30, no. 1, pp. 1–15, 2009.
[34] Anthony F. Molland, “Chapter 1 - The marine Environment,” tech. rep., 2008.
[35] Pecher A and Kofoed JP, Handbook of ocean wave energy. 2017.

66



APPENDICES

67



Appendix A

Equations of motion of the WEC

Equation of motion in the x-direction:

m1ẍ =
∑

Fx − sin(α)FT (A.1)

Equation of motion in the z-direction:

m1z̈ =
∑

Fz − cos(α)FT (A.2)

Kinetic constraints:
σ(t) = −l(t)rin (A.3)

σ̇ = −l̇rin (A.4)
σ̈ = −l̈rin (A.5)

With:
l(t)2 = x(t)2 + (l0 + z(t))2 (A.6)

d

dt
[l(t)2] = 2l(t)l̇ = 2x(t)(̇x) + 2(l0 + z(t))ż (A.7)

d2

dt2
[l(t)2] = 2(̇l)2 + 2l(t)l̈ = 2ẋ2 = 2x(t)ẍ+ 2ż2 + 2(l0 + z(t))z̈ (A.8)

This can be rewriten as:
l(x) =

√
x(t)2 + (l0 + z(t))2 (A.9)

l̇ =
2x(t)ẋ+ 2(l0 + z(t))ż

2l(t)
(A.10)

l̈ =
2ẋ2 + 2x(t)ẍ+ 2(l0 + z(t))z̈ − 2l̇2

2l(t)
(A.11)

The angle alpha:
tan(α) =

x(t)

l0 + z(t)
(A.12)
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Appendix B

Derivation of the pendulum angle θ

Equation of motion for the angle θ. Lagrangian derivation of a pendulum on a moving support.

z(t)

x(t)

L
pen

,m
2

, M
PTO

x
pen

,z
pen

Figure B.1: Pendulum on a moving support

A pendulum with mass m2 and length Lpen, is connected to a support that can move in the x,z plane.
The position of the pendulum is described by θ. The x and z positions of pendulum are:

• xpen = x(t)− Lpensin(θ) → ẋpen = ẋ− Lpenθ̇cos(θ)

• zpen = z − Lpencos(θ) → żpen = ż + Lpenθ̇sin(θ)

Now the kinetic energy of the system is:

T = 1/2m1(ẋ
2 + ż2) + 1/2m2(ẋ

2
pen + ż2pen) (B.1)

And the potential energy is:
V = m1gz +m2gzpen (B.2)

and to include the external force:
R = 1/2BPTO(θ̇ − σ̇)2 (B.3)

Now find the equation of motion for θ:
L = T − V (B.4)
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d

dt

∂L

∂θ̇
− ∂L

∂θ
+

∂R

∂θ̇
= 0 (B.5)

d

dt

∂L

∂θ̇
= m2Lpen

d

dt
[−ẋcos(θ) + żsin(θ) + Lpenθ̇] (B.6)

d

dt

∂L

∂θ̇
= m2Lpen(−ẍcos(θ) + ẋsin(θ)θ̇ + z̈sin(θ) + żcos(θ)θ̇ + Lpenθ̈) (B.7)

∂L

∂θ
= m2Lpen(ẋsin(θ)θ̇ + żcos(θ)θ̇ + gsin(θ)) (B.8)

∂R

∂θ̇
= BPTO(θ̇ − σ̇) (B.9)

Fill in into equation B.5:

m2Lpen(−ẍcos(θ) + z̈Lpensin(θ) + L2
penθ̈ − gsin(θ) +BPTO(θ̇ − σ̇) = 0 (B.10)

Rewrite the equation B.10 gives the equation of motion for θ̈:

θ̈ =
ẍcos(θ)

Lpen
+

(g − z̈)sin(θ)

Lpen
− BPTO(θ̇ − σ̇)

m2Lpen
(B.11)
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Appendix C

Derivation Line Tension

x

z

 (t)

F
Tension

m
x
, m

z
, J, r

in
, r

out

Figure C.1: Solve the FT in 2D

There are 3 equations of motion
mxẍ =

∑
Fx − sin(α)FT (C.1)

mz z̈ =
∑

Fz − cos(α)FT (C.2)

Jσ̈ =
∑

Mσ − FT rin (C.3)
And the constraint

σ̈ = − l̈

rin
(C.4)

where l(t) is the length of the line.
l(t) =

√
x(t)2 + (l0 + z(t))2 (C.5)

In the equations A.9 too A.11 l̇ is know. Substitute equation A.11 into the constraint (equation C.4)
and substitute the constrain into equation C.3. Next isolate the tension force FT to obtain the following
expression:

FT =

∑
Mσl(t)rinmxmz − Jl̇2mxmz + Jẋ2mxmz + Jżmxmz + Jx(t)

∑
Fxmz + Jz(t)

∑
Fzmx + l0J

∑
Fzmx

l(t)mxmzr2in + Jcos(α)mxz(t) + Jsin(α)x(t)mz + l0Jcos(α)mx

(C.6)
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Appendix D

Experimental Test results -
Unprocessed data

Wave height [m] Wave period [s] Load on the generator [Ω] Figure Comments
Test 1 1 6 8 D.1
Test 2 1 6 12 D.2
Test 3 1 7 8 D.3
Test 4 1 7 12 D.4
Test 5 1 8 8 D.5
Test 6 1 8 12 D.6
Test 7 1 9 8 D.7

Table D.1: List of experimental tests, parameters and corresponding figures
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Figure D.1: Unprocessed data Test 1: H=1m T=6sec Load=8Ohm
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Figure D.2: Unprocessed data Test 2: H=1m T=6sec Load=12Ohm
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Figure D.3: Unprocessed data Test 3: H=1m T=7sec Load=8Ohm
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Figure D.4: Unprocessed data Test 4: H=1m T=7sec Load=12Ohm
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Figure D.5: Unprocessed data Test 5: H=1m T=8sec Load=8Ohm
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Figure D.6: Unprocessed data Test 6: H=1m T=8sec Load=12Ohm
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Figure D.7: Unprocessed data Test 7: H=1m T=9sec Load=8Ohm
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Appendix E

Experimental Test results - Comparison
with the theoretical model
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Compairision between numerical model and experiments. H= 1 m P=6s
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Figure E.1: Comparison of Test 1 with the theoretical model
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Compairision between numerical model and experiments. H= 1 m P=6s
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Figure E.2: Comparison of Test 2 with the theoretical model
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Compairision between numerical model and experiments. H= 1 m P=7s
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Figure E.3: Comparison of Test 3 with the theoretical model
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Compairision between numerical model and experiments. H= 1 m P=7s
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Figure E.4: Comparison of Test 4 with the theoretical model

81



Compairision between numerical model and experiments. H= 1 m P=8s
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Figure E.5: Comparison of Test 5 with the theoretical model
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Compairision between numerical model and experiments. H= 1 m P=8s
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Figure E.6: Comparison of Test 6 with the theoretical model
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Compairision between numerical model and experiments. H= 1 m P=9s
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Figure E.7: Comparison of Test 7 with the theoretical model
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