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A B S T R A C T

The mechanism of bubble capture in a vortical flow is investigated using a Lagrangian bubble tracking method.
The motion of bubbles and the factors influencing their movement are examined. Detailed analysis is conducted
on the roles played by each force component, such as the lift, added mass, and centrifugal forces, in the bubble
capture process. An interesting finding is the identification of the stabilizing effect of the azimuthal lift force on
the bubble capture mechanism. Furthermore, a model for capture time based on the radial force balance is also
developed, and validated with existing experimental data. These findings, including the force mechanism and
capture time model, provide a foundation for understanding the bubble capture process and can potentially
inform future studies on tip vortex cavitation inception such as determining the cavitation hotspot.
1. Introduction

Fluid from the pressure side of a finite-span hydrofoil tip, for
instance that of a propeller, is driven by the pressure gradient across
the thickness of the foil and flows towards the suction side of the tip.
This process leads to the formation of the so-called tip vortex. When
the pressure in the vortex core drops to a sufficiently low level, the
water there will begin to evaporate, triggering tip vortex cavitation.
In ship design, there is a strong desire to avoid this phenomenon due
to its potential for causing onboard vibration, erosion of blade tips and
rudders, as well as generation of noise harmful to marine creatures (van
Wijngaarden et al., 2005; van Terwisga et al., 2009; Bosschers, 2018;
Erbe et al., 2019). Understanding the tip vortex cavitation inception
dynamics would provide a deeper insight into how those unwanted
impacts can be potentially avoided or mitigated. The bubble motion
and dynamics around a vortex are crucial factors affecting tip cavitation
inception (Arndt et al., 1991; Cheng et al., 2021). This study aims to
investigate the background mechanism of how a bubble is captured by
a vortical flow.

Roles of force components & capture time model. The forces exerted
on the bubble, such as the lift, drag, and added mass, are the keys
to the capture mechanism. Abdel-Maksoud et al. (2010), and Peters
and el Moctar (2020) investigated bubble behaviors with different
forces being neglected. They showed that the drag force was important
to the overall motion as it made the bubble follow the flow and
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E-mail address: T.-.Y.Huang@tudelft.nl (T. Huang).

spirally migrate into the core. The researchers also observed that the
pressure gradient force acted to draw the bubbles into the vortex
core. Sridhar and Katz (1995) identified the force balance on a still
bubble in solid body rotation flow and proposed a lift coefficient
formulation accordingly. Finn et al. (2011) applied the same force
balance scenario as (Sridhar and Katz, 1995) to devise a verifica-
tion exercise. Zhang et al. (2016) proposed an ordinary differential
equation model which could predict the trajectory of a bubble in a
solid-body rotation vortex based on a simplified Lagrangian particle
tracking method. This provides a simple framework for investigating
the bubble motion around a vortex under different combinations of
individual force components. Although researchers mentioned above
have devoted themselves to force mechanism investigation, there are
only few publications on the more detailed mechanism in the field of
bubble behavior studies. Furthermore, most of the related studies are in
the context of turbulence-bubble interaction (Mathai et al., 2020; Kelly
et al., 2021; Mazzitelli et al., 2003) and not the tip vortex cavitation
inception. It is important to expand the understanding of these forces in
order to develop more robust models for the phenomenon of tip vortex
cavitation. Interestingly but rationally, capture time (or entrapment
time), which measures the time it takes for a bubble to be captured, is
also highly influenced by the forces on the bubble. Oweis et al. (2005)
developed a capture time model for bubbles around a stationary Lamb-
Oseen vortex (also known as the Gaussian vortex) using the balance
vailable online 12 August 2024
141-1187/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.apor.2024.104154
Received 8 March 2024; Received in revised form 26 July 2024; Accepted 31 July
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2024

https://www.elsevier.com/locate/apor
https://www.elsevier.com/locate/apor
mailto:T.-.Y.Huang@tudelft.nl
https://doi.org/10.1016/j.apor.2024.104154
https://doi.org/10.1016/j.apor.2024.104154
http://creativecommons.org/licenses/by/4.0/


Applied Ocean Research 151 (2024) 104154T. Huang et al.

H
c
c
w

𝑈

w
F

a
d

c
c
c
P
i

w
b
t
s

a
p
a
a
b

𝐶

between pressure gradient and drag forces in the radial direction. From
the model, they found that the vortex Reynolds number, bubble radius,
and the release position are key factors in bubble capture events.
However, their analytical model deviated logarithmically from their
numerical simulations. Consequently, the present work also aims to
improve the robustness by further studying the roles of the individual
force components.

Bubble tracking method. Modeling the motion of bubbles within a flow
field has been a challenging task because cavitation research usually
requires the resolution of small bubbles. To achieve accurate simu-
lations while maintaining a reasonable computational effort, various
approximate approaches have been developed. These numerical mul-
tiphase approaches can generally be divided into three categories:
Eulerian mixture (Hirt and Nichols, 1981), Euler-Euler (Sokolichin
et al., 1997; Afolabi and Lee, 2014), and Eulerian-Lagrangian meth-
ods (sometimes known as Lagrangian bubble tracking). The Eulerian-
Lagrangian method is often preferred for researching the inception of
tip vortex cavitation because it partially decouples the carrier fluid
(liquid) and dispersed phase (bubbles), which allows for less stringent
grid resolution requirements compared to the other two methods.
Furthermore, important inception parameters such as nuclei effect and
inception criteria can be considered and better integrated (Ji et al.,
2024). Additionally, this approach enables the convenient monitoring
of individual force components acting on a bubble, which is a key focus
of the present work. Previous published research, such as Johnson and
Hsieh (1966), Latorre (1982), Hsiao and Pauley (1999), and Wang et al.
(2023), also made use of similar methods to study either tip vortex
or sheet cavitation inception. Consequently, this multiphase modeling
methodology has been adopted for the present study. This is coupled
with the flow solution via a one-way coupling scheme that assumes
small volume fractions of bubbles (Elghobashi, 1994). This coupling
scheme has also been used and validated by other researchers (Hsiao
et al., 2003; Ku et al., 2020) and the exact implementation utilized
here was used to study sheet cavitation inception in van Rijsbergen and
Lidtke (2020).

Tip vortex flow formulation. Real tip or trailing vortices are highly
complex three-dimensional phenomena. Many researchers have ded-
icated themselves to developing mathematical formulations for the
vortex, which are usually complex and may require a large number of
parameters for closure (Moore et al., 1973; Uberoi et al., 1979; Phillips,
1981; Rule and Bliss, 1998; Anderson and Lawton, 2003). In order to
allow more fundamental observations to be made and simple models to
be developed, results presented here are based on the bubble behaviors
around the stationary Lamb-Oseen vortex, which offers a simple but
realistic environment.

2. Stationary Lamb-Oseen vortex

The stationary Lamb-Oseen vortex is a modification of the original
Lamb-Oseen formulation that removes the time dependency. This al-
lows the flow to be manipulated by choosing an arbitrary value for the
viscous radius, 𝑟v. The azimuthal flow velocity, 𝑈𝜃 , is given by:

𝑈𝜃 =
𝛤∞
2𝜋𝑟

(

1 − 𝑒−𝜍𝑟
2∕𝑟2v

)

. (1)

ere, 𝑟 represents the radial distance from a field point to the vortex
enter, 𝛤∞ indicates the total circulation of the field. 𝜍 ≈ 1.2564 is a
onstant chosen to make 𝑟v be where the maximum velocity locates,
hich has the value of

v = 𝜆
𝛤∞
2𝜋𝑟v

, (2)

here 𝜆 ≈ 0.7153. The radial profile of relevant variables are plotted in
ig. 1. The flow vorticity, pressure gradient, and pressure formulations
2

re listed as they are the necessary input to solve bubble motion and
ynamics (Bosschers, 2018):

𝝎 = 𝜍
𝛤∞

𝜋𝑟2v
𝑒−𝜍𝑟

2∕𝑟2v �̂�𝑧, (3)

𝛁𝑃 = −𝜌D𝐔
D𝑡

= 𝜌
𝑈2
𝜃
𝑟
�̂�𝑟, (4)

𝑃 (𝑟) = 𝑃∞ −
𝜌𝛤 2

∞

(2𝜋𝑟)2

{

1
2
− 𝑒−𝜍𝑟

2∕𝑟2v + 1
2
𝑒−2𝜍𝑟

2∕𝑟2v +
𝜍𝑟2

𝑟2v
𝐸1

(

𝜍𝑟2

𝑟2v

)

−
𝜍𝑟2

𝑟2v
𝐸1

(

2𝜍𝑟2

𝑟2v

)}

. (5)

Here, 𝐸1(𝑧) is the exponential integral.

3. Lagrangian bubble tracking

3.1. Bubble motion equation

The one-way coupling Lagrangian bubble tracking involves tracking
the motion of bubbles using the bubble motion equation, with the
underlying flow field serving as an input. It is important to note that,
one-way coupling scheme implies no momentum transferred from the
bubbles to the flow.

The bubble motion equation describes the movement of a spherical
bubble by accounting for different forces exerted on bubble from the
carrier phase. In this research, only the added mass (𝐅A), pressure
gradient (𝐅P), drag (𝐅D), lift (𝐅L) and Kelvin impulse forces (𝐅K) are
onsidered. The gravity force and history force are negligible in the
urrent scenario and including it would also significantly increase the
omplexity for the modeling (Morrison and Stewart, 1976; Hsiao and
auley, 1999). The bubble motion equation used in the present work
s
(

𝑚B + 𝐶AM𝜌𝑉B
) d𝐔B

d𝑡
= 𝐅A + 𝐅P + 𝐅D + 𝐅L + 𝐅K , (6)

here 𝑚B represents the net bubble mass, 𝑉B the bubble volume, 𝐔B the
ubble velocity vector, and 𝜌 the carrier flow density. In this research,
he added mass coefficient, 𝐶AM, is set to 1∕2, as it is assumed that
pherical bubbles dominate the entire period. In the equation,

𝐅A = −𝐶AM𝑉B𝛁𝑃 ,
𝐅P = −𝑉B𝛁𝑃 ,

𝐅D = 𝐶𝐷
1
2
𝜌𝜋𝑅2(𝐔 − 𝐔B)||𝐔 − 𝐔B

|

|

,

𝐅L = 3
8
𝐶𝐿𝜌𝑉B

(𝐔 − 𝐔B) × 𝝎
𝛼

,

𝐅K = 𝐶AM𝜌4𝜋𝑅2�̇�(𝐔 − 𝐔B).

(7)

𝐔 denotes the carrier flow velocity, 𝑅 the bubble radius, �̇� the first
derivatives of bubble radius, 𝝎 the flow vorticity, and 𝛼 in lift force
represents the normalized shear rate, |𝝎|𝑅∕|

|

𝐔 − 𝐔B
|

|

.
Solid particle drag formulation with no-slip boundary condition is

pplied to model spherical bubble drag. Marangoni effect introduces
re-stress condition as bubbles in the context of marine hydrodynamics
re usually contaminated by non-uniform surfactant. In this study,
correction to the Stokes drag solution (𝐶𝐷 = 24∕ReB) proposed

y Schiller and Neumann (1933) is applied without loss of generality:

𝐷 =

{ 24
ReB

(

1 + 0.15Re0.687B
)

if ReB < 955,

0.445 if ReB ≥ 955.
(8)

The bubble Reynolds number, ReB, is defined by its radius and the
relative velocity:

ReB =
2|
|

𝐔 − 𝐔B
|

|

𝑅
𝜈

, (9)

where 𝜈 is the kinematic viscosity of the carrier fluid.
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Fig. 1. Some (normalized) physical quantity profiles of a stationary Lamb-Oseen vortex. 𝑈 ∗
𝜃 = 𝑈𝜃∕𝑈v, 𝛁𝑃 ∗ = (𝑈𝜃∕𝑈v)2∕(𝑟∕𝑟v), 𝑃 ∗ = (𝑃 − 𝑃∞)∕(𝑃min − 𝑃∞), 𝜔∗ = 𝜔∕𝜔max, �̇�f low = 𝑈𝜃∕𝑟.
The lift coefficient, 𝐶𝐿, for a bubble has several different formula-
tions. Saffman (1965) derived the lift coefficient for very low ReB and
low shear flow, while Auton (1987) proposed a different formulation
based on a mathematical derivation for high ReB and low shear flow.
Sridhar and Katz (1995) carried out a series of experiments and devel-
oped an empirical formula for the lift coefficient. Given the range of
ReB in the current research, this study will use Auton’s formulation for
the lift coefficient:

𝐶𝐿 = 4
3
𝛼. (10)

𝛼 is the aforementioned normalized shear rate.

3.2. Bubble dynamics equation

The bubble dynamics equation describes the expansion and contrac-
tion of a single bubble. This research uses form proposed (Keller and
Miksis, 1980) since it is proven to be the most accurate one in the
first-order theory by Prosperetti and Lezzi (1986). It takes the form of

(

1 − �̇�
𝑐

)

𝑅�̈� + 3
2

(

1 − �̇�
3𝑐

)

�̇� =
|

|

𝐔 − 𝐔B
|

|

2

4
+ 1

𝜌

(

1 + �̇�
𝑐

)

(

𝑃v + 𝑃g

−𝑃 ) + 1
𝜌
𝑅
𝑐
d𝑃g

d𝑡
− 4𝜈 �̇�

𝑅
− 1

𝜌
2𝜂
𝑅

, (11)

where 𝜂 represents surface tension at the bubble-water interface, and 𝑐
is the sound speed in the host medium. The vapor pressure, 𝑃v, could
be conveniently chosen according to the assigned cavitation number.
The gas pressure, 𝑃g, is modeled via the polytropic process

𝑃g(𝑡) = 𝑃g(0)
(

𝑅(0)
𝑅(𝑡)

)3𝑛
, (12)

and 𝑛 indicates the polytropic constant, which is 𝑛 = 1.4 for the
adiabatic condition. The external pressure acting on the bubble, 𝑃 , is
the interpolated flow pressure at the bubble center. Compared to the
traditional formulation, in the present work one more term, highlighted
in blue, is added in order to account for the slip velocity between the
bubble and the host medium (Hsiao et al., 2000).

It is necessary to guarantee the bubble is initially released in an
equilibrium state (�̈� = �̇� = 0, 𝐔 − 𝐔B = 𝟎) for numerical stability:

𝑃 +
2𝜂
𝑅

− 𝑃g − 𝑃v = 0. (13)

In practical terms, the equivalent bubble equilibrium radius (𝑅∞) is
found at the reference condition (𝑃 = 𝑃 ) via Eq. (12): (Vallier, 2013)
3

∞

(𝑃∞ +
2𝜂
𝑅∞

− 𝑃v)𝑅3𝑛
∞

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
at the infinite reference condition.

= (𝑃0 +
2𝜂
𝑅0

− 𝑃v)𝑅3𝑛
0 ,

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
at the initial release point.

(14)

and the calculated results at the reference condition are further applied
in the bubble dynamics computation, particularly Eq. (12). It should
be noted that the absolute value of 𝑃∞ is not important since the
flow is incompressible. Furthermore, the 𝑃∞ − 𝑃v can be conveniently
determined from the prescribed cavitation number.

3.3. Numerical solution approach

An in-house python code is developed to simulate the bubble be-
haviors. The bubble motion and dynamics equations are explicitly
integrated in time until the bubbles reach their final radial position. The
Cash–Karp method, an adaptive 4–5 Runge–Kutta approach, is adopted
to control the relative error level to 10−5 in the simulations, as the
nonlinearity of the bubble dynamic equation introduces a wide range
of time scales. The relevant flow variables are computed at the bubble
centers using the prescribed stationary Lamb-Oseen vortex.

4. Simulation setups and targets

A series of numerical simulation cases are performed in a stationary
Lamb-Oseen vortex with 𝑟v = 0.1m, which is similar to the previous
studies such as Zhang et al. (2016), and Peters and el Moctar (2020).
The circulation strength ranges from 0.29 to 29.0m2∕s, but the results
from this study are mainly based on 𝛤∞ = 0.29m2∕s, which came from
experiment of Oweis et al. (2005) and was further used in several nu-
merical exercises such as Zhang et al. (2016), and Peters and el Moctar
(2020). For each circulation case, a total of seventy bubbles are seeded
in a matrix of seven different bubble sizes (𝑅0) and ten different release
radial locations (𝑟0), each of which follows a geometric progression:

𝑅0∕𝑟v = 0.100, 0.064, 0.041, 0.027, 0.017, 0.011, 0.007;

𝑟0∕𝑟v = 0.316, 0.431, 0.586, 0.799, 1.088, 1.481, 2.017,

2.746, 3.740, 5.093.

Much smaller or further away bubbles are rare or insignificant in the
context of the tip vortex cavitation inception, so they are not taken into
account. Each bubble is released with a velocity identical to that of the
flow at the release point.
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Fig. 2. Bubble paths for two different bubble sizes at various initial release positions. The colors indicate different release locations. The bubbles generally spiral towards the
center with small deviations in azimuthal velocity relative to the background flow. Both the small (dashed-dotted line) and large (solid line) bubbles are presented.
The cavitation number is chosen to be the same as the one defined
in Peters and el Moctar (2020), which is based on viscous core velocity
and corresponding pressure:

𝜎v =
𝑃vc − 𝑃v
1
2𝜌𝑈

2
v

= 3.602,

which is fixed for each case with a different circulation strength to
ensure a fair comparison. where 𝑃vc is the pressure at the viscous core
edge. This cavitation number corresponds to 𝜎 = (𝑃∞−𝑃v)∕0.5𝜌𝑈2

∞ = 1.6
if there is an background axial velocity (𝑈∞) of 5.6 m∕s, which is similar
to 𝑈v∕𝑈∞ value in experiment of Oweis et al. (2005). It is important
to note that this study only investigates stationary Lamb-Oseen vortex
which is still planar without an axial velocity.

To study the dynamics of the bubble population around the vortex
core, the capture time will be carefully analyzed. The captured criterion
is set to be a small radial coordinate value,

𝑟cap∕𝑟v = 0.1,

which allows for some margin of error near the center but is also small
enough to maintain the trend.

5. The roles of different forces

This section sheds light on the roles of the forces acting on a bubble
and builds the foundation of the capture time model. First, preliminary
observations are made based on the simulation results, and then a more
detailed analysis upon the acceleration histories is conducted to reveal
the roles of the forces.

5.1. Observations

There are two points that can help in discussing the roles of the
force components. The first point is that polar mechanics is useful for
describing the motion of bubbles in planar vortical flow. The paths
with different conditions are sketched in Fig. 2(a). As can be seen, the
paths are all spiral lines. Readers can refer to Appendix A for a brief
introduction to the polar coordinate planar mechanics, which covers
the essential inertial forces.

The other observation says the relative angular velocity is negligi-
ble, as inferred from the relative angular position in Fig. 2(b), where
𝜃 = ∫ (�̇� − �̇� ) d𝑡. Here, the former �̇� represents the bubble angular
4

rel f low
Fig. 3. The orientations of individual force components, which include added mass
force due to the fluid acceleration (𝐅A), pressure gradient force (𝐅P), drag force
(𝐅D), Kelvin impulse force (𝐅K), lift force (𝐅L), and inertial force (𝐅In). The detailed
formulations of each force can be found in Eq. (7). The inertial forces include the radial
centrifugal force and the azimuthal Coriolis force, which are introduced in Appendix A.

velocity, and �̇�f low is the angular flow velocity. Note that the suffixes
of the bubble kinematics in Newton’s derivative notation are omitted
henceforth for simplicity, such as �̇�, �̈�, and �̇�. The relative angular co-
ordinate, 𝜃rel, measures the accumulated deviation between the bubble
and flow in the angular coordinate, and it reaches a maximum of only
0.33◦. This indicates that the bubble mainly follows the azimuthal flow
velocity throughout the traveling time. This confirms that the relative
velocity, 𝐔B − 𝐔, has major component in the radial direction, i.e.,

𝐔B − 𝐔 ≈ �̇��̂�𝑟 + 0�̂�𝜃 . (15)

Thus, only the radial component of the kinematics is important
in the capture time analysis. A free-body diagram for the bubble can
accordingly be depicted as Fig. 3. The lift acts in the azimuthal direction
and the drag in the radial direction due to the relative velocity direction
Note that this is contrary to cases involving settling points (Finn et al.,
2011), since the bubble in capture process is still moving in azimuthal
direction but that in the settling case stays at a fixed point.

5.2. Discussion

This section examines how different forces interact at different
stages and what roles they play. The bubble accelerations, rather than
the forces themselves, are analyzed to account for the mass difference
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Fig. 4. The acceleration terms of bubbles released at 𝑟0∕𝑟v = 3.74. Only the smallest (dashed-dotted lines) and the largest (solid lines) bubbles are presented for clarity. This is
plotted using a symmetric logarithmic scale. When the ordinate value falls outside the thresholds of ±10−3, the plot is shown in a logarithmic scale, whereas values within the
thresholds are plotted using a linear scale.
between bubbles. Please refer to Appendix B for the simplified accel-
eration forms of the force components. It is important to note that
those simplified forms are not utilized in either the simulation or the
force calculation processes. Also, only the bubbles released relatively
far from the vortex center are investigated, for they cover most of
the motion stages. Furthermore, the accelerations are all normalized
based on 𝑈v and 𝑟v, which could be regarded as the nominal centrifugal
acceleration.

In the radial direction, the kinematics are influenced by four major
components: added mass, pressure gradient, drag, and inertial (cen-
trifugal) accelerations. The Kelvin impulse accelerations is relatively
insignificant, as indicated by the lack of extreme bubble expansion,
evident in Fig. 5. Generally, the (apparent) force balance is achieved
during most of the traveling time because the magnitude of the ap-
parent acceleration (see Appendix A for more details on the apparent
acceleration/force) is negligible in comparison with the magnitude of
dominating acceleration components such as drag and pressure gradi-
ent. Interestingly, the four aforementioned accelerations do not appear
to be a function of bubble size, as indicated by the close matching
between the dashed and solid lines in Fig. 4(a). This is because the
added mass, pressure gradient, and inertial accelerations are purely
proportional to 𝑈2

𝜃 ∕𝑟 or 𝑟�̇�2, so the size of the bubble does not have
an effect. Furthermore, the drag acceleration is linked to those three
terms due to the apparent radial acceleration balance.
5

The azimuthal motion is primarily influenced by two components:
the lift and inertial (Coriolis) accelerations. The drag and Kelvin im-
pulse acceleration magnitudes are comparatively small due to the low
relative azimuthal velocity. The lift plays a crucial role in balancing
the inertial force, particularly within the viscous core. This is not a
coincidence, but rather a result of the solid body rotation behavior
in the core, as described by the relationship: 𝜔 = 2�̇�; see Fig. 1(b).
Using this relationship and the characteristics of the relative motion, it
is possible to show that the inertial force is balanced with the lift (see
Appendix B for the simplified lift acceleration formulation):

Lift acceleration magnitude: |

|

(𝐔 − 𝐔B) × 𝝎|
|

= 𝜔|�̇�|,

Coriolis acceleration magnitude: |

|

−2�̇��̇��̂�𝜃|| = 𝜔|�̇�|,
(16)

where 𝐔 − 𝐔B is the relative velocity of which the radial component,
�̇�, dominates, and 𝜔 currently represents the vorticity magnitude. Note
that the bubble relative radial velocity (�̇�) is generally negative since
the bubble is migrating inward.

In conclusion, the pressure gradient, added mass, drag, and centrifu-
gal forces control the kinematics in the radial direction, while the lift
and Coriolis forces govern the azimuthal direction, as predicted by the
free body diagram shown in Fig. 3. All of the forces tend to maintain
an apparent balance in each direction.
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Fig. 5. The growth of a bubble as it approaches the vortex center. Different colors represent different initial release positions, and both the small (dashed-dotted line) and large
(solid line) bubbles are presented.

Fig. 6. The bubble paths without the lift forces with two drag formulations. Both the small (dashed-dotted line) and large (solid line) bubbles are presented.

Fig. 7. The angular momentum evolution of bubbles without the lift forces. The large bubble is characterized by solid lines and the small bubble by dashed-dotted lines.
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Fig. 8. Analytical path solutions from the two systems of ODEs (with or without lift) for a bubble released at the edge of a solid-body vortex. Only the large bubbles (𝑅0∕𝑟v = 0.1)
are plotted. Red dotes indicate the starting points, and blue arrows are added to indicate the bubble’s motion directions for clarity.
5.3. Remarks on the lift force effect

This section investigates the consequences of ignoring the lift force
to show its importance, which is not often explicitly discussed in the
literature. If the lift force is not included in the equation of motion,
abiding by the conservation law of angular momentum, the azimuthal
velocity of a bubble migrating into the core will increase. However,
the resulting high level of centrifugal force will cause the bubble to
be thrown into a greater radial distance again, similarly to the apsidal
orbital precession in celestial mechanics. As a result, the motion near
the center will be chaotic, particularly for the larger bubbles, which
are not as effectively damped by drag as small bubbles, as shown
in Fig. 6. The simulation uses the Stokes drag formulation illustrates
the exaggerated effect of this phenomenon, as the drag force is much
smaller in this model than in the Schiller model. The evolution of
specific angular momentum (𝑟2�̇�), shown in Fig. 7, provides further
insight into this phenomenon. The angular momentum of the large
bubble tends to stay at the same level rather than directly decrease,
indicating that there is not enough azimuthal force-induced moment
to reduce the angular momentum in the absence of the lift force. In
contrast, small bubbles tend to exhibit an ordered trend, as the drag
force is still relatively large and can play a role similar to the lift force
in balancing the Coriolis force.

Next, a linearized ordinary differential equation (ODE) model, in-
spired by Zhang et al. (2016), is introduced to further examine the
bubble behavior. The vortex is simplified into the solid-body rotation
with identical circulation, with the vorticity evenly distributed within
the viscous radius. In this case, the bubble motion equation including
the lift force can be simplified into a system of two-dimensional ODEs:

d2𝑥
d𝑡2

+ 𝑎d𝑥
d𝑡

+𝜔
d𝑦
d𝑡

+ 1
4
𝜔2𝑥 = −1

2
𝑎𝜔𝑦,

d2𝑦
d𝑡2

+ 𝑎
d𝑦
d𝑡

−𝜔d𝑥
d𝑡

+ 1
4
𝜔2𝑦 = 1

2
𝑎𝜔𝑥,

(17)

where

𝑎 = 9𝜈
𝑅2

, and 𝜔 =
𝛤∞

𝜋𝑟2v
.

These equations have already simplified the drag force using the Stokes
formulation. The terms at right hand side sequentially represent (1)
inertial force, (2) bubble velocity in drag force, (3) bubble velocity in
lift force, (4) pressure gradient force and carrier velocity in lift force.
The right hand side takes carrier velocity in drag force into account.
As shown in Eq. (17), even if the bubbles are large, the shaded term,
7

related to the lift, can still provide damping and eventually stabilize
the system. Without the lift force, the equations of motion are:

d2𝑥
d𝑡2

+ 𝑎d𝑥
d𝑡

+ 3
4
𝜔2𝑥 = −1

2
𝑎𝜔𝑦,

d2𝑦
d𝑡2

+ 𝑎
d𝑦
d𝑡

+ 3
4
𝜔2𝑦 = 1

2
𝑎𝜔𝑥.

(18)

Thus, in the absence of the lift-induced damping terms, the system
becomes underdamped for large enough bubbles. This can be seen in
the comparison of analytical path solutions in Fig. 8, where the solution
with the lift exhibits overdamped behavior while the solution without
the lift exhibits underdamped behavior. It may be worth noting that
the study by Zhang et al. (2016) did not take the lift force into account
in their analysis correctly. The proper equation with lift to use in this
case would be Eq. (17) rather than Eq. (18). It should also be noted
that the coefficients of the last terms at left hand side are different
from Eq. (17) since the lift force is measured with relative velocity,
including influence of the carrier velocity.

In summary, the lift force acts in the azimuthal direction and
decreases the angular momentum. By balancing out the Coriolis force,
it helps to stabilize the system.

5.4. Remarks on applying different force formulations

In essence, the bubble strives to achieve a balance of forces in both
the azimuthal and radial directions. When different formulations are
applied, as long as the variations in force are not orders of magnitude
apart, the overall mechanism remains consistent. The inclusion of the
history force aids in balancing the added mass force in the radial
direction; however, its impact is minimal due to its generally small
magnitude. Variations in drag formulations primarily affect the magni-
tude of the radial velocity. Even if different lift force formulations, if not
drastically different, alter the force balance in the azimuthal direction,
the drag force will adjust to compensate, thereby maintaining similar
kinematic.

6. Capture time model

This section addresses the capture time model with its assump-
tions, development, verification, and limitations. This model is inspired
by Oweis et al. (2005) but a more in-depth analysis is presented based
on the previous analysis of the forces’ roles, especially the apparent
radial force balance.
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Table 1
Variations of the capture time model regarding the azimuthal velocity formulations and
the drag formulation.
𝐶𝐷 𝑈𝜃

Ideal vortex Lamb-Oseen vortex

Stokes ✓ ✓

Schiller ✗ ✓

6.1. Assumptions

The capture time model is based on the radial mechanics as the bub-
ble azimuthal velocity aligns with the flow velocity. This allows for the
calculation of bubble radial velocity from the azimuthal velocity along
with the apparent force balance explored before. The Kelvin impulse
is ignored during developing the model as the bubble expansion is not
significant enough during the capturing stage.

In a nutshell, the polar coordinate mechanics is applied to assist the
analysis, and three other assumptions based on the observations are
introduced to construct the model:

�̇� − �̇�f low = 0, �̇� = 0, �̈� = 0.

6.2. Development of the capture time model

The capture time model will be derived using the three assumptions
mentioned above. The idea is that the apparent radial force balance can
be used to predict the bubble radial velocity based on the azimuthal
flow velocity, and the bubble’s capture time can be calculated from the
time integral of the reciprocal of the bubble radial velocity.

As already shown in Fig. 3, the apparent radial force balance reads

𝐹A + 𝐹P + 𝐹D + 𝐹In = 0, (19)

where 𝐹In represents the centrifugal force as an inertial force stemming
from the polar coordinate reference frame. Given that the added mass
dominates the total apparent mass, the force balance could be easily
transformed into the following acceleration balance based on Eq. (30):

−
𝑈2
𝜃
𝑟

⏟⏟⏟
dded mass

−2
𝑈2
𝜃
𝑟

⏟⏟⏟
Pressure gradient

−
3𝐶𝐷
4𝑅

|�̇�|�̇�
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Drag

+ 𝑟�̇�2

⏟⏟⏟
Centrifugal

= 0, (20)

where the azimuthal flow velocity 𝑈𝜃 has been shown to be mostly
identical to the bubble azimuthal velocity 𝑟�̇�. The added mass and
centrifugal components can cancel out each other:

2
𝑈2
𝜃
𝑟

= −
3𝐶𝐷
4𝑅

|�̇�|�̇�. (21)

he bubble radial velocity can then be deduced from the azimuthal
low velocity and the radial position of the bubble. The result is similar
o Oweis et al. (2005), but the roles of added mass and centrifugal
orces in Eq. (19) are highlighted.

To test the limits of the proposed simplifications, two formulations
or both the azimuthal velocity (ideal and Lamb-Oseen) and the drag
oefficient (Stokes and Schiller) are applied. This results in four possible
epresentations of the radial velocity, but the combination of the ideal
ortex and Schiller drag is not considered since the other three already
rovide sufficient insights into the modeling simplifications. These
ariations are summarized in Table 1.

Models using the Stokes drag formulation can be expressed analyt-
cally, but the model using the Schiller drag cannot. As an example,
he derivation process for the combination of the Lamb-Oseen vortex
nd Stokes drag will be shown. From the apparent radial acceleration
alance, the corresponding inward radial velocity is

̇ = −2𝑅2 𝑈2
𝜃 with 𝑈 =

𝛤∞
(

1 − 𝑒−𝜍𝑟
2∕𝑟2v

)

. (22)
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9𝜈 𝑟 𝜃 2𝜋𝑟
The capture time, with some tedious integration, is thus

𝑡c = ∫

𝑟cap

𝑟0

1
�̇�
d𝑟 =

9𝜈𝜋2𝑟4v
𝛤 2
∞𝑅2

⎛

⎜

⎜

⎜

⎝

𝑟∗4

2
+

log
(

1 − 𝑒−𝜍𝑟∗
2
)

𝜍2
− 𝑟∗2𝑒−𝜍𝑟∗

2

𝜍(1 − 𝑒−𝜍𝑟∗2 )

+
Li2(𝑒−𝜍𝑟

∗2 )
𝜍2

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

𝑟∗0

𝑟∗cap

, (23)

where 𝑟∗ is the normalized radial coordinate by the viscous radius, 𝑟cap
is the prescribed capture radius, and Li2 is known as Spence’s function
or the dilogarithm.

The Buckingham 𝛱 theorem indicates that five carefully-chosen
dimensionless parameters could describe the system as well:

𝑡∗c =
𝑡c𝑈v
𝑟v

, 𝑅∗
0 =

𝑅0
𝑟v

, 𝑟∗0 =
𝑟0
𝑟v
, 𝑟∗cap =

𝑟cap
𝑟v

, and Rev =
𝑈v𝑟v
𝜈

.

Here, the capture time is normalized by the revolution time scale of
the vortex, and the circulation is embedded into the Reynolds number
characterized by the vortex diffusion scale. Thus, the capture time could
be rewritten in a dimensionless way:

𝑡∗c =
9
4

𝜆2

Rev𝑅∗
0
2

⎛

⎜

⎜

⎜

⎝

𝑟∗4

2
+

log
(

1 − 𝑒−𝜍𝑟∗2
)

𝜍2
− 𝑟∗2𝑒−𝜍𝑟∗2

𝜍(1 − 𝑒−𝜍𝑟∗2 )
+

Li2(𝑒−𝜍𝑟
∗2 )

𝜍2

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

|

𝑟∗0

𝑟∗cap

.

(24)

In the original work of Oweis et al. (2005), the flow velocity was
simplified using an ideal vortex field with the same circulation strength.
Therefore, their capture time model was formulated similarly, but
without the highlighted terms in Eq. (24).

However, using the Stokes drag formulation limits the analysis of
large bubbles, for which the real drag coefficient reaches a plateau of
0.445 when ReB is sufficiently large, as shown in the Schiller sphere
drag formulation:

𝐶𝐷 =

{ 24
ReB

(

1 + 0.15Re0.687B
)

if ReB < 955,

0.445 if ReB ≥ 955.
(8 revisited)

Thus the combination of the Schiller drag formulation and the Lamb-
Oseen vortex is of the most interest. The Schiller drag formulation is
complex, but the radial velocity could still be easily determined by
using numerical root finding and numerical integration methods.

In this subsection, three variations of the capture time model have
been introduced, all of which are based on the apparent radial acceler-
ation balance in polar coordinates.

6.3. Comparison between model variations

This section discusses how the choices of vortex and drag formula-
tions affect capture time results.

As shown in Fig. 9, model variations using the Stokes formula-
tion significantly underestimate capture time because the Stokes drag
coefficient is relatively low in the high ReB region, resulting in a
sizeable inward radial velocity due to the pressure gradient (Eq. (21)).
On the other hand, including the Lamb-Oseen vortex in the model
improves accuracy because the pressure gradient of an ideal vortex
differs significantly from that of a Lamb-Oseen vortex, especially within
the viscous core.

In summary, simplification of the model using either an ideal vortex
or the Stokes drag can significantly underestimate the capture time.
Therefore, only the combination of the Lamb-Oseen vortex and the
Schiller formulation, which was also used in the numerical simu-
lation, will be considered in the following discussions and detailed
examinations.
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Fig. 9. Comparison between capture time (𝑡c) model variations. The abscissa represents
the normalized initial release position (𝑟0∕𝑟v), and the bubbles with the radius of 0.1𝑟v
are chosen to clearly demonstrate the comparison. As mentioned in Table 1, three
model variations are presented to be compared with the numerical simulation: Schiller
drag formulation with stationary Lamb-Oseen flow field (‘‘Schiller+LO’’), Stokes drag
formulation with stationary Lamb-Oseen flow field (‘‘Stokes+LO’’), and Stokes drag
formulation with ideal vortex flow field (‘‘Stokes+Ideal’’).

Fig. 10. Schematics of the bubble radial velocity profile regarding the radial position.
The bubble is of 𝑅0 = 0.007𝑟v and 𝑟0 = 3.74𝑟v. Two stages are present: the initial
acceleration and the force balance stage. The initial acceleration stage is characterized
by the straight vertical line, while the force balance phase is represented by the rest
curve resembling a small hill.

6.4. Radial velocity prediction

The capture time model aims to estimate the bubble radial velocity
based on the prescribed flow azimuthal velocity. Therefore, it is crucial
to have accurate bubble velocity profiles, particularly in terms of radial
position.

According to Fig. 10, a representative extraction of Fig. 11, the
bubble typically goes through two stages in the current simulation, the
initial acceleration stage and the force balance stage:

• Initial acceleration stage (the vertical straight lines):
9

The bubble is not initially released with forces balanced in radial
direction when performing the numerical simulation. Thus, the
bubble will continue to accelerate until the relative radial velocity
becomes high enough for the drag force to be comparable to the
inward force in the simulation. Note that the stage results from
the absence of proper initial kinematic conditions, which requires
further attention in future studies.

• Force balance stage (the hill-like curve):
During the force balance stage, the added mass, pressure gradient,
centrifugal, and drag forces cancel each other out, resulting in a
state of force equilibrium. This can be seen from the magnitude
of the apparent acceleration represented by the mustard yellow
line in Fig. 4(a). The bubble reaches this equilibrium from the
previous stage and remains in this state for the remainder of the
duration, as the pressure gradient changes within the bubble’s
response time.
Notably, the bubble reaches its maximum velocity at roughly
𝑟∕𝑟v = 0.66 as the pressure gradient and added mass forces reach
their maximum, previously shown in Fig. 1(a). This explains why
the peaks occur at similar magnitude and spatial location for iden-
tical bubbles even with different released point, as demonstrated
in Fig. 11.

If the model can more accurately capture the bubble velocity evolu-
tion in the scenario, it will be better able to assess the capture time. It
is expected that the capture time of small bubbles will be predicted
more accurately than that of large bubbles, due to the longer time
scale and sharper transition between two stages for small bubbles. The
following section will examine the numerical simulation and confirm
the importance of the predicted velocity profile presented here.

6.5. The capture time trend and the model limitations

Figs. 12 and 13 show the capture time comparisons regarding the
initial release position and bubble radius, respectively. Intuitively, a
bubble released closer to the vortex center will be captured more
quickly. In general, larger bubbles are also captured more rapidly than
smaller ones, due to the dominant influence of the pressure gradient
term in Eq. (30) over the drag term as the bubble radius increases.

Fig. 14 shows the effect of the remaining influencing parameter, the
core Reynolds number (which is effectively the circulation strength).
It can be seen that stronger circulation leads to faster bubble capture.
The plateau of the dimensionless capture time is due to the plateau in
the drag coefficient at high ReB, where the inward radial velocity is
proportional to the azimuthal velocity and therefore proportional to the
circulation strength to the power of one (see Eq. (21)). This can be more
clearly seen in Fig. 11, where the normalized inward radial velocities
do not change with the circulation strength for large bubbles, leading to
nearly identical dimensionless capture times for different core Reynolds
numbers.

The capture time model based on the Schiller drag can accurately
predict the capture time in most cases. This supports the assumption of
force balance in general. Additional evidence can be found in Fig. 11,
where the velocity profiles predicted by the model match the simulation
results well. However, there is a larger deviation for large bubble cases
due to the acceleration effect, which is sometimes unavoidable when
the time scale is short and the initial acceleration stage occupies a
significant portion of the total simulation time. In contrast, the small
bubble cases have a sharper transition from the initial acceleration
stage to the force balance stage, leading to better predictions of the
capture time.

The model has been validated against experimental results. Oweis
et al. (2005) measured the capture time of laser-induced bubbles en-
trapped by a line vortex. The dimensionless capture time predicted by
the current model is based on the balanced velocity from the Lamb-
Oseen vortex and Schiller drag. The comparison between the model
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Fig. 11. Radial history of normalized radial velocity regarding different circulation strengths. The model predictions (translucent shades; model variation of Schiller drag with the
stationary Lamb-Oseen vortex flow field) are compared against the numerical simulation results (the dashed lines). Lines start with different horizontal intercepts stand for bubbles
from different release positions, while the red and green colors represent large and small bubbles, respectively.
Fig. 12. Normalized capture time as a function of the release position (𝑟0) via the
analytical and numerical approaches. Only the model of Schiller drag formulation with
stationary Lamb-Oseen flow field (‘‘Schiller+LO’’) is presented. The green and red lines
represent small and large bubbles, respectively.

Table 2
Comparison of dimensionless capture time prediction from experiment and model
methods. The experiment parameters are 𝑟∗0 = 1.0, 𝑟∗cap = 0.1, Rev = 3.3 × 104.

𝑅∗
0 𝑡∗c (Exp.) 𝑡∗c (Model) Error

0.10 1.25 1.21 3.56%
0.17 0.90 0.94 4.30%

and experimental results (Table 2) demonstrates remarkable accuracy,
indicating that the assumptions of radial kinematic dominance and
force balance in the azimuthal direction are valid.

In summary, factors that lead to shorter capture times include larger
bubble size, closer initial release position, and higher pressure gradient
force. The model has limitations in cases where the acceleration is too
pronounced to neglect, such as for large bubbles, and when the initial
10
Fig. 13. Normalized capture time as a function of the bubble size (𝑅0) via the
analytical and numerical approaches. Only the model of Schiller drag formulation with
stationary Lamb-Oseen flow field (‘‘Schiller+LO’’) is presented. The green and red lines
represent far- and near-released bubbles, respectively.

Fig. 14. Normalized capture time as a function of the vortex Reynolds number (Rev =
𝑈v𝑟v∕𝜈 ∼ 𝛤∞∕𝜈) via the analytical and numerical approaches. Only the model of Schiller
drag formulation with stationary Lamb-Oseen flow field (‘‘Schiller+LO’’) is presented.
The translucent and the opaque lines stand for the far- and near-released bubbles, while
the green and red lines represent the small and large bubbles.
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acceleration stage contributes significantly to the total traveling time,
as may occur for small time scales. In spite of that, the model still
provides sufficient accuracy and insight into the capture phenomenon.

7. Conclusion

In this study, the forces acting on bubbles and the capture phe-
nomenon in a stationary Lamb-Oseen vortex flow have been investi-
gated using Lagrangian bubble tracking. The roles of the force com-
ponents were examined in detail and it was found that the pressure
gradient and added mass forces attract and trap the bubble into the
vortex core in the radial direction, while the drag and centrifugal forces
try to counter and balance out this effect. In addition, the lift force was
found to have a significant effect in the azimuthal direction, balancing
the Coriolis force and preventing underdamped behavior as the bubbles
move toward the vortex center. Without the lift force, bubbles exhibit
erratic behavior.

Considering the observed balance of forces, a capture time es-
timation methodology has been developed. Three factors that have
a deterministic effect on the capture time were identified: the normal-
ized initial bubble radius, the normalized initial release location, and
the vortex Reynolds number. The numerical results showed that larger
bubbles and those released closer to the vortex center are captured
more quickly, and that a higher vortex Reynolds number leads to a
shorter capture time. Furthermore, the developed model was proven
more accurate than what had been presented in previous published
studies since it incorporates a more complete description of the relevant
physics.

The proposed force balance mechanism and capture time model
were both found to show good agreement with the numerical simu-
lation and experimental results. This study provides insight into the
conditions that lead to the tip vortex cavitation inception and can
inform future research in this area. A potential application of the
developed capture time model is to predict the tip vortex cavitation
hotspot by inferring the downstream length from the capture time. On
the other hand, the force analysis could assist to explain the phenomena
observed in numerical simulations or experiments. Future work should
address the limitations of the current numerical simulation, focusing
mainly on replacing the simplified vortex model with a more realistic
representation of a tip vortex flow. A broader range of the chosen initial
conditions more closely corresponding to cavitation tunnel conditions
should also be investigated.
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Appendix A. Planar mechanics in polar coordinates

A minimal description of the polar coordinate as a preliminary is ad-
dressed. For further information, readers are referred to the textbooks
in dynamics; see Hibbeler (2016) for example.

Two position-dependent unit vectors characterize the particle mo-
tion in the description of polar coordinates: an outward-pointing radial
direction and a counter-clockwise azimuthal direction. The position
vector, 𝐫, is defined in

𝐫 = 𝑟�̂�𝑟, (25)

where �̂�𝑟 = cos 𝜃�̂�+sin 𝜃𝐣 in the Cartesian coordinate. The velocity vector
reads

𝐯 = d
d𝑡
𝐫 = �̇��̂�𝑟 + 𝑟 ̇̂𝐞𝑟 = �̇��̂�𝑟 + 𝑟�̇��̂�𝜃 , (26)

here, from their geometrical relationship,
d
d𝑡
�̂�𝑟 = �̇��̂�𝜃 , (27)

d
d𝑡
�̂�𝜃 = −�̇��̂�𝑟. (28)

ifferentiating the velocity formulation yields the acceleration

= d2

d𝑡2
𝐫 =

(

�̈� − 𝑟�̇�2
)

�̂�𝑟 +
(

𝑟�̈� + 2�̇��̇�
)

�̂�𝜃 . (29)

herein it contains not only the standard second derivatives of the
oordinate axes but also the fictitious term, or the so-called inertial
ccelerations: 𝑟�̇�2 and −2�̇��̇�, representing the centrifugal and Coriolis
ccelerations, respectively. One could regard the Coriolis force as the
ffect of the conservation of the angular momentum: if the bubble
oves toward the center, the term will accelerate �̇�. The accelera-

ion without the inertial terms is called the ‘‘apparent acceleration’’,
hile the total is named ‘‘absolute acceleration’’. The terms should be
istinguished carefully in the acceleration analysis.

ppendix B. Simplified bubble motion equation

The development of the capture time model requires a simplification
orm of the bubble motion equation. Still, the equation applied for
he Lagrangian bubble tracking is still in the original form, i.e., the
implified equation is not implemented. In the current case, the bubble
ass is significantly smaller than the added mass, and the added mass

oefficient is one-half because of the assumed spherical bubble. Eq. (6)
ould be then simplified into a form of acceleration components via
ividing the equation with the added mass (𝐶AM𝜌𝑉B):

d𝐔B
d𝑡

= −2𝛁𝑃
𝜌

− 𝛁𝑃
𝜌

+ 3
4
𝐶𝐷
𝑅

|

|

𝐔 − 𝐔B
|

|

(𝐔−𝐔B)+(𝐔−𝐔B)×𝝎+ 3�̇�
𝑅

(𝐔−𝐔B).

(30)

The right-hand side of the equation includes pressure gradient accel-
eration, the flow component of added mass acceleration, drag accel-
eration, lift acceleration, and Kelvin impulse acceleration components,
respectively.
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