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Abstract. Despite the significant advancements in computer vision mod-
els, their ability to generalize to novel object-attribute compositions re-
mains limited. Existing methods for Compositional Zero-Shot Learning
(CZSL) mainly focus on image classification. This paper aims to enhance
CZSL in object detection without forgetting prior learned knowledge.
We use Grounding DINO and incorporate Compositional Soft Prompting
(CSP) into it and extend it with Compositional Anticipation. We achieve
a 70.5% improvement over CSP on the harmonic mean (HM) between
seen and unseen compositions on the CLEVR dataset. Furthermore, we
introduce Contrastive Prompt Tuning to incrementally address model
confusion between similar compositions. We demonstrate the effective-
ness of this method and achieve an increase of 14.5% in HM across the
pretrain, increment, and unseen sets. Collectively, these methods pro-
vide a framework for learning various compositions with limited data,
as well as improving the performance of underperforming compositions
when additional data becomes available.

Keywords: compositional zero-shot learning · prompt tuning · incre-
mental learning.

1 Introduction

Although humans have never seen a blue apple, they can easily picture it. This is
due to the inherent human ability to generalize to novel concepts by combining
the known entity "apple" with the color "blue." However, do computer vision
models possess this capability? This question has motivated the development of
Compositional Zero-Shot Learning (CZSL) [5, 21, 22, 26]. In CZSL, the goal is
to recognize unseen object-attribute combinations, referred to as compositions,
based on the compositions seen during training. For this, models should under-
stand the attributes and objects that compose these compositions to generalize
to all possible compositions.

Vision Language Models (VLMs), pretrained on large-scale image-text pairs,
are promising for CZSL due to their ability to understand the relationship be-
tween the visual content and the textual description [16, 22, 26]. For object de-
tection, VLMs such as Grounding DINO [10] and GLIP [7] learn to associate
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regions of text with regions of images by pulling the embeddings of paired im-
age regions and text descriptions close while pushing others away [25]. These
models perform cross-modality fusion throughout the whole architecture, which
makes the textual features image-aware and the visual features text-aware. Liu
et al. [10] argue that VLMs benefit from frequent cross-modality fusion, making
Grounding DINO superior to GLIP. Therefore, throughout this paper, we will
solely focus on Grounding DINO.

Unfortunately, these models tend to be biased towards object categories
rather than attributes, which makes it suffer from feature misalignment when
used directly for attribute recognition [3]. Fine-tuning VLMs can solve this but
often leads to catastrophic forgetting of prior knowledge [28], thereby compro-
mising their generalization ability. To address this, we explore how to fine-tune
VLMs to perform well in CZSL without forgetting any prior knowledge. Nayak et
al. [15] introduced Compositional Soft Prompting (CSP), which combats catas-
trophic forgetting by adding auxiliary tokens for all words in a given dataset
and training only these tokens. CSP improves model performance in CZSL for
image classification. We incorporate CSP in Grounding DINO, to leverage it for
object detection.

We consider CSP as a baseline and improve it for CZSL by introducing Com-
positional Anticipation (CA). CA consists of two components: Compositional
Smoothing and Compositional Independence. Compositional Smoothing antici-
pates novel object-attribute compositions by assigning soft labels when predic-
tions are partially correct, e.g. the object is correct but the attribute is different.
This approach deviates from conventional Label Smoothing [20], which assigns
soft labels to all classes. Compositional Independence disentangles objects from
attributes through Separation and Decorrelation. Separation introduces a sepa-
ration loss to maximize the distinction between object and attribute classes by
applying intra-class separation within objects and attributes and an inter-class
separation between objects and attributes. Decorrelation minimizes the correla-
tion between objects and attributes to reduce dependency between the two.

For incremental learning on newly added compositions, we use prior knowl-
edge to address specific mistakes related to confusion between similar composi-
tions. Inspired by recent developments in prompt tuning [17, 29, 30], we introduce
a novel method called Contrastive Prompt Tuning, specifically tailored for object
attributes. Contrastive Prompt Tuning addresses cases where the model confuses
similar compositions, such as mistaking a blue apple for a red apple, by adding
a trainable prompt in front of the confused class: "is not red apple but is blue
apple". This approach utilizes our prior knowledge to harness the ability of a
VLM to exploit language.

In summary, our main contributions are:

1. We incorporate CSP [15] into Grounding DINO [10] and extend it with
Compositional Anticipation. Compositional Anticipation consists of:
– Compositional Smoothing, which assigns soft labels when predictions are

partially correct.
– Compositional Independence, which disentangles objects from attributes.
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2. We develop Contrastive Prompt Tuning, a method that adds a learnable
prompt for compositions that are confused with each other during training.
This technique harnesses the power of language and our understanding of
the model to improve performance beyond simply training with additional
data.

2 Related Work

In this section, we review literature related to our work. We cover Composi-
tional Zero-Shot Learning (CZSL), Prompt Tuning in Vision-Language Models
(VLMs), and Class Incremental Learning (CIL). Our research focuses on im-
proving the CZSL capabilities of Grounding DINO [10], a VLM designed for
object detection, by utilizing prompt tuning. Additionally, we address underper-
forming compositions in a class-incremental manner to further improve model
performance.

Compositional Zero-Shot Learning The main objective of CZSL is to rec-
ognize unseen compositions from the compositions encountered during training.
In CZSL, individual objects and attributes are referred to as primitives. Misra
et al. [13] use a limited set of compositions to learn linear classifiers for each
primitive. Then, they learn a transformation network that takes these classifiers
as input and composes them to produce a classifier for their combination. Since
then, multiple works [8, 12, 14, 19] have been proposed to tackle the CZSL task.

Recent works focus on adapting pretrained VLMs for CZSL by fine-tuning
primitive tokens. While CSP [15] only trains these tokens, others [11, 21] also
introduce prompt disentangled tuning. This technique addresses entanglement,
where optimizing one primitive’s embedding affects another. Prompt disentan-
gled tuning divides the process into three phases with different prompts: one
for the entire composition, one for the attribute, and one for the object. This
ensures attributes and objects learn their optimal parameters independently.

While [11, 21] improve upon [15] with an average performance increasement
of 1.7% and 2.3%, respectively, the gains are marginal relative to the increased
complexity. Our work is closely related to [11, 15] as we adapt CSP for object
detection and address entanglement through Compositional Independence.

Prompt Tuning in VLMs Ever since CLIP [16] demonstrated that prompt
templates such as “a photo of a [CLASS]” improve the results of VLMs com-
pared to using only the classname, several other works [17, 24, 29, 30] have been
introduced to replace the hand-crafted prompt with learnable soft prompts.
CoOP [30] introduces soft prompts that are shared across all classes, resulting in
prompts like [v1], [v2], . . . [vM ] for all images. CoCoOp [29] improves upon this by
proposing soft prompts that are image-conditioned, generating prompts such as
[v1(x)], [v2(x)], . . . [vM (x)] for each image x. Building upon these advancements,
Rao et al. [17] use contextual information from the image to prompt the language
model.
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Our work is closely related to these works but is unique in its focus on
improving the performance of confused compositions using learnable prompts
that are initialized based on our knowledge of the model’s errors.

Class Incremental Learning Class-Incremental Learning (CIL) refers to learn-
ing new classes while retaining previously learned classes [27, 28]. In typical CIL
scenarios, learning occurs through a sequence of training tasks, each of which in-
troduce new classes without any overlap of the classes from previous tasks. The
main challenge is avoiding catastrophic forgetting, where learning new classes
leads to a loss of knowledge from previous tasks. Our approach bears resem-
blance to Blurry CIL [1, 2], where former classes can be revisited during train-
ing. Similarly, we train incrementally with underperforming compositions while
allowing former compositions to be revisited.

3 Method

3.1 Problem Definition

Compositional Zero-Shot Learning We follow [21, 22, 26] and formalize the
CZSL task as follows. Let A denote the set of attributes, and O the set of
objects, and C = A × O the set of all compositions. T = {(xj , cj)}Nj=1 denotes
the train set where xj ∈ X is a sample in the input (image) space X and
cj ∈ Cs is a composition in the subset Cs ⊆ C. The seen set Cs ⊆ C consists
of all compositions encountered during training, whereas the unseen set Cu ⊆ C
consists of compositions not seen during training. Let Cs and Cu be two sets such
that Cs ∩ Cu = ∅. While Cs and Cu are disjoint, the objects Ou and attributes
Au are defined such that Ou ⊆ Os and Au ⊆ As

Catastrophic Forgetting VLMs, such as Grounding DINO [10], are known for
their ability to generalize well across diverse tasks due to the extensive and var-
ied data used during pre-training. However, fine-tuning these models on a new
dataset often compromises their generalization capability, as the rich features
learned during pre-training are replaced by features specific to the new dataset.
This can lead to catastrophic forgetting, where the model’s performance on pre-
viously learned tasks significantly deteriorates. In the context of CZSL with
VLMs, catastrophic forgetting is particularly problematic. While the model may
perform well on the specific compositions present in the new dataset it was fine-
tuned on, it risks becoming overly specialized. This specialization may result in
a model that loses its ability to generalize to other compositions, objects, or con-
cepts, and instead becomes exceptionally good at predicting the compositions
seen during training. Such a limitation is especially undesirable for open-set ob-
ject detectors like Grounding DINO, which are meant to recognize a wide range
of concepts.
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3.2 Incremental CZSL

In practical settings, models often encounter new data or need to improve per-
formance on underperforming compositions after the initial training phase. To
address this, we introduce an increment set Ci ⊆ C to CZSL. Let Cp be the set
used for the initial fine-tuning of the model, with Cp = Cs. After introducing
Ci, the set of seen compositions becomes Cs = Cp ∪ Ci. The increment set Ci
consists of compositions introduced after the initial fine-tuning to improve per-
formance on underperforming compositions. Improving these underperforming
compositions with additional compositions is challenging because Cp is designed
to cover A and O with the minimum number of compositions. Extending Cs with
Ci makes the attributes and objects in Ci overrepresented in Cs, which can bias
the model towards these attributes and objects. In this paper, we focus solely on
improving performance on compositions cj ∈ C without extending the attribute
set A or the object set O.

Fig. 1: Our method anticipates unseen, future object-attribute compositions
through Compositional Independence and Compositional Smoothing. Forgetting
is mitigated by creating auxiliary tokens for the language embeddings and refin-
ing only these tokens. Errors in compositions are incrementally corrected using
Contrastive Prompt Tuning, which contrasts confused compositions.
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3.3 Compositional Soft Prompting

To prevent catastrophic forgetting in Grounding DINO [10], we follow CSP [15]
and modify it for object detection. Objects and attributes that form compositions
are treated as learnable tokens within the VLMs vocabulary. Each attribute
aj ∈ A and each object oj ∈ O is represented as an auxiliary token taj

and toj
respectively, where taj

, toj ∈ Rd, with d being the dimension of the vocabulary
embedding. During training, only these auxiliary tokens are tuned, resulting in
(|A|+ |O|)× d learnable parameters.

To illustrate, CSP creates auxiliary tokens for each attribute and object such
as tblue for the attribute "blue" and tapple for the object "apple". These tokens
are adjusted during training while the rest of the weights, such as those of the
encoder and decoder in Grounding DINO, remain unchanged. By doing this,
CSP prevents catastrophic forgetting and preserves the pretrained weights of
the model.

3.4 Compositional Smoothing

To combat bias during training for Cs, where the model becomes overly confident
with the seen classes, we assign soft labels rather than hard labels (0 and 1) in
the classification loss. This is referred to as Label Smoothing [20], and it prevents
the model from becoming overly confident in its predictions, thereby improving
its generalization capability. Conventional Label Smoothing adjusts the target
labels by distributing a small portion of the probability mass to all other labels.
For a given true label y in a classification problem with k classes, the smoothed
label ysmooth is defined as:

ysmooth = (1− ϵ)y +
ϵ

k
, (1)

where ϵ is the smoothing parameter, and the term ϵ
k distributes the smoothing

equally among all classes.
We deviate from conventional Label Smoothing [20] and assign soft labels

based on the correctness of the object, attribute, or the entire composition. We
refer to this as Compositional Smoothing. Let pO, pA, and pC represent the prob-
abilities for object, attribute, and overall composition predictions, respectively.
For a given true composition ct composed of object ot and attribute at, and
predicted composition cp composed of object op and attribute ap, the smoothed
label yo,a is defined as:

yo,a =


pO if op = ot ∧ ap ̸= at,

pA if ap = at ∧ op ̸= ot,

pC if ap = at ∧ op = ot,

0 otherwise.

(2)

Compositional Smoothing ensures that there is a difference between having par-
tial correctness and no correctness in the prediction, guiding the model to learn
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what the compositions are composed of rather than learning the compositions
themselves. This, in turn, should lead to better performance on Cu.

Figure 1 (top right) illustrates Compositional Smoothing. For a given ground
truth label (a1, o1), predictions where both the attribute and object are correct
are shown in black, and the smoothed label becomes pC . Partial correctness is
depicted in gray, with the smoothed label being either pO or pA. When both the
object and attribute are completely wrong, no smoothing is applied.

3.5 Compositional Independence

In CZSL, it is important to disentangle objects from attributes and have clear
distinctions withing each category. For example, a cube and a cylinder should
be easily distinguishable to prevent confusion. Additionally, colors should be
distinguished from specific objects, such as cubes, to ensure their independence.
This prevents similar attributes or objects to be confused with each other and
helps the model treat attributes and objects as distinct concepts.

We achieve this independence through two components: Separation and Decor-
relation. Separation enforces orthogonality within the embeddings of objects
and attributes and maximizes the distance between their mean embeddings.
Decorrelation minimizes the correlation between the embeddings of objects and
attributes. This is achieved using the Hilbert-Schmidt Independence Criterion
(HSIC) [4], a kernel statistical test commonly used to measure independence
between two random variables, which proved to be effective for CZSL image
classification [18] and is leveraged here for object detection.

Separation To help the model differentiate between similar attributes or ob-
jects, we introduce an orthogonality loss. We achieve orthogonality within the
groups of attributes and objects by minimizing the average absolute similarity
between the normalized embeddings within each group:

Lorth(E) =
1

|E|2 − |E|

|E|∑
i=1

|E|∑
j=1
j ̸=i

|ei · ej | (3)

where E is the set of normalized embeddings, and ei and ej are embeddings
within this set. The summation

∑
j=1
j ̸=i

ignores self-similarity, and 1
|E|2−|E| ensures

that self-similar terms are excluded during normalization. This orthogonality loss
is applied to both the attributes and objects:

LA = Lorth(EA) (4)

LO = Lorth(EO) (5)

where EA and EO represent the sets of normalized embeddings for the attributes
and objects, respectively.
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Additionally, to enforce a clear distinction between attributes and objects,
we ensure that the mean embeddings of attributes and objects are significantly
separated:

Ldistance = − log(∥µA − µO∥2) (6)

where µA = 1
|A|

∑|A|
j=1 eAj and µO = 1

|O|
∑|O|

j=1 eOj represent the mean embed-
dings of attributes and objects, respectively. The distance is computed using the
L2 norm between the mean embeddings of the two groups.

The total Separation loss is a weighted combination of the orthogonality and
mean separation components:

Lseparation = λ1Ldistance + λ2LA + λ3LO (7)

where λ1,λ2 and λ3 are hyperparameters controlling the contribution of Ldistance,
LA and LO to the final loss, respectively.

Decorrelation To further ensure the independence between object and at-
tribute embeddings, we introduce Decorrelation by using HSIC [4]. For an object
oj with attribute aj , we formulate the HSIC loss as follows:

Lhsic = λhHSIC(oj , aj) (8)

Here, λh is a hyperparameter that controls the contribution of the HSIC term
to the total loss.

3.6 Compositional Anticipation

Our method, which we refer to as Compositional Anticipation (CA), consists
of both Compositional Smoothing and Compositional Independence. Figure 1
shows how we implement CA in Grounding DINO [10].

3.7 Contrastive Prompt Tuning

To improve the performance of some underperforming composition after training
with Cp, we extend Cs with an additional set Ci to improve performance. Our
approach begins with analyzing the predictions to identify compositions that are
frequently confused with each other. For instance, if cj and ck are often mixed-
up, both compositions are included in Ci, and a trainable prompt is added in
front of the underperforming class(es). For example, if cj performs poorly, we
add the following prompt in front of the class: "is not ck but is cj". This prompt
contains both a negative and an affirmative component.

We refer to this method as Contrastive Prompt Tuning and it does not modify
any of the tokens present in the sets A and O. Instead, it focuses solely on the
learnable prompt, which leads to fewer changes in the performance of other
compositions and mitigates catastrophic forgetting. By doing this, we exploit
the ability of a VLM to understand language and use a semantically meaningful
initial prompt to learn to distinguish between similar compositions. This step is
depicted as Incremental Learning in Figure 1.
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4 Experiments

4.1 Evaluation

Dataset We evaluate our approach using a synthetic dataset generated following
the CLEVR framework [6]. This dataset consists of three types of objects: cube,
cylinder, and sphere. Each object is associated with six attributes: blue, red,
green, purple, brown, and yellow.

The dataset intentionally excludes non-visual attributes (e.g., heavy) and
attributes that exhibit significant variation across different objects (e.g., wet
in wet dog versus wet car). This yields a dataset that is reliable for assessing
a model’s performance in the CZSL task. Given that there are no ambiguous
attributes present in this dataset, a poorly performing model would indicate
that the model is bad in the CZSL task.

Train-Test Split Throughout this section, all experiments for the CZSL task
are trained using the set: {red cube, blue cube, green sphere, purple sphere,
brown cylinder, yellow cylinder} as Cp with 10 shots per composition. This split
ensures that Cs covers the entire set of objects O and attributes A. Testing is
performed with the whole set of composition C with 60 samples per composition.

Evaluation Metric We adopt the NMS mAP evaluation metric introduced
by Yoa et al. [23]. In this work they argued that the traditional COCO mAP
[9] is deceiving for open vocabulary detection models, such as Grounding DINO
[10]. Consider an image annotated with two ground-truth instances: a purple
cylinder and a green cylinder, assuming these are the only cylinder categories
in the model. These models tend to be able to detect and locate the presence
of all cylinders in the image, but they struggle with the contextual description.
They would predict two overlapping bounding boxes for each object, mistakenly
assigning both ’green’ and ’purple cylinder’ labels to each object. All four of
these boxes would be predicted with a high confidence score. Additionally, the
highest scoring label is not necessarily the correct one. Consequently, the AP for
each category would misleadingly be 0.50, despite the model failing to correctly
comprehend the target objects. Yao et al. [23] refer to this as the ’inflated AP
problem’.

To address this issue, Yao et al. [23] propose applying class-agnostic Non-
Maximum Suppression (NMS) before calculating the mAP. This method sup-
presses redundant bounding boxes, ensuring that only the prediction with the
highest confidence score is used in the calculation of the mAP. We adopt this
NMS mAP metric to provide a more realistic measure of our model’s perfor-
mance.

4.2 CSP base

We adapt CSP [15] and modify it for Grounding DINO [10] and this integration
serves as our baseline method. To assess its performance, we begin by training
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Table 1: Compositional Anticipation improves both object detection perfor-
mance and generalization to unseen compositions. Compositional Smoothing
contributes the most to these improvements, followed by Separation and Decor-
relation.

Compositional Anticipation (CA)

Compositional Smoothing Separation Decorrelation Seen Unseen HM

✗ ✗ ✗ 81.4 ± 7.6 4.5 ± 4.6 8.0 ± 8.1
✗ ✗ ✓ 81.3 ± 7.7 10.8 ± 6.7 18.2 ± 10.5
✗ ✓ ✗ 82.5 ± 6.8 15.1 ± 4.2 25.4 ± 6.1
✗ ✓ ✓ 84.4 ± 7.1 20.8 ± 4.7 33.1 ± 6.4
✓ ✗ ✗ 86.2 ± 6.8 64.3 ± 5.9 73.5 ± 5.3
✓ ✗ ✓ 92.4 ± 3.0 61.6 ± 5.7 73.8 ± 4.5
✓ ✓ ✗ 86.0 ± 6.1 67.7 ± 4.7 75.7 ± 5.0
✓ ✓ ✓ 88.7 ± 4.9 70.6 ± 7.4 78.5 ± 6.0

Table 2: Our model does not forget. It achieves good performance on the
fine-tuned CLEVR [6] dataset while preserving performance on MS-COCO [9],
whereas conventional fine-tuning of Grounding DINO [10] leads to forgetting on
MS-COCO.

CLEVR [6] MS-COCO [9]

Model Before After Before After

Grounding DINO [10] 23.4 91.0 ↑67.6
41.1 11.8 ↓29.3

+ CSP [15] + CA (ours) 76.6 ↑53.2 41.1 =0.0

it with Cp = C. This yields an NMS mAP of 87.2±6.8, demonstrating that good
performance can be achieved by only training the embeddings of O and A.

4.3 CZSL Comparison

We compare the CSP [15] baseline with our proposed method, Compositional
Anticipation (CA) which extends CSP with Compositional Independence and
Compositional Smoothing. The results, averaged over 13 experimental runs, are
shown in Table 1 and are denoted using the NMS mAP metric [23]. Our re-
sults show that our method substantially improves upon the CSP baseline, with
the harmonic mean (HM) between seen and unseen compositions improving by
70.5%. This improvement is predominately achieved on the unseen compositions,
which improved by 66.1%.

Additionally, we showcase that our method does not suffer from catastrophic
forgetting by evaluating its generalization ability compared to the conventional
fine-tuning of Grounding DINO [10]. We compare the results on the MS-COCO
[9] dataset before and after fine-tuning on the CLEVR [6] dataset for the CZSL
task. Table 2 shows that conventional fine-tuning of Grounding DINO [10] achieves
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Table 3: Our Contrastive Prompt Tuning is effective for incremental learning. It
improves performance across all classes including the unseen ones.

Class-Specific Tuning

Method Tunable Tokens Pretrained Increment Unseen HM

CSP O +A 88.1 ± 4.5 ↓2.9 72.9 ± 20.3 ↑13.6 0.0 ± 0.0 ↓74.3 0.0 ± 0.0 ↓71.7

+ CA O +A 80.9 ± 5.0 ↓10.1 60.5 ± 18.2 ↑1.2 76.5 ± 8.4 ↑2.1 69.6 ± 7.0 ↓2.1

CSP Oi +Ai 89.0 ± 2.3 ↓2.0 64.1 ± 20.9 ↑4.8 69.4 ± 8.3 ↓4.9 70.6 ± 8.2 ↓1.1

+ CA Oi +Ai 89.2 ± 3.9 ↓1.8 62.4 ± 19.6 ↑3.1 78.6 ± 4.9 ↑4.3 73.3 ± 9.1 ↑1.5

Compositional Prompt Tuning (ours)

Affirmation Prompt 88.8 ± 5.5 ↓2.2 82.8 ± 17.8 ↑23.5 74.8 ± 6.6 ↑0.5 80.2 ± 7.9 ↑8.5

Negation Prompt 91.2 ± 2.0 ↑0.2 81.9 ± 13.8 ↑22.6 76.6 ± 5.8 ↑2.3 82.1 ± 6.0 ↑10.4

Both Prompt 92.6 ± 1.5 ↑1.6 93.7 ± 2.1 ↑34.4 75.2 ± 5.0 ↑0.9 86.2 ± 2.1 ↑14.5
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Fig. 2: Our Contrastive Prompt Tuning method is effective in incremental learn-
ing. It improves performance on the increment compositions (in gray) while
preserving performance of the pretrained compositions (in black).

a 67.6% improvement on CLEVR, whereas our method achieves a 53.2% im-
provement. This suggests that conventional fine-tuning of Grounding DINO is
superior in CZSL. However, conventional fine-tuning of Grounding DINO leads
to a 29.3% performance drop on MS-COCO, whereas our method maintains
stable performance with no drop at all. This demonstrates that conventional
fine-tuning suffers from catastrophic forgetting, while our method does not.

4.4 Improving Incrementally

In this experiment, we incrementally learn new classes using the model initially
trained with CSP [15] extended with Compositional Anticipation. We continue
training the model using a dataset that includes both Cp and Ci.
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We explore two different fine-tuning methods: fine-tuning class-specific to-
kens and our proposed method, Contrastive Prompt Tuning. For fine-tuning
class-specific tokens, we compare CSP [15] with CSP extended with Composi-
tional Anticipation. Additionally, we conduct this fine-tuning in two ways: (1)
allowing the fine-tuning of all tokens in the sets O and A, and (2) fine-tuning
only objects and attributes present in Ci, specifically Oi and Ai. For Contrastive
Prompt Tuning, all tokens are frozen and only the prompt is fine-tuned. The
prompt is initialized with semantically meaningful information, including both
an affirmative and a negative component. For instance, if "green cylinder" is
often confused with "green cube", the prompt is initialized as "is not green
cube but is green cylinder". We also analyze the individual contributions of each
component to the overall performance enhancements.

To evaluate performance, we compare the model’s results before and after
introducing Ci. Specifically, we determine performance across the sets Cp, Ci, and
Cu. Initially, Cu is defined as C−Cp. After introducing Ci, Cu becomes C−Cp−Ci.
The results on these sets after introducing Ci are shown in Table 3, with the
absolute changes compared to the initial values indicated with arrows.

Our results show that our method, Contrastive Prompt Tuning, which fine-
tunes a prompt initialized with prior knowledge to address specific mistakes re-
lated to confusion between similar compositions, is superior to the class-specific
tuning strategy. With Contrastive Prompt Tuning, we achieve a 12.9% enhance-
ment in the HM across the pretrain, increment, and unseen sets compared to the
best class-specific tuning method. This improvement is predominately achieved
across the increment set, which improved by 31.3% compared to the best class-
specific tuning method. Furthermore, Contrastive Prompt Tuning benefits from
both the affirmative and negative components of the prompt.

Figure 2 shows the effects of Compositional Prompt Tuning on the model’s
predictions. Figure 2a shows that before incremental learning, 39% of all in-
stances of "green cylinder" are misclassified as "green cube", and all instances of
"brown sphere" are misclassified as "yellow sphere". Figure 2b demonstrates that
after applying Compositional Prompt Tuning, "green cube," "green cylinder,"
"yellow sphere," and "brown sphere" are classified correctly on all instances.

5 Conclusion

In this paper, we demonstrated that conventional fine-tuning of Grounding
DINO achieves an NMS mAP of 91.0 when fine-tuned on the CLEVR dataset for
CZSL. However, this approach suffers from catastrophic forgetting, as confirmed
by a 29.3% decrease in performance on the MS-COCO dataset post fine-tuning.
To address this, we proposed incorporating CSP into Grounding DINO to miti-
gate forgetting by only fine-tuning auxiliary tokens. However, we observed that
using CSP alone resulted in an NMS mAP of only 8.0 for the HM between seen
and unseen compositions. Therefore, we extended CSP with Compositional An-
ticipation, which improved the HM by 70.5%. While our method improves upon
the CSP baseline, it does not surpass conventional fine-tuning of Grounding
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DINO. Additionally, we introduced Contrastive Prompt Tuning to incrementally
improve compositions that are confused with each other during training. With
Contrastive Prompt Tuning, we improve performance on the HM across the pre-
train, increment, and unseen sets by 12.9% compared to the best class-specific
tuning method.

Given these findings, we recommend conventional fine-tuning of Grounding
DINO for applications where performance on a specific dataset is prioritized,
and our method for scenarios emphasizing overall performance across datasets.

Considering that Grounding DINO excels in CZSL, likely due to the cross-
modality fusion between image and text embeddings and our proposed methods
involve anticipating how the embeddings should be positioned in the embedding
space. Having demonstrated the benefits of our approach for CZSL, further inves-
tigation into the positioning of embeddings in the fused embedding space could
potentially yield results approaching those achieved by conventional fine-tuning
of Grounding DINO, but without encountering catastrophic forgetting.
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Generalization in Robotic Object Detection:
GLIP vs Grounding DINO

Youssef Zahran

Abstract— In this paper, we explore the capabilities of two
SOTA VLMs, specifically Grounding DINO and GLIP, within
the context of object detection for robotic applications. We
focus on evaluating their proficiency in the CZSL task. In
CZSL, models are trained on a subset of existing compositions
(attribute-object combinations) and are expected to recognize
all existing compositions. We introduce two new datasets for
this task, Single-CLEVr and Multiple-CLEVr. These datasets
contain images of basic geometric shapes and colors, which
provide a controlled environment for evaluating the models in
CZSL. A crucial aspect of robotic applications is the range
of objects a model needs to recognize, which changes over
time. A model would benefit from learning classes incrementally
while retaining previously learned classes, referred to as CIL.
Therefore, we also investigate the effect of CIL on CZSL. Our
experiments reveal that Grounding DINO excels in the CZSL
task and significantly outperforms GLIP in this task. We also
show that Grounding DINO struggles with CIL, which in turn
negatively impacts its CZSL performance.

I. INTRODUCTION

Recent advancements in Artificial Intelligence (AI) have
facilitated the development of AI-embodied robots. These
robots are becoming more and more intelligent making them
capable for tasks beyond the traditional repetitive tasks, such
as welding and painting [1]. They can be deployed for
complex and dangerous tasks, such as disabling explosives
or dealing with radioactive materials [2]. But, their usage
is not limited to high-risk fields; they can be deployed in
sectors such as healthcare [3], agriculture [4], et cetera.

A fundamental aspect of enhancing the capabilities of
these robots involves their interaction with the environment
and the ability to adapt their behavior to different situations.
An important component in this adaptive mechanism is the
understanding of attributes. Following [5], attributes are
defined as high-level, semantically meaningful properties
that characterize objects. Understanding and recognizing
these attributes allow robots to engage in more sophisticated
tasks, such as robotic grasping, a crucial task in robotic
manipulation.

Yang et al. [6] successfully trained a model to recognizes
objects based on attributes such as color and basic geometric
shapes (like spheres or cubes). During deployment, the robot
is able to grasp novel, unseen objects by describing them by
their visual characteristic; for example an apple is described
as a ’red sphere’. Furthermore, the recognition of attributes
impacts the behavior of robots, for instance a robot has
to exert different amount of force grasping a metal object
compared to a glass object. This demonstrates the practical
benefit of attribute recognition in robotic interactions, em-
phasizing the critical role of attributes in robotic perception.

The concept of attribute learning has been an area of
interest. Generally speaking, one model is trained to identify
and distinguish various attributes, while a separate model
is trained to recognize objects. However, the true challenge
is achieving this with a single, unified model. Such a
model, capable of detecting both objects and their attribute
simultaneously rather than separately, is more likely able to
generalize to unseen situations.

Yet, models are often trained with datasets that do not
cover all possible attribute-object combinations. For exam-
ple, training a model with the classes ’red mug’ and ’blue
cup’ does not imply that the model is able to recognize new
combinations such as ’blue mug’ or ’red cup’.

This introduces the necessity for Compositional Zero-Shot
Learning (CZSL) [7, 8, 9, 10]. In CZSL, certain compositions
(attribute-object combinations) are not encountered during
training. However, each attribute and object is exposed at
least once in a composition during training. To illustrate,
consider a dataset with 10 objects and 20 attributes, thus
resulting in a total of 200 possible compositions. However,
in CZSL, the training dataset is selected such that each of
the 10 objects and 20 attributes is represented at least once.
Consequently, rather than needing all 200 compositions, a
minimum of 30 compositions is sufficient. During inference,
the model is expected to recognize all compositions, with
as goal to imitate the generalization ability of human beings
[9].

The top performing models in the CZSL task on well-
established benchmark datasets are vision-language models
(VLMs). CANet [11] is the best performing model on both
MIT-States [12] and UT-Zappos 50K [13], while CAILA
[14] performs best on MIT-States Generalized Split [12].
This highlights the potential of VLMs in the context of
CZSL. VLMs are models that are pre-trained on a large-scale
dataset consisting of rich image-text pairs enabling them to
understand the relationship between the visual content and
the textual information [15]. In doing so, they effectively
bridge the gap between the realms of visual and textual
information.

However, these models are designed for image classifica-
tions. No prior studies have investigated the performance of
VLMs in the CZSL task in the context of object detection.
Traditional object detection models [16, 17, 18] have two
important modules: a backbone for feature extraction and a
head for box prediction. Unlike image classification, which
assigns one or more labels to the entire image, object
detection involves localizing and classifying specific regions
within the image. This paper will explore the performance
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of two state-of-the-art (SOTA) VLMs in CZSL for object
detection: Grounding DINO [19] and Grounded Language-
Image Pre-training (GLIP) [20]. These models tend to be
biased towards object categories rather than attributes [21].
This raises questions about their effectiveness in CZSL
scenarios where such bias may pose a significant issue.

An existing challenge in object detection for robotic
application is that the range of objects a model needs to
recognize can change over time. Consider, for example, a
robot operating in a supermarket. Here, the items available
for sale change frequently. Sometimes, an item is introduced
for a short period of time, removed, and later reintroduced
again, while at other times, entirely new items are added. In
both cases, it is desirable to have a robot that can quickly
be adopted to recognize these new items. Traditionally, this
scenario would require retraining the model using the entire
original dataset, now including the new item(s). However,
this approach becomes impractical as the dataset size in-
creases. Moreover, the original data may not be accessible
anymore due to storage constraints [22, 23] or privacy issues
[24, 25].

To quickly add new objects or attributes, these models
should be capable of learning new classes incrementally
while retaining previously learned classes, referred to as
Class-Incremental Learning (CIL) [26]. A critical challenge
of CIL is catastrophic forgetting, i.e. learning new classes
leads to loss of previously learned classes [27].

This paper aims to investigate the effectiveness of Ground-
ing DINO and GLIP in CZSL within the context of object
detection for robotic applications. The goal of the CZSL task
is to recognize unseen compositions based on the learning
from seen compositions. In this context, the effectiveness
of a model is determined by its ability to generalize to
unseen compositions [7, 8, 9, 10]. Therefore, to maintain
performance consistency across the ’seen’ and ’unseen’ com-
positions, we propose that a model performing well in CZSL
should demonstrate comparable performance between these
two. To explore this further, we will evaluate the following
sub-questions:

1) Do Grounding DINO and GLIP perform well in
the CZSL task when trained with the entire dataset
directly?

2) Does CIL affect the performance in the CZSL task?
Following that, section II explains concepts that are impor-

tant for this paper, such as GLIP [20] and Grounding DINO
[19]. Section III discusses existing literature and research that
are related to this study. Section IV describes the experiments
conducted and the dataset used to investigate the research
question. Section V presents the findings of the experiments.
In Section VI, the implications of the findings are discussed
and future research work is proposed.

II. BACKGROUND

A. VLM Foundations
Joulin et al. [28] noticed that there is a correlation between

success of large networks and the size of the fully supervised

datasets on which they are trained. This begs the question:
Are fully supervised methods the most effective approach for
developing better models? Fully supervised training is time-
intensive, introduces strong biases towards specific tasks [29]
and is inefficient compared to how humans learns [30].

The core of VLMs is learning perception from supervision
contained in natural language [15]. This approach, motivated
by the availability of large quantities of data that is available,
allows models to learn passively from the rich information
present in natural language. This approach is more scalable
compared to standard crowd-sourced labeling [15]. The
introduction of CLIP [15] has caused significant attraction
towards VLMs pre-training [19, 20, 31, 32, 33].

A VLM is a deep neural network that extract image and
text features from image-text pairs. It has an image encoder
and a text encoder, which encode the image and text pairs
into image and text embeddings. The VLM pre-training
objectives can be grouped into three categories: contrastive
objectives, generative objects and alignment objectives [34]

Contrastive objectives [15, 35] learn discriminative repre-
sentations by pulling paired samples close and pushing others
far away in the feature space. Generative objectives learn
semantic features by training networks in image, text, or
cross-modal generation tasks. Alignment objectives align the
image-text pair on the embedding space. This either done via
global image-text matching or local region-word matching
[34].

B. CLIP

Like other VLMs, the core of CLIP [15] is to learn percep-
tion from supervision contained in natural language. CLIP is
trained using a batch of N image-text pairs with the objective
to match each image to its corresponding text. Figure 1 (left)
shows the steps involved in pre-training CLIP [15]. First, the
batch of N image-text pairs is separated. Next, the images
are fed into an image encoder and the texts are fed into a text
encoder. This yields N image features and N textual features.
These features are in a multi-modal embedding space, i.e
the features are from different modalities (images and text)
but share a common vector space. CLIP [15] maximizes the
cosine-similarity between the image and text embeddings of
the N correct pairs, while simultaneously minimizing the
cosine-similarity for the N2 −N incorrect pairs, all within
the multi-modal embedding space. This is known as image-
text contrastive learning.

Figure 1 (right) shows that CLIP [15] can be used as
a zero-shot classifier. For example, when evaluated on the
COCO [36] dataset, all 80 classes are presented as textual
prompts within a template structure: ”A photo of a {object}”,
where ”{object}” is replaced with the classname. CLIP
[15] determines the class by calculating the cosine-similarity
between the image embedding and each of the 80 text
embeddings. The image is then assigned the class associated
with the highest cosine similarity score.

CLIP [15] can also be fine-tuned on a specific dataset.
Here, typically initial layers are frozen to preserve the
model’s pre-trained understanding of concepts, while weights
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of the latter layers are updated to adapt to the new dataset.
During fine-tuning, the categories of the dataset are trans-
formed into textual prompts, similar to the zero-shot evalu-
ation. Now the model updates its weights using image-text
contrastive learning.

C. Open-Vocabulary Detection

Object detection is a critical component in robotic appli-
cations. These models are often trained with well-labeled
large-scale datasets such as COCO [36] and ImageNet [37].

Training with these datasets requires extensive resources,
yet the model remains constrained to a limited set of ob-
ject categories. Open-Vocabulary Detection (OVD) methods
[38, 39, 40, 41] address this constraint by using VLMs to
learn about novel categories using the weak supervision of
the largely available image-text pairs.

Zareian et al. [41] were the first to propose a framework
for OVD. First, they pre-train a model using low-cost image
caption pairs, thereby constructing a visual-semantic space.
Next, this pre-trained model is fine-tuned with specific cate-

Fig. 1: Representation of the architecture of CLIP [15]. In (1), the model is trained with image-text pairs. The cosine-
similarity is maximized for correct pairs and minimized for all others. Additionally, CLIP [15] can be used for zero-shot
prediction on a dataset by generating text prompts for each class in a dataset (2), where the classification is determined by
the highest cosine-similarity between the image embedding and the prompts (3).

Fig. 2: Representation of the unified detection and grounding framework as implemented in GLIP [20]. Traditional object
detection models assign categorical classes to detected objects, whereas GLIP [20] reinterprets detection as a grounding
task, aligning image regions/boxes with corresponding noun phrases in a text prompt. This model jointly trains an image
and language encoder to forecast accurate region-word pairings. GLIP [20] adds the cross-modality deep fusion to early
fuse information from two modalities and to learn a language-aware visual representation.
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gories on one of the costly annotated detection datasets such
as COCO [36] and ImageNet [37]. ViLD [39] uses CLIP [15]
as a teacher model to supervise student object detectors. They
were the first to evaluate on more than 1000 categories.

Bravo et al. [42] extended this OVD task to the open-
vocabulary Attribute Detection (OVAD) task. In OVAD, the
goal is to detect objects and classify their attributes within
an open vocabulary framework. This is challenging, since
in the existing image-text teachers models, e.g. CLIP [15],
the representations learned from image-text pairs tend to be
biased towards object categories rather than attributes [21].

D. GLIP
GLIP [20] unifies object detection and phrase grounding

by reformulating object detection as phrase grounding. Given
an image and a corresponding caption, the phrase grounding
task aims to ground each entity mentioned by a noun
phrase in the caption to a region in the image. Due to this
reformulation, instead of aligning each region to one of the
predefined ’c’ classes in a traditional classification head,
GLIP [20] aligns each region with one of the ’c’ phrases
present in a text prompt.

Figure 2 shows the steps involved in GLIP [20]. It starts by
inputting an image and its corresponding textual prompt into
their respective visual and text encoders. The visual encoder
is a Swin Transformer [43] and BERT [44] is used as text
encoder. The features outputted by the Swin Transformer
[43] and Bert [44] are denoted as O0 and P 0 respectively.
These outputs are then fed into a cross-modality multi-head
attention module (X-MHA), depicted as ’fusion’ in Figure 2.
Here the modalities are fused using the two-cross attention
processes. The first transforms textual feature into image-
aware features (Pt2i): the model learns which image features
are important for a specific textual feature. Simultaneously,
the second transforms image features into text-aware features
(Oi2t): the model learns which textual features are important
for a specific image feature.

After ’fusion’, the cross-informed features are added with
the features that were given as input to ’fusion’ block. These
are then given as input to a BERT [44] Layer and a DyHead
[45] module for feature enhancement, where the textual
and image features are enhanced while their dimensions are
maintained. Then, the outputs are fused again. This repeats
itself multiple times, each time making the visual features
language aware and the textual features image aware.

The final step involves generating a pre-defined number of
regions for the visual features using a Feed-Forward Network
(FFN). Finally, the feature corresponding to each region is
compared to each textual feature and a similarity score is
computed. During training, contrastive learning is used to
maximize the similarity score between the regions and text
that correspond to each other while minimizing the scores
for non-matching pairs.

E. DETR
The goal of object detection is to predict bounding boxes

and category labels for objects of interest. DEtection Trans-
former (DETR) [46] proposes a one-stage detector. Other

Fig. 3: Illustration of the DETR [46] model, which integrates
a CNN with a transformer architecture for object detection.
The CNN backbone creates a 2D feature representation
of the input image. These features are then flattened and
combined with positional encoding before being fed into the
transformer encoder. The transformer decoder then takes as
input a small fixed number of ’object queries’ which are
learned during training, and attends to the encoder’s output.
Each output of the decoder is fed into a FFN that predict the
class and bounding box.

object detectors use intermediate steps, such as the Feature
Proposal Network [47] (FPN) or defining anchors, to obtain
detections. DETR [46] simplifies this by viewing object
detection as a direct prediction problem, bypassing all of
the intermediate steps. Figure 3 shows the steps involved in
the DETR architecture. It contains three main components: a
Convolutional Neural Network (CNN) backbone, an encoder-
decoder Transformer and a FFN for the final detections.

The CNN backbone generates feature maps, which are
then flattened and fed into the transformer encoder as input
tokens. Each encoder layer follows a standard architecture
[48], and consists of a multi-head self-attention module and
a FFN. Given that self-attention is permutation-invariant,
positional encoding is added to the input of each attention
layer. These positional encodings are fixed for each input
element and enables the model to understand the relative
positions of tokens within the sequence.

Each encoder layer has a standard architecture [48]. It
consists of a multi-head self-attention module and a FFN.
Since self-attention is permutation-invariant, positional en-
coding is added to the input of each attention layer. The
encoder outputs embeddings. Next, the decoder receives N
input embeddings, referred to as ’object queries’. These
’object queries’ are initially randomly initialized but are
learned during training. To ensure that the decoder becomes
permutation variant, the N ’object queries’ are constrained
to be distinct from each other. Also, embeddings generated
by the encoder are also fed into the decoder. The decoder,
in turn, outputs N embeddings, which are then input into an
FFN. This FFN predicts N bounding boxes, which, along
with the class labels, includes ∅ that denotes the absence of
an object.

F. Grounding DINO

Grounding DINO [19] is built upon DINO [49]. DINO
[49] is a DETR-like model [46]. It replaces the CNN back-
bone of traditional DETR [46] with the Swin Transformer
[43]. DINO [49] also introduces a mixed query selection
method. Where traditional DETR [46] only has learnable
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Fig. 4: The framework of Grounding DINO [19]. Similar to
GLIP [20], Grounding DINO [19] phrases object detection
as a grounding task.

’object queries’, the queries in DINO [49] contain two parts:
a content part and a positional part. The positional part is
formulated as dynamic anchors [49] and these are initialized
with a subset of the encoder outputs. The content queries
are randomly initialized and are set to be learnable during
training.

Grounding DINO [19] follows GLIP [20] and reformulates
object detection as a phrase grounding task. In GLIP [20],
the text and vision modalities are fused in the neck of the
network. Liu et al. [19] argue that more feature fusion in the
pipeline enables the model to perform better. The transformer
based architecture of Grounding DINO [19] is similar to
language models, making it easier to fuse cross-modality
features in its whole pipeline.

Figure 4 shows the Grounding DINO framework. It con-
sists of image and text backbones, a Feature Enhancer,
a Language-guided Query Selection and a Cross-Modality
Decoder. The image backbone is a Swin Transformer [43]
and BERT [44] is used as the text backbone.

The Feature Enhancer block is the encoder of the archi-
tecture and is responsible for cross-modality feature fusion.
It consists of multiple feature enhancer layers. Block 2 of
Figure 4 illustrates what happens inside a feature enhancer
layer. It shows that fusion between the modalities is per-
formed twice within each layer. In the Image-to-text Cross-
Attention block, the model learns which part of the textual
input is relevant for a specific visual feature. In the Text-to-
image Cross-Attention block, the model does the opposite:
it learns what parts of the image are important for a specific
textual feature. This is inspired from the X-MHA module of
GLIP [20].

As mentioned in section II-E, a DETR [46] decoder
takes ’object queries’ as input. Following DINO [49], the
’object queries’ in Grounding DINO [19] contain two parts:
a content part and a positional part. Grounding DINO [19]
uses the Language-guide Query selection module to initialize

the positional part of the ’object queries’ and they refer to
them as cross-modality queries. Here, a similarity score for
each image and text feature is computed. Then, the maximum
score for each image feature across all text features is
found. Following this, the top K indices of the highest
scoring image features are returned. These indices are used
to initialize the positional queries with the correct image
features.

The Cross-Modality Decoder takes as input the output
embeddings of the encoder (Feature Enhancer) and the cross-
modality queries. Block 3 illustrates what happens inside
a decoder layer. As in a feature enhancer layer, there is
an Image Cross-Attention block and a Text Cross-Attention
block. These are responsible for fusing the queries with
the modalities. Each decoder layer outputs updated cross-
modality queries that are used as input for the next layer.

Grounding DINO then compares the queries outputted by
the decoder with the text features outputted by the encoder
(Feature Enhancer). The dot product is computed between
each text feature and query. Contrastive loss is used to
match the query with its text feature. In order to obtain the
predictions corresponding to each query, the queries are also
fed into a FFN that predicts bounding boxes. This step is not
shown in Figure 4.

III. RELATED WORK

A. Compositional Zero-shot Learning

CZSL aims to recognize unseen object-attribute pairs
(compositions) with prior knowledge of known composi-
tions. In CZSL, individual attributes and objects are referred
to as primitives. Misra et al. [50] composes classifiers
from different types of primitive visual concepts. During
training, they use a limited set of compositions to learn
linear classifiers for each primitive. Then, they learn a
transformation network that takes these classifiers as input
and outputs a classifier for their composition. At test time,
this transformation is used to generate classifiers for unseen
compositions.

The method introduced by Misra et al. [50] highlights an
important step in the development of CZSL models. How-
ever, this work and others such as [51] approach CZSL within
a closed compositional space, i.e. they predefined all possible
compositions. For example, the widely used MIT states
[12] covers less than 6% of the whole compositional space.
Mancini et al. [52] proposed the more realistic Open World
CZSL (OW-CZSL), where no constraints were imposed on
the search space. They also proposed CompCos [52] for this
task. CompCos [52] embeds both images and compositional
representations into a shared semantic space, where scores
are computed between images and compositions with the
cosine-similarity. However, in OW-CZSL, the model has
to figure out implausible compositions (e.g. ripe dog) and
discard them. This caused existing models to suffer severely
in performance on the OW-CZSL.

Moreover, existing methods suffered from grasping the
contextually between attributes and objects; visual appear-
ance of attributes can change significantly with different
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objects. For instance, the attribute ’old’ has a different visual
appearance in ’old car’ compared to in ’old cat’. This has
resulted in studies that emphasize the importance of context-
aware approaches in CZSL [53, 54, 9]. The most popular
solution is disentanglement, in which independent layers are
allocated to extract intermediate visual representations of
attribute and object.

B. VLMs for CZSL

Several studies [9, 55, 56, 57] have developed methods to
enhance VLMs for the CZSL task. For instance, Nayak et
al. [57] introduce compositional soft prompting (CSP), which
forces CLIP [15] to learn the individual primitives of a com-
position. Typically, CLIP [15] is fine-tuned using prompt-
templates like ”A photo of a {object}”, where {object}
represents the object of interest. However, this method does
not necessarily encourage the model to discriminate between
the individual components of a composition. For instance,
if trained with the object ”red cup”, it would be placed as
a whole in the object placeholder, creating a single token
for ”red cup”. In contrast, CSP [57] proposes to divide
the prompt template into two trainable parts: one for the
attribute and another for the object. This modification results
in a new prompt template: ”A photo of a Attribute Object”.
Consequently, when trained with ”red cup,” the words ”red”
and ”cup” receive individual tokens. This method forces the
model to learn about each component individually, which
will aid for the CZSL task.

Want et al. [9] introduced Hierarchical Prompt Learning
(HPL), a concept similar to CSP, but with an emphasis on
learning compositional concepts in a hierarchical manner.
They use three hierarchical embedding spaces designed to
model attributes, objects, and their compositions. They refer
to them as three distinct ’experts’. For instance, when analyz-
ing an image of a ’purple apple’, the composition expert may
prefer to predict it as a ’red apple’ or a ’purple eggplant’,
since these samples are more common during training. On
the other hand, the object and attribute experts are more
likely to correctly identify it as an ’apple’ with the attribute
’purple’. Each expert uses a different prompt template: for
attributes, it’s ”a photo of a {attribute} thing”; for objects, ”A
photo of the {object}”; and for compositions, ”A photo of
a {attribute} {object}”. This method achieves better results
than CSP.

C. Class-Incremental Learning

CIL refers to learning new classes incrementally while
retaining previously learned classes [26, 27]. In typical CIL
scenarios, learning occurs through a sequence of training
tasks, each of which introduce new classes without any over-
lap of the classes from previous tasks. The main challenge is
avoiding catastrophic forgetting, where learning new classes
leads to a loss of knowledge from previous tasks [27]. Several
CIL methods have been proposed to reduce catastrophic
forgetting and they are classified into data-centric, model-
centric and algortihm-centric methods [27]. The intuitive idea

behind these methods is to make sure that optimizing the
model for new classes will not hurt former ones.

Data-centric methods [58, 59, 60] seek help from former
data to reduce catastrophic forgetting. An intuitive way to
resist forgetting is by reviewing former classes [58, 59]. This
approach, often referred to as Blurry CIL [61, 58, 62], re-
duces the learning difficulty since former classes are allowed
to be revisited [27]. Other works [60, 63] build regularization
terms with the former classes.

Model-centric methods [64, 65, 66, 67] tackle catastrophic
forgetting by focusing on the evolvement of the model
during training tasks. Some work [64, 65, 66] focus on
expanding the network with each new training task. The
idea behind this is that deep neural networks produce task-
specific features [27]. For instance, when a model is trained
on vehicles, it learns to represent features like wheels and
windows. However, when the model is updated with new
classes containing cats, it starts to represent features like
whiskers and fur patterns. Model-centric methods assume
that the capacity of a network is finite and therefore adapting
to these new features would override the old ones and result
in forgetting [27].

Early works [64, 65] added neurons when the represen-
tation ability is not enough to capture new classes. DER
[66] duplicates the backbone network per task for stronger
representation ability. However, having a backbone per task
increases memory requirements significantly. MEMO [67]
introduced a more memory-efficient strategy. They observed
that the shallow layers of the backbones tend to be more
generalizable, whereas deeper layers are more task-specific.
Therefore, expanding shallow layers is not worth the memory
increase. MEMO [67] proposes to address this by decoupling
the backbone at the middle layers, dividing it into two types
of blocks: specialized and generalized. Unlike DER [66],
MEMO [67] only expands the specialized blocks for each
new training task. This leads to a more memory-efficient
approach.

Algorithm-centric methods [68, 69, 70] focus on algo-
rithms to maintain the model’s knowledge in former tasks.
An intuitive way is to use Knowledge Distillation (KD).
This is a method where a model (the student) is trained to
mimic the output of a previously trained model (the teacher)
[68]. The assumption here is that the teacher model already
performs well on the seen classes and the student model
would preserve this performance as it learns new classes.

Li et al. [69] are the first to successfully apply KD into
CIL. The goal is to balance between learning new classes and
remembering old classes. They achieved this by introducing
a regularization term that prompts the student model to
produce outputs similar to the teacher model for the classes
known to the teacher, while also minimizing the loss on new
classes. Following this, several other works [71, 72, 70] have
built upon this. These works are all based on the adaptation
or introduction of regularization terms into the loss function
during training.
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D. CIL with VLMs

CIL with VLMs remains a relatively unexplored field.
PROOF [26] was the first to address this. In PROOF [26],
new concepts are learned through the creation of projection
mappings. Training is splitted into sequential tasks, each
compromising a unique set of classes. For each new class,
new projections are initialized while the projections from
previous classes are frozen. The model learns projections
for both the text and image embeddings.

Liu et al. [73] modify CLIP [15] by adding a Linear
Adapter Layer after the CLIP [15] image encoder. This
Linear Adapter Layer projects the features. During training
all layers are frozen except the Adapter. They introduce a
parameter retention strategy for updating the adapter, which
is designed to mitigate forgetting. This updating strategy
relies on selectively preserving a proportion of the original
parameters based on their deviation from a dynamic thresh-
old, thus maintaining previously learned knowledge while
assimilating new tasks. This method allows for the balance
of retaining learned information and adapting to new data.

E. Evaluation Metric

Object detection studies often use the mean Average
Precision (mAP) as evaluation metric. It is defined as the
average of the Average Precision (AP) across all classes.

mAP =
1

N

N∑
i=1

APi

With N representing the number of classes. AP quantifies
the model’s precision and recall across different confidence
thresholds, calculated as the area under the precision-recall
curve:

AP ≈
K∑

k=1

(r(k)− r(k − 1)) · p(k),

Here, p(k) and r(k) denote the precision and recall at the
kth threshold, respectively, defined as follows:

precision =
TP

TP + FP

Recall =
TP

TP + FN

Yao et al. [74] argue that these metrics are deceiving for
open vocabulary detection models, such as GLIP [20] or
Grounding DINO [19]. Consider an image annotated with
two ground-truth instances: a purple cylinder and a green
cylinder, assuming these are the only cylinder categories
in the model. These models tend to be able to detect and
locate the presence of all cylinders in the image, but they
struggle with the contextual description. They would predict
two overlapping bounding boxes for each object, mistakenly
assigning both ’green’ and ’purple cylinder’ labels to each
object. All four of these boxes would be predicted with a
high confidence score. Additionally, the highest scoring label
is not necessarily the correct one. Consequently, the AP for
each category would misleadingly be 0.50, despite the model

failing to correctly comprehend the target objects. Yao et al.
[74] refer to this as the ’inflated AP problem’.

The solution to this problem is incorporating Non-
Maximum Suppression (NMS). In NMS, redundant bounding
boxes are eliminated by selecting the most relevant ones
based on their confidence scores and suppressing overlapping
bounding boxes based on IoU. Before calculating the AP,
a class-ignored NMS (C-NMS) is applied to remove the
redundant predictions. This ensures that multiple bounding
box predictions for the same object are handled appropriately
and only the prediction with the highest confidence score is
used in the calculation of the AP.

Algorithm 1 NMS-AP Metrics [74]

Require: preds: predictions
Require: GT : ground-truth

1: pickedPreds = keepPreds = []
2: for k in GT do
3: for p in preds do
4: if IoU(p, k) > 0.5 then
5: pickedPreds = pickedPreds ∪ p
6: else
7: keepPreds = keepPreds ∪ p

8: keepPreds = keepPreds ∪ C-NMS(pickedPreds)

9: mAP = AP (keepPreds,GT )
10: return mAP

IV. METHOD

A. Dataset

Despite several studies on CZSL, interpreting the results
obtained from current benchmark datasets, such as MIT-
States[12], can be difficult or even misleading. For instance,
the visual representation of the attribute ’wet’ varies in ’wet
dog’ compared to in ’wet car’. Additionally, some attributes,
such as ’heavy’, are non-visual. This introduces a degree
of ambiguity in the results. Does the model’s performance

(a)

(b)

Fig. 5: Examples of images present in the Single-CLEVr (a)
and Multiple-CLEVr (b) dataset.
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reflects its capabilities in CZSL or is it a byproduct of dataset
inconsistencies?

In response to this, we have created two new datasets:
Single-CLEVr and Multiple-CLEVr. Both of which consist
of synthetic-images that are generated following the CLEVr
framework [75]. Single-CLEVr contains images with only
one instance per image. Multiple-CLEVr contains 2 to 10
instances per image. In order to ensure the uniqueness of
each instance, the positioning of the object and the direction
of the light are slightly adjusted for every image in both
datasets.

Both datasets consist of three objects: a cylinder, a sphere
and a cube. These are simple, geometric shapes that should
be easily distinguishable by a model. Additionally, there are
six attributes: blue, red, green, purple, brown, and yellow.
These attributes behave the same across all objects. There are
a total of 18 unique compositions in the dataset, each rep-
resenting a different object-attribute combination. We have
ensured that all objects are of the same size and are made
of a non-reflective, matte material. This, along the consistent
behavior of attributes across different objects yields in dataset
that is reliable for assessing a models performance on CZSL.

Both Single-CLEVr and Multiple-CLEVr serve as test
datasets. In Single-CLEVr, each composition is presented
60 times, while Multiple-CLEVr has 300 instances of each
composition. However, only Single-CLEVr is utilized for
training, simulating a scenario where an object is placed
in front of a camera. The test set of Single-CLEVr is
employed to assess the models’ performance in a controlled
environment. On the other hand, Multiple-CLEVr tests how
well the model adapts to complex, real-world conditions.

B. Label Correction

The bounding box labels generated by the CLEVr frame-
work [75] were not tight around the object. The bounding
boxes either were too large around the object (figure 6
(a)) or too small (figure 6 (b)). We fixed this by using
Grounding DINO [19]. Both Single-CLEVr and Multiple-
CLEVr were given as input to Grounding DINO [19] with
as target class ’object’. Grounding DINO [19] successfully
produced bounding boxes that are tightly fitted around the
object. The result is shown in Figure 6 (c and d).

To assess the effectiveness of CZSL on VLMs and to
investigate the impact of CIL on these models, we have
designed two experiments. Experiment 1 focuses on eval-
uating the influence of sample size on the effectiveness of
VLMs in CZSL, while also examining the trade-off between
overfitting on the ’seen’ split and achieving generalization
on the ’unseen’ split. Whereas experiment 2 is designed to
evaluate the impact of CIL on CZSL. Experiment 1 helps to
answer the question ’Do Grounding DINO and GLIP perform
well in the CZSL task when trained with the entire dataset
directly?’ Experiment 2 helps in answering the question
’Does CIL affect the performance in the CZSL task?’. Both
experiments are evaluated on the test datasets explained in
section IV-A.

(a) (b)

(c) (d)

Fig. 6: Labels before (a and b) and after (c and d) correction.

1) Experiment 1: Sample Size Impact on CZSL: The goal
of this experiment is to assess the proficiency of GLIP [20]
and Grounding DINO [19] in CZSL. Following the protocols
described in prior work [19, 20], these models are fine-tuned
using a dataset consisting of six compositions: ’blue cube’,
’red cube’, ’green sphere’, ’purple sphere’, ’brown cylinder’
and ’yellow cylinder’, referred to as the ’seen’ compositions.
The remaining 12 compositions are considered the ’unseen’
compositions. This split ensures an unbiased distribution of
colors and objects: each color is seen once and associated
with a single object, while each object appears twice. With
this controlled dataset, a well performing model in CZSL
would demonstrate comparable performance between ’seen’
and ’unseen’ compositions.

In order to explore the impact of sample size on CZSL,
these models are trained with varying samples sizes per
composition. Additionally, by adjusting these sizes, we aim
to identify the sample size at which the performance on the
’unseen’ split begins to deteriorate.

2) Experiment 2:CIL in Grounding DINO for CZSL: The
goal of this experiment is to evaluate the impact of CIL on
the models’ ability to perform in CZSL.

This experiment consists of three distinct training pro-
cedures, each starting with the same initial weights. All
procedures use exactly the same training set as experiment 1.
Given that experiment 1 was trained with six compositions,
each procedure includes six training steps. Note that ”from
scratch” in this context refers to starting from these initial
weights.

1) In the first procedure, referred to as CIL, the model is
trained sequentially with each individual composition.
Each training step starts with the weights obtained at
the end of the previous step. It starts with fine-tuning
the model on a ’red cube’. Then, the model is
fine-tuned again, this time on a ’blue cube’. This
continues until the model has been fine-tuned with all
composition mentioned in the ’seen’ split.
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2) The second procedure, referred to as Blurry CIL, is
similar to the first, but with a significant modification.
In each training step, the composition of the previous
step is included in the current training set. As in CIL,
each training step continues from the weights obtained
at the end of previous step. It starts with fine-tuning
the model on a ’red cube’. Then, in the next step, the
training set comprises both the ’red cube’ and a ’blue
cube’. This continues, cumulatively adding each new
composition to the training set until all compositions
in the ’seen’ split have been covered.

3) The third procedure is similar to the second procedure,
but now each training step is trained from scratch.
This procedure is included to ensure that at each
training step all procedures can be compared against
the traditional way of training and therefore serves as
baseline. This procedure is referred to as traditional
learning.

C. Evaluation Metric

In this paper, we adopt the NMS-AP evaluation metric
introduced by Yao et al. [74]. In this work, they introduced
an issue known as the ’inflated AP problem’ as explained
in section III-E. The ’inflated AP problem’ is crucial for
models that are intended for applications where a robot acts
based on defections. For example, a robot might respond
differently to a detected ’green cylinder’ than to a ’blue
cylinder’. Therefore, it is important that the evaluation metric
should reflect the robot’s behavior in response to the detected
objects. For instance, if a model detects both a ’blue cylinder’
and a ’green cylinder’ for the same object, the robot will
most likely act on the detection with the highest confidence
score. The NMS-AP metric, introduced by Yao et al. [74],
aligns with this decision making since it only uses the label
with the highest confidence score. This makes NMS-AP a
suitable metric for robotic applications.

V. RESULTS

A. Experiment 1: Sample Size Impact on CZSL

Experiment 1 aims to evaluate the proficiency of GLIP
[20] and Grounding DINO [19] in CZSL and to determine
the influence of the sample size on their performance.
This experiment was performed using two datasets: Single-
CLEVr, which served both as a training and testing dataset
and Multiple-CLEVr, which is used solely for testing.

Single-ClEVr, provides a controlled setting to assess the
CZSL proficiency. Figure 8 shows the superiority of Ground-
ing DINO [19] over GLIP [20]. Figure 8 (a) shows that
training with 15 examples per ’seen’ composition results
in the best NMS-mAP score for both models. The same
conclusion is drawn from Figure 8 (b). It also demonstrates
that Grounding DINO [19] performs almost equally well on
both the ’seen’ and ’unseen’ sets when trained with this
number of examples, showcasing its effectiveness in CZSL.
On the other hand, GLIP [20] exhibits a large performance

(a) (b)

Fig. 7: An illustration of the ’inflated AP problem’ as
highlighted in [74]. On the left (a), the model detects and
locates the cylinder in the image but assigns labels for a
purple, green, and blue cylinder to the same object. The green
cylinder label is given the highest confidence score. This
reflects the model’s struggle with contextual descriptions,
such as color, despite correctly identifying the object. On
the right (b), NMS is applied and only the label with the
highest confidence score remains, which in this case is the
incorrect green cylinder.

gap between the ’seen’ and ’unseen’ sets, showcasing its
limitation in CZSL.

In addition, Figure 8 (b) shows that for sample sizes
smaller than 15 Grounding DINO [19] still achieves rea-
sonable performance. This suggests that the model can be
effectively trained in a few-shot setting and is expected to
perform well in CZSL when limited data is available.

Figure 9 presents the performance of the models when
tested on Multiple-CLEVr. Here, Grounding DINO’s [19]
peak performance significantly decreases compared to its
near-perfect results on Single-CLEVr. However, the trend
remains consistent: its performance on ’unseen’ sets is nearly
equivalent to that on ’seen’ sets. GLIP’s [20] performance
does not appear to be affected much by the increased com-
plexity of the test dataset. However, it is still outperformed
by Grounding DINO [19] on the ’seen’ compositions and has
poor performance on the ’unseen’ compositions.

Figure 8 (b) shows that training with more than 15
examples per ’seen’ composition leads to a large loss in
generalization ability on the ’unseen’ split, and it also leads
to a small decrease in performance on the ’seen’ split.
Further, Figure 9 reveals that this loss of generalization is
even more notable on the Multiple-CLEVr dataset.

This experiment shows that Grounding DINO [19] per-
forms well in CZSL when trained with the entire dataset
while GLIP [20] does not.

B. Experiment 2:CIL in Grounding DINO for CZSL

Given the poor performance of GLIP [20] in experiment 1,
experiment 2 is only conducted with Grounding DINO. The
poor performance of GLIP [20] in CZSL under a traditional
training setup implies that its performance in an incremental
setup would, at best, match it current performance. There-
fore, the focus of experiment 2 is to explore the impact of
CIL on the performance of Grounding DINO [19] in the
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(a)

(b)

Fig. 8: Results from experiment 1 on the Single-CLEVr
dataset. (a) illustrates the performance differences between
Grounding DINO and GLIP using the NMS-AP metric. (b)
depicts the performance of the models on ’seen’ versus
’unseen’ compositions, demonstrating the superior capability
of Grounding DINO in CZSL over GLIP.

context of CZSL.
We implemented three distinct training procedures, as

detailed in section IV-B.2. All training procedures in this
experiment are performed using 15 samples per composition.
This sample size was selected based on the results obtained
from experiment 1. Figure 10 shows the effects of each
training procedures on the performance. The order of training
is ’blue cube’, ’red cube’, ’green sphere’, ’purple sphere’,
’brown cylinder’, and ’yellow cylinder’. When the number
of compositions trained with is one, the model has only
been exposed to ’blue cube’. This increases incrementally
and when this number is six, it has encountered all six
compositions. At this point, a model proficient in CZSL
should be able to recognize all 18 compositions in the Single-
CLEVr dataset.

It is important to acknowledge that due to the inherent

Fig. 9: Results from experiment 1 on the Multiple-CLEVr
dataset. The performance on on Multiple-CLEVR is lower
compared to those on Single-CLEVr (fig. 8).

stochasticity in training a model, such as the randomness in
the selection of mini-batches during gradient descent, trained
models can yield different outcomes with each iteration. To
achieve reproducible results, one can fix the random seed,
ensuring that every training session with this specific seed
replicates the exact same conditions, thus producing the
identical model. However, our experiments were conducted
without fixing the random seed, leading to variability in
the outcomes. This is particularly notable when the number
of compositions trained with is one, where each training
procedure has only been exposed to a ’blue cube’. With a
fixed seed, the results would have been identical, but in our
case, they exhibit variation. While performing multiple runs
is advisable to mitigate this variability, time limitation and
GPU restriction prevented us from doing so. However, the
differences between the procedures are substantial enough
to conclude that even with multiple runs, the same findings
would likely have been obtained.

In Figure 10 (a), we can see that the performance trends
of traditional learning and Blurry CIL are similar on the
’seen’ split, though Blurry CIL exhibits lower performance,
and CIL does not seem to improve at all. At the last training
step, Blurry CIL shows a performance decline of 16.9% com-
pared to traditional learning, highlighting Grounding DINO’s
limitations under CIL. CIL, which involved training with one
composition at a time, results in the worst performance. This
can be attributed to the models’ tendency to learn shortcuts
when available. For instance, training only with a ’blue
cube’ leads the model to a suboptimal solution that does
not truly learn the attribute ’blue’ (or the object ’cube’).
This suboptimal start makes it challenging to reach the ideal
solution in the subsequent training steps.

Figure 10 (b) shows that for CIL, performance decreases
with each new training step. This aligns with its lack of
improvement during training, but in reverse: as training
progresses, the model’s ability to identify ’unseen’ composi-
tions deteriorates. Additionally, the difference in performance
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(a)

(b)

Fig. 10: Results of Grounding DINO fine-tuned on Single-
CLEVr with a sample size of 15 from Experiment 2 on the
three procedures of incremental training incremental training
performance. (a) shows Grounding DINO’s performance on
the ’seen’ compositions and (b) shows on the ’unseen’ com-
positions. Throughout the training stages, the compositions
of the ’seen’ set increase; when the number of compositions
trained with is one, it includes only the ’blue cube’, when
this is 6, it contains the ’seen’ set as defined in experiment
1. On the other hand, the ’unseen’ set undergoes a reverse
progression, initiating at 0. This point symbolizes the model’s
initial zero-shot performance, where it has not yet been
exposed to any compositions.

between traditional learning and Blurry CIL is also visible
on the ’unseen’ compositions, with Blurry CIL performing
22.2% worse than traditional learning at the final training
step. This slightly larger drop suggests that while Blurry CIL
significantly affects Grounding DINO’s overall performance,
its impact on CZSL is less significant but still existing.

Figure 11 shows that Grounding DINO’s best zero-shot

Fig. 11: Heatmaps depicting the NMS-mAP for Grounding
DINO across all compositions in zero-shot, traditional learn-
ing, CIL and Blurry CIL. Each heatmap, except for the zero-
shot, shows the performance of the final training step by
which the model has been exposed to all six compositions.
Compositions included in the training set are denoted by a
red ’X’.

performance is for ’brown sphere’ and ’yellow sphere’.
After traditional learning, the model reaches top performance
across all compositions, with a slight dip for ’purple cylin-
der’. The heatmap of CIL shows that ’yellow cylinder,’
despite being the last trained composition in CIL, registers a
score of zero. This is consistent for all compositions with the
exception of ’brown cylinder’ and ’purple cylinder,’ which
were trained in the second last and third last training steps,
respectively. In the Blurry CIL heatmap, despite each shape
being trained with twice, top performance is achieved only
for compositions involving a sphere. This indicates that the
model has difficulties in distinguishing ’cube’ and ’cylinder’
rather than color differences. For instance, ’purple cylinder’
receives a performance of zero, whereas ’purple sphere’
achieves top performance and ’purple cube’ scores decent.
This indicates that when presented with a ’purple cylinder’,
the model always misidentifies it as a ’purple cube,’ affirming
that the model recognizes the color ’purple’ even though it
had only encountered ’purple spheres’ during training. The
same can be derived from other compositions such as ’green
cylinder’ and ’green cube’.

This experiment shows that Grounding DINO performs
poorly in CZSL when trained in a CIL fashion and suffers
from catastrophic forgetting. However, training in a Blurry
CIL reduces this catastrophic forgetting and enables the
model to generalize to ’unseen’ compositions.

VI. CONCLUSION

This paper investigates the effectiveness of Grounding
DINO [19] and GLIP [20] in CZSL learning within the
context of object detection for robotic applications. For
robotic applications it is also desirable to be able to perform
well in CIL. Our findings show that Grounding DINO [19] is
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able to perform well in CZSL whereas GLIP [20] does not.
Grounding DINO [19] fuses the text and vision modalities
more often then GLIP [20], suggesting that frequent fusion
aids in the model’s generalization ability. However, Ground-
ing DINO [19] shows limitations in standard CIL, though it
shows reasonable performance in the Blurry CIL task. Our
findings indicate that Blurry CIL deteriorates the model’s
effectiveness in CZSL, indicating that improvements in CIL
could similarly affect CZSL performance.

Our study shows that there exists a large gap in the
performance of Grounding DINO [19] in CIL compared
to traditional learning. Traditional learning, while effective
within static environments, fall short in dynamic environ-
ments encountered in robotics where rapid adaptability is
desirable. CIL, on the other hand, facilitates towards models
capable of online learning.

The large performance gap identified in our study not
only marks an interesting topic for future research, but also
offers an opportunity to advance in the field of robotics.
Nevertheless, it is important for future research to consider
the improvements in CIL could negatively affect the model’s
CZSL abilities. Therefore, future research should aim at
enhancing the CIL performance of Grounding DINO [19]
while preserving its CZSL capabilities.
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twenty-thousand classes using image-level supervision,” 2022.

[41] A. Zareian, K. D. Rosa, D. H. Hu, and S.-F. Chang, “Open-vocabulary
object detection using captions,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
14 393–14 402.

[42] M. A. Bravo, S. Mittal, S. Ging, and T. Brox, “Open-vocabulary
attribute detection,” 2023.

[43] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin transformer: Hierarchical vision transformer using shifted
windows,” CoRR, vol. abs/2103.14030, 2021. [Online]. Available:
https://arxiv.org/abs/2103.14030

[44] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[45] X. Dai, Y. Chen, B. Xiao, D. Chen, M. Liu, L. Yuan, and
L. Zhang, “Dynamic head: Unifying object detection heads with
attentions,” CoRR, vol. abs/2106.08322, 2021. [Online]. Available:
https://arxiv.org/abs/2106.08322

[46] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,”
CoRR, vol. abs/2005.12872, 2020. [Online]. Available: https:
//arxiv.org/abs/2005.12872

[47] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J.
Belongie, “Feature pyramid networks for object detection,” CoRR,
vol. abs/1612.03144, 2016. [Online]. Available: http://arxiv.org/abs/
1612.03144

[48] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16
words: Transformers for image recognition at scale,” CoRR, vol.
abs/2010.11929, 2020. [Online]. Available: https://arxiv.org/abs/2010.
11929

[49] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. M. Ni, and
H.-Y. Shum, “Dino: Detr with improved denoising anchor boxes for
end-to-end object detection,” 2022.

[50] I. Misra, A. Gupta, and M. Hebert, “From red wine to red tomato:
Composition with context,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 1792–1801.

[51] T. Nagarajan and K. Grauman, “Attributes as operators: factorizing
unseen attribute-object compositions,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 169–185.

[52] M. Mancini, M. F. Naeem, Y. Xian, and Z. Akata, “Open world
compositional zero-shot learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2021, pp. 5222–5230.

[53] N. Saini, K. Pham, and A. Shrivastava, “Disentangling visual em-
beddings for attributes and objects,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2022, pp.
13 658–13 667.

[54] X. Li, X. Yang, K. Wei, C. Deng, and M. Yang, “Siamese contrastive
embedding network for compositional zero-shot learning,” in Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition, 2022, pp. 9326–9335.

[55] X. Lu, Z. Liu, S. Guo, J. Guo, F. Huo, S. Bai, and T. Han, “Drpt:
Disentangled and recurrent prompt tuning for compositional zero-shot
learning,” 2023.

[56] S. Huang, B. Gong, Y. Feng, Y. Lv, and D. Wang, “Troika: Multi-path
cross-modal traction for compositional zero-shot learning,” 2023.

[57] N. V. Nayak, P. Yu, and S. H. Bach, “Learning to compose
soft prompts for compositional zero-shot learning,” arXiv preprint
arXiv:2204.03574, 2022.

[58] J. Bang, H. Kim, Y. J. Yoo, J. Ha, and J. Choi, “Rainbow
memory: Continual learning with a memory of diverse samples,”
CoRR, vol. abs/2103.17230, 2021. [Online]. Available: https:
//arxiv.org/abs/2103.17230

[59] H. Zhao, H. Wang, Y. Fu, F. Wu, and X. Li, “Memory-efficient class-
incremental learning for image classification,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 33, no. 10, pp. 5966–
5977, 2021.

[60] J. Jiang, E. Cetin, and O. Celiktutan, “Ib-drr-incremental learning with
information-back discrete representation replay,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 3533–3542.

[61] H. Koh, D. Kim, J.-W. Ha, and J. Choi, “Online continual learning on
class incremental blurry task configuration with anytime inference,”
arXiv preprint arXiv:2110.10031, 2021.

[62] J. Bang, H. Koh, S. Park, H. Song, J.-W. Ha, and J. Choi, “Online
continual learning on a contaminated data stream with blurry task
boundaries,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2022, pp. 9275–9284.

[63] S. Tang, D. Chen, J. Zhu, S. Yu, and W. Ouyang, “Layerwise
optimization by gradient decomposition for continual learning,” in
Proceedings of the IEEE/CVF conference on Computer Vision and
Pattern Recognition, 2021, pp. 9634–9643.

[64] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning with
dynamically expandable networks,” arXiv preprint arXiv:1708.01547,
2017.

[65] X. Li, Y. Zhou, T. Wu, R. Socher, and C. Xiong, “Learn to grow:
A continual structure learning framework for overcoming catas-
trophic forgetting,” in International Conference on Machine Learning.
PMLR, 2019, pp. 3925–3934.

[66] S. Yan, J. Xie, and X. He, “DER: dynamically expandable
representation for class incremental learning,” CoRR, vol.
abs/2103.16788, 2021. [Online]. Available: https://arxiv.org/abs/
2103.16788

[67] D.-W. Zhou, Q.-W. Wang, H.-J. Ye, and D.-C. Zhan, “A model or
603 exemplars: Towards memory-efficient class-incremental learning,”
arXiv preprint arXiv:2205.13218, 2022.

[68] W. Park, D. Kim, Y. Lu, and M. Cho, “Relational knowledge dis-
tillation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[69] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions
on pattern analysis and machine intelligence, vol. 40, no. 12, pp.
2935–2947, 2017.

[70] J. Smith, Y.-C. Hsu, J. Balloch, Y. Shen, H. Jin, and Z. Kira,
“Always be dreaming: A new approach for data-free class-incremental
learning,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2021, pp. 9374–9384.

[71] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition,
2017, pp. 2001–2010.

[72] K. Lee, K. Lee, J. Shin, and H. Lee, “Overcoming catastrophic
forgetting with unlabeled data in the wild,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp.
312–321.

[73] X. Liu, X. Cao, H. Lu, J. wen Xiao, A. D. Bagdanov, and M.-M.
Cheng, “Class incremental learning with pre-trained vision-language
models,” 2023.

[74] Y. Yao, P. Liu, T. Zhao, Q. Zhang, J. Liao, C. Fang, K. Lee,
and Q. Wang, “How to evaluate the generalization of detection? a
benchmark for comprehensive open-vocabulary detection,” 2023.

30

https://proceedings.mlr.press/v139/jia21b.html
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2106.08322
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2005.12872
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1612.03144
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2103.17230
https://arxiv.org/abs/2103.17230
https://arxiv.org/abs/2103.16788
https://arxiv.org/abs/2103.16788


[75] J. Johnson, B. Hariharan, L. Van Der Maaten, L. Fei-Fei,
C. Lawrence Zitnick, and R. Girshick, “Clevr: A diagnostic dataset
for compositional language and elementary visual reasoning,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 2901–2910.

31


