
Workload Characterization and Modeling,
and the Design and Evaluation of Cache
Policies for Big Data Storage Workloads in
the Cloud

Sacheendra Talluri

Workload Characterization and Modeling,
and the Design and Evaluation of Cache

Policies for Big Data Storage Workloads in
the Cloud

by

Sacheendra Talluri
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Friday December 7, 2018 at 10:00 AM.

Student number: 4608313
Project duration: December 21, 2017 – December 7, 2018
Thesis committee: Prof. dr. ir. A. Iosup, TU Delft and Vrije Universiteit, Amsterdam

Dr. J. S. Rellermeyer, TU Delft
Dr. ir. F. A. Kuipers, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

The proliferation of big-data processing platforms has already led to radically different system designs, such
as MapReduce and the newer Spark. Understanding the workloads of such systems enables tuning and could
foster new designs. However, whereas MapReduce workloads have been characterized extensively, relatively
little public knowledge exists about the characteristics of Spark workloads in representative environments. In
this work, we focus on understanding the behavior and cache performance of the storage sub-system used
for Spark workloads in the cloud. First, we statistically characterize its usage. Second, we design a generative
model to tackle the scarcity of workload traces. Third, we design a cache policy putting our insight from
the characterization to work. Finally, we evaluate the performance of different cache policies for big data
workloads via simulation.

iii

Preface

I started this thesis naive and bright eyed, dreaming of building cool systems, because I assumed that was
research. Over the last year, my conception of research has transformed. I now see it as the process of in-
vestigation, experimentation, argumentation, and a lot more. This change was only possible with a lot of
guidance. For that, I thank my supervisor, Alexandru.

I want to thank my collaborators on this work, Alicja Łuszczak and Cristina Abad, for their insight and
contributions. I am grateful to Pieter Senster and everyone at Databricks Amsterdam for their help.

I am grateful to Erwin, Laurens, Ahmed, and all other members of the AtLarge team for their support. The
many discussion we had were always helpful and a source of joy.

I want to thank all my friends from the TU Delft Debating Club. This gratitude also extends to everyone I
call a friend in Delft. All of you have enriched my life during my stay here.

Finally, this work would not have been possible without the love and support of my parents. For that, I
am eternally grateful.

Sacheendra Talluri
Delft, November 2018

v

Contents

1 Introduction 1
1.1 System Model . 1
1.2 Problem Statement and Research Questions . 3
1.3 Approach: Science, Engineering, and Design . 4
1.4 Chapter Structure . 4
1.5 Additional Information . 4

2 Related Work 5
2.1 Systematic Survey. 5
2.2 Characterization . 6
2.3 Generative Modeling . 6
2.4 Cache Policy Design. 7
2.5 Cache Policy Evaluation. 7

3 Characterization of a Big Data Storage Workload in the Cloud 9
3.1 Overview . 9
3.2 Process for Data Collection, Processing, and Analysis . 9
3.3 Analysis of Long Term Trends . 12
3.4 Statistical Analysis of Reads . 14
3.5 Distribution across Clusters. 19
3.6 Distribution Across File Types. 20
3.7 Threats to Validity. 21

4 Generative Model For Storage Workloads 23
4.1 Overview . 23
4.2 Generation Process . 23
4.3 Curve Fitting . 26
4.4 Model Validation . 29
4.5 Performance of the Trace Generator . 32
4.6 Threats to Validity. 32

5 Design of the Approximate Read Density Cache Policy 35
5.1 Overview . 35
5.2 Cache Reference Architecture . 35
5.3 Anatomy of a Cache Policy . 36
5.4 Caching for Big Data Workloads. 37
5.5 Policy Design . 38
5.6 Approximate Histogram. 41
5.7 Implementation . 42
5.8 Limitations . 42

6 Evaluation of Cache Policies for Big Data Workloads 43
6.1 Overview . 43
6.2 Evaluation Process . 43
6.3 Experimental Setup . 44
6.4 List of Evaluated Policies . 44
6.5 Parameter Sweep of Approximate Read Density Policy . 46
6.6 Cache Policy Comparison . 47

7 Conclusion 51
7.1 Summary of Answers to Main Research Questions . 51
7.2 Future Work. 52

vii

viii Contents

Bibliography 55

1
Introduction

Big data is at the core of many different applications relevant to our society, for example, in healthcare [45] [55],
finance [57], and gaming [22]. To address more diverse and sophisticated uses of big data, system designers
are creating radically different systems designs. For example, Spark [62] emerged at the beginning of the
2010s, as a response to changes in the needs previously addressed by MapReduce [23] and related systems in
the 2000s.

The difference between designs is significant, even radical. For example, Spark addresses the current need
of many users to run their big data workloads on-demand, by building an ecosystem that runs commonly in
small clusters of virtual machines (VMs), provisioned from clouds, and attached to remote-object storage
systems. In contrast, the MapReduce and GFS [31] ecosystem champions statically deployed [32], tightly
coupled physical clusters, with integrated storage.

The radical change in system designs is not arbitrary. Until the mid-2000s, large organizations alone could
afford to operate large compute-clusters containing tens of thousands of computers, shared between the
multiple organizational units; small- and medium-scale organizations could not easily access such resources.
Through the advent of cloud computing, individual organizational units in both large and small organizations
can lease resources on-demand from a cloud provider. Cloud computing has reduced the barrier to compu-
tation by enabling many to access significant compute resources for only a short period of time, at accessible
cost. After overcoming initial performance-related [38] and technical challenges, cloud computing resources
are now used in many fields, including for big data processing [36].

For big data processing, the use of clouds introduces many new parts, in contrast to traditional data pro-
cessing. A key difference resulting from the transition between self-hosting and cloud computing infrastruc-
ture is the architecture used for persistent storage, where data gets stored and from which it is retrieved. In the
cloud, a common storage medium for large amounts of data is the object store provided by the cloud vendor.
Examples of storage sub-systems operating as object stores and available in the cloud include Amazon Web
Services (AWS) S3, the Microsoft Azure Blob storage, and the Google Cloud Storage.

Given the change in system design, information on the characteristics and performance of these systems
is scarce. In this work, we focus on the storage sub-system. We statistically characterize its usage. We design
a generative model to tackle the scarcity of usage traces. We design a cache policy putting our insight from
the characterization to work. Finally, we evaluate the performance of different cache policies for big data
workloads via simulation.

1.1. System Model
We introduce in this section a system model for the operation of (Spark-based) big data workloads in the
cloud. This model is inspired by deployments we have observed in practice across many organizations, in
particular, for big data operations at Databricks. Figure 1.1 depicts the system model. We focus in this work
on the workload of requests issued to the storage layer, between the system workers (component 4 in the
figure) and the system storage (6).

1

2 1. Introduction

Figure 1.1: System architecture of a virtual cluster running on AWS. The workload analyzed in this thesis from virtual clusters operated
by Databricks.

1.1.1. Workload Model
In our model, the workload consists of jobs arriving in the system as a stream. Jobs are either interactive and
non-interactive. For interactive jobs, the arrival time is decided by the data analyst. For non-interactive jobs,
e.g., batch or periodic, the system itself schedules when the job should run.

Each job (component 2 in Figure 1.1) is a unit of work that reads some input data from persistent storage,
processes it, and produces an output. The output can be stored in persistent storage or directly displayed to
the user.

A job is composed of at least two tasks (3), data generation (read) and data processing; other tasks, in-
cluding tasks that produce data (modification), may also appear. Jobs have a directed acyclic graph (DAG)
structure, with nodes representing tasks, and directed relationships between nodes representing dependen-
cies (A©→ B© means that task B cannot start before task A completes).

1.1.2. System Architecture
We model the class of systems analyzed in this work after a common architecture used by organizations
around the world when using Spark or Hadoop in the cloud. This architecture is comprised of one or more
virtual clusters running as sets of virtual machines (VMs) leased from a cloud provider, such as Amazon
Web Services, and organized into a logical group using a virtual network. Virtual clusters get deployed on-
demand—when needed, for as long as needed. Further, each virtual cluster is comprised of a set of core
components, running on VMs obtained on-demand.

Figure 1.1 depicts the architecture of one virtual cluster. The virtual cluster corresponds to a single deploy-
ment of the data processing software, for example, the Databricks Runtime (components 4 and 5, explained
later in this section). The virtual cluster is connected at runtime to a source of incoming data, from which
it reads. In our model, a typical source of data is a cloud-based, persistent, object-store (component 6), for
example, Amazon S3. If the processing results in data modifications, the virtual cluster is further connected
at runtime to a data sink, for example, also Amazon S3.

A typical instance of this model appears at Databricks, whose Runtime system extends Apache Spark [62]
with techniques to achieve high performance and usability. All references to Apache Spark in this work refer
to the Databricks Runtime. With the Databricks Runtime, VMs are occupied by one or several Spark work-
ers (component 4), and a driver. The single driver schedules jobs onto each worker. Workers process tasks,
by performing the computation and I/O related to the task. This involves reading data from a persistent
source or another worker, running computations such as maps and filters, and storing the data locally or to
persistent storage.

1.1.3. Storage Workload Model
In our model, workers read data from the object store. All the requests from all jobs to the object store form
the workload under study.

1.2. Problem Statement and Research Questions 3

The object store is eventually consistent and has a key-value interface. It supports a hierarchy of files like
a traditional file system by means of having a path as a key to an object. A directory structure can be achieved
by having all the files in the directory have the directory name followed by a ’/’ as a prefix. A file can have
several prefixes, simulating a hierarchy of directories. The files stored in an object store are much larger than
the size of the key. It is possible to read only part of a file specifying a range of bytes to read. AWS S3 and Azure
Blob Storage are examples of object stores. S3 is the store accessed in this workload.

Files are stored in several popular formats. Parquet1, JSON, CSV, and Avro2 are some examples. Some
file types such as parquet make use of metadata to store column statistics and other index information.
Databricks runtime takes advantage of the S3 ability to read specific byte ranges to read this metadata for
efficient filtering and index traversal.

Files are compressed using popular compression schemes such as Snappy or Gzip. Some files, those
formatted in CSV and such formats, are compressed as a whole. Other file formats, such as Parquet, have
a higher granularity than whole file. For example, data in parquet is stored in row-groups in a file. In these
cases, compression is applied at the row-group level. This makes row-groups self contained and readable
without reading the whole file.

1.2. Problem Statement and Research Questions
It has been posited that ecosystems of complex interconnected systems exhibit behavior different than iso-
lated applications running on individual servers. This has been labeled warehouse scale computing [10], and
datacenter as a computer [54]. Understanding the behavior of such systems can uncover performance tar-
gets, bottlenecks, and opportunities. It has been found that scheduling tasks take about 5% of all CPU cycles in
a datacenter [41]. This implies that scheduling of other tasks is considered important enough for allocation of
such a large portion of resources. But, benchmarking, and profiling scheduling policies and algorithms at dat-
acenter and ecosystem scale is hard and many times infeasible due to cost and operational concerns. Instead,
usage traces, their statistical analysis and their characteristics help make the study of large scale scheduling
systems feasible for a wide class of researchers and engineers, who might not have such systems available for
research purposes. Generative models are useful for people with access to characteristics but not the original
trace data to generate synthetic traces for experiments. Generative models also help study the evolution of
workloads by modifying parameters. Simulations make large scale experiments affordable. Simulation re-
sults indicate performance of policies and algorithms in real-world systems, and can better direct real-world
experimentation if that is at all possible.

Our systematic survey [43] of related work (details in Chapter 2) reveals that there is a dearth of exist-
ing research into characterization, modeling, and evaluation of Spark-based storage workloads. Reasons for
this include: Spark-based data processing systems becoming business-critical, leading to companies being
hesitant to share data; lack of organization-wide infrastructure to collect data due to proliferation of small
clusters located remotely in the cloud; focus on optimizing the compute bottleneck and the increase in speed
of storage devices.

We intend to provide computer systems researchers and engineers, particularly those interested in stor-
age, the data and tools to design and experiment with systems for these use cases. Our main use cases are
applications that use small Spark-based clusters in the cloud for data processing. We also intend to evalu-
ate and extend existing research in cache policies for such systems because caching has historically proved
beneficial for a large number of workloads including but not limited to web and database.

To this end, we strive to answer the research questions described below. The impact and our process of
answering each question are also mentioned.

1. What are the characteristics of Spark-based big data storage workloads in the cloud?

Impact: Enables new system designs [59], better tuning [33], and operations decisions [35].

Process: Collection and statistical characterization of storage access trace from a prominent provider
(Chapter 3).

2. How can the characteristics such workloads be modeled to generate synthetic traces?

Impact: Enables realistic simulations and experiments when there is a lack of real world trace data [13] [15] [25].

Process: Statistical reproduction of characteristics from original trace (Chapter 4).

1https://parquet.apache.org/
2https://avro.apache.org/

4 1. Introduction

3. What is a principled approach to design an adaptive cache policy with few parameters?

Impact: Novel estimator for the utility of an object being read.

Process: Exploration of design space and overcoming a weakness of a policy recently proposed in a top
publishing venue [11] (Chapter 5).

4. How do cache policies perform on such workloads?

Impact: Enables the selection of better policies by system designers and operators [13].

Process: Systematic comparison of cache policy performance on multiple workloads (Chapter 6).

1.3. Approach: Science, Engineering, and Design
In Chapter 3, we process hundreds of terabytes of data, aggregate data for trend analysis, and generate prob-
ability density functions for statistical characterization. This was a significant engineering and analytical
effort. Our scientific contributions in this chapter are observations about long-term trends, statistical char-
acteristics of reads, distribution of reads across sub-systems and filetypes, etc.

In Chapter 4, we design and engineer a system for fast concurrent generation of synthetic traces. The
traces correspond to billions of reads. Apart from this, our scientific contribution includes the empirical com-
parison of fitting very large datasets to known probability distributions, and validation of generated synthetic
traces.

In Chapter 5, we systematically design a cache policy that leverages the read density family of eviction
metrics. We present a novel data structure called the approximate histogram for keeping track reads in differ-
ent time intervals. We also overcoming a weakness of a recently proposed policy in a top venue.

In Chapter 6, we design and implement a system for distributed simulation of cache policies. Using this
system, we compare systematically and comprehensively several recent cache policies and representative
policies from the past. We also conduct an evaluation of the read density based eviction metric proposed in
Chapter 5.

1.4. Chapter Structure
Chapters 3, 4, and 6 follow a similar structure for readability. First, we introduce the research question ad-
dressed in Section 1.2 which the chapter will answer. This is followed by a description of the process used to
tackle it. Then, we describe the results of the process. The chapters each conclude with a discussion about
threats to validity.

Chapter 5 on caching in storage systems proposes a reference architecture of a specialized cache policy,
introduces a new cache policy coupled with a family of eviction metrics, and expands on implementation
detail. This chapter ends with a discussion about possible threats to the validity of the reference architecture
and our proposed design.

1.5. Additional Information
1. Part of this work was done while the author was an intern at Databricks bv, Amsterdam.

2. Chapter 3 has been submitted to the 10th ACM/SPEC International Conference on Performance Engi-
neering (ICPE 2019), and is awaiting review. Authors: Sacheendra Talluri, Alicja Łuszczak (Databricks
bv), Cristina L. Abad (ESPOL, Ecuador), and Alexandru Iosup.

3. The methods described in Chapter 3 and Chapter 4 are part of a new article, under submission at 19th
Annual IEEE/ACM International Symposium in Cluster, Cloud, and Grid Computing (CCGrid 2019).
Authors: Laurens Versluis (VU, Amsterdam), Roland Matha (University of Innsbruck, Austria), Sacheen-
dra Talluri, Radu Prodan (University of Klagenfurt, Austria), and Alexandru Iosup.

4. The work presented in Chapter 4, and the work present in Chapters 5 and 6, is part of new articles about
to be submitted to high-quality conferences.

2
Related Work

We conduct a systematic survey [43] of 18 high quality venues in large-scale systems (HPDC, SC, etc.), systems
and operating systems (NSDI, OSDI, etc.), and performance (SIGMETRICS, ICPE, etc.). Because the common
type of storage studied in this work, object stores hosted in the cloud, is relatively new, we include in our sys-
tematic survey only work published since 2010. For design and evaluation of cache policies, we also compare
with prior work which has been cited by publications studied in our systematic survey.

In this chapter, we first describe the process of systematic survey. Then, we analyze the findings as they
are related to each of the chapters.

2.1. Systematic Survey
This section details how the papers to be included in the survey were chosen. We use a list of curated keywords
and the publicly available DBLP dataset to find papers. The list of keywords, more accurately key phrases, was
compiled by looking at the results of a Google Scholar search for terms such as "storage tiering" and popular
papers in the field. The keywords are listed in Table 2.1.

Table 2.1: List of keywords queried.

1. Storage Scheduling 2. Storage Workload 3. Parallel file system 4. Cloud Storage
5. Heterogeneous Storage 6. Storage Model 7. Distributed file system 8. Large Array
9. Tiered Storage 10. Cache 11. Parallel I/O 12. I/O
13. Hadoop Storage 14. Data Placement 15. Storage Characterization 16. Distributed Storage
17. HDFS 18. Massive Array 19. Storage Provisioning

These keywords were searched for in the titles of all papers published in the conferences listed in Table ??
and all associated workshops between 2010 and 2017.

Table 2.2: List of conferences queried.

1. NSDI 2. OSDI 3. HPDC 4. SC
5. SOSP 6. SOCC 7. SIGMETRICS 8. VLDB
9. EuroSys 10. CCGrid 11. IEEE Cluster 12. ICPE
12. MASCOTS 13. IEEE BigData 14. EuroSys

All the keywords excluding "I/O" were searched for in the titles of all papers published in the conferences,
associated workshops and journals listed in Table 2.3 between 2010 and 2017.

Table 2.3: List of additional conferences queried.

1. FAST 2. MSST 3. TOS 4. SIGMOD

5

6 2. Related Work

The publicly available DBLP dataset1 was loaded into Elasticsearch2 and was used for search. Several pa-
pers were unrelated to topic, extension of same paper published in another place, etc. These were excluded.
The process resulted in around 140 relevant results.

2.2. Characterization
We compare our characterization work (Chapter 3) with previous studies on real-world, large-scale storage
workloads, including big data. Overall, because of our focus on object stores, our work complements the body
of work done on hardware-level storage for big data workloads, e.g., [52]. Table 2.4 summarizes the results
of our systematic survey which are concerned with characterization. The table compares different studies
across the following dimensions: popularity of files, time dependence, interarrival times, read sizes, levels of
abstraction studied, popularity of different systems in an ecosystem and types of operations. We find that the
characteristics we investigate are comparable to those investigated by recent works in the field.

Table 2.4: Comparison of our work with previous characterization studies, ordered chronologically.

Type Pop. TimeDep. Interarrival Size Levels SysPop. Ops.

Chen 2011 [17] Enterprise X X
Carns 2011 [16] HPC X X
Abad 2012 [1] MapReduce + HDFS X X X X X
Chen 2012 [18] MapReduce + HDFS X X X
Atikoglu 2012 [7] Web Cache X X X X
Liu 2013 [46] Consumer Cloud X X X
Harter 2014 [35] Messaging + HDFS X X X
Gunasekaran 2015 [34] HPC X X
Summers 2016 [58] Video Delivery X X

This Work Spark + S3 X X X X X X X

Closest to our work we find the previous work by Abad et al. [1] and by Chen et al. [18] on big data work-
loads that read from a distributed storage system. Our work complements these studies with analysis of long-
term trends, time-dependence, bursts, stationarity, and distribution across clusters. Our work also extends
and supports the characterization of file popularity, interarrival time, reuse time, and file formats.

2.3. Generative Modeling
We compare our modeling work (Chapter 4) with previous work on storage systems modeling. Because of
our focus on storage workload, our work complements the body of work done on modeling compute work-
loads in big data processing, e.g., [60]. It also complements work on system performance modeling, e.g., [50].
Table 2.5 summarizes the results of our systematic survey which are concerned with modeling. The table
compares different studies across the following dimensions: fitting of heavy tailed distributions, concurrent
workload generation, performance analysis and comparison of different curve fitting methods. We find that
the features of our work are comparable to other recent work in the field. A unique feature of our is that we
compare curve fitting technique for goodness of fit, and demonstrate that maximum likelihood analysis is
not suitable for very large datasets such as ours.

Table 2.5: Comparison of our work with previous modeling studies, ordered chronologically.

Type Curve Fitting Concurrency Performance Fit Compare

Delimitrou 2011 [24] Database X
Atikoglu 2012 [7] Web Cache X
Abad 2013 [2] MapReduce + HDFS X X X

This Work Spark + S3 X X X X

The works closest to ours are Atikoglu et al. [7] and Abad et al. [2]. Both fit observed features of workloads

1https://dblp.uni-trier.de/xml/
2https://www.elastic.co/products/elasticsearch

2.4. Cache Policy Design 7

to heavy tailed distributions. Abad et al. even models HDFS reads, which is a big data processing workload.
Older modeling work uses Poisson and Markov models. These are not suitable for modeling storage work-

loads as they assume independence between reads which doesn’t hold for real workloads [63]. We also show
the existence of long term time dependence between reads for our workload in Chapter 3. Modeling using
heavy tailed distributions takes into account this time dependence.

2.4. Cache Policy Design
Caching is a well studied problem with a long history. We trace the lineage of concepts used in our cache
policy. We also compare our work to recent studies on cache policy design.

LIRS [40] was one of the first algorithms to use reuse distance as a cache policy metric. Segmented LRU [42]
was one of the first to use acandidate cache. ARC [47] also divides the cache into segments, but the reason for
segmentation is to optimize the size of cache for the policy used by each segment and not collecting infor-
mation and buffering rarely accessed items as done in Segmented LRU and our work. S4LRU [37] extends the
concepts of LRU to multiple candidate caches. AdaptSize [13] uses an admission policy but its paramaterized
on the intrinsic feature of object size rather than any extrinsic one like popularity or interaccess time. Hyper-
bolic caching [15] also uses a tiny candidate cache and divides popularity by time. LRU-K [51] remembers the
K most recent reads of each object. The concept of using multi approximate data structures in storage related
scenarios has been introduced in counter stacks [61]. Multiple approximate data structures to keep track of
histograms has been recently used in databases [29].

Several policies take into account factors such as size of the object, latency and importance. Our work
complements such works. These costs can be incorporated into equations 5.5 and 5.6 from Subsection 5.5.3.
Our work also complements studies whose cost functions take factor such as latency and fairness into ac-
count [14] [3].

W-TinyLFU [25] and LHD [11] are the most closely related works to this one. W-TinyLFU uses a candidate
cache and a main cache with the TinyLFU admission policy. It also uses approximate counters. Our eviction
policy for the main cache also based on approximate counter takes into account reuse time and is novel. LHD
takes into account reads at different reuse times. For each reuse time category, object are further categorized
based on features such as application name and reuse time of last read. There is little reason why those
reasons are good for categorization. In many caching applications, little other features than those that can be
directly computed by the cache are available. Using approximate counters instead of categories sidesteps the
whole decision of choosing good categories and thus has less parameters to tune.

In our policy design, we make explicit the different components of cache policies and decisions taken
about each of them in a principled manner. This is similar to the approach taken to deconstruct scheduling
policies in [6].

2.5. Cache Policy Evaluation
There are no recent exclusive evaluations of cache policies. They are paired with either a new policy design
or a characterization of a workload. We summarize the type of workloads used in such recent studies in
Table 2.6. Most evaluations seem focused on workloads related to the Internet. Web refers to caches in servers
like nginx or application caches like memcached. Database refers to SQL databases used in web applications.
Workstation refers to personal files of users on local disk or on a server.

Table 2.6: Workloads used in cache policy evaluations, ordered chronologically.

Workloads

Huang 2013 [37] Social Media
Berger 2017 [13] Web
Blankstein 2017 [15] Web, Database, Workstation
Einziger 2017 [25] Web, Database, Workstation
Beckmann 2018 [11] Web, Database, Workstation

This Work Big Data

This is the first study to evaluate the efficacy of cache policies for big data workloads. We use 2 traces for
this. One is from Databricks. This is the trace that is characterized in Chapter 3. The other are the public

8 2. Related Work

Yahoo Webscope 3 traces.

3
Characterization of a Big Data Storage

Workload in the Cloud

Motivated by the importance of Spark-based systems processing big data in the cloud (Described in Chap-
ter 1), by the novelty introduced by their cloud storage sub-systems, and by the scarcity of information pub-
licly available about Spark storage workloads, in this chapter we endeavor to answer the following research
question: What are the characteristics of Spark-based big data storage workloads in the cloud?.

3.1. Overview
Toward answering the research question on which this chapter focuses, our contribution is four-fold:

1. We collect and process long-term workload traces from a relevant Spark deployment, at Databricks (Sec-
tion 3.2). Our data spans over 6 months of operation, resulting in over 600 TB of log data. We devise a
method for pre-processing and for the statistical analysis of these traces.

2. We analyze the long-term trends (Section 3.3). We focus on two key I/O operations, reads and modifi-
cations. We investigate if diurnal and weekly patterns occur, if long-term patterns emerge, and if reads
and modifications occur with relatively similar frequency.

3. We analyze statistically the read operations (Section 3.4). (We focus on reads because we find that
modifications are relatively rare.) We study if heavy-tails and burstiness appear in the distributions of
number and size of reads.

4. We analyze statistically the popularity of clusters and file types (Sections 3.5 and 3.6). We investigate if
the clusters deployed on-demand are similarly used, and if the big data file formats and compressing
schemes are similarly popular.

3.2. Process for Data Collection, Processing, and Analysis
The goal of our analysis is to gain a statistical understanding of the series of accesses to the object store
by various Spark-based applications deployed in the cloud. The operational data corresponding to Spark-
based storage workloads presents many collection, processing, and analysis challenges. Monitoring many
small virtual clusters across organizational boundaries is challenging, which raises a complex data collection
challenge. Pre-processing the data needs to balance preserving meaningful information, with the need to
protect the anonymity and corporate information. Analyzing the rare information raises the same challenge
facing basic research—finding a balance between the breadth and depth of explored concepts. Addressing
these challenges, in this section we introduce a process to collect, process, and analyze storage-workload data
about cloud-based Spark operations.

3.2.1. Overview of the Process
Our process for cloud-based Spark operations consists of large-scale data monitoring, done concurrently
with data pre-processing and preliminary analysis, followed by in-depth analysis.

9

10 3. Characterization of a Big Data Storage Workload in the Cloud

Figure 3.1: Characterization workflow.

Figure 3.1 depicts the core of our process. Log Data (component 1 in the figure) performs log collection.
It continuously collects monitoring data and stores it into logs ready to be parsed (queried). To achieve this
goal, this component must be highly reliable and redundant, stream monitoring data in and process it rapidly,
use batch processing to compact and store data, and generate indexes to make querying tractable. Although
for this component we rely on the Databricks Runtime system out-of-the-box, such features are provided
by many of the monitoring systems based on the Apache ecosystem, e.g., using Kafka as communication
pipeline, a streaming platform such as Apache Storm or Spark, and a big data platform such as MapReduce
or Spark; the indexing, high availability, and redundancy features require domain-specific engineering.

For this work, the operations (accesses) recorded in the log are reads and modifications. Modifications
are namespace modifications performed by the runtime, i.e., create, delete, bulk delete, create directory, and
rename operations. Overall, the analysis focuses on features. A feature is a property of the access that can
be computed by virtue of the item being accessed, such as popularity, or by virtue of its relative position
to another (previous) access, such as interarrival time. These features can take on different values called
variates.

Following log collection, the process branches into the analysis of long-term trends and the analysis of
current features, both of which are conducted periodically in parallel with the log collection process, but with
frequency under the control of the system analyst. (This assumes the system operator collects monitoring
data at much higher frequency than the analyst needs updated results, which is typically the case; in practice,
a re-analysis of monitoring data could occur every day for business decision.)

For the analysis of long-term trends, the raw monitoring data is both too large (big data) and includes sen-
sitive information. We thus first pre-process it into a compact format and apply a normalization step, which
we describe in Section 3.2.3. Then, we perform a typical long-term analysis, observing the evolution of the
number of reads and modifications, and of the sizes of each of these operations (component 2 in Figure 3.1).

For the feature analysis, we use a diverse set of statistical tools on selected features: we compute the
empirical probability density function (EPDF) and the empirical cumulative distribution function (ECDF),
descriptive statistics, the Hurst parameter for long-term dependence, etc. We describe the key elements of
this analysis in Section 3.2.4.

A key feature of our process is that it is primarily aimed at human analysis, for which it always concludes
its operational branches with visualization (plotting)—components Plot (3 and 6 in Figure 3.1).

3.2.2. Log Collection
Table 3.1 summarizes the logs collected for this work. All accesses are timestamped, with timestamps were
recorded at the time of logging as time since Unix Epoch, in milliseconds. Overall, the traces correspond to the
combined workloads of organizations spanning healthcare, manufacturing, web services, and advertising.
(We address the bias inherent to these traces in Section 3.7.)

Trace Full (F) collects all data accesses, both reads and modifications, over the entire 6-month period. We

3.2. Process for Data Collection, Processing, and Analysis 11

Table 3.1: Format of a pre-processed log line.

hashed file path hashed cluster id hashed worker id size timestamp operation

Table 3.2: Information about the analyzed logs.

Name Period Log Data Size

F 6 months 600TB
W1 1 week 15TB
W2 1 week 30TB

use F to analyze long-term trends. Collecting this data results in a massive log; the F trace exceeds 600 TB. In
addition to the full workload, we collect over shorter periods of time more detailed data, useful for computing
the histograms of features such as popularity and interarrival time. We thus collect one-week traces Week 1
(W1) and Week 2 (W2). The size of these smaller traces was of 15 TB and of 30 TB, respectively.

3.2.3. Pre-Processing
The collected logs were pre-processed into a compact format for analysis, which we depict in Table 3.1. Any
data fields in the logs that are unrelated to our analysis were removed. The cluster and worker identifiers
were originally strings, which both go contrary to the privacy needs of Databricks, and increased the storage,
memory and computation costs. They were hashed using Murmur3 hash, and stored the most significant 64
bits of the 128-bit numbers of the hash. Thus, we had no access to any identifiable information during the
analysis. Murmur3 was used for its performance and uniform distribution over the key space.

All features have been normalized by dividing the variates by a constant normalizing factor. Thus, the
absolute values seen in this work are not real. This was done to keep the popularity and costs of the company
a secret. However, the relative difference between variates of a feature and across features is still true and
remains applicable. It is contracted by the value of the normalizing factor. The normalization does not effect
the empirical probability density functions as the fraction of items that belong to a particular bin remains the
same. Some descriptive statistics like the mean are reduced by the normalizing factor amount. Others like
tail weight and the distances between W1 and W2 are not.

3.2.4. Statistical Analysis
For ECDF plots, in some cases, we use a symlog axis instead of a pure logarithmic axis. We do this when the
0 variate is important to the plot. A symlog axis is a logarithmic axis where the are regions close to 0 are on a
linear scale. Thus, we avoid the issue of log (0) being undefined.

In many plots, such as Figure 3.6, we depict two similarly shaped curves. Each such curve corresponds
to one the two different one-week-long periods mentioned in Table 3.2. For these figures, the purple curve
represents the data from W1; the green one, the data from W2.

We observe that even though there is a large increase in the accesses from January to May, the general
distribution does not change significantly. To quantify this claim, we use two tests to measure the similar-
ity between two empirical distributions: Kolmogorov-Smirnov (KS) test [20] and Pearson’s χ2 test [56]. The
KS test measures the maximum difference between the two cumulative distribution functions. We use the
two-sample KS test, which measures the maximum difference between two empirical cumulative distribu-
tion functions. We chose this because it is easy to understand and the reader can visually see the quantitative
distance output by this test in the graphs. Another reason is that it is distribution independent, unlike the
Anderson-Darling test. Thus, we do not require critical value tables to measure goodness of fit. This is useful
as we do not know the underlying distributions of the samples we have. The result of the KS test is used as
an indicator of divergence. The χ2 test measures the difference between histograms of two empirical distri-
butions. i.e., it measures the difference in the probability at each variate. This was also chosen to be easy to
understand and gives a complete view of the distribution instead of just at the location where the difference
is maximum. This helps identify minor differences.

In some cases, we use more than one trace in the same part of the analysis. Because the variates for
these cases may be different, we rebin the data into 100 logarithmic bins so that the distributions can be
compared. Where rebinning without interpolation is not possible, we use 10 logarithmic bins or linear bins.
The KS statistic is not sensitive to the number of bins. The χ2 statistic is very sensitive to the number of bins

12 3. Characterization of a Big Data Storage Workload in the Cloud

chosen. Increasing the number of bins by an order of magnitude increases the χ2 statistic by an order of
magnitude, especially when it is small. However, the p-value doesn’t change, making it a valid test. We use
the implementation of χ2 from the SciPy scientific computing library, version 1.1.0.

For each empirical distribution presented, we also present descriptive statistics. This includes the me-
dian, mean and standard deviation which are widely known. We also provide additional descriptive statistics.
To quantify the dispersion of the data, we use the Coefficient of Variation (CV), which is the ratio of the stan-
dard deviation to the mean, and the Inter Quartile Range (IQR), which is the difference between the value at
75th percentile and 25th percentile. Tail weight is the sum of magnitudes of those elements which are in the
99th percentile as a fraction of the sum of magnitudes of all the elements.

For features where it is relevant and informative, the Hurst parameter is used to estimate long term de-
pendence [27]. It specifies if the value at a certain time would be higher, lower or randomly distributed based
on the previous values. A Hurst parameter below 0.5 indicates a tendency of the series to move in the opposite
direction of the previous values. i.e., highs are followed by lows. Thus, appearing to have high jitter. A value
of 0.5 indicates random Brownian motion and above 0.5 indicates a tendency towards well defined peaks. We
use the rescaled range (R/S) method to estimate the Hurst parameter.

3.3. Analysis of Long Term Trends
We highlight the following long term trends:

MF3.3.1 The number of reads and bytes read per day have doubled over 6 months.

MF3.3.2 The number modifications per day has remained at the same level throughout the analysis period.

MF3.3.3 Both reads and modifications follow a diurnal pattern.

MF3.3.4 Large imbalance in number of reads and bytes read per hour occur on daily and weekly basis.

MF3.3.5 There are 2 orders of magnitude less modifications happening than reads.

MF3.3.6 Most modifications are file creations.

3.3.1. Reads

Table 3.3: Descriptive statistics about number of reads and data read per day.

total mean median std. dev.

num. reads 5.57×105 3.06×103 2.83×103 1.11×103

bytes read 1.84×1012 1.00×1010 9.60×109 3.18×109

(a) Number of reads per day with weekly mean as the blue
trend line.

(b) Bytes read per day with weekly mean as the blue trend
line.

Figure 3.2: Number of reads and total amount of bytes read per day over a period of 6 months.

We analyze the trends in number of reads and in bytes read, and find both increase significantly over
the period we analyze (MF3.3.1). Figure 3.2 depicts the number of reads and bytes read per day over a 6

3.3. Analysis of Long Term Trends 13

month period. Excluding the variation between days of the same week, the number of reads (Figure 3.2a) has
increased from about 2.0×103 to over 4.0×103. We observe a similar phenomenon for number of bytes read
(Figure 3.2b). We conjecture that this is due to a combination of more users using the subset of ecosystem
under study and existing users increasing their usage.

The descriptive statistics for the metrics “number of reads per day” and “bytes read per day” are sum-
marized in Table 3.3. The high standard deviation indicates that days which experience significant higher
or lower number of reads and bytes read occur. The similar values of mean and median indicate that the
deviation from the mean is evenly distributed across low activity and high activity days.

Table 3.4: Descriptive statistics about number of reads and data read per hour for a selected week.

total mean median std. dev.

num. reads 3.25×104 193.4 193.1 60.6
bytes read 9.36×1010 5.57×108 5.57×108 1.95×108

(a) Number of reads per hour. (b) Bytes read per hour.

Figure 3.3: Number of reads and total amount of bytes per hour over a period of one week.

We analyze the number of reads per hour and bytes read per hour over a period of one week, and find
that significant load imbalances occur on a weekly and daily basis (MF3.3.4). Figure 3.3 depicts the number
of reads and bytes read over a 1 week period. The number of reads (Figure 3.3a) changes from day to day. It
peaks on Tuesday and bottoms out on Saturday. This is the same pattern that is also visible as variation in
Figure 3.2. The number of reads also vary on a hourly basis, with the peak occurring during noon GMT and
the period of least activity around midnight GMT (MF3.3.3). This is a diurnal pattern. The ecosystem subset
studied was composed of North American users. This implies that they were most active in the mornings.
Both the aforementioned variations (weekly and diurnal) also occur in number of bytes read (Figure 3.3b). A
likely hypothesis is that a lot of jobs contributing to the peak are interactive jobs users submit during working
hours.

The observation that there is an imbalance of usage during the week can prompt organizations to sched-
ule their workload to fall on less busy days. In the same day, jobs can be scheduled during less busy hours of
the night. This helps organizations take advantage of spot auction markets on EC2, to lower their compute
costs, derived from the assumption that the spot market costs would be lower if there are fewer users bidding
for the same compute resource.

3.3.2. Modifications

Table 3.5: Descriptive statistics about number of modifications per day over 6 months and per hour for a selected week.

total mean median std. dev.

per day 1.37×104 75.03 64.23 19.19
per hour 594.3 3.5 3.4 0.8

We analyze the number of modifications per day, and find that the number of modifications has remained

14 3. Characterization of a Big Data Storage Workload in the Cloud

about the same throughout the analysis period (MF3.3.2). Figure 3.4a shows the number of modifications
per day. Excluding the variation between days of the same week, the number of modifications remains at
approximately the same level. Figure 3.4b depicts the number of modifications per hour. A diurnal pattern is
readily apparent (MF3.3.3).

Table 3.5 presents the descriptive statistics characterizing the number of modifications per day and per
hour. The total and mean number of modifications are two orders of magnitude lower than the number of
reads in Tables 3.3 and 3.4 (MF3.3.5). Table 3.6 presents the distribution of number of modifications across
operation types. The number of creation operations is much higher than any other operation (MF3.3.6).

(a) Number of modifications per day over 6 months with
weekly mean as the blue trend line.

(b) Number of modifications per hour over 7 days.

Figure 3.4: Modifications trend.

Table 3.6: Types of modifications over the 6-month period.

Create Delete DeleteMultiple MkDirs Rename

1.15×104 2.13×103 2.28 41.89 28.47

3.4. Statistical Analysis of Reads
Reads constitute a large majority of this workload and are the type of accesses that are frequently optimized
through caching, tiering or other techniques to improve system performance. It can be seen from the long
term trends in Section 3.3 that reads overwhelmingly dominate the workload. This can also be inferred analyt-
ically, as big data processing (this workload) is concerned with reading large amounts of data and processing
it in different ways to gain valuable insight. In this section, we focus on the statistical properties of reads.

A single read has several features which we look at: the file that is being read, popularity of the file, size of
the read, interarrival time and reuse time. Our major observations are:

MF3.5.1 The number of reads and bytes read exhibit negative long range time dependence.

MF3.5.2 All features (size, popularity, etc.) have a heavy tail.

MF3.5.3 Reads occur in bursts.

MF3.5.4 The distributions of features are stationary over long time periods.

3.4.1. Count
We analyze the number of reads per time window, and find evidence of inverse long range time-dependence
(MF3.5.1), and bursty behavior (MF3.5.3). We estimate the decay of this dependence using the Hurst Param-
eter for different window sizes in Figure 3.5. The Hurst parameter is particularly relevant to stationary time
series, and we assume that the series of reads is stationary at small intervals.

3.4. Statistical Analysis of Reads 15

Figure 3.5: Hurst parameter estimation for number of reads in a time window.

The period we look at is one thousand times the window size for every window size; for example, if the
window size is 10 milliseconds then we look at a period of 10 seconds. The Hurst parameter is lower than 0.4
for all window size, except one. This is evidence of inverse long term time-dependence. That means that over
a specific period, the number of reads might increase or decrease but generally falls back towards the mean.
This contrasts other studies of time dependence in big data workloads which present a positive long range
time-dependence [1].

A burst is defined as a period of high number of reads (high activity) surrounded by a period of low number
of reads (low activity). Negative long range time-dependence necessarily implies that periods of low activity
are followed by high activity and vice versa. Thus, periods of high activity are surrounded by periods of low
activity, satisfying the definition of a burst. Therefore, number reads exhibits bursty behavior.

3.4.2. Read Sizes

Figure 3.6: ECDF Read size vs. fraction of reads with logarithmic
horizontal axis.

Figure 3.7: Hurst parameter estimation for bytes read in a time win-
dow.

The read size refers to the number bytes transferred from the cloud storage to the local machine per re-
quest. While checking for long term dependence, it refers to the number of bytes transferred in a time win-
dow. We analyze read sizes, and find evidence of inverse long range time-dependence (MF3.5.1), a heavy tail

16 3. Characterization of a Big Data Storage Workload in the Cloud

(MF3.5.2), bursty behaviour (MF3.5.3), and stationarity (MF3.5.4). Figure 3.6 depicts an empirical cumula-
tive distribution of read sizes with logarithmic horizontal axis.

Visually and also from the descriptive statistics in Table 3.7, we observe that most requests read little data
with the median request reading 3 or 4 bytes. Most of the bytes transferred are due to reads of large items.
This is most visible in the “tail” item in the descriptive statistics. That shows that more than 80% of the data
transferred in both periods is due the 99th percentile of requests sorted by size. We conjecture that this is
a result of a large number of requests being metadata reads. They take advantage of the S3 feature which
allows one to read certain range of bytes in a file instead of the whole file. These reads can be used to read
file headers and assorted metadata and make decisions, such as to read the file or not. Thus, metadata reads
account for most reads while data transfer for processing accounts for most of the data transferred.

The read size is small compared other studies with 90% reads smaller than 1KB. In other studies 90%
of reads are smaller than 1KB in web caches [7], 100KB in HPC [16], 1MB in HPC [34], 4MB in consumer
cloud [46], 10MB in video delivery [58] and 15MB in HBase [35].

Figure 3.6 depicts that distributions of the two traces W1 and W2 are not too different. The similarity has
been quantified in Table 3.8. The variates were rebinned into 10 logarithmic bins for this purpose. We know
from Figure 3.2 that the number of reads and bytes read has changed. This indicates that magnitude of num-
ber of reads or total data read has minor influence on the distribution of read sizes. Thus, the distributions
remain stationary over long time periods.

We use the Hurst parameter to estimate the time-dependence of the series at different time scales, as
done for counts. For every time window the sum of the bytes read by all reads in that window is considered
as the value of the window. Figure 3.7 indicates that for all considered window sizes the Hurst parameter was
estimated to be less than 0.35. The value is low, indicating an inverse correlation between subsequent values
and a tendency of the series to fall back towards the mean—more so for small windows. This leads to periods
of high activity surrounded by periods of low activity. Hence, bursty behaviour.

Table 3.7: Descriptive statistics about read size.

Period median mean std. dev. CV IQR
tail
weight

W1 4 100 31,535 316 11 0.84
W2 3 136 54,191 400 9 0.89

3.4.3. Popularity

Figure 3.8: ECDF of Popularity vs. number of files with that popularity with logarithmic horizontal axis.

Table 3.8: Quantifying similarity of size distributions during two periods.

KS distance χ2 distance χ2 p-value

0.03 0.01 1.0

3.4. Statistical Analysis of Reads 17

The popularity of files is a measure of the number of times a file has been accessed. We analyze the
popularity of files, and find a heavy tail (MF3.5.2) and stationarity (MF3.5.4). We compute popularity of
files from hashed file paths in the anonymized data. Figure 3.8 depicts the empirical cumulative distribution
function of popularity of files with a logarithmic horizontal axis. The descriptive statistics of popularity of
files are presented in Table 3.9.

Visually and also from the descriptive statistics in Table 3.9, we observe that most files are not popular with
a median and mean of 3 and 18. From the tail weight statistic, 0.37%-0.44% of reads are to the 99th percentile
(1%) of files. But, 90% of reads are due to 70th percentile (30%) of files. This matches the observation in [1]
that 90% of reads are due to 71st to 78th (29% to 22%) percentile. The tail of popularity of files is less heavy
than read size, but it is heavy nonetheless.

Figure 3.8 depicts that distributions of the two traces W1 and W2 are not too different. Their similarity
is quantified in Table 3.10. The variates were rebinned into 100 logarithmic bins for this purpose. We know
from Figure 3.2 that the number of reads is higher during the second period. This is evidence towards the
stationary nature of this distribution of popularity across a sufficiently large period, even if the magnitude of
number of reads changes.

Table 3.9: Descriptive statistics about popularity.

Period median mean std. dev. CV IQR
tail
weight

W1 3 18 355 20 7 0.37
W2 2 16 615 40 6 0.44

Table 3.10: Quantifying similarity of popularity distributions during two periods.

KS distance χ2 distance χ2 p-value

0.07 0.2 1.0

3.4.4. Interarrival Times

Figure 3.9: ECDF of interarrival time vs. number of reads.

Figure 3.10: ECDF of interarrival time at cluster level of all clusters
vs. number of reads with logarithmic horiz. axis.

Interarrival time of a read is the time elapsed between the read and the previous read. We analyze inter-
arrival times, and find near 0 values as the ecosystem level.

Large ecosystems such as the one at Databricks do not operate as a single monolith; i.e., it is not just one
large compute system making requests to a storage system. These ecosystems consist of numerous systems
which themselves contain multiple sub-systems. As mentioned in Section 1.1, the ecosystem at Databricks
consists of numerous Spark clusters, each of which is further composed of multiple workers. Storage related
operations such as metadata management and caching operate in these layers and not globally. Storage
accesses from different clusters and from different workers may not exhibit the same behavior as that of
the whole system. Thus, we study interarrival time behavior at the whole ecosystem level and the level of
individual virtual clusters.

18 3. Characterization of a Big Data Storage Workload in the Cloud

Figure 3.9 depicts the empirical cumulative distribution function of interarrival times with linear axes.
From the figure and the descriptive statistics in Table 3.11, an overwhelming number reads have a 0 interar-
rival time, when measured with millisecond precision. The number of reads falls precipitously with increas-
ing interarrival time, highlighting the high frequency of reads in the system.

Figure 3.9 depicts the ECDFs for W1 and W2 having a similar distribution. This similarity has been quanti-
fied in Table 3.12. The first six categories of the histograms were considered for this quantification. The reads
are more frequent (smaller mean interarrival time) in May than they were in January. This is a consequence
of a higher total reads by the system as presented in Section 3.3.

Table 3.11: Descriptive statistics about interarrival of reads.

Period median mean std. dev. CV IQR
tail
weight

W1 0 0.16 0.38 2.32 0 1.0
W2 0 0.08 0.27 3.38 0 1.0

Table 3.12: Quantifying similarity of interarrival time distributions during two periods.

KS distance χ2 distance χ2 p-value

0.08 0.12 0.99

We define interarrival time at cluster level to be the time difference between a read and a previous read
from the same cluster. We analyze interarrival times at the cluster level, and find a heavy tail (MF3.5.2),
bursty behavior (MF3.5.3) and stationarity (MF3.5.4). Figure 3.10 depicts the empirical cumulative distribu-
tion function of this feature. Unlike interarrival times at the ecosystem level, where more than 75% reads had
0 interarrival time, the fraction of reads with 0 interarrival time is only around 25% at the cluster level.

The descriptive statistics for this feature are presented in Table 3.13. The median interarrivals of 2 and 1
indicate that reads are still frequent at this level of granularity. Nevertheless, there are long periods with no
reads as evidenced by the high mean value and the extremely high standard deviation, which is over 1000
times larger than the mean. Thus, there are reads which occur very close together and there are long periods
of no activity. This is again evidence of burstiness.

Figure 3.10 depicts the similarity between distributions for W1 and W2. This similarity is quantified in
Table 3.14. Thus, the distributions remain stationary over long time periods. The variates were rebinned into
100 logarithmic bins for this purpose.

Table 3.13: Descriptive statistics about interarrival times at cluster level.

Period median mean std. dev. CV IQR
tail
weight

W1 2 136 127,558 936 5 0.96
W2 1 95 104,626 1101 4 0.95

3.4.5. Reuse Times
Reuse time refers to the time elapsed between two reads to the same file. We analyze the reuse times, and
find a heavy tail (MF3.5.2), and stationarity (MF3.5.4). Figure 3.11 depicts the empirical cumulative distribu-
tion function of reuse times. The histogram of reuse times had over 90 million categories. This is interesting
as other features such as size and popularity had histograms with multiple orders of magnitude fewer cate-
gories. This shows that reuse times are dispersed over the number line with little grouping behaviour when
considered at the millisecond scale. There is also a steep increase in reads with reuse time between 10 and
100 milliseconds.

The descriptive statistics for reuse time are quantified in Table 3.15. The median reuse time is high at
2720ms for W1 and 3042ms at W2 compared to the median interarrival times of 0-4 observed. Therefore,

3.5. Distribution across Clusters 19

Table 3.14: Quantifying similarity of cluster level interarrival time distributions during two periods.

KS distance χ2 distance χ2 p-value

0.08 0.03 1.0

Figure 3.11: ECDF of reuse time vs. number of reads with logarithmic horizontal axis.

reads of the same file are necessarily interspersed with reads of other files most of the time. The tail weight of
0.30 corresponds to a heavy tail.

Figure 3.11 depicts the similar distribtuion of reuse times for W1 and W2. This has been quantified in
Table 3.16. Thus, the distributions remain stationary over long time periods.

Table 3.15: Descriptive statistics about reuse times.

Period median mean std. dev. CV IQR
tail
weight

W1 2,720 5.77×106 2.46×107 4 6.77×105 0.30
W2 3,042 5.10×106 2.47×107 5 3.55×105 0.35

Table 3.16: Quantifying similarity of reuse time distributions during two periods.

KS distance χ2 distance χ2 p-value

0.05 0.008 1

3.5. Distribution across Clusters
The Databricks ecosystem is composed of many systems and subsystems working in concert to deliver results.
The distribution of reads across clusters refers to the number of reads contributed by each cluster to the total
workload. We analyze the distribution of number of reads and bytes read across clusters, and our major
finding is:

MF3.6.1 The distribution of number of reads and bytes read over clusters is heavy tailed.

Figure 3.12 depicts the empirical cumulative distribution function of the number of reads by each cluster.
Most clusters perform a small number of reads, and the majority of the reads are by a very small number of
clusters. The tail is very heavy which is apparent from the statistics in Table 3.17. Particularly from the tail
weight statistic that 70% of the reads are from the 99th percentile of the most popular clusters.

The empirical cumulative distributions in Figure 3.12 depict that the distributions of W1 and W2 are sim-
ilar. There is a slight difference and this is quantified in Table 3.18. The variates were rebinned into 10 loga-
rithmic bins for this purpose.

20 3. Characterization of a Big Data Storage Workload in the Cloud

Figure 3.12: ECDF of number of reads by a cluster vs. fraction of
clusters with logarithmic horizontal axis.

Figure 3.13: ECDF of bytes read by a cluster vs. fraction of clusters
with logarithmic horizontal axis.

Table 3.17: Descriptive statistics about distribution of reads across clusters.

Period median mean std. dev. CV IQR
tail
weight

W1 67 44,694 764,354 17 1,332 0.78
W2 606 69,841 999,796 14 6,769 0.69

3.5.1. Bytes Read by Clusters
Figure 3.13 depicts the empirical cumulative distribution function of bytes read by each cluster. Unlike all
other distributions in this work, this one is also flat on the lower end (closer to 0) and not just the higher
end of the horizontal axis. The steep incline in the middle indicates that the majority of the clusters read
a moderate amount of data, between 10MB and 10GB. We hypothesize that the prevalence of cluster little
data read is due to failed or newly started clusters. It is a very heavy tailed curve from descriptive statistics in
Table 3.19. Particularly the tail weight statistic that 82%-90% of reads are from 99th percentile of most popular
clusters.

The empirical cumulative distributions in Figure 3.13 depicts that the distributions during W1 and W2
are close. There is a slight difference and this is quantified in Table 3.18. The variates were rebinned into 100
logarithmic bins for this purpose.

3.6. Distribution Across File Types
The distribution of reads across file types helps understand what formats and file features are prevalent. This
leads to informed decision making about what formats to optimize and support. In this section, we look at
two features of files: storage format and compression. The storage format is the structure according to which
bytes are stored on disk; examples include JSON, CSV and Parquet. The compression algorithm is the one
used to compress stored data; examples include gzip and snappy. We obtain the information of the storage
format and compression algorithms from the file extensions. Our major findings are:

MF3.7.1 Parquet is the most popular file format.

MF3.7.2 Snappy and Gzip are the most popular compression schemes.

3.6.1. File Format Popularity
Figure 3.14 depicts the distribution of file formats in trace W2. We see that Parquet is the most popular format.
This is mainly due to its suitability for big data analysis; in addition, it is the default format for storage in
the Databricks ecosystem. A surprise to us was that this was followed by accesses to file without any file
extension. This means that they did not have any string with a “.” (dot) in them after the last “/” (slash). We
conjecture that reads with no filetype are comprised of parquet or other files without any extension. This is
followed by an almost equal fraction of accesses to JSON and files with unknown file format; JSON is a popular
data format, particularly for web applications. The reads with the unknown extension are those whose paths
were truncated or did not have an extension apart from the extension of the compression scheme used. The
number of unknown files was a surprise; this is evidence that a significant fraction of the files are deeply

3.7. Threats to Validity 21

Table 3.18: Quantifying similarity of distribution of reads across clusters.

KS distance χ2 distance χ2 p-value

0.20 0.17 1.0

Table 3.19: Descriptive statistics about distribution of bytes read across clusters.

Period median mean std. dev. CoV IQR
tail
weight

W1 7.36×107 1.87×1011 3.61×1012 19 2.36×109 0.90
W2 4.37×108 2.01×1011 4.17×1012 21 6.54×109 0.82

nested, thus having long file paths, or are in compressed archives without any special file formatting such as
Parquet. Finally, popular big data file formats like CSV, Avro, and ORC, also make an appearance.

3.6.2. Compression Scheme Distribution
Figure 3.15 depicts the distribution of compression schemes in trace W2. Gzip and Snappys are, by far, the
most popular compression schemes, with an order of magnitude higher fraction of reads than anything else.
The unknown fraction refers to files where the compression schema is not present in the extension or the file
path was truncated.

3.7. Threats to Validity
Our work in this chapter has several limitations. We discuss in this section the three main limitations, the
correlation between features, the bias inherent to our traces, and the lack of an example of direct use of the
main findings.

Correlation Between Features
Two features are said to be positively (negatively) correlated if an increase or decrease in one necessarily
causes a corresponding (inverse) increase or decrease in the other. Not checking for correlations can lead
to biased characterizations, because the reader is left with the impression that the variables under study are
independent. Although not presented in this work, we have conducted a preliminary analysis of the linear
correlation between the measured features. We have calculated the Pearson correlation coefficient between
all possible pairs of features, at different levels of magnification. As expected, most correlations were be-
tween 0.1 and -0.1, indicating low correlation. Notably, among all the correlations we calculate, a few were
above 0.9 (high correlation), but all others were between -0.17 and 0.25, which indicates these features are
independently varying.

Biased Traces
The bias inherent in trace use is that it is possible that our results, albeit valid for the traces used in the work,
are not representative at-large. We argue that this trace is representative of remote storage used by collections
of small clusters. The different clusters which are part of the trace are used by widely different organizations
including healthcare, manufacturing, web services, and advertising. We also observed that the workloads
from clusters from diverse organizations looked similarly across the different characteristics.

The bias might also be in time. The two weeks chosen for the analysis might not representative. We
verified that this was no the case by picking the two weeks very far apart. We also verify the representativeness
of the two weeks by visually comparing them to several other weeks. The inclusion of two weeks in this work
is to demonstrate that characteristics of the workload didn’t change over time.

Lack of Example Usage
It has become common in recent characterization studies to include in the publication an example of direct
use of the main findings, for example, for tuning a component of the system under study. To the proponents
of this approach, providing such an example can reduce the threat that the findings may be useless. In our
view, doing so is actually more of a threat to validity than not conducting such an experiment, because (i) the

22 3. Characterization of a Big Data Storage Workload in the Cloud

Table 3.20: Quantifying similarity of distribution of bytes read across clusters.

KS distance χ2 distance χ2 p-value

0.18 1.51 1.0

Figure 3.14: File format popularity for W2.

Figure 3.15: Popularity of compression schemes for W2.

analyst has a direct incentive to select specific results over others, (ii) the construction of a useful example
removes resources (and, ultimately, pages) from the characterization itself, and (iii) in the long-run, implying
characterizations are not enough diminishes the scientific standing of our community.

4
Generative Model For Storage Workloads

Motivated by the importance of traces in research, and by the scarcity of traces and models of Spark storage
workloads, we endeavor to answer the following research question: How can the characteristics of big data
storage workloads in the cloud be modeled to generate synthetic traces matching the statistical properties of
real-world traces?.

4.1. Overview
We present and validate a generative model for big data storage workload in the cloud. A generative model
can produce data indistinguishable from the real data in many aspects, based on just as few input parameters.
We use the model to generate a trace of reads to an object store by an ecosystem of big-data-processing
applications.

The usefulness of traces stems from real world experiments being expensive, and often even infeasible to
conduct. For example, a datacenter operator often cannot shut down a significant part of the datacenter to
satisfy research purposes. This would often incur a high financial and opportunity cost. Traces enable to us
to replay important conditions and scenarios. Traces collected correspond to a specific configuration of the
system from which they were collected. They are useful, for flexibility purposes, to generate new synthetic
traces that have characteristics close to the real traces. This enables conducting representative experiments
at different scales and represent “what if x?” scenarios as close to original as desired.

Real world traces are hard to come by. Companies and other institutions are hesitant to make traces
public. There is a fear that trace data might compromise privacy [49], reveal operational secrets and costs
to competitors, and alienate customers. Therefore, there is a need for generative models to make synthetic
traces which are indistinguishable from the real ones available for research. Research is also biased towards
traces which are public and popular [5]. A generative model partially addresses this problem by being able to
change and tune the model to generate a wide variety of synthetic traces.

Towards answering this question on which this chapter focuses, our contribution is four-fold:

1. We present a synthetic trace generation process using interarrival times and reuse times, which can
concurrently generate different parts of the trace.

2. We investigate 3 different methods of curve fitting to approximate the features of the original trace.

3. We validate the traces generated by the model using an emergent feature, file popularity, and a explicitly
designed feature, reuse times.

4. We measure the performance of the trace generation process.

4.2. Generation Process
The trace generation process is depicted in Figure 4.1. We first fit the empirical probability density func-
tions (EPDFs) (component 1) of the features characterized in Chapter 3 to known heavy tailed distribu-
tions (component 2). The curve fitting takes place once at the start of the generation process. The 2 features
of the trace we fit are the interarrival time of reads at the cluster level and the reuse time of reads. Interarrival

23

24 4. Generative Model For Storage Workloads

Figure 4.1: Trace generation process for one chunk.

time of a read refers to the time elapsed between a read and the previous read. Reuse time of a read refers to
the time elapsed between the time when a file is read and the time when the same file was previously read.
The output of the trace generation process are a list of tuples with two properties: the arrival time of a read,
and the identifier of the file which was read at that time.

The trace to be generated is divided into resource-clusters and data-chunks. As introduced in Chapter 1,
we are modeling the storage workload of an ecosystem composed of multiple virtual clusters. Hence, trace
generation also happens independently per cluster. The trace corresponding to each cluster is further divided
into chunks. Each chunk contains all reads between two specific times in the trace of a cluster. Important for
the scalability of the process, the trace for each cluster can be generated in parallel, independently from the
traces of other clusters. The chunks of the trace from the same cluster can also be generated in parallel.

A chunk is generated by a chunk generator (component 5). The chunk generator takes the chunk size (com-
ponent 11), an expected starting time (component 3), and an identifier to assign to the first new file (compo-
nent 4) it encounters as input. It generates a chunk with a specified number of reads. The number of reads in
a chunk is the chunk size. Chunks are ordered. Each chunk is assigned a position in trace.

Parallel generation of chunks of the same cluster is possible because we use probability theory to estimate
the start time of each chunk. Thus, a previous chunk doesn’t need to be generated to start generation process
of any chunk. The estimate passed as input to the generator is the estimates start time. The expected start
time assignment process is depicted in Figure 4.2. The expected start time is computed by multiplying the
expected value of the interarrival time distribution and the number of reads that will be generated by all the
previous chunks. Due to this process, chunk boundaries are not clearly demarcated in time and there might
be some overlap between chunks.

Another reason parallel generation of chunks is possible is that the new file identifiers assigned in every
chunk are independent. First new file identifiers are chosen such that there is no possibility of overlap be-
tween new files assigned by each chunk generator. The subsequent ones are arrived at by incrementing the
identifier of the previous new file by one. The first new file identifier to assign to every chunk is determined
empirically by running the generator a few times and determining an optimal gap between the first new file
identifiers of new chunks such that there is no overlap. For example, empirically we find that a chunk of size
100 million reads generates less than 10 thousand new files. The first new file identifiers of chunks 0, 1 and
2 could be 0, 10,000 and 20,000 respectively. Each subsequent new file in a chunk is identified by increment-
ing the new file identifier. For example, the second new file of chunk 1 will be 10,001 if the chunk started
identifying new files from 10,000.

The generation procedure in Listing 4.1 takes place in each chunk generator. The distribution of interar-
rival time of reads at the cluster level, obtained by curve fitting, is sampled to generate the interarrival times
for N reads (component 6 in Figure 4.1). N is the length of the trace to generate. The arrival times are com-
puted by computing a cumulative sum of the interarrival times (component 7 of Figure 4.1). The arrival time
is the first property in the output tuples of the generation process.

4.2. Generation Process 25

Figure 4.2: Assigning start times to chunks.

The distribution of reuse time of reads at the cluster level, obtained by curve fitting, is sampled to generate
the reuse times for N reads (component 10). The reuse times are used to associate reads with a file identifier
they are reading. The process of associating reads with files (component 9 in Figure 4.1) is depicted in Fig-
ure 4.3. A list of sequential numbers of size N, called list of files to read, is generated. This corresponds to
the file read by each read. At this point, each read is associated with a unique file. The reuse times are then
subtracted from the list of files to read. This produces a list of indices for reuse where each entry is an index to
the list of files to read. Each entry, i, in the list of indices for reuse satisfies the property i is less than position of
i and is called a reuse index (component 1 in Figure 4.3). The list of files to read (component 2) is sequentially
traversed and each entry is set to the value present in the reuse index position of the same list. This generates
dependencies across elements of the list and leads to a file being read multiple times. If the reuse index is out
of bounds, a new file is generated and the read corresponds to the new file. The list of files to read at the end
of association process becomes the second property of the output tuples of the whole generation process.

The association of reads to file identifiers can happen independent of the generation of file arrivals, as the
file interarrival times, and other features such as file popularity or reuse time aren’t correlated as we found in
Chapter 3.

Figure 4.3: Dependency generation using reuse times.

Listing 4.1: Trace Generation Alorithm for one Cluster

1 N = number of reads to generate
2 expected_start_time = from generator
3 f i r s t _ n e w _ f i l e _ i d e n t i f i e r = from generator
4
5 i n t e r a r r i v a l _ t i m e s _ v e c t o r = sample of s i z e N from d i s t r i b u t i o n of i n t e r a r r i v a l times
6 arr ival_t imes_vector = expected_start_time + i n t e r a r r i v a l _ t i m e s _ v e c t o r . cumumative_sum ()
7 reuse_times_vector = sample of s i z e N from d i s t r i b u t i o n of reuse times
8
9 l i s t _ o f _ f i l e s _ t o _ r e a d = np . arange (0 , len (arr ival_t imes) , dtype=np . int64)

10
11 index_for_reuse = l i s t _ o f _ f i l e s _ t o _ r e a d − reuse_times_vector − 1
12
13 new_file_id = f i r s t _ n e w _ f i l e _ i d e n t i f i e r
14 for i in range (N) :
15 reuse_index = index_for_reuse [i]
16 i f reuse_index > 0 :
17 l i s t _ o f _ f i l e s _ t o _ r e a d [i] = f i l e _ o f _ f i l e s _ t o _ r e a d [reuse_index]
18 else :
19 l i s t _ o f _ f i l e s _ t o _ r e a d [i] = new_file_id
20 new_file_id = new_file_id + 1
21
22 return arrival_times_vector , l i s t _ o f _ f i l e _ t o _ r e a d

The number files read between two successive reads of the same file is the reuse distance. The time elapsed
between two successive reads of the same file is the reuse time. In this algorithm, we consider the reuse time

26 4. Generative Model For Storage Workloads

to be a good proxy for reuse distance. In cases where the orders of magnitude of reuse time and reuse distance
are different, a scaling factor can be used to scale the reuse time. This only works if the reuse distance and
reuse time are linearly correlated. In our case, they were linearly correlated and the scaling factor was not
necessary.

4.3. Curve Fitting
Curve fitting is important because known probability distributes can be configured to imitate a different
workload by just changing a few parameters increasing flexibility. Furthermore, curve fitting is important
for the big data setting we target because it reduces the size of input data to the model. Some EPDFs, such as
the one for reuse times, are over sized over 1GB making the slowing the sampling and generation process.

We select, out of the many results our curve-fitting process produces, two main findings:

MF4.3.1 Among the methods we have used to fit heavy tailed distributions observed in computer systems.
The unweighted least-squares regression of their survival functions gives the best result.

MF4.3.2 We confirm the heavy tailed nature of the distributions, by observing that their survival function is
above that of the exponential distribution. This is a sufficient condition for a distribution to be heavy
tailed [44].

The trace we use to extract empirical probability distribution functions (EPDFs) for regression is W2 from
Chapter 3.

4.3.1. Process for Curve Fitting
We fit the empirical distribution of features of the original data to several standard heavy tailed distributions
using least-squares regression. The distributions are Weibull, generalized Pareto (subsumes Pareto), Gamma
(subsumes Erlang and other exponential based distributions), Log-normal, and Levy. These are distributions
commonly used to model computer systems related phenomena [28]. Following the suggestions in [48], we
fit both the probability density function (P (X) = Pr (X = x)) and the survival function (F̂ (X) = Pr (X > x))
computed from empirical data. Here, x is the value a feature can, a variate. The survival function (SF) is the
inverse of the cumulative distribution function (F (X) = Pr (X ≤ x)), and can be derived from the CDF. F̂ (X) =
Pr (X > x) = 1−Pr (X ≤ x) = 1−F (X). Heavy tailed distributions originally arose out of survival analysis [44].
Even though not all features we model are survival related, we thought taking heavy tailed functions back to
their root and modeling their survival would give good results.

We also try weighted least-squares regression where the weight of each variate is the inverse of bin size.
The bin size of a variate is the difference between a variate and the previous variate that is being fitted. The
weight of a bin is 1

xi−xi−1
. The reason for trying weighted least-squares is because it approximates to max-

imum likelihood estimation (MLE) for large samples, and MLE is a popular method of fitting probability
distributions [39].

Heavy tailed functions are non-linear, so we use non-linear least-squares regression for fitting the PDFs
and SFs. We use Levenberg-Marquardt (LM) algorithm for least-squares regression, we the implementation
of the algorithm provided by MINPACK through the SciPy library, version 1.1.0. We use LM because of its
ubiquity and generally higher performance, relative to other methods [30]. We verify goodness of fit using
the Kolmogrov-Smirnov (KS) test and the χ2 test. The distance statistic of the KS-test (d-statistic) has been
recommended for measuring the goodness of fit of heavy tailed distributions by prior work [19]. We also
evaluate he goodness of fit is also evaluated visually using PDFs and SFs. The original distribution is labeled
“original”. In each statistic comparison table e.g., Table 4.1, we label the column with weighted or unweighted
fit “Wt.”.

We fit four features of the workload to know probability distributions in this section. The PDF and SF
of each of interarrival time of reads at cluster level, the reuse time of files, the popularity of files, and the
distribution of request sizes. We fit the popularity of files and the distribution of request sizes because the are
features of broad interest to the general community. The distributions of the interarrival times of reads, and
the reuse time of files are use in our model.

4.3.2. Fitting the Interarrival of Reads at Cluster Level
We present in this section the results of fitting the PDF and SF of the distribution of interarrival time of reads
at cluster level. We use the process described in Subsection 4.3.1. Figure 4.4 depicts the weighted and un-
weighted fit of PDFs and SFs of several know distributions to the distribution of interarrival time of reads

4.3. Curve Fitting 27

at cluster level. The heavy tailed nature of the distribution is confirmed by the position of the empirical SF,
above the SF of exponential (MF4.3.2) as depicted in Figures 4.4c and 4.4d.

(a) Unweighted fit to PDF. (b) Weighted fit to PDF.

(c) Unweighted fit to SF. (d) Weighted fit to SF.

Figure 4.4: Distribution fitting to interarrival time of reads at cluster level.

Table 4.1 quantifies the goodness of fit. The Log-normal distribution seems to fit best closely followed by
Generalized Pareto distribution, and further by Weibull distribution. All three when survival functions were
fitted without considering weights (MF4.3.1). The best fit found in the Log-normal distribution has the shape,
location, and scale parameters with values 2.254, 0.048, and 0.638, respectively.

4.3.3. Fitting the Reuse Time

We present in this section the results of fitting the PDF and SF of the distribution of reuse time of reads. We
use the process described in Subsection 4.3.1. Figure 4.5 depicts the weighted and unweighted fit of PDFs
and SFs of several know distribution to the distribution of reuse time of reads. The heavy tailed nature of the
EPDF is confirmed by the position of the empirical SF, above the SF of exponential (MF4.3.2) as depicted in
Figures 4.5c and 4.5d.

Table 4.2 quantifies the goodness of it. The Weibull distribution seems to fit best closely followed by
Log-normal distribution, and further by Generalized Pareto distribution. All three when survival functions
were fitted without considering weights (MF4.3.1). The best fit found in the Weibull distribution has shape,
location, and scale parameters as values 0.152, 42.951, and 34,981.631, respectively.

4.3.4. Fitting the File Popularity

We present in this section the results of fitting the PDF and SF of the distribution of popularity of files. We use
the process described in Subsection 4.3.1. Popularity of a file refers to the fraction of all reads that were of the
file. Figure 4.6 depicts the weighted and unweighted fit of PDFs and SFs of several know distributions to the
distribution of popularity of files. The heavy tailed nature of the distribution is confirmed by the position of
the empirical SF, above the SF of exponential (MF4.3.2) in Figures 4.6c and 4.6d.

28 4. Generative Model For Storage Workloads

Table 4.1: Goodness of fit of distributions for interarrival time
of reads at cluster level ordered by the Kolmogrov-Smirnov
distance.

Distribution Fit to Wt. KS dist. χ2 dist.

Log-normal SF no 0.001 1.99×10−02

Gen. Pareto SF no 0.004 3.04×10−02

Weibull SF no 0.006 1.55×10−02

Gamma SF no 0.020 9.52×10−02

Weibull PDF no 0.031 1.64×10−02

Gamma SF yes 0.038 4.90×10−02

Gamma PDF no 0.040 3.27×10−02

Log-normal PDF no 0.047 9.50×10−03

Levy SF no 0.055 4.19×10−01

Gen. Pareto PDF no 0.070 5.50×10−03

Exponential PDF yes 0.073 1.33×10−01

Exponential SF no 0.079 1.78×10−01

Exponential PDF no 0.109 1.03×10−01

Levy PDF yes 0.118 1.24×10−02

Levy PDF no 0.133 1.27×10−02

Weibull SF yes 0.178 6.99×10+12

Log-normal SF yes 0.186 9.04×10+04

Gen. Pareto SF yes 0.316 4.24×10−01

Levy SF yes 0.316 4.24×10−01

Exponential SF yes 0.316 4.24×10−01

Gen. Pareto PDF yes 0.798 3.16×10−02

Table 4.2: Goodness of fit of distributions for reuse time or-
dered by the Kolmogrov-Smirnov distance.

Distribution Fit to Wt. KS dist. χ2 dist.

Weibull SF no 0.039 8.80×10−01

Log-normal SF no 0.056 8.39×10−01

Gen. Pareto SF no 0.088 7.18×10−01

Gamma SF no 0.143 1.18×10+06

Gen. Pareto PDF yes 0.259 1.58×10+00

Levy SF no 0.304 9.23×10−01

Levy PDF yes 0.332 6.63×10−01

Exponential SF no 0.351 9.25×10−01

Levy PDF no 0.363 5.94×10−01

Exponential PDF no 0.512 2.81×10−01

Gamma PDF no 0.522 2.75×10−01

Levy SF yes 0.572 3.37×10−01

Exponential SF yes 0.589 1.62×10+00

Log-normal SF yes 0.762 6.50×10+01

Gen. Pareto SF yes 0.827 9.29×10−01

Gamma SF yes 0.887 6.23×10+01

Log-normal PDF yes 0.905 5.14×10+01

Weibull SF yes 0.913 5.40×10+01

Weibull PDF yes 0.916 7.88×10+00

Gamma PDF yes 0.917 7.31×10+00

Exponential PDF yes 0.917 8.18×10+00

Table 4.3: Goodness of fit of distributions for popularity of
files ordered by the Kolmogrov-Smirnov distance.

Distribution Fit to Wt. KS dist. χ2 dist.

Gen. Pareto SF no 0.027 4.73×10−01

Log-normal SF no 0.032 4.60×10−01

Weibull SF no 0.042 4.36×10−01

Exponential PDF yes 0.053 5.33×10−01

Gamma SF no 0.061 4.00×10−01

Gamma PDF yes 0.080 3.15×10−01

Exponential SF no 0.091 7.52×10−01

Log-normal SF yes 0.102 4.69×10−01

Levy SF no 0.109 2.78×10−01

Weibull SF yes 0.118 2.03×10+00

Weibull PDF yes 0.124 3.60×10−01

Log-normal PDF yes 0.163 3.84×10−01

Gamma SF yes 0.167 1.58×10+09

Levy PDF no 0.168 2.49×10−01

Gamma PDF no 0.238 1.12×10+00

Gen. Pareto PDF yes 0.276 4.52×10−01

Levy PDF yes 0.284 5.42×10−01

Gen. Pareto SF yes 0.335 7.74×10−01

Exponential PDF no 0.392 4.28×10−01

Exponential SF yes 0.427 8.45×10−01

Levy SF yes 0.428 1.00×10+12

Weibull PDF no 0.468 2.18×10+00

Gen. Pareto PDF no 0.538 4.92×10−01

Table 4.4: Goodness of fit of distributions for size of read or-
dered by the Kolmogrov-Smirnov distance.

Distribution Fit to Wt. KS dist. χ2 dist.

Gen. Pareto SF no 0.009 5.16×10−02

Log-normal SF no 0.017 5.14×10−02

Weibull SF no 0.033 1.75×10−01

Gen. Pareto PDF no 0.049 5.19×10−02

Levy SF no 0.066 3.50×10−01

Gamma SF no 0.068 2.40×10+00

Log-normal PDF no 0.075 6.64×10−02

Weibull PDF no 0.104 9.31×10−02

Gamma PDF no 0.124 1.13×10−01

Log-normal SF yes 0.140 4.13×10+01

Weibull SF yes 0.167 8.18×10+03

Exponential PDF no 0.183 1.69×10−01

Exponential SF no 0.196 3.75×10−01

Levy PDF no 0.208 3.81×10−02

Gamma SF yes 0.214 2.85×10+10

Levy SF yes 0.357 7.10×10+07

Gen. Pareto SF yes 0.570 7.02×10−01

Exponential SF yes 0.570 7.02×10−01

Gen. Pareto PDF yes 0.759 1.86×10−02

Gamma PDF yes 0.997 7.01×10−01

Exponential PDF yes 1.000 1.23×10−05

Levy PDF yes 1.000 2.18×10−05

4.4. Model Validation 29

(a) Unweighted fit to PDF. (b) Weighted fit to PDF.

(c) Unweighted fit to SF. (d) Weighted fit to SF.

Figure 4.5: Distribution fitting to reuse time of read.

Table 4.3 quantifies the goodness of fit. The Generalized Pareto distribution seems to fit best closely fol-
lowed by Log-normal distribution, and further by Weibull distribution. All three when survival functions were
fitted without considering weights (MF4.3.1). The best fit found in the Generalized Pareto distribution has
the shape, location, and scale parameters with values 1.063, 0.622, and 1.783, respectively.

4.3.5. Fitting the Read Size
We present in this section the results of fitting the PDF and SF of the distribution of size of reads. We use the
process described in Subsection 4.3.1. The size of a read is defined as the number of bytes transferred from
the storage system in one read. Figure 4.7 depicts the weighted and unweighted fit of PDFs and SFs of several
know distribution to the distribution of size of reads. The heavy tailed nature of the distribution is confirmed
by the position of the empirical SF, above the SF of exponential (MF4.3.1) in Figures 4.7c and 4.7d.

Table 4.4 quantifies the goodness of fit. The Generalized Pareto distribution seems to fit best closely fol-
lowed by Log-normal distribution and further by Weibull distribution. All three when survival functions were
fitted without considering weights (MF4.3.1). The best fit found in the Generalized Pareto distribution has
shape, location, and scale parameters as values 1.185, -0.307, and 2.842, respectively.

4.4. Model Validation
There are two major schools of model validation: similar performance and similar statistical properties. In
similar performance validation, a generative model is said to be be similar to the original system if the traces
it produces lead to performance similar to the original system, for a wide range of algorithms and policies.
In similar statistical properties validation, a generative model is said to be similar to the original system if
the traces it produces have similar observed statistical properties to the original system. Validation using
statistical properties requires that the original data is first characterized to identify them. We characterize
the original data used for this validation in Chapter 3. Validation more statistical properties requires more
features to be characterized.

A trace of storage reads can be uniquely identified by two properties: its spatial distribution and its tem-
poral distribution. The spatial distribution is defined as the distribution of reads across different elements
that constitute the trace. In our context, this is the probability distribution of the popularity of files. The
temporal distribution is defined as the distribution of reads over time, and also by the relation between reads

30 4. Generative Model For Storage Workloads

(a) Unweighted fit to PDF. (b) Weighted fit to PDF.

(c) Unweighted fit to SF. (d) Weighted fit to SF.

Figure 4.6: Distribution fitting to popularity of file.

over time. In our context, this is approximated by the distribution of interarrival times and of reuse times.
We use two features, interarrival time of reads, and reuse time of reads, to generate the workload trace,

using our model. We validate the model by observing another feature of the workload, the popularity of files,
which is an emergent feature describing the spatial distribution. It is emergent because it is not an input to
our model and occurs organically due to the interplay of other modeled features. It arises as a result of the
synthetic trace having the same temporal distribution as the original trace. The property which describes the
temporal distribution, reuse time, is explicitly modeled by us. We compare the distribution of the new fea-
ture in our generated data to that we observe in the original data. Similar distributions for both traces would
indicate similarity of spatial distribution. We also compare the reuse time distribution we observe in the gen-
erated trace to the original trace. Similarity between the two distributions would validate our hypothesis of
linear correlation between reuse distance and reuse time. It would also validate the generated trace because
the distribution of reuse time remains the same after using reuse time as reuse distance when generating the
synthetic trace. We quantify the similarity of two distributions using the Kolmogrov-Smirnov test.

The results we obtain lead to three main findings:

MF4.4.1 The synthetic trace has a file popularity distribution similar to that we observe in the original trace.

MF4.4.2 The popularity distribution is similar only if the chunks are sufficiently large for a file to be read a
large number of times.

MF4.4.3 The reuse-time distribution of the synthetic trace is similar to that we observe in the original trace.

4.4.1. Experimental Setup
The original trace we use as input to the generative model for all experiments in this section is trace W2 from
Chapter 3.

We generate two synthetic traces:

1. 1 billion reads in 10 chunks of 100 million reads each.

2. 100 million reads in 10 chunks of 10 million reads each.

The distributions are smoothed by binning data into 10,000 bins for fair comparison. Unbinned data has
noise which influences the KS distance measurement.

4.4. Model Validation 31

(a) Unweighted fit to PDF. (b) Weighted fit to PDF.

(c) Unweighted fit to SF. (d) Weighted fit to SF.

Figure 4.7: Distribution fitting to size of read.

4.4.2. Popularity of Files
The distribution of popularity of files of the two synthetic traces are compared to that of the original trace.
This is depicted in Figure 4.8. The EPDF of the synthetic trace appears slightly to the left of the original trace
when the chunk size is 10 million reads (MF4.4.2). But, it lines up well when the chunk size is 100 million
reads (MF4.4.1). This is caused because files read in a chunk are unrelated to files read in another chunk.
Therefore, the chunks need to be of a certain minimum size for a file to be read enough number of times
for the distribution to be comparable to the original trace at higher popularities. The KS distance is 0.29 for
chunk sizes of 10 million and 0.25 for 100 million. If we only consider the tail elements, the KS distance of
0.014 for chunk size 10 million is higher than 0.001 for chunk size 100 million. With chunk sizes large enough
that all uses of the same file can fit in a single chunk, the emergent popularity distribution of the synthetic
trace matches that of the original.

(a) Chunk size: 100 million reads. (b) Chunk size: 10 million reads.

Figure 4.8: Distributions of popularity of files of synthetic traces (black) compared to original (orange).

32 4. Generative Model For Storage Workloads

4.4.3. Reuse Time of Reads
We compare reuse times for a single chunk of length 10 million. We use chunks of length 10 million and
not 100 million for two reasons. Reuse time is expensive to compute and thus the computation for a smaller
chunk is faster. The second reason is that this would demonstrate that reuse time distribution is not as ef-
fected by chunk length as popularity distribution. We use length The comparison is depicted in Figure 4.9.
The reuse time distribution of the synthetic trace is below that of the original trace. But, both have a similar
shape and are at similar orders of magnitude at different variates (MF4.4.3).

Figure 4.9: Comparison of distribution of reuse times of 1 chunk of
synthetic trace (black) to that of original trace (orange). Figure 4.10: Time elapsed to generate chunks of different sizes.

4.5. Performance of the Trace Generator
We measure the performance of the trace generator to analyze its suitability for generating long traces and
real world usage. We generate traces with different chunk sizes and measure the time it takes to generate a
chunk. The time required to write to disk is not measured. The experiment is repeated ten times. The results
are depicted as a boxplot in Figure 4.10. The upper, middle and lower notches represent the 75th, 50th and
25th percentile, respectively. The computers used for trace generation have two Intel Xeon E5-2630-v3 CPUs
and 64GB of RAM. We see a linear increase in the time required for trace generation. An order of magnitude
higher size requires an order of magnitude more time.

We generate ten chunks of the same size, and belonging to the same cluster, in parallel and observe that
the number chunks has no impact on the generation time as long as each chunk generator can use one full
CPU core for its generation. Similarly, chunks belonging to multiple clusters can also be generated in concur-
rently as there is no dependence between chunks of different clusters.

4.6. Threats to Validity
We consider and discuss in this section three major threats to validity of the work presented in this chapter.

Usage of Least Squares Regression
Maximum Likelihood Estimation (MLE) is commonly used technique to fit data to know probability distri-
butions. We weren’t able to use MLE due to the massive size of the dataset under consideration. After all
the pre-processing describe in (ref characterization chapter), the dataset was still sized in multiple terabytes.
MLE on such a large dataset was not feasible. Next, we tried systematic sampling of the dataset. A reason-
ably sized sample of a few gigabytes was not representative of the original data. The difference between the
PDF of the sampled data and the PDF of the original data is depicted in Figure 4.11. To prevent this loss
of information due to sampling, we use Least Squares Regression to fit the EPDFs and ESFs to probability
distributions.

Weighted least squares regression with large samples approximates MLE. We see that it doesn’t give a good
fit. We believe this is because of the assumption by MLE that all noise Gaussian. This might not be the case
in our data.

4.6. Threats to Validity 33

Figure 4.11: PDF os sampled data vs. PDF of original data.

Using Reuse Time instead of Reuse Distance
We estimate the reuse distance of a read from the reuse time distribution. This works in cases where reuse
time and reuse distance are linearly correlated. The most a user would need to do is tune the scaling factor to
get reuse times to the same order of magnitude as the reuse distance. We expect linear correlation to be the
case for most workloads. In case of a more complex relation between the 2 features, this model is not valid.

File Arrival and End
We don’t model the file arrival and end times of the workload. We expect the model to still be useful for
modeling read dominated workload like Big Data and for use cases such as benchmarking cache policies.
The model is not applicable to modification heavy workloads.

5
Design of the Approximate Read Density

Cache Policy

The cache policy is an important yet sensitive part of any data processing system. The trade-off, size-performance,
requires careful understanding of the workload, yet the caching sub-system must be transparent to the user.
Implementation and tuning can be challenging, especially for modern policies such as LHD [11], which try to
reuse information about prior usage patterns using PDFs. In contrast to these policies, explicitly to LHD, we
attempt to design policies starting from a few stated principles and using only few parameters. We endeavor
to answer the research question: What is a principled approach to design an adaptive cache policy with few
parameters?.

5.1. Overview
Caching is widely used technology. We use it over the normal course of operating a computer in CPUs, in
storage hardware and while accessing said storage hardware (page cache). It is used between a database
and application that use it to reduce reads from the database[7]. Furthermore, most browsers accessing the
Internet fetch part of the content from geo-distributed cache locations that act as a Content Delivery Network
(CDN), such as Akamai’s. Given its widespread deployment, it is an important technology worth studying.

In general a cache is beneficially employed whenever an object is expensive to compute or retrieve and
doesn’t change over a reasonably long period of time. A cache system is comprised of fast storage and algo-
rithms (policies) that manage cached data. A cache is beneficial when, on average, the cached objects can be
retrieved from the cache much faster than computing them or retrieving them from the storage system used
before caching was added.

Towards answering the research question on which this chapter focuses, designing a cache policy based
on few principles and parameters, our contribution is three-fold:

1. We propose a reference architecture for a cache policy (Section 5.2).

2. We design a family of eviction metrics, based on the concept of read density (Section 5.5).

3. We design a novel approximate data structure to compute the number of reads of an object in different
time intervals (Section 5.6).

5.2. Cache Reference Architecture
We use in this chapter the system model introduced in Section 1.1, in particular, the storage subsystem. The
storage device used for caching is a byte/word-addressable storage device, such as RAM, NVMe flash, or SSD.
In Internet or network based applications, a layer of software such as memcached or caffeine provides a key-
value store interface atop the storage device. In this storage architecture, caching can be added as a multi-
level abstraction, where each order of magnitude of added latency is addressed by a new cache level. At any
level of abstraction, the size of installed cache is typically of a much smaller size than the whole dataset.
Thus, the cache needs to keep changing its content. The elements stored in the cache need to keep changing

35

36 5. Design of the Approximate Read Density Cache Policy

in response to the access pattern of the application for the cache to be useful. The set f algorithms which
decide how the content of the cache changes is the cache policy.

Orthogonally, caching comes in variants, whole-trace, online, offline, and whole-trace. Whole-trace caching
happens when the cache policy has access to all future accesses to make fully informed decisions. This ideal
case rarely happens in practice. Online caching decisions have to be taken as access requests stream in, in
a short amount of time. Online caching policies are traditionally used for caching in CPUs, OS page cache,
databases, CDNs etc. Offline caches are closely related to a dual of caching, tiering, which is a technique
where parts of the data are stored on storage devices with different performance. Offline algorithms ana-
lyze past data accesses for a significant period of time, then make decisions about the placement of data
for the next (also long) period of time [4] or place suggestions for the online algorithm to take into account.
For example, a two tier storage system which consists of 128GB RAM, 1TB NVMe, and 4TB HDD could use
auto-tiering to periodically move large datasets between in-memory location and on NVMe location.

Figure 5.1: Structure of an Online Cache.

The reference architecture of an online cache is in Figure 5.1. A cache read has two results: hit or miss.
In case of a hit, the object already exists in the cache and can be returned to accessor (component 3). In
case of a miss, the object doesn’t exist in the cache and there are two options: consider for entry or reject.
The entry policy makes this decision (component 6). Granting an object entry means it is eligible to placed
in the cache. If there is space in cache, the object is placed. It might be the case that cache is already full.
It has reached its capacity in storage or the number of objects stored. In that case, an existing object has
to be evicted from cache. The eviction policy (component 5) decides which object will be evicted. It picks
one or multiple objects to be evicted from the those already present in the cache. This object is the eviction
candidate. The cost-benefit analysis of retaining the eviction candidate versus admitting the new object is
done by the admission policy and a decision is made.

A cache policy is the process and its set of algorithms (admission, eviction, etc.) that decide which objects
get to stay in the cache and which are evicted. Evicting can just be deleting a computed result or a copy from
the cache while it stays in slower storage. Cache policies have components which are common across many
of them. In this section, we outline the structure of a generic cache policy and the components it might have.
The architecture is not exhaustive, but we think it is a good representation. We provide examples of existing
policies to emphasize the applicability of this generic architecture.

5.3. Anatomy of a Cache Policy
A cache policy is considered to be successfully fulfilling its role if it has the right element in cache at the
right time. The “right” element and time are challenging concepts to quantify and exact optimal solutions
do not exist in practice for most caching problems. Some solutions exist for problems with strict unrealistic
assumptions. For example, for caches where all objects are equally sized and equally costly to fetch, Belady’s
OPT [12], a whole-trace caching policy, specifies that the optimal object to evict at any time is the one whose
next access is furthest in the future. For all online and offline policies commonly used for systems, where
all objects aren’t equally sized or costly and other reasons, the rightness or suitability of an object’s presence
in the cache at a certain time is made from assumptions and intuitions. To be of use in an algorithm, these

5.4. Caching for Big Data Workloads 37

simplifying assumptions and rule-of-thumb intuitions need quantification by a metric. A good caching met-
ric imposes a total ordering on cacheable elements in the system. The ordering of object according to some
metric is called ranking in some literature [15].

The Entry Metric (component 6b) is the algorithm whose result determines whether an object is eligible
for entry into the cache. This can be based on the nature of the object, such as metadata or data, or some other
property such as object size. For example, AdaptSize [13] restricts entry probabilistically based on object size.
Admit everything is the most commonly used entry metric: every object is admitted irrespective of its size
and other properties.

Eviction Metric (component 5c) is the algorithm whose result determines the item to evict when the cache
is full. Examples of this are Least Recently Used (LRU) and Least Frequently Used (LFU) eviction policies.
In LRU, the object which was used least recently is evicted. In LFU, the object which has been used the
least number of times is evicted. These conceptions of least recency and frequency are what constitute the
eviction policy. The metric chosen depends on constraints related to the environment and the objectives of
the caching system (such as maximizing the object hit rate or the byte hit rate.)

Admission Metric (component 4b) is the algorithm whose result determines whether an item should be
admitted into the cache, most often at the expense of the item chosen for eviction by the eviction policy.
“Admit everything” is the most commonly used admission metric. The popularity of an object can be used as
an admission metric, as done in TinyLFU [25].

Victim Selection is the process of selecting objects for eviction metric algorithm to run on. Cache policies
don’t touch all elements in the cache to make either admission or eviction decisions. There are two types of
victim selection processes: pre-calculation and post-calculation.

Pre-calculation victim selection is the process of picking object from the cache for metric calculation. For
policies like LRU and LFU, it happens as a direct consequence of the data structure used. Here, the element
at the tail or head of the linked list is picked for eviction, respectively. In more complex policies or function-
based policies, a way of selecting a subset of elements in the cache so that the ranking function (the function
which computes the metric) is not executed for every element during eviction or admission. A popular way of
doing that, used in memcached, is using size slabs. Elements are checked for eviction in the same size slab as
an incoming element so as to avoid unnecessary evictions of several small object (several elements are evicted
so that their combines size makes room for a large object). Another way to select victims before calculation
is sampling. A sample of elements is taken from the cache and their metrics are computed pending eviction.

Post-calculation victim selection is the process of applying the result of ranking obtained in pre-calculation.
A common thing to do is to evict the object with the minimum or the maximum value of the metric.For ex-
ample, in LRU, the object with least recency of use is evicted. Another option is to use the computed metric
as a probability of staying or eviction of objects [13].

Cache policies also have meta characteristics which are outside the purview of the admission and evic-
tion decisions. This includes the decision to partition the cache into multiple segments, such as in SLRU or
S4LRU. Meta characteristics also include mechanisms used to combine simple policies into adaptive poli-
cies. A meta characteristic might be an expert system that allows the policy with most success get control over
the cache for a period. Different policies can also be made to compete for resources, as in ARC. This tech-
nique operates at a higher level compared to all previously presented components of a cache policy which we
explain.

5.4. Caching for Big Data Workloads
Our policy is designed based on our observation of the Databricks ecosystem (The characteristics of storage
accesses for this system are in Chapter 3.) From our observation, the number of reads that need to be service
per second is not high on average. Moreover, in Section 3.4, we show that that both the number of reads
and the amount of data read exhibit negative long range time dependence. This means there are periods of
high read activity followed by periods of low read activity. We focus on regions of high read activity, which
we take as the upper limit for the throughput we need to serve. This is in the order of several thousand
requests per second. however we remain concerned that any compute and memory we use for the cache is
unavailable for actual processing. So, we need to keep memory and compute usage for the cahce reasonably
low. Therefore, we cannot use any computationally heavy algorithms, such as those that involve solving
constraint-optimization problems at runtime. This necessitates online caching policies, and not offline or
whole-trace ones. We will not consider meta characteristics further in this work.

Two types of objects that are cached: (1) very tiny metadata objects, typical of metadata, ranging in size

38 5. Design of the Approximate Read Density Cache Policy

from a few bytes to a few KB, and (2) large objects which range in size from a few KB to 100s of MB. This
distinction is not apparent from the logs but we notice there are reads of size 1 byte and many reads of size less
than 10 bytes. At these sizes files can story only one data item. thus, we speculate that this could be metadata.
This metadata could be files stored by Spark and other associated Databricks services for bookkeeping and
optimization. An example of such metadata is data skipping indices. For these, for each chunk of data to
be read, the system checks whether the chunk might contain anything of interest to the data processing task
being executed. Another example is metadata files used to implement locks or some form of version control
so that a file doesn’t get modified while another program is using it. File formats, especially parquet (the most
popular one), also have metadata which is essential for fast operation of the system.

We analyzed the reuse times of files and noticed that more than 75% of reads have a reuse time of less
than 100 seconds and 90% less than 3 hours. The reuse times were evenly distributed between zero and three
hours. This inspired us to look at LHD [11] to keep track os the reuse times of objects over time. We theorized
that objects whose reuse time distribution was biased towards lower reuse times were beneficial compared
to those whose distribution was biased towards higher reuse times.

We are acting with incomplete information. AWS S3 provides access to parts of a single file by specifying
a byte range. Spark takes advantage of that reads parts of a file. However, due to logging and log-access
restrictions, in practice we do not know which part of the file to cache. Thus, while designing our policy and
experiments, we considered caching of whole files. If a file has already been accessed and is in the cache
there would be no cache miss. We think the design decisions and performance results from our setup are
applicable to the system under consideration, if caching is done at the whole file level. We conjecture that
they are applicable even when parts of the file are cached and leave proving this for future work.

5.5. Policy Design
We partition the available cache into two parts: the candidate cache and the main cache. The candidate cache
has an admit policy of admitting everything and an LRU based eviction policy. It can be anything from 1% of
the total cache size to 10%. The exact value requires tuning which we leave for future work. It has also been
called a buffer cache, window cache or the first cache segment in other literature. The main cache occupies
the remaining space. We propose an eviction policy inspired by LHD for the main cache.

5.5.1. Candidate Cache
Before elaborating on the need for a candidate cache, we need to present the concepts of intrinsic and ex-
trinsic features of a read. A feature is a property associated with a read which is used in making cache related
decisions. All the properties we statistically characterize in Chapter 3 are features. An intrinsic feature is a
property of the read that is independent of the workload. Examples of intrinsic features include the size of
file, column in the database which this file represents, the owner of a file and the file name. These properties
are intrinsic to the file and would remain the same irrespective of the workload accessing the file. An extrinsic
feature is a property of the read that only exists due to the workload. The most intuitive example of this is the
popularity of the file. How many times a file is accessed depends exclusively on the workload and nothing
else. Another example is the reuse time: time since the file was last accessed. The features only pop into
existence due to an external influence and are thus called extrinsic features.

A candidate cache with a simple admission and eviction policy gives the cache metadata to capture the
extrinsic properties of an item. Cache metadata includes information such as number of times a file is ac-
cessed and the last time it was accessed that can help make admission and eviction decisions. One example
of a system which uses a candidate cache to allow an extrinsic feature, number of accesses, to be captured
before using the main eviction algorithm is Hyperbolic caching [15]. Capture means that the item has been
accessed a recent number of times and the system has enough metadata about it. This capture time is helpful
for policies like W-TinyLFU which depend on extrinsic features such as number of reads. It is not necessary
for policies like AdaptSize which use an intrinsic feature such as file size. The size of candidate cache and
the number of candidate caches are hyper-parameters of the caching policy and are areas of future work. We
consider the case with one candidate cache.

For the candidate cache, we admit everything and use the LRU policy. When a burst of reads of a file
occurs, it is accessed repeatedly and not evicted by the LRU policy. When the burst stops and there is a lull,
it is at some point going to be evicted by the LRU policy. Otherwise it is still in the cache leading to hits. The
LRU cache is implemented using a Linked List data structure whereby newly accessed elements move to the
head of the cache. The element at the tail of the list is evicted.

5.5. Policy Design 39

Mapping to our reference architecture of a cache policy, the candidate cache has the entry metric of allow
all, admission metric of allow all, eviction metric based on recency of use, and an ordered licked list for victim
selection.

5.5.2. Entry to Main Cache
We explained the general structure of the cache with two parts: candidate cache and main cache. In Subsec-
tion 5.5.1, we explained the mechanism of entry into the candidate cache, admit everything, and the mecha-
nism of eviction from the candidate cache, LRU. In this section, we describe the movement mechanism of an
object from the candidate cache to the main cache. There are multiple techniques for this. They can broadly
divided into two categories: move on hit and move on miss. SLRU uses a move on hit technique where an
object is moved to the main cache after a certain number of hits. This is checked after every hit. TinyLFU uses
a move on miss technique which compares the popularity of object to the least popular object in the main
cache once and admits the object if it is more popular.

We chose a policy where an object is checked for inclusion into the main cache once it has been evicted
from the candidate cache. This comes with the advantage that hits to the candidate cache are cheap. There
is no computation to check for inclusion into main cache on every hit. Therefore, hits are truly lightweight
and don’t take resources from actual jobs running on the computer. An item eligible to be in the main cache
early on should also be eligible when its evicted from the candidate cache given that it a simple LRU cache.
For example, a popular item should remain popular even if it is being evicted due to a time constraint. If it is
not, then it did not have any long term value and was ineligible to be in the main cache anyway. Elements in
the main cache are those which provide long term value.

We experiment with a few admission metrics. These metrics will use extrinsic features such as popularity
(LFU) as opposed to intrinsic features such as size (AdaptSize). The policy thus remains flexible as intrinsic
metrics such as application name, type and user are not available to the cache policy in a lot of environments.
These can be combined with techniques that use intrinsic features but that is outside the scope of this work.
The techniques we will try are: TinyLFU and ReadDensity.

A TinyLFU admission metric keeps track of the popularities of all elements ever accessed instead of only
those present in the cache. This helps in those cases where items are unable to gain entry into the main
cache but return again some time later. Information from their previous attempt is preserved instead of
starting their popularity counter from start every time they enter the candidate cache. A sampling based
victim selection is done to determine the least popular element.

A ReadDensity admission metric is the one detailed in Subsection 5.5.3 for use during eviction. We test
its effectiveness for admission.

5.5.3. Eviction from Main Cache: The Read Density Metric
This section describes the eviction metric for object which are in the main cache. Objects in the main cache
need removal to make space for new objects. This is required because the popularity of objects changes over
time and they become unused. We propose a method for tracking popularity of objects at different reuse
times. This is based on the intuition that an object which is read in the near future is more valuable than an
object which is read in the distant future. We also consider the case that an object which is accessed many
times in the distant future might be more valuable than an object accessed few times in the near future. This
ability to quantify the reward of objects at different time scales makes the cache adaptive.

We are able to do this using a data structure called approximate histogram. It is described later in Sec-
tion 5.6. For now, just consider a normal histogram with reuse time on the horizontal axis and number of
times read (popularity) on the vertical axis. As objects enter the main cache only after they spend time in the
candidate cache, there is already some information about which time after a read the next read is likely to
occur. The histograms are also updated as long as an object is in the main cache. Dividing the popularity of
an object at a particular reuse time by the total number of reads gives the empirical probability that the object
is read in that time.

P (R = o|I = t) = N (R = o|I = t)

Total Number of Reads
(5.1)

where R is the random variable of reads of objects and I is the random variable of reuse times. o is a particular
object and t is a particular reuse time.

From this, we use the normal definition of expectation to obtain the expectation of a read for a given

40 5. Design of the Approximate Read Density Cache Policy

object.

E(R = o) =
n∑

i=0
1×P (R = o|I = i) (5.2)

where 1 is the value of each read and the others have their previous meanings. We already have some in-
formation about the object which we can incorporate into this which is the time since the object was last
accessed, henceforth called age.

E(R = o) =
n∑

i=a
1×P (R = o|I = i) (5.3)

where a is the age of the object.
Notice that equations 5.2 and 5.3 do not penalize reads with high reuse time nor do they reward reads

with low reuse time. We need to include these as earlier reads are more valuable than later reads. Consider
each object in the cache as using a resource. We call that resource a slot. An object in the main cache uses
a slot. The longer an object uses a slot, the more of the slot resource is being consumed. We are trying to
maximize the number of hits. An object which maximizes hits while using a slot for the least amount of time
is desirable and is said to have the most read density.

The penalty can be applied in two ways. One is to divide the expectation of a read by the expected reuse
time. This is the approach LHD takes. The other is to divide the probability of a read at a particular reuse time
by that reuse time.

Using Expected Reuse Time
The expected reuse time of a particular object is given by

E I (R = o) =
n∑

i=a
i ×P (R = o|I = i) (5.4)

This is similar to equation 5.3, but the value of a hit is reuse time itself instead of one.
Using equations 5.3 and 5.4, we present the value function of an object in the main cache. It can be

thought of as the reward for letting an item stay in the cache and called read density using expected reuse
time, D1.

D1(R = o) =
∑n

i=a 1×P (R = o|I = i)∑n
i=a i ×P (R = o|I = i)

(5.5)

which is the expected probability of hit divided by the expected reuse time.

Using Division by Reuse Time
Instead of calculating the expected reuse time, we can penalize the probability of a read directly during the
expected probability calculation. This can also be thought of as a reward for letting an object stay in the cache.
It is called read density using explicit penalties, D2.

D2(R = o) =
n∑

i=a
11× P (R = o|I = i)

i
(5.6)

5.5.4. Victim Selection
In a lot of caching policies, some kind of ordered data structure, be it a tree, heap or linked list is used. Order-
ing objects when the order depends on time is hard. The priority (computed metric) of every object has to be
computed and updated. The eviction metric we chose is based on time. If it is computed for every object on
every eviction decision, this would be a very expensive policy with a O(n) runtime. We use an partial order
instead of a total order. Certain number of elements (s) are sampled from the list of all objects. This is an O(s)
operation and s << n. The priorities for these elements are computed using the eviction metric.

Systematic sampling is used to sample the items in O(s) time. The probability of an item getting picked in
systematic sampling is equal to that in uniform sampling. Systematic sampling is more efficient. The process
is as follows. First, the stride length is computed by dividing the size of cache by the sample size. A random
integer between 0 and the size of cache is chosen. The object at that index in cache is the first element of the
sample. Index of next element is chosen by incremented the first index by the stride length and rounding it to
the nearest integer. Index of third element is chosen by incrementing the first index by twice the stride length
and so on.

5.6. Approximate Histogram 41

Mapping to our reference architecture of a cache policy, the entry metric is allow all, the admission metric
is TinyLFU or ReadDensity, the eviction metric is ReadDensity and the victim selection mechanism is sam-
pling.

5.6. Approximate Histogram

Figure 5.2: An Approximate Histogram.

In Subsection 5.5.3, we used histograms of reuse time vs number of reads to calculate reward functions
to rank objects for eviction. Keeping complete histograms for each object is not feasible due to space con-
straints. LHD solves this problem by categorizing items using features such as application type and reuse
time of last read. This puts the onus of deciding the optimal categories on the system designer. In a lot of
cases, a lot of useful features of reads aren’t available to the cache policy. For example, a filesystem cache
might not know the application type. We propose approximate histograms as a mitigation to this problem.
Using them, we keep track of the histogram for every object without the space requirements of storing whole
histograms. Using approximate histograms instead requires less parameter tuning than using hand picked
categories. Hand picking categories requires selection of categories and the granularity at which each cate-
gory is tracked. In this section, we describe how the approximate histogram functions.

An approximate histogram is an array of approximate counters coupled with a decay function. One is
depicted in Figure 5.2. Each counter in the array represents counts of objects accessed in a reuse time cate-
gory. Reuse time needs to be divided into coarse grained categories to avoid blowing up memory usage and
to make the histogram immune to noise. A very long time range is taken and linearly or logarithmically bro-
ken into a reasonable number of adjacent categories. For example, say the time range under consideration
is 0 to 1000 milliseconds. This can be divided into adjacent categories of 100 milliseconds each such as 0-99,
100-199 and so on.

Each category has an approximate counter. Examples of approximate counting data structures include
count-min sketch [21], cuckoo filter [26] and counting quotient filter [53]. They have different storage and
duplication resistance properties. An approximate counter is also known as a sketch. When an object is read,
the counter in the corresponding reuse time category is incremented for that object. In this work, we use
the count-min sketch. But, any approximate counting data structure can be used based on performance and
maintenance requirements.

We briefly explain the operating principle of a count min sketch. A count-min sketch consists of several
arrays each associated with its own hash function, each called a row. The hash function takes the key of an
object and returns a position in the array. Whenever an object is read, the positions with the minimum value
across all rows for this object are incremented by one. When queried for the number of times an object has
been read, the count-min sketch can give the minimum number of times an object has been read. This is
because only the positions with minimum values were updated during insertion. If some hash functions
clash with keys of other objects, they might update some positions corresponding to the current object but
not all of them. Thus, the minimum value remains immune to clashes.

Caches in an application can run for a long time. During the runtime, the counters can get saturated.
To prevent saturation, the counters can be reset to zero periodically. They can also be divided by a constant
periodically (called decay). The reset or decay is done for counters across the whole histogram. Each position
in each row in each reuse time category is reset or decayed at the same time. Approximate counters are small
in number and located together in memory. Decaying all of them is not very expensive. This operation is
only done occasionally, whenever a counter is saturated, amortizing its cost over a large number of reads.

42 5. Design of the Approximate Read Density Cache Policy

We use the technique presented in TinyLFU. Briefly, the different positions in arrays which constitute and
approximate counter are allowed to saturate. All counters are reset periodically. This period is determined
from a scalar time which is incremented by one for every increment of the approximate counter. For example,
the period can be set such that the counters are decayed every 10000 reads.

5.7. Implementation
We implement our policy in the simulation framework in the popular cache library Caffeine. An eviction
policy has just one public function, record. Locations hashed to 64-bit integers are passed to this function
and the policy reports a hit or miss and an eviction in case of a miss. An admission policy has two public
functions, record and admit. All reads are passed to the record function so that the admission policy metadata
can be updated. The admit function is queries with two arguments, the candidate to be entered into cache
and the chosen eviction victim to make place for this candidate. The admit function is called before every
decision to actually evict by the eviction policy.

The approximate histogram is composed of a pre-configured number of approximate counters. Each
approximate counter is a modified count-min sketch. Each count-min sketch is a collection of arrays. The
number and length of the arrays is decided from the values configured for epsilon and confidence. Epsilon
and confidence carry the same connotation as in the original count-min sketch paper. The main modification
is to synchronize the reset of all sketches in the approximate histogram. This is carried out by way of a proxy
object which counts reads and initiates a reset when the reset interval is reached. The reset interval is set to
a multiple of the total cache size. It conceptually corresponds to the size of the working set. We assume that
the working set is an order of magnitude larger than the total cache size. The maximum value of a counter in
count-min sketch is capped.

For measuring reuse time, we use a counter incremented at every read as scalar time.

5.8. Limitations
We discuss three main limitation of our design.

Past Not Representative of Future Performance
The read density eviction metric assumes that past data about reads can directly be used to predict future
reads. This assumption allows us to use histograms which keep track of past patterns to predict future pat-
terns. This might not be true and might not be the best way to go forward for all workloads.

Linear Relationship Between Reads and Time
To compute read density, the number of reads are divided by time. We consider this the utility of presence of
an object in the cache. This assumption that they are linearly related might not be true. The utility can be a
function where these values are exponential parameters. The utility can also be a function where these values
have different exponential or logarithmic powers.

CPU utilization
We sample object from eviction from the cache and compute the read density of each object. Each read den-
sity computation involves 32 additions (number of reuse time categories: 32), 5 comparisons per category
(pick minimum value from approximate histogram). When creating a sample of 64 objects, that results in
64×32×5×2 = 20,480 operations. This makes it one of the more expensive cache policies. Similar to LHD,
the cache can be partitioned and the estimates for different partitions computed concurrently. Big data work-
loads, unlike web caches, don’t experience high throughput in number of reads. Hence, the high cost per read
is acceptable.

6
Evaluation of Cache Policies for Big Data

Workloads

To respond to the increasing diversity and complexity of big data workloads, the community needs compar-
ative studies on performance of cache policies focused on big data workloads. Motivated by the lack of such
comparative studies and to provide evidence supporting claims we made in Chapter 5 about the operation
and performance of our cache policy. In this section, we answer the research question: How do cache policies
perform on Spark-based big data storage workloads in the cloud?.

6.1. Overview
Towards answering the research question this chapter focuses on, our contribution is two-fold:

1. We perform a parameter sweep on the our policy (ARD) proposed in Chapter 5 to compare different
eviction metrics from the read density family and to show its lack of sensitivity to parameter variations.

2. We evaluate several cache policies on two big data workload traces from Databricks and Yahoo. This
allows us to compare ARD with many other important policies, in realistic scenarios.

6.2. Evaluation Process

Figure 6.1: Cache policy evaluation system.

We evaluate the performance of several policies with different configurations using trace-based simula-
tion. This required running over 10,000 simulations. We designed a system to run them in parallel using the
DAS-5 [8] supercomputer. This system is depicted in Figure 6.1.

The configuration generator (component 1) generates a list of configurations (component 2). The con-
figuration generator takes possible values of a configuration option as the input. For example, cache size
can be 1,000 objects, 10,000, and so on. All possible permutations of the passed in configuration options are
generated and written to the list of configurations.

43

44 6. Evaluation of Cache Policies for Big Data Workloads

The list of configurations is parsed by the configuration runner. A new worker (component 6) server
is reserved by the server provisioner (component 4) using the DAS-5 scheduler for every 16 configurations.
Each server in the DAS-5 has 16 cores and we run one simulation on every core. The configuration execu-
tor (component 5) starts the 16 simulations.

Simulation is performed by the simulator (component 7) component of Caffeine 1, which is popular in-
memory cache library for Java. This simulator has been previously used in at least one other high-quality
peer-reviewed study [25] published in Transaction on Storage. The simulation results are accumulated and
processed to generate performance plots for human analysis.

6.3. Experimental Setup
All the experiment we conduct in this chapter are listed in Table 6.1. Cache size 5,000 to 625,000 refers to
experiments with caches of size 5,000, 25,000, 125,000, and 625,000 objects. These sizes are in line with real
world usage of caches for big data processing in our experience. The ratio of working set size to cache size for
these cache sizes are of the order 10,000, 1000, 100, and 10 respectively. The cache sizes are large compared
to other evaluation studies. Later, we also present the progression of hate as the cache size increases in small
caches. The small cache sizes (100 - 5,000) correspond to experiments with caches of size 100, 300, 500, 700,
900, 1,000, 3,000, 5,000, 25,000, and 125,000 objects.

The Databricks workload trace is a subset of trace W2 analyzed in Chapter 3. The Yahoo trace is a subset
of the publicly available Yahoo Webscope 3 dataset 2 of accesses to HDFS.

The performance metric that is measured in all experiments is the hit rate, which refers to the total frac-
tion of reads that were hits. All experiments were run ten times and the mean hit rate for each configuration
was used. The standard deviation of the results was less that 1%.

We proposed two metrics under belonging to the Read Density family in Chapter 5 Section 5.5.3: 1. Using
expected reuse time, and 2. Using division by reuse time. We compare the hit rate performance the these two
metrics along with just a metric based on expectation of read. We also compare the efficacy of these metrics
when used as admission metrics.

Table 6.1: List of experiments and their configurations.

Subsection Workload Name Policy Parameters Varied Cache Sizes

6.5.1 Databricks
Comparison of Read Density
base eviction metrics

ARD eviction metric
5,000 -
625,000

6.5.2 Databricks
Sensitivity to parameters of
approximate histogram

ARD
max count,
num. time categories

5,000 -
625,000

6.5.3 Databricks
Comparison of admission metric
and eviction metric pairs

ARD
admission metric,
eviction metric

5,000 -
625,000

6.6.1 Databricks
Compare eviction policies for
Databricks workload

All None
5,000 -
625,000

6.6.2 Yahoo
Compare eviction policies for
Yahoo workload

All None
5,000 -
625,000

6.6.3 Databricks
Compare eviction policies for
Databricks workload for small caches

All None
100 -
5,000

6.6.3 Yahoo
Compare eviction policies for
Yahoo workload for small caches

All None
100 -
5,000

6.4. List of Evaluated Policies
We describe briefly each policy we evaluate. The policies are chosen to represent the design approaches
available in the cache-policy design space (See Chapter 5). LRU, LFU, FIFO and Random are commonly used
simple to implement policies. CLOCK keeps object in cache longer than an LRU to accommodate long range
reuse. Segmented LRU and S4LRU keep objects in cache longer by maintaining different partitions for objects
read few times and those read many times. LIRS makes use of reuse time. ARC and CART change cache space

1https://github.com/ben-manes/caffeine
2https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=57

6.4. List of Evaluated Policies 45

allocation to different policies based on the workload. Hyperbolic caching, W-TinyLFU, and LHD are all
recent algorithms per our systematic study. Approximate Read Density is the policy proposed in Chapter 5.

All policies were tuned using a naive grid search of the parameters. We believe this is representative of
their usage in the real world, as opposed to being finely tuned to optimal performance. Cache policies are
generally part of a larger system. Therefore, limited time and engineering effort are allocated its implemen-
tation. The best policy which fits within the time constraint is chosen. This is unlike research studies where
researchers sometimes spend months optimizing a policy.

In the following, we detail the 13 policies we evaluate:

P1 Least Recently Used (LRU) evicts the least recently used object using a linked list to keep track of recency
of use.

P2 Least Frequently Used (LFU) evicts the object which has been read the least number of times. It uses a
linked list to track the number of times an object has been read.

P3 First In First Out (FIFO) evicts objects in the order of admission.

P4 Random evicts a random object.

P5 CLOCK is similar to FIFO. But, an object is not evicted the first time reaches he head of the linked list. It
is only evicted the second time.

P6 Segmented LRU (SLRU) divides the cache into two partitions. Both partitions implement the LRU evic-
tion policy. An object enters the second partition from the first if it is read while in the second partition.
The fraction occupied by the second partition was set to 90%.

P7 S4LRU [37] is similar to SLRU but uses four equally sized partitions.

P8 LIRS [40] evicts items based the reuse distance of their last read.

P9 Adaptive Replacement Cache (ARC) [47] partitions the cache into two parts. One uses a LRU eviction
policy and other a LFU eviction policy. Both partitions continuously compete for space based on their
hit rate.

P10 CLOCK with Adaptive Replacement and Temporal Filtering(CART) [9] uses different LRU and LFU par-
tition similar to ARC. Items are evicted on second eviction instead of first similar to the CLOCK policy.
Items are promoted from the LRU partition to the LFU partition if an item is evicted from LRU within a
specified time window.

P11 Hyperbolic [15] computes the utility of objects by dividing number of reads of an object by the time it
spent in the cache. The cache is sampled and the object with the least utility is evicted.

P12 W-TinyLFU [25] divides the cache into two partitions. The first partition uses a simple LRU cache. On
eviction from the first partition, an object attempts to enter the second partition. The second partition
implements an SLRU eviction policy and TinyLFU admission policy. We experiment with two variants
of W-TinyLFU. One using SLRU eviction policy and the other using LRU. The fraction of main cache as
a percentage of total cache is set at 80%.

P13 Least Hit Density (LHD) [11] Classifies items into categories and estimates the number of future reads
and time to eviction based on the number of past reads. The hit density metric refers to the estimated
number of reads divided by the estimated time to eviction. The object with the least hit density gets
evicted.

We also evaluate the efficacy of using the TinyLFU and Read Density (from Chapter 5) as admission poli-
cies with each of the aforementioned eviction policies, except W-TinyLFU where it is already present.

46 6. Evaluation of Cache Policies for Big Data Workloads

6.5. Parameter Sweep of Approximate Read Density Policy
We claim that the Approximate Read Density (ARD) policy has less parameters than LHD. While that is true,
it still has some parameters. We demonstrate the insensitivity of hit rate to the remaining parameters in
reasonable ranges. A policy is said to be sensitive to its parameters if the exhibited performance is changes
based on the values of the parameters. A policy is insensitive to its parameters means that its performance
doesn’t change when the parameters change. Reasonable ranges means that the parameters should not be
set to absurd values such as zero or extremely large values.

Our main finding in this section is:

MF6.3.1 The ARD cache policy is insensitive to parameters in reasonable ranges.

6.5.1. Eviction Metric Comparison

Figure 6.2: Comparison of eviction metrics. Each panel corresponds to a different cache size (number of objects).

Three eviction metrics were describe in Chapter 5: Expectation of read (E(R)), Expectation of read divided
by expected reuse time (D1(R)), and Expectation of read penalized by division (D2(R)). We compare their per-
formance on the Databricks trace using a cache with entry and admission metrics set to allow all. The results
are depicted in Figure 6.2. We observe that all three eviction policies perform equally well at all measured
cache sizes.

6.5.2. Insensitivity to Parameters of Eviction Policy

Figure 6.3: Comparison of different parameter sets. Each panel corresponds to a different cache size (number of objects).

Our eviction policy takes two parameters: maximum count and number of categories. Maximum count
is the maximum count of the number of reads of an object stored per time category in the approximate his-
togram. Any reads higher than that are not counted till the histogram is reset. The number of categories refers
to the number of categories of reuse time.

The results are depicted in Figure 6.3. We observe that the parameters don’t have any effect on the perfor-
mance of the cache policy as long as they are reasonable. Too few categories, 1 for example, and the algorithm
degenerates to LFU. Too many, 1,000 for example, and the policy starves for data. The parameters should be
chosen in relation to a reset interval explained in Chapter 5. The reset interval is the number of reads after
which the counters in the histogram are reset. This generally corresponds to the size of the working set. We
use a value of 10,000. We find that a reasonable interval functions well. Too low, and the policy doesn’t have
enough time to gather information. Too high, and all the counters are saturated leading to loss of information.

6.6. Cache Policy Comparison 47

Figure 6.4: Comparison of different parameter sets for ARD with admission control. Each panel corresponds to a different cache size
(number of objects).

6.5.3. Admission Metric Comparison
We simulate the ARD policy with admission control. The cahe is divided into two partitions. The first has
entry and admission policies of allow all, and eviction policy LRU. The second had entry policy allow all, and
a range of admission and eviction policies. 20% of the total cache space was allocated to the second partition.
The results of the simulation are depicted in Figure 6.4. We observe that the difference between the various
policy combinationsare less than 1%.

6.6. Cache Policy Comparison
We compare the policies described in Section 6.4 using two traces: Databricks and Yahoo. The policies with
randomization elements were run ten times and the results were averaged. The standard deviation was less
than 1%. The policies are first compared at large cache sizes, 5,000 to 625,000.

The main findings of this section are:

MF6.5.1 For large caches (working set to cache ratio less than 100,000), most temporal locality based cache
policies perform similarly. Therefore, it is recommended to go with a simple policy like LRU.

MF6.5.2 A small cache renders significant benefit compared to no cache at all.

6.6.1. Databricks Trace

Figure 6.5: Comparison using Databricks trace. Each panel corresponds to a different cache size (number of objects).

The results of simulating the Databricks trace are depicted in Figure 6.5. The only policy that performs
significantly worse at all cache sizes is LFU. All policies which focus on temporal locality perform or have a

48 6. Evaluation of Cache Policies for Big Data Workloads

component focused on it perform well (MF6.5.1). We conjecture that this is due to the peculiar usage pattern
of big data workloads. A file is read many times in a short interval because it is being processed. Then, it is
not read again for long period of time till it is required again. So, unless an object remains in the cache for
days, it is unlikely that algorithms based solely on popularity perform well.

6.6.2. Yahoo Trace

Figure 6.6: Comparison using Yahoo trace. Each panel corresponds to a different cache size (number of objects).

The results of simulating the Databricks trace are depicted in Figure 6.5. The results are similar the
Databricks trace. All policies which take temporal locality into account perform well, but the difference isn’t
significant (MF6.5.1). It seems that there is more opportunity for algorithms which take popularity into ac-
count to perform well here. This is evidenced by the success of ARC and CART. It is also evidenced by LFU
perform better that it did with the Databricks trace.

6.6.3. Comparison At Small Cache Sizes

Figure 6.7: Comparison of policies at small cache sizes (number of objects). Each panel corresponds to a separate trace.

The results of simulating both traces as small caches sizes (< 5000 objects) are depicted in Figure 6.7. We
observe that there is no significant difference in the performance of top performers at small cache sizes. We
also observe that even small caches (< 1000 objects) can have a 40% hit rate and are thus better than having
no cache at all (MF6.5.2).

6.6. Cache Policy Comparison 49

6.6.4. ARD and LHD Compared
We observe that while ARD improves over LHD, the policy it intended to improve upon, the improvement
is marginal. We conjecture that the reason behind for this is the difference between reuse time and the file
active span distributions. Reuse times are typically short with 75% shorter than 100 milliseconds. File active
span is the time elapsed between the first read of a file and the last. We observed that file active spans are
typically quite long, with 75% taking longer than a day. This implies that a file is read a lot of times in less than
100 seconds and then is not read again for a few hours, maybe even a day. In the mean time, other files are
read and enter the cache because old information about reads is decayed by our reset function. Therefore,
ARD is not able to use information about reuse time distribution of file to its advantage the next time it is read
after a long gap.

7
Conclusion

In this chapter, we summarize our main findings and contributions. We associate them with the research
questions they answer. Finally, we discuss future work.

7.1. Summary of Answers to Main Research Questions
1. What are the characteristics of Spark-based big data storage workloads in the cloud?

Big data storage workloads have received much attention at both the hardware level and at the level of
massive clusters. There was a lack of publicly available information about behavior of big data work-
loads in small virtual clusters in the cloud. We tackle this problem and characterize the behavior of a
large deployment of small clusters at Databricks.

Main Findings in Chapter 3:

MF3.3.1 The number of reads and bytes read per day have doubled over 6 months.

MF3.3.2 The number modifications per day has remained at the same level throughout the analysis
period.

MF3.3.3 Both reads and modifications follow a diurnal pattern.

MF3.3.4 Large imbalance in number of reads and bytes read per hour occur on daily and weekly basis.

MF3.3.5 There are 2 orders of magnitude less modifications happening than reads.

MF3.3.6 Most modifications are file creations.

MF3.5.1 The number of reads and bytes read exhibit negative long range time dependence.

MF3.5.2 All features (size, popularity, etc.) have a heavy tail.

MF3.5.3 Reads occur in bursts.

MF3.5.4 The distributions of features are stationary over long time periods.

MF3.6.1 The distribution of number of reads and bytes read over clusters is heavy tailed.

MF3.7.1 Parquet is the most popular file format we observed in practice.

MF3.7.2 Snappy and Gzip are the most popular compression schemes we observed in practice.

2. How can the characteristics such workloads be modeled to generate synthetic traces?

Real world traces of big data workloads are rare. This problem is stark for big data workloads deployed
in the cloud. Limited availability of traces leads to researchers focusing on problems uncovered by
benchmarks or the few traces available. These problems might not be representative of those in the
wider ecosystem. Hence, we present a model to generate synthetic traces for bi data workloads in the
cloud.

Main Contributions of Chapter 4:

(a) A generative model to reproduce interarrival times, temporal and spatial locality distributions of
original traces.

51

52 7. Conclusion

(b) Validation of the generative model using emergent feature, popularity, and modeled feature, reuse
time.

(c) Performance evaluation of the proposed generative model.

Main Findings in Chapter 4:

MF4.3.1 Among the methods we have used to fit heavy tailed distributions observed in computer sys-
tems. The unweighted least-squares regression of their survival functions gives the best result.

MF4.3.2 We confirm the heavy tailed nature of the distributions, by observing that their survival func-
tion is above that of the exponential distribution.

MF4.4.1 The synthetic trace has a file popularity distribution similar to the original trace.

MF4.4.2 The popularity distribution is only similar if the chunks are sufficiently long for a file to be
read a large number of times.

MF4.4.3 The reuse time distribution of the synthetic trace is similar to that of the original trace.

3. What is a principled approach to design an adaptive cache policy with few parameters?

Implementation and tuning of complex cache policies is hard and error prone. We make several con-
tributions towards making cache policies easy to understand and implement.

Main Contributions of Chapter 5:

(a) A reference architecture for online cache policies.

(b) The Read Density family of eviction metrics.

(c) The Approximate Read Density cache policy using the Read Density metric.

(d) The Approximate Histogram data structure to measure distribution of reads across time.

4. How do cache policies perform on such workloads?

Evaluations of cache policies are typically dominated by web workloads. We present the first evaluation
of cache policies on big data workloads.

Main Findings in Chapter 6:

MF6.3.1 The ARD cache policy is insensitive to parameters in reasonable ranges.

MF6.5.1 For large caches (working set to cache ratio less than 100,000), most temporal locality based
cache policies perform similarly. Therefore, it is recommended to go with a simple policy like LRU.

MF6.5.2 A small cache renders significant benefit compared to no cache at all.

7.2. Future Work
The use of large-scale computers (warehouse scale computing) is growing. We, and the community, expect
the growth to continue into the future. For such scales, it becomes difficult to research and design systems for
large scale computing by way of simple observation. Thus, characterization becomes important as it distills
the complexity of key designs and systems into essential characteristics. We present in this work a preliminary
characterization of a storage workload. We identify critical features and characteristics in these complex
systems. We also observe that the analysis necessarily becomes more complex and sophisticated. We identify
two directions for future work on more sophisticated analysis: (1) In our work, we use elements of univariate
statistics to analyze features. While we investigate linear correlation, complex non-linear correlations might
exist between different features. Multivariate analysis and unsupervised learning are disciplines which deal
with such interactions. In the future, we expect to apply tools from these disciplines to the data collected
from this analysis. A way to do this is to use simple k-means clustering on a representative sample of data
read operations. (2) A large ecosystem can consist of many subsystems. Methods to investigate and represent
the diversity of sub-systems need to be investigated. For example, an ecosystem has 10,000 virtual clusters
each with different properties. A principled technique to study this diversity is required.

Another challenge that comes with the proliferation of massive-scale computing is the unavailability of
trace data for simulations. Thus, generative models become important. We use techniques from univariate
statistics for modeling features of distributions in traces for our generative model. We propose two future

7.2. Future Work 53

research directions: (1) Multivariate statistics and machine learning have many more tools to offer for more
accurate modeling. The disadvantage of using them is that it is difficult to synthesize what if scenarios. What
if the popularity distribution is more skewed? What if the interarrival time distribution is tighter? To better
model what if scenarios, research is being actively conducted on causal reasoning, interpretation, and hu-
man in the loop models in machine learning. That research could be used to generate more representative
traces. (2) An investigation of the relationship between goodness of fit and variance in performance results
of simulations using synthetic traces is necessary. This would answer questions such as: Is fitting the body or
the tail of the distribution more important to get representative results in experiments?

Historically, cache policies have been designed using analytical reasoning and with specific use cases in
mind. LHD [11] introduced a principled approach to cache policy design using probability theory. We extend
the principled approach by proposing a reference architecture and family of eviction metrics. We propose two
future research directions: (1) There is much work done on time series prediction in mathematics, finance,
economics and physics. This work could be leveraged to design cache policies based on strong conceptual
foundations. (2) Cache policies at multiple sub-system levels such as cluster and worker levels and their
interplay is a rich area of study. Caches designed for shared and heterogeneous resource usage, as found in
the cloud, also need to be investigated.

Scheduling takes about 5% of datacenter compute usage [41]. This might grow, as ecosystems become
larger. Usage of approximate computations and data structures allow scheduling techniques to scale linearly
or sub-linearly with the scale of the datacenter. There is much room for research into using approximation
techniques to achieve acceptable scheduling performance with low resource cost in massive computer sys-
tems.

Lastly, we intend to test the performance of the ARD policy on other workloads apart from Big Data. We
believe other workloads might exhibit more favorable reuse time and file active span distributions for ARD to
make use of accumulated knowledge before it decays away.

Bibliography

[1] Cristina L. Abad, Nathan Roberts, Yi Lu, and Roy H. Campbell. A storage-centric analysis of mapre-
duce workloads: File popularity, temporal locality and arrival patterns. In Proceedings of the 2012 IEEE
International Symposium on Workload Characterization, IISWC 2012, La Jolla, CA, USA, November 4-
6, 2012, pages 100–109, 2012. doi: 10.1109/IISWC.2012.6402909. URL https://doi.org/10.1109/
IISWC.2012.6402909.

[2] Cristina L. Abad, Mindi Yuan, Chris X. Cai, Yi Lu, Nathan Roberts, and Roy H. Campbell. Generating
request streams on big data using clustered renewal processes. Perform. Eval., 70(10):704–719, 2013.
doi: 10.1016/j.peva.2013.08.006. URL https://doi.org/10.1016/j.peva.2013.08.006.

[3] Cristina L. Abad, Andres G. Abad, and Luis E. Lucio. Dynamic memory partitioning for cloud caches
with heterogeneous backends. In Proceedings of the 8th ACM/SPEC on International Conference on Per-
formance Engineering, ICPE 2017, L’Aquila, Italy, April 22-26, 2017, pages 87–90, 2017. doi: 10.1145/
3030207.3030237. URL https://doi.org/10.1145/3030207.3030237.

[4] Christoph Albrecht, Arif Merchant, Murray Stokely, Muhammad Waliji, François Labelle, Nate Coehlo,
Xudong Shi, and Eric Schrock. Janus: Optimal flash provisioning for cloud storage workloads. In 2013
USENIX Annual Technical Conference, San Jose, CA, USA, June 26-28, 2013, pages 91–102, 2013. URL
https://www.usenix.org/conference/atc13/technical-sessions/presentation/albrecht.

[5] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A. Gibson, Elisabeth Baseman, and Nathan
DeBardeleben. On the diversity of cluster workloads and its impact on research results. In 2018 USENIX
Annual Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018., pages 533–546,
2018. URL https://www.usenix.org/conference/atc18/presentation/amvrosiadis.

[6] Georgios Andreadis, Laurens Versluis, Fabian Mastenbroek, and Alexandru Iosup. A reference architec-
ture for datacenter scheduling: design, validation, and experiments. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018, Dallas, TX,
USA, November 11-16, 2018, pages 37:1–37:15, 2018. URL http://dl.acm.org/citation.cfm?id=
3291706.

[7] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Workload analysis of
a large-scale key-value store. In ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’12, London, United Kingdom, June 11-
15, 2012, pages 53–64, 2012. doi: 10.1145/2254756.2254766. URL http://doi.acm.org/10.1145/
2254756.2254766.

[8] Henri E. Bal, Dick H. J. Epema, Cees de Laat, Rob van Nieuwpoort, John W. Romein, Frank J. Seinstra,
Cees Snoek, and Harry A. G. Wijshoff. A medium-scale distributed system for computer science research:
Infrastructure for the long term. IEEE Computer, 49(5):54–63, 2016. doi: 10.1109/MC.2016.127. URL
https://doi.org/10.1109/MC.2016.127.

[9] Sorav Bansal and Dharmendra S. Modha. CAR: clock with adaptive replacement. In Proceedings of
the FAST ’04 Conference on File and Storage Technologies, March 31 - April 2, 2004, Grand Hyatt Hotel,
San Francisco, California, USA, pages 187–200, 2004. URL http://www.usenix.org/events/fast04/
tech/bansal.html.

[10] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The Datacenter as a Computer: An Intro-
duction to the Design of Warehouse-Scale Machines, Second Edition. Synthesis Lectures on Com-
puter Architecture. Morgan & Claypool Publishers, 2013. ISBN 9781627050098. doi: 10.2200/
S00516ED2V01Y201306CAC024. URL https://doi.org/10.2200/S00516ED2V01Y201306CAC024.

55

https://doi.org/10.1109/IISWC.2012.6402909
https://doi.org/10.1109/IISWC.2012.6402909
https://doi.org/10.1016/j.peva.2013.08.006
https://doi.org/10.1145/3030207.3030237
https://www.usenix.org/conference/atc13/technical-sessions/presentation/albrecht
https://www.usenix.org/conference/atc18/presentation/amvrosiadis
http://dl.acm.org/citation.cfm?id=3291706
http://dl.acm.org/citation.cfm?id=3291706
http://doi.acm.org/10.1145/2254756.2254766
http://doi.acm.org/10.1145/2254756.2254766
https://doi.org/10.1109/MC.2016.127
http://www.usenix.org/events/fast04/tech/bansal.html
http://www.usenix.org/events/fast04/tech/bansal.html
https://doi.org/10.2200/S00516ED2V01Y201306CAC024

56 Bibliography

[11] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. LHD: improving cache hit rate by maximizing hit
density. In 15th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2018,
Renton, WA, USA, April 9-11, 2018, pages 389–403, 2018. URLhttps://www.usenix.org/conference/
nsdi18/presentation/beckmann.

[12] Laszlo A. Belady. A study of replacement algorithms for virtual-storage computer. IBM Systems Journal,
5(2):78–101, 1966. doi: 10.1147/sj.52.0078. URL https://doi.org/10.1147/sj.52.0078.

[13] Daniel S. Berger, Ramesh K. Sitaraman, and Mor Harchol-Balter. Adaptsize: Orchestrating the hot object
memory cache in a content delivery network. In 14th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages 483–498, 2017. URL https:
//www.usenix.org/conference/nsdi17/technical-sessions/presentation/berger.

[14] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and Mor Harchol-Balter. Robinhood:
Tail latency aware caching - dynamic reallocation from cache-rich to cache-poor. In 13th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018., pages 195–212, 2018. URL https://www.usenix.org/conference/osdi18/presentation/
berger.

[15] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. Hyperbolic caching: Flexible caching for
web applications. In 2017 USENIX Annual Technical Conference, USENIX ATC 2017, Santa Clara, CA,
USA, July 12-14, 2017., pages 499–511, 2017. URL https://www.usenix.org/conference/atc17/
technical-sessions/presentation/blankstein.

[16] Philip H. Carns, Kevin Harms, William E. Allcock, Charles Bacon, Samuel Lang, Robert Latham, and
Robert B. Ross. Understanding and improving computational science storage access through continu-
ous characterization. TOS, 7(3):8:1–8:26, 2011. doi: 10.1145/2027066.2027068. URL http://doi.acm.
org/10.1145/2027066.2027068.

[17] Yanpei Chen, Kiran Srinivasan, Garth R. Goodson, and Randy H. Katz. Design implications for enterprise
storage systems via multi-dimensional trace analysis. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011, pages 43–56, 2011.
doi: 10.1145/2043556.2043562. URL http://doi.acm.org/10.1145/2043556.2043562.

[18] Yanpei Chen, Sara Alspaugh, and Randy H. Katz. Interactive analytical processing in big data systems: A
cross-industry study of mapreduce workloads. PVLDB, 5(12):1802–1813, 2012. doi: 10.14778/2367502.
2367519. URL http://vldb.org/pvldb/vol5/p1802_yanpeichen_vldb2012.pdf.

[19] Aaron Clauset, Cosma Rohilla Shalizi, and Mark E. J. Newman. Power-law distributions in empirical
data. SIAM Review, 51(4):661–703, 2009. doi: 10.1137/070710111. URL https://doi.org/10.1137/
070710111.

[20] Conover, William Jay. Practical Nonparametric Statistics, Chapter 6. Wiley New York, 1980.

[21] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch
and its applications. J. Algorithms, 55(1):58–75, 2005. doi: 10.1016/j.jalgor.2003.12.001. URL https:
//doi.org/10.1016/j.jalgor.2003.12.001.

[22] Microsoft Corp. 343 Industries Gets New User Insights from Big Data in the Cloud, 2013. URL https:
//azure.microsoft.com/en-us/case-studies/customer-stories-343industries/.

[23] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. In
6th Symposium on Operating System Design and Implementation (OSDI 2004), San Francisco, Califor-
nia, USA, December 6-8, 2004, pages 137–150, 2004. URL http://www.usenix.org/events/osdi04/
tech/dean.html.

[24] Christina Delimitrou, Sriram Sankar, Kushagra Vaid, and Christos Kozyrakis. Decoupling datacenter
studies from access to large-scale applications: A modeling approach for storage workloads. In Pro-
ceedings of the 2011 IEEE International Symposium on Workload Characterization, IISWC 2011, Austin,
TX, USA, November 6-8, 2011, pages 51–60, 2011. doi: 10.1109/IISWC.2011.6114196. URL https:
//doi.org/10.1109/IISWC.2011.6114196.

https://www.usenix.org/conference/nsdi18/presentation/beckmann
https://www.usenix.org/conference/nsdi18/presentation/beckmann
https://doi.org/10.1147/sj.52.0078
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/berger
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/berger
https://www.usenix.org/conference/osdi18/presentation/berger
https://www.usenix.org/conference/osdi18/presentation/berger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/blankstein
https://www.usenix.org/conference/atc17/technical-sessions/presentation/blankstein
http://doi.acm.org/10.1145/2027066.2027068
http://doi.acm.org/10.1145/2027066.2027068
http://doi.acm.org/10.1145/2043556.2043562
http://vldb.org/pvldb/vol5/p1802_yanpeichen_vldb2012.pdf
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1016/j.jalgor.2003.12.001
https://azure.microsoft.com/en-us/case-studies/customer-stories-343industries/
https://azure.microsoft.com/en-us/case-studies/customer-stories-343industries/
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
https://doi.org/10.1109/IISWC.2011.6114196
https://doi.org/10.1109/IISWC.2011.6114196

Bibliography 57

[25] Gil Einziger, Roy Friedman, and Ben Manes. Tinylfu: A highly efficient cache admission policy. TOS, 13
(4):35:1–35:31, 2017. doi: 10.1145/3149371. URL https://doi.org/10.1145/3149371.

[26] Bin Fan, David G. Andersen, Michael Kaminsky, and Michael Mitzenmacher. Cuckoo filter: Practically
better than bloom. In Proceedings of the 10th ACM International on Conference on emerging Networking
Experiments and Technologies, CoNEXT 2014, Sydney, Australia, December 2-5, 2014, pages 75–88, 2014.
doi: 10.1145/2674005.2674994. URL https://doi.org/10.1145/2674005.2674994.

[27] Jens Feder. Fractals, Chapter 8. Springer Science & Business Media, 2013.

[28] Dror G. Feitelson. Workload Modeling for Computer Systems Perfor-
mance Evaluation. Cambridge University Press, 2015. ISBN 978-1-
107-07823-9. URL http://www.cambridge.org/de/academic/subjects/
computer-science/computer-hardware-architecture-and-distributed-computing/
workload-modeling-computer-systems-performance-evaluation.

[29] Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis. Moment-based quantile sketches
for efficient high cardinality aggregation queries. PVLDB, 11(11):1647–1660, 2018. URL http://www.
vldb.org/pvldb/vol11/p1647-gan.pdf.

[30] Henri Gavin. The levenberg-marquardt method for nonlinear least squares curve-fitting problems. De-
partment of Civil and Environmental Engineering, Duke University, pages 1–15, 2011.

[31] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In Proceedings of
the 19th ACM Symposium on Operating Systems Principles 2003, SOSP 2003, Bolton Landing, NY, USA,
October 19-22, 2003, pages 29–43, 2003. doi: 10.1145/945445.945450. URL http://doi.acm.org/10.
1145/945445.945450.

[32] Bogdan Ghit, Nezih Yigitbasi, Alexandru Iosup, and Dick H. J. Epema. Balanced resource allocations
across multiple dynamic mapreduce clusters. In Sujay Sanghavi, Sanjay Shakkottai, Marc Lelarge, and
Bianca Schroeder, editors, SIGMETRICS, pages 329–341, 2014.

[33] Pedram Ghodsnia, Ivan T. Bowman, and Anisoara Nica. Parallel I/O aware query optimization. In In-
ternational Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014,
pages 349–360, 2014. doi: 10.1145/2588555.2595635. URL http://doi.acm.org/10.1145/2588555.
2595635.

[34] Raghul Gunasekaran, Sarp Oral, Jason Hill, Ross Miller, Feiyi Wang, and Dustin Leverman. Comparative
I/O workload characterization of two leadership class storage clusters. In Proceedings of the 10th Parallel
Data Storage Workshop, PDSW 2015, Austin, Texas, USA, November 15, 2015, pages 31–36, 2015. doi:
10.1145/2834976.2834985. URL http://doi.acm.org/10.1145/2834976.2834985.

[35] Tyler Harter, Dhruba Borthakur, Siying Dong, Amitanand S. Aiyer, Liyin Tang, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Analysis of HDFS under hbase: a facebook messages case study. In
Proceedings of the 12th USENIX conference on File and Storage Technologies, FAST 2014, Santa Clara,
CA, USA, February 17-20, 2014, pages 199–212, 2014. URL https://www.usenix.org/conference/
fast14/technical-sessions/presentation/harter.

[36] Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah Mokhtar, Abdullah Gani, and
Samee Ullah Khan. The rise of "big data" on cloud computing: Review and open research issues. Inf.
Syst., 47:98–115, 2015. doi: 10.1016/j.is.2014.07.006. URL https://doi.org/10.1016/j.is.2014.07.
006.

[37] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev Kumar, and Harry C. Li. An analysis
of facebook photo caching. In ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, USA, November 3-6, 2013, pages 167–181, 2013. doi: 10.1145/2517349.2522722. URL
https://doi.org/10.1145/2517349.2522722.

[38] Alexandru Iosup, Simon Ostermann, Nezih Yigitbasi, Radu Prodan, Thomas Fahringer, and Dick H. J.
Epema. Performance analysis of cloud computing services for many-tasks scientific computing. TPDS,
22(6):931–945, 2011.

https://doi.org/10.1145/3149371
https://doi.org/10.1145/2674005.2674994
http://www.cambridge.org/de/academic/subjects/computer-science/computer-hardware-architecture-and-distributed-computing/workload-modeling-computer-systems-performance-evaluation
http://www.cambridge.org/de/academic/subjects/computer-science/computer-hardware-architecture-and-distributed-computing/workload-modeling-computer-systems-performance-evaluation
http://www.cambridge.org/de/academic/subjects/computer-science/computer-hardware-architecture-and-distributed-computing/workload-modeling-computer-systems-performance-evaluation
http://www.vldb.org/pvldb/vol11/p1647-gan.pdf
http://www.vldb.org/pvldb/vol11/p1647-gan.pdf
http://doi.acm.org/10.1145/945445.945450
http://doi.acm.org/10.1145/945445.945450
http://doi.acm.org/10.1145/2588555.2595635
http://doi.acm.org/10.1145/2588555.2595635
http://doi.acm.org/10.1145/2834976.2834985
https://www.usenix.org/conference/fast14/technical-sessions/presentation/harter
https://www.usenix.org/conference/fast14/technical-sessions/presentation/harter
https://doi.org/10.1016/j.is.2014.07.006
https://doi.org/10.1016/j.is.2014.07.006
https://doi.org/10.1145/2517349.2522722

58 Bibliography

[39] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learn-
ing, volume 112. Springer, 2013.

[40] Song Jiang and Xiaodong Zhang. LIRS: an efficient low inter-reference recency set replacement policy to
improve buffer cache performance. In Proceedings of the International Conference on Measurements and
Modeling of Computer Systems, SIGMETRICS 2002, June 15-19, 2002, Marina Del Rey, California, USA,
pages 31–42, 2002. doi: 10.1145/511334.511340. URL https://doi.org/10.1145/511334.511340.

[41] Svilen Kanev, Juan Pablo Darago, Kim M. Hazelwood, Parthasarathy Ranganathan, Tipp Moseley, Gu-
Yeon Wei, and David M. Brooks. Profiling a warehouse-scale computer. IEEE Micro, 36(3):54–59, 2016.
doi: 10.1109/MM.2016.38. URL https://doi.org/10.1109/MM.2016.38.

[42] Ramakrishna Karedla, J. Spencer Love, and Bradley G. Wherry. Caching strategies to improve disk system
performance. IEEE Computer, 27(3):38–46, 1994. doi: 10.1109/2.268884. URL https://doi.org/10.
1109/2.268884.

[43] Barbara Kitchenham and S. Charters. Guidelines for performing systematic literature reviews in software
engineering. EBSE Technical Report EBSE-2007-01, 2007. updated, version 2.3.

[44] David G Kleinbaum and Mitchel Klein. Survival analysis, volume 3. Springer, 2010.

[45] Eva K. Lee. Innovation in big data analytics: Applications of mathematical programming in medicine
and healthcare. In 2017 IEEE International Conference on Big Data, BigData 2017, Boston, MA, USA,
December 11-14, 2017, pages 3586–3595, 2017. doi: 10.1109/BigData.2017.8258352. URL https://doi.
org/10.1109/BigData.2017.8258352.

[46] Songbin Liu, Xiaomeng Huang, Haohuan Fu, and Guangwen Yang. Understanding data characteristics
and access patterns in a cloud storage system. In 13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing, CCGrid 2013, Delft, Netherlands, May 13-16, 2013, pages 327–334, 2013. doi:
10.1109/CCGrid.2013.11. URL https://doi.org/10.1109/CCGrid.2013.11.

[47] Nimrod Megiddo and Dharmendra S. Modha. ARC: A self-tuning, low overhead replacement cache.
In Proceedings of the FAST ’03 Conference on File and Storage Technologies, March 31 - April 2, 2003,
Cathedral Hill Hotel, San Francisco, California, USA, 2003. URL http://www.usenix.org/events/
fast03/tech/megiddo.html.

[48] Jayakrishnan Nair, Adam Wierman, and Bert Zwart. The fundamentals of heavy-tails: properties, emer-
gence, and identification. In ACM SIGMETRICS / International Conference on Measurement and Model-
ing of Computer Systems, SIGMETRICS ’13, Pittsburgh, PA, USA, June 17-21, 2013, pages 387–388, 2013.
doi: 10.1145/2465529.2466587. URL https://doi.org/10.1145/2465529.2466587.

[49] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse datasets. In 2008
IEEE Symposium on Security and Privacy (S&P 2008), 18-21 May 2008, Oakland, California, USA, pages
111–125, 2008. doi: 10.1109/SP.2008.33. URL https://doi.org/10.1109/SP.2008.33.

[50] Qais Noorshams, Kiana Rostami, Samuel Kounev, and Ralf H. Reussner. Modeling of I/O performance
interference in virtualized environments with queueing petri nets. In IEEE 22nd International Sym-
posium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems, MASCOTS
2014, Paris, France, September 9-11, 2014, pages 331–336, 2014. doi: 10.1109/MASCOTS.2014.48. URL
https://doi.org/10.1109/MASCOTS.2014.48.

[51] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The LRU-K page replacement algorithm
for database disk buffering. In Proceedings of the 1993 ACM SIGMOD International Conference on Man-
agement of Data, Washington, DC, USA, May 26-28, 1993., pages 297–306, 1993. doi: 10.1145/170035.
170081. URL https://doi.org/10.1145/170035.170081.

[52] Fengfeng Pan, Yinliang Yue, Jin Xiong, and Daxiang Hao. I/O characterization of big data workloads
in data centers. In Big Data Benchmarks, Performance Optimization, and Emerging Hardware - 4th
and 5th Workshops, BPOE 2014, Salt Lake City, USA, March 1, 2014 and Hangzhou, China, September
5, 2014, Revised Selected Papers, pages 85–97, 2014. doi: 10.1007/978-3-319-13021-7_7. URL https:
//doi.org/10.1007/978-3-319-13021-7_7.

https://doi.org/10.1145/511334.511340
https://doi.org/10.1109/MM.2016.38
https://doi.org/10.1109/2.268884
https://doi.org/10.1109/2.268884
https://doi.org/10.1109/BigData.2017.8258352
https://doi.org/10.1109/BigData.2017.8258352
https://doi.org/10.1109/CCGrid.2013.11
http://www.usenix.org/events/fast03/tech/megiddo.html
http://www.usenix.org/events/fast03/tech/megiddo.html
https://doi.org/10.1145/2465529.2466587
https://doi.org/10.1109/SP.2008.33
https://doi.org/10.1109/MASCOTS.2014.48
https://doi.org/10.1145/170035.170081
https://doi.org/10.1007/978-3-319-13021-7_7
https://doi.org/10.1007/978-3-319-13021-7_7

Bibliography 59

[53] Prashant Pandey, Michael A. Bender, Rob Johnson, and Robert Patro. A general-purpose counting filter:
Making every bit count. In Proceedings of the 2017 ACM International Conference on Management of
Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, pages 775–787, 2017. doi: 10.1145/
3035918.3035963. URL https://doi.org/10.1145/3035918.3035963.

[54] David A. Patterson. Technical perspective: the data center is the computer. Commun. ACM, 51(1):105,
2008. doi: 10.1145/1327452.1327491. URL https://doi.org/10.1145/1327452.1327491.

[55] Wullianallur Raghupathi and Viju Raghupathi. Big data analytics in healthcare: promise and potential.
Health information science and systems, 2(1):3, 2014.

[56] John A Rice. Mathematical statistics and data analysis, Chapter 13. China machine press Beijing, 2003.

[57] Amazon Web Services. FINRA Adopts AWS to Perform 500 Billion Validation Checks Daily. URL https:
//aws.amazon.com/solutions/case-studies/finra-data-validation/.

[58] Jim Summers, Tim Brecht, Derek L. Eager, and Alex Gutarin. Characterizing the workload of a netflix
streaming video server. In 2016 IEEE International Symposium on Workload Characterization, IISWC
2016, Providence, RI, USA, September 25-27, 2016, pages 43–54, 2016. doi: 10.1109/IISWC.2016.7581265.
URL https://doi.org/10.1109/IISWC.2016.7581265.

[59] Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Adrian Schüpbach, and Bernard Metzler. Albis: High-
performance file format for big data systems. In 2018 USENIX Annual Technical Conference, USENIX
ATC 2018, Boston, MA, USA, July 11-13, 2018., pages 615–630, 2018. URL https://www.usenix.org/
conference/atc18/presentation/trivedi.

[60] Guanying Wang, Ali Raza Butt, Henry M. Monti, and Karan Gupta. Towards synthesizing realistic
workload traces for studying the hadoop ecosystem. In MASCOTS 2011, 19th Annual IEEE/ACM In-
ternational Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, Singapore, 25-27 July, 2011, pages 400–408, 2011. doi: 10.1109/MASCOTS.2011.59. URL
https://doi.org/10.1109/MASCOTS.2011.59.

[61] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas J. A. Harvey, and Andrew Warfield. Characterizing
storage workloads with counter stacks. In 11th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014., pages 335–349, 2014. URL https:
//www.usenix.org/conference/osdi14/technical-sessions/presentation/wires.

[62] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’10,
Boston, MA, USA, June 22, 2010, 2010. URL https://www.usenix.org/conference/hotcloud-10/
spark-cluster-computing-working-sets.

[63] Qiang Zoll, Yifeng Zhu, and Dan Feng. A study of self-similarity in parallel I/O workloads. In IEEE 26th
Symposium on Mass Storage Systems and Technologies, MSST 2012, Lake Tahoe, Nevada, USA, May 3-
7, 2010, pages 1–6, 2010. doi: 10.1109/MSST.2010.5496978. URL https://doi.org/10.1109/MSST.
2010.5496978.

https://doi.org/10.1145/3035918.3035963
https://doi.org/10.1145/1327452.1327491
https://aws.amazon.com/solutions/case-studies/finra-data-validation/
https://aws.amazon.com/solutions/case-studies/finra-data-validation/
https://doi.org/10.1109/IISWC.2016.7581265
https://www.usenix.org/conference/atc18/presentation/trivedi
https://www.usenix.org/conference/atc18/presentation/trivedi
https://doi.org/10.1109/MASCOTS.2011.59
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wires
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wires
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://doi.org/10.1109/MSST.2010.5496978
https://doi.org/10.1109/MSST.2010.5496978

	Introduction
	System Model
	Problem Statement and Research Questions
	Approach: Science, Engineering, and Design
	Chapter Structure
	Additional Information

	Related Work
	Systematic Survey
	Characterization
	Generative Modeling
	Cache Policy Design
	Cache Policy Evaluation

	Characterization of a Big Data Storage Workload in the Cloud
	Overview
	Process for Data Collection, Processing, and Analysis
	Analysis of Long Term Trends
	Statistical Analysis of Reads
	Distribution across Clusters
	Distribution Across File Types
	Threats to Validity

	Generative Model For Storage Workloads
	Overview
	Generation Process
	Curve Fitting
	Model Validation
	Performance of the Trace Generator
	Threats to Validity

	Design of the Approximate Read Density Cache Policy
	Overview
	Cache Reference Architecture
	Anatomy of a Cache Policy
	Caching for Big Data Workloads
	Policy Design
	Approximate Histogram
	Implementation
	Limitations

	Evaluation of Cache Policies for Big Data Workloads
	Overview
	Evaluation Process
	Experimental Setup
	List of Evaluated Policies
	Parameter Sweep of Approximate Read Density Policy
	Cache Policy Comparison

	Conclusion
	Summary of Answers to Main Research Questions
	Future Work

	Bibliography

