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Causal Sensitivity Analysis: f-sensitivity through entropic value at

risk computation

Matej Havelka

Abstract

The field of causal inference provides a vari-
ety of estimators that can be used to find the
effect of a treatment on an outcome based on
observational data. However, many of these es-
timators require the unconfoundedness assump-
tion, stating that all relevant confounders are ob-
served within the data. This assumption is quite
strict and many real-life problems would violate
it, due to confounders being too expensive, im-
moral, or abstract to observe. To weaken this as-
sumption, causal sensitivity analysis attempts to
quantify the level of hidden confounding and use
it to create a possible bound on the causal effect.
This study compares a well-established Marginal
Sensitivity Model (MSM) with a newly proposed
f-sensitivity model. Given f-sensitivity is rela-
tively new, the current approaches for compu-
tation can be inefficient or non-deterministic. A
new method of computing the f-sensitivity bound
is proposed, which can lead to closed-form solu-
tions in some estimator-specific cases. The differ-
ences between the MSM and f-sensitivity models
are outlined and illustrated with examples, from
which a set of guiding questions is created for re-
searchers to decide between the two sensitivity
models. All of the code required to reproduce
this study is located in this GitHub repository.

1 Introduction

A lot of scientific fields rely on randomized controlled
trials to gather data about the effect of a feature on an
outcome. For example, measuring the effect a drug or
some other treatment can have on the well-being of a
patient. However, these randomized trials can be quite
costly, sometimes unethical, or outright impossible to
perform. This leaves the research community only with
observational data, which requires a different approach

to measure the effect, as non-causal associations might
skew the results. The field of causal inference pro-
vides numerous methods for researchers to measure
the effect of treatment on outcomes by adjusting for
non-causal associations caused by other features, called
confounders. For example, one might want to mea-
sure the effectiveness of a vaccine by comparing the
average outcome on treated patients and the average
non-treated (control) outcomes. This, however, could
provide incorrect results in situations where younger
people are less likely to get vaccinated, but tend to be
more resilient to diseases. This would result in a dis-
proportionate amount of younger people ending up in
the control group, leading to a biased control outcome
and effect measurement.

Within the field of causal inference, an important
goal is to measure the average treatment effect (ATE),
the expected difference in outcomes between treated
and control individuals. There exist many estimators
that provide such measurement, but they rely on the
unconfoundedness assumption, which assumes that the
provided data contains all the confounders that are re-
quired to adjust for bias in the ATE. This is rarely true
in real-life, since some important variables might be too
expensive, sensitive, or abstract to record (e.g., social
status). To make causal inference estimators more gen-
eral, Rosenbaum and Rubin (1983) created Sensitivity
Analysis that changes the unconfoundedness assump-
tion into a quantifiable metric, allowing estimators to
be evaluated under varying degrees of hidden confound-
ing.

The most well-known sensitivity model is called the
Marginal Sensitivity Model (MSM) (Tan, 2006). This
sensitivity model quantifies hidden confounding with a
bound on the ratio between the observed distribution
of treatment in the dataset and the true treatment dis-
tribution including a hidden confounder U. However,
the MSM is sensitive to the distribution of the hidden
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confounders and uses a similarity metric that produces
counter-intuitive behaviour. Recently, a new sensitiv-
ity model was proposed by Jin et al. (2022) called f-
sensitivity that creates an assumption about the bound
on an f-divergence metric. F-sensitivity fixes the afore-
mentioned issues with the MSM to a certain extent,
but computing f-sensitivity can be tedious, as the al-
gorithm proposed by the original authors is only an es-
timate of the bound, rather than a direct computation.
In addition, the bound that f-sensitivity assumes can
be harder to interpret and thus more difficult to use.
Given these issues, the goal of this study is to create a
comprehensive overview of the differences between the
MSM and the new f-sensitivity, as well as propose a
new approach to compute the f-sensitivity bound that
comes closer to an efficient, closed-form solution.

Further background on the field of sensitivity analy-
sis and relevant information for this study can be found
in Section 2. Section 3 dives into the mathematical
specifications of the MSM, f-sensitivity and sensitivity
analysis as a whole, as well as proposing a new method
of computing the f-sensitivity bounds using entropic
value at risk. In Section 4 the MSM and f-sensitivity
are compared and specific differences are highlighted
using an experiment. Section 5 takes a look into the
wider implications of this work on the field of causal
inference, as well as possible future trajectories for re-
search. Furthermore, Appendix A provides proofs for
theorems found within the study, and Appendix B con-
tains additional experiments that were tested, and pro-
vide further evidence for the claims made in the main
text.

2 Relevant works

The accepted start of the field of causal inference and
sensitivity analysis tends to be work done by Fisher
(1958) and Cornfield et al. (1959), when the authors
suggested that smoking might not be the real cause
of lung cancer, but rather just a correlation caused
by some DNA strain that makes people more likely
to smoke, as well as likelier to get lung cancer. Rosen-
baum and Rubin (1983) studied this idea and described
an analytical way to measure the effect unobserved con-
founding has on the result of an estimator, further gen-
eralizing it in Rosenbaum (1987). However, this sensi-
tivity model was based on the ratio of the true propen-

sity (probability to be treated) distribution between
two individuals, creating problems as all the measure-
ments are relative to other individuals. To fix this,
Tan (2006) introduced the now-called Marginal Sensi-
tivity Model (MSM), which uses the same ratio, but
between the true propensity score of an individual and
the observed propensity of that individual.

The MSM became the standard when it comes to
sensitivity analysis, and many extensions were made to
generalize its applicability. The Generalized MSM pro-
posed by Frauen et al. (2023) extends the MSM to con-
tinuous treatments and proposes extensions to different
types of data, like longitudinal data. Zhang and Zhao
(2024) point out that MSM assumes that the logit dif-
ference between the observed and full data propensity
scores is uniformly bounded, and changes this assump-
tion using L? analysis making the model more general.
This model is called the L2-sensitivity. Another ex-
tension created by Marmarelis et al. (2023) drops the
assumption of discrete treatments and develops Delta
Sensitivity that creates bounds with continuous treat-
ments. A different model with continuous treatments
is the Curvature Sensitivity Model developed by Mel-
nychuk et al. (2024) that argues that regular MSM is
reliant on point estimates of the counterfactuals, which
makes the bounds unnatural. So they instead try to
fit a curve on the counterfactual outcomes, creating a
more natural and smooth bound. All of these exten-
sions have the goal to apply the MSM on a wider selec-
tion of problems, but none of them change the initial
assumption of the MSM.

As the MSM was used for a multitude of studies,
some issues were brought to attention about the core
assumptions of the MSM. This led to the development
of different models with different assumptions. The
X-mixture model formulated in Bonvini and Kennedy
(2021) tries to find the worst-case scenario assuming
that only some portion P of the population is affected
by an unobserved confounder. The f-sensitivity model
from Jin et al. (2022) uses the odds-ratio measure used
by MSM and measures how far it is from being con-
stant. This study takes a deeper look into f-sensitivity
and how it compares to the widely used MSM.

While sensitivity analysis provides researchers with
tools to test their results against possible unobserved
confounding, there are other methods to adjust for hid-
den confounding directly during learning. CEVEA de-
veloped by Louizos et al. (2017) uses a variational au-



toencoder to encode the data that should embed some
of the hidden confounding into the latent representa-
tion of the data. Work by Karlsson and Krijthe (2023)
proposes a solution where a hidden confounder may be
discovered by observing datasets of the same problem
but from different locations. This allows researchers to
find similarities between the data and label these sim-
ilarities as possible hidden confounders. While these
methods show promising results, this study focuses on
methods that evaluate models on a quantifiable mea-
sure of hidden confounding, rather than trying to ad-
just for hidden confounding.

Some studies also extended the existing sensitivity
analysis into different problem setups and fields. Re-
cently, the field of causal reinforcement learning has
been gaining traction. For an overview, see the survey
by Zeng et al. (2023). Work by Kallus and Zhou (2018)
extends sensitivity analysis into dynamic treatment
regimes defined by Chakraborty and Moodie (2013).
This is followed by Kallus and Zhou (2020) which ad-
justs the MSM for the reinforcement learning setting
with global confounders. Kausik et al. (2023) intro-
duces the model-based method that allows reinforce-
ment learning agents to directly train in an environ-
ment based on the worst-case scenario defined by the
MSM. These settings are interesting to study, but the
f-sensitivity is a recent contribution and needs to be
studied more before applied on such settings.

Lastly, work by Dorn et al. (2022) shows how the
MSM can be expressed via conditional value at risk
(CVaR). This paper proposes a similar approach, by
showing how to relate f-sensitivity to entropic value
at risk (EVaR) (Ahmadi Javid, 2012). For further in-
formation about value at risk, Ahmadi Javid (2012)
provides a well structured introduction.

3 Methodology

Before diving into the specifications of the MSM and
f-sensitivity, let us define some concepts from causal in-
ference. The goal of causal inference within this study
is to estimate the average treatment effect (ATE), de-
fined as E[Y|do(T = 1)] — E[Y]|do(T = 0)]. Other
possible metrics to estimate are the Conditional ATE
(CATE), defined as E[Y|do(T = 1), X] — E[Y|do(T =
0), X], intuitively computing the ATE for a specific
subgroup X. These definitions use the do-notation,

defined by Pearl (2009), that indicates how the out-
comes, also called counterfactuals, would behave if the
individuals were to receive a certain treatment, possi-
bly counter to the fact. The goal of sensitivity analysis
is to create bounds on these metrics based on possi-
ble hidden confounding. Throughout this study the
concern is about estimating the ATE. Additionally, all
x € X are assumed to be discrete.

To measure the ATE, causal inference relies on three
assumptions. The first one is the aforementioned un-
confoundedness assumption, stating that the observed
confounders are all the confounders that exist between
this treatment and outcome. Using the potential out-
come notation, which is explained in great detail in
Zeng and Wang (2022), this assumption is denoted as
(Y(0),Y (1)) L T|X, showing how potential outcome
distributions Y (0) and Y (1) are independent of the
treatment by adjusting for confounders X, meaning
there can be no other confounders outside of X. The
overlap assumption bounds the propensity score (prob-
ability of being treated), denoted as e(z) = P(T =
1|X = z), such that 0 < e(z) <1 Vz € X. This
means that for every subpopulation 2 € X (with a non-
zero probability) there are instances for both treated
and control samples. The last assumption is the con-
sistency assumption, stating that given there would be
an intervention in the way treatments are assigned, the
outcome distributions would remain the same.

The odds-ratio, defined as OR(z,U) =

%, measures how far the propensity
of subpopulation z € X deviates from the odds of
treatment, if a new confounder U is introduced.
Both OR(x,U) and OR(x,U)~! tend to be used
interchangeably, as OR(z,U)™! measures the ratio
from the control perspective.

The purpose of sensitivity analysis is to quantify
how the estimated ATE, from some causal estimator
changes when some hidden confounding is introduced.
It is not evaluating the estimator on how well it cap-
tures the causal link from the observed data, nor is it
determining whether there are any hidden confounders
in the data. To introduce some possible hidden con-
founding, sensitivity models use the observed dataset
as a reference point, trying to create a set of possible
distributions, resulting in the observed dataset. Sec-
ondly, it requires the causal estimator that can gen-
erate counterfactuals, which are used to measure the
ATE in the dataset.



The following subsections 3.1 and 3.2 provide in-
depth descriptions for the MSM and f-sensitivity mod-
els, respectively. Each model is described using a con-
straint programming formulation, as well as a custom
algorithm to compute the bounds.

3.1 Marginal Sensitivity Model

The main idea behind MSM is to create the worst-case
scenario for a model based on the data. This is done
by defining a space of possible true distributions based
on the odds-ratio, effectively creating a distance metric
computed by measuring the highest and lowest ratios of
propensity scores. The unconfoundedness assumption
is replaced with an assumption that bounds the odds-
ratio, defined as I'"! < OR(z,U) < T Vr e X,
where I' is the assumed bound. This assumption is
said to hold for almost all x € X, as with continuous
features the ratio would be unbounded.

This leads to a set of distributions around the ob-
served distribution Q = {Q : 1/T < ORg(z,U) < T
for all x € X}, from which the worst possible one needs
to be selected. This selection can be done in many dif-
ferent ways. In this study, two main approaches are
discussed: first the constraint programming computa-
tion, second the approximation using conditional value
at risk. Before these implementations are discussed, it
is worth pointing out what the inputs into an MSM are.
The obvious input is the observed data, as those are
required to form a range for the true distribution. An-
other input is some causal estimator that can predict
an outcome based on confounders X and treatment 7.
There are countless solutions for the MSM that are
estimator-specific, like Tan (2006), which provides a
solution for the Inverse Probability Weighting (IPW)
estimator. In the following implementations, the main
assumption about the provided estimators is that they
can predict counterfactuals for the data, such that each
individual has predictions for both treated and control
outcomes assigned.

Implementation. To create a bound on the ATE
based on the MSM assumption, an algorithm is needed
that creates a new distribution @) that is the worst-case
true distribution found within the allowed range of the
bound. Assuming that all x € X and y € Y are dis-
crete, a new variable A\(x,y) is introduced for each pair
(z,y) € X XY, symbolizing the value of the odds-

ratio for samples containing x and y. Mathematically,
this means that e(x,y)/(1 —e(z,y)) = Mz, y)e(x)/(1—
e(z)). To work with this variable A(x,y), some con-
straints have to hold. First, it is important to ensure
that in expectation, the observed dataset would be pro-
duced, or mathematically Ex[A(z,y)|ly] =1 Vze X.
This rescales the observed distribution while ensuring
that the expectation of the new distribution remains
the same as in the observed one. Now, to ensure that
this new distribution falls within the MSM assumption,
it is required to that I'™! < A(z,y) < T V(z,y) €
X XY holds, as this bounds the possible new scale
based on the assumed I'. These two constraints allow
finding the worst-case distribution. However, there is
one final step which is to actually extract the newly
observed ATE. To compute the ATE, there are 4 val-
ues needed, the highest and lowest expected outcome
of the treated and control, denoted as uj for high-
est expected outcome of the treated, p, as the low-
est possible expected outcome for the control. With
these values the bounds of the ATE can be computed
as ATET = uf — py and ATE™ = u; — pg. These
constraints can be put together into a constraints pro-
gramming solver with a setup defined as follows:

m);\xe yP(Y =yl X =z, T)e(x)\(z,y)P(X = x)

s.t. ZA(w,y) =1

Y
It <Aaz,y) <T

Vee X

Vre X,yeY

While this constraint programming implementation
works, the time it takes to solve grows with the num-
ber of (z,y) input pairs. This means that whatever
the solver used to solve the formulation, it will have
|X| = |Y| variables, which might be computationally
heavy depending on the data. This is why it is worth
studying other possible approaches to compute, or at
least approximate the bounds given by the MSM. This
is exactly what Dorn et al. (2022) set out to do. The
authors show how one can compute the MSM bounds
using Conditional Value at Risk (CVaR), shown in
Equation 1. CVaR is a risk measure that averages out
the worst 1 — « percentile of the distribution. It is up
to the user to define whether the worst part is going
towards positive or negative infinity. Because CVaR is
interested in percentiles, Dorn et al. (2022) claim it can



also be expressed using a quantile regressor QT(x,t),
where the quantile 7 = HLF With further mathemat-
ical properties Dorn et al. (2022) show that one can
express the MSM bound directly based on observed
data and quantile regressors, defined in Equation 2.

pi (x) = % Z 'Y + (1-T7")CVaR.(z,1) (1)
ieN

pE = DT+ (L= TYQA(X0 T
ieN (2)

b (Y- Qe (X T

-7

The efficiency of the CVaR approach depends on
the type of the quantile regressor used. The publicly
available implementations of quantile regression tend
to use constraint programming. Scikit’s implementa-
tion! also assumes linearity, which might damage the
performance.

Issues. Using the odds-ratio as a similarity measure
comes with certain issues. With continuous distribu-
tions the odds-ratio becomes unbounded (Jin et al.,
2022), meaning that in theory there is no precise bound
for the ratio. Additionally, odds-ratio might not be
representative of the entire curve, as it only looks at the
upper and lower bounds of the curve. This is visualized
in Figure 1 which is taken from Jin et al. (2022) (Figure
1). This figure shows that similar curves might have
different bounds, and thus might not be close in terms
of MSM distance metric, while other curves might be
quite different but have the same bounds.

A different issue is that the MSM does not take into
account the distribution over the values of the hid-
den confounder. Because the constraint is supposed
to hold for almost all z € X, there might be a hidden
confounder U = 1 that makes the odds-ratio increase
substantially, even if P(U = 1) would be low to almost
zero. These issues are further discussed in Section 4.

3.2 F-sensitivity

F-sensitivity was built with the goal to fix the prob-
lem of unbounded odds-ratio. The idea is to switch

Thttps://scikit-learn.org/stable/autoe ramples/linearmodel
plotquantileregression.html

from measuring similarity by bounding the odds-ratio
and instead bound it with an f-divergence, which is a
group of distance metrics between distributions. The
intuition behind this is that instead of computing the
bounds of the odds-ratio, it checks how far it is from
being constant. For this study, instead of using the
general form of f-sensitivity, the most common form
using the Kullback-Leibler divergence with f(¢) = tInt
is used.

Equation 3 shows the f-sensitivity assumption that
bounds the divergence of the odds-ratio, in regards to
the unobserved confounder. There are two assump-
tions, as one of them applies to treated group and the
other to control. In this study, similarly as Jin et al.
(2022), all equations are defined with the treated (first)
definition, but all claims are applicable to both. This
solves the problem with unbounded odds-ratio mea-
sure, as the integral scales everything by the probabil-
ity distribution of U. It also utilizes a well-established
similarity metric between distributions, fixing the un-
intended behaviours described by Figure 1.

N

Jf(ORmU))dPU.X:x,T:l P
3)

ff(OR@c, U) )Py x om0 < p

By extending the assumption further, the work by
Jin et al. (2022) introduces the set of possible distribu-
tions as Q = {Q : 93%(z) = r(2), Ds(Qy|x||Py|x) <
p}, where @) represents a possible distribution, P the
observed distribution, Z%—)’;(x) = r(z) bounds the
change of the possible distribution based on function
r(x) that is described later, and Dy (Qy|x|/Py|x) < p
ensures that the f-sensitivity assumption from Equa-
tion 3 is satisfied. Same as with the MSM, one can
either compute the constraints programming formula-
tion, or try to use a different way to compute the f-
sensitivity bound.

Implementation. The work that introduces f-
sensitivity also provides both constraint programming
and an approximation algorithm for computing the
bound. The constraints programming formulation, de-
fined in Equation 4, provides an exact solution based
on rescaling the observed distribution, just as in the
MSM formulation. In this formulation, however, the
expected scale can shift a little based on the ri(z) =
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Figure 1: Left: examples of OR(x, U ) that are quite different but have similar upper bounds. Right: examples
of OR(x, U ) that are similar but have drastically different upper bounds.

(U—e()pe — L1 _ fypction that is observable from the
e(X)(A=pt) — ro()

data. This is because the f-sensitivity assumption only
targets the posterior distribution Y|X,T rather than
the joint distribution Y, X, allowing for a shift in the

distribution of X.

mfunyP(y|X =2z,T)e(X = 2)\(z,y)P(X = x)

@,y
s.t. Z Mz, y)P(y| X =2, T) =r(x) VreX
y

Zf(Aig(cg))P(le =z,T)<p VreX

(4)

While this formulation provides a neat way of ex-
plaining the point of f-sensitivity, same as the MSM
formulation, its time complexity grows in terms of | X|
and |Y|. Additionally, because of the non-linearity of
f, it requires a non-linear solver to obtain a solution.
That is why the authors also provide an algorithm to
approximate the f-sensitivity bound based on the la-
grangian dual form. This algorithm is based on mul-
titude approximations, and thus it might not always
give the tightest bound. The algorithm can be found
in Jin et al. (2022) (Algorithm 1). This algorithm is
only an approximation of the bounds, and uses estima-
tors to approximate nuisance parameters defined by
the dual representation of the constraint programming
formulation. It requires 3 estimators: one regular re-
gression for propensity score estimation, one empirical
risk estimator (ERM) to find the nuisance parameters
(a,m) that minimize the lagrangian, and another re-
gressor trying to predict the value of the lagrangian

for an x € X without access to the outcome y € Y.
This means that the sharpness of the bound depends
on the amount of data and how well-specified the used
regression models are. It also means that the found
bound is non-deterministic.

This study introduces a new way of com-
puting the f-sensitivity bound. Starting from
the set of possible distributions Q = {Q

@2x(z) = (@), DkL(QyixlPyix) < ph
using the relative entropy property of KIL-
divergence, set Q can be rewritten into

Q=1{Q :‘fi%j: () = r(2),Drr(Qy|x,7=0l|Py|x,7=0) <
0, Dir(Qyix,r=1l|Py|x,r=1) < p}. This reformula-
tion allows the application of the dual form of entropic
value at risk (EVaR), leading to Theorem 1.

Theorem 1. Bounds of f-sensitivity can be computed
through the dual representation of the entropic value
at risk (EVaR) resulting in

1 M =z,T=
i (2) = role) inf L 1n MY1x=2.7=(2)

z2>0 2 e~ P

1., My|x—pr=t(2

b () = rua)sup L 1 2 E)
2<0 % e~r

Where My |x—nr—¢(2) is the moment-generating
function of the Y|X = z,T = t distribution, and p
is the assumed sensitivity bound. ri(x) is defined as
(1—P(T—=t| X =x)) P(T=t)

P(T=t|X=z)(1-P(T=t)) "

Based on Theorem 1, whose proof can be found in
Appendix A.1, finding the f-sensitivity bound becomes
an issue of solving EVaR. The simplest approach would
be to apply the definition of the moment-generating



function on the observed data combined with counter-
factuals generated by an estimator that is being eval-
uated. This leads to to the moment generating func-
tion defined as My |x_, 7-¢(2) = %Zf‘v:o €Y where
N is the number of samples for which X = z,T =t
holds. Under this, moment generating function u;" be-
comes 7¢(z)inf,~¢ %hl %, which can be solved
using gradient descent, or other optimizing techniques.

Theorem 1 provides a solution to the bound compu-
tation, requiring the minimization of a function based
on a single parameter z. While this does not neces-
sarily make finding the bound more efficient than us-
ing the constraint programming solution, it provides a
way to define a closed-form solution if an estimator is
assumed. The following example shows how one can
use this EVaR approach to compute the f-sensitivity
bound.

Example 1. To ensure that Theorem 1 is correct and
illustrate its use, a comparison between the results of
the constraint programming and the EVaR approach
is provided. Data is generated as follows:

U ~ Bern(0.25)

X ~ Bern(0.45)

T ~0.5+0.25X —0.3U

Y ~ X + U +2T — N(1,0.1)

()

This setting is meant to represent a general case, with
hidden confounding U, confounder X, binary treat-
ment T" and outcome Y. Some important aspects are
the total probability of being treated P(T = 1) =
05P(X = 0,U = 0) + 02P(X = 0,U = 1) +
0.75P(X =1,U =0) + 045P(X = 1,U = 1) = 0.58.
A dataset of 30000 samples is generated to ensure that
the results are not swayed by the lack of data.

With this setup, a Random Forest with its de-
fault parameters from the causalml? Python package
is trained to generate the counterfactuals. There is no
specific reasoning for using the random forest regres-
sor, any estimator could have been used and the result
would only change depending on the ATE predicted
by the estimator. To ensure discreteness, each out-
come was rounded to the first decimal number. With
this newly generated dataset, the constraint program-
ming and EVaR approaches are run on the same range
of p. In this setup, the metric of interest is the ATE

2https://causalml.readthedocs.io/en/latest /about.html

and the true ATE is equal to 2. However, because not
all of the confounding is observed, the observable ATE
shifts to ATEps = 2 + E[U|do(T = 1)] — E[U]|do(T =
0)] ~ 2+0.1347 —0.4092 ~ 1.73. The resulting plotted
bounds of the ATE can be found in Figure 2.

As can be seen, both computation methods yield the
same results. The predicted result does not seem to
match with the true ATE, which is to be expected
with a hidden confounder. The predicted ATE seem
to match the theoretical observed ATE, given the out-
comes were rounded to 1 decimal digit. The EVaR
approach matches the solution from the constraint pro-
gramming formulation, showing that the EVaR ap-
proach works. Further experiments to show the results
of these 3 approaches can be found in Appendix B.
Additionally, these results were also compared to the
authors algorithm, however, the results obtained seem
to be unstable. Due to the lack of access to the original
implementation, it was implemented from scratch and
it cannot be assured that these results are not the fault
of the way it was implemented. These results can be
found in Appendix B.2.

Now that it has been shown how to find a bound for
the general case, let us introduce a closed-form solu-
tion that assumes that, to estimate the Y| X, T distri-
bution, an estimator fits a single normal distribution
with learnable p and o. To find the closed-form solu-
tion, first a moment generating function needs to be
defined. The normal distribution has a closed-form
solution to its moment %eneratlng function given by
M.(N(u,0)) = e*#+37°7"  This leads to Theorem 2,
which is expanded in Appendix A.2 with a proof ex-
tending it to a sum of Gaussians rather than a single
normal distribution.

Theorem 2. Assuming that the outcome follows a
normal distribution N (p, o), the bounds of f-sensitivity
can be expressed as:

p*+u+£]

_ o? V2p
py (x) = re(x) [~ Py +u— T]
Where the square root always yields the non-negative

part of the possible solutions.

p () = re(@)[

Theorem 2 provides a closed-form solution to the
bounds of the f-sensitivity, since the exact parameters



Bound from constraint programing approach
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Figure 2: Bounds on the ATE computed by the two approaches for f-sensitivity. On the left is the constraint
programming approach and on the right is the EVaR approach. Both approaches result in the same bound.

of the normal distribution are known. A sanity check
for whether this holds is provided in Example 2.

Example 2. To show that Theorem 2 holds, a sanity
check similar to Example 1 is provided. The experi-
mental setup remains the same, following the distribu-
tions in Equation 5. The exact same dataset is used,
but this time a Gaussian Mixture model® is used as
the estimator with £ = 1 to assume a single normal
distribution. This estimator is used to approximate
the outcome Y. A single normal distribution is fit for
each possible X, T pair. The visualization of the re-
sults can be found in Figure 3, using both EVaR and
the closed-form approach. The results slightly differ,
as the normal distribution is unbounded, making its
closed form also unbounded, while the EVaR approach
will always stop at the maximum and minimum values
observed in the data.

The results show that using the normal distribution
does predict the ATE close to the observable ATE,
but creates a larger spread as p increases, as it is not
bounded by the observed distribution. Additionally,
this allowed the computation to be done almost in-
stantly, as the bounds follow the closed-form.

Shttps://scikit-learn.org/stable/modules/generated/
sklearn.mixture.GaussianMixture.html

Bound from closed form and EVaR approaches using random forest
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Figure 3: Bounds on the ATE computed by the EVaR
(blue) and closed-form solution (red). The results are
similar, as there are many samples which ensure that
estimation is almost correct. However, as p increases,
the difference also increases, since the closed-form solu-
tion works with a continuous unbounded distribution,
while the EVaR approach assumes a discrete distribu-
tion bounded by the data.



4 Comparison between MSM

and f-sensitivity

In both the MSM and the f-sensitivity model, the goal
is to approximate possible bounds of a metric based
on possible levels of unobserved confounding. This is
done by creating a similarity metric between the ob-
served and true propensity distribution and bounding
it. However, it is worth to look at how these similarity
measures differ and what reasons are there to pick one
over the other.

As previously mentioned, the MSM uses the odds-
ratio as a similarity measure. This effectively means
that distributions are compared based on the max-
imum and minimum ratio of the two distributions.
On the other hand, the f-sensitivity model uses the f-
divergence metric, which is a well-established similarity
metric, to compare the potential true distribution with
the observed one. These two metrics differ and they
can yield different results based on the distribution.

To show the behaviour of these similarity metrics,
consider the simplest case of trying to select similar
normal distributions to an observed standard normal
distribution N(0,1). While e(z)/(1 — e(x)) will always
be positive and, therefore, never follow a normal dis-
tribution, the goal is to visualize the behaviour of the
similarity metric, which is easier with a normal dis-
tribution. The same experiment can be done with an
exponential distribution, but it would not produce a
comprehensive visualization.

First, using the similarity metric of maximum and
minimum of the ratio between the observed distribu-
tion N(0,1) and the true distribution N(u, o) would
]J\\IJ((‘ST)) < T, which can be ex-

pressed as I' ! < ée‘l/Q[(z;“)z_wz] < T for almost all

z € R. This means that the inequality has to hold for
all probable z. For this example, all  from -2.5 to 2.5
are considered, as this takes into account around 99%
of cumulative probability of the observed z. With this
setup, it is possible to find all the possible values of
1 and o that satisfy the inequality, resulting in a set
of possible distributions that are considered similar to
the observed standard normal distribution based on I'.

Now, the same thing will be done in terms of
KL-divergence.  In this setting the constraint is
Dgr(N(0,1)||N(u,0)) < p. This can be expressed as
1 u2

3(4 + 5 —In 5 —1) < p. However, as shown in Equa-

result in a in ™! <

tion 3, f-sensitivity also uses the inverse of the odds-
ratio, flipping the inequality into %(,ug—s—oQ—ln o?-1) <
p. Again, it is possible to create a set of possible u’s
and o’s that fulfill both conditions.

Using these two conditions, it is possible to plot the
selected distributions on a grid where the x-axis rep-
resents the p and the y-axis represents o. Figure 4
shows how the selection of distributions differs between
the two selection criteria. This illustrates how the mea-
sures can behave when using a similarity metric. While
KL-divergence creates a convex ball around the ob-
served distribution, the odds-ratio eventually creates
a disconnected area. A disconnected area could be a
problematic behaviour for any similarity metric, and it
removes a lot of useful properties, like assuming that
if two distributions are considered similar, all distribu-
tions between them are similar as well, that come with
a convex result like the one from the KL-divergence.

This makes the bounded odds-ratio an odd choice
when looking for a similarity metric, as it might induce
some counterintuitive behaviour. However, it might be
easier for researchers to determine what value of the
odds-ratio is realistic, than to find a reasonable bound
on the KL-divergence between the true and observed
distribution.

Another difference comes from how the sensitivity
models interact with the probability of the unobserved
confounder. An interesting view to compare the MSM
and the f-sensitivity model is through this distribution
of the unobserved confounder. A question to answer
would be, how the models react to the unobserved con-
founder being almost constant (e.g. P(U = 1) = 0.99).

In the case of the MSM, the distribution of the
hidden confounder lies within the computation of the
observed propensity, as e(x) = > .ye(r,u)P(U =
u|X = ). This implies that when U is almost con-
stant, the observed propensity will also be almost
equivalent to the true propensity score. However, be-
cause the MSM is based on the minimum and maxi-
mum of the odds-ratio, this unlikely event of U chang-
ing its value would be considered the worst-case sce-
nario, effectively exploding the ratio. To show this,
take an example where there are no confounders X,
only the hidden binary confounder U such that P(U =
1) = 0.99. The true propensity score behaves as
e(U=1)=P(T=1U=1)=05ande(U =0) =0.1.
This means that the observed propensity score P(T =
N=eU =1)PU=1)4+¢e(U =0)P(U=0)=0.5-
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Figure 4: Selection of the plausible distributions based on the KL-criteria (top) and bounded odds-ratio (bot-
tom). The observed distribution is a standard normal distribution and the black coloured area shows the
possible distributions to pick from. In each setting, the assumed bound starts near no-unobserved confounding
and goes to a high unobserved confounding setting. Each setting has the value assumed in the title of the graph.
X-axis represents the possible mean p of true distribution and Y-axis represents the standard deviation o. The
bounded odds-ratio checks for 99.99% of the observed z € X.

0.99 +0.1-0.01 = 0.496. This results in the worst-case
bound of I' = OR(U = 0) = igzégégtig:ol)))) ~ 8.85.
A value of 8.85 could be considered quite high for an
almost constant (U having the same value in 99% of
the cases) experimental setup, however, this depends
on the problem of the researcher applying the MSM.
Before going into further details, let’s first see how the

f-sensitivity behaves under such conditions.

The f-sensitivity model deals with the hidden con-
founder distribution through the f-divergence computa-
tion. Simply put, the assumption includes the integral
over the possible values of U and scales the result based
on its distribution. To follow up on the almost con-
stant example, with f-sensitivity the worst-case bound
would be p = f(OR(U = 0))P(T = 1|U = 0)P(U =
0) + f(OR(U = 1))P(T WU = 1)PU =1) =
8.85%1n 8.85x0.1%0.01+0.984x1n 0.984%0.5%0.99 ~ 0.01.
In this case the odds ratio is almost constant, so the
f-sensitivity records almost no hidden confounding.

To better illustrate this difference in behaviour, let
the scenario remain the same, but plot how the sensi-
tivity bounds behave in relation to P(U = 1) = p. The
propensity scores remain the same at e(U = 1) = 0.5

and e(U = 0) = 0.1 and the observed propensity be-
comes variable P(T = 1) = e(U = )p + e(U =
0)(1 — p). The plots for the MSM and f-sensitivity

10

model can be found in Figure 5. While the two mea-
surements cannot be compared outright, as each bound
means something different as discussed previously, the
interesting part is shown when p goes to 0 or 1. In
MSM the bound keeps increasing, suggesting that in-
deed the MSM is sensitive to the hidden confounder
distribution, while f-sensitivity is also sensitive to the
distribution, but decreases the bound instead.

To summarise these observations, the similarity met-
ric used by the MSM can create disconnected pockets of
possible distributions, and the bound seems to increase
as the hidden confounder becomes more constant. On
the contrary, f-sensitivity uses a well-established simi-
larity metric, and the bound keeps reducing when the
hidden confounder becomes more constant.

5 Discussion

This work aimed to provide guidance and tools for
causal sensitivity analysis by addressing two questions:
First, how do the MSM and f-sensitivity models com-
pare? Second, is there a way to compute f-sensitivity
bounds through value at risk?

The answer to the first question consists of two as-
pects. The first is that the MSM uses the minimum and
maximum of the odds ratio as a similarity metric, ex-
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Figure 5: The evolution of the MSM (top) and f-
sensitivity (bottom) bounds of the experiment de-
scribed in Section 4. On the x-axis is the P(U = 1),
where U is a binary variable, so as it goes to 0 or 1
the hidden confounding becomes more constant. On
the Y-axis you have the respective bounds for each
model. As the hidden confounder becomes more con-
stant, MSM bound increases, while f-sensitivity bound
decreases, showing a difference between the interpreta-
tion of the bound. The sudden bump for f-sensitivity is
defined by the selection between the treated and con-
trol f-divergence, as defined in Equation 3.
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hibiting some counter-intuitive behavior when selecting
possible distributions. In contrast, f-sensitivity uses a
well-established similarity metric, but is harder to in-
terpret as the bound does not directly relate to the
propensity score like the MSM bound does. Therefore,
there is no single answer to which approach is better,
as both models can provide different information that
is problem-specific. The MSM is sensitive to unlikely
hidden confounders, which can be useful in scenarios
where risking model failure is unacceptable, such as in
medicine. The f-sensitivity model only considers hid-
den confounders that are likely to happen, better re-
flecting regular scenarios where some risk is allowed.

Regarding the second question, it has been shown
that there is a way to find the bound of the f-sensitivity
model through the entropic value at risk. Examples
were provided: one where no model is assumed and
one where a normal distribution is assumed, requiring
no further approximations. This new way of comput-
ing the f-sensitivity bounds permits its wider applica-
bility and presents an opportunity to study it in more
computationally intensive settings like reinforcement
learning.

Throughout this study, we aimed to ensure that the
proposed method and implementation aligns with the
original f-sensitivity model by providing simple exam-
ples in limited settings. However, real-world datasets
could provide additional information about the differ-
ences in behaviour between the constraint program-
ming and EVaR approaches. In addition, this would
better reflect whether f-sensitivity is useful in real-life
settings, or whether it takes too much time to compute
or yields a wider bound. While synthetic data provides
the opportunity to study the behaviour of sensitivity
models with full access to all confounders, even the
hidden ones, real-world data does not provide this, nor
the true values for the counterfactuals. This limits how
well can sensitivity models be evaluated on real-world
data.

Additionally, the implementation provided in the
GitHub repository could be improved. There was no
effort put into tuning the learning rates or to stop
computation once the EVaR converged to a maxi-
mum/minimum of the observed distribution. While
these changes would improve the computing time, they
would not alter the result or conclusions of this work.
Similarly, the original code for f-sensitivity was not
publicly accessible at the time of writing, and while



it was attempted to include it in the comparison, the
results did not seem to behave the same as presented in
the paper. Additionally, we attempted to ensure that
the implementations were correct by comparing them
with results observed in the literature. Given that this
sensitivity model is relatively new, it is difficult to find
many applications for comparison.

Within this study, only discrete datasets were con-
sidered, limiting the applicability of this method.
To make the step towards continuous space, first a
bounded space would need to be considered. It would
be possible to use function estimation with a contin-
uous feature space, however the output of such an es-
timator would need to be the outcome distribution,
rather than just a scalar outcome. Such function es-
timators exist, and it would be interesting to further
study how the bound behaves in such conditions.

It is also important to realize that this new approach
works only with KL-divergence, as the dual represen-
tation of the entropic value at risk is created assuming
KL-divergence. Further research can explore whether
the method can be generalized to all f-divergence met-
rics and identify the properties when using f-sensitivity.
A possible start would be to try to redefine f-sensitivity
in terms of value at risk, or any other risk measure.
This would permit the method to be solved with al-
ready existing solutions to risk analysis, as well as to
generalize over other f-divergencies.

As mentioned before, many extensions of sensitivity
models in reinforcement learning (RL) already exist,
but they require fast computation of bounds for every
existing state. With an efficient implementation of the
EVaR approach, it is believed that f-sensitivity could
also be extended and used as an evaluation metric that
identifies the worst possible set of transitions minimiz-
ing the reward obtained by a trained policy.

Another important outlook is to create an approach
for estimating what reasonable bounds would be on a
problem-specific dataset. Currently, researchers find
the p (or I') when the bound falls above a certain
threshold of acceptable risk, which must be followed
by a study into whether such p is realistic. If such
an approach is found, sensitivity analysis can be fully
integrated into the pipeline of causal inference with-
out any additional input from experts. Possible, first
step would be to analyse how the models behave when
some of the hidden confounders would be hidden. This
would effectively measure the strength of each con-
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founder, which would then permit to put the found
bound into perspective of the observed confounders.
Other issues need to be taken into account, like joint
confounders, or the fact that hiding confounders would
only increase hidden confounding. One can also mea-
sure the strength as the integral over the difference
between bounds found with and without a confounder.
Finally, sensitivity analysis has only been considered
as a tool to evaluate trained models, but as shown in
the literature, like Kausik et al. (2023) in RL setting,
it can also be used during training as a form of regu-
larization. It would be interesting to see whether it is
possible to adapt our approach so that models, espe-
cially deep learning models, would be more aware of the
distributions surrounding their learned distribution.

6 Conclusion

This work looked at the differences between the
Marginal Sensitivity model and the new f-sensitivity
model. While many similarities remain, and the goal
does not change, the models behave differently un-
der different conditions and results from both might
provide valuable information about the range of pos-
sible causal effects when hidden confounding is intro-
duced. This work also provided a new way of calcu-
lating f-sensitivity with an almost closed-form that can
be extended for specific models. Hidden confounding is
present everywhere, and causal sensitivity is needed to
make sure our conclusions based on data are substanti-
ated. The EVaR approach, presented and described in
this study, takes us a step closer to a causal inference
everyone can trust.
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A  Proofs

A.1 Proof of Theorem 1

Theorem 1. Bounds of f-sensitivity can be computed
through the dual representation of the entropic value
at risk (EVaR) resulting in

1. My|x—a21=:(2)
+ _ : - ’
g (x) = re(x) ;I;% p; In — =
1. My|x—gr=
py () = re(z)sup — In VX =e Tt ) «(2)
2<0 2 e’

The proofs begins from the definition of the set
of possible distributions from Jin et al. (2022). In
this case, KL-divergence is used, which has the rel-
ative entropy property. The relative entropy prop-
erty states that for any KL-divergence, it holds
that Drr(p1Qxr=1 + (1 — p1)Qxr=ollp1 Px|r=1 +
(1 = p1)Pxjr=0) < P1DrL(Qxr=1l[Px|r=1) + (1 —
1) D1 (Q@x|7=0l|Px|7=0). This leads to a simplified
form:

d
Q= 1Q: 525 = (@), Dica(QyixPyix) < )
X
d
={Q: d%ix =7r(2), Drr(Qy|x,7=1lPy|x,7=1) < P,
X

Dk r(Qy|x,r=0llPy|x,r=0) < p}

Combining the dual formulation of EVaR from Ah-
madi Javid (2012) defined in Equation 6 (Theorem 3.3
in authors paper), with the set of distributions Q,
where f-sensitivity tries to find the upper bound of
the expected value, leads to supgeq[Fo(Y[X,T)] =
EVaRi_(Y|X,T) EVaR,_.-»(Y|X,T), equating
the two. The set of possible solutions Q is defined
as any distribution following Qyr—1 << Pyr=1,
meaning that Q is not defined outside of P, and
D1 (Qyr=1||Pyjr=1) < p, being the f-sensitivity as-
sumption.

EVaRi_o(X) = Sup Eq(X) (6)

Projecting this back into the primal, and forming
a moment generating function based on the observed
samples, leads to the solution defined in Equation 7.
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EV&R1,Q<Y) - ;2%[2—1 hl( M);(Z) )]
1 N eZYi
= Izn>ig[z—1 ln(@)] (7)
J 1
= min[~In(}} ™) — - In(Na)]
i=0

Where N is the number of samples, Y; is the outcome
of a sample, & = e ” and z represents the moment of
interest.

This, however, results in the upper bound for the
input distributions, for the lower bound the equation
changes to:

ln Z eZY

Lastly, f-sensitivity allows a shift in the distribution
of confounders X through the de = r(x) constraint.
This can be ensured by scaling the solution for every
z € X by r(x), resulting in Equations 8, which is equiv-
alent to Theorem 1.

- ln (Na)]

max
z2<0 "z

1 M =x,T=
pi () = re(x) nf ~ 1HM
z2>0 2 e—P (8)
1. My |x—p1=
i (@) = o) sup 1 1n MYIx=m7=t(2)
2<0 2 e—P

A.2 Proof of Theorem 2

This proof works with the sum of Gaussians with a
uniform weight rather than just a single Gaussian, to
make the theorem more generic.

Theorem 2. Assuming that the outcome follows a
normal distribution N (u, o), the bounds of f-sensitivity
can be expressed as:

Where the square root always yields the mon-negative
part of the possible solutions.



Assuming an estimator that fits a sum of Gaussians
with uniform weights onto the outcome distribution
defined as %Zf N(p;,04), it is possible to define the
moment generating function as:

M.(Y|X =2, T =t) =
= E[ef Zi-

E[ezY\X:z,T:t]

0 N(#i,di)]

Applying Theorem 1 means that a closed-form solu-
tion can now be found, shown in Equation 10.

1. My|x—zr-4(2)
£ (x) = inf ~ 1 ’
pi () = re(z) Int 2 =
o1 i z 412252
= r¢(7) ;ggg(lnnek“ 252% + p)

. e L 122
=r(x ;r;foz(izo 27 4 p) (10)
k 2
. z 122,
= ri(z) inf —(p+ ;EM‘ + 5730
=r(x)inf[f+zk:* '+lia»2]
A T AR T e

This leads to a closed-form solution described in
Equation 11. The result gives us the optimal z to use
in order to find the maxima or minima (for p; the
negative square result of the square root is taken).
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With all of this, the final solution can be found by

. k k ; 2
computing i (z) = A/ 58z Do 07 + Zj:@[%]] + %.

The same can be applied to y; , but with a negative re-
sult of the square root. All of this leads to the extended
form of Theorem 2 found below:

Theorem 3. Assuming a sum of Gaussians with
a uniform weight k, that fits set of parame-
ters p and o represented as Y|X = x,T t ~
%Zf:o N(pi(z,t),04(x,t)), the bounds of f-sensitivity
can be expressed as:

2
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Where the square root always yields the non-negative
part of the possible solutions.

k ag,
b L

2
— 2k

Setting & = 1 in the above theorem results in Theo-
rem 2.

B Further experimentation

In this section more experiments are shown which were
not considered in the main body, since they were not
essential to the claims made. These results still rein-
force the same conclusions, but might be in a more
complex or general setting.



B.1 Reproduction of the authors re-
sults

To check whether the EVaR formulation matches the
results of the Jin et al. (2022) formulation, the first
attempt was to reproduce the numerical experiments
in the paper. However, the authors provide the re-
sult of only one run in a normally distributed setting.
In this setting, the metric in question is the Aver-
age Treatment effect on the Control (ATC) and not
the ATE. The setting, which is described thoroughly
in Section 5.1 (Jin et al., 2022) of the original paper
contains uniformly distributed features, and thus the
EVaR approach cannot be applied to it in its current
form. However, similarly to the sum of Gaussians esti-
mator, it is possible to create a closed-form solution if a
normal distribution is assumed. To adjust for the non-
determinism of the authors’ algorithm, an area within
2 standard deviations of the average results is high-
lighted.

The comparison between the 2 results can be found
in Figure 6. The results show that the theoretical
EVaR result would match the true result, which makes
sense given that we assumed the normal distribution.
Additionally, the result from the authors is within 2
standard deviations, making it possible that the results
would match, if ran on multiple seeds.

B.2 Authors Algorithm

To further connect the EVaR approach with the work
done by Jin et al. (2022), an attempt was made to com-
pare the two. For this comparison, the same dataset
as in Example 2 was used. However, as mentioned pre-
viously, the authors’ algorithm is only approximating
the bound, not computing it directly, and it requires
2 regressors and 1 empirical risk minimizer (ERM) for
that approximation.

In this setting, each estimator is using linear regres-
sion, as the input is just a single binary variable. The
first regressor is used to estimate the r(z) function,
while th second and third are used within the ERM
to predict nuisance parameters « and 7 that minimize
the lagrangian. The last regressor is then used to pre-
dict the value of the lagrangian based only on X. The
authors’ algorithm also splits the dataset into 3 inde-
pendent datasets and predicts the bound for each, out-
putting the average bound. In this experiment, each
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Figure 6: The comparison between the results of the
closed-form approach through EVaR and the result
given from the paper. The blue line indicates the true
ATC, green line indicated the result from the paper
and red the EVaR result.

regressor was given 1000 steps with learning rate set
to 0.001 and each step training on the entire avail-
able dataset (one of the 3 splits). Because of the non-
deterministic nature of this algorithm, it was ran 10
times on different seeds and the results were averaged.
The results are shown in Figure 7.

The results do not match the expected base result for
the case when p = 0. In that case, the bound should
match the ATE observed by the Random Forest esti-
mator, which was around 1.75. This is most likely due
to wrong implementation of some part of the algorithm,
or due to missspecification of the estimators used. The
results are quite unstable which is most likely due to
the lack of data. Further research needs to be done to
check whether the provided implementation is giving
the correct results, or if the results are correct and the
algorithm just does not perform well in a simple setting
with a binary confounder.

B.3 Range of experiments

In this experiment, the same setup was used as in Ex-
ample 1, but with a range of possible values used for
the set values. Equation 12 formulates this in terms of
Up, Ty, by, Yy variables. Each formulation had a dataset
of 30000 samples generated and both the constraint
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Figure 7: Results obtained from the authors’ algorithm
when ran on the setting from Example 1. The results
seem unstable and do not match the observed ATE
when no hidden confounding is assumed. The solid
green line represents the average observed bound, and
the faded area illustrates the area between the 5th and
95th percentiles of the observed bounds.

programming and the EVaR approaches were tested to
see whether the results would match. Because of com-
puting time, the range of each variable was limited as
shown in the results in Table 1. Additionally, each set-
ting was only tested on p € {0,0.5,1}, and the highest
absolute difference between the approaches was mea-
sured.

U ~ Bern(uy)

X ~ Bern(xy)
T~05+025X +¢,U

Y ~X+y,U+2T— N(1,0.1)

(12)

To show these results, Table 1 tracks the highest ob-
served absolute difference between the two approaches.
Each row looks at a specific variable and each column
represents a possible value for that variable. The val-
ues within are the absolute difference between all the
scenarios where that variable had the specific value as-
signed. These values are rounded to the nearest upper
3rd decimal digit, as both the Ipopt* solver used for
the constraint programming setting and the learning

4https://coin-or.github.io/Ipopt/

| -0.5 | -0.25 | 0.05 | 0.15 | 0.95

u, - - 0.004 | 0.005 | 0.005
Xy, - - 0.003 | 0.004 | 0.005
tu - 0.003 | 0.004 | 0.005 -

vu | 0.004 | 0.005 | 0.005 | 0.005 | 0.004

Table 1: Each row looks at a specific variable. Each
column represents a different value a variable can take.
Values within the table represent the absolute differ-
ence between the constraint programming approach
and EVaR approach. Settings which are impossible,
such as probabilities outside of [0, 1], are discarded
and labeled with a dash.

rate used for gradient descent are set to 0.001. While
there are some differences between the two methods,
these are usually cause by the different tolerance levels
of the solver used for the constraint programming defi-
nition and the tolerance that determines when gradient
descent converged for the EVaR setting.

B.4 Dimensionality experiments

The last set of experiments was with the dimension of
confounders X. While in all other experiments X is
represented by a single binary variable, in this exper-
iment it is set to kK = 3 binary variables. This leads
to the formulation in Equation 13. This is to show
that the approach works in more complex setting with
multiple input variables. However, given each possi-
ble x € X is considered in both approaches, the time
complexity of higher dimensions can be too much for
a simple computer to compute.

U ~ Bern(0.25)
X ~ Bern(0.45)"

k
T ~05+0.25) X;/3—0.3U (13)

k
Y ~ ) Xi/3+ U +2T — N(1,0.1)

The results are shown in Figure 8. While the re-
sults mostly match, however the constraint program-
ming approach took significantly longer to compute
and failed to converge in some instances, creating these
steps in the result as p becomes larger.
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Figure 8: Results of the dimensionality experiment. In this setup there are 3 binary confounders instead of
1. The results of the constraint programming method (left) and the EVaR method (right) still match, but the
constraint programming method takes longer and fails to converge in some instances, creating sudden steps.
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