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Abstract. During the design phase of an offshore wind turbine, it is required to assess the
impact of loads on the turbine life time. Due to the varying environmental conditions, the
effect of various uncertain parameters has to be studied to provide meaningful conclusions.
Incorporating such uncertain parameters in this regard is often done by applying binning,
where the probability density function under consideration is binned and in each bin random
simulations are run to estimate the loads. A different methodology for quantifying uncertainties
proposed in this work is polynomial interpolation, a more efficient technique that allows to
more accurately predict the loads on the turbine for specific load cases. This efficiency is
demonstrated by applying the technique to a power production test problem and to IEC Design
Load Case 1.1, where the ultimate loads are determined using BLADED. The results show that
the interpolating polynomial is capable of representing the load model. Our proposed surrogate
modeling approach therefore has the potential to significantly speed up the design and analysis
of offshore wind turbines by reducing the time required for load case assessment.

1. Introduction

It is required to assess various load cases during the design phase of a wind turbine. The IEC
standard for offshore wind turbines [1] prescribes several load cases that should be modeled,
varying from fatigue analysis in calm sea to ultimate load cases. Due to the uncertain
environmental conditions, the wind and sea conditions have to be modeled stochastically
according to a prescribed distribution.

To determine the influence of uncertain parameters, it is customary to first divide the ranges
of the distributions under consideration in bins, subsequently to randomly draw samples in
each bin (the so-called seeds), and finally to accumulate the results. This is suggested in the
aforementioned standard [1] and commonly applied in literature (e.g. [2, 3, 4, 5]). In case of
uncertain (mean) wind speed, often the bins are chosen independently from the distribution
under consideration and solely depend on the cut-in and cut-out speed of the wind turbine.

The challenge of such calculations is the computational effort that is necessary to evaluate a
wind turbine model several times to assess the loads for various environmental conditions. Several
more efficient methods exist to characterize the influence of uncertainties on a quantity of interest
[6]. One class of commonly applied efficient methods is formed by polynomial surrogate models.
The key idea is to replace the computationally expensive computer model with a polynomial
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that approximates the true model, but can be evaluated very fast. Initial applications of such
methods already exist in wind energy literature [7], for example based on polynomial surrogates
in combination with binning [8, 9, 10|, proper orthogonal decompositions [11], or more efficient
Monte Carlo sampling methods [12, 13]. In this article, we propose the use of interpolation
using a nested sequence of nodes, called Leja nodes. This approach has the benefits that
the full distribution is taken into account (i.e. binning is not necessary anymore) and that
it is accompanied with strong mathematical proofs of its exactness (i.e. the surrogate model
approximates the computationally expensive model very well). Moreover the sequence is nested,
such that refining the surrogate can be done by adding new model evaluations and reusing all
existing ones.

The test problem under consideration is based on Design Load Case (DLC) 1.1 [1], that
describes the calculation of ultimate loads of a wind turbine operating under normal conditions.
The offshore wind turbine under consideration is the NREL 5MW turbine [14].

This article is set up as follows. In Section 2 the procedure to construct a surrogate is discussed.
To demonstrate the methodology, the procedure is applied to a simple power production test
problem in Section 3. Section 4 contains the results of applying this methodology to DLC 1.1.
In Section 5 the article is concluded and options for future research are discussed.

2. Interpolation using Leja nodes

The goal is to replace a computationally expensive computer model with an efficient polynomial.
This is done through interpolation: the model is evaluated at several a-priori chosen locations
and a polynomial is constructed that matches the value of the model at these locations. The
construction of such a polynomial is discussed in Section 2.1 and the algorithm to select the
nodes is discussed in Section 2.2.

2.1. Polynomial interpolation

The key problem is as follows. The wind turbine computer model is modeled mathematically as
a function u : Q — R, i.e. evaluating u yields ultimate loads on the turbine given parameters
from the set Q (such as the sea state and wind speed). The goal is to approximate the statistical
properties of y = u(z), where x has distribution p. This can be seen as determining the effect of
the environmental conditions (modeled with p) on the loads (modeled by y). For example, the
mean of y can be denoted explicitly as follows:

Ely) = Elu(@)) = | u(@) pla) da. (2.1)

As stated previously, it is common to approximate this integral by binning 2 and approximating
the integrals on the bins with random samples. In contrast, we choose to approximate u directly
and for this purpose an interpolating polynomial is constructed. To this end, let {z¢,...,zx} C Q
be N + 1 nodes, which can be seen as samples of the distribution p. The interpolant (say ux)
can be constructed explicitly by enforcing that it is a polynomial of degree N and is exact in
the nodes, i.e. iy (xg) = u(xy). After constructing the interpolating polynomial, the mean and
other statistical properties can be determined efficiently using straightforward methods found
in literature (such as Monte Carlo), or even analytically if the statistical moments of the input
distributions are known.

For a single parameter, i.e. 2 = R, the interpolating polynomial can be constructed as follows.
Let Li(z) (for k =0,...,N) be the Lagrange basis polynomials, defined as follows (cf. [15]):

N r — X
Li(z) = [ J (2.2)

§=0 Tk — Xy
Jj#k
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These polynomials have the property that Ly(z;) = 1if j = k and Ly(x;) = 0 otherwise. The
interpolating polynomial can then be constructed as follows:

N
an(z) =Y Li(x)u(zy). (2.3)
k=0

This construction in combination with the definition of the Lagrange basis polynomials yields
Un(zk) = u(xy) for all k.

The construction can be generalized to the multivariate case as follows. Let the Vandermonde-
matrix be given as follows:

eo(zo) -+ wolzn)
V(Xn) = : : , (2.4)
en(@o) -+ en(an)
where g, ...,on are N independent multivariate polynomials. This matrix has the property

that det V(X ) = 0 if two nodes coincide, so it can be used to generalize the definition of Ly as

follows:
__detL%()(N)

~ detV(Xy)’

where V(X ) equals V(X ) where xy, is replaced by x. The Lagrange interpolating polynomial
can now be constructed in exactly the same way as in the univariate case.

Li(z) (2.5)

2.2. Leja nodes

The interpolation error, i.e. the difference between the interpolant 4 and the model u, scales
for a given x with H?:o |z — z;|. From this idea, the Leja nodes emerge, which are defined by
determining the location where this error is maximal (cf. [16]). A probability density function
(PDF) can be incorporated as scaling parameter, such that the definition becomes:

k
Tr41 = argmax <<p<m> +O T I - m) . (2.6)
zEQ §j=0
Here ¢ > 0 is a tempering parameter that can be used to create a more predictable and stable
interpolation sequence [17]. These nodes depend on the distribution under consideration and
the next one is determined using all the previous ones, so it is possible to assess the accuracy of

the current interpolant and only refine it if necessary.

The role of ¢ can be characterized as follows. Let p¢(x) o p(x) + ¢, with [ pe(z) dz =1, i.e.
p¢ is a PDF. Then p¢(z) oc Ip(x) + (1 —9), with ¥ = 1/(¢ +1). A larger ¢ reduces the effect of
p and moves p¢ to a uniform distribution. The “best” value of ¢ depends on the regularity of
the model and the distribution under consideration and is chosen heuristically in this article.

In the univariate case, Leja nodes can be determined efficiently by solving the maximization
problem (2.6) directly. In multivariate cases, this maximization problem is difficult to solve
straightforwardly, so we resolve to randomly sampling the space and selecting the node that
maximizes the target function. The resulting Leja sequences for the bivariate standard Gaussian
distribution are depicted in Figure 1. It is clearly visible that by choosing a higher ¢ (chosen
arbitrarily here), the nodes are more spread out across the space.
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Figure 1: Two dimensional Leja nodes with respect to the bivariate standard normal
distribution.

3. Power Production example
Although the key focus in this article is on load calculation, it is instructive to discuss a
relatively straightforward power production example to demonstrate the methodology and
visualize advantages and disadvantages of the approach. The example discussed in this section
is a basic power production example, where the uncertainty under consideration is an uncertain
10-minute wind speed average and the model under consideration is a scaled P-v curve that
maps 10-minute wind speed averages to power production.

To this end, let the P-v curve (denoted as u(v) to overcome confusion with probability) be
defined as follows:
if v < Veutin,

3
W) if Veutin < U < Vrateds

0
U(U) = ]('Urated_vcutin (31)

if Vrated < v < Vcutout

0 if Veutout < V.

The distribution of v under consideration is a Weibull distribution, parametrized by two
parameters: a scale parameter A and a shape parameter k. Both have to be positive. The
PDF of v then equals:

()" exp [~ ()] ifv>o,

otherwise.

plv) = (3.2)

S >

For the purpose of this test case, the parameters are chosen according to the following list.

Ucutin ~ Urated Ucutout A k

3m/s 10m/s 25m/s 10m/s 2

The resulting distribution and P-v curve are depicted in Figure 2. Using ¢ = 0 and ¢ = 1/3,
the model u(v) can be interpolated using Leja nodes (defined by (2.6)), see Figure 3. The
distribution of u(v) determined with these ( is also depicted in Figure 3 (using a kernel density
estimate), and it can clearly be observed that the approximation for ¢ = 1/3 is indeed better.
Note that this model is only piecewise differentiable: there is a jump in the derivative at
U = Urated- 1t can be observed that the Leja nodes are constructed such that the accuracy is
high with respect to the distribution. For { = 0, the interpolation is therefore accurate near
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Figure 2 & Table 1: The P-v curve (in red) and the distribution (in blue) under consideration
for the propagation problem. The exact mean and standard deviation
of this problem are listed in the table.
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v u(v)

Figure 3: The interpolated P-v curve and the resulting distribution of u(v) using 25 nodes
(shown in the left figure) for the propagation problem with ¢ = 0 (in red) and ¢ = 1/3.
(in blue). The dashed distribution is the exact distribution.

v = 5, which is the region of high probability. However, the accuracy deteriorates significantly in
regions with low probability, which is often not wanted. It is clear that the tempering parameter
¢ reduces this effect significantly and yields a more global accurate result at the cost of slightly
less accuracy in the region with high probability. This effect is even stronger in the output PDF,
where ¢ = 0 yields a significantly larger error at v = vyateq than ¢ = 1/3.

Although the number of nodes is relatively small, the mean and standard deviation can be
determined with decent accuracy, see Table 1. Both values of { show similar results.

Binning and Monte Carlo approaches are randomized approaches, so a straightforward
comparison of the mean and standard deviation cannot be made. However, at least 5 seeds per
bin (resulting into 110 evaluations) are necessary to reach a similar accuracy, where the bins have
size 1m/s. To reach a similar accuracy with a Monte Carlo approach, at least 10® samples are
required. Here, accuracy is measured using the standard deviation of consecutive runs, such that
still a large number of runs with these number of nodes produces a larger error. This confirms
the well-known fact that, given sufficiently smooth functions, interpolation approaches converge
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Figure 4: Sketch of the geometry of the NREL 5MW Offshore Wind turbine.

faster than random sampling approaches [6].

4. Design Load Case 1.1 applied to the NREL 5MW Baseline Wind turbine

Design Load Case (DLC) 1.1 encompasses assessing the effect of normal wind and sea conditions
during normal power production on the ultimate loads of the turbine. For offshore wind turbines,
it is compulsory to use representative mean wind and sea states, although a so-called normal
turbulence model (NTM) and a normal sea state (NSS) can be assumed [1, 18].

The proposed methodology in this article is applied to the NREL 5MW wind turbine [14],
see Figure 4 for a sketch. The goal of this article is not to assess the loads of the NREL 5MW
in great detail, but to discuss the applicability of the proposed interpolation procedure to a case
where the IEC standard is followed as much as possible. To this end, the extrapolation step
(which is essentially the purpose of DLC 1.1) is omitted, as it requires further analysis before it
can be carried over in the mathematical framework set out in this article.

The ultimate loads of the offshore wind turbine under consideration are determined using
BLADED 4.6. Before diving into the results, the wind and sea conditions are discussed in
Section 4.1 and 4.2. The uncertain parameters are summarized in Table 2. The results of the
procedure are discussed in Section 4.3.

4.1. Wind conditions
The wind turbine class under consideration is I 5, which is the class with the highest reference wind
speed Vier = 50m/s and highest turbulence characteristics resulting into the highest reference
mean turbulence intensity over a 10 minute period of time, It = 0.16. The annual average wind
speed, Viye, then becomes Vyye = 0.2V;r = 10m/s.

The mean wind speed at hub height over a 10 minute period of time, Vj,p, is assumed to
follow a Rayleigh distribution given by:

Lhub Vh b
Vib) = —o2 ——hub | 4.1
P( h b) 0_‘2/ €Xp [ 20_‘2/ ( )

with oy = Vayer/2/7 such that E[Viup] = Vave-
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The longitudinal turbulence standard deviation o and the mean longitudinal turbulence
intensity I follow the NTM, i.e. 0 = Lp(0.75Viup + b), with b = 5.6 m/s and I = ¢/Viup.

Although not required by the IEC standard, we assume the turbulence intensity is log normally
distributed with mean I and standard deviation o; = I/10. The resulting PDF then becomes:

(log I — m)?

1
I Vi) = - R 42
p(I | Viub) Tovas P 952 ] (4.2)

with m = log(I*/y/o? + I2) and s = \/log(c7/I2 + 1). (4.3)

The Leja nodes for the turbulence intensity are unweighted Leja nodes on [0, 0.5].

The lateral I, and vertical I, turbulence intensity become as follows: I, = 0.81 and I, = 0.51.
The wind direction is assumed to be distributed uniformly between —8° and 8°, where 0° is wind
from north (see Figure 4, where north is indicated). A non-zero degree means that the turbine is
yawed. The PDF therefore becomes p(0qi;) = 1/16 if —8° < 0g;, < 8°, and p(fqir) = 0 otherwise.

In conclusion, the parameter Vi, is distributed according to a Rayleigh distribution and the
parameter [ is distributed according to a log normal distribution and depends on Vj,. The
wind direction is distributed uniformly between —8° and 8°, independently of Vi, and Ief.

4.2. Sea conditions

There is no prescribed distribution for the sea conditions, as the conditions vary highly depending
on the depth and the currents of the location of the site. In the most simple case, which will be
used here, it consists of only the prescription of a joint PDF of the significant wave height Hy,
peak spectral period T}, and Vi,1,. The distribution of Wy, is already prescribed, so the resulting
joint distribution is denoted by p(Hs, T}, | Viupb). The wave spectrum under consideration is the
Jonswap spectrum. The wave direction is kept constant at 0° (from north).

It is not uncommon to assume that Hg depends only on Vj,, by means of a polynomial of
degree 2 and to assume that the peak spectral period scales with \/Hy [19]. To this end, the
distribution is rewritten by using p(Hs, T, | Viub) < p(Hs | Viub)p(Tp | Viub, Hs) and then both
p(Hs | Vaup) and p(Tp | Viub, Hs) are truncated Gaussian distributed, to ensure that there are no
regions containing non-physical values with positive probability. The following formulas based
on well-known rules of thumb are used for the mean and standard deviation [20]:

Hy (Vi) = aVi2y, + bV + ¢, with a = 3.45 x 1073,b = 4.46 x 1072, ¢ = 6.44 x 107}, (4.4)
or, = Viub/50, (4.5)
Ty (Vaun) = 3.6/ H, + 1.5, (4.6)
or, = 0.1. (4.7)

The truncation is such that the distribution is defined on p 4+ 20, i.e. on a two times standard
deviation interval around the mean.

4.3. Results
Following the notation from Section 2, the uncertain parameters and their distributions are
denoted as follows:

T = (thb7[; GdirvHsan)Tv (48)

and the full PDF can be written as

p(x) = p(Vaub, I, bair, Hs, Tpp) < p(Viub)p(L | Viub) p(Oair) p(Hs | Vaub)p(Tp | Viub, Hs).  (4.9)
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Table 2: Environmental parameters used for the load analysis. Uncertain parameters are
depicted in italic.

Annual average wind speed, V,ye 0.2Vier = 10m/s

Turbulence intensity, I,of 0.16

Mean wind speed at hub height, Viu, Rayleigh distributed

Longitudinal turbulence intensity, 1 Gaussian distributed depending on Vi

Wind direction, g;; Uniformly distributed

Significant wave height, H, Truncated Gaussian distributed depending on Vi
Peak spectral period, 7T}, Truncated Gaussian distributed depending on Hg, Vi

Table 3: Mean and standard deviation of the forces acting on the hub and halfway the blades
and the moment acting on the jacket base.

Hub F, Jacket base M, Blade F

g 6.43x10°N  2.01 x 105Nm  1.86 x 10°N
1.77 x 10°N
2.20 x 10°N
o 440 x 10°N  9.25x 10°Nm  6.40 x 10*N
7.17 x 10*N
7.26 x 10*N

For the purpose of this article, the ultimate loads on the jacket base, hub, and blades are
considered, even though BLADED readily provides the loads on other components as well. In
total, 100 Leja nodes are used to construct the interpolant using ¢ = 1/3, chosen such that the
key features of p(x) are carried over. For each node, the simulation is repeated 5 times (the
usual number of seeds in a bin) and averaged, as the turbulent wind field still contains a random
component. The maximum error between the interpolant generated with 98, 99, and 100 Leja
nodes respectively is smaller than the sampling error of the Monte Carlo approach that is used
to post process the interpolant (using 107 samples), so this number of nodes can be assumed to
yield an accurate surrogate.

The mean and standard deviation of the force on the hub, the moment of the jacket base
(facing south-west, see Figure 4), and the forces on the blades are provided in Table 3. The
respective distributions of these parameters are presented in Figure 5 and 6. The jacket base
moment is determined with respect to the y-axis in Figure 4 (i.e. the fore-aft moment). These
distributions were determined by approximating the histogram using Gaussian densities, resulting
in small positive probability for non-physical negative values.

The force acting on the hub of the turbine and the jacket base moment are expected to be
positive very often, due to the wind coming from north. This is visible in both densities and in
the mean and standard deviation of this force.

The individual forces acting on the three blades have a similar structure, but do differ because
a simulation of only 10 minutes is considered (so each blades has a slightly different path through
the random wind field). The PDFs describe that the forces are mostly positive, which is physically
reasonable as the wind comes from north.
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Figure 5: Probability density functions of the forces acting on the turbine.

106

Figure 6: Probability density function of the forces acting the three blades, determined halfway
the blades.

5. Conclusions & Future work

In this work the ultimate loads on a wind turbine are determined using uncertain environmental
conditions and a polynomial surrogate model. The uncertain parameters are chosen to follow
the IEC standard as much as possible.

The results demonstrate that the polynomial interpolant has the potential to be an accurate
approach to determine the ultimate loads on various components of the wind turbine. The
magnitudes of the quantities are correct, positive quantities are correctly predicted to be positive,
and the surrogate is converged correctly. However, the required post processing techniques from
the standard are not (yet) incorporated the mathematical framework set out in this article.

The uncertain parameters chosen in this work are not chosen according to specific site
conditions, which is the most realistic scenario. Using measurement data, the distributions
can be assessed more realistically. This requires additional work on the construction of input
distributions incorporating this data. Moreover, if such site conditions are specified, an extensive
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comparison can be made with the conventional approach for assessing design load cases.
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