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Abstract
Multiactivity analysis investigates one’s coordina-
tion of actions within a social context, such as ges-
tures and speech, usually using video recordings of
the social activity, to further understand the rules
of human behaviour. This paper focuses specif-
ically on the coordination between speaking and
drinking activities within a social setting, and ex-
plores the possibility of automatically identifying
these events using audio captured from a drinking
glass. As social interactions occur in vastly differ-
ent contexts, this paper also investigates the effect
that background noise might have on the accuracy
of identifying these events. Different parameters
and audio features were compared. Linear classi-
fication models LR and SVM with a linear kernel
were able to achieve 100% accuracy for all sam-
ple lengths between 2 and 8 seconds using the first
20 PCA components from 60 audio features. The
best performing feature in identifying speaking and
drinking events was MFCCs, achieving an F1 score
of 99.4% on average across models with a training
sample length of 3 seconds. Background noise had
different effects on classification accuracy depend-
ing on the type, with music lowering the F1 score
to 74.3%, noisy room audio to 64.7%, and podcast
audio simulating the presence of other speakers to
59.6% using MFCCs and a 3-second sample length.

1 Introduction
Multiactivity is a term used to describe one’s coordination
of multiple activities occurring at the same time. Compared
to its close sibling — multitasking, where one might be eat-
ing dinner while watching a TV series, multiactivity focuses
more on the coordination of multiple activities within a social
setting [1], such as talking while driving with a passenger in a
car or on the phone [2]. When more participants are involved,
one’s actions are affected by another’s, and vice versa, string-
ing together orderly and meaningful interactions. Analyses
on multiactivity focus on the sequential development of ac-
tions — why this happens at that time, to study the underly-
ing rules and frameworks governing human communication
[1].

As humans are not able to breathe in or out and drink at the
same time [3], the act of speaking and drinking must be se-
quentially organized in some way. Current research on multi-
activity make use of video recordings of social interactions to
qualitatively analyse the coordination of verbal and physical
expressions between participants [1,2,4,5]. This paper looks
into the feasibility of using only audio data to identify both
speaking and drinking activities within social settings where
it might be hard to set up overhead cameras to pick up such
actions, such as large outdoor gatherings or low-light envi-
ronments.

The main contributions of this paper are: investigating (i)
whether it is possible to identify drinking and speaking events
using audio captured from a drinking glass, (ii) how well the
identification performs in different noisy environments.

2 Related Works

Hoey [4] closely analysed the coordination between speaking
and drinking within social interactions, and gives insight into
how the context of the interaction affects one’s behaviour in
drinking, or how other gestures are used to communicate in-
stead of speech when one is occupied with drinking. Hoey’s
analysis is qualitative and micro-detailed, while this paper
aims to take a quantitative approach and analyse coordina-
tion patterns on a more general scale with less focus on the
conversation context. The automated identification of drink-
ing and speaking events would allow for more efficient and
large-scale analysis of multiactivity patterns between these
activities.

Numerous studies have explored and achieved accuracies
as high as 99% with detecting drinking events using inertial
sensors attached to a drinking cup or one’s arm [6–11], on
the other hand, speaking events are harder to detect with the
same type of data. Several studies using body-worn accel-
erators were only able to detect speaking status with an ac-
curacy between 68% and 72% in standing social interactions
[12–14]. Cabrera-Quiros et al. [14] specifically examined
the relationship between gestures and speaking status, find-
ing that speaking actions were not necessarily accompanied
by gestures, hence the lower accuracy in predicting speaking
status using gestural data. Attaching an inertial sensor on a
drinking glass would not only suffer from the same problem,
but would also be a difficult feat in social situations where
drinking glasses are placed statically on the table in front of
participants while speaking, as observed in Hoey’s analyses
[4]. In this case, the successful detection of any speaking
action would rely on the sensor picking up sound vibrations
from the cup. Considering these limitations, this paper chose
to explore the feasibility of solely using audio data to distin-
guish drinking and speaking events.

Audio classification using machine learning is a well-
researched topic. Many audio classification algorithms cal-
culate audio features such as Mel-Frequency Cepstral Coeffi-
cients (MFCCs) for windows of a few milliseconds over the
entire length of the audio sample, and then aggregated these
values by taking the mean and variance to form a smaller fea-
ture vector for the entire audio piece [15]. As the main ob-
jective in this paper is to classify digital audio of speaking
and drinking events, similar methods for generating feature
vectors will be utilised.

Much existing research that detect or analyse swallowing
sounds make use of a throat microphone [16–19], and extract
frequency related features such as MFCCs or Fast Fourier
Transforms (FFTs). These studies have been able to iden-
tify swallowing sounds from other noises originating from the
throat at accuracy scores ranging from 93.7% [17] to 95.20%
[18]. These results further motivate the focus on frequency
features to identify swallowing sounds in this paper. The use
of a throat microphone to capture swallowing sounds in a ca-
sual social setting could be considered rather intrusive and
out of place, therefore, alternatively, this paper proposes the
microphone to be placed on the drinking glass, simulating a
possible smart drinking cup.
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3 Experimental Setup
Due to the specific setup of the microphone being attached to
the cup, no suitable existing audio datasets could be used, and
custom data was collected for later experiments. These pieces
of audio data are then processed according to the flowchart
seen in Figure 1. After recording and annotating relevant au-
dio clips, possible external noise could be added artificially
to simulate the different environments in which a social in-
teraction could take place. The feature vector is then con-
structed by calculating different audio features over multiple
windows, taking statistical aggregations such as the mean,
median, and variance, and then used in different classifica-
tion models.

Figure 1: The processing for event classification using recorded
audio data.

3.1 Data Collection
An Arduino Nano 33 BLE Sense was used to record audio
data. This microcontroller board is equipped with a micro-
phone capable of recording audio at 16kHz or 42kHz1 at 16
bit digital resolution. A frequency of 16kHz was favoured to
minimize the amount of data that needs to be processed while
still having recordings of adequate quality, and the gain was
set at the highest value.

To be able to pick up swallowing sounds as well as drink-
ing sounds, the sensor was attached to a drinking glass using
elastic bands to simulate a smart drinking cup. As previously
mentioned, this setup was chosen to minimize intrusion from
the sensing device. The sensor board is then connected to a
laptop through a micro USB cable for power supply and data
transfer. To transfer audio data through the serial port, a ring
buffer code2 was implemented on the board to allow for con-
tinuous sampling of audio data. The following types of audio
were collected through the above described setup:

1https://forum.arduino.cc/t/pdm-lib-issue-changing-the-sampl
e-rate-pmd-begin/619569/2

2https://stackoverflow.com/a/76397224/14195852

• Speaking: 12 audio clips of 9-10 seconds with the empty
glass placed around 30cm away from the speaker, to-
talling to around 118 seconds in length.

• Drinking: 14 audio clips of 8-10 seconds, each clip hav-
ing around 7 to 9 sips, totalling to around 126 seconds
and 108 individual sips.

• Ambient noise: 12 audio clips of 10 seconds, totalling
to around 120 seconds in length.

• Real-life social setting: 12 audio clips with 3 speakers
in total and music playing in the background at times,
totalling to around 47.5 seconds of speaking, 51 seconds
of drinking, and 50 seconds of ambience.

To simulate the environments in which a social setting
could occur in, different types of noise were also collected:
classical music (Winter - Vivaldi3), a noisy room4, and pod-
cast audio5 to simulate other speakers. These noises were
played through the laptop speaker and recorded through the
microphone to preserve any artefacts from the microphone
and minimize artefacts that could come from downsampling
the original audio to 16kHz, and then synthetically added us-
ing the Audiomentations library6 with a minimum dB of -25.0
and maximum dB of -15.0. The music and noisy room audio
were added to all audio classes to simulate different environ-
ments, and the podcast audio was only added to drinking and
ambience audio to simulate other speakers. Figure 2 shows
the spectrograms of one audio clip from each type of col-
lected noise.

Figure 2: The spectrograms of collected noise.
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(a)

(b)

Figure 3: (3a) An example of audio waveform of collected samples.
(3b) An example of spectrograms of collected samples.

3.2 Feature Extraction
Figure 3a shows example audio waveforms of recorded au-
dio clips from each class, and Figure 3b shows the frequency
spectrum of the same audio clips. As there are noticeable
differences across both amplitude and frequency characteris-
tics for all three classes, both amplitude and frequency related
features were extracted and compared. A total of 6 frequency
related features and 1 amplitude related feature were chosen
for comparison. These features were extracted using the au-
dio processing library Librosa7 with a frame size of 1024 and
hop size of 256, and the mean, variance, median, minimum
and maximum values were taken to form the feature vector,
amounting to 60 features in total for training. The features
were also separated into 3 distinct feature groups for perfor-
mance comparison, and Figure 4 shows the first 2 components
of their respective principal component analyses (PCAs) us-
ing a training sample length of 3 seconds. The following fea-
ture groups were extracted and compared:

• Mel-Frequency Cepstral Coefficients - As mentioned
in earlier sections of this paper, MFCCs and FFTs were
widely used in audio classification in general, as well
as studies that analysed swallowing sounds with the use
of a throat microphone. MFCCs represent the short-
term power spectrum of a sound, and are calculated from
FFTs. The FFT values calculated from small windows
of the sound signal are mapped onto the mel scale that
more closely approximates the human auditory system’s
response. More calculations are carried out before fi-
nally arriving at a set of coefficients. As there is a lim-
ited amount of collected data, only the first 6 MFCCs
were taken to control the size of the feature vector ac-
cordingly. The resulting feature vector has 30 values.

• Spectral Centroid, Spectral Contrast, Spectral Band-
width, Spectral Roll-off - These features are frequently
used in music genre classification [20, 21], and provide
insight into the timbre and textural properties of a piece
of audio.

– Spectral Centroid - Spectral Centroid represents the
“centre of mass” of the spectrum.

– Spectral Contrast - Spectral contrast measures the
difference in amplitude between peaks and valleys
in a sound spectrum.

– Spectral Bandwidth - Spectral bandwidth measures
the width of the spectrum, providing an indication
of the range of frequencies present in a sound.

– Spectral Roll-off - Spectral roll-off is the frequency
below which a specified percentage (in this paper,
85% is used) of the total spectral energy is con-
tained.

These features form a feature vector of size 20.

3https://www.youtube.com/watch?v=TZCfydWF48c
4https://www.youtube.com/watch?v=UnhpCJ5tkW4
5https://wayneradiotv.podbean.com/
6https://github.com/iver56/audiomentations
7https://librosa.org/
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• Zero Crossing Rate, Root Mean Squared Energy -
These features give a basic overview of the changes in
frequency and energy over the entire audio signal. They
are simpler to compute and easier to understand in com-
parison with other features, and could be useful where
computational resources are limited.

– Zero Crossing Rate - ZCR measures the rate at
which the signal changes sign. It captures infor-
mation about the frequency content of the signal.

– Root Mean Squared Energy - RMSE measures the
overall energy or loudness of the signal. It provides
information about the amplitude dynamics of the
audio signal.

These two features form a feature vector of size 10.

Figure 4: The first two components obtained from a PCA on all
features, using a training sample length of 3 seconds.

3.3 Machine Learning Classification Models
To evaluate how well the features extracted can be used to
distinguish the three different classes of speaking, drinking,
and ambient noise, the library scikit-learn8 was used to train
2 linear (LR and SVM) and 3 non-linear (KNN, DT, and RF)
models, each having different strengths and weaknesses:

• K-Nearest Neighbours: KNN is a simple and straight-
forward learning algorithm that classifies a data point

8https://scikit-learn.org/stable/

based on the majority class among its closest k neigh-
bouring data points. In this paper, k = 5 neighbours
are used. KNN is easy to understand and implement,
and works effectively with small datasets. However, its
speed decreases rapidly with larger datasets, as it has to
execute distance calculations to all other points for every
new data point.

• (Multinomial) Logistic Regression: LR is a statisti-
cal model that predicts the probability of a data point
belonging to all classes and assigns it the most prob-
able one. LR takes input features and combines them
with coefficients that show how much certain features
contribute to the probability of being in a certain class.
These results are then put into a “softmax” activation
function to derive the possibilities of all classes when
more than 2 classes are present. The biggest advantage
of LR is the practicality and interpretability of its cal-
culation results. The coefficients show the relationship
between feature and classes, and the final class proba-
bilities show probable ambiguity between classes, which
could be more informative than classifiers that only out-
put the final classification. The main limitation of LR is
its assumption of linearity between the dependent vari-
able (classification outcome) and independent variables
(features), which might not accurately reflect the true un-
derlying relationship.

• Support Vector Machine (Linear Kernel): SVM is a
supervised learning model that constructs one or sev-
eral hyperplanes that best separates classes in the fea-
ture space. By utilizing different “kernel tricks” that
transform the input data to a higher-dimensional space,
SVMs allow non-linear distributions to be separated lin-
early again. In this paper, a linear kernel is used. SVMs
are versatile as the kernel function can be individually
defined and tailored to different data distributions, and
work well with larger feature vectors. The disadvantages
of SVMs are that they can be computationally expensive
for large datasets, and perform less well with overlap-
ping classes.

• Decision Tree: DTs are a non-parametric supervised
learning method used for classification and regression.
An optimized version of the CART algorithm is used
in the scikit-learn library. The algorithm tries to con-
tinuously draw “splitting points” on the most significant
features that distinguishes all the classes. DTs are “white
box” models as its decisions are easy to understand and
interpret like LR, however are also prone to overfitting
— splitting the data points unnecessarily specific and
narrow.

• Random Forest: RF is an ensemble learning method
that constructs multiple DTs using different samples
drawn with replacement from the training set. The pre-
dictions from these trees are then combined to reach a
final decision. This is done to overcome some of the
problems arising from DTs such as bias and overfitting.
For this research, a number of 100 trees are used in the
RF classifier. While RFs reduce the problems from DTs,
they also diminish some of the benefits of using DTs.
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Due to the use of a considerable number of trees in the
learning process, RFs are less interpretable and compu-
tations are also more expensive.

3.4 Performance Evaluation Criteria
To compare and evaluate the accuracy of the different ma-
chine learning models, a stratified 5-fold cross validation with
shuffling is used, along with the traditional scoring of recall
(1), precision (2), F-measure (3), and weighted average score
across classes (4):

Recalle =
TPe

TPe + FNe
(1)

Precisione =
TPe

TPe + FPe
(2)

F1e =
2 · Precisione · Recalle
Precisione +Recalle

=
2 · TPe

2 · TPe + FPe + FNe

(3)

WeightedAvgscore =
∑
e∈E

we ∗ scoree (4)

Where for every type of event e, TP, FP, and FN refer to
the number of correctly identified events, other events incor-
rectly identified as e, and event e being incorrectly identified
as other events, respectively. The weighted average of a cer-
tain score ∈ {Recall,Precision,F1} is calculated by the sum
of the products of w — the weight of each event in relation
to the total dataset size, and the corresponding score of that
event, for all events.

4 Results
The following results were observed for classifying speaking
and drinking events with audio data using different parame-
ters and altered training data.

4.1 Length of Training Data
Different lengths of samples were taken to train the machine
learning models and their performances were compared. The
samples are taken consecutively for each audio clip, and the
remainder is discarded. Table 1 shows the number of samples
that were extracted from all the audio clips for each sample
length. As each audio clip is only between 8 and 10 seconds
long, starting from a 6-second window and onward, the num-
ber of clips stays the same.

Class
Sample Length (seconds)

1 2 3 4 5 6 7 8
Speaking 116 57 35 24 21 12 12 12
Drinking 121 58 35 28 16 14 14 14
Ambience 120 60 36 24 24 12 12 12

Table 1: Number of samples per class when cut into samples of
different lengths.

Figure 5: Weighted average recall, precision, and F1 scores with
different sample lengths, trained using the first 20 components

derived from a PCA.

Figure 6: Average recall, precision, and F1 scores across all models.

Figure 5 shows the weighted average scores across the
three audio classes using the first 20 features, calculated from
a principal component analysis (PCA) taking into account all
60 features across the three feature groups, trained on models
KNN, LR, SVM, DT and RF. The score trend for all mod-
els except RF appears to increase starting from the 1-second
window up until the 3-second window, and then decrease for
KNN and fluctuate for DT. The scores for both SVM and LR
reach 100% at the 2-second window and stay that way for
the rest of the windows. DT fluctuates the most, reaching its
highest F1 score at the 8-second window and the lowest at the
4-second window, 100% and 90.3% respectively. KNN drops
gradually after the 4-second window, reaching 91.8% at the
8-second window. These fluctuations in accuracies were only
found in KNN, DT, and RF, and not in linear classifiers LR
and SVM, suggesting overfitting in non-linear models. Fig-
ure 6 shows the average precision, recall and F1 scores across
all models, and a 3-second window performs the best, with
an average F1 score of 99.2%.

4.2 Feature Performance Comparison
Figure 7 shows the F1 scores of the 3 feature groups in com-
parison with the first 20 features obtained from PCA with a
training sample length of 3 seconds. MFCCs perform the best
across all the models, only lowering to 97.0% on DT at worst.
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Zero Crossing Rate (ZCR) and Root Mean Squared Energy
(RMSE) perform the worst on average, ranging from 79.1%
on DT to 88.5% on SVM. The spectral features reach as high
as 100% on LR and SVM, and as low as 92.3% on DT. Table
2 shows the average score across all models. MFCCs contain
30 features, outperforming PCA, which has 20 features, only
by 0.2%.

Figure 7: F1 score for all feature groups using a sample length of 3
seconds.

PCA MFCCs Spectral ZCR & RMSE
Mean F1 0.992 0.994 0.979 0.838

Table 2: Average F1 score per feature across models.

4.3 Noise Injection
Figure 8 shows the F1 score after different types of noises
were synthetically added to the audio and classified using
MFCCs with a training sample length of 1 second. Table 3
shows the average F1 score across all models using differ-
ent training sample lengths. The best performing scores are
now at the 1-second and 2-second windows, instead of the
3-second window found before. Looking back at the classi-
fication score of MFCCs in Table 2, these scores show that
additional noise can have quite an effect on the classification
accuracy, decreasing the score by as much as 39.8% from
99.4% to 59.6% with the same features and sample length
when recordings of a podcast are used to simulate the pres-
ence of other speakers. It is also interesting to note that even
though both music and noisy room audio were added to all
audio clips, music has a lesser negative effect on the classifi-
cation accuracy.

Figure 9 shows the confusion matrices of the SVM classi-
fier with a training sample length of 1 second with different
types of noise. It is clearly demonstrated that speech of the
drinking person can still be reliably classified across all types
of noise, even when the voice of other speakers are added,
while the main confusion now lies in distinguishing drinking
audio from ambience. This shows that the addition of noise
can disrupt the effectiveness of MFCCs features for the drink-
ing class, possibly due to its frequency features being weaker
in comparison to the added noise compared to that of speech,
as seen in Figure 2 and Figure 3b. This could also explain
why there is more confusion to be seen in the noisy room
compared to music, even though both were added to all audio
clips with the same dB range.

Figure 8: F1 score for different types of noise with a training
sample length of 1 second.

Length (sec) Music Noisy Room Podcast

1 0.772 0.627 0.661
2 0.753 0.650 0.646
3 0.743 0.647 0.596
4 0.661 0.640 0.574
5 0.763 0.625 0.574
6 0.648 0.589 0.586
7 0.657 0.648 0.605
8 0.687 0.560 0.586

Table 3: Average F1 score per noise type across models using
different training sample lengths.

4.4 Training on Real-Life Data
Figure 10 shows the confusion matrices when real-life record-
ings are used as training data and tested on clean data us-
ing MFCCs at different sample lengths of 1 second, 2 sec-
onds, and 5 seconds. The real-life data contains several noise
sources such as music and other speakers. Overall, all mod-
els appear to be able to distinguish between the audio classes
quite clearly, apart from several confusions especially be-
tween drinking and ambience which can be seen in KNN,
DT, and RF models. LR and SVM are the most stable across
different sample lengths, and all models seem to perform on
the same level regardless of the increase in training sample
length.

5 Responsible Research
Due to the nature of multiactivity analysis, it is unpreventable
to have sensitive information from participants such as video
or audio recordings. It is therefore always necessary to en-
sure proper communication and consent from participants of
the potential use and implications of their data in research.
For the data collection procedure, clean data was collected
from just the author of this paper. For real-life audio con-
cerning extra participants, approval was given from course
staff through email to allow students within the same research
group to participate in the recording. All participants in-
volved in the data collection procedure were informed of the
usage of their voice in further experimentation, namely that
their voice would be recorded and later uploaded to a private
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Figure 9: Confusion matrices for different types of added noise
trained on SVM with a sample length of 1 second. (S) Speaking

(D) Drinking (A) Ambience.

repository only the course administrators, the supervisors of
our research team, and themselves would be able to access,
and used in the process of training machine learning models
to distinguish between speaking and drinking activities. The
recordings were saved locally in .txt files labelled only as the
corresponding audio type they were of, “speech”, “drink”, or
“background”, along with other possible notes like “music”
when music was present in the clip. These .txt files were then
converted into .wav files for audio processing. Both the .txt
and .wav files were only ever shared by uploading them to the
research team’s private repository, and all local copies of the
audio files will be deleted after the research project is over.

To ensure reproducibility of the experimental setup of this
research project, all methods were explained in detail and pa-
rameters of features and machine learning models were also
given. The original sources of the noises used, and various
code libraries, were also linked in the footnotes. The code
used to record audio from the Arduino board, to train ma-
chine learning models, and other code to process the data
and generate figures were uploaded to the private repository.
Within the repository, a README file has also been provided
with guidelines on how to run the code written in individual
Jupyter notebooks. Within the Jupyter notebooks, comments
were added to explain the functionality of certain pieces of
code and how to customize certain parameters.

6 Discussion
The experiments show that there are certain fluctuations in
classification accuracy with different lengths of training sam-
ples. However, these could be inaccuracies resulting from the
choice of parameters, or the decrease in size of the training
data when longer samples were taken. For linear classifiers,
a 2-second window is already enough to distinguish between
clean audio of speaking, drinking, and ambience with 100%
accuracy, while KNN and DT have an F1 score fluctuating
between 90% and 100%, and RF between 94% and 100% for
all sample lengths. From these results it can be deduced that
when dealing with clean audio, linear classifiers such as LR

(a)

(b)

(c)

Figure 10: Confusion matrices for classifying controlled data using
training sample lengths of (10a) 1 second, (10b) 2 seconds, and

(10c) 5 seconds. (S) Speaking (D) Drinking (A) Ambience.
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and SVM with a linear kernel using sample lengths between 2
and 8 seconds is enough to fully distinguish the audio signals
of speaking, drinking, and ambience.

The feature group performance comparisons show that
while ZCR and RMSE performed the worst, averaging an
F1 score of 84%, could still be viable where computation re-
sources are limited, as they are less resource intensive to cal-
culate. Both MFCCs and the various spectral features also
have great performance, scoring 99.4% and 97.9% on aver-
age respectively. As MFCCs are more complex to calculate
than the spectral features, the minor difference in accuracy
could make the latter a lot more favourable, especially in
larger datasets.

The artificial addition of noise significantly affects the clas-
sification accuracy between audio classes, primarily making
the audio of drinking harder to distinguishable from ambient
noise, suggesting that the method of using audio to distin-
guish these events would be less feasible in noisy social envi-
ronments. While multiactivity analysis often emphasizes the
importance of conversation content [2,4] and typically avoids
using noisy audio data, the method of identifying speaking
and drinking activities can still be valuable in noisier environ-
ments. Speech from the drinking person is still identifiable
when the presence of other speakers was simulated through
adding audio recordings of a podcast, suggesting that MFCCs
can distinguish between different voices and identify when
the person of interest is speaking, when trained on their voice
previously.

Audio from a natural social interaction was recorded with
the initial intention to test how well models trained on clean
data would perform with noisy data. The confusion matri-
ces resulting from that experiment can be seen in Appendix 8
Figure 12. There was confusion between all classes, indicat-
ing that models trained on clean data were not generalizable
to noisier audio. Looking at Figure 4, the audio classes are al-
ready very far separated from each other with the first 2 PCA
components, so it’s possible that the decision boundaries were
underfitted for noisier audio. However, when trained on noisy
audio, classification of clean audio was relatively accurate,
demonstrating its generalizability in the other direction, in-
dicating that training on noisy audio allows for more refined
classification boundaries between the audio classes.

Using audio data alone for multiactivity analysis has lim-
itations on its own. Without video data, it won’t be possible
to pick up details such as gestures, exchanges of gaze, and
facial expressions, which are vital components that go into
social interactions. These extra contexts will unfortunately
not be present when only dealing with audio data, and the
captured information is limited for further in-depth analysis.

This study has not investigated the performance of this
activity recognition method with longer recordings of so-
cial activity, focusing instead on classifying individual audio
clips. Additionally, the audio samples for speaking and drink-
ing were collected from the same individual. Therefore, the
method’s viability still needs to be rigorously tested with di-
verse audio sources and dynamic real-life social settings to
determine the generalizability of the results.

7 Future Work
This study has provided some insight into the classification of
drinking and speaking events using audio data from clean and
simulated noisy environments. Several suggestions for future
research directions are outlined below:

As it became harder to distinguish drinking events in nois-
ier environments, data from inertial sensors could be used
in addition with audio data to detect drinking events more
accurately. The microcontroller board used in this paper is
equipped with such sensors, and as it is already placed on the
drinking glass for audio recording, the same setup could be
used to pick up motions of the glass as well. Several studies
have investigated and achieved promising results using iner-
tial sensors in a smart cup to detect drinking activity and other
actions [6, 8, 10].

This study was not able to explore the performance of con-
tinuous activity recognition over longer audio recordings. Fu-
ture research can further verify the feasibility of this method
of activity recognition using metrics such as the one proposed
by Ward et al. [22], examining its stability and reliability over
longer periods of time.

8 Conclusion
This paper investigated the feasibility of using audio data to
identify drinking and speaking events for multiactivity anal-
ysis. Three types of audio data were collected: speaking,
drinking, and ambient noise. This was done through placing
a microphone on a drinking glass to capture both swallowing
sounds and speech of the drinking person. Various experi-
ments show that when dealing with clean audio, using the
first 6 MFCCs along with a sample length between 2 and 8
seconds yielded the best classification performance with lin-
ear classifiers, having 100% accuracy. However, when noises
are introduced artificially to simulate different social environ-
ments, classification accuracy decreased by different amounts
between 20% to 45% depending on the type of noise and
training sample length. Future research can aim to improve
accuracy by using inertial sensors in addition to audio data
to distinguish drinking events from background noise, which
was the primary source of confusion. The results obtained in
this study have yet to be reproduced in more realistic social
settings, but preliminary findings are promising and justify
further investigation.
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Appendix A

Figure 11: Weighted average precision, recall, and F1 scores with
different sample lengths, trained using the first 20 components

derived from a PCA.

Figure 12: Confusion matrices for classifying noisy data using
clean data with training sample length of 1 second. (S) Speaking

(D) Drinking (A) Ambience.
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