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Abstract- Lyapunov’s 2nd method can be formulated as a convex optimization problem by means of Sum-
of-Squares (SOS) optimization. This gives a powerful tool for robust stability analysis of nonlinear systems.
The use of SOS optimization is limited to small dynamical systems, because of the demanding numerical
complexity underlying SOS optimization. For systems where scaling of SOS is a concern, diagonally domi-
nant SOS (DSOS) is a possible alternative. DSOS approximates the SOS problem from within and results in a
less complex optimization problem. The shortcoming of DSOS, however, is conservatism within the robust
stability analysis, entailed by the approximation.

In this thesis, we consider the problem of conservatism in robust stability analysis due to the application
of DSOS. We propose new DSOS-based formulations which aim to reduce conservatism in robust stability
analysis. Furthermore, we show how to formulate optimization problems which don’t require an initial Ly-
apunov function candidate, and stabilize the numerical solutions of the DSOS problems. The main tool we
leverage in this study is the Positivstellensatz in combination with DSOS.

We demonstrate the proposed formulations on three numerical experiments. We estimate the region
of attraction of the van der Pol oscillator, investigate stability of an uncertain nonlinear system and proof
stability of a nonlinear system, which is documented to suffer from numerical issues when approached with
SOS methods. The results show a reduction in conservatism and improvement in numerical robustness when
compared to the DSOS formulation found in literature.
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1
INTRODUCTION

Stability of dynamical systems is a key property in engineering and control. The capability of analyzing sta-
bility is of fundamental interest. As we will see in chapter 2, stability can be testified with the aid of Lyapunov
functions. These functions are positive definitive and decay over time. Historically, analyzing stability of
nonlinear systems with the aid of Lyapunov’s functions was restricted due to the difficulty in finding positive
definite functions which are verified to decay.

The story changed when the search for positive (semi-)definite polynomials, was formulated as a convex
optimization problem by means of Sum-of-Squares polynomials (SOS) [1]. Consequently, using Lyapunov
functions for automated stability analysis of nonlinear systems became viable, see e.g. [2–4], and SOS-based
optimization problems established themselves as widely accepted methods in the control community. With
natural extensions for uncertain systems [5] and nonlinear control design [2], the formulations are amenable
to a vast range of problems.

However, all these problems must be small. Commonly the dynamical systems have a modest number
of states, that is, up to 5-10 states [6]. Larger problems, such as humanoid robots [6] or systems with many
uncertain parameters [7], are not within the scope of SOS techniques. What prevents SOS-based methods
to be applicable to these problems, is the high computational complexity inherent to the large optimization
problems resulting from SOS encoding. Issues due to complexity were observed in the form of exceeding
memory (RAM) capabilities [8] and numerical errors in the solutions [9], i.e. it was impossible to find Lyapu-
nov functions as the hardware limits were reached, or the found solution was actually no a valid Lyapunov
function.

The most recent attempt to reduce complexity of the optimization problem aims to move towards computa-
tionally less expensive optimization methods. The underlying optimization method in SOS is semi-definite
programming; reformulating the search of Lyapunov functions into a linear programming problem would
bring the desired reduction in complexity [9–12]. In [12] the authors formulate a linear programming prob-
lem which is an inner approximation of SOS. The inner approximation is called diagonally dominant Sum-
of-Squares polynomials (DSOS) and replaces SOS in the optimization problems. With this formulation it is
possible to scale up to systems with 50 states [6].

As is often the case with inner approximations, the use of DSOS instead of SOS brings conservatism into
the optimization problem. In the context of stability analysis, this translates to a shrinking region for which
stability can be established, or, in a worst case, inability to establish stability at all. Furthermore, with in-
creasing size of the dynamical system, the conservatism by DSOS grows [6]. This is particularly unwanted, as
DSOS is aimed to be used on large problems.

With the introduction of DSOS, the authors also introduced a layer of multipliers (r -DSOS) which can be
used to counteract the conservatism. These multipliers increase the problem’s size and act as a knob to trade
off complexity with conservatism. The increase in problem size, and thus complexity, became accessible due
to the drop of complexity associated with the switch from SOS to DSOS. Unfortunately, these multipliers may
only remove conservatism, if the Lyapunov function is a distinct polynomial expression (positive forms).

We are interested in formulating a more general way of trading off complexity with conservatism. Still, we
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2 1. INTRODUCTION

want to keep the idea of a knob which can be used to gradually scale the problem size and adjusts the com-
plexity properly. The trade off is tackled through studying the construction of the SOS-based optimization
problems.

All SOS (and DSOS after replacement) problems are in the spirit of the Positivstellensatz [13]. The Posi-
tivstellensatz is a theorem which characterizes positive (semi-)definite polynomials such as Lyapunov func-
tions. With this theorem it is possible to test if any given polynomial is also a Lyapunov function and therefore
can be used to analyze stability. The Positivstellensatz, however, is not used to search for Lyapunov functions
as it is too complex for any but the smallest problems.

Instead, the generalized S-Procedure (S-Procedure) [2] is most prominent in the field of systems and con-
trol and also used in the references above. The S-Procedure is a special case of the Positivstellensatz and
implies positive (semi-)definiteness of polynomials. As the S-Procedure is a special case, only specific solu-
tions of the Positivstellensatz are considered.

In order to reduce conservatism in stability analysis, we want to loosen the restrictions implied by the
S-Procedure and take more solutions of the Positivstellensatz into account. This exploration of the solution
space goes hand in hand with an increase in problem size and would be possible due to the drop in complexity
by the use of linear programming. In order to reduce conservatism in stability analysis, we will follow this very
direction of increasing the optimization problem’s size while applying DSOS multipliers.

1.1. CONTRIBUTION

In this thesis, we address the challenge of scaling DSOS based optimization problems in robust stability anal-
ysis. A proper scaling adjusts the problem’s complexity such that it can be solved efficiently without suffering
from numerical issues, but also bounds the effect of conservatism. We study theory in literature to point out
gaps between existing optimization problems for polynomial Lyapunov functions.

The available literature does not consider the void in existing formulations between the Positivstellensatz
and the S-Procedure. This void was inaccessible due to the complexity issues involved with SOS, but may
be spanned by the use of DSOS instead. We are interested in doing so, and finding relaxations which are
applicable to large problems but do not lose their usability due to prohibitive conservatism. We return to the
Positivstellensatz and show ways to formulate relaxations of it which lie within the gap.

Furthermore, we use the knowledge and reasoning attained to connect the optimization problems of the
Handelman representation [9] to the Positivstellensatz. This makes it possible to merge DSOS-based methods
and the Handelman representation.

With the K -S-Procedure we present a novel relaxation which bridges the Positivstellensatz and the S-Proce-
dure. This relaxation covers a set of optimization formulations, including the S-Procedure, and allows easy
switching between these formulations. The K -S-Procedure makes use of a novel parameter K which gives a
knob to trade off complexity with conservatism.

We take advantage of the linear optimization properties of DSOS and combine it with the Handelman
representation. We attain a new relaxation, which, in general, is less complex than the S-Procedure but
more powerful than the Handelman representation. This characterization is an alternative for those prob-
lems where DSOS-based formulation of the S-Procedure was out of the scope of computational power, or the
Handelman representation is infeasible.

We experienced literature to be insufficient when it came to explicit numerical implementation details as well
as attaching interpretation to the applied optimization techniques. Throughout this thesis we convey a rich
picture of the possibilities offered by the Positivstellensatz. We believe this detailed understanding has many
positive side effects and delivers solutions to the hands-on challenges one encounters in stability analysis
with (D)SOS methods.

We extend the traditional DSOS optimization problem with techniques from linear programming which
reduce the occurrence of numerical errors. With the insight we obtained by the Positivstellensatz, we are able
to interpret the extension and verify its correctness. This interpretation also applies to the techniques found
in literature which also aim to reduce numerical errors.

Furthermore, we show how the idea of the Positivstellensatz can be used to derive more elegant formu-
lations to problems in stability analysis than those found in literature. These elegant, yet more abstract,
formulations allow to increase the level of automation in stability analysis.



1.1. CONTRIBUTION 3

Our findings are supported by results from software experiments. We show an estimate for the region of at-
traction of the van der Pol oscillator, a non-linear uncertain system in one state and one uncertain parameter,
and a planar dynamical system which was shown to suffer from numerical issues for SOS-based optimization
problems. The results demonstrate the advantage we gain by the new scaling possibilities in the form of the
novel relaxations. Additionally, the experiments illustrate how the implementation and optimization tech-
niques are to be applied properly.



2
DYNAMICAL SYSTEMS AND THE NOTION OF

LYAPUNOV STABILITY

Aim of this chapter is to introduce and clarify the notation which we use for dynamical systems and stability.
The notation is standard and adopted from prominent literature in the field of nonlinear dynamics.

2.1. DYNAMICAL SYSTEMS
In this section we show the dynamical systems whose stability we study in this thesis. The systems develop
continuously in time and are modelled as

ẏ(t ) = f(y(t ),w(t )), (2.1)

where the vector y(t ) carries all information to describe the states of the modelled system at any instant t in
time, and w(t ) is a vector of time varying parameters. The state vector lives in the state space Y ⊆ Rp , and
the parameter vector lives in the bounded parameter space W ⊆ Ro . The mapping f : Rp ×Ro → Rp describes
the change of states in time. We restrict ourselves to systems with polynomial mapping f. This restriction
is necessary to apply the optimization methods which we discuss in this thesis. For the same reason we
require the boundaries (if they exist) of the sets Y and W to be expressed in polynomial form. Furthermore,
this restriction bears many favorable properties, as polynomial systems are continuous, smooth, and their
dynamics are easily accessible for computation. To keep the notation concise, we drop the implicit time
dependency in the dynamics unless we want to emphasize a distinct point in time. We write the dynamics as

ẏ = f(y,w).

In many fields, the natural dynamics of a system are trigonometric or exponential functions and thus
non-polynomial. Polynomial dynamics can be obtained by coordinate transformation or taylor series expan-
sion. A special case of taylor expansion is linearization. Usually, we are only interested in the dynamics of
the linearized system around a fixed y∗ and leave the parameters w to be subject to change or uncertainty.
The dynamics of nonlinear systems can be linearly approximated around a given point y∗. The linearized
uncertain system can then be written as

ẏlin = ∂f(y,w)

∂y

∣∣∣∣
y=y∗

ylin = A(w)ylin, (2.2)

where ylin = y−y∗ are new coordinates with their origin at y∗. The linearized dynamics reassemble the non-
linear system in a region close to y∗ and so give local information about the nonlinear system. Thus, we can
study stability of nonlinear systems in a local fashion by studying stability of linear systems.

EXAMPLE UNCERTAIN SYSTEM

We want to introduce a simple nonlinear dynamical system with a single state variable and a single uncertain
parameter. We will use this system throughout this study to demonstrate the use and interpretation of the
theory which we present.

4



2.2. STABILITY OF DYNAMICAL SYSTEMS 5

Example 2.1. We consider the system

ẏ = f (y, w) = y2 −w y, (2.3)

where y is the state variable, and w is a parameter lying between a lower bound wl = 0.5 and an upper bound
wu = 1. With those bounds we can define the parameter space as W := {

w
∣∣(w ≥ 0.5)∩ (1 ≥ w)

}
.

We can approximate these dynamics in small region around a given point y∗ by linearizing the nonlinear
dynamics. Around the origin y∗ = 0, the dynamics above are given by

ẏlin = ∂ f (y, w)

∂y

∣∣∣∣
y=y∗

ylin = w ylin,

where ylin = y − y∗ are the coordinates of the linear system which are transformed by linearization.

2.2. STABILITY OF DYNAMICAL SYSTEMS
In this section we discuss stability as a property of dynamical systems. The dynamics in (2.1) only describe
the change at a single point in time. However, when analyzing stability it is necessary to investigate how a
dynamical system evolves as time passes on to infinity.

We begin this section by defining stability in the sense of Lyapunov, which is a mathematically rigor-
ous formulation of stability. In the second part of this section we present Lyapunov’s second method. This
method gives a sufficient condition for stability of dynamical systems.

NOTION OF STABILITY

Before we study stability of dynamical systems, we need to introduce the concept of equilibrium points. The
change of a dynamical system vanishes at an equilibrium point, i.e. any real root to the equation f (y,w) = 0
is an equilibrium point of the dynamical system (2.1). This particular property describes that if the system’s
states are at an equilibrium point, the system will remain in this state for all time. Equilibrium points can be
distinguished by their stability; they can be stable, asymptotically stable or unstable. Without loss of general-
ity, the origin is used to state conditions for stability. 1

In the notation of Lyapunov stability [14, Theorem 3.1], the origin is stable if, trajectories starting in a
bounded region around a equilibrium point stay withing the bounded region, and otherwise unstable. Fur-
thermore, the origin is asymptotically stable, if trajectories starting in a bounded region around it converge
towards the origin.

We name the bounded region which is not left by stable trajectories region of stability. From the definition
above we can derive that asymptotic stability is a special and stronger case of stability. Every asymptotically
stable system is also stable. Asymptotic stability describes attraction of trajectories towards the origin. There-
fore, we call the bounded region in which trajectories are attracted towards the origin region of attraction.

Example 2.2. The system given in example 2.1 with dynamics ẏ = y2 − w y has two equilibrium points. By
rewriting the dynamics into ẏ = y(y −w) and equating y(y −w) = 0 we can read off their locations. The first
equilibrium point is located in the origin and the second one is parameter dependent and located at y = w.

We can use the commonly used concept of flow on the line [15, Chapter 2], we can infer that the region of
attraction of the origin is y < 0.5. Using the same concept, we find the second equilibrium point to be unstable.

2.2.1. LYAPUNOV ’S SECOND METHOD
We are interested in the behavior of a system as time passes by to infinity. Ideally, we would solve the gov-
erning differential equation (2.1) in order to find a solution y(t ) = fsol(t ), and read off the value of y(t ) as time
approaches infinity t →∞. Unfortunately, for many systems encountered both in science and practice, we
do not have ways to solve these systems in an analytic and exact fashion; we are left with their governing
differential equation. In this subsection we introduce Lyapunov’s second method. This method allows us to
investigate stability of dynamical system with only their differential equation at hand.

Lyapunov’s second method is based on convergence of a so-called Lyapunov function toward a minimum
located in the origin. The definition of a Lyapunov functions reads as:

1If the required equilibrium point is not the origin, a simple coordinate change can be used to shift the origin to the equilibrium point.



6 2. DYNAMICAL SYSTEMS AND THE NOTION OF LYAPUNOV STABILITY

Definition 2.1. [14, Chapter 3]2 For a region N ⊆ Rp and N containing the origin, a continuously differen-
tiable scalar function V : N →R is a Lyapunov function candidate, if

V (y) > 0, ∀y 6= 0

V (0) = 0.
(2.4)

The candidate is an actual Lyapunov function, if it is a Lyapunov function candidate and its negated time
derivative is positive semi-definite (PSD)

− ∂V (y)

∂y
ẏ ≥ 0. (2.5)

The dynamics of ẏ = f(y,w) are given by the dynamical system (2.1), and the time derivative of the Lyapunov
thus becomes a function in states y and parameters w [16]

− ∂V (y)

∂y
ẏ =−V̇ (y,w) ≥ 0, ∀y ∈N ,∀w ∈W . (2.6)

The definition above can be used to establish a sufficient conditions for stability and asymptotic stability.

Theorem 2.1. [17, Theorem 2.2], [16] The origin of the dynamical system (2.1) is

– stable over N , if there exist a Lyapunov function candidate V (y) such that

−V̇ (y,w) ≥ 0, ∀y ∈N ,∀w ∈W (2.7)

– asymptotically stable over N , if there exist a Lyapunov function candidate V (y) such that

−V̇ (y,w) > 0, ∀y ∈N \{0},∀w ∈W

V̇ (0) = 0.
(2.8)

If we can find a Lyapunov function for the domain N ∩W , then all trajectories starting within N stay within
N for all time.

Lyapunov’s second method is a sufficient but not necessary prove for stability. It can only prove stability
but not prove instability [14, Page 106]. This very weakness of Lyapunov’s second method inherits the crux in
applying this method: To prove stability of a dynamical system with Lyapunov’s second method, a Lyapunov
function is needed. Though a whole set of functions, namely PSD functions, fulfill condition (2.4), it is tricky
to find a function which fulfills conditions (2.5).

Lyapunov functions can be obtained by energy reasoning, or by rules of thumb. For many systems these
approaches are not suitable, as they might represent systems for which no such concept as energy exists,
or since an unknown quantity of energy is fed into the system. Although there is a lack of formulation to
obtain Lyapunov functions in closed form, a variation of algorithmic approaches in the form of optimization
routines do exist [18],[19],[12],[10]. The first two are standard procedures in control and engineering. We will
review them in 3 and B.1.1, and discuss the latter two in 4.

Example 2.3. We have seen that the system in example 2.1 with dynamics ẏ = y2 −w y and 0.5 ≤ w ≤ 1 has an
asymptotically stable equilibrium point. Now, we want to investigate the region of attraction using Lyapunov’s
second method. We take the Lyapunov function candidate V (y) = 1

2 y2. Its derivative along the trajectories of
the dynamical system is V̇ (y, w) = y3 −w y2.

We rewrite the derivative into −V̇ (y, w) = y2(w − y). From this form we can derive, that −V̇ (y, w) is positive
definite (PD) for all

{
y
∣∣w − y ≥ 0

}
. With the lower bound wl = 0.5, we find that the candidate V (y) = 1

2 y2 is a
valid Lyapunov function on the region N = {

y
∣∣y < 0.5

}
for all admissible w.

In the example above we constructed N such that it fits the region of attraction exactly. We have this
insight from the analytical studies we operated on this small system. For larger and more complex system
this is not possible anymore. In general, we estimate the true region of stability/ attraction by expanding the
volume of N via scaling. Typically, spheres, box intervals, or sublevel sets of V (y) are chosen to define N . We
show this approach in 6.1.2.

For now, we will use the appropriate wording of region of attraction or region of stability without further
discussion. At the end of section 6.2.2, we will clarify how the individual problems of estimating these two
region are addressed.

2This definition is not provided in the reference, but the use of the wording candidate is displayed.
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STABILITY ANALYSIS OF LINEAR SYSTEMS

The Lyapunov function of a linearized system can be used as a candidate for the nonlinear system. In this
subsection, we show how Lyapunov functions can be obtained analytically for linear systems.

Though little is known about the coupling between dynamics of a system and structure of a suitable Lya-
punov function, one of the few results in this direction concerns Lyapunov functions for asymptotically stable
linear systems. The existence of a quadratic Lyapunov function is guaranteed for those systems [20]. We know
that this quadratic function and its derivative need to vanish in the origin; hence, no constant and linear terms
appear in the quadratic function. This allows us to construct a homogeneous quadratic Lyapunov function
V (y) = 1/2yT Py. After some algebra, the time derivative V̇ (y) along the trajectories of the linear system ẏ = Ay
is given by V̇ (y) = yT

(
PA+AT P

)
y. The matrix variable P is a n-by-n symmetric positive definite matrix. By

Lyapunov’s second method, we require V (y) > 0, ∀y 6= 0 and V (0) = 0, and −V̇ (y) > 0, ∀y 6= 0 and −V̇ (0) = 0.
A way to solve for a P which fulfills both conditions is to pick an arbitrary symmetric positive definite

matrix Q and equate yT Qy =−V̇ (y), which gives us the famous Lyapunov inequality [21, chapter 1]

Q =−(
PA+AT P

)
. (2.9)

In a last step, we check for positive definiteness of the obtained P. If this check is positive, we fulfill both
requirements of Lyapunov’s second method and therefore proved asymptotic stability of the linear system. If
the test is negative, we may pick a new Q and proceed as before. The Lyapunov inequality can also be used
for uncertain linear systems affine in the uncertainty [22].

Stability of linear system is fundamentally different to stability of nonlinear system. The region of stabili-
ty/attraction of nonlinear systems may be bounded, whereas it spans the whole state space for stable linear
systems. Therefore, if we determine stability of the origin for a linear system, we immediately yield infor-
mation of the global stability. For this reason, we talk of global stability in the context of linear systems, and
more importantly, we talk of local stability in the context of nonlinear systems. This is also displayed in the
definition of the Lyapunov function in (2.1). We only require a Lyapunov candidate and its derivative to be
defined on the set N .



3
SUMS-OF-SQUARES PROGRAMMING AND

THE SEARCH FOR LYAPUNOV FUNCTIONS

We want to apply optimization based techniques to analyze stability of large dynamical systems. As we have
seen in the recent chapter, stability of dynamical systems can be verified by finding a suitable Lyapunov func-
tion. In this chapter we will show, how optimization can be used to search for these functions.

Polynomial Lyapunov functions are positive definite (PD) polynomials with positive semi-definite (PSD)
derivative. As shown in the previous chapter, we can construct candidates, which is PD, by the means of
solving Lyapunov inequalities. The problem which remains is to prove PSDness of the derivative. Depending
of the context, we will talk of the derivative or of PSD polynomials. For our purpose, the words are mostly
exchangeable.

In many fields concerning PSD polynomial, formulations based on sum-of-squares polynomials (SOS)
are well established. The search for PSD polynomials can be cast as an optimization problem with the aid
of SOS. The optimization method underlying SOS is semi-definite programming (SDP), a subfield of convex
programming. The poor scaling of SDP, it the major restriction in using SOS for large problems. For this
reason we are interested in problem formulations which result in linear programming (LP) problems, which
are more easily scalable to large problems.

We will discuss these linear approaches in the next chapter; however, we will first discuss SOS-based op-
timization methods. We do so, as the formulation of the SOS problems is more intuitive and incorporates the
linear formulations as special cases.

In this chapter we will introduce sum-of-squares polynomials. These polynomials are PSD due to their con-
struction and therefore could serve as Lyapunov functions on their own. Their main appearance, however,
is as multipliers in the Positivstellensatz. This chapter’s main ambition is to convey a detailed picture of the
Positivstellensatz. We will study this theorem. A proper understanding of the underlying structure will allow
us to modify the Positivstellensatz in order to make it more applicable to large scale problems. We will treat
the Positivstellensatz as a tool, thus we are interested in its construction and how we can make use of it, but
we will not follow it’s proof.

We begin this chapter by parameterizing SOS and present an SDP to test if a given polynomial is an SOS.
The SDP formulation of SOS is used in the Positivstellensatz and allows to establish PSDness of polynomials.
In the final section, we present the generalized S -Procedure, a version of the Positivstellensatz. This compu-
tationally less demanding formulation is the most widely used SOS-based optimization problem.

NOTATION OF POLYNOMIALS

The optimization techniques shown in this study are amenable to real polynomials. Before we start our jour-
ney on SOS, we want to clarify the basic notation of polynomials used throughout this thesis. Polynomials are
build out of monomials. A monomial is the product of variables x ∈Rn raised to the power of positive integers
{α j }n

j=1 ∈Zn , i.e.

m(x) = xα1
1 xα2

2 . . . xαn
n . (3.1)

8
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Given a set of monomials {mi (x)}m
i=1 and a set of real scalars {ci }m

i=1 ∈ R, a real polynomial p(x) is con-
structed as

p(x) =
m∑

i=1
ci mi (x). (3.2)

We define the set of real polynomials in n variables as Rn , and real polynomials which are PSD as Pn .
Furthermore, we define the subsets of polynomials and PSD polynomials with maximum degree d as Rn,d

and Pn,d , respectively. If it is unambiguous to do so, we drop the subscript for n and d . A comprehensive and
more formal definition of this notation is given in A.

3.1. SUM-OF-SQUARES POLYNOMIALS
In this section we introduce sum-of-square polynomials. These polynomials are the base for many optimiza-
tion techniques in stability analysis of nonlinear dynamical systems. We will use them heaviliy as multipliers
in the Positivstellensatz.

As we have seen, we are guaranteed to find quadratic Lyapunov functions for asymptotically stable linear
systems. In this particular case, we encoded the PDness of the Lyapunov function and its derivative by con-
structing quadratic functions. But how does this construction translates to the more general nonlinear sys-
tems? Intuition tells us that we are in the need of more complex Lyapunov function, if our nonlinear system’s
dynamics are more complex than those of linear systems. To account for the more complex dynamics en-
countered in nonlinear systems, we want to express PSDness of polynomials in a more general fashion.

We can encode PSDness of polynomials by the means of sum-of-squares polynomials. These polynomi-
als’ name results from their construction as they can be expresses as a sum of squared polynomials. A PSD
polynomial p(x) is a SOS, if there exist a finite set of polynomials {ai (x)}m

i=1 such that p(x) can be constructed
as a sum of squared elements ai (x). We define the set of SOS as in [2]:

Definition 3.1.

SOSn :=
{

p(x) ∈P
∣∣∣∃m ∈Z+, ∃{ai (x)}m

i=1 ∈R suchthat p(x) =
m∑

i=1
s2

i (x)
}

, (3.3)

with x ∈X ⊆Rn and define SOS in n variables and a maximum degree d as SOSn,d .

The information carried in the variable x depends on the polynomial. For example, a Lyapunov function
candidate V (y) depends on the states solely and so x represents the state variables, and −V̇ (y,w) depends on
both states and parameters and thus x represents both states and parameters.

With SOS we study a set of polynomials which are PSD. Unfortunately, not all polynomials of P are de-
composable into SOS. A famous example of those polynomials which are PSD but not SOS is the Motzkin
polynomial

M(x1, x2, x3) = x4
1 x2

2 +x2
1 x4

2 +x6
3 −3x2

1 x2
2 x2

3 .

This polynomial is not a SOS but shown to be non-negative [23]. We conclude that for the case of polynomials
in three variables and degree 6, the set of SOS polynomials SOS3,6 is a subset of PSD polynomials P3,6, i.e.
SOS3,6 ⊂ P3,6. It turns out that for all cases n ≥ 3 and d ≥ 6, and n ≥ 4 and d ≥ 4, the set of SOS is a subset
of PSD polynomials [24]. For our purpose of finding a Lyapunov function this could be fatal as we might
actually present a suitable Lyapunov function but can’t prove its PSDness as it is no a SOS. Still, we can solve
this problem as an optimization problem with the aid of SOS. We discuss this solution in the next section.

PARAMETRIZATION OF SOS
Our problem of finding a Lyapunov function can be solved in two stages. We construct a Lyapunov function
candidate and in a second step we need to verify PSDness of its negated derivative. With the definition (3.1),
we can easily construct a SOS; the second step, however, requires us to test if a given polynomial is a SOS. This
translates to the question, if a given polynomial can be decomposed into a SOS. In order to understand if a
polynomial can be decomposed and thus is PSD, we need to parametrize the set of SOS.

Since SOS are always of even degree we only parametrize the set SOSn,2d for fixed n,d ∈ Z+. As it was
shown in [25] a polynomial p(x) ∈Rn,2d is also an element of SOSn,2d , if and only if there exists a symmetric
Q º 0 such that
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p(x) = zn,d (x)T Qzn,d (x), (3.4)

where Q is the so-called Gram matrix. The vector zn,d (x) contains all monomials in n variables and maximum
degree d . For example, with n = 2, d = 2

z2,2(x) =



1
x1

x2

x2
1

x1x2

x2
2

 .

3.1.1. AN LMI TEST FOR SOS
The problem of finding a symmetric Q º 0 can be cast as a linear matrix inequality (LMI), which is a special
case of semi-definte programming (SDP). With the help of this convex optimization method, we are guar-
anteed to find a solutions to condition 3.4, if it exists. We express the optimization problem, associated to
finding a SOS decomposition to p(x) as:

p(x) ∈ SOS, (3.5)

and refer to it as an SOS optimization problem or SOS program.
In B, we provide a complete derivation of the LMI formuation for SOS problems as well as a brief overview

of SDP. A natural usage of this framework is to answer the problem: given a finite set {pi (x)}m
i=0 ∈ Rn , does

there exists aλ ∈Rm such that:

p0(x)+
m∑

i=1
λi pi (x) ∈ SOS (3.6)

Since the polynomial created is affine in the multiplierλ the problem above is an LMI [19]. This neat descrip-
tion will play a central role to incorporate constraints into the optimization procedure, which is shown in the
proceeding section.

At the hand of this problem, we can also distinguish two types of variables in our problem. We are only
interested in searching for the decision variablesλ, and do not solve for the variable x. The types of variables,
which are not subject to operations (such as optimization) are called indeterminates.

Before closing the section on SOS programming, we want to address some concerns regarding the size
of the optimization problem. From its parametrization, we know that zn,d (x) is of size

(n+d
d

)
. For fixed n or

d the size of zn,d (x) grows polynomial, therefore, the number of bases to construct the Gram Matrix scales
in a polynomial fashion as well [19]. Though we stated polynomial growth of the optimization problem, we
need to admit that it grows rapidly. Take for example a polynomial in 4 variables. Whereas for degree d = 2
the number of decision variables to parametrize a polynomial in SOS4,2 is 120, it already grows to 2485 if we
increase the degree to 4 i.e. testing a function to be an element of SOS4,4.

3.2. THE POSITIVSTELLENSATZ
In this section we discuss the Positivstellensatz. This theorem provides a necessary and sufficient characteri-
zation of PSD polynomials, such as Lyapunov functions. This theorem builds the basis for those optimization
formulations which we derive in 5.

With SOS we studied a set of polynomials which are PSD. Importantly for us, testing if a polynomial is a SOS
results in an LMI and so it can be checked automatically. We might encounter polynomials which are PSD
but not SOS and therefore we can not detect them as PSD polynomials. This gap is unpleasant as we would
discard a function that could serve as a Lyapunov function. This is a first incentive to look for something
better than SOS polynomials, whereas better means a tighter fit on the description of PSD polynomials.

A second incentive rises due to the global PSDness of SOS polynomials. We formulated the definition for
Lyapunov functions 2.1 such that the PSD condition on the derivative is only of interested on the bounded
domain N ∩W . We did so to emphasize the difference between linear and nonlinear dynamical systems. As
explained in 2.2.1, stability of nonlinear systems may be a local property. In order to establish stability in a
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local sense only, we just require −V̇ (x) to be PSD on a bounded domain. In conclusion, we may also consider
polynomials as Lyapunov functions which are only PSD on a constrained domain. As shown in figure 3.1,
there exist more functions which are PSD on a bounded region than functions which are globally PSD. As SOS
are globally PSD, they do not cover all possible polynomials which are of interest for our search of Lyapunov
functions.

A complete characterization of PSD polynomials is the Positivstellensatz [13]. This theorem characterizes
positive (semi-)definite polynomials

(
P(S)D

)
1 over a (constrained) domain. For example, it can prove PSD-

ness of −V̇ (x) on N ∩W without irritation due to the sign of −V̇ (x) outside of N ∩W . We explicitly want to
point out why constrained is optional in the previous statement. The domain in the Positivstellensatz may be
arbitrarily described by real polynomials. This means that also an unconstrained domain meats this require-
ment. This closes the loop to our first incentive, as we can use the Positivstellensatz to characterize all PSD
polynomials, such as the Motzkin polynomial.

a1

0

x

f 1
(x

)

Figure 3.1: Non-globally PSD function. PSD functions are a subset of functions which are non-negative on a
constrained interval only. The function f1(x) is negative on the domain x < a1 but PSD on the domain x ≥ a1.

The Positivstellensatz is a theorem from real semi-algebraic geometry, and its formulation requires the use
of algebraic structures and ways to generate subsets of these. Fortunately, there exists a naive, but intu-
itive, way of interpreting the results by the Positivstellensatz. We will first display the final formulation of
the Positivstellensatz, attach meaning and interpretation to it, and eventually show how this formulation was
constructed. Before we start, we want to demystify the term real semi-algebraic geometry. The word algebraic
simply means that we want to solve a set of polynomial equation {h(x) = 0}n

j=1. The prefix semi implies that

inequalities of the form { f (x) ≥ 0}m
i=1 and {g (x) 6= 0}o

l=1 appear as well. (Actually semi is defined to consist out
of strict inequalities, but no not-equal-to equations. These definitions can be transformed into each other,
as a strict inequality is the disjunction of a non-strict inequality and an equality [26].) The meaning of real is
straight forward and says that all coefficients of fi (x), h j (x) and gl (x) are real. More interesting is the appear-
ance of geometry in this context. This branch of mathematics concerns domains and therefore solutions of
real semi-algebraic sets as manifolds. For example, the solution of the equation x2

1 + x2
2 −1 = 0 is known to

be a circle. This geometric interpretation is close to the way how optimization problems are categorized and
interpreted. So it is not too surprising that there are strong links between the fields of convex optimization
and real semi-algebraic geometry.

After placing the Positivstellensatz in its mathematical environment, we turn towards its application. We
can use the Positivstellensatz to prove P(S)Dness of a given polynomial over a constrained domain. This
utility is exactly what we are looking for in order to test if −V̇ (y,w) ≥ 0 over a domain constrained by N ∩W .

For example, using the Positivstellensatz for stability analysis of a certain system, with W = {}
and N :={

y
∣∣ρ ≥V (y)

}
, results in the SOS programming problem

1We use this notation to indicate that both cases, these are positive semi-definiteness and positive definiteness, may occur individually.
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∃ s1(x), s2(x), s3(x)

subject to − (
s1(x)+ s3(x)(ρ−V (x))

)
V̇ (x)− (

s2(x)(ρ−V (x))+ V̇ (x)2) ∈ SOS

s1(x), s2(x), s3(x) ∈ SOS,

(3.7)

where x represents the state variable y. This feasibility optimization problem reads as, if there exist SOS
multipliers s1(x), s2(x) and s3(x) such that −(

s1(x)+ s3(x)(ρ−V (x))
)

V̇ (x)− (
s2(x)(ρ−V (x))+ V̇ (x)2

)
is also a

SOS, then −V̇ (x) is certified to be PSD on the domain
{

x
∣∣ρ−V (x) ≥ 0

}
. The existence of the multipliers s1(x)

and s2(x) can be cast as a SOS program. We can interpret this problem in an arithmetic fashion. The multiplier
si (x) are PSD and therefore the term

(
s1(x)+ s3(x)(ρ−V (x))

)
is PSD as well and does not change the sign of

the product
(
s1(x)+ s3(x)(ρ−V (x))

)(−V̇ (x)
)
. The term (s2(x)(ρ−V (x)) + V̇ (x)2) is P(S)D by construction. If we

subtract this P(S)D term from
(
s1(x)+ s3(x)(ρ−V (x))

)(−V̇ (x)
)
, and the difference is a SOS, then −V̇ (x) needs

to be P(S)D.
The problem we presented above is an example for the case of testifying PSDness of −V̇ (x) over the sub-

level sets of V (x). However, in most cases we have more information about the domain of −V̇ (x). We will
consider V (x) to be parameter independent, and thus (ρ−V (x)) ≥ 0 only provides a constrain on the state
space but not on the parameters appearing in −V̇ (x). In 2.1, we have stated that we will consider uncertain
systems for which the uncertain parameters are constrained by a set of polynomial inequalities. The Posi-
tivstellensatz incorporates those constraints on the parameters in the same fashion as the constrain on the
state space. Furthermore, it also allows to test PSDness on a domain constrained by equalities, e.g. if we know
that our system travels on a circle in space.

From here on we want to consider the more general case of proving PSDness of a given polynomial p(x)
over a constrained semi-algebraic set

fi (x) ≥ 0, ∀i = 1, . . . ,m

h j (x) = 0, ∀ j = 1, . . . ,n.
(3.8)

Hence, we want to show that p(x) ≥ 0 for all
{

x
}

which fulfill the constraints
{

fi (x) ≥ 0
}m

i=1 and
{
h j (x) = 0

}n
j=1.

First however, we rename p(x) = f0(x). This does not only ease notation but also reflects that PSDness of
p(x) is a regular inequality. Before we state the Positivstellensatz in its common form we will provide an
examples. At the hand of this example we are able to conveying a very intuitive idea of the Positivstellensatz
and definitions required to express it.

Example 3.1. We take an element f (x) ∈ {
fi (x) ≥ 0

}m
i=0 and an element h(x) ∈ {

h j (x) = 0
}n

j=0 and add those
together. Easily, we can observe that

f (x)+h(x) ≥ 0

is true for all possible combinations of f (x) and h(x) on the constrained domain. Furthermore, we could pick
an element h(x) and multiply it with any polynomial and still the inequality above holds. Also the element f (x)
can be manipulated and still ensure PSD of the inequality, e.g. multiplying f (x) with a second element out of{

fi (x)
}m

i=0. It is even possible to include non-zero conditions

gk (x) 6= 0, ∀k = 1, . . . , l

by adding products of g (x) ∈ {
gk (x) 6= 0

}l
k=0 with even degree, e.g. g (x)2:

f (x)+ g (x)2 +h(x) > 0. (3.9)

Still, we can easily see that the inequality is true on the constrained domain.

Indeed, equation (3.9) is a form of the Positivstellensatz. However, the definitions for f (x), g (x) and h(x) are
incomplete. We will introduce the definitions of a multiplicative monoid, a cone and an ideal, present prop-
erties of those and use them as set descriptions for f (x), g (x) and h(x).
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Definition 3.2. Given a set of polynomials
{
hi (x)

}n
i=1, the ideal I is a subset of R and created by the elements

hi (x):

I (h1(x), . . . ,hn(x)) :=
{ n∑

j+1
h j (x)p j (x)|p j (x) ∈Rn

}
(3.10)

with the ideal of an empty set I (φ) := 0. The following properties hold [1]: 1) if a,b ∈I , then a +b ∈I and 2)
if a ∈I and b ∈R, then ab ∈I .

For example: I (h1(x),h2(x)) = h1(x)p1(x)+h2(x)p2(x) = 0 with p1(x), p2(x) ∈Rn . As we can see, the definition
of an ideal is more formal though identical to our train of thoughts when investigating which action we can
do on h(x) and still observing that (3.9) holds.

Definition 3.3. Given a set of polynomials in
{

gk (x)
}l

k=1, the multiplicative monoid M generated by the ele-
ments gk (x) is

M (g1(x), . . . , gl (x)) :=
{

g1(x)k1 g2(x)k2 . . . gl (x)kl |k1,k2, . . . ,kl ∈Z+
}

(3.11)

with the multiplicative monoid of an empty set M (φ) := 1.

For example: M (g1(x), g2(x)) = g1(x)k1 g2(x)k2 with k1,k2 ∈Z+. Hence, the multiplicative monoid is the set of
finite products of gi (x). The multiplicative monoid is used to define a cone.

Definition 3.4. Given a set of polynomials
{

fi (x)
}n

i=0, the cone C is a subset of Rn and created by the elements
fi (x)

C ( f0(x), . . . , fm(x)) :=
{

s0(x)+
2(m+1)∑

i=1
si (x)bi (x)

∣∣∣si (x) ∈ SOSn , bi (x) ∈M ( f0(x), . . . , fm(x))
}

(3.12)

with the cone of an empty set C (φ) ∈ SOS. The multiplicative monoid generates an infinite amount of elements.
Due to the fact that any f 2

i ∈ SOS, the cone can be expressed by a finite sum. Since all fi (x) ∈R and si (x) ∈ SOS,

then also si (x) fi (x)2 ∈ SOS. This allows us to write the cone as the sum of 2(m+1) terms. The following properties
hold [1]: 1) if a,b ∈C , then a +b ∈C , 2) if a,b ∈C , then ab ∈C and 3) if a ∈R, then a2 ∈C .

For example: C ( f1(x), f2(x)) = s0(x)+s1(x) f1(x)+s2(x) f2(x)+s3(x) f1(x) f2(x) with si (x) ∈ SOSn . If
{

fi (x) ≥ 0
}m

i=0,
then the cone generates a new set of inequalities which are all PSD on the constrained domain. This definition
and properties are similar but extended to those we had on manipulating f (x) in example 3.1.

Now we can use these definitions to express example 3.1 again in a more formal way. Given polynomial

constraints
{

fi (x) ≥ 0
}m

i=0,
{

gk (x) 6= 0
}l

k=1 and
{
h j (x) = 0

}n
j=1, the inequality

f (x)+ g (x)2 +h(x) > 0 (3.13)

holds for any combination of f (x) ∈C ( f0(x), . . . , fm(x)), g (x) ∈M (g1(x), . . . , gl (x)) and h(x) ∈I (h1(x), . . . ,hn(x)).

So far we assumed that all constraints are satisfied. Eventually, we encounter the case in which we do not
know if f0(x) is indeed PSD, i.e. if the properties of a Lyapunov function are fulfilled. If at least one constraint
is violated, we will find a combination of f (x), g (x) and h(x) for which the inequality (3.13) breaks, i.e.

f (x)+ g (x)2 +h(x) = 0. (3.14)

The equation above says, that there is no x which fulfills all constraints, i.e. the solution space to the con-
straints is empty. This is formulated in the following theorem.

Theorem 3.1. [27, Theorem 4.4.2] Given sets of polynomials
{

fi (x) ≥ 0
}m

i=0,
{

gk (x) 6= 0
}l

k=1 and
{
h j (x) = 0

}n
j=1,

the set x ∈Rn

∣∣∣∣∣∣∣∣
f0(x) ≥ 0, . . . , fm(x) ≥ 0

g1(x) 6= 0, . . . , gl (x) 6= 0

h1(x) = 0, . . . ,hn(x) = 0

 (3.15)
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is empty, if and only if there exist polynomials f (x) ∈ C ( f0(x), . . . , fm(x)), g (x) ∈ M (g1(x), . . . , gl (x)) and h(x) ∈
I (h1(x), . . . ,hn(x)) such that

f (x)+ g (x)2 +h(x) = 0. (3.16)

The theorem above is called Positivstellensatz refutation and is used to show non-existence of a solution to
a set of semi-algebraic polynomials. We can use this theorem to investigate PSDness of a given polynomial
over a set of constraints.

If a polynomial f0(x) is PSD over a constraint domain, the set
{

x
}

fulfilling all constraints and f0(x) ≥ 0 is
non-empty (indeed it is the same solution set as for the constraints). Therefore, the solution set for − f0(x) > 0
over the constraints is empty. We can testify emptiness of the solution set with the Positivstellensatz refutation
in theorem 3.1. With the logical equivalent − f0(x) > 0 ⇐⇒ − f0(x) ≥ 0∩− f0(x) 6= 0, we equate (3.16)

f (x)+ g (x)2 +h(x) = 0,

with f (x) ∈C (− f0(x), f1(x) . . . , fm(x)), g (x) ∈M ( f0(x), g1(x), . . . , gl (x)) and h(x) ∈I (h1(x), . . . ,hn(x)). If we find
a combination of f (x), g (x) and h(x) such that the equation holds, the solution set with − f0(x) > 0 is empty
and f0(x) is proved to be PSD. The specific elements for which this equality holds are called Positivstellensatz
certificates.

The Positivstellensatz refutation can also be used to establish PDness of a polynomial, this is of interest
if we are searching for a Lyapunov function which proves asymptotic stability. In this case we search for a
f0(x) > 0. In order to do so, we need to prove emptiness of the solution set for − f0(x) ≥ 0 and the constraints.
To keep this work concise we discard the term refutation and plainly use Positivstellensatz whenever we refer
to refutation of the Positivstellensatz.

3.2.1. AN INTERPRETATION OF THE POSITIVSTELLENSATZ
Additionally to its arithmetic interpretation, the Positivstellensatz has an interpretation which is closer to its
construction [19]. As long as we are on the equality constraints

{
h j (x) = 0

}n
j=1, within the inequality con-

straints
{

fi (x) ≥ 0
}m

i=0, and outside of
{

gk (x) 6= 0
}l

k=1, then we can not construct f (x)+ g (x)2 +h(x) = 0, where
f (x) ∈C ( f0(x), . . . , fm(x)), g (x) ∈M (g1(x), . . . , gl (x)) and h(x) ∈I (h1(x), . . . ,hn(x)).

If we can construct f (x)+ g (x)2 +h(x) = 0, we know by contradiction that our assumption that we are
within the semi-algebraic set is wrong. In conclusion, one of the constraints is violated, e.g. f0(x)� 0.

3.2.2. AN LMI TEST FOR PSD POLYNOMIALS
The power of the Positievstellensatz becomes apparent when remembering the possibility to test for SOS
decomposition in an LMI. Say, we are given a polynomial f0(x) and we want to test if it is PSD. In this case
the domain is unconstrained, and we are looking at global PSDness. Thus we want to know if the polyno-
mial f0(x) ∈ R is also an element of P , i.e. f0(x) ≥ 0, ∀x ∈ Rn . As seen, we can also ask for emptiness of{

x ∈Rn
∣∣ f0(x) < 0

}
. We state this in the Postivstellensatz format. The set{

x ∈Rn∣∣− f0(x) ≥ 0, f0(x) 6= 0
}

is empty, if and only if there exists f ∈C (− f0(x)), g ∈M ( f0(x)) such that

f (x)+ g (x)2 = 0.

Writing out f (x)+ g (x)2 = 0 gives

sΣ(x)− s0(x) f0(x)+ f0(x)2k = 0

with sΣ(x), s0(x) ∈ SOSn and k ∈Z+. Fixing k and the degree of s1(x) to be d , we can rewrite this into

∃ s1(x)

subject to s1(x) f0(x)− f0(x)2k ∈ SOSn,d̂

s1(x) ∈ SOSn,d ,

(3.17)

with d̂ = max
(
2k ·deg( f0(x),d +deg( f0(x))

)
.
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As we can see, for fixed k and d we can use equation (3.6) to solve the optimization problem. In practive, the
degree of elements of f (x), g (x) and h(x) is gradually increased until a combination of certificates is found
and (3.16) holds. Though it is not guaranteed that those certificates are found, e.g. they are of high degree
and the LMI is too computationally expensive, if they can be found, they are commonly of concise low degree
[19]. This is an important feature, as it allows practical use. Remember, the sets of f (x) and g (x) are countably
infinite large. If the certificates are of high degrees, we need to test a lot of combinations before finding them.

Next we want to show the case in which we are mostly interested, a constrained domain. To keep the
problem we showcase clearly arranged, we only look at a domain constrained by a single inequality and a
single equality. This time, we want to know if f0(x) ∈R is PSD over the domain defined by f1(x)∩h1(x). This
translates to the question of emptiness of the set

{
x ∈ Rn

∣∣ f0(x) < 0
}
. We state this in the Postivstellensatz

format. The set {
x ∈Rn∣∣− f0(x) ≥ 0, f1(x) ≥ 0, f0(x) 6= 0, h1(x) = 0

}
is empty, if and only if there exists f ∈C (− f0(x), f1(x)), g ∈M ( f0(x)) and h ∈I (h1(x)) such that

f (x)+ g (x)2 +h = 0.

Writing out f (x)+ g (x)2 +h = 0 gives

sΣ(x)− s0(x) f0(x)+ s1(x) f1(x)− s2(x) f0(x) f1(x)+ f0(x)2k +p(x)h(x) = 0

with sΣ(x), s0(x), s1(x), s2(x) ∈ SOSn , p(x) ∈ Rn and k ∈ Z+. Fixing k and the degree of s1(x) to be d , we can
rewrite the above equation into

∃ s0(x), s1(x), s2(x), p1(x)

subject to s0(x) f0(x)− s1(x) f1(x)+ s2(x) f0(x) f1(x)− f0(x)2k −p1(x)h(x) ∈ SOSn,d̂

s0(x), s1(x), s2(x) ∈ SOSn,d

p1(x) ∈Rn

(3.18)

with d̂ = max
(
2k ·deg( f0(x)),d +deg( f0(x) f1(x))

)
. The polynomial p(x) is called a free polynomial. We will

encounter these polynomials in the following section and 6.1.5. These polynomials provide us great flexibility
in yielding Lyapunov function candidates.

At this point we want to emphasize the power of the Positivstellensatz and its inherent computational
drawback [10]. As we know from the definition of the cone, we need 2m+1 SOS multiplier si (x) to describe it
completely [28]. Hence, a feasibility test with the Positivstellensatz results in 2m+1 SDP problems and grows
exponentially with m.

3.3. A GENERALIZED S-PROCEDURE FOR POLYNOMIAL FUNCTIONS
In this section we look at the generalized S-Procedure. The S-Procedure is a smaller version of the Positivstel-
lensatz. It is widely used [2–4, 8] to replace the computationally expensive Positivsellensatz for verification of
PSDness of a given polynomial. In chapter 5 we will derive a novel relaxation of the Positivstellensatz which
is based on the S-Procedure.

As an introduction we present the resulting optimization problem of the generalized S-Procedure which
is a sufficient condition for −V̇ (x) ≥ 0 over the constrained domain ρ ≥ V (x). In the S-Procedure format this
results in the SOS optimization problem

∃ s1(x)

subject to − V̇ (x)− (
s1(x)(ρ−V (x))

) ∈ SOS

s1(x) ∈ SOS.

(3.19)

The interpretation of this problem is straight forward in an arithmetic reasoning. The term
(
s1(x)(ρ−V (x))

)
is

PSD. If we subtract this PSD term from −V̇ (x) and the difference is a SOS, then −V̇ (x) needs to be PSD. We can
already observe the reduced complexity. Since we only need to find a single SOS multiplier, this is a smaller
optimization problem than the one resulting form the Positivstellensatz in 3.7 for the very same question.
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This, however, comes at the cost of conservatism. At this point we want to point out that this problem also
has an interpretation as a specific version of the Positivstellensatz.

Since we relax the computational complexity of the optimization problem, we name the S-Procedure a re-
laxation of the Positivstellensatz. Relaxation is an abstract definition and covers every approach which eases
computation.

We generalize the well known S-Procedure [21, 29] to cover non-quadratic functions. In a first instance, we
will only consider inequalities. Equality constraints are added afterwards. This is done to stay close to the
formal S-Procedure and does not violate our reasoning.

The generalized S-Procedure for polynomial functions is reminiscent of the S-Procedure from LMI tech-
niques. We are interested in the implication, when does non-negativity of one polynomial function implies
non-negativity of another, i.e. when is f1(x) ∈ P =⇒ f0(x) ∈ P true. With the same arithmetic reasoning as
for the interpretation of the Positivstellensatz we can see that if there exists a s1(x) ∈ SOS such that

f0(x)− s1(x) f1(x) ∈ SOS, ∀x, (3.20)

then f0(x) ≥ 0. This statement can be extended to hold for an arbitrary number of polynomial conditions

f0(x)−
m∑

i=1
si (x) fi (x) ∈ SOS, ∀x, (3.21)

with si (x) ∈ SOS and { fi (x) ≥ 0}m
i=1. For fixed degree this can be checked using (3.6). Reformulating this

problem into the Positivstellensatz format, is the set{
x ∈Rn

∣∣∣∣∣ − f0(x) ≥ 0, f1(x) ≥ 0, . . . , fm(x) ≥ 0

f0(x) 6= 0

}
empty? Assume we found a {si (x)}m

i=1 ∈ SOS in (3.21), then we can define q(x) := f0(x)−∑m
i=1 si (x) fi (x) ∈ SOS

[2]. Next define the two polynomial functions

f (x) :=−q(x) f0(x)−
m∑

i=1
si (x) f0(x) fi (x)

g (x) := f0(x).

(3.22)

These polynomials are constructed in such a way that f (x) is in the cone C (− f0(x), f1(x), . . . , fm(x)) and g (x)
is an element in the multiplicative monoid M ( f0(x)). Both hold as Positivstellensatz certificates. Writing out
the equality f (x)+ g (x)2 = 0 proves f0(x) to be PSD over the domain constrained by

{
fi (x)m

j=1

}
.

In a last step we add equality constraints of the form
{
h j (x) = 0

}n
j=1. As long as they are not violated,

their contribution is zero. Like in the Positivstellensatz, we can add the ideal I (h1, . . . ,hn) to equation (3.21)
and obtain the generalized S-Procedure including equality constraints. The resulting SOS problem of the
generalized S-Procedure [30] is given by

∃ {si (x)}, {p j (x)}

subject to f0(x)−
m∑

i=1
si (x) fi (x)−

n∑
j=1

p j (x)h j (x) ∈ SOS

{si }(x) ∈ SOS

{p j }(x) ∈R.

(3.23)

As we can see, using the generalized S-Procedure to prove a given polynomial f0(x) to be PSD over a set
constrained by m inequalities results in m + 1 SOS problems and scales linearly with m [10], [31]. Hence,
the optimization problem describing the generalized S-Procedure is smaller than the optimization problem
expressing the Positivstellensatz (3.17).

Another appealing feature of the generalized S-Procedure is the uncoupling of f0(x) and the multipliers
{si (x)}. Due to the uncoupling in the generalized S-Procedure, the use of f0(x) as a free polynomial is possible.
This allows to use bilinear search over multipliers and the coefficients of the Lyapunov function [8].

From here on, we will plainly use S-Procedure when we refer to the generalized S-Procedure. This is
unambiguous as we will not encounter the standard S-Procedure from LMI techniques.



4
LINEAR RELAXATIONS OF THE

POSITIVSTELLENSATZ

In this chapter, we will reduce the computational complexity of the Positivstellensatz by moving from convex
to linear programming.

We introduced a convex optimization problem of the Positivstellensatz in the last chapter. This optimiza-
tion problem can be used to testify PSDness of polynomials, and thus we can use it for stability analysis by
means of Lyapunov’s second method. The optimization problem associated to the Positivstellensatz may be
too large to solve. This is a direct consequence of the formulation of the Positivstellensatz. For a system with
m inequality constraints, 2m+1 SOS problems need to be solved. In a first attempt, complexity is reduced by
stripping away multipliers and thus decision variables of the optimization problem. This attempt gives us the
S-Procedure, which was shown to be a relaxation of the Positivstellensatz. The problems which are observed
for SOS based methods, are reported for the already relaxed S-Procedure.

In this chapter we follow a different direction of reducing the computational complexity of the optimiza-
tion problems. Instead of reducing the size of the resulting optimization problem, we change the field of
optimization. We want to replace LMIs with linear programming. LMIs are among those optimization prob-
lems which can be handles well and efficiently. Still, the LMI solvers currently available are not as matured
as those state of the art solvers for linear programming. In this chapter we aim to replace the LMI from SOS
programming with a description which can be cast as LP. For this reason, we need to find ways to reformu-
late the SOS problems, which are LMIs at heart, into LPs. This description is an amenable relaxation to the
Positivstellensatz and the S-Procedure. For readers, unfamiliar with linear programming, we present a brief
introduction to it in C.

As mentioned at the beginning of the previous chapter, the topics discussed in this chapter are closely re-
lated to SOS. We begin by looking at the first relaxation which can be cast as linear program. This relaxation
employs the so called diagonally-dominant sum-of-square polynomials (DSOS). As their name already gives
away, they are highly similar to the already known SOS polynomials, but different enough to allow an easier
computation. Preceding the introduction of DSOS, we will present the Handelman representation of polyno-
mials. This representation relaxes the convex problems by expanding the SOS multipliers into a sum (linear
problem) of functions.

The linear relaxations in this chapter are chosen from a gauntlet [9, 11, 12, 32] of linear optimization
techniques considering polynomial optimization. We focus on DSOS and the Handelman representation, as
they merge naturally into the widely distributed SOS methods. This allows to reuse software and reasoning
done for problems formulated on SOS bases.

4.1. DIAGONALLY DOMINANT SOS POLYNOMIALS
As discussed in the recent chapter, testing PSDness of polynomials can be done automatically by mean of
SOS programming. Eventually, SOS programming comes down to the problem of checking if the gram matrix
of a polynomial is symmetric and positive definite, i.e. if there exists a symmetric Q ≥ 0 such that the polyno-
mial p(x) can be written as p(x) = zn,d (x)T Qzn,d (x), where zn,d is the monomial vector. The requirement of

17
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PSDness on Q makes the problem of finding a SOS decomposition an LMI problem.
In this section we show a way of moving from LMI to LP. This replaces the PSD condition on Q, found in

SOS, and so it allows to use LP. This advantage however comes at the cost of a tighter restriction on the pa-
rameter space of those polynomials compared to SOS. This restriction causes conservatism. We will discuss
this effect in 4.1.2.

A group of globally PSD polynomials are diagonally dominant SOS (DSOS). Checking if a polynomial is a
DSOS polynomial results in an LP problem. As defined in [12], a polynomial in n variables and degree 2d is
DSOS, if and only if there exists a symmetric diagonally dominant matrix Q such that

p(x) = zn,d (x)′Qzn,d (x) (4.1)

Define the set of polynomials which have a parametrization as above as DSOSD
n . A matrix Q is diagonally

dominant (DD) if for every row, the sum of absolute values of all elements excluding the diagonal is smaller
or equal to the diagonal element, i.e.

qi i ≥
∑
j 6=i

|qi j |. (4.2)

By Gershgorin’s circle theorem [33], diagonally dominant matrices are PSD. The inequality presented in (4.2)
is a sufficient condition for PSDness of a matrix.

4.1.1. AN LP TEST FOR DSOS
The condition for diagonally dominance is linear in q. This important property is exploited when formulating
the linear programming problem. The problem of finding a symmetric DD Q can be cast as a linear program-
ming problem. We express the optimization problem, associated to finding a DSOS decomposition to p(x)
as:

p(x) ∈ DSOS. (4.3)

and refer to it as an DSOS optimization problem or DSOS program. In C.1, we provide a complete derivation
of the LP formulation for DSOS.

The size of the optimization problem remains unchanged when moving from SOS polynomials to DSOS
polynomials. The same sized matrices are used and the growth of decision variables is unchanged with re-
spect to SOS optimization. However, the complexity is reduced as LPs are easier to solve than LMIs.

4.1.2. COMPARING DSOS AND SOS POLYNOMIALS
In this section we discuss the effect of conservatism, due to the switch from SOS to DSOS. Conservatism in
the optimization problem may have a direct effect on searching for suitable Lyapunov functions, as the search
space is shrunken.

From an optimization viewpoint, we obtained an LP by adding more structure (diagonally dominance) to
the formally LMI problem. By doing so, we removed those solutions which are not DD from the LMI problem.
This new problem is easier to be optimized. Removing solutions also means that the cone spanned by DD
matrices does not completely fill the cone of SDP matrices anymore. For n-by-n matrices with n ≥ 2 there is a
gap between the boundaries of the symmetric DD cone and the boundaries of the SDP cone. As foreshadowed
in the introduction to this section, requiring a polynomial to be a DSOS is a stronger restriction than requiring
it to be a SOS. This is a direct consequence of the way we impose PSDness of Q for DSOS polynomials. All
symmetric DD matrices are PSD, but not all symmetric PSD matrices are DD. Therefore, the set of DSOS is a
subset of SOS, i.e. DSOS ⊂ SOS.

This could lead to suboptimal solutions or even worse, to make the problem infeasible in LP. For our
interest of finding Lyapunov functions, this has major implications.

We reduce the space of polynomials which we can check to be PSD. The effect of this might be, that we
present a legit Lyapunov function, which we could prove to be PSD by applying SOS-based approaches, but
fail to prove it to be PSD with DSOS-based formulations. Consequently, we would to study the complement
of SOS and DSOS. To the knowledge of the author, no analytic results on the impact of the diagonally domi-
nance constraint are known yet. On the other hand, some (but few) results on the practical use are available.
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In [12] and [6] the authors compare run time and performance of DSOS against SOS versions of the S-
procedure [Majumdar, A., personal communication, August 4th 2016] using interior point methods to solve
both problems. Aim of the comparison was to estimate the region of attraction of a feedback controlled in-
verted pendulum.

For estimating the region of attraction, the maximum level set for a quadratic Lyapunov function is de-
termined for which stability is proven. The estimated region of attraction for four states is smaller by factor
0.38 for DSOS, and shrinks exponentially with increasing number of degrees of freedom. The optimization
problem for four states was solved 150 times faster by moving from SOS to DSOS. The reduction in runtime
grows with increasing number of states. Due to limitations in computational power the SOS problems could
not be carried out for number of states larger than 12. The DSOS problem was successfully run for 14 states.

It is realy important to notice, that the optimal solution shrinks exponentially with increasing state. We want
to use DSOS on large problems, as SOS is too complex. Unfortunately, for these problems DSOS causes a
significant amount of conservatism.

COUNTERACTING CONSERVATISM BY DSOS
The authors of [12] were well aware of the conservatism which comes with the use of DSOS polynomials. To
counteract this conservatism, they introduce an additional multiplier (r-DSOS) for DSOS polynomials. If the
polynomial which is tested is an PD even form1 [34], it is possible to close the gap between DSOS and SOS by
using these multipliers. Furthermore, they showed that it is possible to remove the assumption of evenness.

The multipliers are fixed for every iteration and thus the linear structure of DSOS is conserved. However,
the overall size is increased as the multiplier increases the degree of the DSOS-based problem. This increase
in size is tractable as the overall complexity of the linear problem is small enough to afford an additional
increase.

4.1.3. DSOS AS A RELAXATION OF THE POSITIVSTELLENSATZ
We can use DSOS as multipliers in the same fashion as we did with SOS. We simply replace the SOS con-
straints in the optimization problems 3.2.2 and (3.23) with DSOS constraints. This results in LP problems. For
example, we want to prove PSD of f0(x) on the domain constrained by

{
fi (x) ≥ 0

}m
i=1 and

{
h j (x) = 0

}n
j=1. The

S-Procedure with DSOS becomes:

∃ {
si (x)

}m
i=1,

{
p j (x)

}n
j=1

subject to f0(x)−
m∑

i=1
si (x) fi (x)−

n∑
j=1

p j (x)h j (x) ∈ DSOS

{
si (x)

}m
i=1 ∈ DSOS{

p j (x)
}n

j=1 ∈R

(4.4)

We can interpret the use of DSOS polynomials instead of SOS polynomials as a similar relaxation on the Pos-
itivstellensatz as the S-Procedure. We look for specific solutions of the Positivstellensatz, those which allow a
representation with DSOS multipliers. Though the overall idea of the Positivstellensatz and its relaxations is
not effected, it looses some of its theoretical power.

4.2. HANDELMAN REPRESENTATION

In the recent section we studied DSOS based optimization methods. Though these methods result in LP prob-
lems, scaling is still a concern. The rapid growth of decision variables roots from the encoding with diagonally
dominant matrices. In this section we investigate the Handelman representation of PSD polynomials. This
representation will give us a computationally cheaper LP problem, and thus an alternative to DSOS-based op-
timization methods. This representation is reminisced of the S-procedure and the Positivstellensatz. In 5.2
we use this feature to identify gaps between Hadenlman representation, Positivstellensatz and S-procedure.
In the same section we will construct an new relaxation method which partly fills this gap.

We start this section by defining and parametrizing the subset of polynomials which have a Handelman
representation. Then, in a straight forward fashion we introduce an LP test for this representation. Finally,

1In an even form, all monomials have the same degree and individual variables are raised to even degree.
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we take a closer look on the sensitivity of the Handelman representation on the provided constraints.

PSDness of constraints over a given interval is used to encode the Handelman representation of polynomials.
Such a parametrization results in an LP problem for testing positive semi-definiteness of a given polynomial.
As we have done in the sections on the Positivstellensatz and S-Procedure, we will first show the application
of the Handelman representation.

We want to investigate if −V̇ (x) ≥ 0 over the sublevel sets of a Lyapunov function candidate, i.e. over
ρ ≥V (x). This results in the LP problem

∃ λ

subject to − V̇ (x)−
k∑

i=1
λi (ρ−V (x))i = 0

λi ≥ 0,

(4.5)

where k ∈ Z+. With the previously accumulated knowledge on multiplicative monoids and the S-prodecure
it’s easy to follow the reasoning for this formulation. All elements (ρ ≥ V (x))i are PSD on the constrained
domain. Summing products of these with positive scalars will result in a PSD polynomial. Hence, by showing
a polynomial in its Handelman representation we can prove it to be PSD.

In its origin, the Handelman representation was introduced as sufficient and necessary condition for a given
polynomial to be positive definite over a domain constrained by a set of linear inequalities. The theorem
of the Handelman representation reads as: on a domain, constrained by linear inequalities, a polynomial
f0(x) is PD, if and only if it has a Handelman representation. In [35, 36] the Handelman representation of a
polynomial { f0(x)}, PSD over the domain constrained by

{
ci ,1x1 . . .ci ,n xn −bi ≥ 0

}m
i=1, is given as:

Theorem 4.1. On a domain described by
{
ci ,1x1 . . .ci ,n xn −bi ≥ 0

}m
i=1 a polynomial f0(x) is > 0, if and only if it

has a representation

f0(x)−
k∑

i=1
λi ai (x) = 0, (4.6)

with k ∈Z+, ai (x) ∈M
(
(c1,1x1 . . .c1,n xn −b1) . . . (cm,1x1 . . .cm,n xn −bm)

)
and λi ≥ 0.

The elements ai (x) are created by the multiplicative monoid of the individual linear inequalities. As a result,
all elements ai (x ≥ 0.
.

We may also use the Handelman representation to encode PSDness of polynomials over an arbitrary semi-
algebraic set. When doing so, the Handelman representation becomes a sufficient condition for PSDness.

The Handelman representation shown in its form above does not concern equality constraints. Without
violating the arithmetic reasoning, we may add equality constraints in the same fashion as we did for the
S-Procedure. We define the Handelman representation used in this study, which additionally takes equality
constraints into account. Given sets of polynomial constraints

{
fi (x) ≥ 0

}m
i=1 and

{
h j (x) = 0

}n
j=1, the set of

polynomials
{

f0(x)
}

which have a Handelman representation are given by:

{
f0(x)

∣∣∣∃k,n ∈Z+,∃{λi }k
i=1 ≥ 0,∃{ai (x)}k

i=1 ∈M ( f1(x), . . . , fm(x)),∃{p(x)}n
j=1 ∈R

such that f0(x) =
k∑

i=1
λi ai (x)+

n∑
j=1

p j (x)h j (x)
} (4.7)

4.2.1. AN LP TEST FOR HANDELMAN REPRESENTATION

We want to write down the optimization problem of the Handelman representation. We use optimization to
search for a set of multipliers

{
λi

}
and free polynomials

{
p j (x)

}
. The optimization problem reads as
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∃ {λi }k
i=1, {p j (x)}n

j=1

subject to f0(x)−
k∑

i=1
λi ai (x)

n∑
j=1

p j (x)h j (x) = 0

{λi }k
i=1 ≥ 0

{p j (x)}n
j=1 ∈R,

(4.8)

where ai (x) are elements generated by the multiplicative monoid M ( f1(x), . . . , fm(x)). The Handelman rep-
resentation is linear in both

{
λi

}
and the coefficients of

{
p j (x)

}
. For a computational solution we select a

maximum coupling k and generate all elements ai (x) with coupling smaller or equal to k. Finally, we equate
the PSD scalars

{
λi

}
and the coefficients of p j (x) in equation (4.8). This gives us an LP problem to test if

f0(x) ≥ 0 on the given domain.

4.2.2. COMPLEXITY OF THE HANDELMAN REPRESENTATION
Similar to the Positivstellensatz, the multiplicative monoid M ( f1(x), . . . , fm(x)) is used in the definition of the
Handelman representation. (In contrast to the Positivstellensatz, the cone is replaced with the multiplicative
monoid [37].) This leads to an exponential growth of the problem, with exponent m and base equal the
chosen coupling, i.e. the problem size is ≈ km . The advantage of the Handelman representation over DSOS-
based formulations is that for small k, the problem’s size is smaller. This means that the optimization problem
is in less decision variables compared to the DSOS-based formulations. On the other side, if k is large, the
problem is potentially larger. But where does any incentive to increase k to such large numbers originates
from? When we use any of the optimization formulations presented in this thesis, we usually try to solve the
optimization problem for a low degree or small coupling. If the problem is infeasible, we increase degree
and/or coupling in the hope that the new and larger optimization problem is feasible. We continue with
this procedure until we find a feasible solution or we run into numerical difficulties as the optimization’s
problem’s size is too large.



5
NOVEL RELAXATIONS OF THE

POSITIVSTELLENSATZ

The problem we address in this thesis is scaling of LP problems in stability analysis. An appropriate scaling
ensures that conservatism does not ruin our analysis study, but at the same time it shall result in an optimiza-
tion problem which is not too complex to be solved efficiently. This is a good point to briefly recap on the
theory we studied in the recent three chapter, and pinpoint again where the problems of conservatism and
complexity originate from.

With the conditions of P(S)Dness on the Lyapunov function and its derivative, we have an analytic way
of establishing stability of uncertain nonlinear systems. These conditions can be checked automatically with
the aid of LMI-based methods. The most prominent LMI-based formulation in stability analysis of nonlinear
systems is the S-Procedure with SOS multipliers. Although this method was used successfully on a broad field
of problems, it is only applicable to systems with a modest amount of states and constraints. A relaxation of
the formally SOS problem was introduced in the form of DSOS. This relaxation employs LP instead of LMI
and therefore is computationally less expensive. However, the switch to DSOS causes conservatism in the
stability analysis.

In this chapter, we will present two new LP-based formulations for stability analysis of uncertain nonlin-
ear systems. These formulations aim to reduce conservatism of currently available LP-based formulations.
The aim is approached by using DSOS multipliers to extend the optimization problems of the S-Procedure
and Handelman representation into the direction of the Positivstellensatz. The move towards the more ex-
pensive Positivstellensatz are possible due to the use of DSOS instead of SOS. The resulting formulations’
conservatism and complexity lie between the known DSOS formulations of Positivstellensatz, S-Procedure,
and Handelman representation. As we will show in an analytic manner, the new formulations are relaxations
of the Positivstellensatz.

In the first section of this chapter, we will extend the S-Procedure by adding additional DSOS multipliers. The
addition of those multipliers is in the spirit of the Positivstellensatz. We will compare the S-Proceudre with
the Positivstellensatz, and use the resulting complement to place the additional multipliers.

In the second section we look at the Handelman representation. We show that the Handelman represen-
tation, as we use it, is a relaxation of the Positivstellensatz. At the hand of easy examples, we illustrate the high
sensitivity of the Handelman representation to provided constraints. Finally, we will eliminate the source for
this high sensitivity by incorporating DSOS into the Handelman representation.

5.1. A NOVEL RELAXATION: THE K -S-PROCEDURE
In this section we will present the novel K -S-Procedure. This formulation fills the complement of Positivstel-
lensatz and S-Procedure. The K -S-Procedure comes with a parameter (K ) which controls the optimization
problem’s size. The new formulation contains the known S-Procedure as a special case and can be scaled to
size larger than the S-Procedure.

The idea of increasing the problem size of a DSOS optimization problem was already picked up by [12].
Their proposed method is especially of interest for polynomials which are PD forms. The new relaxation,
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which we construct in this section, is more general and is plainly motivated by the incentive to scale the
resulting optimization problem.

5.1.1. COMPARING POSITIVSTELLENSATZ AND S-PROCEDURE

If we were given a system subject to m inequality constraints, the Positivstellensatz with DSOS multipliers
results in 2m+1 DSOS problems; the S-procedure on the other hand only requires m+1 DSOS problems. This
difference roots from the construction of the S-procedure. We picked well chosen and not arbitrary elements
f (x) when constructing the S-procedure in (3.22). We illustrate this by comparing the problems of proving
−V̇ (x) ≥ 0 over the constrain (ρ−V (x)) ≥ 0 with the Positivstellensatz and S-Procedure. The optimization
problem by the Positivstellensatz was given by

∃ s1(x), s2(x), s3(x)

subject to − (
s1(x)+ s3(x)(ρ−V (x))

)
V̇ (x)− (

s2(x)(ρ−V (x))+ V̇ (x)2) ∈ DSOS

s1(x), s2(x), s3(x) ∈ DSOS.

The optimization problem by the S-Procedure can be obtained from the Positivstellensatz problem by re-
moving the term −V̇ (x)2, setting the multiplier s1(x) = 1, and setting the multiplier s3(x) = 0.

∃ s2(x)

subject to − V̇ (x)− s2(x)(ρ−V (x)) ∈ DSOS

s2(x) ∈ DSOS.

By assigning fixed functions to the multipliers, they are removed as decision variables and therefore the op-
timization problem’s complexity is reduced. In order to remove −V̇ (x)2, we needed to set s1(x) to a specific
non-zero SOS. If we do not do so, we would always be able to find a trivial solution to the optimization prob-
lem with all SOS multipliers equal to 0, and we could not conclude anything. All this said, we are more in-
terested in the removal of the multiplier s3(x). This multiplier is leading the product of (ρ−V (x))(−V̇ (x)). In
the Positivstellensatz the term −s3(x)

(
(ρ−V (x))V̇ (x)

)
is generated by the cone of C

(−V̇ (x), (ρ−V (x))
)
, but

this term does not appear in the S-Procedure. From this observation we can conclude that only a subset of
the cone is used in the S-Procedure. We can also track back the point at which we decided to neglect certain
terms of the cones in the S-Procedure.

We turn back towards the construction of the S-Procedure to see at which point we discarded parts of
the cone. We defined the SOS polynomial q(x) := f0(x)−∑m

i=1 si (x) fi (x), with {si (x)} ∈ SOS. In this case we
considered the general case of m inequalities. For our problem at hand, this would read as qV (x) :=−V̇ (x)−
s2(x)V (x). Exactly at this point we discarded the coupling term −s3(x)

(
(ρ−V (x))V̇ (x)

)
.

In total, we removed possibilities to yield Positivstellensatz certificates. We know that the Positivstel-
lensatz is sufficient and necessary for PSDness of polynomials. So, removing parts of it needs to results in
conservatism and thus the S-Procedure is only sufficient for arbitrary semi-algebraic sets.

5.1.2. CONSTRUCTING THE K -S-PROCEDURE

If we compare the amount of terms which appear in the optimization problems of Positivstellensatz and S-
Procedure, we can see that the complement of the terms in the Positivstellensatz and S-Procedure scales
exponentially with the amount of inequalities m. This can be easily seen by the fact, that the problem size for
the Positivstellensatz grows exponentially with m but the problem for the S-Procedure linearly in m. Hence,
the difference in amount of terms grows exponentially.

We will now introduce a novel formulation which creates optimization problems whose amount of terms
lies between Positivstellensatz and S-Procedure. This also means, that their complexity and power is located
between the known methods. Further, the complexity and power can be adjusted to the applicants favor. We
name this novel relaxation K -S-Procedure.

Definition 5.1. Given sets of polynomials
{

fi (x) ≥ 0
}m

i=1,
{
h j (x) = 0

}n
j=1, and parameter K ∈ {

0,1, . . . ,m
}
, define

the set of polynomials f0(x) for which we can prove positive semi-definiteness using the K -S-Procedure as
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K =
{

f0(x)
∣∣∣∃ki ∈

{
0,1

}
,

m∑
i=1

ki ≤ K , ∃si (x) ∈ DSOS, ∃p j (x) ∈R

such that f0(x)−
∑k

j2=1

( j2
m

)∑
j1=1

si (x) f1(x)k1 f2(x)k2 . . . fm(x)km −
n∑

j=1
p j (x)h j (x) ∈ DSOS

} (5.1)

The definition above reads cryptically at first but has a sharp and handy meaning. It is kept abstract in favor
of allowing a simple application later on. The term

∑m
i=1 ki ≤ K is the important requirement in this def-

inition. K is a parameter and is set by the user. This parameter restricts which terms appear in the sum∑m
i=1 si (x) f1(x)k1 f2(x)k2 . . . fm(x)km . The idea is as follows. The powers

{
ki

}1
i=0 can only take the values 0 or 1,

which can be interpreted as switching the individual terms
{

fi (x)
}m

i=1 on and off in the product. Every prod-

uct in the sum
∑m

i=1 si (x) f1(x)k1 f2(x)k2 . . . fm(x)km is only allowed to have up to K terms which are switched
on. This is enforced by the restriction

∑m
i=1 ki ≤ K . For example, with K = 2, and so

∑m
i=1 ki ≤ 2, we allow all

term si (x) f1(x), . . . , si (x) fm(x), si (x) f1(x) f2(x), . . ., si (x) f1(x) fm(x), . . ., si (x) fm−1(x) fm(x) but exclude terms of
the form si (x) f1(x) f2(x) f3(x) as

∑m
i=1 ki = 3

The interpretation of this definition is reminiscent of the one for the S-Procedure. The terms appearing
in the sum

∑m
i=1 si (x) f1(x)k1 f2(x)k2 . . . fm(x)km are all PSD by construction and thus the same arithmetic rea-

soning applies as done before. Similar, we can also construct Positivstellensatz certificates which underline
that the K -S-Procedure is indeed a relaxation of the Positivstellensatz. Reformulating this problem into the
Positivstellensatz format. Is the set{

x ∈Rn

∣∣∣∣∣ − f0(x) ≥ 0, f1(x) ≥ 0, . . . , fm(x) ≥ 0

f0(x) 6= 0

}

empty? Assume we found a {si (x)}
∑k

j2=1

( j2
m

)
i=1 ∈ DSOS in (5.1), then we can define

q(x) := f0(x)−
∑k

j2=1

( j2
m

)∑
j1=1

si (x) f1(x)k1 f2(x)k2 . . . fm(x)km ∈ DSOS. (5.2)

Next define the two following polynomial functions

f (x) :=−q(x) f0(x)− f0(x)

∑( i
m)

i=1∑
i=1

si (x) f1(x)k1 f2(x)k2 . . . fm(x)km

g (x) := f0(x)

(5.3)

Again, these polynomials are constructed in such a way that f (x) is in the cone C (− f0(x), f1(x), . . . , fm(x)) and
g (x) is an element in the multiplicative monoid M ( f0(x)). Both hold as Positivstellensatz certificates. Writing
out the equality f (x)+ g (x)2 = 0 proves f0(x) to be PSD over the domain constrained by

{
fi (x)m

j=1

}
. Equality

constraints of the form
{
h j (x) = 0

}n
j=1 can be added in the same fashion as done for the S-procedure. This

results in the DSOS problem

∃ {
si (x)

}∑k
j2=1

( j2
m

)
,
{

p j (x)
}n

j=1

subject to f0(x)−
m∑

i1=1

(
si1 (x) fi1 (x)+

m∑
i2=i1+1

(
. . .

(
si1,...,im−1 (x)+

m∑
im=im−1+1

(
si1,...,im−1,im (x)

))
. . .

))
−

n∑
j=1

p j (x)h j (x) ∈ DSOS

{
si (x)

}∑( i
m)

i=1 ∈ DSOS{
p j (x)

}n
j=1 ∈R

(5.4)
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SPECIAL CASES OF THE K -S-PROCEDURE

There are several cases which are worth mentioning. The case K = 1 is the well known S-Procedure. This
can be seen by replacing the summation in the definitions of the S-Procedure with the summation in the
K -S-Procedure and set K = 1:

m∑
i=1

si (x) fi (x) =
∑k

j2=1

( j2
m

)∑
j1=1

f1(x)k1 f2(x)k2 . . . fm(x)km , with ki ∈ {0,1},
m∑

i=1
ki ≤ 1, si (x) ∈ DSOS. (5.5)

In this very case we would call this problem the 1-S-Procedure. This easily indicates which relaxation was
used. In the case, that we set K = m, i.e. increasing K to the number of given inequalities, then the sum in the
K -S-Procedure equals the cone generated by the m inequalities:

C ( f1(x), . . . , fm(x)) =
∑k

j2=1

( j2
m

)∑
j1=1

si (x) f1(x)k1 f2(x)k2 . . . fm(x)km , with ki ∈ {0,1},
m∑

i=1
ki ≤ m, si (x) ∈ DSOS. (5.6)

As we have seen, the cone generates all possible combination of the given inequalities. If we would increase
K to be larger than m, we will not add any additional terms to the summation as we have reached the full
cone already. This also explains the upper bound of m for the parameter K in definition 5.1. The final case
which we want to consider is the lower bound for K . We defined K to be at least zero. In the case of K = 0, the
sum is empty. In the absence of equalities, this would result in the single DSOS problem f0(x) ∈ DSOS.

Putting all these cases together, we see that by increasing K from 0 towards m we increase the amount of
terms and thus amount of DSOS problems appearing in the overall optimization problem. With this param-
eter we have a know to trade off complexity with conservatism. By increasing m the problems complexity
grows from static (case K = 0), over linear (K = 1) towards the exponential growth of the cone (K = m). This
growth in complexity goes hand in hand with an increase in power.

5.2. A NOVEL RELAXATION: THE DSOS HANDELMAN REPRESENTAION
In this section we present the DSOS Handelman representation. This formulations complexity and conser-
vatism are placed between the Handelman representation and the Positivstellensatz. Furthermore, this for-
mulation is less sensitive to the provided constraints than the Handelman representation.

The Handelman representation is the smallest optimization problem for polynomial PDness which we
studied in this thesis. This makes it a favourable choice for those cases when the Positivstellensatz, K -S-
Procedure, and S-Procedure are too complex to be solved. An easily observable problem of the Handelman
representation is its high sensibility to the provided constraints. We present simple cases in which the Han-
delman representation fails to proves PSDness of a given PSD polynomial. Next, we will pinpoint the source
for the high sensitivity of the Handelman representation. We show that this source can be removed by using
DSOS in the optimization problem.

5.2.1. COMPARING POSITIVSTELLENSATZ AND HANDELMAN REPRESENTATION
Due to its similarities to the S-procedure, we may interpret the Handelman representation as relaxation of
the Positivstellensatz1. This becomes more apparent when expressing the Handelman representation in the
Positivstellensatz format. We want to know if f0(x) ≥ 0 on the domain constrained by the polynomial sets{

fi (x) ≥ 0
}m

i=1 and
{
h j (x) = 0

}n
j=1. Thus, is the set{

x ∈Rn

∣∣∣∣∣ − f0(x) ≥ 0, f1(x) ≥ 0, . . . , fm(x) ≥ 0

f0(x) 6= 0

}

empty? Assume we found a
{
λi ≥ 0

}k
i=1 in (4.7), then we can define q(x) := f0(x)−∑k

i=1λi ai (x) = 0, where ai (x)
are generated by the multiplicative monoid M ( f1(x), . . . , fm(x)). Next define the two following polynomial
functions

1This is well known in the field of semi-algebraic geometry, as the Handelman representation is a Positivstellensatz for sets constrained
by strict linear inequalities. There exist multiple theorems which are grouped as Positivstellensätze (German plural form of Positivstel-
lensatz).
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f (x) :=−q(x) f0(x)−
k∑

i=1
λi ai (x) f0(x)

and

g (x) := f0(x).

Again, the polynomials are constructed in such a way that f (x) is in the cone C (− f0(x), f1(x), . . . , fm(x)) and
g (x) is an element in the multiplicative monoid M ( f0(x)). Both hold as Positivstellensatz certificates. Writing
out the equality f (x)+ g (x)2 = 0 proves f0(x) ∈P .

We know that the Positivstellensatz is a necessary and sufficient theorem for all PSD polynomials and there
are cases in which this is also true for the Handelman representation, but these cases do not always apply.
Even worse, for the Handelman representation we can easily find cases in which increasing the coupling does
not provide any more power to the method. The most prominent case, which we will also encounter in 7.2, is
when the degrees in the test polynomial f0(x) and those of the constraints do not match, e.g. f0 = x3 and the
only constraint is f1 = x2 ≥ 0. Another evident problem for the use of the Handelman representation is, when
not all indeterminates of f0(x) appear in the constraints. There are ways how to deal with these problems [38],
but they aim at generating more, and often, conservative constraints.

Our approach is to add all possible constraints which are known to be DSOS to the problem.

5.2.2. CONSTRUCTING THE DSOS HANDELMAN REPRESENTATION

In the Handelman representation (4.7) the sum f0(x)−∑k
i=1λi ai (x)−∑n

j=1 p j (x)h j (x) = 0 is constrained to

zero, i.e. f0 and
∑k

i=1λi ai (x)
∑n

j=1 p j (x)h j (x) need to match exactly. This is an unnecessary strong constraint
and causes the sensitivity. If we discard all constraints (thus an unconstrained system), then the optimization
problem of the Handelman representation reads as f0(x) = 0. As a consequence, we would not be able to find
any Lyapunov function.

We loosen this constraint and enforce f0(x)−∑
λi ai (x)

∑n
j=1 p j (x)h j (x) to be a DSOS polynomail, i.e.

f0(x)−
k∑

i=1
λi ai (x)

n∑
j=1

p j (x)h j (x) ∈ DSOS. (5.7)

This type of formulation is familiar to us, as it combines both S-Procedure and Handelman representation.
Furthermore, we can show its an relaxation of the Positivstellensatz. Assume we found a

{
λi ≥ 0

}m
i=1 in (5.7),

then we can define q(x) := f0(x)−∑m
i=1λi ai (x) ∈ DSOS. Next define the two following polynomial functions

f (x) :=−q(x) f0(x)−
k∑

i=1
λi ai (x) f0(x) (5.8)

and

g (x) := f0(x), (5.9)

where f (x) ∈C (− f0(x), f1(x), . . . , fm(x)) and g (x) ∈M ( f0(x)).

As with the K -S-Procedure, this formulation is purely motivated by its application in polynomial optimiza-
tion. We call this relaxation DSOS Handelman representation.

Definition 5.2. Given a sets of polynomial constraints
{

fi (x) ≥ 0
}m

i=1 and
{
h j (x) = 0

}n
j=1, we define the set of

polynomials { f0(x)} which have a DSOS Handelman representation D as:

D :=
{

f0(x) ∈P
∣∣∣∃k,n ∈Z+,∃{λi }k

i=1 ≥ 0,∃{a(x)i (x)}k
i=1 ∈M ( f1(x), . . . , fm(x)),∃p(x) ∈P

such that f0(x)−
k∑

i=1
λi ai (x)−

n∑
j=1

p j (x)h j (x) ∈ DSOS

}
(5.10)
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The LP problem to find a DSOS Handelman representation is defined as:

∃ {
λi

}k
i=1,

{
p j (x)

}n
j=1

subject to f0(x)−
k∑

i=1
λi ai (x)

n∑
j=1

p j (x)h j (x) = 0

{
λi

}k
i=1 ≥ 0{

p j (x)
}n

j=1 ∈R,

(5.11)



6
IMPLEMENTATION OF OPTIMIZATION

TECHNIQUES

We have already come a long way towards our goal of stability analysis of large uncertain nonlinear poly-
nomial systems. We can access stability of these systems by means of LP problems. The last piece which
separates us from using our tools for stability analysis is the problem of maximizing the region over which
we verify stability. So far our formulations require a fixed set to verify stability on it. For stability analysis,
however, we want to expand this set, i.e. we maximize its size.

In this chapter we will formulate the optimization problem of maximizing the verified region of stability.
We formulate this optimization problem for uncertain nonlinear polynomial systems. The dynamics of those
systems are given by ẋ = f

(
y,w

)
, whose domain is the intersection of the state space y ∈ Y ∈ Rn and the

parameter space w ∈W ∈Rw . We require the systems to have a parameter independent equilibrium point in
the origin. Using theorem 2.1, we can establish stability for all parameters within W and on a region N ⊆Y

of the state space containing the origin by finding a Lyapunov function V (y) which fulfills

V (y) ≥ 0, ∀y 6= 0, V (0) = 0 (6.1)

and

− V̇ (y,w) ≥ 0, ∀y ∈Y , ∀w ∈W . (6.2)

We want to maximize the volume of the region N , i.e.

maximize
N

V ol (N ). (6.3)

Putting equations (6.1)-(6.3) together gives us the optimization problem

maximize
N ,V (y)

V ol (N )

subject to V (y) ≥ 0, ∀y 6= 0, V (0) = 0

− V̇ (y,w) ≥ 0, ∀y ∈N , ∀w ∈W .

(6.4)

The optimization problem above is nonlinear and thus it is not amenable to be solved efficiently as LP. This
is mainly due to the nonlinear constraints, like V (y) ≥ 0, ∀y 6= 0, V (0) = 0.

In the first section of this chapter we will rework the optimization problem above such that it can be solved
with linear programming. In parallel, we show what this formulation looks like for the example system (2.1).
Whereas the first section of this chapter discusses formulation, we will devote the second section towards
implementation details. These details regard line search options, stabilization of DSOS programming and
the choice of an optimization solver and setting of parameters which are fed to the solver.

28
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6.1. NUMERICAL FORMULATION OF MAXIMIZING VERIFIED REGION OF STA-
BILITY

In this section we will reformulate the optimization problem in (6.4) into a series of LPs. With this recast it is
possible to solve for the maximum region of attraction in an efficient way.

The optimization problem (6.4) concerns optimizing over the space of PSD functions, and thus it is not
amenable to be solved efficiently. With the aid of the linear problems which we discussed in the previous two
chapters, we can reformulate this optimization problem into a series of linear programs. With this reformu-
lation the resulting optimization problem can be solved efficiently. Furthermore, we will give an alternation
of the optimization problem. The alternated problem is larger in size but is more flexible for systems which
do not provide an initial Lyapunov function candidate.

As promised in the introduction to this chapter, we will illustrate every step with a follow-up example. For
these examples we will reuse example 2.1. The dynamics of this example system are

ẏ = y2 −w y, (6.5)

where y is the state variable and w is a parameter living in W := {w |(w ≥ 0.5)∩ (1 ≥ w)}. We already studied
stability of this system in an analytical manner. Using Lyapunpov’s second method, we proved the system to
be asymptotically stable on the region N = {

y
∣∣y ≤ 0.5

}
.

6.1.1. FIXING A LYAPUNOV FUNCTION CANDIDATE V (y)
The nonlinear optimization problem in (6.4) is a problem in the decision variables N and V (y). For our
linear optimization problem we will fix V (y). By fixing V (y), and thus eliminating it as a decision variable, we
also remove the constraint V (y) ≥ 0, ∀y 6= 0, V (0) = 0. The removal of this constraint follows directly, as we
construct a V (y) which fulfills the constraints at every iteration of the optimization problem.

The procedure of fixing V (y) can be interpreted as defining a Lyapunov function candidate. Remember
from definition (2.1), a candidate V (y) is known to be PSD, but the definiteness of its derivative is unde-
termined. Therefore, the resulting optimization problem will only assess if a Lyapunov candidate to be a
Lyapunov function.

We will obtain a candidate function by constructing a quadratic Lyapunov function for the linearized dy-
namics. This can be done by linearizing the nonlinear system and then formulating a Lyapunov inequality
(review 2.2.1) to construct a Lyapunov function for the linear system. Although this construction is straight
forward, it does not guarantee success. We require the system to be asymptotically stable around the origin.
Further, the dynamics need to be continuous to use linearization [4]. Another way of fixing a Lyapunov can-
didate would be to use the physical energy of a system. We opted to not do so as Lyapunov’s second method
also covers systems where no such concept as energy exists (7) or the information of energy is not accessible
[7]. At this point we want to mention that it would also be possible to keep V (x) as a decision variable. In 6.1.5
we will further discuss how this changes the optimization problem.

Example 6.1. We want to find a Lyapunov function candidate for the dynamical system (6.5). As discussed
earlier, we can find this candidate by determining a Lyapunov function for the linearized dynamics. The origin
is an equilibrium point for both the nonlinear dynamical system as well as the linearized system, making the
Lyapunov function a valid candidate for both systems. Linearization about the origin gives the linear system

ẏl i n =−w yl i n , w ∈ [0.5,1].

Formulating the Lyapunov inequality as SDP (see B.1.1)

∃ P

subject to

[
P 0
0 − (−Pw −wP)

]
> 0.

where P is a 1-by-1 matrix. A solution to this problem is P = 1
2 and thus the Lyapunov function candidate is

V (x) = 1

2
x2

.
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6.1.2. APPROXIMATING THE REGION OF STABILITY
The aim of our optimization problem is to maximize the volume in state space for which we can verify stabil-
ity. We define the sublevel sets of the Lyapunov function

Lρ̄ := {
y
∣∣ρ ≥V (y)

}
. (6.6)

Next we define the region N for which we want to prove stability as the intersection of the sublevel sets Lρ̄

and the systems natural space Y , i.e.

N :=Lρ̄ ∩Y . (6.7)

Unless it is ambiguous to do so, we drop the dependency of N on ρ easy readability.
Since we fixed V (y) through the Lyapunov inequality, the candidate function is an ellipsoid described by

the quadratic function V (y) = yT Py, and all sublevel sets of the Lyapunov function candidate are ellipsoids
as well. This gives our optimization problem a geometric meaning. We try to fit the largest possible ellipsoid
into the unknown region of attraction. This also implies that if the true region of stability is not an ellipsoid,
then the largest ellipsoid we could fit into the region of stability is an inner approximation of the true (and
unknown) region of stability. Thus conservatism follows for our approach, as we are not able to find the exact
region of stability for all cases but the unlikely one in which the region of stability is actually an ellipsoid.

Now, we turn our focus towards the objective function maximizeV ol (N ). Since the sublevel sets N are
ellipsoids, we could compute their volume exactly and easily. However, we do otherwise to forgo unnecessary
overhead1. Instead of asking for the maximal volume, we can directly ask for the maximum ρ which defines
N . The volume V ol (N ) is monotonically increasing with ρ and thus no information is lost, as the maximum
of V ol (N ) is reached when the maximum of ρ is reached.

Thus we define the new objective function as

maximize ρ. (6.8)

In 6.1.5 we discuss the option of defining N as a different geometric shape, such as a sphere or a cube.

Example 6.2. We found the Lyapunov function candidate V (y) = 1
2 y2 for the dynamical system (6.5). Now we

can define the region for which we want to prove stability as sublevel sets of V (y) which are smaller than a given
scalar ρ. This gives us

N = {
y
∣∣ρ ≥ 1

2
y2}.

Since the states of the dynamical system live on the line, the region N is a line segment symmetric about the
origin. The length (which is equivalent to the volume in one dimension) of this line segment is 2

√
2ρ. We see,

the length is increasing monotonically in ρ. Therefore, the maximum length is found when the maximum ρ is
found for which we can prove stability. Accordingly, we cast the objective function as: maximize ρ.

6.1.3. PROVING PSDNESS OF −V̇ (y) IN AN LP
We fixed V (y) and explained how we can approximate the Region of Stability. The last obstacle we face is
testing PSDness of −V̇ (y). At this point we can finally make use of the mathematical tools we derived in the
recent chapters. The condition −V̇ (y,w) ≥ 0, ∀y ∈ N , ∀w ∈ W can be proved efficiently by expressing it in
one of the LP problems concerning PSDness of polynomials on semi-algebraic sets. With N in the form of
a semi-algebraic set and the semi-algebraic requirement on the parameter space W we can immediately use
the Positivstellensatz or its relaxations K -S-Procedure, S-Procedure, DSOS-Handelman representation and
Handelman representation.

The eventual LP problem of proving PSDness of −V̇ (y) depends on the formulation we chose. Some of the
formulations are not easily readable in their explicit form. For this reason we will introduce a placeholder for
the LP problem of −V̇ (y,w) ≥ 0, ∀y ∈ N , ∀w ∈ W . This placeholder should transport all information which
are needed to uniquely identify and construct the wanted optimization problem. We express this placeholder
in the spirit of its actual realization as a function in computer programming. The functions is defined as

PSDpr og (−V̇ (y,w),N ∩W , formulation), (6.9)

1In computer science, overhead describes excess computational cost, i.e. the call of a function versus its plain evaluation.
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with three input arguments. The first input argument is the polynomial, which we want to prove PSD, i.e
−V̇ (y,w). As a second argument we feed in the domain of the polynomial, in our case the intersection N ∩W .
The thrid and last required parameter is the formulation which we use to test for PSDness of −V̇ (y,w).

Example 6.3. The derivative of V (y) = 1
2 y2 along the trajectories of the dynamical system (6.5) is

V̇ (y, w) = y
(
y2 −w y

)
.

In order to establish stability we need to show that −V̇ (y, w) is PSD on the intersection of the region of the state
space N and the parameter space W . For this example, we chose to do so with aid of the S-Procedure. With the
definitions of N and W we can write the placeholder function for an LP test as

PSDpr og
(− V̇ (y, w), (ρ ≥ 1

2
y2)∩ (1 ≥ w)∩ (w ≥ 0.5),S−Procedure

)
.

This placeholder function can be explicitly written as the LP problem

∃ s1(x), s2(x), s3(x)

subject to (w y2 − y3)− s1(x)(ρ− 1

2
y2)− s2(x)(1−w)− s3(x)(w −0.5) ∈ DSOS

s1(x), s2(x), s3(x) ∈ DSOS,

where x = [
y w

]T
.

6.1.4. A SERIES OF LPS FOR MAXIMIZING THE VERIFIED REGION OF STABILITY
Now, we can combine all steps we have made in order to rewrite the nonlinear problem into a computation-
ally tractable form. First, we need to obtain an initial Lyapunov function candidate V (x). Then we can cast
the optimization problem to maximize the volume of the verified region of stability as:

maximize
ρ, {Li (x)}

ρ

subject to PSDpr og (−V̇
(
y,w),N ∩W , formulation

)
.

(6.10)

This is an optimization problem in the decision variables ρ and a set of multipliers
{
Li (x)

}
. The form and

amount of the multipliers depend on the formulation which was chosen in PSDpr og (). Whereas
{
Li (x)

}
are

DSOS polynomials in the Positivstellensatz, K -S-Procedure and S-Procedure, they represent scalars for the
Handelman Representation, and a mixture in the DSOS-Handelman representation.

Except for borderline cases like the 0-S-Procedure, the optimization problem above is nonlinear in the
decision variables. However, we can relax the problem above to an LP by fixing ρ. If we do so, we search over
the multipliers

{
Li (x)

}
which fulfill the optimization problem for a given ρ. This is identical to the problems

we have seen before when formulating the Positivstellensatz and its relaxations.
These optimization problems search over multipliers but have a fixed ρ and thus do not change ρ. Since

we want to maximize ρ, we pick values of ρ and test if multipliers can be found. If so, −V̇ (y,w) is PSD and
stability on N for the corresponding ρ is established. The largest ρ for which we establish stability is then the
optimal solution to the optimization problem (6.10). The procedure of optimizing ρ is thus carried out as a
line search.

Algorithm 1 Maximize ρ

Initialize V (x), ρ = 0 and choose formulation
1: terminate = false;
2: while (¬ terminate) do
3: STEP 1: Fix ρtry > ρ
4: STEP 2: if PSDpr og (−V̇

(
y,w),N (ρtry)∩W , formulate

)
is feasible then

5: ρ = ρtry

6: STEP 3: terminate = isTerminate()
7: end while
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In step 1 of the algorithm we fix a new ρtry for which we want to investigate stability. This step is a line search
over ρ. We did not specify any further how this line search is carried out, but not all line search methods
are suited to do so. More information on the effect of picking a line search method are discussed in the next
section. In step 2 of the algorithm a feasibility test in the form PSDpr og () is performed. If the test was suc-
cessfully, we overwrite ρ = ρtry. Thus, ρ is always the largest sublevel set for which we proved stability. The
solution to the optimization problem in step 2 is then used in step 3 to determine if the algorithm should ter-
minate. The condition for termination is encoded in the function isTerminate(). For example, the algorithm
terminates if a maximum number of iterations were run and/or the most recent PSDpr og () was infeasible.
Usually, the termination criterion is connected to the chosen line search method. We will give break criteria
related to line search methods in the following section.

We will refer to the individual steps by their order (step 1, step 2 and step 3), as well as their purpose, e.g.
step 1 could also be labeled as fixing ρ or line search over ρ, and step 2 may be named as feasibility test or
PSDpr og (), etc.

Example 6.4. We found a Lyapunov function candidate V (y) = 1
2 y2 for system (6.5). We want to search for the

largest sublevel set of the candidate function for which we can establish stability. This results in the optimiza-
tion problem

maximize
ρ, {Li (x)}

ρ

subject to PSDpr og (−V̇
(
y,w),N ∩W , formulation

)
.

As shown in algorithm 1, this optimization problem can be carried out as a series of feasibility LPs. For this
particular example we will set the formulation to be the 1-S-Procedure. The line search overρwill be carried out
by defining a sequence of points which will be tested. We define this sequence as ρtry(i ) = 0.01i , ∀i ∈ {

1, 2, . . .
}
.

Now we can initiate the algorithm.

Initialize V (y) = 1
2 y2, ρ = 0, i = 1

1: terminate = false;
2: while (¬ terminate) do
3: STEP 1: Fix ρtry = ρtry(i )
4: i = i +1;
5: STEP 2: if ∃ s1(x), s2(x), s3(x)

s.t. (w y2 − y3)− s1(x)(ρ− 1
2 x2)− s2(x)(1−w)− s3(x)(w −0.5) ∈ DSOS

s1(x), s2(x), s3(x) ∈ DSOS
then

6: ρ = ρtry;
7: end if
8: STEP 3: if i > 99 then
9: terminate = true;

10: end if
11: end while

The largest ρtry for which PSDpr og () is feasible is ρtry = 0.15. Therefore we proved stability of the dynami-
cal system on a region of the state space which is associated to 0.15 ≥ 1

2 y2. We will review this result in the
benchmarking which we conduct in section 7.2.

With the aid of this example we illustrated how the basic algorithm is formulated for the problem at hand.
Furthermore, we can use the results to underline the statement that the overall optimization problem of
maximizing ρ over ρ and the multipliers

{
Li (x)

}
is nonlinear. In the example above, we found a feasible

solution for ρtry = 0.15.
So far we did not mention that the feasibility test already failed at a ρtry < 0.15. Although this observation

may not be intuitive at first sight, it is in line with all theory we have studied before. First of all, the optimiza-
tion problem is nonlinear. Therefore, there may exist multiple isolated region of feasibility. This is shown in
figure 6.1. Furthermore, the numerical application of the Positivstellensatz and its relaxations are only suffi-
cient due to their construction and limited degree of multipliers. Finally Lyapunov’s second method is only
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sufficient. This gives us the freedom to use a Lyapunov function candidate to prove stability for some region
N2(ρ2) even if the candidate failed to prove stability on N1(ρ1), where ρ2 > ρ1.

0 0.16
x

feasible
infeasible

Figure 6.1: Feasibility of example 6.4 on line ρ. Feasibility is tested at the marked values of ρ. If the optimiza-
tion problem PSDpr og () was feasible, the value is marked green. If the problem was infeasible, it is marked
with red. We observe isolated regions over ρ for which stability can be verified. The discontinuity in verification
may be caused by the nonlinearity in the decision variables.

6.1.5. ALTERNATIVE TO THE BASIC ALGORITHM: A LYAPUNOV CANDIDATE-FREE ALGORITHM

The step of initializing a Lyapunov function candidate is crucial for our basic algorithm. So far, we disre-
garded possible problems of initialization via solving a Lyapunov inequality. For the use of this technique,
we stated the condition of asymptotic stability of the linearized dynamics. Many system in engineering allow
this approach, as they are designed or controlled in such a way that they are asymptotically stable in a local
region around the origin. For system which do not offer this strong local stability property, the Lyapunov in-
equality technique is not amenable. Additional to this group of systems, there are also asymptotically stable
linear systems for which the candidate obtained by a Lyapunov inequality is not a feasible Lyapunov function
for the nonlinear system.

In the need of Lyapunov candidates for those systems, where our initialization is unsuccessful, we alter
the basic algorithm such that no candidate V (y) is needed. Instead, the new algorithm searches for V (y) while
−V̇ (y,w) is ensured to be PSD. To remember, searching for V (y) means that V (y) is a free polynomial and its
coefficients are decision variables. The authors of [30] did this in a similar way but did not realize that they
can express the search for V (y) in the Positivstellensatz format. Instead they fixed a template for V (y). We,
in contrast, leave V (y) as a completely free polynomial which gives us more possibilities to find a suitable
Lyapunov function.

The important change which gives us the possibility to search for V (y), is the decoupling of the region of state
space N , for which we want to prove stability, and the sublevel sets of the Lyapunov function candidate Lρ̄ .
For the alternative algorithm, we aim to express Lρ̄ as sublevel sets of another fixed function. By doing so,
the resulting optimization problem becomes linear in V (y).

We are free of choice how to fix the new function, but need to ensure that the volume of sublevel sets
grows monotonically with ρ. Otherwise, the problem of maximizing ρ does not corresponds to maximizing
the volume anymore. For example, we can define a cube, symmetric to the origin and with length of each
edge equal to 2ρ. This gives us a set of x ∈Lρ̄ ∈Rn constrained by

Lρ̄ =
{

x
∣∣ρ ≥ xi ≥−ρ, ∀i ∈ {1, . . . ,n}

}
.

Next, we want to encode the properties of a candidate function in an optimization problem. Before we
do so, we need to change our conditions on V (y) slightly. By condition (2.4), we required any candidate
V (y) : N →R to fulfill V (y) > 0, ∀y 6= 0 and V (0) = 0. The latter condition is easily fulfilled by constructing the
free polynomial V (y) such that no constant term appears. The first condition is a strict inequality on V (y).
By the Positivstellensatz we know that this condition is true if the set {−V (y) ≥ 0,N ,y 6= 0} is empty. We can
search for a free polynomial V , which is PSD over N , with any of the relaxations we have seen before. For
simplicity, we will illustrate this by using the S-Procedure to find a candidate for a system, with a single state
variable and a single uncertain parameter constrained by f1(w) ≥ 0, over the sublevel sets of a cube. We can
search for a candidate V (y) by solving the optimization problem PSDpr og (V (y),Lρ̄ , y 6= 0,S−Procedure),
i.e.
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∃ V (y), s1(y), s2(y)

subject to V (y)− s1(y)(ρ− y)− s2(y)(y −ρ)− yT y ∈ DSOS

s1(y), s2(y) ∈ DSOS.

We chose to build the multipliers in the state variable only and not in both state and parameter. Our candi-
date V (y) depends solely on the state variables, thus we do not need to take the parameter into account. By
only choosing multipliers in y , we keep the optimization problem small without loosing any solutions. The
DSOS constraints adapt appropriately. Furthermore, the term −yT y appears due to y 6= 0. With regard to
the stabilization of solutions, which we will discuss in 6.2.2, it is important that no slack must be added, as
the optimization problem becomes unbounded otherwise. However, the optimization problem is properly
stabilized by −yT y

Rather than solving for a V (y) here and then try if PSDpr og (−V̇ (y,w),N ∩W , f or mul ati on) is feasible,
we merge both feasibility problems. This way we obtain a single optimization problem, which searches for
existence of a feasible Lyapunov function. Again we illustrate this with the S-Procedure and the system in one
state and one parameter. We can search for a V (y) which is a suitable Lyapunov function for sublevel sets of
a cube if the following linear optimization problem is feasible

∃ V (y), s1(y), s2(y), s3(x), s4(x)

subject to V (y)− s1(y)(ρ− y)− s2(y)(y −ρ)− yT y ∈ DSOS

− V̇ (y, w)− s3(x)(ρ− y)− s4(x)(y −ρ)− s5(x) f1(w) ∈ DSOS

s1(y), s2(y), s3(x), s4(x), s5(x) ∈ DSOS.

(6.11)

This alternative way of searching for a Lyapunov function is in general stronger than the basic algorithm. But
as regularly seen earlier, this comes with an increase in problem size. As observed in 6.11, we basically double
the amount of multipliers, as they appear in both constraints for V (y) and −V̇ (y, w). For this reason this
formulation is not our first choice in encoding the problem of estimating the region of stability. However, for
problems where the basic algorithm fails, this algorithm is a possible solution. Finally, it is not possible to use
the Positivstellensatz on the PSD constrain of −V̇ (y,w), because V̇ (y,w)2 is used in this formulation and the
problem would be nonlinear in the decision variables of V (y).

6.2. IMPLEMENTATION DETAILS
In the recent section we derived the formal structure of the LP-based algorithm for maximizing the verified
region of stability. The basic algorithm is kept in a general form and does not restrict to any implementation
details. The user is free to choose a line search method for ρ and its break condition, as well as a solver with
associated options. In this section we will turn towards these points and identify the effect of selections for
those details. Furthermore, we discuss the numerical stability of the LPs and how it can be enhanced.

Throughout this section, we will illustrate the effects of using the proposed implementation details by
providing results of the stability analysis for example system 2.1. We use the S-Procedure with degree 4 DSOS
multipliers for the stability analysis, and apply bisection search which terminates if the interval is shrunk to
≤ 0.001. The resulting algorithm is shown below. In this section we refer to it as the example algorithm.

Initialize V (x) = 1
2 y2, ρ = 0

1: terminate = false;
2: while (¬ terminate) do
3: STEP 1: bisect();
4: STEP 2: if PSDpr og (−V̇

(
y,w),N (ρtry)∩W ,S−Procedure

)
is feasible then

5: ρ = ρtry;
6: else
7: ρu = ρtry;
8: STEP 3: if ρ−ρtry ≤ 0.001 then
9: terminate = true;

10: end while
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6.2.1. ON LINE SEARCH METHODS FOR ρ AND TERMINATION CRITERIA

In this subsection we concentrate on the optimization problem hidden in step 1 of the basic algorithm. This
step arose, as we split the non-convex optimization problem of optimizing ρ into two individual steps (step 1
and step 2 of the basic algorithm), which gives us a series of LPs to solve for an optimal ρ.

The first step includes the problem of choosing a new ρtry. We solve this problem by using line search
methods over the single variable ρ. Before we jump into more detail about the line search method which we
implement, it is important to note that step 1 could also be carried out as an LP. We opt for a discrete line
search methods, because the overall optimization problem is bilinear and shows isolated regions of feasibil-
ity. Therefore, we need a way to jump over the infeasible regions. Still, in order to improve optimality, both, a
continues LP and discontinuous line search, could be carried out in series. We, however, were not in the need
of this additional step.

All line search methods iterate over multiple points on a line, see [20] for a collection of methods. Many of
those methods determine the sequence of points based on the value of the objective function at preceding
points. This is a crucial limitation for our line search procedure. The optimization problem in step 2 is a
feasibility test and thus no objective is associated to it. For this reason we need to select a line search method
which produces a sequence of points independent of the value of the objective function. Two available meth-
ods which do not require an objective function are fixed-step length method and bisection search.

For the fixed-step size methods, the line of ρ is evenly spaced in steps of length h. A new ρtry is chosen
from the ordered set

ρtry = hi , i ∈Z+.

By increasing i , it is guaranteed to fulfill the condition ρtry > ρ from step 1 of the basic algorithm. As a break
condition we chose a maximum i . This break condition can also be seen as a maximum value of ρ which
we are interested in. This corresponds to the idea, that for a system we are usually interested in the stability
around a working point and not far away in states which are rarely or even never visited. The fixed-step
length method can be computationally complex, if the region of ρ, in which we are interested in, is large or
the chosen step size h is small. A way to transverse ρ on a quicker path is bisection search.

In bisection search, we split a line segment of ρ values, with an upper bound ρu and an lower bound ρl .
The split point is assigned as new ρtry, i.e.

ρtry = ρl +0.5(ρu −ρl ).

The bounds carry very important information. ρu is the smallest ρ value for which PSDpr og () was infeasible
and ρl is the largest value for which the feasibility problem was solved successfully, i.e. ρl = ρ. Therefore, it is
guaranteed to fulfill the condition ρtry > ρ. If step 2 with ρtry is feasible, then the new lower bound is ρl = ρtry,
else the new upper bound is ρu = ρtry. The algorithm terminates if the interval between the bounds is smaller
than a wanted ε, i.e. if ρu −ρl < ε is true. To start with the bisection, we initially define a bounded region
associated to the value of ρ in which we are interested. Bisection search is quicker in crossing large region of
ρ than a fixed-step size method. On the downside, it is coarser and thus might miss feasible points of ρ.

ACCOUNTING FOR NON-LINEARITY OF THE OPTIMIZATION PROBLEM

As we described in 6.1.4, the optimization problem of maximizing ρ is non-convex. For those problems it is
not guaranteed to find a global optimum, as the found optimum may be a local optimum. Translated to our
problem this means, that the maximum ρ which we will find in the optimization problem, may be smaller
than the actual largest ρ we could find. Furthermore, for non-convex problems, the found optimum depends
on the initial condition. Therefore, the maximal ρ which we find depends on the sequence of ρtry we chose.
To compensate for the dependency on initial conditions, non-convex problems are initialized multiple times
with varying initial conditions. We implement this idea by exerting a randomized perturbation on the values
of ρtry. We use the MATLAB function rand to obtain a number randomly distributed over the open interval
(0,1). We create a scalar r by using rand.

In the bisection method, the next ρtry is determined by ρtry = ρl +0.5(ρu −ρl ). The 0.5 splits the interval
between ρu and ρl into two evenly large pieces. We apply perturbation by replacing 0.5 with r and get the
new sequencing

ρtry = ρl + r (ρu −ρl ), (6.12)
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where r may change in every call. Due to the randomized bisection, the interval is not split into evenly
spaced segments, but every point within the interval may be used to split it. We will always use this version
and therefore use bisection search to refer to the perturbed version. We do not perturb the fixed step length
methods, as we only use it for showcasing examples in this chapter. However, it could easily be extended by
randomly perturbate the step length.

Before we inserted random perturbation on the selection of ρtry, every instant of running the basic algorithm
produced the same optimal ρopt. Due to the perturbation, the sequence of points vary between every instant
of the basic algorithm. This, combined with the non-convexity of the optimization over ρ and {Li (x)}, results
in a spread of found ρopt. We initiate the basic algorithm multiple times and select the larges ρopt we found.

Figure 6.2 shows the optimal value ρopt found in every instance of the example algorithm. In total we
started the algorithm 90 times, with initial bounds set to ρu = 1 and ρl = 0. As we can see, a large share of
the optimal values are close to each other around ρ = 0.15. This means, that we are likely to return a good
approximation of ρ within a few calls of the example algorithm. If we would imagine the results for a fixed-
step method, we would see that we need to crawl through all the low ρ values before we reach the region
around ρ = 0.15. For this reason, bisection search is better at exploring large spaces of ρ whereas the step
method has a finer resolution.
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Figure 6.2: Optimal ρ over instances of the example algorithm. The example algorithm is carried out 90
times. Due to the non-convexity of the optimization problem, a spread of optimal solutions is observed. We can
identify a region around ρ = 0.15 which is reached by a majority of the instances.

6.2.2. STABILITY OF NUMERICAL SOLUTIONS

In this subsection we will discuss how we can distinguish feasible and infeasible solutions in a post processing
step. Afterwards we discuss how we can modify the optimization problem such that less numerical errors
occur. In figure 6.1 we illustrated the results of searching for a maximal ρ. For simplicity we labeled the tested
points to be either feasible or infeasible. We may subdivide the infeasible label into infeasible points and
points with numerical errors. For most of the points which were labeled as infeasible, the solver (Gurobi)
did not return a solution, and thus the PSDpr og () was assumed to be infeasible. For some of those points
which we labeled infeasible, a solution was returned. We decided to reject these solutions, if they violated the
requirements of PSDness of the multiplier. In figure 6.3 we show the same line search, as shown in 6.1, but do
not reject solutions which violate the requirements. Rejecting solutions is a tough resolution, as it increases
conservatism, but it is necessary, as we can only use feasible solutions to prove stability.
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Figure 6.3: ρtry over tries without post processing without any post processing, the line is continuous.

POST PROCESSING OF SOLUTIONS TO DSOS PROBLEMS

As we mentioned, some of the solutions returned by the optimization solvers violate the requirements, which
we posed in order to enforce PSDness of the multipliers. These solutions are infeasible, although not marked
as such by the solver. In order to know if the returned multipliers work as certificates of PSDness of the
presented polynomial, we need to test feasibility of the solution. Independent of the formulation which we
choose to encode PSDness of a polynomial, the certificates need to be PSD. To remember, in the case of the
Positivstellensatz and K -S-Procedure, PSDness is encoded in PSDness of the Gram matrices of the multiplier
polynomials. For the Handelman representation the multipliers are non-negative scalars, and a PSD Gram
matrix and non-negative scalars for the Handelman representation with DSOS.

Testing if scalars are non-negative is numerically robust. Testing PSDness of a general matrix on the other
hand is not. PSDness of a matrix can be tested by computing its eigenvalues. Usually, similarity transforma-
tions and heuristics are used to transform a matrix such that the eigenvalues of the transformed matrix can
easily be read off, for example transforming the matrix into block diagonal form. All these operations may in-
duce small numerical errors. These errors are usually neglectable; however, they are not, if the eigenvalues of
the tested matrix are close to zero. In this case, a small numerical error can cause the numerical way of testing
for eigenvalues to produce wrong results. This problem is also encountered when calculating the eigenvalues
of the Gram matrices. Usually, the Gram matrices are highly sparse and have some eigenvalues equal to zero.

We can circumvent the numerical issues of eigenvalue decomposition by testing for diagonally domi-
nance of the Gram matrices. This idea follows the same reasoning as the constriction of DSOS polynomials
and its formulation as LP. By Gershgorin’s circle theorem, we know that diagonal dominance is a sufficient
condition for PSDness of a matrix. Since our matrices are usually DD, this test is mostly successful. In con-
trast to eigenvalue decomposition, Gershgorin’s circle theorem only requires addition of scalars, thus it is
numerically stable.

In our post processing step, we first check for diagonal dominance of gram matrices. If this test fails, we
use eigenvalue analysis to test if the matrix is PSD but not DD. We do so, as diagonal dominance is only suf-
ficient for PSDness and because the DSOS cone lies within the SOS cone. This means, we can find solutions,
which are infeasible to the linear DSOS program, but they are feasible to the convex SOS program. These solu-
tions do not violate the construction of the formulation which we employ to test for PSDness of polynomials.
Therefore, violating the DSOS constrain is not a criterion to reject a numerical solution but a second test on
PSDness of the gram matrices needs to be done. Depending on the optimization problem and options, we
encounter this type of error in roughly up to 5% of all solutions. As we know, SOS multipliers are a superset
to DSOS multipliers. Thus this error leads to an enhancement of the DSOS relaxation. Further studies might
take advantage of this observation by forcing the solutions of DSOS problems to the boundaries which lie
inside the SOS cone.

A solver for optimization problems returns a statement that the given optimization problem is infeasible and
no solution could be found, or a solution to the problem. We introduced a post processing test for the latter
case, which verifies that the returned solution is indeed feasible. If we verified that the solutions does not
violate any constraints, we can use it as an analytic proof for PSDness of the presented polynomial and thus
as analytic proof for stability. Even though the analysis was carried out numerically, we obtain analytically
valid certificates. This kind of analysis is very strong and sometimes we do not require the analysis to be that
strong.

For example, if the system’s dynamics are only approximated (for example through Tailor series) and/or
the stability analysis is carried out as simulation during the design process and thus is not needed to verify
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stability but rather gives a good peek into the stability properties, then a weaker form of verifying stability
might be sufficient. In those scenarios we may drop the post processing and so allow for more freedom in the
design. This results in less conservatism but also in a wrong approximation of the region of stability.

We will name the two versions of verifying stability analytical and numerical, where an analytic test of
stability requires all constraints to be inviolated and the numerical test accepts the solution given by the
solver without any post processing.

STABILIZATION OF DIAGONALLY DOMINANT SOLUTIONS

Here we discuss, how we can mitigate the numerical errors in the solutions to our optimization problems. We
need this stabilization, as it is not possible to distinguish between solutions of feasible problems which are
just slightly off due to numerical errors and falsely solved infeasible PSDpr og ().

We can circumvent this unsolvable puzzle by steering the solutions, such that less or no numerical errors
appear. The field in mathematics which concerns occurrence and propagation of errors in computation is
called numerical stability. For this reason we say stabilizing a numerical solution, when we are trying to
suppress numerical errors. We introduce ways to increase numerical stability of solutions for DD matrices.

The optimization problem specified by PSDpr og () is a feasibility problem. Feasibility problems are spe-
cial types of optimization problem which miss an objective function. As we explain in B.1.1 and C, minimiz-
ing the objective pushes the solution of an optimization problem towards the region of the decision variable
space in which the objective function is minimized. We make use of this behavior and formulate objective
functions for our feasibility optimization problems, which push the solution towards regions in the decision
variable space which are far away from critical boundaries.

A DD matrix Q ∈ Rnxn was defined as a matrix where, for every row, the diagonal element is larger then the
sum of absolute value of the off diagonal elements qi i ≥ ∑

j 6=i |qi j |. The scaled identity matrix cI, with c ≥
0, is the most DD matrix we could construct, as all its off diagonal elements are zero. This matrix has the
largest margin towards infeasible region of the solution space. Accordingly, we want to construct an objective
function which steers our DD multipliers towards the scaled identity matrix.

We want to minimize the difference between a scaled identity matrix cI and the decision matrix Q. There-
fore, we chose a c ≥ 0, and the diagonal elements qi i , ∀i ∈ {

1. . .n
}

of Q should strive towards c. This results
in the aim to minimize

∑n
i=1 |c −qi i |. The off diagonal entries qi j , ∀i ∈ {1 . . .n}, j 6= i should vanish, i.e. min-

imize
∑n

i=1

∑
j 6=i |qi j |. We can combine both minimization objectives to one objective function which forces

the solution to the center of the DD matrices:

minimize
q

n∑
i=1

|c −qi i |+
n∑

i=1

∑
j 6=i

|qi j |. (6.13)

This objective can be written as a linear program by introducing the auxiliary variables, e.g. the absolute value
is linearly expressed as |c −qi i | = ti1 + ti2 with ti1 ≥ c and ti2 ≥ c and equate c −qi i = ti1 − ti2

2. In theory, this
objective function appears to be well constructed. In practice we found it to be too cumbersome. Firstly, the
parameter c is up to be tuned by the user. The larger c is, the more robust the optimization becomes. On the
other hand, some problems might become infeasible when c is turned up to a larger number. Secondly, the
introduction of auxiliary variables increase the problem size and the additional surge for structure resulted
in many infeasible statements returned by the solver. We were only able to successfully apply this objective
to the smallest problems we ran, usually not larger than a dozen of decision variables. It is still important to
understand the reasoning behind this construction. The objective function above forces the elements to a
certain value; we can also do this in a less forceful way which proved to be more suitable.

Now we want to introduce a more subtle way to increase robustness against numerical errors. We turn to-
wards DSOS, the functions associated with the DD matrices. The diagonal entries of a DD matrix represent
even powers of monomials in the DSOS polynomials. Monomials with even powers are PSD and thus any
polynomial with only non-negative diagonal entries on its Gram matrix is DSOS. From above we know that
a DSOS constructed by z(x)T cIz(x), with z(x) a monomial vector, is the DSOS which is furthest away from
the boundaries of the DD cone. If we now ask to find a DSOS s(x), such that s(x)− zT cIz = 0, then s(x) will
be far away from the boundaries. We take this insight and implement it into the Positivstellensatz. To re-
member, in the Positivstellensatz we tested if the polynomial f0 is PSD by finding solutions to the equation

2For the use of the simplex methods, this expression needs to be augmented with the big-M method. Most solvers support this automat-
ically.
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f (x)+ g (x)2 +h(x) = 0 which was given in (3.16). We augment this formulation with our observation above
and obtain

f (x)+ g (x)2 +h(x)+zT cIz = 0. (6.14)

With the aid of the Positivstellensatz, we can also assign a geometric interpretation to zT cIz. We treat the
additional term in the same way as any other inequality constraint (because the PSD scalar c is also a (D)SOS
polynomial). Therefore, zT cIz > 0 describes a region in the domain of f0. We see, that this region is un-
bounded as all points in the domain fulfill the inequality. Thus this term does not restrict the region of the
domain over which we want to prove f0(x) to be PSD and so does not lead to any conservatism. Finally we
need to find a way how to tweak the PSD scalar c. In this formulation we can leave this to the optimization
problem. We ask the objective function to maximize c. This is a linear function and thus we can use it as objec-
tive function to the linear feasibility optimization problem in PSDpr og (). In comparison to the stabilization
in (6.13), this becomes possible as we switch the roles of decision variables and data. This augmentation is
also handed down to the relaxations of the Positivstellensatz.

Example 6.5. The derivative of V (y) = 1
2 y2 along the trajectories of the dynamical system (6.5) is V̇ (y, w) =

y
(
y2 −w y

)
. We use the augmented version of PSDpr og

(−V̇ (y, w),N ∩W ,S−Procedure
)

to establish stability.
This results in the linear optimization problem

maximize c

subject to − V̇ (x)− s1(x)(ρ− 1

2
y2)− s2(x)(1−w)− s3(x)(w −0.5)−z(x)T cIz(x) ∈ DSOS

s1(x), s2(x), s3(x) ∈ DSOS

c ≥ 0.

(6.15)

As we can see at the hand of this example, we only introduce a single new variable. From an optimization
technique point of view this new variable is a slack variable and should not effect the feasibility of the op-
timization problem. Unfortunately, we observed that in application it has negative effects and the solver
rejects the optimization problems more often as infeasible. This negative effect can be reduced by shrinking
the influence of z(x)T cIz(x). Instead of using a full ranked diagonal matrix, such as the identity matrix, we
replace it with a deficient diagonal PSD matrix. By doing so, we remove the slack effect on those decision
variables in the decision matrix Q which are at the same location as the zeros on the diagonal of the deficient
diagonal PSD matrix. For example, take a monomial vector z in the indeterminates x1 and x2, then the DSOS
polynomial described by z(x)T diag(

[
0 1 1 0 . . . 0

]
)z(x) = x2

1 + x2
2 only influences the terms in the

decision matrices which associate x2
1 and x2

2 , but it has no effect on decision variables for terms with higher
degree. This reduced augmentation was also used in [39], but the author did not connect its effect to the
Positivstellensatz. Instead of using the squares of indeterminates, one could also use the Lyapunov function,
i.e. the stabilization term becomes cV (x). This idea is used in the Drake package [40] in order to stabilize the
solutions.

Though we add an objective to PSDpr og (), we will still refer to it as feasibility problem. We do so, be-
cause it concerns finding any solution and the objective is rather an extra. Furthermore, we will always use
quadratic slack polynomials and name the variables on which we introduce slack, e.g. slack in state (vari-
ables).

REGION OF STABILITY AND REGION OF ATTRACTION

At this point we can finally clarify how the optimization problems for proving stability and asymptotical sta-
bility differ from each other.

By adding slack to the optimization problem, we invoke PDness. If the optimization problem in (6.15) is
solved with c > 0, than −V̇ (x > 0.

For this reason we speak of estimating the region of attraction when slack in the state variables is added.
If no slack is added, we can only verify stability and therefore we talk of estimating the region of stability.

6.2.3. ON SOLVERS AND SOLVER OPTIONS
We presented a list of available solver for linear programming problems in B.1.1 and C. We compared the
results on a simple PSDpr og () obtained by Grurobi [41] with those of SeDuMi [42]. We used both solver to
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solve the PSDpr og () for the example algorithm. For a total of 944 fixed ρtry values, Gurobi returned 42.9%
as correctly solved feasible problems. Sedumi on the other failed to return a single correctly solved feasible
problem out of a total of 759 fixed ρtry values. As a consequence, we focused on Gurobi.

GUROBI OPTIONS

Gurobi offers multiple options which determine how the solver will behaves while solving the feasibility prob-
lem. For a comprehensive list of options we refer to the manual. We present the effects of changing the op-
tions method and FeasibilityTol. These two options set the used solver method and the tolerance off
from feasible solutions, respectively.

Gurobi is capable of using a variation of methods to solve LPs. Among those are primal3 simplex method
and interior point method (barrier method in Gurobi). In general we prefer the simplex method over the
interior point method. At this point we want to raise the awareness of the option so switch between methods.
Importantly for us at this point, is to get a feeling on how other parameters influence the outcome of a chosen
method. To create this feeling, we compare the resulting distribution on ρopt after calling 90 iterations of the
example algorithm.

Figure 6.4 shows the distribution of ρopt values, once obtained by the simplex method (option 1) and once
obtained by the interior point method (option 2). Every cross indicates the optimal solution found by a single
instantiation of the example algorithm, and the solid lines show the average over all crosses for both options.
For easier interpretation of the results, we sort the ρopt. The graph can be interpreted as follows: pick a cross,
the corresponding ρopt value is given on the vertical axis, and the value on the horizontal axis indicates which
percentage of the instances achieved the same or a better result. A good result has both, a high average and a
step increase in the beginning (the steper the increase, the less spread the optimal values are). As we can see,
the black crosses lie above the blue crosses for every percentage. On average, the simplex method returned
an optimal ρopt = 0.117 and the interior point method ρopt = 0.091.
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Figure 6.4: Comparing ρ distribution for simplex and interior point method. The example algorithm is run
90 times with the simplex method (option 1) and the interior point method (option 2). Every cross indicates
a single optimal solution to the non-linear problem. The solutions are sorted to ease visual observation. The
solid lines represent the averages of both methods.

Next, we want to get a feeling on the sensitivity of the individual methods to stabilization via introducing

3We will only consider primal problems in this study, i.e. the optimization problem in the way how we expressed them. For this reason
we dropped the leading primal. However, every optimization problem comes with a so called dual problem. Information on optimality
and feasibility of a primal problem can also be derived from the dual.
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slack, i.e how much effect has stabilization on the individual methods. We stabilize the example by intro-
ducing slack in the state variables. The resulting ρopt distributions are shown in figure 6.5. On average, the
simplex method returned an optimal ρopt = 0.122 and the interior point method ρopt = 0.125. At the hand
of those averages we can see that both method benefit from the stabilization. This is mainly due to the fact,
that less solutions were discarded in the post processing step. Moreover, the interior point method is more
sensitive to the chosen objective function and benefites more from the stabilization. This observation fits the
general idea of the interior point method, which searches for solutions in the interior of a set. The stabiliza-
tion we chose directs the solution to a line through the center of the feasible region and thus supports the
natural behavior of the interior point method.
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Figure 6.5: Comparingρ distribution of simplex and interior point method after stabilization. The example
algorithm, with stabilization by slack in the state variables is run 90 times, with the simplex method (option
1) and the interior point method (option 2). Every cross indicates a single optimal solution to the non-linear
problem. The solutions are sorted to ease visual observation. The solid lines represent the averages of both
methods.

In this paragraph we have a brief look at the effect of changing the Gurobi parameter FeasibilityTol,
which sets the primal feasibility tolerance. All results so far have been obtained with this parameter set to its
default value of 1E−6. By decreasing this parameter, the solutions returned by Gurobi are more accurate. As
a result, less of the returned solutions are removed in post processing. This accuracy also comes at a cost,
as more trials of the feasibility test PSDpr og () well be labeled as infeasible by Gurobi. We have seen this
trade off before, when we talked about ways to stabilize solutions. In general, if we enforce more accuracy
and structure on our feasibility test, the problem becomes harder to solve and we will be handed over less
solutions which are labeled as feasible by Gurobi. On the flip side, we increase the amount of solutions which
pass the post processing. Eventually, we do not have a preference for this parameter, as the effect on the
results is very sensitive to the optimization problem. An increase in accuracy is always beneficial, until we
might push the feasibility problem over the edge to infeasibility and end up with no solutions.

This particular feature is interesting, if one is only interested in numerical feasibility, i.e. does not run any
post processing. By increasing the FeasibiliyTol, more problems become solvable for Gurobi and tasks for
which numerical feasibility is sufficient become more accessible.
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EXPERIMENTS

Finally, we are all set to use linear optimization for stability study of uncertain nonlinear dynamical systems.
The aim of this chapter is to test the novel relaxations of the Positivstellensatz and their numerical formula-
tions. We apply the new theory in a set of experiments. These experiments are the well known van der Pol
oscillator, the uncertain dynamical system from example (2.1), and a system with two states, whose stability
analysis was reported to suffer from numerical issues if solved with SOS-based approaches.

In this chapter we restrict ourselves to report the results. A discussion follows in the upcoming chapter.
All computations in this chapter have been performed on a 2.5 GHz laptop with 2 cores and 4 GB RAM.

7.1. VAN DER POL OSCILLATOR
The van der Pol oscillator is a well known problem in the field of nonlinear dynamics. We are interested in this
problem, as its stability was studied with SOS based methods [3] before, and we can use our results to com-
pare SOS and DSOS formulations. Furthermore, the results are illustratively for the effect of conservatism.
The dynamics of the van der Pol oscillator are given as

ẏ =
[

y2

(1− y2
1 )y2 − y1

]
. (7.1)

The system is known to have an isolated stable periodic solution. This type of solution is called a stable limit
cycle. All trajectories with initial conditions away from the limit cycle, spiral into it. We are interested in the
convergence of trajectories towards the limit cycle. We study this property by projecting the dynamics of the
system onto a set of transverse 1-d hyperplanes [43, 44]. The state variable in the hyperplane is called y⊥. The
projection is called transverse dynamics and is governed by the polynomial function ẏ⊥ = f (y⊥). At the hand
of the transverse dynamics we can study the convergence towards the periodic solution and thus its stability.

As explained in [39], we construct the transverse planes such that they cross in the origin. The origin is
the only unstable equilibrium point in the state space, and the optimization formulations are expected to fail
in proving stability for any region which incorporates the origin. Thus, the region around the equilibrium,
for which our optimization failed to prove stability, is an indicator for conservatism. The closer we get to the
origin, the better the yield optimum is.

In total we construct 134 transverse planes. The uneven spacing between the planes is a result of constant
time sampling. We sample the system every 0.07s. We use bisection search within every transverse plane
and set the initial region to ρ = [0,5]. We initiate an optimization for every transverse plane and maximize the
level set of a quadratic Lyapunov function V (y⊥) = y2

⊥ for which we want show that −V̇ (y⊥) ≥ 0, i.e. we want to
find the maximal ρ for which −V̇ (y⊥) is PSD over N := {

y⊥
∣∣ρ ≥ V (y⊥)

}
. Although the optimization problem

is nonlinear we only initiate the basic algorithm a single time per plane. We do so, as the results are consistent
over multiple iterations. We solve all problems with the simplex method and FeasibilityTol=1E−6.

The results for the Positivstellensatz, S-Procedure and DSOS Handelman representation are shown in
figures 7.1, 7.2 and 7.3, respectively. The red line indicates the stable limit cycle, which was obtained by

42
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numerical integration. The transverse planes are drawn as black lines. The extension of a black line shows
the region within the transverse plane in which stability of the periodic solution is proved. As done in [39], we
will compare the result on a visual basis.

We were not able to yield feasible results with the Handelman representation. Furthermore, it is not pos-
sible to use the K -S-Procedure, as the problem is only constrained by the single inequality, i.e. k can only be
raised to k ≤ 1.

For the optimization problem in Positivstellensatz format, the multipliers were raised to degree 4 and no slack
was induced. This results in an optimization problem in 156 variables. For multiplier degree smaller than 4 or
slack in the states, the problem is rejected as infeasible; therefore, the shown problem is the smallest feasible
problem we found. A single iteration of solving the optimization problem from PSDpr og () took 10−3 s per
call.

In S-Procedure format, the multiplier degree was 2 and slack in the states was induced. This results in
an optimization problem in 35 variables. The problem with degree 2 is the smallest feasible problem we
found and optimality is not raised by an increase in the degree. A single iteration of the feasibility problem
PSDpr og () took 0.5 ·10−3 s.

For the DSOS Handelman representation formulation, we raised k to 7 and no slack is applied. This results
in an optimization problem in 144 variables. We found feasible problems for k ≥ 5 which show a highly similar
behavior. We chose to present the problem with k = 7, as the optimization problem’s size is close to the one
of the Positivstellensatz formulation. A single iteration of the feasibility problem PSDpr og () took 10−3 s.
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Figure 7.1: Region of stability for van der Pol oscillator, estimated with the Positivstellensatz. This figure
shows an estimate for the region of stability, towards the limit cycle (red line), of the van der Pol oscillator.
The attracting region is visualized by the extension of transverse planes (black lines). Points within a black
line are proved to be attracted to the limit cycle. The stability analysis was expressed in the Positivstellensatz
formulation, with DSOS multipliers of degree 4 and no slack.
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Figure 7.2: Region of attraction for van der Pol oscillator, estimated with the S-Procedure. This figure shows
an estimate for the region of attraction, towards the limit cycle (red line), of the van der Pol oscillator. The
attracting region is visualized by the extension of transverse planes (black lines). Points within a black line are
proved to be attracted to the limit cycle. The stability analysis was expressed in the S-Procedure formulation,
with DSOS multipliers of degree 2 and slack in the state variables.
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Figure 7.3: Region of attraction for van der Pol oscillator, estimated with the DSOS-Handelman represen-
tation. This figure shows an estimate for the region of stability, towards the limit cycle (red line), of the van
der Pol oscillator. The stability region is visualized by the extension of transverse planes (black lines). Points
within a black line are proved to be attracted to the limit cycle. The stability analysis was expressed in the
DSOS-Handelman representation formulation, with coupling k = 7 and no slack.
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7.2. EXAMPLE 2.1
After toying with example 2.1, we make full use of the basic algorithm to analyze stability of this uncertain
nonlinear system. This example is of interest, as it displays the natural extension of the Positivstellensatz-
based formulations to uncertain systems. This experiment shows the first use of the newly derived K -S-
Procedure.

The dynamics of the example system, in one state y and one uncertain parameter w , are given by:

ẏ = y2 −w y (7.2)

where w is bounded from below by 0.5 and from above by 1. This systems has one parameter independent
equilibrium point in the origin of the state space. We are interested in its stability properties under the influ-
ence of the bounded uncertain parameter.

By linearization and LMI techniques, we obtain the Lyapunov candidate function V (y) = y2. We want to
find the maximum ρ for which −V̇ (y, w) = w y2 − y3 is PSD over the semi-algebraic set described by N ∩W ,
where N := {

y
∣∣ρ ≥ y2

}
and W := {

w
∣∣(w ≥ 0.5)∩ (1 ≥ w)

}
. We use a bisection search over ρ with initial region

of interest 0 ≤ ρ ≤ 0.5 and instantiate the optimization problem 100 times. Although we know the optimal
ρopt to be 0.25, we keep a larger initial region in order to have verification of our results; any optimal result
ρopt > 0.25 indicates errors in coding. We solve this optimization problem for DSOS multiplier degree varying
between 1-8. The solutions are stabilized by introduce slack in the system’s states. We solve all problems with
the basic algorithm, the simplex method and FeasibilityTol=1E−6.

We show the results produced by the S-Procedure, 2-S-Procedure and 3-S-Procedure in figures 7.4 and
7.5. The results only exist for degrees 4-8. For any degree lower than 4, the problems are rejected as infeasible
and for degree larger than 8 the computation is not carried out for time reasons (a single iteration with degree
8 took on average roughly 15 s). Furthermore, the same problems are solved with the interior-point method
by Gurobi. As those results are highly similar to those shown here, we omit these at this point. The interested
user may study those in D. At the same location, we provide table D.1 with all quantitative results for this
experiment.

The problems expressed in Positivstellensatz, DSOS Handelman representation and Handelman repre-
sentation format were all rejected as infeasible.

Figure 7.4 shows the evolution of the optimal ρ value ρopt (solid line) and the average ρ value ρave (dashed
line) over increasing degree in multipliers. The optimization results are indicated with bubbles for ρopt and
squares for ρave. The lines between the integer spaced results are drawn to illustratively connect results of the
same relaxation method and easy recognition of trends.

Both 2-S-Procedure and 3-S-Procedure found ρopt roughly constant at 0.232 for degrees 4-7, and they dip
to 0.192 for degree 8. Over all degrees, ρopt found by the 2-S-Procedure and 3-S-Procedure are larger than
ρopt found by the S-Procedure. The optimal ρ found by the S-Procedure is around 0.15 for degrees 4 and 5,
and increases to values around 0.2 for degrees 6-8. For all three relaxations, a decrease can be observed when
the degree is increased from 7 to 8.

We observe a decrease in the average ρave (with some plateaus in between) over increased degree. The
largest decrease can be observed for the 2-S-Procedure and the smallest decrease for the S-Procedure. All
relaxations show the same regions for decrease and plateaus. A first decrease appears when increasing the
degree from 5 to 6, and a second decrease takes place while increasing from 7 to 8. Especially for degrees
larger than or equal to 6, the 3-S-Procedure returns the largest ρave.

Figure 7.5 shows the evolution of analytical feasibility (solid line) and numerical feasibility (dashed line) over
increasing degree in multipliers. The optimization results are indicated with bubbles for analytical feasibility
and squares for numerical feasibility. The lines between the integer spaced results are drawn to illustratively
connect results of the same relaxation method and ease recognition of trends.

Over increasing degree, the analytical feasibility shows regions of decrease and plateaus. All three relax-
ation show this overall behavior, but in particular the S-Procedure experiences the largest decrease in analyt-
ical feasibility. For degree larger than or equal to 6, the 3-S-Procedure has the highest analytical feasibility.

This figure also shows the developing of the numerical feasibility. This line is of interests, as from the
difference between numerical feasibility and analytical feasibility, we can read off the effect of numerical
issues. If both feasibilities match each other, no numerical errors occurred. A growing gap between numerical
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Figure 7.4: Evolution of optimal and average ρ for experiment (2.1) over increasing multiplier degree. This
figure shows the change of ρopt and ρave over varying degree of DSOS multipliers, whereas ρopt and ρave are
indicated by bubbles and squares, respectively. Aim for the optimization problem is to find the largest sublevel
set ρ ≥ y2 for which the example system is proved to be stable. The Problem is formulated in the S-Procedure,
2-S-Procedure and 3-S-Procedure.

and analytical feasibility indicated a growth in the occurrence of numerical issues. We observe that the trend
of the numerical feasibility mirrors (at a horizontal line) the trend of analytical feasibility. By increasing the
degree, the numerical feasibility increases, i.e for increasing degree less problems are rejected as infeasible by
Gurobi. Plateaus are located in the same regions as seen for the analytical feasibility. In contrast to analytical
feasibility, the graphs for all relaxations stay close together over the degree.
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Figure 7.5: Analytical and numerical feasibility over degree for various formulations. This figure shows the
change of analytical and numerical feasibility over varying degree of DSOS multipliers, whereas analytical and
numerical feasibility are indicated by bubbles and squares, respectively. These results were obtained by carrying
out the optimization problems described in figure 7.4.
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7.3. A NUMERICAL UNSTABLE PROBLEM
This experiment deals with a certain system with two states. This problem is of interest for us, as it was
reported that findlyap, a function of the SOS based toolbox SOSTOOlS [45] was not capable of deriving a
feasible Lyapunov function. In [9] the authors used a combination of Handelman representation and interval
methods to establish stability of the system. We approach this system with the linear formulations we showed
in this study. Furthermore, this example shows the need and use of the alternative Lyapunov candidate-free
algorithm.

The system with dynamics

ẏ1 =−y3
1 + y2

ẏ2 =−y1 − y2.
(7.3)

is subject to be proven stable on the region −100 ≤ y1 ≤ 100∩−100 ≤ y2 ≤ 100 [9, Example 4.1]. The origin is
the only equilibrium point of the dynamical system and all trajectories spiral into it.

The linearized dynamics of this system are asymptotically stable. The Lyapunov candidate found by the Lya-
punov inequality is V (y) = 1.2y2

1 +0.8y2
2 −0.8y1 y2 with derivative −V̇ (y) = −0.8y2

1 +2.4y4
1 +2.4y2

2 −1.6y2 y1 −
0.8y2 y3

1 . Due to the term −0.8y2
1 this term is clearly not PSD. Therefore we choose the altered algorithm de-

rived in 6.1.5.
The PD constraint for V (y) is fixed to a 0-S-Procedure. The PSD constraint for −V̇ (y) is varied over Han-

delman representation and extended Handelman representation with k = {0, . . . ,6}, and the S-Procedure and
K -S-Procedure with k = {2,3,4} with varying degrees. For all variations we applied no slack or slack in the
states. The problem is solved with both simplex method and interior point method, and FeasibilityTol
is varied between 1E−2, 1E−6 and 1E−9. Depending on the chosen formulation and options we found the
Lyapunov functions y2

1 + y2
2 or 3y2

1 + y2
2 . Both functions prove the system stable over the given domain.

In table 7.1 we list the smallest feasible problems which we found of each individual method. For all method
and their options we found that solver method, FeasibilityTol and the objective had no influence on
the feasibility and numerical stability. The DSOS Handelman Representation generated the smallest problem
which was solved successfully.

Table 7.1: Smallest feasible problems per optimization method for experiment (7.3) Stability of the dynam-
ical system (7.3) is investigated with the altered algorithm in 6.1.5. The PDness constraint on V (y) is fixed to
0-S-Procedure and the PSDness constraint on −V̇ (y) is varied over the shown optimization formulations. Given
is the smallest problem for which each individual formulation is feasible. The size is given by the amount of
decision variables. All problems were carried out with Gurobi for all combinations of simplex or interior point
method, FeasibilityTol 1E−2, 1E−6 or 1E−9, and objective introducing no slack or slack in the state
variables. Numerical stability is independet of those solver method options and thus not listed.

k deg # variables V (y)
4-S-Procedure 4 0 130 y2

1 + y2
2

3-S-Procedure 3 1 154 3y2
1 + y2

2
2-S-Procedure 2 0 91 3y2

1 + y2
2

S-Procedure 1 0 67 y2
1 + y2

2
extended Handelman Representation 0 0 52 y2

1 + y2
2

Handelman Representation 4 0 75 y2
1 + y22

While the optimization problem can successfully be solved with low degree methods, it suffers numerical
issues if the degree is increased. In table 7.2 we list the largest feasible problems which we found of each indi-
vidual method. Every method with an increase in degree or k was numerically unstable. A special role takes
the 3-S-Procedure. This formulation shows a region in which the problem was numerically ill conditioned,
and became feasible again while increasing the degree further, until it became infeasible again. For the S-
Procedure and Handelman representation we did not find numerical problems within the range of degree
and k over which we tested for feasibility. For those methods we give the largest problems we tested.

The size of the largest problem is highly sensitive to the method and independent of solver method,
FeasibilityTol and objective.
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Table 7.2: Largest feasible problems per optimization method for experiment (7.3) Stability of the dynam-
ical system (7.3) is investigated with the altered algorithm in 6.1.5. The PDness constraint on V (y) is fixed to
0-S-Procedure and the PSDness constraint on −V̇ (y) is varied over the shown optimization formulations. Given
is the largest problem for which each individual formulation is feasible. The size is given by the amount of deci-
sion variables. Enlarging the each individual problem’s size leads to numerical issues. All problems were carried
out with Gurobi for all combinations of simplex or interior point method, FeasibilityTol 1E−2, 1E−6
or 1E−9, and objective introducing no slack or slack in the state variables. Numerical stability is independet
of those solver method options and thus not listed. The asterisk indicates problems for which we found no in-
feasible problems, and instead we report the largest problem for which the optimization problem was carried
out.

k deg # variables V (y)
4-S-Procedure 4 1 160 y2

1 + y2
2

3-S-Procedure 3 1 154 3y2
1 + y2

2
3-S-Procedure 3 4 1527 y2

1 + y2
2

2-S-Procedure 2 3 403 y2
1 + y2

2
S−Procedure∗ 1 6 1177 y2

1 + y2
2

extended Handelman Representation 3 0 86 y2
1 + y2

2
HandelmanRepresentation∗ 6 0 215 y2

1 + y2
2
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DISCUSSION

In this chapter, we discuss the results of the experiments we ran in the previous chapter. These experiments
concerned scalability of optimization problems in robust stability analysis of nonlinear systems.

Before we ran the experiments, we studied how the combination of Positivstellensatz and SOS program-
ming can be used to search for Lyapunov functions of nonlinear uncertain systems. This combination is
powerful from a theoretical point of view, yet it is rarely used due to its challenging numerical complexity.
In order to reduce the prohibitive complexity, relaxations of the Positivstellensatz are of interest. Replacing
the cumbersome SOS with DSOS programming produces tractable alternatives. As we have seen, using these
relaxations causes conservatism in the stability analysis. In this thesis we address the challenge of scaling
DSOS-based optimization problems, for their usage in robust stability analysis. We tackled this challenge
by deriving the two novel relaxations k-S-Procedure and DSOS Handelman representation. In the previous
chapter we demonstrated experiments with these novel relaxations and existing relaxations from literature.

In the first two sections of this chapter we will discuss the results from the experiments which we conducted
in the recent chapter. The results were obtained by using existing as well as novel relaxations of the Posi-
tivstellensatz. The aim of this optimization was to estimate the region of attraction of nonlinear systems. We
split the discussion of our results into two parts. In the first section, we discuss the effect of scaling on con-
servatism. In the second section, we discuss the effect of scaling on numerical stability. These effects are the
two properties which we want to trade off by scaling the optimization problem.

Finally, we close this chapter we a discussion on challenges which we did not tackle in our experiments.

8.1. THE EFFECT OF SCALING ON CONSERVATISM
The aim of scaling the optimization problem’s size is to mitigate conservatism in our stability analysis. The
experiments on the van der Pol oscillator in 7.1 and example 7.2 give us results on the effect of scaling on
conservatism.

The experiment on the van der Pol oscillator provides easily interpretable results. As we explained in 7.1, the
geometrical interpretation of this optimization problem was to fill the space around the origin. A measure
for conservatism is the region around the origin for which we could not prove stability (blank space). From a
swift look at figures 7.1, 7.2 and 7.3, we can see that the Positivstellensatz performs best, closely followed by
the S-Procedure. These results were expected, as the S-Procedure is a relaxation of the Positivstellensatz (as
long as the degree of its multipliers is smaller than those used in the Positivstellensatz). The estimate of the
region of stability, obtained by both methods, is very useful. This usefulness is a very interesting feature of
the S-Procedure. While the optimization problem of the Positivstellensatz is roughly 4.5 times larger than the
problem expressed in S-Procedure, and solving it takes twice as long, the estimated region of attractions are
both useful and of similar size.

The optimization problem of the extended Handelman representation on the other hand is merely smaller
than the one of the Positivstellensatz, but the conservatism in this method is prohibitive. Still, it shows the
advantage of the DSOS Handelman representation over the Handelman representation. We were not able to
yield a feasible solution with the Handelman representation. This is a direct consequence of the problem’s
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formulation. The transverse dynamics are of odd degree in the state variable y⊥, but the single constraint
ρ ≥ y2

⊥ on the system is of even degree. As a result, it is not possible to construct a Handelman representation
for this example. We anticipated these kind of problems and suggested the DSOS Handelman representation.
This extension adds more possibilities to construct a feasible problem.

We look at experiment 7.2 which provides us with results on the capabilities, which we are rewarded with by
scaling the parameter K in the K -S-Procedure. Aim of this problem was to estimate the region of stability for
an uncertain system. As we explained, the analytically found optimum is ρ = 0.25; thus, a smaller ρ indicates
the impact of conservatism. As shown in figure 7.4, the optimal values obtained by the 2-S-Procedure and
3-S-Procedure are considerably larger than the optimal values obtained by the S-Procedure. Especially for
smaller degrees (d < 6) the difference is large (≈ 35%). The difference in ρopt between the 3-S-Procedure and
2-S-Procedure is neglectable for degree < 8. We will discuss the decrease of ρopt for d = 8 in the following
section.

An important finding in this experiment is the infeasibility of Positivstellensatz and (DSOS)Handelman
representation. Whereas, the latter formulation may be to weak, the Positivstellensatz is too complex to be
solved.

The results of our experiments show, that the overall view on conservatism and relaxation is true. That is,
the solutions of a formulations with a small associated optimization problem are more effected by conser-
vatism than those of a formulation with a larger optimization problem. These results are true for the Posi-
tivstellensatz, k-S-Procedure and S-Procedure. Moving the formulation from the Positivstellensatz, via the
k-S-Procedure to the S-Procedure, causes an increase of conservatism in the stability analysis. These results
underline the importance of an appropriate scaling. However, we have also seen that a large optimization
problem produced by the DSOS Handelman representation bears more conservatism than smaller problem
of the S-Procedure. This result shows that not only size of the optimization problem, but also formulation is
important for the success of a stability analysis.

8.2. THE EFFECT OF SCALING ON NUMERICAL STABILITY
From our discussion on the effect of scaling on conservatism, we know that a large optimization problem is
in general favourable in order to reduce conservatism. What keeps us away from arbitrary large optimiza-
tion problems are the numerical issues which come with an increase in size. Thus we want to increase the
problems size and reduce conservatism, until we run into numerical issues. In our experiments, we only en-
countered numerical instabilities in the solution and never reached the memory capacities of our hardware.
Therefore, we will only discuss the effect of scaling with respect to numerical stability.

Figure 7.5 shows the analytical and numerical feasibility for experiment 7.2. The distance between both
curves gives the probability that a problem was solved, but the solution suffered from numerical errors. We
observe that in all three formulations, the distance grows with increasing degree. This growth is perfectly
in line with the common view of problem size and numerical stability. We can also make a second a more
interesting observation.

The largest formulation (3-S-Procedure) is the numerically most stable one, and the smallest (S-Proce-
dure) suffers most from numerical errors. Furthermore, the small S-Procedure suffers more by an increase
in multiplier degree than the larger K -S-Procedures. Whereas the analytical feasibility stays at 26.4% for the
3-S-Procedures and d = 8, it drops to 8.2% for the S-Procedures and d = 8.

The decrease in analytical feasibility also explains the decrease of ρave, while ρopt increases or is static.
With decreasing analytical feasibility, the basic algorithm is more likely to hit infeasible values of ρ and thus
returns, on average, smaller solutions for ρopt.

The results from example 7.3 display the same phenomena of increasing stability with a larger formulation
and support it quantitatively. Whereas formulations become infeasible with growing problem size, the prob-
lem size of the smallest infeasible problem varies widely between formulations. Whereas the DSOS Han-
delman representation with 86 decision is rejected due to numerical errors, the S-Procedure is feasible for a
problem with more than 1000 decision variables. All feasible and infeasible formulations were independent
of FeasibilityTol and stabilization. Most combinations of formulations and implementation details re-
sulted in solutions with numerical errors. We experienced this example, although it allows a simple solution,
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as numerical unstable. We think, this intrinsic property of the dynamical system explains the problem, that
SOS-based methods weren’t able to find suitable Lyapunov functions.

The results of our experiments support the prevalent view on scaling and numerical stability. This view is, that
problem size is a major driving force behind numerical errors. Larger optimization problems are more prone
to numerical errors than small problems. However, this is only true for two problems of the same formula-
tions. We have seen, that two optimization problems, originating from two different formulations, have two
completely different numerical stability properties, e.g. the small problem of the S-Procedure suffers more
from numerical errors than the larger K -S-Procedure. Our results reveal a second dimension. Not only the
optimization problem’s size, but also the applied formulation has significant impact on numerical stability.

8.3. UNTREATED CHALLENGES
We devote this section to those topics which we can not discuss with the results of the conducted experi-
ments. A discussion of these topics is beneficially in order to develop a better feeling for the use of the linear
relaxation in robust stability analysis.

8.3.1. LARGE DYNAMICAL SYSTEMS AND BENCHMARKING
We derived further LP-based methods and showed their successful application on three dynamical systems,
where one of those systems is subject to an uncertain parameter. All those systems in our experiments have
in common to be of small degree and size. In its origin however, the usage of LP-based formulations instead
of LMI-based formulations is incentivised by its application for large dynamical systems. To fully support the
novel formulations, one needs to carry out experiments on larger problems, whereas larger may vary vastly.
SOS-based formulations are known to handle systems with up to 10-12 states. On the other hand, the system
in experiment 7.3 has only 2 states but SOS formulations failed to prove its stability. In conclusion, the system
size in the experiments should be increased to test the capability of DSOS formulations, but simultaneously
the same experiment needs to be run with SOS formulations. At the hand of such experiments, someone can
investigate if and when DSOS formulations are advantageous to SOS formulations.

Hand in hand with testing larger systems, we suggest to test all formulations on a broad range of problems,
i.e. benchmarking the formulations. In our experiments we have seen that the success of robust stability
analysis with the aid of optimization is highly sensitive to the system’s dynamics and the applied formulation.
One way to cope with the high sensitivity is to try many different problems and investigate if the results from
benchmarking reveal a structure of problems which are amenable to stability analysis with optimization.

8.3.2. VERIFICATION AND CONTROLLER SYNTHESIS
In this study we take a dynamical system as it is, and run our algorithm in the hope that we can verify its
stability. We do so, as we handle dynamical systems as a single block which is passed to us in its current
design, i.e. the system dynamics are fixed at all points of our optimization algorithm. This pipeline of taking
a finished design and then analyzing its stability may be too strict for the numerical methods we have at
hand. Instead, one may design the dynamical system such that it can be verified with our algorithms. This is
especially easy to do, if the system is controlled. Instead of designing a controller which renders the system
plainly stable, one may design the controller which simultaneously renders the system stable and such that
its stability can be verified. The design of such a controller can be incorporated into the optimization-based
stability analysis [6]. Doing so casts the dynamics of the system as decision variables. Implementing this step
is similar to the altered algorithm, which recasts the formally fixed Lyapunov candidate into a free polynomial.

The author of this thesis believes that successful application of the methods shown in this study will re-
quire a pipeline which incorporates design into the optimization process. The downside of this approach are
control performance issues. The method shown in [6] does not incorporate any performance measurements
into the optimization. As a result, controllers synthesized with this method will reach their aim of stabiliza-
tion and verification, but they are unlikely to do so in an optimal way. Future work should be dedicated to
incorporate performance requirements into the optimization problem. If performance is guaranteed, the
usage of the formulations in this study are more likely to make their move towards real world application.
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CONCLUSION

In this study we worked towards the challenge of scaling DSOS optimization problems for robust stability
analysis of nonlinear systems. Stability is an imperative property for many dynamical systems. The possibil-
ity to study a system’s stability properties in an automated and analytic way is highly desirable. SOS-based
methods may satisfy this desire, but fail regularly due to related complexity issues. DSOS-based methods on
the other hand are less complex, but may be inappropriate due to their conservatism in the stability analysis.

We approached the problem of scaling by using DSOS and extending the S-Procedure and Handelman rep-
resentation towards the Positivstellensatz. The resulting formulations K -S-Procedure and DSOS Handelman
representation add new possibilities to choose an appropriately sized optimization problem for a given dy-
namical system. The K -S-Procedure embodies a whole set of formulations with increasing complexity, and
the parameter K can be used to adjust complexity.

In chapter 7 we demonstrated the effectiveness of the novel relaxations in numerical experiments.

We devoted chapter 6 to the numerical formulations of the optimization problems. We documented how
implementation details, such as step size in line search and tolerances in the solver options, influence the
results of the stability analysis.

In the same chapter we showed how the numerical stability of the optimization problem can be enhanced
by using the cost function of the optimization problem. Though this idea is not new to the optimization
community, it was never linked to the Positivstellensatz. We were able to show that the augmentation with
a cost function (and a corresponding term in the constraints) does not influence the theoretical feasibility of
the optimization problem underlying (D)SOS programming.

Finally, we used our knowledge of the Positivstellensatz to formulate an optimization problem which in-
cludes the search for a Lyapunov function candidate. With this formulation it is possible to attack problems
for which an initial candidate is hard to find.

As we discussed in chapter 8, the novel relaxations have the desired property of fighting conservatism, but
they also increase the optimization problem’s size. Furthermore, the results revealed that formulations with
a larger associated optimization problem may be numerically more stable than those of formulations with a
smaller optimization problem.

In 8.3 we pointed out the gaps in our study. Our experiments and results do not cover large dynamical sys-
tems. So far, we only compared the novel relaxation against existing formulations on toy examples. This limits
the proven applicability of the novel relaxations to small problems.

In the same section, we discussed that we do not fully employ the possibilities given by DSOS-based op-
timization methods. In order to use the formulations to a full extent, (controller) design of the dynamical
systems should be incorporated into the optimization problem. As we do not do so, we limit the success of
our formulations.
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A
INTRODUCTION TO POLYNOMIALS

In this literature study we will concentrate on polynomial functions. Polynomials hold important properties
such as they are continues, smooth and easily accessible for computation. A polynomial is constructed as a
sum of monomials.

Definition A.1. A monomial is a function mapping Rn → R. Given a set of positive integers {α j }n
j=1 ∈ Zn and

the variables x ∈Rn , a monomial m(x) is defined as

m(x) = xα (A.1)

where xα := xα1
1 xα2

2 . . . xαn
n . The degree of m(x) is defined as

degm(x) :=
n∑

j=1
α j . (A.2)

Using monomials as basis for polynomials, we can take linear combinations of monomials to compose poly-
nomials.

Definition A.2. A polynomial is a function mapping Rn →R. Given a set of monomials {mi (x)}m
i=1 and a set of

real scalars {ci }m
i=1 ∈R, a polynomial p(x) is defines as

p(x) :=
m∑

i=1
ci mi (x) (A.3)

and the degree of p(x) is defined as

deg p(x) := maxi
(
degmi (x)

)
. (A.4)

Next we define the set of real polynomials.

Definition A.3. Denote the set of all polynomials in n independent variables with real coefficients as Rn .
Furthermore, define the subset Rn,d ⊂ Rn containing all polynomials in n variables that have a maximum
degree of d is as Rn,d := {p(x) ∈Rn

∣∣deg p(x) ≤ d} .

Later on, we will be especially interested in non-negative polynomials, namely positive semi-definite (PSD)
polynomials.

Definition A.4. The set of PSD polynomials Pn is defined as a strict subset of Rn

Pn := {p ∈Rn : p(x) ≥ 0, ∀x ∈Rn}. (A.5)

Accordingly, define the set of Pn in n variables and maximum degree d as the intersection Pn,d :=Pn ∩Rn,d .

Though we can define Pn , we can not parametrize it. To overcome these issues we will introduce subsets of
Pn which we can parametrize and, therefore, use within optimization routines.
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B
DERIVATION OF AN LMI FOR SOS

We are interested in formulating a convex optimization problem which can be used to find a SOS decompo-
sition of a given polynomials p(x), i.e. finding

p(x) = zn,d (x)T Qzn,d (x) (B.1)

with a symmetric Q º 0, and zn,d (x) contains all monomials in n variables and maximum degree d . ap-
pendix/SOS We start by rewriting Definition (3.1) into condition (B.1) by expanding the terms si (x) in the set
description. With si (x) = cT

i zn,d (x) and ci a vector of appropriate size, we have

p(x) =
m∑

i=1
s2

i (x) (B.2)

=
m∑

i=1

(
c′i zn,d (x)

)2 (B.3)

=
m∑

i=1
zn,d (x)′ci c′i zn,d (x) (B.4)

= zn,d (x)′
m∑

i=1

(
ci c′i

)
zn,d (x) (B.5)

= zn,d (x)′Qzn,d (x). (B.6)

From this construction we can deduct the conditions of positive semi-definiteness and symmetry on Q. This
gives nessecary and sufficient conditions for a polynomials to be SOS. However, for a given polynomial p(x)
its Gram matrix is not unique and furthermore some symmetric matrices Q fulfilling p(x) = zn,d (x)′Qzn,d (x)
might not be positive semi-definite. This is illustrated with an example.

Example B.1. The polynomial p(x) = x4
1 + x2

1 is clearly positive definite and can be composed by multiple
symmetric matrices

p(x) = x4
1 +x2

1 = z1,2(x)′Q0z1,2(x) = z1,2(x)′Q1z1,2(x) (B.7)

with the matrices Q1 and Q2

Q0 =
 0 0 0

0 1 0
0 0 1

 , Q1 =
 0 0 0.5

0 0 0
0.5 0 1

 . (B.8)

Since Q0 º 0, we can derive that p(x) = x4
1 + x2

1 is a SOS polynomial. However, Q1 � 0 and we can not conclude
anything.
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B.1. SUMS-OF-SQUARES AND SEMI-DEFINITE PROGRAMMING
If the Gram matrix expressing a given SOS polynomial would be uniquely and PSD defined, we could make
direct use of LMI techniques to obtain it. In order to cast the search for a Gram matrix as an optimization
problem, we need to understand which set of matrices hold for p(x) = zn,d (x)′Qzn,d (x). We reuse the example
above.

Example B.2. We pick the bases of symmetric matrices {Ei } of appropriate size. With these bases we can rewrite
x4

1 +x2
1 = z1,2(x)′Qz1,2(x) into x4

1 +x2
1 = z1,2(x)′

(∑6
i=1 qi Ei

)
z1,2(x) where qi are scalars

x4
1 +x2

1 = z1,2(x)′
 q1 q4 q6

q4 q2 q5

q6 q5 q3

z1,2(x). (B.9)

Expanding this and equate the coefficients yields

x4
1 +x2

1 = q1 +2q4x + (q2 +2q6)x2 +2q5x3 +q3x4. (B.10)

By comparing the monomial’s coefficients we observe that any solution with q3 = 1, q2 +2q6 = 0 and q1 = q4 =
q5 = 0 holds. Therefore, the solution is not unique. Furthermore, we can tune q2 and q6 in such a way that they
do not contribute to the equation, e.g. q2 = −1 and q6 = 0.5. Collapsing this condition into matrix notation
gives us

0 = z1,2(x)′Q2z1,2(x) (B.11)

with the matrix Q2

Q2 =
 0 0 0.5

0 −1 0
0.5 0 0

 . (B.12)

Reviewing example B.1 shown in the recent subsection, we see that Q1 = Q0 +Q2. With this insight we can
construct the matrices for which x4

1 + x2
1 = z1,2(x)′Qz1,2(x) holds to be Q = Q0 +λQ2 for any scalar λ. For this

particular example we showed that the Gram matrix is a set affine in Q2.

More generally, given a polynomial p(x) ∈Rn,2d and a symmetric positive semidefinite matrix Q0 such that

p(x) = zn,d (x)′Q0zn,d (x) (B.13)

and the set of symmetric positive semidefinite matrices {Qi } such that

0 = zn,d (x)′Qi zn,d (x), (B.14)

then the set of matrices Q for which p(x) = zn,d (x)′Qzn,d (x) holds is given as

Q := {
Q0 +

∑
λi Qi |λi ∈R

}
. (B.15)

The set description for Q is affine in the matrices {Qi } and together with the condition Q0 +∑
λi Qi º 0 this

reassembles an linear matrix inequality (LMI). Hence, this allows to express the search for a λ as a feasibility
check in SDP [2].

B.1.1. SEMIDEFINITE PROGRAMMING
SDP is the optimization problem hidden in all formulations based on SOS. To give a complete picture of SOS
we want to make the reader familiar with the essentials of SDP. A semidefinite program is a convex optimiza-
tion program of the form

min
q

cTλ

subject to F0 +
n∑

j=1
λ j F j ≥ 0

(B.16)
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where λ ∈ Rn is a vector containing the decision variables, and c ∈ Rn and the n + 1 symmetric matrices
F j ∈ Rn×n are known coefficients of the problem. Object of this convex optimization problem is to find the
minimum of the objective function linear inλ, and subject to the constraints F0+∑n

j=1λ j F j ≥ 0. This type of
constrain is called linear matrix inequality (LMI). An LMI usually appears solely, i.e. a single LMI. This is due
to the structure of LMIs. We can place multiple LMIs on the diagonal of a matrix. For example, given two LMIs
F0+∑n

j=1λ j F j ≥ 0 and H0+∑n+m
j=n+1λ j H j ≥ 0 we can construct the single LMI which preserves symmetry and

positive definiteness [
F0 +∑n

j=1λ j F j 0

0 H0 +∑n+m
j=n+1λ j H j

]
≥ 0. (B.17)

Many SDP problems in engineering appear without specified objective function, i.e. the vector c is filled
with zeros. These problems do not concern finding the minimum of an objective function, but only concern
the existence of a feasible decision variableλ, such that all LMIs are satisfied. For this reason those problems
are named feasibility SDPs or simply LMIs. We express feasibility SDPs as

∃ λ

subject to F0 +
n∑

j=1
λ j F j ≥ 0.

(B.18)

SDPs became of interest with the generalization of interior point methods to solve SDP optimization prob-
lem. Interior point methods showed polynomial time complexity are [21]. Interior point methods can solve
both SDPs and LMIs without any additional configuration, as they do not require an objective function.

Most SDP problems to not immediately appear in the standard form of (B.16). Fortunately, there are many
top level optimization packages available, such as YALMIP [46] and CVX [47], which automatically transform
a presented optimization problem and pass it to a SDP solver. Multiple SDP solver are available, both freely
(see for example SeDuMi [42], SDTP3 [48]), and commercially (see for example Mosek [49]).

B.1.2. AN LMI TEST FOR SOS
Now, we express the set description of Q in equation (B.15) as SDP feasibility test, i.e. as LMI

∃ λ

subject to Q0 +
∑
λi Qi º 0,

(B.19)

where we get Q0 by equating (B.13) and Qi by equating (B.14). This can be processed automatically and is
already available in SOS frameworks such as YALMIP [50], SOSTOOLS [45] and SPOTLESS [40].
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LINEAR PROGRAMMING AND DSOS

Linear programming (LP) concerns finding the minimum of an objective function linear in the decision vari-
able q ∈Rn over a domain constrained by inequalities linear in q. The problem in standard form reads as

minimize
q

cT q

subject to Aq ≥ b,
(C.1)

where c ∈Rn , A ∈Rm×n and b ∈Rm are known coefficients of the problem [51]. There exist multiple standard
formulations of this problem. All of those forms can be transformed into each other. The motivation behind
the choice of a particular standard form is to present the problem such that a certain solver can be used. The
form we present is solved with interior-point methods, which we already know from SDP. Indeed, interior-
point methods were originally designed for LPs and generalized to SDPs. The standard form presented in [52]
is expressed in such a way that it is amenable to be solved with the Simplex method. Thought the Simplex
method is not free of numerical issues, it showed to perform more stably regarding these issues then interior
point methods. However, the solver’s time complexity grows non-polynomial with q in worst case [53] and
polynomial time on average [54]. Some solver software, such as GUROBI, implement multiple solving meth-
ods. Furthermore, these packages accept a certain way of expressing an LP and rewrite the expression into a
different form automatically when switching to another solution method. Linear programs can also be cast
as a feasibility problem. In this case the objective function is set to zero, i.e. c = 0 and the feasibility linear
program is given by

∃ q

subject to Aq ≥ b.
(C.2)

Without going into solver methods to deeply, we need to say that this type of feasibility problem is not
amenable for the simplex method. The simplex method requires an objective function. If no such func-
tion is provided, a single line of the linear constraints is used and minimized. Since the constraints need to
be fulfilled, the objective function is defined on the domain. By minimizing this objective (constraint) the
solution will be on the line of the constraint chosen to be the objective function.

We opted for the given standard form as it connects naturally to SDP in an observable manner and thus
eases us to see the advantages and downsides of LP compared to SDP. Linear programming is a special case
of SDP. We can express the semi-algebraic set Aq ≥ b as the following LMI

F0 +
n∑

j=1
q j F j ≥ 0 (C.3)

where F0 = diag(−b), F j = diag(a j ), ∀ j = 1, . . . ,m and a j is the j th column vector of A. In this case, the re-
sulting LMI is a diagonal matrix. For SDP we only required the resulting LMI to be symmetric. At the hand
of this comparison, we can see that LP is a special case of SDP. This also means, that switching from SDP to
LP inserts some conservatism into our optimization procedure, as some representations which were SDP but
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not LP are lost. In a geometric interpretation we reduce the domain of q, which solves the problem, from
a convex cone (in SDP) to a convex polytope (in LP). Since the objective function is also linear, this implies
that the solution to the optimization problem is located at a vertex if the polytope spanned by Aq ≥ b. This
insight reduces the domain in which we search from a volume to a finite number of point. This idea is used in
the Simplex method. Further, it also explains the exponential time complexity of the simplex method as the
amount of vertexes growths exponentially with q.

C.1. AN LP TEST FOR DSOS
The construction of the LP test for DSOS polynomials is similar to the construction of the SDP test for SOS
polynomials in (3.17). We can cast the problem of finding a symmetric DD Q which fulfills the equation
p(x) = zn,d (x)T Qzn,d (x) as:

∃ {λ}

subject to Q = Q0 +
∑
λi Qi

qi i ≥
∑
j 6=i

|qi j |,
(C.4)

where q are the entries of the symmetric decision matrix Q, the fixed symmetric matrices Q0 and Qi are
obtained by equating p(x) = zn,d (x)T Q0zn,d (x) and 0 = zn,d (x)T Q0zn,d (x) respectively.



D
QUANTITATIVE RESULTS FOR EXPERIMENT

7.2

This appendix includes quantitative results for experiment 7.2.

Table D.1: These are quantitative results for the optimization on experiment 7.2, solved with the simplex
method. These results were obtained by carrying out the optimization problems described in figure 7.4.

ρopt ρave # eval Feasana[%] Feasnum[%] t [s]
1-S-Procedure, degree 4 multiplier 0.151 0.121 948 45.7 53.5 394.4
1-S-Procedure, degree 5 multiplier 0.151 0.120 945 47.5 56.9 403.9
1-S-Procedure, degree 6 multiplier 0.198 0.079 743 29.1 78.5 371.1
1-S-Procedure, degree 7 multiplier 0.198 0.078 747 28.5 76.2 375.4
1-S-Procedure, degree 8 multiplier 0.192 0.019 693 8.2 88.0 633.7
2-S-Procedure, degree 4 multiplier 0.232 0.208 1005 50.4 55.7 769.4
2-S-Procedure, degree 5 multiplier 0.232 0.207 1052 52.1 56.9 799.5
2-S-Procedure, degree 6 multiplier 0.234 0.098 772 36.4 81.5 760.6
2-S-Procedure, degree 7 multiplier 0.234 0.101 714 36.7 80.0 757.2
2-S-Procedure, degree 8 multiplier 0.214 0.038 755 19.5 87.3 1531.1
3-S-Procedure, degree 4 multiplier 0.232 0.204 1017 51.7 55.1 885.9
3-S-Procedure, degree 5 multiplier 0.232 0.208 1019 49.5 51.4 895.8
3-S-Procedure, degree 6 multiplier 0.235 0.115 824 38.5 79.5 1030.8
3-S-Procedure, degree 7 multiplier 0.234 0.114 797 40.4 79.4 986.3
3-S-Procedure, degree 8 multiplier 0.220 0.076 765 26.4 84.3 2027.9
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Figure D.1: Evolution of optimal and average ρ for experiment (2.1) over increasing multiplier degree with
barrier method. This figure shows the change ofρopt andρave over varying degree of DSOS multipliers, whereas
ρopt and ρave are indicated by bubbles and squares, respectively. Aim for the optimization problem is to find
the largest sublevel set ρ ≥ y2 for which the example system is proofed to be stable. The Problem is formulated
in the S -Procedure, 2-S -Procedure and 3-S -Procedure.
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Figure D.2: Analytical and numerical feasibility over degree for various formulations with barrier method.
This figure shows the change of analytical and numerical feasibility over varying degree of DSOS multipliers,
whereas analytical and numerical feasibility are indicated by bubbles and squares, respectively. These results
were obtained by carrying out the optimization problems described in figure 7.4.

Table D.2: These are quantitative results for the optimization on experiment 7.2. with barrier method.
These results were obtained by carrying out the optimization problems described in figure 7.4.

ρopt ρave # eval Feasana[%] Feasnum[%] t [s]
1-S-Procedure, degree 4 multiplier 0.151 0.115 929 45.4 57.2 392.2
1-S-Procedure, degree 5 multiplier 0.151 0.117 923 46.6 58.8 394.0
1-S-Procedure, degree 6 multiplier 0.199 0.087 759 30.2 76.2 379.5
1-S-Procedure, degree 7 multiplier 0.198 0.084 744 32.7 75.5 380.2
1-S-Procedure, degree 8 multiplier 0.189 0.027 759 12.5 84.8 746.8
2-S-Procedure, degree 4 multiplier 0.233 0.219 1075 48.7 50.3 800.5
2-S-Procedure, degree 5 multiplier 0.232 0.212 1031 48.5 50.2 792.6
2-S-Procedure, degree 6 multiplier 0.233 0.110 848 37.4 79.7 891.4
2-S-Procedure, degree 7 multiplier 0.234 0.116 837 41.3 77.8 928.8
2-S-Procedure, degree 8 multiplier 0.215 0.059 740 26.1 85.1 1473.6
3-S-Procedure, degree 4 multiplier 0.232 0.207 1046 51.9 54.9 917.9
3-S-Procedure, degree 5 multiplier 0.232 0.212 1084 49.9 51.7 962.3
3-S-Procedure, degree 6 multiplier 0.234 0.128 798 44.2 74.1 985.1
3-S-Procedure, degree 7 multiplier 0.234 0.132 830 43.9 73.6 1038.9
3-S-Procedure, degree 8 multiplier 0.227 0.081 767 27.1 86.3 2224.3



E
CODE FOR CONDUCTED EXPERIMENTS IN

CHAPTER 7

The following sections provide the code which was used to obtain the results which are presented in 7. The
code relies on the utilities which can be found in F. All code shown in this chapter can be found under
https://github.com/FischerGundlach/masterThesis/tree/master/Thesis/Examples

E.1. CODE FOR VAN DER POL OSCILLATOR IN 7.1
The code represented in this section is used to obtain the results for the experiment on the Van der Pol oscil-
lator. The reasoning for implementation details is given in 7.1.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% main file for computing and drawing transverse dynamics of %
% van−der−Pol ossicaltor %
% %
% by M. Fischer−Gundlach, Delft 2017 %
% %
% the equations of motion are implemented in the file eom.m %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%close all;
close all; clear all; clc;
disp('intialization');

EOM = @eom;

%% draw phase portrai
disp('draw phase portrai')

fig = phasePortrai2D(EOM);
%% this block was used once to determine an initial condition on the limit
% cycle and the time of period
% disp('determine periodicity and solution')
% Y0 = [2; 0.2036];
% tspan = [0 40];
% [T, Y, TE, YE, IE] = periodicity(Y0,tspan);

%% draw a trajectorie for the given initial values and timespan
disp('calculate and draw periodic solution')

%these were obtained by the periodicity function above
Y0 = [2.003602513881589; 0.152170514312629];
tspan = [0, 13.326573700340958/2];

hold on
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[t,y] = drawTrajectory(EOM,Y0,tspan);
save('trajectory','t','y');

%% setting options
disp('Setting the options for ROAprog.')

options.feasibilityTest = 'analytical';
% options.feasibilityTest = 'numerical';

%setting solver options
options.solver = @spot_gurobi;
params.FeasibilityTol = 1E−6; %default 1E−6
params.outputFlag = 0;
options.solverOptions = params;

options.method = @SprocedureProg; options.methodOptions.deg = 3; %works fine
% options.method = @PsatzProg; options.methodOptions.deg = 4;
% options.method = @HandelmanAndDSOSProg; options.methodOptions.deg = 5;
% options.method = @HandelmanProg; options.methodOptions.deg = 7;
params.method = 0; %default 0 (primal simplex)
options.objective = '0';

% params.method = 1;
% options.objective = '0';

%% calculate transverse dynamics
disp('calculate transverse dynamics')

tau = [0:0.05:tspan(end)];
%tau = [0:0.07:tspan(end)]; %this one was good!
x_interp = interp1(t,y,tau);
rho_table_bisect = zeros(length(tau),1);
rho_table_step = zeros(length(tau),1);

t_start = clock;
global counter
counter = 0;
for i=1:length(tau)
%i=1; %LOOP FOR TAU

x_transverse = msspoly('x_t',1);
parameters = [];

[dx_transverse] = transverseDynamics(EOM,x_interp(i,:),...
tau(i),x_transverse);

dx_transverse = removeConstant(dx_transverse);

inequalties = [];
equalities = [];

system = dynamicalSystem(dx_transverse,inequalties,equalities,...
x_transverse,parameters,x_transverse.'*x_transverse);

%% create initial Lyapunov function for (linearized) system
% disp('create initial Lyapunov function')
%
% V = 0.5*(x_transverse.'*x_transverse);
%% find maximum level set of V for which system is stable
disp('find maximum level set of V for which system is stable')

%% run ROAprog

%bisction search
options.rho = [0 5];
options.lineSearchMethod = 'bisect';
options.lineSearchMethodOptions = 'random';

disp('Running the ROAprog.')

[solution,options] = ROAProg(system,options);
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rho_table_bisect(i) = solution.rho;

% %line search
% options.rho = [rho_table_bisect(i) (norm(x_interp(i,:)))^2+0.1];
% options.lineSearchMethod = 'step';
% options.lineSearchMethodOptions = 'determined';
%
% [solution,options] = ROAProg(system,options);
% rho_table_step(i) = solution.rho;

%% draw transversal plains
disp('draw transversal plains')

length = sqrt(rho_table_bisect(i));
drawTransversalPlain2D(EOM,tau(i),x_interp(i,:),length,'k');

% length = sqrt(rho_table_step(i));
% drawTransversalPlain2D(EOM,tau(i),x_interp(i,:),length,'k');

end

% savefile = strcat(func2str(options.method),num2str(options.methodOptions.deg),'.tex');
% matlab2tikz('filename',savefile,'showInfo', false);
time = etime(clock,t_start)
counter

function dY = eom(T,Y,Y0)
Y1 = Y(1);
Y2 = Y(2);

%% van der pol osscillator
mu = 1;

Y1dot = Y2;
Y2dot = −Y1+mu*(1−Y1^2)*Y2;

dY = [Y1dot; Y2dot];

function [fig] = phasePortai2D(eom,options)

if nargin < 2
options = [];

end

%f = @(t,X) [X(2); −X(1)];

%creates two meshes with spacing of the given linespace
statespacing = linspace(−3,3,20);
[x1,x2] = meshgrid(statespacing,statespacing);

%in these variables the derivatives at the meshgrid points are stored
x1dot = zeros(size(x1));
x2dot = zeros(size(x2));

t=0; %this line is needed for time invariant systems
for i = 1:numel(x1)

xdot= eom(t,[x1(i); x2(i)]);
x1dot(i) = xdot(1);
x2dot(i) = xdot(2);

end

% %this block scales the derivatives to unitsize −OPTIONAL!
% for i = 1:numel(x1)
% Vmod = sqrt(x1dot(i)^2 + x2dot(i)^2);
% x1dot(i) = x1dot(i)/Vmod;
% x2dot(i) = x2dot(i)/Vmod;
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% end

quiver(x1,x2,x1dot,x2dot,'r'); figure(gcf)
xlabel('x_1')
ylabel('x_2')
axis tight equal;

fig = gcf;

function [T, Y, TE, YE, IE] = periodicity(Y0,tspan)
%periodicity is used to finde points on periodic solution and period
%duration

OPTIONS = odeset('Events',@eventPeriodicity,'AbsTol',10^−8,'RelTol',10^−8);
%time steps are spaced for easier handeling in other programms
[T, Y, TE, YE, IE] = ode45(@eom,tspan,Y0,OPTIONS,Y0);
end

function [ts,ys] = drawTrajectory(eom,x0,tspan)
%time steps are spaced for easier handeling in other programms
[ts,ys] = ode45(eom,[tspan],x0);
plot(ys(:,1),ys(:,2),'r')
end

function [z,PI] = transversalPlains2D(system,tau,x)
%TRANSVERSE constructs a plain transversal to the dynamics of system at
% the point x,tau
% the notation is the same as in the literature study:
% z is a vector orthogonal to the transverse surface
% eta_n are vectors of the global coordinate system, eta_1 = [1 0 .. 0].'
% zeta_n are the vectors of the transverse system, whereas zeta_1 is
% parallel to z and the other zetas span the transverse plane
% R is the roation matrix from global to transverse incl. normal vector z
% PI is the projection matrix from global into transverse

z_vectors = zeros(2); %warning('works only for planar dynamics')
%z = system(tau,x)/norm(system(tau,x)); %the surface is orthogonal to the trajectory
z = (1/norm(x))*[−x(2);x(1)]; %the surface is radial to the center
z_vectors(:,1) = [z(1); z(2)]; %transverse dynamics
z_vectors(:,2) = [−z(2); z(1)];

eta_vectors = eye(length(z)); %vectors of global coordinate system, eta_i = eta_vectors(:,i)

%setting up the rotation matrix PI

% phi = −acos( (z_vectors(:,1).'*eta_vectors(:,1))/...
% (norm(z_vectors(:,1))*norm(eta_vectors(:,1))));
% R = [cos(phi) −sin(phi);
% sin(phi) cos(phi)]

R = zeros(length(z));
for i=1:length(z)

for j=1:length(z)
R(i,j) = z_vectors(:,j).'*eta_vectors(:,i);

end
end

% constructing projection matrix
%vectors of the transv. coord. system zeta_i = zeta_vectors(:,i)
zeta_vectors = zeros(length(z));
for i=1:length(eta_vectors)

zeta_vectors(:,i) = R*eta_vectors(:,i);
end

PI = zeta_vectors(:,2:end).';
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end

function [dx_transverse] = transverseDynamics(system,x,tau,x_transverse)
%transversalDynamics for a transversal pertubation the dynamics are
%calculated
% the notation is the same as in the literature study:
% z is a vector orthogonal to the transverse surface
% PI is the projection matrix from global into transverse

[z,PI] = transversalPlains2D(system,tau,x);

x = x.'; %in the following functions x is a column vector
% we fixed z=f(x), therefore PI is independet of tau.
dtau_nom = z.'*system(tau,(x+transp(PI)*x_transverse));
dtau_den = z.'*system(tau,x);
dtau = dtau_nom/dtau_den;

dx_transverse_sum1 = PI*system(tau,(x+transp(PI)*x_transverse));
dx_transverse_sum2 = −PI*system(tau,x)*dtau;
dx_transverse = dx_transverse_sum1 + dx_transverse_sum2;
end

function drawTransversalPlain2D(system,tau,x,lengthOfPlain,color)
%DRAWTRANSVERSELPLAIN draws a transversal plain to the point x,tau

if nargin < 5
color = 'k';

end

[¬,PI] = transversalPlains2D(system,tau,x);
plain = PI.';

%creating two points of transversal plain and draw line between them
drawP1 = x.'−lengthOfPlain*plain;
drawP2 = x.'+lengthOfPlain*plain;
hold on
plot([drawP1(1) drawP2(1)],[drawP1(2) drawP2(2)],...

color,'linewidth',1.5,'MarkerSize',10);
end

E.2. CODE FOR EXAMPLE 1 IN 7.2
The code represented in this section is used to obtain the results for the experiment one example 1. The
reasoning for implementation details is given in 7.2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% main file for comparing implementatioin details on example1 %
% %
% by M. Fischer−Gundlach, Delft 2017 %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

close all; clear all; clc;

addpath(['C:\Users\fisch\OneDrive\Studies\Master Thesis\Code\'...
'Thesis\Examples\example1\uncertainCompareOptions\util'])

%% setting up the systems dynamics
disp('Setting up the dynamical system.')
% initiate polynomials
x = msspoly('x',1); %state variables
a = msspoly('a',1); %parameters
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dx = x^2−a*x;
a_u = 1; a_l = 0.5; %parameter bounds
inequalities = [a−a_l, a_u−a];
equalities = [];

V = x^2;

system = dynamicalSystem(dx,inequalities,equalities,x,a,V);

%%iterate through options
disp('Iterate over options')

for method_counter = 1:1
for method_options_counter = 4:8

for solver_method_counter = 1:2
for FeasibilityTol_counter =2:2 %1:3

for objective_counter = 2:2 %1:3

counter.method = method_counter;
counter.method_options = method_options_counter;
counter.solver_method = solver_method_counter;
counter.FeasibilityTol = FeasibilityTol_counter;
counter.objective = objective_counter;

[options,¬] = optionsByCounter(counter);

subMain(system,options,counter)
end

end
end

end
end

function [options,string] = optionsByCounter(counter)
%%

options.solverOptions.outputFlag = 0;
options.rho = [0 0.5];
options.lineSearchMethod = 'bisect';
options.lineSearchMethodOptions = 'random';
options.feasibilityTest = 'analytical';
options.solver = @spot_gurobi;

%%
switch counter.method

case 1
options.method = @PsatzProg;
string.method = 'PSatz';

case 2
options.method = @kSprocedureProg;
options.methodOptions.k = 2;
string.method = '2Sprocedure';

case 3
options.method = @kSprocedureProg;
options.methodOptions.k = 3;
string.method = '3Sprocedure';

case 4
options.method = @SprocedureProg;
string.method = 'Sprocedure';

case 5
options.method = @HandelmanAndDSOSProg;
string.method = 'HandelmanAndDSOS';

case 6
options.method = @HandelmanProg;
string.method = 'HandelmanProg';

end

%%
switch counter.method_options

case 2
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options.methodOptions.deg = 2;
string.deg = '2';

case 3
options.methodOptions.deg = 3;
string.deg = '3';

case 4
options.methodOptions.deg = 4;
string.deg = '4';

case 5
options.methodOptions.deg = 5;
string.deg = '5';

case 6
options.methodOptions.deg = 6;
string.deg = '6';

case 7
options.methodOptions.deg = 7;
string.deg = '7';

case 8
options.methodOptions.deg = 8;
string.deg = '8';

end

%%
switch counter.solver_method

case 1
options.solverOptions.method = 0;
string.solver_method = 'simplex';

case 2
options.solverOptions.method = 1;
string.solver_method = 'barrier';

end

%%
switch counter.FeasibilityTol

case 1
options.solverOptions.FeasibilityTol = 1E−9;
string.FeasibilityTol = '1E−9';

case 2
options.solverOptions.FeasibilityTol = 1E−6;
string.FeasibilityTol = '1E−6';

case 3
options.solverOptions.FeasibilityTol = 1E−2;
string.FeasibilityTol = '1E−2';

end

%%
switch counter.objective

case 1
options.objective = '0';
string.objective = '0';

case 2
options.objective = 'Lyap';
string.objective = 'Lyap';

case 3
options.objective = 'indets';
string.objective = 'indets';

end
end

function subMain(system,options,counter)

%preloop assignments and allocation
i_end = 100;
solution_table(1:i_end) = cell(i_end,1);

global evaluation feasible infeasible slack DSOS eig DSOSeig
evaluation = 0; feasible = 0; infeasible = 0; slack = 0;
DSOS = 0; eig = 0; DSOSeig = 0;
time_table = zeros(i_end,1);
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%we expect each run takes 1+log2(1000) ¬11 iterations in total we want 100
for i=1:i_end

counter
i
t_start = clock;
[solution_table{i},¬] = ROAFAILUREProg(system,options);
time_table(i) = etime(clock,t_start);

end

[¬,string] = optionsByCounter(counter);
matFile = strcat('data/',string.method,string.deg,string.solver_method,...

string.FeasibilityTol,string.objective,'.mat');
save(matFile,'time_table','solution_table',...

'evaluation','feasible','infeasible','slack','DSOS','eig','DSOSeig');
end

function table = extractResults(optionsCell)

[¬,string] = optionsByCounter(optionsCell{1});
matfile = strcat('data/',string.method,string.deg,string.solver_method,...

string.FeasibilityTol,string.objective,'.mat');
load(matfile);
table.rho_table = zeros(length(solution_table),length(optionsCell));
table.rho_ave = zeros(1,length(optionsCell));
table.rho_max = zeros(1,length(optionsCell));

table.evaluation = zeros(1,length(optionsCell));
table.feasibility_numerical = zeros(1,length(optionsCell));
table.feasibility_analytical = zeros(1,length(optionsCell));

table.time = zeros(1,length(optionsCell));

% table.infeasible = zeros(1,length(optionsCell));
% table.DSOSeig = zeros(1,length(optionsCell));
% table.slack = zeros(1,length(optionsCell));
% table.feasible = zeros(1,length(optionsCell));
% table.DSOS = zeros(1,length(optionsCell));

for i=1:length(optionsCell)
[¬,string] = optionsByCounter(optionsCell{i});
matfile = strcat('data/',string.method,string.deg,string.solver_method,...

string.FeasibilityTol,string.objective,'.mat');
load(matfile);

for j=1:length(solution_table)
table.rho_table(j,i) = solution_table{j}.rho;

end

table.rho_ave(i) = mean(table.rho_table(:,i));
table.rho_max(i) = max(table.rho_table(:,i));

table.evaluation(i) = evaluation;
table.feasibility_numerical(i) = 100*(1−(infeasible/evaluation));
table.feasibility_analytical(i) = ...

100*(1−(infeasible+DSOSeig+slack)/evaluation);

table.time(i) = sum(time_table);

% table.infeasible(i) = infeasible;
% table.DSOSeig(i) = DSOSeig;
% table.slack(i) = slack;
% table.feasible(i) = feasible;
% table.DSOS(i) = DSOS;

end
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end

function evalAndPlot(optionsCell)
close all; clear all; clc;
%% setting the options
% constant over ALL solver_method, FeasibilityTol, objective
solver_method = 1; %1: simplex, 2: barrier
FeasibilityTol = 2; %1e−6
objective = 2; %Lyap

% option 1
method = 1; %Sprocedure

%option 1.1
counter11.method_options = 4;
counter11.method = method;
counter11.solver_method = solver_method;
counter11.FeasibilityTol = FeasibilityTol;
counter11.objective = objective;
optionsCell{1} = counter11;

%option 1.2
counter12.method_options = 5;
counter12.method = method;
counter12.solver_method = solver_method;
counter12.FeasibilityTol = FeasibilityTol;
counter12.objective = objective;
optionsCell{2} = counter12;

%option 1.3
counter13.method_options = 6;
counter13.method = method;
counter13.solver_method = solver_method;
counter13.FeasibilityTol = FeasibilityTol;
counter13.objective = objective;
optionsCell{3} = counter13;

%option 1.4
counter14.method_options = 7;
counter14.method = method;
counter14.solver_method = solver_method;
counter14.FeasibilityTol = FeasibilityTol;
counter14.objective = objective;
optionsCell{4} = counter14;

%option 1.5
counter15.method_options = 8;
counter15.method = method;
counter15.solver_method = solver_method;
counter15.FeasibilityTol = FeasibilityTol;
counter15.objective = objective;
optionsCell{5} = counter15;

% option 3
method = 2; %2Sprocedure

%option 3.1
counter31.method_options = 4;
counter31.method = method;
counter31.solver_method = solver_method;
counter31.FeasibilityTol = FeasibilityTol;
counter31.objective = objective;
optionsCell{6} = counter31;

%option 3.2
counter32.method_options = 5;
counter32.method = method;
counter32.solver_method = solver_method;
counter32.FeasibilityTol = FeasibilityTol;
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counter32.objective = objective;
optionsCell{7} = counter32;

%option 3.3
counter33.method_options = 6;
counter33.method = method;
counter33.solver_method = solver_method;
counter33.FeasibilityTol = FeasibilityTol;
counter33.objective = objective;
optionsCell{8} = counter33;

%option 3.4
counter34.method_options = 7;
counter34.method = method;
counter34.solver_method = solver_method;
counter34.FeasibilityTol = FeasibilityTol;
counter34.objective = objective;
optionsCell{9} = counter34;

%option 3.5
counter35.method_options = 8;
counter35.method = method;
counter35.solver_method = solver_method;
counter35.FeasibilityTol = FeasibilityTol;
counter35.objective = objective;
optionsCell{10} = counter35;

% option 2
method = 3; %3Sprocedure

%option 2.1
counter21.method_options = 4;
counter21.method = method;
counter21.solver_method = solver_method;
counter21.FeasibilityTol = FeasibilityTol;
counter21.objective = objective;
optionsCell{11} = counter21;

%option 2.2
counter22.method_options = 5;
counter22.method = method;
counter22.solver_method = solver_method;
counter22.FeasibilityTol = FeasibilityTol;
counter22.objective = objective;
optionsCell{12} = counter22;

%option 2.3
counter23.method_options = 6;
counter23.method = method;
counter23.solver_method = solver_method;
counter23.FeasibilityTol = FeasibilityTol;
counter23.objective = objective;
optionsCell{13} = counter23;

%option 2.4
counter24.method_options = 7;
counter24.method = method;
counter24.solver_method = solver_method;
counter24.FeasibilityTol = FeasibilityTol;
counter24.objective = objective;
optionsCell{14} = counter24;

%option 2.5
counter25.method_options = 8;
counter25.method = method;
counter25.solver_method = solver_method;
counter25.FeasibilityTol = FeasibilityTol;
counter25.objective = objective;
optionsCell{15} = counter25;

%%
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table = extractResults(optionsCell);

%%
plot1(optionsCell,table);

%%
tablePlot1(optionsCell,table);

function plot1(optionsCell,table)
%% Plotting methodVar_objectiveFix_solverFix_FeasibilityTolFix

colors_solid = {'k','b','r'};
colors_solid_marker = {'ok','ob','or'};
colors_dotted = {'k−−','b−−','r−−'};
colors_dotted_marker = {'sk','sb','sr'};
%% plotting rho distribution
figure()
hold on;

for i=1:3

plot([4 5 6 7,8],[table.rho_max(5*(i−1)+1)...
table.rho_max(5*(i−1)+2) table.rho_max(5*(i−1)+3)...
table.rho_max(5*(i−1)+4) table.rho_max(5*(i−1)+5)],...
colors_solid{i},'linewidth',1.5);

marker = plot([4 5 6 7,8],[table.rho_max(5*(i−1)+1)...
table.rho_max(5*(i−1)+2) table.rho_max(5*(i−1)+3)...
table.rho_max(5*(i−1)+4) table.rho_max(5*(i−1)+5)],...
colors_solid_marker{i},'MarkerSize',10,'linewidth',1.5);

set(get(get(marker,'Annotation'),'LegendInformation'),...
'IconDisplayStyle','off');

plot([4 5 6 7,8],[table.rho_ave(5*(i−1)+1)...
table.rho_ave(5*(i−1)+2) table.rho_ave(5*(i−1)+3)...
table.rho_ave(5*(i−1)+4) table.rho_ave(5*(i−1)+5)],...
colors_dotted{i},'linewidth',1.5);

markerh = plot([4 5 6 7,8],[table.rho_ave(5*(i−1)+1)...
table.rho_ave(5*(i−1)+2) table.rho_ave(5*(i−1)+3)...
table.rho_ave(5*(i−1)+4) table.rho_ave(5*(i−1)+5)],...
colors_dotted_marker{i},'MarkerSize',10,'linewidth',1.5);

set(get(get(markerh,'Annotation'),'LegendInformation'),...
'IconDisplayStyle','off');

axis([3 9 0 0.25])
ylabel('\rho_{opt}')
xlabel('degee of multiplier')
xticks([3,4,5,6,7,8]);
xticklabels({'3','4','5','6','7','8','9'});
legendInfo{2*(i−1)+1} = [num2str(i) '−S−Procedure OPT'];
legendInfo{2*(i−1)+2} = [num2str(i) '−S−Procedure AVE'];

end

legend(legendInfo,'Position',[0.1 0.1 0.2 0.3]);

[¬,string] = optionsByCounter(optionsCell{1});
name = strcat('method',string.solver_method,...

string.FeasibilityTol,string.objective);
filename = strcat(pwd,'/plots/',name,'.tex');
matlab2tikz('filename',filename,'showInfo', false);

%% plot feasibility
figure()
hold on;

for i=1:3

plot([4 5 6 7 8],[table.feasibility_analytical(5*(i−1)+1)...
table.feasibility_analytical(5*(i−1)+2) ...
table.feasibility_analytical(5*(i−1)+3)...
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table.feasibility_analytical(5*(i−1)+4)...
table.feasibility_analytical(5*(i−1)+5)],...
colors_solid{i},'linewidth',1.5,'DisplayName', 'test1');

marker = plot([4 5 6 7 8],[table.feasibility_analytical(5*(i−1)+1)...
table.feasibility_analytical(5*(i−1)+2) ...
table.feasibility_analytical(5*(i−1)+3)...
table.feasibility_analytical(5*(i−1)+4)...
table.feasibility_analytical(5*(i−1)+5)],...
colors_solid_marker{i},'MarkerSize',10,'linewidth',1.5);

set(get(get(marker,'Annotation'),'LegendInformation'),...
'IconDisplayStyle','off');

plot([4 5 6 7 8],[table.feasibility_numerical(5*(i−1)+1)...
table.feasibility_numerical(5*(i−1)+2) ...
table.feasibility_numerical(5*(i−1)+3)...
table.feasibility_numerical(5*(i−1)+4)...
table.feasibility_numerical(5*(i−1)+5)],...
colors_dotted{i},'linewidth',1.5);

markerh = plot([4 5 6 7 8],[table.feasibility_numerical(5*(i−1)+1)...
table.feasibility_numerical(5*(i−1)+2) ...
table.feasibility_numerical(5*(i−1)+3)...
table.feasibility_numerical(5*(i−1)+4)...
table.feasibility_numerical(5*(i−1)+5)],...
colors_dotted_marker{i},'MarkerSize',10,'linewidth',1.5);

set(get(get(markerh,'Annotation'),'LegendInformation'),...
'IconDisplayStyle','off');

axis([3 9 0 100])
ylabel('Feasibility [%]')
xlabel('degee of multiplier []')
xticks([3,4,5,6,7,8,9]);
xticklabels({'3','4','5','6','7','8','9'});

legendInfo{2*(i−1)+1} = [num2str(i) '−S−Procedure ana'];
legendInfo{2*(i−1)+2} = [num2str(i) '−S−Procedure num'];

end

legend(legendInfo,'Position',[0.1 0.1 0.2 0.3]);

[¬,string] = optionsByCounter(optionsCell{1});
name = strcat('methodFeasibility',string.solver_method,...

string.FeasibilityTol,string.objective);
filename = strcat(pwd,'/plots/',name,'.tex');
matlab2tikz('filename',filename,'showInfo', false);

end

function tablePlot1(optionsCell,table)
%table methodVar_objectiveFix_solverFix_FeasibilityTolFix

%% setting the table settings

% Set column labels (use empty string for no label):
input.tableColLabels = {'\rho_{\mathrm{opt}}','\rho_{\mathrm{ave}}',...

'\# eval','Feasana[%]',...
'Feasnum[%]}','t [s]'};

% Switch transposing/pivoting your table:
input.transposeTable = 0;
% Determine whether input.dataFormat is applied column or row based:
input.dataFormatMode = 'column'; % use 'column' or 'row'.
% Set row labels (use empty string for no label):
input.tableRowLabels = {'14','15','16','17','18'...

,'24','25','26','27','28','34','35','36','37','38'};
%set precision in results
input.dataFormat = {'%.3f',2,'%.0f',1,'%.1f',3}; % three digits precision
% Column alignment in Latex table
input.tableColumnAlignment = 'c';
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% LaTex table caption:
input.tableCaption = 'MethodsOverDegree';
% LaTex table label:
input.tableLabel = 'MethodsOverDegree';
% Switch to generate a complete LaTex document or just a table:
input.makeCompleteLatexDocument = 0;

%% filling the input date

data = zeros(15,6);

for i=1:15
data(i,:) = [table.rho_max(i), table.rho_ave(i),...

table.evaluation(i),...
table.feasibility_analytical(i),...
table.feasibility_numerical(i),table.time(i)];

end

input.data = data;

%% call latexTable:
latex = latexTable(input);

[¬,string] = optionsByCounter(optionsCell{1});
name = strcat('methodTable',string.solver_method,...

string.FeasibilityTol,string.objective);
filename = strcat(pwd,'/plots/',name,'.tex');

% save LaTex code as file
fid=fopen(filename,'w');
[nrows,ncols] = size(latex);
for row = 1:nrows

fprintf(fid,'%s\n',latex{row,:});
end
fclose(fid);
end

E.3. CODE FOR JUST FEASIBLE PROBLEN IN 7.3
The code represented in this section is used to obtain the results for the experiment one the just feasible
Problem. The reasoning for implementation details is given in 7.3.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% main file for example 4.1 in Sankaranarayanan2013 %
% %
% by M. Fischer−Gundlach, Delft 2017 %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

close all; clear all; clc;

%% iterate through options
disp('Iterate over options')

global fastest_option fastest_time

fastest_option = '';
fastest_time = 100000000;

%%

for method_counter = 5:7 %up to 7
for method_options_counter = 0:6 %8 does not work any more

for solver_method_counter = 1:2
for FeasibilityTol_counter =1:3 %1:3

for objective_counter = 1:2 %1:3
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counter.method = method_counter;
counter.method_options = method_options_counter;
counter.solver_method = solver_method_counter;
counter.FeasibilityTol = FeasibilityTol_counter;
counter.objective = objective_counter;
counter

[options,¬] = optionsByCounter(counter);
subMainFreeV(options,counter)

extractResultsFreeV(counter);

end
end

end
end

end
% %% iterate through HandelmanDSOS and Handelman
%
% for method_counter = 6:7
% for method_options_counter = 0:6 %7 does not work any more
% for solver_method_counter = 1:2
% for FeasibilityTol_counter =1:3 %1:3
% for objective_counter = 1:2 %1:3
%
% counter.method = method_counter;
% counter.method_options = method_options_counter;
% counter.solver_method = solver_method_counter;
% counter.FeasibilityTol = FeasibilityTol_counter;
% counter.objective = objective_counter;
% counter
% %
% % [options,¬] = optionsByCounter(counter);
% % subMainFreeV(options,counter)
%
% extractResultsFreeV(counter);
%
% end
% end
% end
% end
% end

function [options,string] = optionsByCounter(counter)
%%

options.solverOptions.outputFlag = 0;
options.rho = [0 0.5];
options.lineSearchMethod = 'bisect';
options.lineSearchMethodOptions = 'random'; %this line does not do anything yet
options.feasibilityTest = 'analytical';
options.solver = @spot_gurobi;

%%
switch counter.method

case 1
options.method = @PsatzProg;
string.method = 'PSatz';

case 2
options.method = @kSprocedureProg;
options.methodOptions.k = 2;
string.method = '2Sprocedure';

case 3
options.method = @kSprocedureProg;
options.methodOptions.k = 3;
string.method = '3Sprocedure';

case 4
options.method = @kSprocedureProg;
options.methodOptions.k = 4;
string.method = '4Sprocedure';
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case 5
options.method = @SprocedureProg;
options.methodOptions.k = 1;
string.method = 'Sprocedure';

case 6
options.method = @HandelmanAndDSOSProg;
string.method = 'HandelmanAndDSOS';

case 7
options.method = @HandelmanProg;
string.method = 'Handelman';

end

%%
switch counter.method_options

case 0
options.methodOptions.deg = 0;
string.deg = '0';

case 1
options.methodOptions.deg = 1;
string.deg = '1';

case 2
options.methodOptions.deg = 2;
string.deg = '2';

case 3
options.methodOptions.deg = 3;
string.deg = '3';

case 4
options.methodOptions.deg = 4;
string.deg = '4';

case 5
options.methodOptions.deg = 5;
string.deg = '5';

case 6
options.methodOptions.deg = 6;
string.deg = '6';

case 7
options.methodOptions.deg = 7;
string.deg = '7';

case 8
options.methodOptions.deg = 8;
string.deg = '8';

end

%%
switch counter.solver_method

case 1
options.solverOptions.method = 0;
string.solver_method = 'simplex';

case 2
options.solverOptions.method = 1;
string.solver_method = 'barrier';

end

%%
switch counter.FeasibilityTol

case 1
options.solverOptions.FeasibilityTol = 1E−9;
string.FeasibilityTol = '1E−9';

case 2
options.solverOptions.FeasibilityTol = 1E−6;
string.FeasibilityTol = '1E−6';

case 3
options.solverOptions.FeasibilityTol = 1E−2;
string.FeasibilityTol = '1E−2';

end

%%
switch counter.objective

case 1
options.objective = '0';
string.objective = '0';
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case 2
options.objective = 'indets';
string.objective = 'indets';

end
end

function subMainFreeV(options,counter)

[¬,string] = optionsByCounter(counter);

switch string.method
case 'HandelmanAndDSOS'

[solution,feasibility,V] = freeVHandelmanDSOS(options);
case 'Handelman'

[solution,feasibility,V] = freeVHandelman(options);
otherwise

[solution,feasibility,V] = freeVkSProcedure(options);
end

matFile = strcat('data/',string.method,string.deg,string.solver_method,...
string.FeasibilityTol,string.objective,'.mat');

save(matFile,'solution','feasibility','V');
end

%% example 4.1 in Sankaranarayanan2013
function [solution,feasibility,V] = freeVHandelman(options)
disp('redo example 4.1 Sankaranarayanan2013 ')

%% setting up the system
disp('Setting up the system.')

x= msspoly('x',2);

dx = [−x(1)^3+x(2);
−x(1)−x(2)];

bound_u = 100; bound_l = 100;
inequalities = [bound_u−x(1),x(1)−bound_l,bound_u−x(2),x(2)−bound_l];

system = dynamicalSystem(dx,inequalities,[],x,[],[]);

deg_dV_multipliers = options.methodOptions.deg;

%% setting options for BoxProg
disp('Setting options for BoxProg')
%setting options for both of them, than individuals

options.lineSearchMethod = 'bisect';
options.lineSearchMethodOptions = 'random';
options.objective = '0';
options.feasibilityTest = 'analytical';

%setting solver options
options.solver = @spot_gurobi;
params.method = 2; %default 0 (primal simplex)
params.FeasibilityTol = 1E−6; %default 1E−6
% params.outputFlag = 0;
options.solverOptions = params;

%% initiate program
disp('Initiate Program')
prog = spotsosprog;
indet = x; prog = prog.withIndeterminate(indet);

%% DSOS problem for V
% initialize V as freePoly

% deg_V_multipliers = 1;
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%
% % setting up DSOS polynomial multipliers for V
% coneOfPolynomials = coneWithSOS(inequalities,options.methodOptions.k);
% z = monomials(indet,0:deg_V_multipliers);
% [prog,DSOSPoly_V,¬] = newDSOSPoly(prog,z,...
% length(coneOfPolynomials));
%
% for i=1:length(coneOfPolynomials)
%
% if ¬exist('S_V', 'var')
% S_V = DSOSPoly_V(i)*coneOfPolynomials(i);
% else
% S_V = S_V + DSOSPoly_V(i)*coneOfPolynomials(i);
% end
%
% end

deg_V = 2;
z_V = monomials(indet,1:deg_V);
[prog,V] = newFreePoly(prog,z_V,1);
% DSOS constraint
prog = prog.withPolyEqs((V−indet.'*indet));

%% DSOS problem for dV
% calculating dV
dV = diff(V,x)*dx;
% setting up DSOS polynomial multipliers for dV

mMonoid = multiplicativeMonoid(inequalities,options.methodOptions.deg);

%Add slack to optimization problem to increase numerical robustness
[prog,objective,slack,options] = objectiveROAProgScalar(prog,system,options);

% add nonlinear multipliers
[prog,lambda] = prog.newPos(length(mMonoid));
prog = prog.withPolyEqs(−dV−lambda.'*mMonoid−slack);

%% solving Program
disp('Solving Program.')

%set solver and its options
[solver,spotOptions,options] = solverOptionsPSDProg(options);

% Solve program
solution = prog.minimize(objective, solver, spotOptions);

%% eval Solutions

if solution.isPrimalFeasible()
if double(solution.eval(objective)) ≥ 0

Qset = evalMultipliers(solution);
[feasibility,¬] = isDSOS(blkdiag(Qset{:}));
if feasibility == 1

V = solution.eval(V);
else

V = [];
end

else
feasibility = 0;
V = [];

end
else

feasibility = −1;
V = [];

end
end
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%% example 4.1 in Sankaranarayanan2013
function [solution,feasibility,V] = freeV(options)
disp('redo example 4.1 Sankaranarayanan2013 ')

%% setting up the system
disp('Setting up the system.')

x= msspoly('x',2);

dx = [−x(1)^3+x(2);
−x(1)−x(2)];

bound_u = 100; bound_l = 100;
inequalities = [bound_u−x(1),x(1)−bound_l,bound_u−x(2),x(2)−bound_l];

system = dynamicalSystem(dx,inequalities,[],x,[],[]);

deg_dV_multipliers = options.methodOptions.deg;

%% setting options for BoxProg
disp('Setting options for BoxProg')
%setting options for both of them, than individuals

options.lineSearchMethod = 'bisect';
options.lineSearchMethodOptions = 'random';
options.objective = '0';
options.feasibilityTest = 'analytical';

%setting solver options
options.solver = @spot_gurobi;
params.method = 2; %default 0 (primal simplex)
params.FeasibilityTol = 1E−6; %default 1E−6
% params.outputFlag = 0;
options.solverOptions = params;

%% initiate program
disp('Initiate Program')
prog = spotsosprog;
indet = x; prog = prog.withIndeterminate(indet);

%% DSOS problem for V
% initialize V as freePoly

% deg_V_multipliers = 1;
%
% % setting up DSOS polynomial multipliers for V
% coneOfPolynomials = coneWithSOS(inequalities,options.methodOptions.k);
% z = monomials(indet,0:deg_V_multipliers);
% [prog,DSOSPoly_V,¬] = newDSOSPoly(prog,z,...
% length(coneOfPolynomials));
%
% for i=1:length(coneOfPolynomials)
%
% if ¬exist('S_V', 'var')
% S_V = DSOSPoly_V(i)*coneOfPolynomials(i);
% else
% S_V = S_V + DSOSPoly_V(i)*coneOfPolynomials(i);
% end
%
% end

deg_V = 2;
z_V = monomials(indet,1:deg_V);
[prog,V] = newFreePoly(prog,z_V,1);
% DSOS constraint
prog = prog.withDSOS((V−indet.'*indet));

%% DSOS problem for dV
% calculating dV
dV = diff(V,x)*dx;
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% setting up DSOS polynomial multipliers for dV

mMonoid = multiplicativeMonoid(inequalities,options.methodOptions.deg);

%Add slack to optimization problem to increase numerical robustness
[prog,objective,slack,options] = objectiveROAProgScalar(prog,system,options);

% add nonlinear multipliers
[prog,lambda] = prog.newPos(length(mMonoid));
prog = prog.withDSOS(−dV−lambda.'*mMonoid−slack);

%% solving Program
disp('Solving Program.')

%set solver and its options
[solver,spotOptions,options] = solverOptionsPSDProg(options);

% Solve program
solution = prog.minimize(objective, solver, spotOptions);

%% eval Solutions

if solution.isPrimalFeasible()
if double(solution.eval(objective)) ≥ 0

Qset = evalMultipliers(solution);
[feasibility,¬] = isDSOS(blkdiag(Qset{:}));
V = solution.eval(V);

else
feasibility = false;
V = [];

end
else

feasibility = false;
V = [];

end
end

%% example 4.1 in Sankaranarayanan2013
function [solution,feasibility,V] = freeVkSProcedure(options)
disp('redo example 4.1 Sankaranarayanan2013 ')

%% setting up the system
disp('Setting up the system.')

x= msspoly('x',2);

dx = [−x(1)^3+x(2);
−x(1)−x(2)];

bound_u = 100; bound_l = 100;
inequalities = [bound_u−x(1),x(1)−bound_l,bound_u−x(2),x(2)−bound_l];

system = dynamicalSystem(dx,inequalities,[],x,[],[]);

deg_dV_multipliers = options.methodOptions.deg;

%% setting options for BoxProg
disp('Setting options for BoxProg')
%setting options for both of them, than individuals

options.lineSearchMethod = 'bisect';
options.lineSearchMethodOptions = 'random';
options.objective = '0';
options.feasibilityTest = 'analytical';

%setting solver options
options.solver = @spot_gurobi;
params.method = 2; %default 0 (primal simplex)
params.FeasibilityTol = 1E−6; %default 1E−6
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% params.outputFlag = 0;
options.solverOptions = params;

%% initiate program
disp('Initiate Program')
prog = spotsosprog;
indet = x; prog = prog.withIndeterminate(indet);

%% DSOS problem for V
% initialize V as freePoly

% deg_V_multipliers = 1;
%
% % setting up DSOS polynomial multipliers for V
% coneOfPolynomials = coneWithSOS(inequalities,options.methodOptions.k);
% z = monomials(indet,0:deg_V_multipliers);
% [prog,DSOSPoly_V,¬] = newDSOSPoly(prog,z,...
% length(coneOfPolynomials));
%
% for i=1:length(coneOfPolynomials)
%
% if ¬exist('S_V', 'var')
% S_V = DSOSPoly_V(i)*coneOfPolynomials(i);
% else
% S_V = S_V + DSOSPoly_V(i)*coneOfPolynomials(i);
% end
%
% end

deg_V = 2;
z_V = monomials(indet,1:deg_V);
[prog,V] = newFreePoly(prog,z_V,1);
% DSOS constraint
prog = prog.withDSOS((V−indet.'*indet));

%% DSOS problem for dV
% calculating dV
dV = diff(V,x)*dx;
% setting up DSOS polynomial multipliers for dV
coneOfPolynomials = coneWithSOS(inequalities,options.methodOptions.k);
z = monomials(indet,0:options.methodOptions.deg);
[prog,DSOSPoly_dV,¬] = newDSOSPoly(prog,z,...

length(coneOfPolynomials));

for i=1:length(coneOfPolynomials)

if ¬exist('S_dV', 'var')
S_dV = DSOSPoly_dV(i)*coneOfPolynomials(i);

else
S_dV = S_dV + DSOSPoly_dV(i)*coneOfPolynomials(i);

end

end

%Add slack to optimization problem to increase numerical robustness
[prog,objective,slack,options] = objectiveROAProgDSOS(prog,system,options);

% DSOS constraint
prog = prog.withDSOS((−dV−S_dV−slack));

%% solving Program
disp('Solving Program.')

%set solver and its options
[solver,spotOptions,options] = solverOptionsPSDProg(options);

% Solve program
solution = prog.minimize(objective, solver, spotOptions);

%% eval Solutions
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if solution.isPrimalFeasible()
if double(solution.eval(objective)) ≥ 0

Qset = evalMultipliers(solution);
[feasibility,¬] = isDSOS(blkdiag(Qset{:}));
V = solution.eval(V);

else
feasibility = false;
V = [];

end
else

feasibility = false;
V = [];

end
end

function extractResultsFreeV(options)

global fastest_option fastest_time

[¬,string] = optionsByCounter(options);
loadfile = strcat('data/',string.method,string.deg,...

string.solver_method,...
string.FeasibilityTol,string.objective,'.mat');

load(loadfile);

if feasibility == 1
location = 'feasible';

if solution.info.runtime < fastest_time
fastest_time = solution.info.runtime;
fastest_option = strcat(string.method,...

string.deg,string.solver_method,...
string.FeasibilityTol,string.objective);

fastes_option_File = strcat('data/fastes_option.mat');
save(fastes_option_File,'fastest_option');

end
elseif feasibility == −1

location = 'infeasible';
else

location = 'numerical';
end

savefile = strcat('data/',location,'/',string.method,...
string.deg,string.solver_method,...
string.FeasibilityTol,string.objective,'.mat');

save(savefile,'solution','feasibility','V');

delete(loadfile);
end



F
IMPLEMENTED UTILITIES (MATLAB CODE)

The code in this chapter is build on top of spotless [40] and provides the API which is used in the experi-
ments. The pipeline is straight forward. The user creates a dynamicalSystem which carries information
of the systems dynamics, states and parameters. This system and options are fed into the function ROAProg.
This function automatically sets up the chosen formulation and enforces the passed options (default options
are used if not further specified by the user). ROAProg returns a solROAProg object which carries all in-
formation of the solution. All code shown in this chapter can be found on

https://github.com/FischerGundlach/masterThesis/tree/master/Thesis/util.

classdef dynamicalSystem < handle
% An object of this class holds all information for an dynamical system
% which are needed for ROA estimatioin via DSOS optimization.

properties (Access = public)

dx = [];
inequCon = [];
equCon = [];

states = [];
parameters = [];

V = [];
rho = [];

end

methods

function obj = dynamicalSystem(dx,inequCon,equCon,states,parameters,V)

obj.dx = dx;
obj.inequCon = inequCon;
obj.equCon = equCon;
obj.states = states;
obj.parameters = parameters;

if nargin < 6
obj.V = findCandidate(obj);

else
obj.V = V;

end
end

function V = findCandidate(obj)
[¬,A] = linearizeDynamicalSystem(obj);
Q = eye(length(obj.states));
size(A)
size(Q)
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P = lyap(A,Q); P = 1/det(P)*P;

V = obj.states.'*P*obj.states;
end

end

end

classdef solROAprog < handle
% An object of this class holds all solution information for an
% ROA estimating problem via optimization

properties (Access = public)

system = dynamicalSystem.empty;
options = struct.empty;

rho = []; %certified rho value
rho_extr = []; %extreme rho value
sol = spotprogsol.empty; %solution of recent optimization

end

methods

function obj = solROAprog(system,options)

if nargin == 1
options = struct.empty;
options.rho = [0 1];

end

obj.system = system;
obj.rho = options.rho(1);
obj.rho_extr = options.rho(2);
obj.options = options;

end

end

end

function [solution,options] = ROAProg(system,options)
%ROAPROG This function sets−up and solves estimatie ROA optimization prob.
% Detailed explanation goes here

global counter

%initiate the solution to the ROAprog
solution = solROAprog(system,options);

V = system.V;
dV = diff(system.V,system.states)*system.dx;
inequalities = system.inequCon;
equalities = system.equCon;

%preloop assinments
terminate = false;
rho_failed = solution.rho_extr;
while ¬terminate

counter = counter+1;
% step 1
[rho_try,options] = fixRho(solution,rho_failed,options);
rho_try
% step 2
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[method,deg,degP,options] = methodOptionsROAProg(options);
[sol,objective,options] = method(−dV,system,...

[(rho_try−V),inequalities],equalities,deg,degP,options);

% step 3
[feasibility,violation,options] = ...

isPSDprogFeasible(sol,objective,options);
violation
[terminate,options] = isTerminate(solution,rho_try,rho_failed,options);

if feasibility
solution.rho = rho_try;
solution.sol = sol;
solution.options = options;

else
rho_failed = rho_try;

end

end

end

function [solution,objective,options] = PsatzProg(poly,system,...
inequalities,equalities,deg,degP,options)

%PsatzProg Sets up Positivstllensatz programm in order to proof
% positive semi−definiteness of poly on the domain constrainned by
% the set of inequalities. SOS/SDSOS/DSOS are raised to degree deg
%
% returns solution and returns a cell with entries the DD matrixes
% Detailed explanation goes here

if nargin < 5
options = [];

end

[indet,¬,¬] = decomp([poly; inequalities.'; equalities]);

%initiate program
prog = spotsosprog;
prog = prog.withIndeterminate(indet);

% setting up DSOS polynomial multipliers
coneOfPolynomials = coneWithSOS([−poly,inequalities]);
z = monomials(indet,0:deg);
[prog,DSOSPoly,¬] = newDSOSPoly(prog,z,...

length(coneOfPolynomials));
S = DSOSPoly.'*coneOfPolynomials;

%set up free multipliers for equalities
if ¬length(equalities) == 0

zP = monomials(indet,0:degP);
[prog,FreePoly,¬] = newFreePoly(prog,zP,length(equalities));
P = FreePoly.'*equalities.';

else
P = 0;

end

%Add slack to optimization problem to increase numerical robustness
[prog,objective,slack,options] = objectiveROAProgDSOS(prog,system,options);

%DSOS constraint
prog = prog.withDSOS((poly−S−P−slack));

%set solver and its options
[solver,spotOptions,options] = solverOptionsPSDProg(options);

% Solve program
solution = prog.minimize(objective, solver, spotOptions);
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end

function [solution,objective,options] = kSprocedureProg(poly,system,...
inequalities,equalities,deg,degP,options)

%KSPROCEDUREPROG Sets up K−S−procedure programm in order to proof
% positive semi−definiteness of poly on the domain constrainned by
% the set of inequalities. SOS/SDSOS/DSOS are raised to degree deg
%
% returns solution and returns a cell with entries the DD matrixes
% Detailed explanation goes here

if nargin < 5
options = [];

end

[indet,¬,¬] = decomp([poly; inequalities.']);

%initiate program
prog = spotsosprog;
prog = prog.withIndeterminate(indet);

% setting up DSOS polynomial multiplierr for inequalities
coneOfPolynomials = coneWithSOS(inequalities,options.methodOptions.k);
z = monomials(indet,0:deg);
[prog,DSOSPoly,¬] = newDSOSPoly(prog,z,...

length(coneOfPolynomials));
S = DSOSPoly.'*coneOfPolynomials;

%set up free multipliers for equalities
zP = monomials(indet,0:degP);
if ¬length(equalities) == 0

[prog,FreePoly,¬] = newFreePoly(prog,zP,length(equalities));
P = FreePoly.'*equalities.';

else
P = 0;

end

%Add slack to optimization problem to increase numerical robustness
[prog,objective,slack,options] = objectiveROAProgDSOS(prog,system,options);

%DSOS constraint
prog = prog.withDSOS((poly−S−P−slack));

%set solver and its options
[solver,spotOptions,options] = solverOptionsPSDProg(options);

% Solve program
solution = prog.minimize(objective, solver, spotOptions);

end

function [solution,objective,options] = SprocedureProg(poly,system,...
inequalities,equalities,deg,degP,options)

%SPROCEDUREPROG Sets up S−procedure programm in order to proof
% positive semi−definiteness of poly on the domain constrainned by
% the set of inequalities. SOS/SDSOS/DSOS are raised to degree deg
%
% returns solution and returns a cell with entries the DD matrixes
% Detailed explanation goes here

if nargin < 5
options = [];

end
[indet,¬,¬] = decomp([poly; inequalities.'; equalities.']);

%initiate program
prog = spotsosprog;
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prog = prog.withIndeterminate(indet);

%set up DSOS multipliers for inequalities
z = monomials(indet,0:deg);
[prog,DSOSPoly,¬] = newDSOSPoly(prog,z,length(inequalities));
S = DSOSPoly.'*inequalities.';

%set up free multipliers for equalities
zP = monomials(indet,0:degP);
if ¬length(equalities) == 0

[prog,FreePoly,¬] = newFreePoly(prog,zP,length(equalities));
P = FreePoly.'*equalities.';

else
P = 0;

end

%Add slack to optimization problem to increase numerical robustness
[prog,objective,slack,options] = objectiveROAProgDSOS(prog,system,options);

%DSOS constraint
prog = prog.withDSOS((poly−S−P−slack));

%set solver and its options
[solver,spotOptions,options] = solverOptionsPSDProg(options);

% Solve program
solution = prog.minimize(objective, solver, spotOptions);

end

function [solution,objective,options] = HandelmanAndDSOSProg(poly,...
system,inequalities,equalities,deg,¬,options)

%HandelmanAndDSOS Sets up Handelman programm constrained to DSOS
% in order to proof
% positive semi−definiteness of poly on the domain constrainned by
% the set of inequalities. SOS/SDSOS/DSOS are raised to degree deg
%
% returns solution and returns a cell with entries the DD matrixes
% Detailed explanation goes here

if nargin < 5
options = [];

end

[indet,¬,¬] = decomp([poly; inequalities.'; equalities]);
mMonoid = multiplicativeMonoid(inequalities,deg);

%initiate program
prog = spotsosprog;
prog = prog.withIndeterminate(indet);

%Add slack to optimization problem to increase numerical robustness
[prog,objective,slack,options] = objectiveROAProgScalar(prog,system,options);

% add nonlinear multipliers
[prog,lambda] = prog.newPos(length(mMonoid));

% add multipliers for equalities
if ¬length(equalities) == 0

[prog,p] = prog.newFree(length(equalities));
P = p*equalities;

else
P = 0;

end

prog = prog.withDSOS(poly−lambda.'*mMonoid−P−slack);

%set solver and its options
[solver,spotOptions,options] = solverOptionsPSDProg(options);
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% Solve program
solution = prog.minimize(objective, solver, spotOptions);

end

function [solution,objective,options] = HandelmanProg(poly,system,...
inequalities,equalities,deg,¬,options)

%HANDELMANPROG Sets up S−procedure programm in order to proof
% positive semi−definiteness of poly on the domain constrainned by
% the set of inequalities. SOS/SDSOS/DSOS are raised to degree deg
%
% returns solution and returns a cell with entries the DD matrixes
% Detailed explanation goes here

if nargin < 5
options = [];

end

[indet,¬,¬] = decomp([poly; inequalities.'; equalities]);
mMonoid = multiplicativeMonoid(inequalities, deg);

%initiate program
prog = spotsosprog;
prog = prog.withIndeterminate(indet);

%Add slack to optimization problem to increase numerical robustness
[prog,objective,slack,options] = objectiveROAProgScalar(prog,system,options);

% add nonlinear multipliers for inequalities
[prog,lambda] = prog.newPos(length(mMonoid));

% add multipliers for equalities
if ¬length(equalities) == 0

[prog,p] = prog.newFree(length(equalities));
P = p*equalities;

else
P = 0;

end

prog = prog.withPolyEqs(poly−lambda.'*mMonoid−P−slack);

%set solver and its options
[solver,spotOptions,options] = solverOptionsPSDProg(options);

% Solve program
solution = prog.minimize(objective, solver, spotOptions);

end

function [rho_try,options] = fixRho(solution,rho_failed,options)
%FIXRHO A new rho_try is determined in this function

if isfield(options,'lineSearchMethod')
switch options.lineSearchMethod

case 'bisect'
method = @bisect;

case 'step'
method = @step;

otherwise
error('option is not supported! Choose bisect or step.')

end
else

method = @bisect;
options.lineSearchMethod = 'bisect';

end
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if ¬isfield(options,'lineSearchMethodOptions')
options.lineSearchMethodOptions = ...

defaultLineSearchOptions(options.lineSearchMethod);
end

methodOptions = options.lineSearchMethodOptions;

rho_try = method(solution,rho_failed,methodOptions);

end

function options = defaultLineSearchOptions(method)
%DEFAULTLINESEARCHOPTIONS Retuns the options which are used by
% default for LineSearch.

options = 'random';

end

function rho_try = bisect(solution,rho_failed,options)
%BISECT bisects interval with random point between interval

rho = solution.rho;

switch options

case 'random'
h = rand;

case 'determined'
h = 0.5;

otherwise
warning(['lineSearchMethodOption is not'...

'supported. Change to random.']);
h = rand;

end

if rho<0 || rho_failed<0
error('Bounds need to be non−negative.');

end

if rho < rho_failed
rho_try = rho + h*(rho_failed−rho);

else
warning('Rho is larger than Rho_failed. This is not possible.')

end

function rho_try = step(solution,rho_failed,options)
%STEP Implements step for line search.

switch options

case 'random'
h = 2*rand*0.01;

case 'determined'
h = 0.01;

otherwise
warning(['lineSearchMethodOption is not'...

'supported. Change to random.']);
h = 2*rand*0.001;
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end

if (rho_failed == solution.rho_extr)
rho_try = solution.rho+h;

else
if (rho_failed > solution.rho)

rho_try = rho_failed+h;
else

rho_try = solution.rho+h;
end

end

end

function [terminate,options] = isTerminate(solution,rho_try,rho_failed,options)
%ISTERMINATE This function determines if the while loop is terminated

if isfield(options,'lineSearchMethod')
switch options.lineSearchMethod

case 'bisect'
method = @terminateBisect;

case 'step'
method = @terminateStep;

otherwise
error('option is not supported! Choose bisect or step.')

end
else

method = @terminateBisect;
options.lineSearchMethod = 'bisect';

end

if ¬isfield(options,'lineSearchMethodOptions')
options.lineSearchMethodOptions = ...

defaultLineSearchOptions(options.lineSearchMethod);
end

methodOptions = options.lineSearchMethodOptions;

terminate = method(solution,rho_try,rho_failed,methodOptions);

end

function terminate = terminateBisect(solution,rho_try,rho_failed,¬)
%TERMINATEBISECT Terminates bisection search.

a = 0.001;

terminate = (rho_try−solution.rho ≤ a && rho_try 6= 0) || ...
(solution.rho_extr−solution.rho ≤ a) || ...
(rho_failed−solution.rho ≤ a);

end

function terminate = terminateStep(solution,rho_try,¬,¬)
%TERMINATEBISECT Terminates step search.

terminate = ¬(rho_try < solution.rho_extr);

end

function [feasibility,violation,options] =...
isPSDprogFeasible(sol,objective,options)

%ISPSDPROGFEASIBLE Checks if solution to step2 is feasible.



93

if isfield(options,'feasibilityTest')
if ¬(strcmp(options.feasibilityTest,'numerical') ||...

strcmp(options.feasibilityTest,'analytical'))
error('Feasibility test is not supported.')

else
feasibilityTest = options.feasibilityTest;

end
else

feasibilityTest = 'numerical';
options.feasibilityTest = feasibilityTest;

end

if sol.isPrimalFeasible()

objective_opt = double(sol.eval(objective));
if ¬(objective_opt≤0)

feasibility = false;
violation = 'objective';

else
feasibility = true;

if strcmp(feasibilityTest,'analytical')
Qset = evalMultipliers(sol);
[feasibility,violation] = isDSOS(blkdiag(Qset{:}));

else
violation = 'none';

end
end

else

feasibility = false;
violation = ('Infeasible Primal Problem');

end

end

function [feasibility,violation] = isDSOS(Q)
%ISDSOS this function checks for DSOS feasibility
% PSDness, symmetry and DSOS constraint are tested in
% if PSDness or symmetry are violated, than Q is infeasible
% violation of DSOS is marked but not treated as infeasible

feasibility = true;
violation = [];

for i=1:size(Q,1)
if ¬(2*Q(i,i)≥sum(abs(Q(i,:)))) %reformulation of DSOS constraint

%feasibility = false;
if size(violation) == 0

violation = strcat(violation,'DSOS');
else

violation = strcat(violation,', DSOS');
end

%test eigenvalues
if ¬all(eig(Q)≥0) == 1

feasibility = false;
if size(violation) == 0

violation = strcat(violation,'eigenvalues');
else

violation = strcat(violation,', eigenvalues');
end
break

end
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end
end

%test symmetry
if ¬issymmetric(Q) == 1

feasibility = false;
if size(violation) == 0

violation = strcat(violation,'symmetry');
else

violation = strcat(violation,', symmetry');
end

end

if isempty(violation)
violation = 'none';

end

end

function [Qset] = evalMultipliers(sol)
%EVALROAPROG This function evaluates solutions from ROAProg

if ¬isempty(sol.gramMatrices)

for i=1:length(sol.gramMatrices)
Qset{i} = double(sol.eval(sol.gramMatrices{i}));

end

if ¬isempty(sol.prog.coneVar)
i = i+1; %appends coneVar at the end
Qset{i} = diag(double(sol.eval(sol.prog.coneVar)));

end

else

if ¬isempty(sol.prog.coneVar)
Qset{1} = diag(double(sol.eval(sol.prog.coneVar)));

end

end

function [rho,opt_Qset] = evalROAProgDSOS(solution,decisionVar)
%EVALROAPROG This function evaluates solutions from ROAProg

% Optimal value
if ¬isempty(solution.sol)

if solution.sol.isPrimalFeasible()

for i=1:length(decisionVar)
opt_Qset{i} = double(solution.sol.eval(decisionVar{i}));
%length(decisionVar{1}) all elements in decisionVar are...
%the same length, so length(decisionVar(1)) is constant

end

[DSOSfeasibility,violation] = isDSOS(blkdiag(opt_Qset{:}));

if ¬DSOSfeasibility
warning('The solution is not a DSOS, see violations: ')
violation

end
end

else
warning(['Increase degree until origin is certified '...

'to be stable.'])
disp(['Non−linear dynamics are not certified '...

'to be stable at the origin!'])
end
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disp(['The estrimated ROA corresponds to rho = ',...
num2str(solution.rho),'.'])

rho = solution.rho;

end

function [rho,opt_lambda] = evalROAProgScalar(solution,lambda)
%EVALROAPROG This function evaluates solutions from ROAProg

% Optimal value
if ¬isempty(solution.sol)

if solution.sol.isPrimalFeasible()
opt_lambda = double(solution.sol.eval(lambda));
[DSOSfeasibility,¬] = isDSOS(diag(opt_lambda));

end
else

warning(['Increase degree or relaxation until origin is certified'...
'to be stable.'])

disp(['Non−linear dynamics are not certified'...
'to be stable at the origin!'])

end

disp(['the estrimated ROA corresponds to rho = ',...
num2str(solution.rho),'.'])

rho = solution.rho;

end

function [method,deg,degP,options] = methodOptionsROAProg(options)
%METHODOPTIONSROAPROG Returns default options for formulation details.

if isfield(options,'method')
method = options.method;

else
method = @SprocedureProg;
options.method = method;

end

if ¬isfield(options,'methodOptions')
options.methodOptions = struct();

end
if isfield(options.methodOptions,'deg')

deg = options.methodOptions.deg;
else

deg = 2;
options.methodOptions.deg = deg;

end

if ¬isfield(options,'methodOptions')
options.methodOptions = struct();

end
if isfield(options.methodOptions,'degP')

degP = options.methodOptions.degP;
else

degP = 2;
options.methodOptions.degP = degP;

end

if isequal(method,@kSprocedureProg)
if ¬isfield(options.methodOptions,'k')

options.methodOptions.k = 2;
end

end

end
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function [solver,spotOptions,options] = solverOptionsPSDProg(options)
%SOLVEROPTIONSPSDPROG The options for solver and solver options are
%filtered out from the input options

%set solver
if isfield(options,'solver')

solver = options.solver;
else

solver = @spot_gurobi;
options.solver = solver;

end

%set solver options
spotOptions = spot_sdp_default_options();
if isfield(options,'solverOptions')

spotOptions.solver_options = options.solverOptions;
else

spotOptions.solver_options = struct();
options.solverOptions = spotOptions.solver_options;

end

end

function [prog,objective,slack,options] = objectiveROAProgDSOS(prog,system,options)
%OBJECTIVEROAPROGDSOS Returns objective in order to stabilize the
%feasibility problem

if isfield(options,'objective')
objetiveOption = options.objective ;

else
objetiveOption = 'Lyap';
options.objective = objetiveOption;

end

switch objetiveOption

case '0'
slack = 0;
objective = 0;

case 'Lyap'
[prog,slackVar] = prog.newPos(1);
slack = slackVar*system.V;
objective = −slackVar;

case 'states'
[prog,slackVar] = prog.newPos(1);
slack = slackVar*system.states.'*system.states;
objective = −slackVar;

case 'indets'
[prog,slackVar] = prog.newPos(1);
indets = [system.states; system.parameters];
slack = slackVar*indets.'*indets;
objective = −slackVar;

% case 'trace'
% slack = 0;
% objective = trace(blkdiag(Qset{:})...
% −eye(length(Qset)*length(Qset{1})));
% %all Qset{:} all the same size, therefore length(Qset{1});

otherwise
warning('Method is unknown, objecive is set to default Lyap')
[prog,objective,slack,options] = objectiveROAProgDSOS(prog,system,[]);

end
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end

function [prog,objective,slack,options] = objectiveROAProgScalar(prog,system,options)
%OBJECTIVEROAPROGDSOS Returns objective in order to stabilize feasibility
%problem.

if isfield(options,'objective')
objetiveOption = options.objective ;

else
objetiveOption = 'Lyap';
options.objective = objetiveOption;

end

switch objetiveOption

case '0'
slack = 0;
objective = 0;

case 'Lyap'
[prog,slackVar] = prog.newPos(1);
slack = slackVar*system.V;
objective = −slackVar;

case 'states'
[prog,slackVar] = prog.newPos(1);
slack = slackVar*system.states.'*system.states;
objective = −slackVar;

case 'indets'
[prog,slackVar] = prog.newPos(1);
indets = [system.states; system.parameters];
slack = slackVar*indets.'*indets;
objective = −slackVar;

% case 'sum'
% slack = 0;
% objective = sum(lambda);

otherwise
warning('Method is unknown, objecive is set to default Lyap')
[prog,objective,slack,options] = objectiveROAProgDSOS(prog,system,[]);

end

end

% to do: fix this whole file

function [offDiagSum] = offDiag(Q)
%OFFDIAG sums the off diagonal terms
% Detailed explanation goes here

offDiagSum = 0.5*(sum(sum(Q,1))−sum(diag(Q)));
end

function [combinatorials] = coneWithSOS(inequalities,deg)
%coneWithSOS creates cone with DSOS i.e. with finite length of polynomials
% this function does not use multiplicativeMonoid since it can operate
% faster due to its finite length
%
% furthermore it does not return a '1' at its first entry
% itt does NOT generate a cone with
% DSOS finite expression but only the LHS of the Positivstellensatz



98 F. IMPLEMENTED UTILITIES (MATLAB CODE)

% polynomials which are preceeded with SOS multipliers

if nargin < 2
deg = length(inequalities);

end

if deg > length(inequalities)
warning(['Degree of coupling in cone with SOS multipliers can''','t'...

'be higher than number of inequalities. ', 'Degree is set to'...
' number of inequalities.'])

deg = length(inequalities);
end

% preloop assignments
pos = [1:length(inequalities)]; %1 accords to first elem of polynomials
comb = []; % creating all combinatorials, encoded in position

for i=1:deg

c = combnk(pos,i); %creates all combinations to degree i
%c = sort(c,2); %sorts along second direction, e.g. 1 2 1 −> 1 1 2

comb(:,end+1) = zeros(length(comb),1);%keeps dim of comb vector consice
comb = [comb;c]; %removes multiples and adds to comb

end

%preloop assignments
t = msspoly('t',1); %creates temp. mss poly to set type for array
combinatorials = ones(length(comb),1)*monomials(t,0); %creates a mss multiplicative identity element

for i=1:length(comb) %for each row in comb, one combinatorial of fi
for j=1:size(comb,2)%multiplies elements along a row of comb

if ¬comb(i,j)==0 %zeros are skipped as they do not accord to fi
combinatorials(i) = combinatorials(i)*inequalities(comb(i,j));

end
end

end

end

function [combinatorials] = multiplicativeMonoid(polynomials,deg)
%MULTIPLICATIVEMONOID creates multiplicative monoid of mss polynomials
% combines input arguments up to degree(of combination) deg
% e.g. f1 = x^2, deg=2 returns f1^2
% consider degree of the polynomials
%

% preloop assignments
pos = []; %1 accords to first elem of polynomials
comb = []; % creating all combinatorials, encoded in position

for i=1:deg

pos = [pos 1:length(polynomials)]; %enables combinations like f1^2

c = combnk(pos,i); %creates all combinations to degree i
c = sort(c,2); %sorts along second direction, e.g. 1 2 1 −> 1 1 2

comb(:,end+1) = zeros(length(comb),1);%keeps dim of comb vector consice
comb = [comb;unique(c,'rows')]; %removes multiples and adds to comb

end

%preloop assignments
t = msspoly('t',1); %creates temp. mss poly to set type for array
combinatorials = ones(length(comb),1)*monomials(t,0);
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for i=1:length(comb) %for each row in comb, one combinatorial of fi
for j=1:size(comb,2)%multiplies elements along a row of comb

if ¬comb(i,j)==0 %zeros are skipped as they do not accord to fi
combinatorials(i) = combinatorials(i)*polynomials(comb(i,j));

end
end

end

combinatorials = [monomials(t,0); combinatorials]; %adds fi^0 = 1 to the combinatorials

end

function [dx_lin,A] = linearizeDynamicalSystem(system)
%LINEARIZEDYNAMICALSYSTEM This function returns a linearized system to an
%mss−poly system
% So far, only passive systems are considered, e.g. it is only linearized
% for A matrix.

% x = msspoly('x',2);
% a = msspoly('a',1);
%
% dx = [x(1)*a + x(2)*x(1); x(2)*a];

[indet,powers,M] = decomp(system.dx);
mtch_states = match(indet,system.states);
if ¬isempty(system.parameters)

mtch_parameters = match(indet,system.parameters);
end
% mtch_states = match(indet,x);
% mtch_parameters = match(indet,a);

for i=1:length(powers)

if sum(powers(i,mtch_states),2) > 1
M(:,i) = zeros(size(M,1),1);

end

if ¬isempty(system.parameters)
if sum(powers(i,mtch_parameters),2) > 1

error('dynamical system needs to be linear in parameters')
end

end

end

dx_lin = recomp(indet,powers,M);
[¬,¬,A] = decomp(dx_lin);

%% so far uncertain systems are not supported!
% [indet,powers,M] = decomp(dx);
% mtch_parameters = match(indet,a);
%
% if ¬isempty(mtch_parameters)
% for i=1:length(mtch_parameters)
% for j=1:size(powers,2)
% if powers(mtch_parameters(i),j) == 1
% B = indet(mtch_parameters(i))*M(:,i);
% end
% end
% end
% end

end

function [Lyapunov_Candidate] = lyapunovCandidate(dynamicalSystem)
%LYAPUNOVCANDIDATE This function returns a lyapunov candidate for
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%dynamicalSystem
% The function returned is a quadratic form

[indet,¬,¬] = decomp(dynamicalSystem);

[¬,A] = linearizeDynamicalSystem(dynamicalSystem);

P = lyap(A,eye(size(A)));

Lyapunov_Candidate = indet.'*P*indet;

end

function [prog,Qset] = newDDSet(prog,deg,n)
%NEWDDSET Returns a deg−by−deg−by−n msspoly array
% Along the dimensions n are DD matrixes e.g.:
% newDDSet(2,2,2) returns an array Q where
% Q(:,:,1) and Q(:,:,2) are 2−by−2 DD matrixes

Qset = cell(n,1);

for i=1:n
[prog,Qset{i}] = prog.newDD(deg);

end

end

function [poly_without_constant] = removeConstant(poly_with_constant)
%REMOVECONSTANT removes constant term (i.e. independet of indets)
% Detailed explanation goes here

[indet,power,M] = decomp(poly_with_constant);

for k=1:size(power,1)
if sum(power(k,:)) == 0

M(:,k) = zeros(size(M,1),1);
end

end

poly_without_constant = recomp(indet,power,M);

end
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