<]
TUDelft

Delft University of Technology

Estimating a Reliable Water Budget at A Basin Scale

A Comparison between the Geostatistical and Traditional Methods (Foro River Basin,
Central Italy)

Di Giovanni, Alessia; Di Curzio, Diego; Pantanella, Davide; Picchi, Cristiana; Rusi, Sergio

DOI
10.3390/w15234083

Publication date
2023

Document Version
Final published version

Published in
Water

Citation (APA)

Di Giovanni, A., Di Curzio, D., Pantanella, D., Picchi, C., & Rusi, S. (2023). Estimating a Reliable Water
Budget at A Basin Scale: A Comparison between the Geostatistical and Traditional Methods (Foro River
Basin, Central Italy). Water, 15(23), Article 4083. https://doi.org/10.3390/w15234083

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.3390/w15234083
https://doi.org/10.3390/w15234083

é
] water

Article

Estimating a Reliable Water Budget at A Basin Scale:
A Comparison between the Geostatistical and Traditional
Methods (Foro River Basin, Central Italy)

Alessia Di Giovanni **, Diego Di Curzio 2, Davide Pantanella %, Cristiana Picchi ! and Sergio Rusi !

Citation: Di Giovanni, A.;

Di Curzio, D.; Pantanella, D.;
Picchi, C.; Rusi, S. Estimating a
Reliable Water Budget at A Basin
Scale: A Comparison between the
Geostatistical and Traditional
Methods (Foro River Basin, Central
Ttaly). Water 2023, 15, 4083. https://
doi.org/10.3390/w15234083

Academic Editors: Marco Franchini

and Aizhong Ye

Received: 23 October 2023
Revised: 18 November 2023
Accepted: 22 November 2023
Published: 24 November 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC  BY) license
(https://creativecommons.org/license

s/by/4.0/).

1 Department of Engineering and Geology (InGeo), University “G. d’Annunzio” Chieti-Pescara,
66100 Chieti, Italy; davide.pantanella@studenti.unich.it (D.P.); cristiana.picchi@studenti.unich.it (C.P.);
sergio.rusi@unich.it (S.R.)

2 Department of Water Management, Delft University of Technology, 2628 CN Delft, The Netherlands;
d.dicurzio@tudelft.nl

* Correspondence: alessia.digiovanni@unich.it

Abstract: Recently, new numerical methods have been applied to weather data for the estimation of
water budget, especially when the lack of measured data is considerable. Geostatistics is one of the
most powerful approaches when it comes to studying spatially relevant natural phenomena, as it
considers the spatial correlation among measurements over a specific study area and provides the
associate uncertainty. In this study, we tested the feasibility of using a geostatistical method to pro-
vide a reliable estimation of the water budget of the Foro river basin (Central Italy) by comparing
the obtained results with those of a traditional yet robust method. The results obtained with the
geostatistical approach proved to be in line with the ones from the traditional method. Additionally,
it was possible to quantify the uncertainty associated with the discharge values, making the esti-
mates more reliable than the ones obtained with the traditional approach. However, the yearly dis-
tribution of river discharge obtained using both methods appeared to be dissimilar to the measured
ones. The surface water uses, as well as the regulatory effect of the carbonate and alluvial aquifer
regime, may affect the river discharge variability over the year and then can account for similar
discrepancies between the inflow and outflow water volumes.

Keywords: water budget; Ordinary Kriging; alluvial basin

1. Introduction

The reliable estimation of the water budget at a river basin scale is crucial for proper
water-management practices and the sustainable multi-purpose exploitation of water re-
sources, especially considering the evident and increasing impact of climate change on
water availability [1-6]. However, the quantification of available water resources con-
nected to the direct rainfall recharge, as in river basins [7], is often affected by the problem
of the spatial representativeness of the data (i.e., rainfall and temperature) collected in
sparse weather stations across areas that are hundreds to thousands of square kilometers,
and which are usually recorded as time series and then interpolated to obtain a spatial
distribution [8]. As a matter of fact, the distribution of weather data is often not optimal
according to both a spatial and an altimetric point of view [9].

To overcome this limitation related to the spatial representativeness of discrete meas-
urements from a sparse weather monitoring network, simple spatialization approaches,
such as triangulation to obtain isolines or the Thiessen method to obtain representative
values within areas of influence of a single station, have traditionally been used [10,11].
However, even though they are quite robust, these approaches to the spatialization of
rainfall and temperature data and then to the quantitative estimation of the water budget
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at a basin scale do not provide any reliable estimation of the uncertainty due to the inher-
ent spatial variability of the meteorological phenomena, which cannot be physically meas-
ured by a sparse monitoring network.

In recent decades, different approaches have been used to tackle the spatialization
issues, like data fusion with satellite-based information on precipitation [12,13], the use of
machine learning techniques [14,15], and geostatistical methods, which have been devel-
oped and tested in several hydrogeological and environmental applications [16,17]. In
particular, geostatistical techniques are effective when it comes to studying spatially rele-
vant natural phenomena, as they take advantage of the spatial correlation among meas-
urements over a specific study area to provide reliable estimates of the variables of interest
[18-21], additionally providing the quantification of the associated uncertainty [22].

In the present work, we aimed to test the feasibility of using a stationary geostatistical
technique to spatially estimate rainfall and temperatures to provide a reliable estimation
of the Foro river regime over an average year. To achieve this purpose, we compared the
water budget estimation in terms of river discharge obtained from the spatialization of
monthly rainfall and temperature with both the Ordinary Kriging and the Thiessen meth-
ods (see the flowchart in Figure 1 for a better comprehension of the theoretical approach).

Traditional method Geostatistical method Direct measure

Rainfall Rainfall Uncertainty
estimation (P) interpolation (P) LL and UL
Temperature Temperature Uncertainty
estimation (T) interpolation (T) LL and UL

— — Hydrometer
Evapotranspiration Evapotranspiration Uncertainty meastres
calculation (E) calculation (E) LL and UL

aton ion
calculation (R) calculation (R) LL and UL

Comparison and analysis
between results.
Evaluation of human
activities impact.

Figure 1. Flow chart showing the research methodology (for symbols see Section 2.3 and 2.4).

The original datasets were obtained by calculating the monthly average rainfall and
temperature from a 33-year-long time series (i.e., from 1986 to 2019), collected by the Hy-
drographic Service of Abruzzo Region, at each weather station of its monitoring network.

Since the objective of the study is to compare, in the Foro valley test area, the results
obtained by applying the two techniques using only and exclusively the real data of the
available monitoring network, neither virtual weather station was used in the calculations
using the traditional method to cover unmonitored areas (generally corresponding to al-
titudes greater than 1000 m a.s.l. (above sea level)), nor were geostatistical correlations
with altitude performed in the geostatistical estimation process.

As a comparison term, the flow rates of the Foro river monitored in the same statisti-
cal time interval in two monitoring stations located approximately in the middle and at
the end of the river course were used, which are linked to an 87 km? and a 232 km?2 wide
sub-basin, respectively.
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2. Materials and Methods
2.1. Study Area

The study area is the Foro alluvial river basin located in the Periadriatic area of the
Abruzzo Region (Figure 2), which is mainly characterized by foredeep deposits and allu-
vial deposits of the main rivers.
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Figure 2. Regional framework. 1. Fluvial alluvial deposits (Quaternary); 2. intramontane basins’ al-
luvial deposits (Quaternary); 3. Adriatic foredeep deposits (Plio—Pleistocene); 4. turbiditic deposits
(Miocene —Pliocene); 5. carbonatic deposits (Up. Triassic—Oligocene); 6. main rivers; 7. Foro basin.

Figure 3 shows the geological-hydrogeological framework in detail: in the south-
western part, at the highest altitudes, the basin is characterized by calcareous-marly de-
posits, while in the other portions, it is characterized by Plio-Pleistocene clays with sandy—
gravelly levels, and Quaternary alluvial and continental deposits are present.
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Figure 3. Foro valley study area and hydrogeological framework. 1. Continental detritus complex;
2. gravelly —sandy fluvial complex; 3. transitional sandy-gravelly complex; 4. marine sandy—grav-
elly complex (Mutignano formation); 5. marine clayey complex with sand and gravel (Mutignano
formation); 6. calcareous complex (Orfento and Tre Grotte formations); 7. Marly—calcareous com-
plex (Bolognano formation); 8. flinty—calcareous complex (Santo Spirito formation); 9. Foro river; 10.
Ponte Di Vacri sub-basin; 11. Molino Galasso sub-basin; 12. Thiessen polygon; 13. gauging station; 14.
hydrometer.

The Foro basin is about 236 km? wide, and from the altimetric point of view, it ranges
between the sea level and about 2000 m a.s.l. The most permeable complexes can be found
in the SW portion and along the Foro riverbed, while the less permeable ones are observed
in the middle part of the basin.

Along the Foro river, the anthropogenic factors are relevant, and a significant amount
of water resources is exploited for drinking purposes and for fields’ irrigation. Further-
more, a hydroelectric plant can be found within the Foro basin, which takes from the river
and then returns it downstream.

This kind of plants can be found in almost all the catchments of the rivers of central
Italy with Adriatic drainage [23-25] and in the Apennine intra-mountain basins [26].

2.2. Meteorological Network

The rainfall and temperature datasets used have been collected by the Hydrographic
Service of Abruzzo Region database for a 33-year period, from 1986 to 2019. Table 1 sum-
marizes the selected monitoring stations and their main features.

In the traditional approach, data from just 10 weather stations inside or immediately
outside the Foro basin were used (Figure 3), while for the geostatistical analyses, data from
the whole Abruzzo and Molise regions were used to estimate the spatial distribution of
both rainfall and temperature (Figure 4).
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Figure 4. Abruzzo and Molise regional weather stations” network. 1. Pluviometer; 2. thermometer;
3. pluvio-thermometer.

Eight out of ten of the stations considered in the traditional approach had both a rainfall
gauge and a temperature sensor, while two of them (i.e., ASL and CLD) had just the rainfall-
measurement system. For the latter, monthly and annual temperatures were estimated us-
ing linear regression between temperature and elevation. As can be observed in the Altitude
column in Table 1 and in Figure 3, weather stations are not homogeneously distributed and
cannot be found at altitudes over 1280 m a.s.l., nor between 700 and 1300 m a.s.L.

Two hydrometers, Foro a Molino Galasso and Foro a Ponte di Vacri, were considered
inside the Foro basin in order to define two sub-basins and compare measured discharge
with calculated ones.

Table 1. Gauging station selected and their annual mean features. The asterisk indicates stations,
where temperature has been obtained from regression lines. P: pluviometer; T: thermometer; H:
hydrometer (see Figure 3 for the location).

Station Name Station Gauging  Altitude Mean Annual Mean Annual Mean Annual
Code  Station Type (ma.s.l) P (mm) T (°C) Discharge (m?/s)

Alento a S. Leonardo ASL P 3 797 17.3*

Ortona ORT P-T 75 726 16.2

Chieti CHT P-T 278 768 15.8

Casalincontrada CLD P 310 876 15.4*

Fara F. Petri FFP P-T 313 925 15.3

Orsogna ORS P-T 410 885 15.5

Pretoro PTR P-T 550 1127 14.9

Guardiagrele GRD P-T 551 912 14.3

Pennapiedimonte PMN P-T 679 953 14.0

Passo Lanciano PLA P-T 1280 1493 8.1

Foro a Molino Galasso FMG H 8 2.8

Foro a Ponte di Vacri FPV H 95 1.2
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2.3. Geostatistical Method

To spatialize both the rainfall and the temperatures measured at the weather station
of the regional monitoring network, we used the stationary technique called Ordinary
Kriging (OK) [19,20,27]. OK estimates the target variable (z*(X,)) at each location of the
selected spatial domain (x,) through an unbiased and optimal estimator called the Best
Linear Unbiased Estimator (BLUE), which is defined by the following equation:

N
2*(X,) = Z Az(x)  withi=1,..,N (1)
i=1

In this equation, A; represents the weights assigned to the variable measurements
(z(x;)) within a certain distance called a neighborhood (x;).

The unbiased OK estimator imposes the following condition to ensure that the esti-
mated values are the most optimal and unbiased (i.e., E(z*(xo) - z(xo)) =0):

in =1 @

This condition represents a constraint within the Kriging equation system (Equation
(3)), which consists of a set of N + 1 linear equations:

(&
|Z Ay (xi, %)) + 1= y(x;,Xo)

{5 )
| .

N

In the OK equation system, p is a Lagrangian multiplier, while y(x;x;) and
Y(X,Xo) are the variograms related to pairs of measurements and to pairs of points that
include the unsampled location (X,).

The variograms are described by a function that incorporates the spatial dependency
of a given random variable of interest and describes the relation between semi-variance
(v(h)) and distance in terms of a separation vector or lag (h). Variograms are defined by
the equation (Equation (4)) defined below:

N(h)
y(h) = ﬁ Z [2(x) —z(x; + )]?  withi=1,..,N(h) 4)

where z(X;) and z(x; + h) are a pair of distinct measurements separated by alag h ata
specific location within the spatial domain (x;), and N(h) is the number of pairs separated
by the lag.

To solve the OK linear equation system (Equation (3)), the experimental variogram
(obtained from actual measurements) is fitted using a variogram model.

In addition to the predicted value at each target location on the gridded domain, OK
allows quantifying the uncertainty associated with the estimate in terms of Kriging vari-
ance (62(Xo)):

N
6% (Xo) = 1+ ) Av(X; Xo) 6)

It is important to highlight that the Kriging variance, as defined in Equation (5), and
the corresponding standard deviation can be used as a local measure of error only when
the variable of interest has a Gaussian statistical distribution, as the prediction may be
non-linear and not optimal to overcome this limitation. All the monthly rainfall and tem-
perature data were transformed into standardized variables (i.e.,, mean equal to 0, and
variance equal to 1) through the Gaussian Anamorphosis [22]. This function converts a
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Gaussian variable (Z = ®(Y)) into a non-Gaussian one by fitting a polynomial expansion,
as defined below:

D) = > WH (V) ©)

In this equation, H;(Y) are the Hermite polynomials, while ¥; are the Hermite coef-
ficients.

Once the Gaussian Anamorphosis function is defined, it is possible to use its inverted
version to transform a non-Gaussian variable into a standardized one (Equation (7)) as
follows:

Y =9 1(2) )

In this study, all the raw monthly rainfall and temperature data obtained from the
33-year-long time series collected over the whole regional monitoring network were pre-
viously transformed into standardized Gaussian variables and then used to fit the vario-
gram model and eventually interpolated across the entire Abruzzo region. Finally, the
predictions were back-transformed to obtain the monthly rainfall and temperature distri-
butions within the selected domain through the Gaussian Anamorphosis function. Back
transformation was applied to 95% confidence interval limits (Lower Limit—LL, and Up-
per Limit—UL) maps as well, obtained using the following relation, to provide a quanti-
fication of the uncertainty associated with the rainfall and temperature estimates:

1.960 8

N (®)
where o is the OK standard deviation, whereas n is the optimal number of measurement
locations in the neighborhood.

The rainfall and temperature values were estimated via OK through Equation (1) on
a grid (i.e., support) as large as the entire Abruzzo region, with a cell size of 100 x 100 m,
and then cut with a polygon corresponding to the Foro basin to compare the estimates at
a catchment scale.

All the geostatistics analyses in this study were performed using the software Ge-
ovariances Isatis.neo 2021.07.1 (www.geovariances.com/en/software/isatis-neo-geostatis-
tics-software/ (accessed on 21 November 2023).).

Limits of 95% CI = z*(x) +

2.4. Water Budget Estimation
The water budget is traditionally defined as

P=ET:+ 0O )

where P is the total rainfall related to a certain area; ET; is real evapotranspiration; and
O is outflow, defined as sum of runoff (R) and infiltration (I), which is correlated with the
potential infiltration coefficient (Ir).

In this work, rainfall and temperature were analyzed through two approaches, the tra-
ditional method based on the Thiessen polygons and the geostatistical spatial estimation.

For the first method, the ten thermo-pluviometric stations’ positions were considered
to draw the Thiessen polygons (Figure 3); the corresponding rainfall and temperature data
were cumulated to a monthly and annual resolution and then averaged to obtain datasets
representative of the whole 33-year-long time series.

In the second approach, the Ordinary Kriging was applied to rainfall and tempera-
ture data from gauging stations all over Abruzzo and Molise regions (Figure 4) for the
same 33-year period, obtaining the estimated spatial distribution of monthly and annual
rainfall and temperature. For each variable, three maps were carried out, one for the esti-
mated values and two for the relative errors identified as Upper (UL) and Lower (LL) Limits.

In both approaches, the real evapotranspiration (ET;) was calculated using the Turc,
Turc modified [28], and Thornthwaite and Mather [29] methods; mean real
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evapotranspiration values related to a statistically significant period (i.e., over at least 30
years) were provided from both methods and can be assumed as representative of the
local meteoclimatic condition.

The Turc method provides yearly ET, values through the following relation in Equa-
tion (10):

p

where L is the evaporative potential of the atmosphere (300 + 25T + 0.05T3) and T is
the mean yearly temperature of air (°C).

The Turc modified is also based on Equation (10), but it considers L as defined by
(300 + 25Tp + 0.05T%), with Tp = ZTP—i, and P, and T are the rainfall and air tempera-

ET, =

ture values related to the ith month, respectively.

This method quantifies evapotranspiration without considering seasonal variation in
the total amount of water returned to the atmosphere, either to affect air temperature (i.e.,
evaporation) or for plant life and growth (i.e., transpiration).

The Thornthwaite and Mather method [29] offers a more accurate estimation of the
evapotranspiration by calculating potential evapotranspiration in relation to the ith month
(ETy;) through an exponential equation (Equation (11)):

ET, =K [1.6 (g)a] (11)

no.of daylight hours . . .. . . .
where K = % is a corrective coefficient for the latitude; T; is the air temper-
3 no.of hours in a day

ature related to the ith month (in °C), and a = 0.49239 + 1792- 10751 —771-10771? +
675-107°I* is the exponent of Equation (11), which is based on the yearly heat index 1=

12 (3)1.514—
i=1\ g .

Monthly ET,,; values were compared with the residual water content within the shal-
lower portion of the soil, where plant roots influence the water budget, to estimate the
monthly evapotranspiration values (ET;). In this way, the yearly ET, value was estimated
while considering the seasonal variability and the actual availability of water in the topsoil.

After calculating the amount of water returning to the atmosphere, the outflow was
calculated according to Equation (9). In order to quantify runoff and infiltration, Potential
Infiltration Coefficients (Ir) derived from the most complete geological map of the study
area [30] were considered. Ir values were assigned to every hydrogeological complex [24]
according to the predominant lithotype.

In both methods, Equations (12) and (13) have been used to calculate infiltration (I)
and runoff (R), respectively:

I=1Ig-(P—ET) (12)

R=(P—ET,) -1 (13)

In order to compare the calculated water budget with the discharge measured using
the two hydrometers in Figure 3, two sub-basins were considered, and the relative runoff
was estimated, as a reference for the conversion of runoff into river discharge equivalent.

3. Results and Discussion
3.1. Traditional Water Budget Method

Based on the principles described in Section 2.4, “Water Budget Estimation”, Table 2
summarizes the results of the traditional approach to estimate the water budget: monthly
and yearly runoff were calculated for both the sub-basins and then converted into m3/s to
be compared with measured discharge. In general, the traditional water budget shows
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that about 65% of the inflows return to the atmosphere, while 35% is available for surface
runoff and infiltration.

Table 2. Monthly rainfall, evapotranspiration, and runoff values for the two sub-basins (Figure 3)
carried out with the traditional method.

Ponte di Vacri Sub-Basin Molino Galasso Sub-Basin
P(mm) E-(mm) Epy(mm) R@m3) R@m?¥s) P(@mm) E(@mm) E,(mm) R(@m3) R (@m?/s)
January 461 49 49 2,669,231 1.03 883 119 119 10,254,785  3.96
February 429 49 49 2,371,163 0.92 758 123 123 7,955,704 3.07
March 455 134 134 1,583,586 0.61 773 296 296 5,291,400 2.04
April 470 224 224 1,213,093 0.47 767 484 484 3,321,648 1.28
May 337 415 415 13,778 0.01 626 886 886 13,778 0.01
June 346 575 584 9468 0 609 1123 1245 9468 0
July 290 380 702 0 0 514 614 1506 0 0
August 250 282 646 0 0 446 478 1390 0 0
September 498 377 395 234,659 0.09 865 744 865 234,659 0.09
October 505 263 263 1,128,683 0.44 931 569 569 3,641,094 1.41
November 592 132 132 2,838,663 1.1 1111 288 288 10,930,159 4.22
December 610 55 55 3,495,049 1.35 1056 135 135 12,265,165  4.73

Note: (P, precipitation; Er, real evapotranspiration; Ep, potential evapotranspiration; R, runoff).

3.2. Geostatistical Water Budget Estimation

The geostatistical analyses were carried out for the twelve average monthly datasets
available following the method explained in Section 2.3, “Geostatistical Method”. In Fig-
ure 5, as an example, fitted variogram models related to the Gaussian-transformed rainfall
and temperature data for January are shown.

y(P_Jan)
y(T_Jan)

Experimental Variance=1.24 Experimental Variance=1.277373
Variable: P_Jan Variable: T_Jan

T T T T T T ¥ T T L T T T T T T T
0 20.000 40.000 60.000 80.000 0 20.000 40.000 60.000 80.000
Distance [m] Distance [m]
== OMNidi M. ~9-0 —0

Figure 5. Variogram (variance vs. distance) examples. To the (left): rain data; to the (right): temper-
ature data—both for January. The numbers on the variogram curves indicate the number of pairs.

In Figure 6, rainfall and temperature interpolations for January are shown; from left
to right, Upper Limit, estimated values, and Lower Limit maps can be observed. Rainfall
interpolations highlight the rainfall distribution typical of this climatic area: more intense
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precipitation in the SW portion, near the mountainous reliefs, and lower in the alluvial
valley area, towards the Adriatic Sea.

Legend &

Rainfall Jan
(mm/mon)

40
| |55
[ 70
s
B 100
B s
Bl 130
B s

A Hydrometer

A l”" f e T 4 % 4
A P W ‘ TV ok
,.,%e‘ﬂ : i | ] Forobasin

Legend
T (°C) Jan

{ v
A Hydrometer

|:| Foro basin

Figure 6. Geostatistical interpolations for 1986-2019 period in Foro a Molino Galasso sub-basin for
January. (A) Rainfall, from left to right: Upper Limit, estimation, and Lower Limit. (B) Temperature,
from left to right: Upper Limit, Estimation, and Lower Limit.

Examples of monthly outflow, infiltration, and runoff maps can be observed in Figure
6, related to Molino a Galasso sub-basin. The water budget estimation has been carried out
using the theoretical principles explained in Section 2.4 and applied to the rainfall and
temperature geostatistical maps obtained by applying the Ordinary Kriging.

As can be seen, the geostatistical method allows us to obtain a more accurate estima-
tion of the water budget terms all over the study area, with a resolution corresponding to
the chosen cell size. As a result of the application of the water budget, the outflow (upper
part in Figure 7) appears substantially connected to the distribution of precipitation and
temperature, which, in turn, are essentially conditioned by the elevation and the orogra-
phy. Instead, both runoff and infiltration maps reflect the lithologies of the area, which are
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directly correlated to the Ir coefficient used in Equation (12) for the calculation. Accord-
ingly, the two distributions appear complementary to each other.

A Hydrometer

[ Forobasin

Legend
Infiltration

A Hydrometer

[ Foro basin

A Hydrometer

[ Foro basin

hhp e
& all’g 7
iéﬂ.ﬂﬂ:ﬂ ‘
Figure 7. From top to bottom, example of monthly outflow, infiltration, and runoff in the Foro a

Molino Galasso sub-basin. For each term (from left to right), the Upper Limit, estimation, and Lower
Limit maps are shown.

A more intense infiltration and consequently lower runoff can be seen in the SW area
of the sub-basin, where the Iris higher (i.e., about 80-90%), whereas infiltration is less
intense in the central portion of the sub-basin.

In order to compare runoff values obtained with the geostatistical method and the
results in Table 2, zonal statistics have been applied to each map. This GIS tool allowed us
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to obtain statistical parameters, such as minimum, maximum, and mean values, as well as
the sum of each pixel value for every raster map. This approach was applied to both sub-
basin results.

3.3. Comparison between Traditional and Geostatistical Methods

In Figure 8, water budget results from both methods are compared to each other and
with direct discharge measures for each sub-basin.

For the Ponte di Vacri station, there is a good correspondence between both the geo-
statistical and traditional methods. On the other hand, an underestimation is highlighted
for the Molino Galasso station, where the traditional method gives discharge values con-
sistently lower than those of OK. In any case, in both sub-basins estimated water budgets
have the same trend, with a maximum during the wet season and a zero value during the
dry one. This last consideration derives from the fact that Thornthwaite’s method, applied
to groundwater-dependent areas, such as the one under study, does not consider the mod-
ulating effect of the soil and aquifers, which often affects the presence of outflow even
during the dry season (a local occurrence of this phenomenon is reported in [31]). In any
case, the fact that OK also allowed the estimation of 95% confidence interval limits makes
the results obtained with the geostatistical analysis more similar to the ones obtained
through the traditional approach: at Ponte di Vacri, values from the traditional approach
are almost always within the 95% confidence interval, whereas at Molino Galasso, they are
close to the Lower Limit.

The comparison between calculated and measured discharge shows some differ-
ences; a shift probably caused by a delay in the natural system (i.e., infiltration and
groundwater flow) can be observed. During the dry season, a basal flux is evident in river
discharge data, but this is not present in estimated values. This evidence may be connected
to the presence of arenaceous and alluvial deposits, which usually host local-to-regional
aquifers and provide a constant water supply to the river even during the dry season [32].
Furthermore, because of calculation assumptions, only direct contributions (i.e., precipi-
tation and temperatures) were considered in the estimation of the monthly river discharge
through both the geostatistical and traditional methods.

Moreover, in the Molino Galasso sub-basin, hydrometer data are influenced by meas-
ure availability because only four years were recorded. Despite this short monitoring pe-
riod, measured discharge from January to April shows good correspondence with the dis-
charge calculated with the geostatistical estimation data, and the shifting observed in
Ponte di Vacri is less pronounced. This difference is probably because Ponte di Vacri sub-
basin (Figure 3) is closer to the calcareous complex in the southwest part of the basin,
while the Molino Galasso one is located close to the Adriatic Sea, where the infiltration
delay is less evident.



Water 2023, 15, 4083

13 of 16
Ponte di Vacri sub-basin Molino Galasso sub-basin

2.0 15
15 —
w w
2 210
E / N £
v v
&0 1.0 \ 20
] ]
< <
2 2 5
P os ~. a

\
\
\
0.0 .\ - - 0 ™ P
Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
Classic method Geostatistical method - Estimation Classic method Geostatistical method - Estimation
Lower Limit Upper Limit Lower Limit Upper Limit
= Hydrometer Hydrometer
(a) (b)

Figure 8. Comparison between discharge values calculated with traditional and geostatistical meth-

ods and measured using hydrometers. (a) Ponte di Vacri sub-basin; (b) Molino Galasso sub-basin (see
also Table 2).

The yearly runoff estimations for the two sub-basin and for the whole Foro river basin
are shown in Table 3. For each method, the yearly water budget was calculated using the
Turc, Turc modified, and Thornthwaite and Mather approaches.

The results obtained from both the traditional and geostatistical methods were com-
pared to each other and with annual measured discharge, such as for monthly data. In
this case, hydrometer measures rose by 0.5 m¥s, corresponding to the amount of water
drawn annually for drinking purposes [33].

Table 3. Yearly runoff values for the two sub-basins and for the whole basin calculated with tradi-
tional and geostatistical methods. The Turc, Turc modified, and Thornthwaite and Mather methods
were applied for evapotranspiration (Thorn, Thornthwaite; LL, Lower Limit; Estim, Estimation; UL,
Upper Limit).

Annual Run Off (m?3/s)
Ponte di Vacri sub-basin
Traditional method Geostatistical method Hydrometer
Turc Turc mod Thorn Turc Turc mod
036 0.39 0.49 LL Estim UL LL Estim UL 1.16

0.15 0.27 028 0.15 0.24 0.27
Molino Galasso sub-basin

Traditional method Geostatistical method Hydrometer
Turc Turc mod Thorn Turc Turc mod
LL Estim UL LL Estim UL 2.81
115 127 L7 1.24 2.06 244  1.39 2.24 2.27
Foro basin
Traditional method Geostatistical method
Turc Turcmod Thorn Turc Turc mod
LL Estim UL LL Estim UL
1.16 1.28 1.91

1.27 2.11 2.49 1.42 2.29 2.32

In the Ponte di Vacri sub-basin, both methods underestimate the measured discharge.
This evidence can be explained by considering that, by subtracting discharge estimated
with the geostatistical method (about 0.3 m%/s) from the measured one (1.1 m%s), a 0.8 m3/s
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of surplus is obtained. Comparing this result with the Molino Galasso one, the difference
between measured and estimated is still 0.8 m3/s.

This comparison thereby supports the hypothesis that 0.8 m3/s is an external contri-
bution to the estimated discharge, considering that literature data suggest, for exactly the
carbonate aquifer in the southwestern side of the study area, an infiltration rate of 0.029
m3/s/km?2 [31,34,35]. This infiltration rate, related to the 0.8 m3/s external contribution, cor-
responds to a 27 km? of additional area adjacent to the considered catchment. The situa-
tion described is very common in the carbonate aquifers of the Apennines [36-38].

Also in this case, the values estimated through a traditional approach either fall
within the 95% confidence interval or are very close to one of the two interval limits. This
evidence suggests that the geostatistical approach provides reliable estimates of the water
budget, as it quantifies the uncertainty related to the fact that the measurement of both
rainfall and temperature is discrete and the monitoring network is too sparse to be able to
effectively describe the spatial variability in meteorologic phenomena at a basin scale.
Nevertheless, the data availability is one of the most critical factors for the application of
geostatistical techniques, as these methods need an appropriate number of measures.
Also, the traditional approach could benefit from a higher number of point data. The re-
cent developments obtained with the use of weather RaDAR data are encouraging
[9,39,40] and may represent a valuable additional source of information to be integrated
into the water budget estimation, especially through an advanced geostatistical approach
(e.g, Multi-Collocated Co-Kriging or Kriging with External Drift). The use of weather Ra-
DAR data would allow estimating in a more reliable way the spatial distribution of rainfall
on a finer grid mesh and with a lower associated uncertainty.

4. Conclusions

At first sight, the traditional and geostatistical analyses of input data for the water
budget could not be more different. The traditional method is based only on point obser-
vations of rainfall and temperature. On the other hand, the geostatistical method is built
on spatial variability models (i.e., variograms) and allows taking advantage of the spatial
correlation among observations to provide reliable estimates and uncertainty quantification.

The results compared in the graphs in Figure 7 show a similar trend: a most intense
discharge during the wet season, with a maximum in December, and a slow decrease from
January to May until a zero value is reached during the dry season. The best correspond-
ence between the two methods can be observed in the Ponte di Vacri sub-basin, while in
the Molino Galasso one, the discharge calculated with the traditional method is lower than
that of the geostatistical ones during the wet season. However, the possibility of also cal-
culating the 95% confidence interval limits with the Ordinary Kriging makes the results
obtained with the two considered approaches more similar to each other. In fact, the val-
ues estimated through a traditional approach either fall within the 95% confidence interval
or are very close to one of the two interval limits, suggesting that this geostatistical tech-
nique provides reliable estimates of the water budget.

The comparison between the discharge values calculated with the two methods and
the measured one appears more pronounced in the dry season. This is mainly due to the
presence of local-to-regional arenaceous and/or alluvial aquifers, which provide a con-
stant water supply to the whole hydro (geo)logical system. These discrepancies between
monthly measured discharge and estimated values can also be explained using the water
budget calculation method, which does not take into account additional inflows, such as
the water subtracted or added by human activities or the contributions from other aquifers.
Moreover, the geomorphologic features are not considered in this work, but they can indeed
influence infiltration and runoff. Infiltration was assumed as a net loss for the river basin
system, but it is a dynamic resource over a 30-year statistical period, especially in ground-
water-dependent systems and in the presence of river—aquifer hydraulic connections.

The comparison between annual runoff obtained through estimation and measure-
ment pointed out the presence of an external contribution of 0.8 m?3/s, which may be
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related to the local carbonate aquifer in the southwestern side of the study area. In the
calculated water budget, this additional inflow is likely related to a volume of water pre-
viously lost as infiltration and then returned with a delay. In addition, even though the
obtained results are encouraging, it is important to point out that the two methods had to
overcome some issues, such as inhomogeneous databases through time, the impact of hu-
man activities along the Foro river in terms of water utilization and partial return, and the
non-overlapping between the hydrographic and hydrogeological catchments.

In conclusion, the application of the Ordinary Kriging technique to rainfall and tem-
perature measurements proved to provide reliable estimates of the water budget at a basin
scale, very similar to the ones that can be obtained using the traditional approach. How-
ever, the geostatistical method is additionally able to quantify the uncertainty related to
discrete measurements of both rainfall and temperature and to a sparse monitoring net-
work. For both approaches, data availability is one of the key factors, and the integration
of other and more continuous sources of data, such as weather data, would be beneficial
to estimate the water budget in a reliable way.

Pragmatical aspects of the research can be summarized as follows: (1) different meth-
ods can quantify the single water budget terms; (2) uncertainty can be determined; (3) the
detailed knowledge of the catchment framework, such as the hydrogeological setup and
the anthropization degree (how much water is exploited and released), is crucial. The lack
of this information does not allow the comparison between different methods.
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