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Abstract

The purpose of this study is to investigate how metamaterials with a negative Poisson ratio,
so-called auxetic metamaterials, can be used for conversion of pressure from a fluid to strain
in a solid for application in a medical pressure sensor.

As a first step, a literature review was carried out to identify the potential of auxetic meta-
materials as a solution direction for pressure to strain conversion. From considering three
optimal case scenarios for solution directions to create strain in a fiber, the approach of aux-
etic metamaterials stood out. High axial strains and a linear straining behavior, which is
important for the read-out of the sensor, were expected.

Auxetic Chiral structures were designed and fabricated and their effective Poisson ratios were
experimentally evaluated. It was found that the boundary effects that are introduced during
experiments influence the behavior of the auxetic structure, especially on the unit cells close
to the boundaries. A region was found where the unit-cells behave as theory describes and
the boundary effects are dissipated. Additionally, it was found that for the an-isotropic Meta
Tetra Chiral structure the Poisson ratio is influenced by applied strain. The isotropic Anti
Tetra Chiral structure did not show strain dependent behavior.

The relation between pressure to strain conversion and the effective properties of auxetic
structures indicated that an-isotropic effective properties are preferred. Using this finding
Re-entrant Honeycomb structures were designed for high pressure to strain conversion. From
measuring the force input and output while deforming the structure, the expectations were
verified.

In this research it was found that auxetic metamaterials with an-isotropic effective properties,
such as Re-entrant Honeycomb structures, are an effective intermediate for converting pressure
from the fluid domain to strain in a fiber.
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Chapter 1

Introduction

Problem Statement

Cardiovascular diseases are estimated to cause 31% of deaths globally [1]. A common heart
disease is Atherosclerosis, which means that the blood flow in the artery is disturbed by a
narrowing or blockage [2]. Angioplasty is an intervention procedure for opening obstructed
arteries through the placement of cylindrical structures also called stents [3]. Currently,
surgeons use Röntgen imaging to locate the arterial blockages. In order to improve the speed
and quality of the procedure and to minimize dependency on harmful Röntgen techniques,
development of a novel methodology to detect the location of obstructions is necessary.
Strictures in an artery cause a local deviation in blood pressure. A method of measuring
pressure is through the use of a Fiber Bragg Grating (FBG) Sensor [4]. This method has
certain advantages in the field of medical application, over conventional methods. Firstly,
the optical fiber is not affected by magnetic interference [4], making it possible to use in
combination with an MRI scanner. Secondly, the typical fiber diameter used for Fiber Bragg
Grating sensors is 125 µm [5], which makes it suitable to measure pressure inside arteries or
veins.
Creating a periodic change of refractive index, a so called Bragg grating, inside the core of
an optical fiber results in the reflection of a specific part of the spectrum passed through
the fiber. The periodicity of the grating determines the reflected wavelength, also called the
Bragg wavelength. The working principle of FBG sensors is based on the axial strain inside the
optical fiber that changes the periodicity of the grating and results in a shift in the reflected
Bragg wavelength [6]. For improvement of the pressure sensitivity of these devices the amount
of axial strain that is caused by the to-be-measured pressure is of importance. One approach to
improve pressure sensitivity is the use of Mechanical Metamaterials, which are hierarchically
structured materials that can be designed for unconventional material properties. Auxetic
Metamaterials is a class of materials that can achieve negative Poisson ratios [7], meaning
the material shrinks in horizontal direction when compressed in vertical direction. This is
beneficial as pressure from all sides of the material will lead to a strain in the same direction,
and thus could improve pressure sensitivity in FBG sensors.
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2 Introduction

In this study the solution direction of auxetic metamaterials for converting pressure to strain
in a Fiber Bragg Grating sensor is investigated.

Research Questions

To solve the problem that is described above and to investigate the potential of this new
solution direction, the following research question is formulated.

How can auxetic metamaterials be used as an intermediate for converting
pressure from the fluid domain to strain in the mechanical domain?
In order to answer this research question the following subquestions have to be answered:

1. How does the approach of auxetic metamaterials compare to currently known so-
lutions for converting pressure to strain in a solid body?

2. How can the effective Poisson ratio, that the unit-cell is designed for be accurately
verified, using experimental methods :
(a) What is the effect of boundaries, fixed or free, on the behavior of the structure

and what does this mean for the effective Poisson ratio?
(b) How do individual unit-cells behave within a structure, considering these

boundary effects?
(c) Does the amount of strain affect the behavior of the structure and thus the

effective Poisson ratio?
3. What are potentially well performing auxetic structural designs to convert pressure

to strain in a body?
(a) What is the connection between the effective material properties of an auxetic

metamaterial and the ability to amplify strain?
(b) Which auxetic metamaterial basic structure type is best suited and what are

the expected limits for pressure to strain conversion?

This report describes the results of the research carried out to answer these questions. First,
a literature review has been performed in order to investigate auxetic metamaterials, fiber
Bragg grating sensors and existing solutions for amplifying pressure to strain. This full review
is described in a separate report [8]. A concise summary of the reasoning and findings of this
review is included in chapter 2, in order to illustrate the potential of auxetic metamaterials
as a solution direction for pressure to strain amplification compared to existing solutions.

Next, in chapter 3, a methodology to experimentally verify the effective properties for which a
structure is theoretically designed is described. In this part, the boundary effects introduced
when experimentally measuring the effective Poisson ratio, the Poisson ratio per unit-cell and
the effect of strain on the Poisson ratio are investigated.

Chapter 4 focuses on the application of auxetic metamaterials specifically to convert pressure
from the fluid domain to strain in a solid. First, the relation between effective properties,
such as the Poisson ratio and the Young Modulus, and strain transfer is considered to deter-
mine what structure type is suitable for this application. After having selected a structure
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type based on this relation, the effect of the structure geometry on strain amplification is
investigated and experimentally verified.

In chapter 5 the final conclusion with respect to the main research question of how an auxetic
structure can be designed for pressure to strain amplification is presented. Additionally,
recommendations for future research are discussed here.
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Chapter 2

Auxetic Metamaterials: An
Introduction

In this chapter a concise summary is given of the results from a literature review that has
been performed in preparation of this current study. The full literature review is documented
in another report titled: Potential of Metamaterials for Improving Pressure Sensitivity of
Fiber Bragg Grating Sensors [8]. In the review [8] the state of the art of Fiber Bragg Grating
sensors and mechanical metamaterials is discussed. The second part of the review [8] is an
analysis of the performance of conventional solutions as well as of a new solution direction
considering auxetic metamaterials.

First, the background of mechanical metamaterials is introduced, specifically the auxetic
mechanical metamaterial. To answer the first research question and to provide the basis for
the rest of this current study, the concept of using an auxetic metamaterial as a solution
direction for this problem is explained.

Three optimal cases of different solution directions are analyzed. Concluding this chapter, an
overview is given of the expected performance of conventional solution directions versus the
solution using auxetic metamaterials.

2-1 Auxetic Metamaterials

Mechanical metamaterials are a class of materials with uncommon material properties, which
are achieved by structures within the material itself. Examples of this can be found in nature,
such as cork or bone tissue. In nature this phenomenon is produced through evolution.
The recent developments in manufacturing techniques make it possible for researchers to use
this concept from nature and build their own hierarchical structured metamaterials at the
nanometer scale [9]. For the purpose of this study one particular type of metamaterials is
interesting, the auxetic metamaterial. This type of mechanical metamaterials has a negative
Poisson ratio. The Poisson ratio defines the amount of orthogonal strain that occurs due to
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6 Auxetic Metamaterials: An Introduction

Figure 2-1: Schematic illustrating the Poisson ratio, vyx.

the strain created in the loading direction, as seen in Equation 2-1. The effect for a regular
and negative Poisson ratio is shown in Figure 2-1.

νyx = −εx
εy

(2-1)

Auxetic metamaterials can be created with a number of approaches. In Figure 2-2 an overview
the different types and classes of auxetic structures that are described in literature. The first
distinction is made between a hierarchical auxetic metamaterial, which is a material structure,
that is built out unit-cells that also have a particular structure [10] and unstructured materials
like foams which can also show auxetic behavior [7]. For the most complete overview of all
the different classes, types and developments of the past three decades in the field of auxetic
metamaterials refer to [11]. Within the hierarchical auxetic structures, a new subdivision can
be made between Chiral structures, Re-entrant structures and rotating shapes.

Chiral structures are built from unit-cells that consist of a rigid ring and a number of
beams, or ligaments. The auxetic behavior is caused by the rotation of the rigid rings.

Re-entrant structures are designed to contract or bend inward, by positioning of the
beams.

Rotating shapes is structure class with structures designed out of hinging planes with
a specific shape.

Within these structure classes, there are numerous of different possible types, which can be
designed for specific effective properties.

For the purpose of this study, the interesting structures types are hierarchical structures,
as they can be designed for effective material properties using theory from literature. In
Appendix A, the derivation of effective material properties of the archetypes of the Chiral
and Re-entrant structure classes is found.

A.W.S. Nederkoorn Master of Science Thesis



2-2 Optimal Cases 7

Figure 2-2: An Overview of Auxetic Structure Types

2-2 Optimal Cases

In this section, an optimal case for the two most interesting approaches following from the
analysis in [8] and the solution direction using auxetic metamaterials, are considered. These
optimal cases are analyzed both theoretically and with a FEM analysis. This is to get an idea
of the maximum achievable gain in pressure to strain conversion, for each concept. First, the
structural approach is considered. Next, the bending approach is discussed. Thereafter the
Auxetic metamaterial is considered. Finally, a comparative overview is given.

Design Constraints

The design space and requirements for the sensor are given by the fact that the sensor has to
be able to operate in an artery and measure blood pressure. The requirements are:

A maximum sensor node diameter of 330 µm

A minimum measurable pressure difference of 134 Pa
This corresponds to 1 millimeter of mercury (mm Hg), which is the standard unit for
pressure used in medicine

In addition to the requirements the dimensions and properties of the optical fiber is given. The
minimum achievable diameter of a glass fiber is considered as 50 µm. The Young Modulus of
an optical fiber used for Fiber Bragg Gratings is Ef = 72 GPa [12]. The minimum measurable
pressure difference of 134 Pa corresponds to 0.1 nanostrain Pa−1 in the Fiber Bragg Grating
sensor.

Master of Science Thesis A.W.S. Nederkoorn



8 Auxetic Metamaterials: An Introduction

2-2-1 Structural Approach

Figure 2-3: Schematic of the structural approach.

The structural approach is based on increasing the area on which the pressure acts while
keeping the cross-sectional area of the strained body as small as possible. An optimal repre-
sentation of this idea, is shown in Figure 2-3. The axial pressure acts on the rigid disks of
diameter dmax = 330 µm, this causes axial strain in the fiber with diameter df = 50 µm. The
contribution of the bellows on the straining behavior in the optical fiber is not considered
in this calculation. Including the mechanics of the bellows leads to a contribution in axial
stiffness of the total system. Additionally, bending of the bellows due to pressure leads to a
compressive axial strain in the fiber.
The axial stress, caused by pressure p on the disk, in the fiber is obtained as,

σx = p
AD
Af

(2-2)

With AD as the area of the disk and Af as the cross sectional area of the glass fiber. Using
Hooke’s law (Ef = σx/εx), results in the axial strain. Following this method with Ef = 72
GPa, the achievable axial strain in the fiber is εx = 0.59 nanostrain Pa−1

Figure 2-4: Simulation of the structural approach.

This result is validated in Comsol, using a simple model of the fiber and a rigid disk. The
bellows were not considered as they are assumed to have zero stiffness. An image of the
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2-2 Optimal Cases 9

simulation is seen in Figure 2-4. The value retrieved for strain in the fiber is εx = 0.596
nanostrain Pa−1.

2-2-2 Bending Approach

The bending approach is based on attaching a flexible beam to the fiber. When bending the
fiber alone the strain in the center of the fiber is zero. This is due to the neutral bending axis
is in the center of the fiber. When a flexible body is fixed to the fiber this neutral bending
axis shifts away from the center of the fiber. This causes axial strain in the fiber when the
total system is bent. An optimal case of this concept is shown in Figure 2-5.

Figure 2-5: Schematic of the bending approach.

The maximum stress σmax in the fiber is described in Equation 2-3 [13]

σmax = Mc

I
(2-3)

M is the bending moment on the beam, c is the distance from the neutral bending axis and
I is the moment of inertia of the cross sectional area. Combing εx = σx/E and M = 1

2FL,
where F is the force due to the pressure acting on the system with Equation 2-3, the strain
is obtained as Equation 2-4.

ε = FLc

2IE (2-4)

For the performance estimation of this concept the system is assumed to have a rectangular
cross section area and the moment of Inertia is I = 1

12bh
3, where h is indicated in Figure 2-5

and b is the out of plane depth. The Young Modulus is calculated using Equation 2-5, which
assumes the system as two parallel springs.

Etot = EfiberAfiber + EpolymerApolymer
Atot

(2-5)

To get a realistic estimation of the pressure to strain conversion of this concept, the surround-
ing casing that is necessary for this concept to function is accounted for. This leads to the
assumption that the dimensions h and b are 230 µm. Using the parameters Epolymer = 0.1
GPa, Efiber = 72 GPa, hf = 50µm and L = 1 mm, the strain at the edge of the system
c = 1

2h is calculated. This results in an estimated maximum pressure to strain conversion of
10.8 nanostrain Pa−1.

Master of Science Thesis A.W.S. Nederkoorn



10 Auxetic Metamaterials: An Introduction

Figure 2-6: Simulation of the bending approach.

To verify these results a numerical model of this system has been composed in Comsol. An
illustration of this model is shown in Figure 2-6. The resulting pressure to strain conversion is
1.17 nanostrain Pa−1. This is significantly lower than the expectation from theory. The reason
for this is the assumption made in retrieving the total Young Modulus Etot, and assuming
that the neutral bending axis is in the middle of the system. In reality this axis is closer
to the stiffer body. A big advantage of the bending approach is that the pressure to strain
conversion can be improved by increasing the length L. A disadvantage of this approach is
that bending the fiber leads to a nonuniform strain profile.

2-2-3 Auxetic Metamaterial Approach

Figure 2-7: Schematic of the auxetic metamaterial approach.

An optimal case for the auxetic metamaterial approach consists of a fiber and a solid cylinder
representing the auxetic coating. The axial strain εx caused by pressure p is calculated using
Equation 2-6 from Lui et al. [14]. In this equation, Etot is the lumped Young Modulus of
the auxetic material and the fiber as in Equation 2-5. The Young Modulus for the auxetic
material and the fiber are Eaux = 0.1 GPa, Efiber = 72 GPa. Using the Diamters dmax = 330

A.W.S. Nederkoorn Master of Science Thesis



2-2 Optimal Cases 11

µm, df = 50 µm results in a lumped Young Modulus of Etot = 1.75 GPa. An isotropic Poisson
ratio of ν = −1 leads to an axial strain estimation of 1.71 nanostrain Pa−1.

εx = p

Etot
(1− 2ν) (2-6)

A simulation of this system is performed in Comsol. The auxetic coating is considered as a
solid with Eaux = 0.1 GPa and a Poisson ratio of ν = −0.99. The dimensions of the system
are the same as in the analytic estimation. Pressure was applied on the surface of the auxetic
coating. The simulation is shown in Figure 2-8. The resulting axial strain in the fiber is 1.22
nanostrain Pa−1.

Figure 2-8: Simulation of the auxetic metamaterial approach.

Master of Science Thesis A.W.S. Nederkoorn



12 Auxetic Metamaterials: An Introduction

2-3 Conclusion

In Table 2-1 an overview of the achievable pressure to strain conversion for the three optimal
cases considered is shown. From considering the optimal case, where the auxetic metamate-
rial is simplified as solid, it has been shown that an approach with auxetic metamaterials is a
promising solution direction to consider. The predicted maximum pressure to strain conver-
sion of this approach is 1.22 nanostrain/Pa. Another advantage of the auxetic metamaterial
approach over the bending approach is the expected linear relation between strain and pres-
sure. The bending approach results in a nonuniform strain profile in the fiber, which makes
it difficult to implement this approach into a sensor.

Table 2-1: Overview of achievable strain for different design approaches that follow from the
FEM analysis. Additionally, the most important design parameters of the approaches are listed.

A.W.S. Nederkoorn Master of Science Thesis



Chapter 3

Measuring The Poisson Ratio of 2D
Auxetic Structures

Properties of Auxetic structures are designed using the mechanics of a unit-cell. The mechan-
ics of different auxetic structure types found in literature are discussed in Appendix A. An
assumption made in the theoretical models is that the unit-cell is surrounded by an infinite
number of other unit-cells. In reality, a 2D auxetic metamaterial consists of a finite amount
of unit cells. This introduces boundary effects and causes unit-cells throughout the structure
to behave differently.

In this chapter, an experiment is presented to determine the effect of fixed and free boundary
constraints that are introduced during compression tests. The goal of this experiment is to
tell in which region of the auxetic structure it can be considered unconstrained, where there
is no significant boundary effect on the auxetic behavior. This is useful for the verification of
theoretical models of unit-cells.

A method to optically measure the displacement of a grid of pointers during deformation
throughout a 2D structure, using a camera system, is presented. In the next part, the data
resulting from the experiment is analyzed in different ways to retrieve the effective Poisson
ratio. The reliability of the measurement method is considered, checking for sliding of the
applied markers that are used to measure the displacements within the structure.

Master of Science Thesis A.W.S. Nederkoorn



14 Measuring The Poisson Ratio of 2D Auxetic Structures

3-1 Methodology

In this section, the methodology to experimentally retrieve the effective Poisson ratio of
auxetic 2D structures is presented.

3-1-1 Samples and Fabrication

For the experiment described in subsection 3-1-2 two types of structures are fabricated, see
Figure 3-1. The isotropic Anti Tetra Chiral structure (Sample A.1) and the an-isotropic Meta
Tetra Chiral structure (Sample A.2). Both structures have a high number of unit-cells. Using
the analytical methods described in Appendix A, the structures are designed. The calculated
properties are shown in Table 3-1.

(a) Sample A.1, an Anti Tetra Chiral Structure of 10×12
unit-cells. The theoretical effective properties of a unit
cell are νyx = −1 and Ex = Ey = 6.48 MPa.

(b) Sample A.2, a Meta Tetra Chiral Structure of 10×14
unit-cells.The theoretical effective properties of a unit cell
are νyx = −0.83, Ex = 5.78 MPa, Ey = 5.18 MPa.

Figure 3-1: The structures and their effective properties used for the compression experiment.
Geometrical details of the structures are listed in Appendix B. The material used is PET (E =
1.85 GPa).

Sample Type Ex [MPa] Ey [MPa] νyx Es [GPa]
A.1 Anti Tetra Chiral 6.48 6.48 -1 1.85
A.2 Meta Tetra Chiral 5.78 5.18 -0.83 1.85

Table 3-1: Overview of effective properties that follow from theory for a unit-cell. Effective
Young moduli Ex and Ey. The effective Poisson ratio νyx, as defined in Equation 2-1 and the
Young Modulus of the host material Es.

For a complete overview of the geometric properties of the samples used in this research refer
to Appendix B.

The structures are fabricated using a Prusa MK2 with PET-G filament. The effect of this
manufacturing method on the material specifically for 2D auxetic structures is investigated in
Appendix C. From this analysis it is concluded that the printed PET-G has an isotropic Young
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3-1 Methodology 15

Modulus of E = 1.85 GPa, and there is no dependency on printing direction, specifically when
printing thin 2D beam structures.

3-1-2 Experimental Set-up

In Figure 3-2 the experimental configuration is shown. The sample is placed in a Zwick
and Roell static material testing machine. A vertical displacement uy ≈ −4 mm is applied,
compressing the sample. The compression cycle going from an undeformed state, to the
maximum deformed state lasts 30 seconds.

Figure 3-2: An image of the experimental configuration used to measure displacements through-
out the plane. The sample is compressed in a Zwick & Roell machine. The location of a 10 x 10
Grid of green circular markers is captured by camera. This is Sample A.1 an Anti Tetra Chiral
structure.

With a Canon camera, which has a resolution of 2500 × 3500 pixels, 1 image per second is
captured during the compression cycle. This process is repeated several times per structure.
The markers are circular stickers and are positioned so that the circle centers overlaps with the
centers of the chiral unit-cells. The use of markers and what this means for the measurement
accuracy is discussed further in subsection 3-3-1.

3-1-3 Retrieving Displacements

The captured images are analyzed using the image processing toolbox from Matlab, which
can recognize shapes like circles. A function was written that extracts and sorts the centers
of the markers from the image, returning the x, y coordinates (in pixels) for the nodes. The
script used is found in Appendix F.

In Figure 3-3 a snapshot of an analyzed image is shown. In this image 1 pixel corresponds
to 0.11 mm. The region which is captured, or so called region of interest, determines this
ratio. The image recognition software from Matlab uses values from multiple pixels (the
circumference crosses more than 2πr = 370 pixels) to retrieve the location of the circle
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16 Measuring The Poisson Ratio of 2D Auxetic Structures

Figure 3-3

and is capable of determining sub pixel displacements. This reasoning leads to an estimated
measurable displacement of 0.5 mm in the case of a region of interest covering all the markers.

Different ways of processing the data are discussed in depth in subsection 3-2-1 and subsec-
tion 3-2-2.

The choice for using markers was based on the finding that the circles, present in the geometry,
were hard to track due to inconsistency in lighting.

3-1-4 FEM analysis

For verification purposes a FEM simulation is performed. The resulting deformed structures
are seen in Figure 3-5. The FEM analysis of Sample A.1 and A.2 consist of a 2D model of the
full structure, with a triangular mesh. A close up of a meshed unit-cell is shown in Figure 3-4.

(a) (b)

Figure 3-4: Meshes used for the simulation of Sample A.1(a) and A.2(b)

The bottom boundary has a fixed constraint and on the top boundary a prescribed vertical
displacement uy is applied. To see how the structure properties change for increasing strains,
a parametric sweep for uy is performed, while solving for geometric non linearity. The Poisson
ratio is determined using the centers of solid circles in the middle of the structure.
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3-2 Data Analysis 17

(a) Sample A.1, an Anti Tetra Chiral Structure of
10 × 12 unit-cells. The structure is loaded from εy =
{0.1%, ..., 2.3%}. This image is from the final load case,
the scale factor for displacement is 3.

(b) Sample A.2, a Meta Tetra Chiral Structure of
10 × 14 unit-cells. The structure is loaded from εy =
{0.1%, ..., 2.41%}. This image is from the final load case,
the scale factor for displacement is 3.

Figure 3-5: Resulting displacement and von Mises stress from simulation for Sample A.1 and
A.2

3-2 Data Analysis

This section discusses how the acquired data from the experiment is analyzed. First, a method
that uses rectangular planes is presented. Second, the Poisson ratio per unit-cell is considered.
Finally the Poisson ratio versus strain is retrieved and compared for the two samples.

3-2-1 Calculating Poisson with Rectangular Planes

Alomarah et al. [15] present a method to experimentally retrieve the Poisson ratio, νyx. This
method uses the definition of a plane inside the structure where the Poisson ratio is assumed
to be uniform. The deformation of this plane is retrieved by tracking the displacement of 8
points in the structure. The deformation of the plane is constructed using the average of the
y displacement of the yellow nodes and the average x displacement of the blue nodes.

The choice for the location of the plane is not elaborated on. Alomarah et al. do notice the
effect of the boundaries of the plane as they make an effort to reduce the effects with hinges
and lubrication. However there is still a considerable nonuniform displacement noticeable in
x in Figure 3-6.

In this section, using the concept of a plane as Alomarah et al. described, it is investigated
how positioning of the corner-nodes of a plane effects the measured Poisson ratio.

Figure 3-7 illustrates the definition of the location of the plane. The position of the plane is
defined by m, as the distance from the fixed boundaries, and n, as the distance from the free
boundaries. The plane is symmetric along the same symmetry axis as the auxetic structure.
The plane has dimensions Lx and Ly, which are calculated with Equation 3-1, using the x, y
coordinates of the nodes {1, .., 4} indicated in blue in Figure 3-7.
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18 Measuring The Poisson Ratio of 2D Auxetic Structures

Figure 3-6: Experimental method of Alomarah et al. [15], consisting of 8 data points, where
the x displacement in the auxetic structure is calculated by taking the average of the blue nodes.
The y displacement is retrieved from the yellow nodes.

Figure 3-7: A Schematic of the marker grid for Sample A.1. m indicates the vertical distance
in nodes from the fixed boundary, n indicates the horizontal distance in nodes from the free
boundary. Together m and n define a rectangle and the 4 nodes that are used in the calculation
of νyx. The planes symmetry axes always coincide with the symmetry axes of the structure.

Lx = 1
2(x1 + x3)− 1

2(x2 + x4)

Ly = 1
2(y1 + y2)− 1

2(y3 + y4)
(3-1)

The changes in lengths caused by displacement are retrieved in Equation 3-2.

δx = Lx1 − Lx0

δy = Ly1 − Ly0
(3-2)

Where Lx1 and Lx0 are the lengths of loaded and unloaded frame respectively. The strains are
defined as by εx = δx/Lx. Finally, the Poisson ratio of the plane is calculated in Equation 3-3.
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3-2 Data Analysis 19

νyx = −εx
εy

(3-3)

The undeformed frame (εy = 0%) and the maximum deformed frame (εy ≈ 2%) are compared
for several deformation cycles for both Sample A.1 and A.2. The resulting νyx is plotted in
Figure 3-8 and Figure 3-9 for the different planes indicated by m and n.

Increasing the distance from the fixed boundary, results in a measured νyx closer to the
theoretical value for which the structure is designed. In the right plot of Figure 3-8, νyx

1 2 3 4 5

m

−1.0

−0.8

−0.6

−0.4

ν y
x

1 2 3 4 5

n

−1.00

−0.95

−0.90

−0.85

−0.80

Figure 3-8: Results for the Anti-Tetra Chiral Structure (Sample A.1). The experiment is repeated
7 times. The average Poisson ratio is plotted against the different corner nodes of the rectangle,
described in Figure 3-7. For the left plot, the distance (m) from the fixed boundary is varied while
keeping n = 1. For the right plot the distance n from the free boundary is varied while keeping
m = 4.

is plotted for increasing n, while keeping m constant at 4. When n is 5 the value starts to
deviate from the predicted value. A possible reason for this that the measurable displacements
decrease. When the applied strain is εy = 2% and the plane is defined as (m,n) = (5, 5) it
measures 25 × 25 mm. The displacement of this plane is δy = 25 ∗ εy = 0.5 mm. This
approaches the estimated measurable displacement of 0.05 mm, as discussed in section 3-1,
and leads to measurement inaccuracy.
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1 2 3 4 5
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−0.84

−0.82

−0.80

−0.78
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Figure 3-9: Results for the Combi-Tetra Chiral Structure (Sample A.2). The experiment is
repeated 5 times. The average Poisson ratio is plotted against the different corner nodes of the
rectangle, described in Figure 3-7. For the left plot, the distance (m) from the fixed boundary is
varied while keeping n = 1. For the right plot the distance n from the free boundary is varied
while keeping m = 4.

3-2-2 Poisson ratio per Unit-Cell

Figure 3-10: Definition of unit-cells in the Anti Tetra Chiral structure. The unit-cell indicated
in red, is calculated using the distance of the surrounding markers indicated in green. For the
calculation of the boundary and corner unit-cells refer to Appendix D

From the previous section it follows that measurement location is very important when de-
termining the Poisson ratio. To get a better insight in the effect of the fixed boundary on
the auxeticity of the structure, the Poisson ratio for individual unit-cells is investigated. The
definition of a unit-cell and the displacements used to calculate the Poisson ratio is illustrated
in Figure 3-10. The calculation for the unit-cell, indicated in red, uses the coordinates of the
surrounding green unit-cells. The full calculations are found in Appendix D.

In Figure 3-11 and Figure 3-12, νyx is plotted for every unit-cell. The difference with the
value from theory is high at the fixed boundaries, as expected. Further from the boundary,
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3-2 Data Analysis 21

the measured νyx starts to approach the theoretical value for a unit-cell .
For Sample A.1, the unit-cells on free boundaries (m,n) = (1, 6) and (m,n) = (10, 6) have a
νyx < −1 . This means the unit-cell is more auxetic than theory. This is in conformation with
Figure 3-5a, where the unit-cells in the middle of the free boundaries rotate more than other
unit-cells because the horizontal bars touch. This same effect is also visible in Figure 3-8
where νyx < −1 for m = 4 and m = 5 at the free boundary.

2 4 6 8 10

n
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4

6

8

10

m

−1.0

−0.8

−0.6

−0.4

νyx

Figure 3-11: A plot of eν as the difference between the theoretical Poisson Ratio of νyx = −1
and the data from the experiment for every unit-cell of Sample 1.A. This is for εy ≈ 2%.
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Figure 3-12: A plot of eν as the difference between the theoretical Poisson Ratio of νyx = −0.83
and the data from the experiment for every unit-cell of Sample 2.A. This is for εy ≈ 2%.

In order to compare the method using rectangular planes described in subsection 3-2-1 with
calculation of the Poisson ratio per unit-cell, the data is plotted as in Figure 3-14 and 3-13
for varying the distance from the fixed boundary (m) and varying the distance from the free
boundary (n). The result in shown in Figure 3-14 and 3-13 for Sample A.1. For Sample A.2
The result is plotted in Figure 3-16 and 3-15. The standard deviation of the measurements per
unit-cell is significantly higher than for measuring with rectangular planes. However, similar
large deviations from the theoretical Poisson ratio are seen close to the fixed boundaries both
for Sample A.1 and Sample A.2.
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Figure 3-13: Results for the Anti Tetra Chiral structure. The Poisson ratio, νyx, is calculated
per unit-cell.
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Figure 3-14: Results for the Anti Tetra Chiral structure. The Poisson ratio, νyx, is calculated
per unit-cell.
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2 4 6 8 10

m

−1.0

−0.8

−0.6

−0.4

−0.2

ν y
x

Left Free Boundary(n = 1) Right Free Boundary(n = 14)

Figure 3-15: Results for the Meta Tetra Chiral structure. The Poisson ratio, νyx, is calculated
per unit-cell.
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Figure 3-16: Results for the Meta Tetra Chiral structure. The Poisson ratio, νyx, is calculated
per unit-cell.
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24 Measuring The Poisson Ratio of 2D Auxetic Structures

3-2-3 Poisson ratio versus strain

Figure 3-17: Schematic of a Meta-Chiral Structure as described by [16]

From theory the Anti Tetra Chiral structure is expected to have a constant νyx for increasing
strain, because the structure is symmetric. For a Meta Tetra Chiral structure the Poisson
ratio is dependent on θ and is defined as,

νyx = −(Ly/Lx) cos(θ) (3-4)

The parameters of this equation are indicated in Figure 3-17. The derivation of the Poisson
ratio and other details on the theoretical model are discussed in Appendix A. When the
structure is compressed θ increases and cos(θ) decreases, this leads to a decreasing νyx.
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Figure 3-18: The Poisson ratio is plotted versus strain. νyx is measured at the plane of m = 4
and n = 2 for both samples A.1 and A.2.

In Figure 3-18 νyx is plotted against the vertical strain εy. After a disturbance for small strains,
which is caused by measurement inaccuracy, it settles to one value. From the experimental
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3-3 Discussion of Results 25

data it is hard to verify the decreasing Poisson ratio for Sample A.2. The results from the
FEM model show a constant νyx for Sample A.1. For Sample A.2 a clear decrease in νyx is
noticed.

3-3 Discussion of Results

The results from measuring with rectangular planes show a small standard deviation of the
retrieved effective Poisson ratio. When the distance m from the fixed boundary increases, the
retrieved Poisson ratio approaches the theoretical Poisson ratio.

For m = 5, in both samples the measured Poisson ratio overshoots the theoretical value due
to the free boundary. The effect of the free boundary dissipates fast in Figure 3-8, but for
n = 4 the Poisson starts increase. This effect is not expected, but is explainable by increasing
measurement accuracy when the size of the rectangular plane decreases.

Looking at the displacements of every individual unit cell, similar results are seen as with the
method using rectangular planes. Unit-cells close to a fixed boundary, have a strong deviation
from the theoretical value. For calculation of the Poisson Ratio per unit cell the displacements
δLi between loaded and unloaded frames are in the order of 0.1 mm. This explains the
fluctuation of eν seen in Figure 3-11 and Figure 3-12. From the standard deviations seen in
Figure 3-14,3-13,3-16 and 3-15, the lack of measurement accuracy is also seen. To improve
accuracy and keep all the unit-cells in the picture frame, a camera with a higher resolution
is needed.

The results in Figure 3-18 for show a similar trend for values from the FEM analyses and
experiment for both samples. The experimental data shows a rise time for small strains,
which is explainable by the accuracy limit of the measurement method.

3-3-1 Measuring with Markers

In the experiment multiple compression cycles have been done. During a cycle, images have
been captured continuously. In the first image, the structure is not deformed. The marker
positions in the first image of every cycle are compared. A difference in coordinates between
the first images means there is movement. This can be movement of the camera, lens or a
shift of the markers.

A total of 5 compression cycles are considered. The unloaded image of the first cycle is taken
as a reference. The difference between the reference image and the unloaded image of cycles
{2, .., 5} is plotted in Figure 3-19. The red vectors indicate the displacement direction. For
visibility purposes, the vector amplitude is scaled. The actual maximum vector length is
5.4056 pixels ≈ 0.6 mm.

If the camera only translates, this results in a field of parallel vectors. If the image scales,
due to auto-zoom, this results in vectors with a similar direction. However, the length of the
vectors is dependent on the location of the focus point. Vectors close to the focus point are
small, vectors further away from the focus point are large. This effect is seen in Figure 3-19.
The shifting of a marker sticker leads to a vector with a different length and direction than
the rest of the vectors. As the vectors are all pointing in a similar direction the markers have
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not shifted. It is concluded that a slight camera and lens movement caused the picture frame
between different deformation cycles to shift a maximum of 0.6 mm. The auto-zoom only
adjusted the lens for the first image of a cycle, so this does not affect the measurement. The
movement of the camera does not affect the calculation of the Poisson ratio, as it does not
affect the ratio of the distances between the markers.

(a) Cycle 2 (b) Cycle 3

(c) Cycle 4 (d) Cycle 5

Figure 3-19: Vectors indicating the difference between the reference image, and the first images
of cycles {2, .., 5}. The vectors are scaled, the maximum absolute displacement is 5.4056 pixels.

3-4 Conclusion

It is concluded that both the fixed as well as the free boundary affect the measurement of
the Poisson ratio. The structure starts to behave more similar to theory further away from
the boundaries. In the case of Sample A.1, for a measurement plane indicated with relative
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3-4 Conclusion 27

distances from the boundaries m = 4 and n = 3, the calculated Poisson approaches the
theoretical value. For Sample A.2 a similar trend is found.

From investigating the Poisson ratio per unit-cell, it has been shown that the unit-cells close
to the boundary behave less auxetic. The measurement accuracy proved insufficient for
determining the Poisson ratio per unit-cell, this is concluded from the high standard deviations
in Figure 3-14.

From the FEM model as well as the experimental results, it is found that for an-isotropic
auxetic structure (Sample A.2) the Poisson ratio is dependent on the applied strain. For
symmetric structures as the Anti Tetra Chiral structure (Sample A.1) it is not dependent on
strain. This confirmed the expectations from theory, as the νyx is dependent on the angle
θ for Sample A.2. This angle changes when the structure is deformed. In general, strain
dependency of the Poisson ratio for any auxetic structure type is predictable from the theory
described in Appendix A. For example, it is expected that re-entrant honeycombs and Tri-
Chiral structures have strain dependent Poisson ratios.
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Chapter 4

Force Transmission in Auxetic
Materials

In the this chapter the relation between the effective properties of an auxetic metamaterial
and the ability to create strain in a body of another material is described. Making a design
assumption, the auxetic structure is considered as a interface for force transmission or a
’gearbox’. On the basis of this relation and the achievable effective properties for different
auxetic metamaterial archetypes, which are described in Appendix A, a suitable structure
type is chosen. To verify the expectations for the force transmission, one structure type is
considered. The effect of changing the geometric parameters of this structure type, resulting
in different effective material properties, is theoretically investigated. A selection of auxetic
structure geometries is fabricated and an experimental setup is constructed to measure the
force transmission for these structures. The results from this experiment are discussed and
compared to the expectations. Next, using the verified model for force transmission, a second
design iteration is performed to achieve high force transmission. Finally, a conclusion is drawn
on the insights and results from investigating the designing, fabrication and testing of auxetic
metamaterials for force transmission.
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4-1 Defining Force Transmission

To create axial strain in a fiber an axial force has to be generated. Two designs concepts are
considered. In the first concept (Figure 4-1a), the auxetic metamaterial is directly fixed to
the optical fiber and the axial force is generated by shear on the boundary between the fiber
and the auxetic structure. In the second concept (Figure 4-1b), the auxetic metamaterial is
fixed to stiff end plates, which are connected to the optical fiber. The auxetic metamaterial
is not fixed to the fiber itself, but it is in contact with the fiber.

(a) Concept 1 (b) Concept 2

Figure 4-1: Two potential design concepts using an auxetic metamaterial to convert pressure to
strain. (a) The auxetic material is fixed to ’the fiber’.(b) the auxetic material is fixed to ’solid
end plates’ which transmit the force to the fiber.

In chapter 3, it has been shown that fixed boundaries have a significant effect on the behavior
of auxetic structures. Additionally, the connection between the auxetic material and another
solid material, i.e. the fiber, consists of thin beams with a small contact area. In order to
show the difference between the concepts, two archetypes and their connection to the fiber
or to the stiff end plates are illustrated in Figure 4-2. In concept 1 (Figure 4-2a), the strain
transfer between the auxetic metamaterial and the fiber is mostly dependent on the bending
of the ligaments. In concept 2 (Figure 4-2b), axial strain in the fiber is caused by a stretching
load on the ligaments connected to the stiff end plates.

It is expected that concept 1 will perform less than concept 2, due to the difference in loading
of the ligaments (bending versus stretching).

(a) Concept 1 (b) Concept 2

Figure 4-2: A snapshot of the boundary surfaces, for two archetypes of auxetic structures for
both design concepts. In (a), the strain in the fiber is caused through bending of the ligaments.
In (b), the axial strain in the fiber is caused by ligaments ’pulling’ on the stiff end disk.

In this chapter the concept that uses two stiff end plates is considered. In this case a high
force transmission from Fy, generated by the outside pressure to Fx contracting the disks

A.W.S. Nederkoorn Master of Science Thesis



4-1 Defining Force Transmission 31

Figure 4-3: Schematic of the simplified system, used to estimate the force transmission in an
auxetic metamaterial. σy is the reaction to the pressure that acts on the top boundary. σx is the
stress caused by constraining the movement in x.

is desired. The ratio of Fx/Fy achievable by the auxetic material is used to indicate it’s
feasibility.

To compose the model for force transmission, the system is simplified to the free body diagram
seen in Figure 4-3. The system is a 2D rectangular auxetic plate, consisting of multiple unit-
cells. The amount of unit-cells and the geometry of a unit-cell determines dimensions Lx and
Ly. It is assumed that the plate has the an-isotropic effective properties (νxy, νyx, Ex and
Ey), that follow from the mechanics of the unit cell as described in Appendix A. The linear
elastic deformation of the 2D system is described by Equation 4-1. To solve this equation it
is assumed that the strains εx and εy are infinitesimally small.

 εxεy
γxy

 =

 1/Ex −νyx/Ey 0
−νxy/Ex 1/Ey 0

0 0 1/G


σxσy
τxy

 (4-1)

A pressure in y is applied, this results in stresses σx and σy. Stress relates to force as
F = σ/Area. Using the dimensions of the system and solving Equation 4-1, the force ratio
(Fx/Fy) is retrieved as in Equation 4-2.

Fx
Fy

= σxLy
σyLx

=
[
Ly
Lx

]
Ex
Ey

νyx (4-2)

First, the suitability for high force transmission of different auxetic structure types is inves-
tigated by considering a single unit-cell. When reviewing the theoretical models that are
described in Appendix A, and using them in Equation 4-2, two structure types stand out.
The Re-entrant Honeycomb structure and the Meta Tetra Chiral structure. Both have an-
isotropic effective properties, which is important to be able to achieve high ratios of Fx/Fy.
The other structures discussed in Appendix A are less suitable, as they are isotropic. This
leads to a maximum force transmission of −1, for example for the Anti Tetra Chiral structure
where νyx = −1 and Ex = Ey.

Considering Figure 4-4 and 4-5 it is expected that high force transmission is achievable with a
Re-entrant Honeycomb. The design parameters used for this initial evaluation are similar to
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Figure 4-4: Force Transmission, Poisson ratio and the Young Moduli for a Re-entrant Honeycomb
unit-cell. The geometric parameters used are l = 5 mm,h = 15 mm, t = 1 mm, b = 1 mm.

Figure 4-5: Force Transmission, Poisson ratio and the Young Moduli for a Meta Chiral Structure
unit-cell. The geometric parameters used are t = 1 mm, Lx = 40 mm,Ly = 30 mm.
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the examples found in literature of a typical Re-entrant Honeycomb structure [17] and a Meta
Tetra Chiral structure [16]. Besides the effective properties of a unit-cell the force transmission
is dependent on Lx and Ly. This means that the force transmission for a complete auxetic
metamaterial is different than for a single unit-cell.

4-1-1 Force Transmission in Re-entrant Honeycombs

Figure 4-6: Dimensions of a Re-entrant Honeycomb

To further understand the force transmission behavior of the Re-entrant Honeycomb the
theory that describes the effective properties is considered. Gibson and Ashby [18] present a
flexure based model, as in Equation 4-5, to describe the effective an-isotropic properties νxy,
νyx, Ex and Ey. The geometric parameters are shown in Figure 4-6. The deflection δ caused
by flexure is related to force with the force constant Kf ,

F = Kfδ (4-3)

The force constant Kf is defined as Equation 4-4 with beam thickness t, beam length l, the
Young Modulus of the host material Es and b is the out of plane depth.

Kf = Esbt
3

l3
(4-4)

The full derivation of these equations is considered in Appendix A. In this chapter the
resulting equations for the effective properties are investigated to see what design parameters
are influencing the force transmission.

Ex = Kf
h/l + sin θ
b cos3 θ

Ey = Kf
cos θ

b(h/l + sin θ) sin2 θ

νyx = cos2 θ

(h/l + sin θ) sin θ

νxy = (h/l + sin θ) sin θ
cos2 θ

(4-5)
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Besides flexure, shear and strain start to significantly contribute to the structure behavior
when the geometry deviates from the ’standard’ geometry with thin long beams. Gibsons
model was expanded by Masters and Evans [17], to take these effects into account. The force
constant Kh for shearing is defined in Equation 4-6, where Gs shear modulus of the host
material. The geometric parameters that are used in Masters and Evans model are the same
as before and are illustrated in Figure 4-6.

Kh = Gsbt

l
(4-6)

Similarly, the force constant for straining Ks is defined as Equation 4-7.

Ks = Esbt

l
(4-7)

Combining the deformations caused by all three mechanisms, flexure, shear and strain, the
effective properties of the Re-entrant Honeycomb are defined as in Equation 4-8. For the full
derivation of these equations refer to [17].

Ex = 1
b cos θ

h/l+sin θ

[
cos2 θ
Kf

+ cos2 θ
Kh

+ 2h/l+sin2 θ
Ks

]
Ey = 1

b(h/l + sin θ)
[

sin2 θ
Kf cos θ + sin2 θ

Kh cos θ + cos θ
Ks

]
νxy = − sin θ(h/l + sin θ)

 − 1
Kf
− 1

Kh
+ 1

Ks[
cos θ2

Kf
+ cos2 θ

Kh
+ 2h/l+sin2 θ

Ks

]


νyx =
− sin θ cos θ

[
1
Kf

+ 1
Kh
− 1

Ks

]
(h/l + sin θ)

[
sin2 θ
Kf cos θ + sin2 θ

Kh cos θ + cos θ
Ks

]

(4-8)
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Difference between Models

From considering the force constants in Equation 4-4, 4-6 and 4-7, it is concluded that t/l
determines the magnitude of the force constants which is directly related to the contribution
of each mechanism. In Equation 4-8 a small force constant relates to a high contribution of
the to the effective properties. Kf scales with (t/l)3 while Kh and Ks scale with (t/l).
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Figure 4-7: Comparison of the two models for force transmission, for varying t. Values used are
h = 15 and l = 5. When t is chosen smaller the 2 models start to overlap.

When t/l is small, meaning the structure consists of long thin beams, the behavior is dom-
inated by the flexure mechanism. As t/l increases, shear and strain start to contribute to
the behavior of the Re-entrant Honeycomb. This effect is illustrated in Figure 4-7, where the
force transmission is plotted for different values of t while keeping l constant.

4-1-2 Expectations

The calculated effective properties (νxy, νyx, Ex and Ey) from Gibsons model, from now on
referred to as the Flexure Model, and from Masters and Evans model, from now on referred to
as the Complete Model, are used to calculate the force transmission as defined in Equation 4-2.

Considering the Flexure model, influential parameters are the angle θ and the the relation
h/l. The constraint for θ is 0 < θ < 1

2π. The stiffness has to be positive, this leads to the
constraint for h/l as h/l+ sin θ > 0 has to hold. The same constraints hold for the Complete
model.

The theoretical effect of parameters h/l and θ on the force transmission for both models is
plotted in Figure 4-8. For higher θ the force transmission increases. For higher h/l ratios the
force transmission stays constant or decreases depending on the model.

From the theoretical analysis some conclusions are drawn. Firstly, the parameter that has the
most influence on the force transmission is θ. Secondly, the shearing and hinging effects that

Master of Science Thesis A.W.S. Nederkoorn



36 Force Transmission in Auxetic Materials

−60−40−200

θ

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

F
1

F
2

2 3 4 5 6

h/l

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Flexure Model Complete Model

Figure 4-8: The absolute force transmission as described in Equation 4-2, plotted for θ and h/l.
Values for used are t = 1 mm, θ = −30◦ and h/l = 15/5. These values correspond to the
fabricated structures.

start to contribute to the structure behavior for larger (t/l) have a negative effect on the force
transmission. In order to get a high force transmission a structure with thin long beams, i.e. a
small t/l and flexure dominated effective properties, is preferred. Thirdly, although the ratio
h/l is an important parameter for changing the effective Poisson ratio and Young Modulus,
it is expected to have little effect on the force transmission. Finally, from considering both
the Flexure Model and the Complete Model uniform down scaling is not expected to have
influence on the force transmission behavior. In reality there is a certain limit to the down
scaling due to challenges in fabrication of thin beamed structures.
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4-2 Methodology for Measuring Force Transmission

This section describes the experimental validation of the described model for force transmis-
sion in auxetic structures. First, the fabricated structures are discussed. Next, the experi-
mental setup and the measurement procedure is explained. The results from the experiments
are compared to the expectations from theory.

4-2-1 Samples

For this experiment, 9 structures are fabricated from FLEX45 material from RS-Pro with a
Prusa MK3. The FLEX material has a Young Modulus of Es = 95 MPa. The choice for the
more flexible filament is based on the measurement range of the available force sensors. The
geometric parameters and calculated effective properties of the 9 fabricated structures can be
found in Table 4-1. The samples B.1 to B.4 have varied values for h/l. For the samples B.5
to B.9 θ is varied. All the samples B.1 to B.9 consist of 3× 8 unit-cells. On the left and right
boundary of the auxetic structure two beams were added for connection purposes. Images
of the samples are shown in Figure 4-9 and 4-10. For all samples t/l = 0.2. Considering
Figure 4-7, the shearing and straining mechanisms are expected to significantly contribute to
the force transmission. The samples set B is designed with the goal to validate the model
for force transmission. In section 4-4, when the model has been validated, structures with
optimal design parameters for force transmission are considered.

Sample h [mm] l [mm] θ [deg] t [mm] ν21 E1 [MPa] E2 [MPa]
B.1 10 5 −30 1 −0.86 1.4 1.5
B.2 15 5 −30 1 −0.52 2.1 0.9
B.3 20 5 −30 1 −0.37 2.8 0.7
B.4 25 5 −30 1 −0.29 3.3 0.5
B.5 15 5 −10 1 −0.85 1.8 3.8
B.6 15 5 −20 1 −0.72 1.9 1.7
B.7 15 5 −40 1 −0.35 2.7 0.5
B.8 15 5 −50 1 −0.23 3.8 0.4
B.9 15 5 −60 1 −0.13 6.1 0.2

Table 4-1: The data for the samples used in experiment. Samples B.1 − B.4 are designed to
have different h/l ratios. The set of samples B.5−B.9 is designed by only varying θ.The values
for ν12, E1 and E2 are calculated using the complete model [17].

Master of Science Thesis A.W.S. Nederkoorn



38 Force Transmission in Auxetic Materials

Figure 4-9: Samples B.1 to B.4. The dimensions are documented in Table 4-1

Figure 4-10: Samples B.5 to B.9. The dimensions are documented in Table 4-1

4-2-2 Experimental Setup

In Figure 4-11 and 4-12 a schematic of the experiment and the real experiment is shown
respectively. The auxetic structure is constrained in x on the right side. The bottom boundary
has a roll constraint and is fixed in y, in reality this is a contact surface between the auxetic
structure and an aluminum bar which leads to friction in the x direction.

Figure 4-11: Schematic of experiment used to determine the force transmission of auxetic
structures.

The left boundary is attached to a Futek LSB200 loadcell with a maximum load capacity of
22.5 N. This sensor is calibrated to a measurement range of 0 − 20 N for 10 V. On the top
boundary a displacement in y is applied, while the force is measured with a Futek LSB200
load cell with a maximum load capacity of 45 N. This sensor is calibrated for the range of
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0− 40 N.

The read-out device, a National Instruments NI USB-6008, has resolution of 12 bit, this
results in a very accurate force resolution for both sensors of higher than 0.0001 N.

Figure 4-12: Image of the experiment with sample B.6.

4-2-3 Measurement Procedure

The sample attached to the force sensors and the fixed boundaries of the setup. A displace-
ment is applied using the micrometer on the top boundary until it contacts the sample. At
this point, the load-cells are calibrated to zero. A displacement is applied in steps of 0.25
mm, taking measurements of the Forces on each step. The total displacement applied varies
per sample as their Young Moduli vary. A maximum input force of around 30 N is kept as
a guideline for this. For every structure this process was repeated five times. The structure
surrounding the sample is designed to hold samples of different sizes while keeping the sensors
and the applied displacement exactly in the middle of the structure. This makes it easier to
swap structures between experiments. This procedure is repeated for all Samples B.1 to B.9.
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4-3 Results

First, the samples B.1 to B.4 with varying h/l are investigated. In Figure 4-13 the retrieved
forces F1 and F2 are plotted. The force transmission for a sample is determined by taking
the gradient of F1 and F2. As h/l increases the force transmission decreases. An overview of
the experimentally retrieved force transmission for all samples is plotted in Figure 4-15 next
to the predictions from theory.
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Figure 4-13: Fin versus Fout for sample B.1 − B.4. For every sample the measurement has
been repeated 5 times.

In Figure 4-14 the results for samples B.2 and B.5−B.8 is plotted. Varying θ has a significant
and a non linear effect on the force transmission.
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Figure 4-14: Fin versus Fout for samples B.2 and B.5−B.8. For every sample the measurement
has been repeated 5 times.
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Figure 4-15: Comparison of absolute force transmission Fx/Fy from theory, experiments and
Comsol model. The force transmission is plotted versus the absolute angle | θ | and h/l. The
value of force transmission is the average of all 5 runs, at a strain of 1%.

The average of the gradients over all repetitions is plotted in Figure 4-15. The errorbars indi-
cate the standard deviation of the repetitions. It was noticed that the geometric description
of the re-entrant honeycomb is dependent on the beam thickness t, to take this into account
the description was modified. This modification is explained in subsection 4-3-1. The theory
that is plotted in Figure 4-15, uses this modification. Besides the theory, a FEM model of the
complete structure is made to verify the experimental results. The details for this simulation
are documented in Appendix E.

4-3-1 Addition to the Geometric Description of Re-entrant Honeycombs

The geometric description of a Re-entrant Honeycomb is defined as a structure of ligaments
without considering the beam thickness t by Masters and Evans [17]. It was found that for
high angles of θ, the length of the bending part of a ligament is influenced by the beam
thickness t. This is illustrated by Figure 4-16, which shows one corner of the structure. This
effect is present at both sides of a beam.

To compensate for this, the effective lengths he and le are defined in Equation 4-9, α is defined
in Figure 4-16.

le = l − 2lt = l − t

tanα
he = h− 2ht = h− t

tanα

(4-9)
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Figure 4-16: Schematic that illustrated the effect of beam thickness t on the geometry of the
re-entrant honeycomb. When θ increases the beam thickness starts to significantly decrease the
length of the beams.
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Figure 4-17: Plot of the extended model using effective lengths le and he versus the Complete
model.

Using the effective lengths instead of l and h results in a higher contribution of the shearing
and straining mechanisms. This effect is shown in Figure 4-17.
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4-4 Design for Maximum Force Transmission

Now that the model for force transmission is verified, the next step is to design for high force
transmission. The curve of the flexure model in Figure 4-15, indicates that is possible to
achieve very high force transmission when there is no contribution of the shear and strain
mechanisms. As θ is increased Fx/Fy increases exponentially. In reality there is always
contribution of the shear and strain mechanisms, but it can be minimized by designing for
small t/l ratios.

4-4-1 Simulation

To verify this expectation, and to see if the re-entrant structure can be pushed to extremes a
simulation is performed. For the simulation, 2D geometries of one unit-cell with a small t/l
ratio for increasing θ are constructed. An example of the geometry and mesh is used is in
Figure 4-18, the details for the used geometries can be found in section E-2. A quadrangular
mesh with element size hmax = 0.4 mm was used.

On the top of the unit-cell a prescribed vertical displacement of uy = −1 mm is applied.
The bottom boundary is constrained in y and the sides of the structure are constrained in
x direction. The reaction forces on the side boundary and the top boundary are used to
calculate the force transmission.

Figure 4-18: Geometry and mesh used for Comsol simulation for re-entrant structures with
extreme design parameters. In this image the structure with θ = 40◦ is seen.

The results are plotted against the Complete modified model in Figure 4-20. For θ =
{40◦, ..., 78◦}, a beam thickness t = 1 mm was used. It can be seen that the curve starts
to deviate from flexure theory at higher angles. This is due to the effective length of l getting
smaller as the hinge gets more bulky and the behavior becomes less flexure dominated. A
way to reduce this effect is to further decrease beam thickness to t = 0.5 mm. By doing this
for θ = {80◦, ..., 84◦}, a high force transmission is achievable.
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4-4-2 Experimental Verification

To verify this finding, Sample C.1 and C.2 with high angles of θ were fabricated with the
geometric parameters listed in Table 4-2. The samples are shown in Figure B-4. The force
transmission for these samples was measured using the experimental setup described in sub-
section 4-2-2.

Figure 4-19: Samples C.1 and C.2

Sample θ [deg] h [mm] l [mm] t [mm] vyx Ex Ey
C.1 -80 70 30 0.5 -0.022 2.09 MPa 1137 Pa
C.2 -82 70 30 0.5 -0.015 3.94 MPa 905 Pa

Table 4-2: Samples C.1 and C.2 and their geometric properties and theoretical effective properties
vyx, Ex and Ey. The structure consists out of one unit cell. The material used is PET (Es = 1.85
GPa)
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Figure 4-20: The results of the simulation for re-entrant structures with extreme design param-
eters.
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4-5 Discussion of Results

For varying h/l, the experimental results as well as the theoretical and numerical results
show a decreasing trend when h/l increases. The values that are measured are consistantly
lower than theory and simulations. In theory and simulations, it is assumed that there is no
strain in x direction. In the experiment there is some compliance, which explains the lower
measured force transmission. Another reason is that the top and bottom boundaries affect
the behavior of the structure. In the model and simulation these boundaries are assumed to
only be constrained in y, but in reality there is also a friction force in x that increases when
the structure is loaded.

In Figure 4-15 a peak in force transmission is noticed at θ = 40◦. This peak shifts to the right
when t/l is chosen smaller and the shearing and straining effect lose their contribution to the
effective material properties. This is seen in Figure 4-20. Simulation of a second iteration
of re-entrant structures of only one unit-cell with high angles of θ, indicates that high force
transmission in an auxetic metamaterial is possible. The results from this simulation are in
agreement with the expectations, that force transmission increases exponentially for increasing
θ. Two of the designs, with θ = 80◦ and θ = 82◦, are fabricated and the force transmission
is measured in an experiment. The maximum force transmission that was measured is 4.6
for θ = 82◦. This result is lower than the expected values from theory and the simulation
but follows the same trend. This difference is probably caused by the extra compliance,
introduced in the experimental setup.

4-6 Conclusion

From the results of this chapter, potentially well performing structural designs are found. The
Re-entrant structure type proved to be a suitable auxetic structure type for pressure to strain
conversion. Defining the relation between force transmission and effective properties, resulted
in this expectation. The expectation was verified by measuring the force transmission in an
experiment.

It is found that when Re-entrant Honeycombs are designed with high angles of θ, the effective
lengths of the bending beams change. By introducing effective lengths le and he and using
them in the model of Masters and Evans, results in a better estimation of effective properties.
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Chapter 5

Conclusive Chapter

Conclusion

In this chapter a conclusive answer is described, to the question how an auxetic metamaterial
can be used as an intermediate for converting pressure from the fluid domain to strain in the
mechanical domain.

Auxetic metamaterials have the potential to offer strain enhancement in a solid in small
form factor. For the created strain per Pascal (nanostrain Pa−1) the auxetic metamaterial
approach achieves similar strains as existing approaches. Additionally, the straining behavior
created by auxetic metamaterials is expected to be linear.

Experimental evaluation of the Poisson ratio of 2D auxetic structures shows that the bound-
ary effects cause the unit-cells close to the boundaries to behave completely different from
what the structure is designed for. It is found that to accurately verify the effective Poisson
ratio for which an auxetic structure is designed, the method using a rectangular plane is the
most effective. The Anti and Meta Tetra Chiral structures considered in this research consist
of 10 × 12 and 10 × 14 unit-cells respectively. For both structures, the effect of the fixed
boundary was found to be insignificant at a distance of n = 4 unit cells. The effect of the
free boundary dissipated at a distance m = 3 unit cells from the free boundary. This is the
region in the auxetic material where the structure behaves as if it is unconstrained and there
is no significant effect of the fixed or free boundaries on the behavior of the structure.

The Re-entrant Honeycomb auxetic structure type provides the most potential for pressure
to strain conversion when the auxetic metamaterial is not directly fixed to the fiber but to
stiff end plates. This links the potential for pressure to strain conversion to the concept of
force transmission.

Re-entrant Honeycombs can be designed for a large range of an-isotropic effective properties
which is beneficial for force transmission. For increasing angles of θ, which is a key design
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parameter in the re-entrant structure, an exponential increase of the force transmission was
expected. Experiments measuring the force input and output while applying a deformation
to the structure, confirm this expectation.

In modeling the force transmission for Re-entrant Honeycombs by using the model described
by Master and Evans [17], it is important to use the effective beam lengths, le and he, for larger
θ. This effectively causes a higher contribution of the shearing and straining mechanisms
to the flexure dominated equations. This expanded model matches the results from the
experiment.
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Recommendations

From the investigation of auxetic metamaterials for pressure from the fluid domain to strain
in a solid domain, lead to looking at auxetic structures from a force transmission perspec-
tive. It was found that Re-entrant Honeycombs with extreme geometries are potentially
well-performing in pressure to strain conversion.

Single Unit Cell

Using this insight a quick study has been performed on a concept sensor design using axial
and radial pressure. In Figure 5-1 a simulation of this concept is shown. A geometry with
the shape of an auxetic unit-cell is attached to the fiber, converting radial pressure into axial
strain. The rigid disks on both sides of the sensor are used to convert axial pressure into axial
strain.

This example shows that in the area indicated by the circle there is a maximum axial strain
of 1.36 nanostrain Pa−1. This is a simulation of a 2D case, with diameter of the fiber df = 50
µm and maximum diameter dmax = 330 µm. The estimation of a strain of 1.36 nanostrain
Pa−1 that follows from this estimation, is well above the required sensitivity of 0.1 nanostrain
Pa−1 needed to measure blood pressure differences caused by obstructions in arteries.

Figure 5-1: A quick study to demonstrate the non-uniform axial strain distribution in the fiber,
when the auxetic material is directly fixed to the fiber. An axial strain of 1.36 nanostrain Pa−1

was found.

Using a radial pressure to axial strain converter, as well as the axial pressure is a promising
field to investigate further. In the example of Figure 5-1, this pressure converter was shaped as
a Re-entrant Honeycomb unit-cell. It is recommended that other geometries are investigated,
improving the strength of the structure. Another aspect to consider is the fabrication of these
kind of concepts. It raises questions as: How can the structure be attached to a fiber for best
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pressure to strain conversion and is it possible to create a functioning thin beamed structure
considering the maximum dimensions of 330 µm.

Multiple Unit Cells

When the equation for force transmission(Equation 4-2) is considered, it is noted that a high
Ly/Lx ratio is beneficial the force transmission. For Re-entrant honeycomb unit-cells, a high
force transmission is achieved for high Lx and low Ly. To achieve higher force transmission the
unit-cells can be stacked vertically. In Figure 5-2 this concept is shown. This example achieves
a force transmission of over 34. The unit-cell that is used in this example is Sample C.1.
Scaling down unit-cells, that have high force transmission, and creating an auxetic structure
with large Ly and small Lx theoretically improves the force transmission significantly. It
has to be investigated what the limits are in scaling down these structures in terms of the
robustness of the thin beams. There will be a middle ground between the concept in Figure 5-
1, that consists of one big unit-cell with relatively thick beams, and the concept in Figure 5-2
that consists of multiple smaller and less robust unit-cells.

Figure 5-2: A quick study of stacked unit-cells to increase force transmission
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Appendix A

Properties of Auxetic Structures

A-1 Tetra Chiral Structures

A Tetra Chiral unit-cell consists of a rigid ring and 4 ligaments. Through ordering the unit-
cells in different ways, the structures shown in Figure A-1 are created. In this section the
theoretical analyses of these 2 structure types are discussed.

(a) Anti Tetra Chiral structure
type.

(b) Meta Tetra Chiral structure
type.

Figure A-1: Different possibilities for Tetra Chiral structures

A-1-1 Tetra Chiral
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A-1-2 Anti Tetra Chiral

Figure A-2: Free Body Diagram of an Anti Tetra Chiral unit-cell.

The structure is built by mirroring the unit cells over the boundaries of the unit cell. Again
following the method of Mousanezhad et al. [19] eqs. (A-1) and (A-2) are obtained. When
radius r is significantly larger than beam thickness t, the effective Poisson ratio is simplified
as -1. Other models derive the Poisson ratio from the rotation of a rigid ring this predicts a
Poisson ratio of -1 [20].

Ex/Es = t/L

1 + 6(r/L)2/(t/L)2 (A-1)

vxy = −6(r/L)2

6(r/L)2 + (t/L)2 (A-2)
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A-1-3 Meta Tetra Chiral

Figure A-3: A schematic of the Meta Tetra Chiral structure, to derive the Poisson ratio vxy.

This type of structure is a combination, also called meta-chiral [21], of the normal and Anti
Chiral structure, normal in y direction and Anti Chiral in x direction. A schematic of this
structure and unit cell is shown in Figure A-3. Because this structure is both Chiral and Anti
Chiral the deformation mechanism consists of a full-wave and a half-wave beam deformation.
Using the schematic of a unit-cell, shown in Figure A-3, the Poisson ratio is derived, by using
the method from Li et al. [16].

When the structure deforms the rigid ring rotates with angle φ, under the assumptions that
displacements are infinitesimally small, the deformation in x of the unit-cell is the radius
times rotation and is thus defined as,

δx = (r − 0.5t)φ (A-3)

The deformation along the ligament direction, is defined similarly as,

δ4 = (r − 0.5t)φ (A-4)

The y component of δ4 is defined as,

δy = δ4 cos θ (A-5)

The strain in x and y are defined as,

εi = δi
Li/2

(A-6)
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Where Li is the length of the unit-cell in the direction of the deformation. This leads to the
definition of the Poisson ratio as,

νyx = −εx
εy

= − cos θLy
Lx

(A-7)

It is concluded that there is a mistake in the derivation of the strain in the work of Li et
al.[16]. When the correct formula is used, the data from the experiment and numerical model
match the expectations from theory.

For calculating the effective properties the model presented by Li et al. [16] is followed. Using
the relation between the strain and strain energy(Ui) defined as:

1
2Eiε

2
i =

4∑
n=1

1
V
Ui (A-8)

With the Volume defined as V = 4LxLyh.

Strain Energy for the Chiral ligaments is defined as,

Uchiral = Esht
3φ2

2Ley
(A-9)

and is based on a full-wave deformation.

Due to the thickness of the beam, a part of the beam is not bending, as it is coinciding with
the rigid ring. The effective lengths of the beams are calculated. Where the effective length
in y, Ley is defined as,

Ley =
√
L2
y − (2r − t)2 − 2

√
2rt− t2 (A-10)

For the Anti Chiral ligaments the strain energy is,

Uantichiral = Esht
3φ2

6Lex
(A-11)

Where the effective ligament length in x, Lex, is defined as,

Lex = Lx − 2
√

2rt− t2 (A-12)

Combining Equation A-8 A-10 and A-11 , Equation A-13 and A-14 for effective Young Mod-
ulus are obtained.

Ex =
2
(
Est3

2Ley
+ Est3

6Lex

) (
Lx

2r−t

)2

LxLy
(A-13)

Ey =
2
(
Est3

2Ley
+ Est3

6Lex

) (
Ly

(2r−t) cos(θ)

)2

LxLy
(A-14)
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A-2 Re-Entrant Honeycomb

Figure A-4: Schematics of Bowtie

Gibson et al. describe the behavior of a Re-entrant Honeycomb structure, also referred to
as a Bow-tie structure[18]. In Figure A-4 a schematic is seen of this structure. There are
two types of models. The simple version of the model assumes flexure dominated behavior
and only considers the deformation due to flexure of the ribs. This modelis expanded with
hinging and straining of the ribs [17].

Flexure Model

Figure A-5: Bending Beam of length l due to the far field stress σx.

The behavior of the re-entrant honeycomb is derived by analysis of the beam in Figure A-5.
The geometric parameters used in this derivation are indicated in Figure A-4 The displacement
δ follows from standard beam theory as,

δ = Ml2

12EsI
, (A-15)

Where M = 1
2Wl cos θ. Using that force W is caused by the far field stress σx, the strain in

x can be written as Equation A-16

εx = δ cos θ
h+ l sin θ = σxbl

4 cos3 θ

12EsI(h+ l sin θ) (A-16)
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From the relation Ex = σx/εx, the effective Young Modulus in x direction is obtained as
Equation A-17.

Ex = Es

(
t

l

)3 h/l + sinθ

cos3 θ
(A-17)

Masters and Evans [17] define the flexure force constant Kf as in Equation A-18, with b as
the out of plane depth.

Kf = Esbt
3

l3
(A-18)

Combining Equation A-17 and A-18 results in the Effective Young Modulus in x direction in
Equation A-19

Ex = Kf
h/l + sin θ

cos3 θb
(A-19)

In a similar way the effective Young Modulus in y is derived, resulting in Equation A-20.

Ey = Kf
cos θ

sin2 θ(h/l + sin θ)b
(A-20)

The strain in y, due to the displacement δ is defined in Equation A-21.

εy = δ sin θ
l sin θ (A-21)

Combining Equation A-21 and A-16, the Poisson ratio is retrieved as Equation A-22.

νyx = −εx
εy

= cos2 θ

(h/l + sin θ) sin θ (A-22)

Complete Model

To include hinging and straining effects, Masters and Evans define force constants Ks for
strain and Kh for hinging as in Equation A-23 [17].

Ks = Esbt

l

Kh = Gsbt

l

(A-23)
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Combining the effect of flexure, hinging and strain into one general model Masters and Evans
define the effective properties of a Re-entrant Honeycomb as in Equation A-24.

Ex = 1
b cos θ

h/l+sin θ

[
cos2 θ
Kf

+ cos2 θ
Kh

+ 2h/l+sin2 θ
Ks

]
Ey = 1

b(h/l + sin θ)
[

sin2 θ
Kf cos θ + sin2 θ

Kh cos θ + cos θ
Ks

]
νxy = − sin θ(h/l + sin θ)

 − 1
Kf
− 1

Kh
+ 1

Ks[
cos θ2

Kf
+ cos2 θ

Kh
+ 2h/l+sin2 θ

Ks

]


νyx =
− sin θ cos θ

[
1
Kf

+ 1
Kh
− 1

Ks

]
(h/l + sin θ)

[
sin2 θ
Kf cos θ + sin2 θ

Kh cos θ + cos θ
Ks

]

(A-24)
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Appendix B

Samples

Samples A.1-2

Figure B-1: Sample 1.A -An Anti Tetra Chiral structure, 12× 10 unit-cells. Design Parameters
are : L = 25 mm, r = 5 mm and t = 1.5 mm

Figure B-2: Sample 1.A - A Meta Tetra Chiral structure, 14× 10 unit-cells. Design Parameters
are : Lx = 14, Ly = 15, r = 4 and t = 1.
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Samples B.1-9

(a) Sample B.1 (b) Schematic of a Re-entrant Honeycomb unit cell.

Sample h [mm] l [mm] θ [deg] t [mm] ν21 E1 [MPa] E2 [MPa]
B.1 10 5 −30 1 −0.86 1.4 1.5
B.2 15 5 −30 1 −0.52 2.1 0.9
B.3 20 5 −30 1 −0.37 2.8 0.7
B.4 25 5 −30 1 −0.29 3.3 0.5
B.5 15 5 −10 1 −0.85 1.8 3.8
B.6 15 5 −20 1 −0.72 1.9 1.7
B.7 15 5 −40 1 −0.35 2.7 0.5
B.8 15 5 −50 1 −0.23 3.8 0.4
B.9 15 5 −60 1 −0.13 6.1 0.2

Table B-1: The data for the samples used in experiment. Samples B.1 − B.4 are designed to
have different h/l ratios. The set of samples B.5−B.8 is designed by only varying θ.The values
for ν12, E1 and E2 are calculated using the expanded model [17].

A.W.S. Nederkoorn Master of Science Thesis



61

Samples C.1-2

Figure B-4: Samples C.1 and C.2

Sample θ [deg] h [mm] l [mm] t [mm] vyx Ex Ey
C.1 -80 70 30 0.5 -0.022 2.09 MPa 1137 Pa
C.2 -82 70 30 0.5 -0.015 3.94 MPa 905 Pa

Table B-2: Samples C.1 and C.2 and their geometric properties. The structure consists out of
one unit cell. The material used is PET (Es = 1.85 GPa), parameters are defined in Figure B-3b
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Appendix C

Fabrication

Figure C-1: Printing Directions for determining relation between printing direction and Young
Modulus.

Influence of Printing Direction

The printer used is a Prusa MK2. The printing material used is "RS PRO-PET-G" 1.75 mm
filament. Literature shows that the Young Modulus of a printed material varies with printing
direction [22]. To see what the effect of printing direction on Young Modulus, while using
the Prusa setup, a tensile test is performed. 5 Dogbones where printed, for different angles
as seen in Figure C-1. Important to notice is that the 3D printer first prints the outline of
a plane, to later fill it up. The printing direction only influences the pattern of this second
part, as when printing the outline it follows the outline direction. Combining this with the
fact that the to be printed auxetic structures consist of thin beams, the dogbones dimensions
where chosen accordingly(mostly consisting of outline). This research focuses on 2D auxetic
structures, this is why only printing angle θ in the x− y plane is varied.
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The ’Zwick Roell’ tensile/ compression machine was used to perform the tensile test. This
machine has a load capacity of 1000 N. The Young modulus of the PET filament, provided
by the manufacturer, is E = 2150 MPa and yield strength of σY =50 MPa.[?]. The cross
sectional area Ac of the dogbone is 25 mm2. So a 1250 N Load is necessary to reach the yield
strength. This is higher than the load capacity of the Zwick Roell machine, meaning that
only the first part of the stress-strain curve can be obtained. As we are mainly interested in
the Young Modulus of the printed material and the variation of this property with respect to
the printing angle, loading in the elastic regime is sufficient. The 5 samples were loaded until
1000 N resulting in the stress-strain curves as displayed in Figure C-2.
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Figure C-2: The stress-strain curve resulting from Tensile test for different printing angles.

The Young Modulus was retrieved from the data using E = σ/(δ/L0). Where L0 was chosen
the distance between the grippers. δ is the displacement and σ = F/Ac where Ac is the cross
sectional area. From the results in Table C-1, it is seen that the printing direction(under our
conditions) has little effect on the behaviour of the material. The mean value is E = 1.85
GPa for 3D printed PET.

Sample Rotation θ Young Modulus (MPa)
1 90◦ 1834
2 67.5◦ 1842
3 45◦ 1871
4 22.5◦ 1822
5 0◦ 1863

Table C-1: Young Modulus obtained from experiment.
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Calculation of Unit-Cell

For the unit-cells that are not surrounded by 4 other unit-cells, a different approach to calcu-
lating the displacements is needed. For the unit-cells on the side the 3 surrounding cells are
used with lengths Lx and Ly as in Figure D-1a. For the corner nodes the only 2 surrounding
nodes are available, this is illustrated in Figure D-1b

(a) (b)

Figure D-1: Methods used to extract Poisson ratio νyx for unit cells on the boundaries(a) and
corners(b).
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Appendix E

FEM

E-1 FEM Experiment 2

Finite Elements method used to verify data from the experiment. The complete geometry used
in the experiment is modeled consisting of multiple unit cells and the solid boundaries. The
problem is analyzed in 2D. The boundary conditions are roll constraints on bottom, left and
right. On the top a prescribed displacement is applied of −1 mm compressing the structure.
A triangular mesh with extra fine elements is used for 2D, it can be seen in Figure E-1. The
reaction forces due to the prescribed displacement are calculated taking a line integration on
top (F2) and left(F1) bottom. For every geometry (Sample 1 − 9) this simulation is done.
The results from the simulations are seen in Table E-1.

Figure E-1: Triangular mesh used for 2D case
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Linear Geometric Non Linear
θ [deg] F1 [N/m] F2 [N/m] Ratio F1 [N/m] F2 [N/m] Ratio
10 -2154.7 -6281.6 0.34 -2308.6 -6133.4 0.376398083
20 -3243.9 -4556.3 0.71 -3342.2 -4428 0.754787715
30 -3305.2 -3154.3 1.05 -3353.8 -3080.9 1.088578013
40 -2952.8 -2477 1.19 -2987.4 -2433.5 1.227614547
50 -2510.5 -2350.9 1.07 -2544.6 -2311.2 1.100986501
60 -2113.8 -3805.2 0.56 -2158.8 -3693.2 0.584533738

Table E-1: Results from the 2D FEM simulation. The problem was solved for linear and geometric
non linear case. Geometric non-linearity is important to consider when displacements are large.
Considering the pressure differences are small in the eventual application, the linear results are
used.

E-2 FEM Unit Cells

Figure E-2: Examples of geometries for θ = 50◦(1) and θ = 84◦(2).

In Figure E-2 two examples of the geometries used for the simulation. The quadrangular
mesh indicated in the circle is for designs with t = 0.5 mm, with maximum element size 0.2
mm. The mesh used for designs with t = 1 mm has a maximum element size of h = 0.4 mm.
The design parameters for all the designs is found in Table E-2.
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θ [deg] h [mm] l [mm] t [mm]
40 60 30 1
50 60 30 1
60 60 30 1
70 60 30 1
71 60 30 1
72 60 28 1
73 60 28 1
74 60 28 1
75 60 28 1
76 60 28 1
77 60 28 1
78 60 28 1
80 70 30 0.5
82 70 30 0.5
84 70 30 0.5

Table E-2: Design Parameters for Re-entrant structures used in the simulation. The minimal
changes of h and l were necessary to make the geometry possible for larger angles of θ.
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Appendix F

Processing Images

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % This Script is written by : Bas Nederkoorn
3 % Date : 14 - 09 - 2019
4 % Function : Analysis of images and determining displacement of auxetic
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 function [ centers_x , centers_y ] = comparenodes ( filename , diameter )
7 im_o = imread ( filename ) ; % Import Image
8 radius = diameter /2 ; % Detect Green Marker Circles
9 im_o = im_o (500 :2300 ,600 :3000 , 2) ; % Cropping and Filter Image

10 im = im2bw (im_o , 0 . 5 5 ) ;
11 bw = bwareaopen (im , 250) ;
12
13 [ centers , radii ] = imfindcircles (bw , [ radius−10 radius+5] ,’ObjectPolarity’ ,

’bright’ ,’Sensitivity’ , 0 . 8 6 ) ; % Retrieve Circles
14
15 if length ( centers ) > 140 % Check if all Markers are Seen
16 im = im2bw (im_o , 0 . 6 ) ; % If not sensitivity is adjusted
17 bw = bwareaopen (im , 250) ;
18 [ centers , radii ] = imfindcircles (bw , [ radius−10 radius+5] ,’

ObjectPolarity’ ,’bright’ ,’Sensitivity’ , 0 . 8 6 ) ;
19 end
20 if length ( centers ) < 140
21 im = im2bw (im_o , 0 . 5 ) ;
22 bw = bwareaopen (im , 250) ;
23 [ centers , radii ] = imfindcircles (bw , [ radius−10 radius+5] ,’

ObjectPolarity’ ,’bright’ ,’Sensitivity’ , 0 . 8 6 ) ;
24 end
25
26 centers = sortrows ( centers ) ; % Sorting Matrix to match location
27 sorted = zeros (10∗14 ,2) ; % in marker grid
28
29 for i = 1:14
30 sorted (10∗i−9:10∗i , : ) = sortrows ( centers (10∗i−9:10∗i , : ) , 2 ) ;
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31 end
32 c_x = sorted ( : , 1 ) ;
33 c_y = sorted ( : , 2 ) ;
34 centers_x = reshape (c_x , [ 1 0 , 1 4 ] ) ; % Return x,y coordinates of
35 centers_y = reshape (c_y , [ 1 0 , 1 4 ] ) ; % every marker
36 end
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