

Quantifying the relevant time-quality trade-off of the curing process for wind turbine blades manufacturing

Struzziero, Giacomo; Teuwen, Julie

Publication date 2018

Document Version

Final published version

Citation (APA)

Struzziero, G., & Teuwen, J. (2018). *Quantifying the relevant time-quality trade-off of the curing process for wind turbine blades manufacturing.* Poster session presented at ADEM 2018: A Green Deal in Innovative Energy Materials 2018 conference, Scheveningen, Netherlands.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

Quantifying the relevant time-quality trade-off of the curing process for wind turbine blades manufacturing

Giacomo Struzziero, Julie Teuwen

Department of Aerospace Structures & Materials, Faculty of Aerospace Engineering Delft University of Technology, Kluyverweg 3 2629 HS, Delft (The Netherlands)

Introduction

- **■** Challenges in composite manufacturing:
 - Quality compliance due to unexpected process induced defects
 - Reducing cost due to long process time and failures
 - Sustainability due to large amount of scrapped materials
- **Wind industry current solution**
 - Overdesigning
- Issues:
 - Process cost
 - Blades efficiency
 - Sustainability

Figure 1: a) Wind turbine farm in Netherlands b) Manufacturing of wind turbine blades

Research methodology

Three threads of research can be identified to generate the necessary science based background allowing optimisation of the process:

- New material characterisation methodology
 - Chemical-thermal properties
 - Cure kinetics
 - Specific heat
 - Thermal conductivity
 - Mechanical properties
 - Mechanical modulus
 - Thermomechanical properties
 - Coefficient of thermal expansion
 - Shrinkage
- **■** Cure process simulation
 - Heat transfer model
 - Degree of cure evolution
 - Overshoot temperature
 - Coupled thermo-mechanical model
 - Residual stresses generation
 - Model validation
 - Temperature measurements
 - Residual stresses measurements
- **■** Multi-Objective optimisation methodology
 - Quality/Cost Pareto front
 - Set of optimal design points
 - □ Significant reduction in process time (78%)
 - Overshoot temperature (60%)

Figure 2: a) Thermal conductivity test set-up b) Mechanical modulus samples manufacturing

Figure 3: a) Degree of cure results for a 47 mm thick laminate b) Sampled manufacturing for mechanical performances and validation

Figure 4: Comparison between standard results and Pareto front

Conclusions

- The optimisation methodology is able to unveil relevant quality/cost trade-off
- The material characterisation will provide accurate material properties evolution due to novelties in characterisation
- Infrastructure for measuring temperature and residual stresses will validate models predictions.

References

- [1] Struzziero G. and Skordos A.A. Multi objective optimisation of the cure of thick component. Composites Part A 2017;93:126-136.
- [2] Standard DNVLG-ST-0376. Rotor blades for wind turbines. December 2015